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Abstract
The present work concerns flutter analysis of the Sonaca 200, more precisely extension of
the aeroelastic model to the full airplane. It fits in the continuation of two master theses
that studied aeroelastic behavior of the main wing. The studied configuration corresponds
to the prototype state of the airplane in 2018, without fuel nor luggage and with fixed
control surfaces. An analytical approach relying on Megson aircraft structures theory [1]
is here implemented to provide structural models for the rear fuselage and the empennage
that are suited for flutter analysis. The different components are then assembled using
elastic connections to create a full finite element model of the aircraft. Numerical modal
analysis is performed on this latter and the resulting eigenmodes are compared with
experimental data from ground vibration testing for validation. In parallel, an aeroelastic
model of the Sonaca 200 utilizing the vortex lattice theory [2][3] is developed in Matlab
based on the work of Dimitriadis. It manages aerodynamic efforts on the structure with
use of vortex ring elements and relies on modal analysis data to solve the aeroelastic
equation of motion. The algorithm is first tested with experimental modes and provides
a satifactory degree of comparison with reference aeroelastic solutions computed by the
Leichtwerk company. Outputs of the finite element model are subsequently injected in
the program to observe the differences in terms of aeroelastic solutions. The results seem
encouraging but highlight sensitivity of the Vortex Lattice Method to modal parameters
of the system. It would thus be beneficial to investigate ways of improving accuracy of
the finite element model for it to be appropriate in practice. Part of this improvement
may come from determination of the real boundary conditions with the ground. Besides,
implementing movable control surface in the finite element model would allow to test
critical configurations of the airplane where actual flutter might appear.
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1 INTRODUCTION 1.0

1 Introduction

Figure 1.1: Illustration picture of the Sonaca 200 in flight.

The Sonaca 200 is a recent two-seater light airplane produced by the Sonaca Aircraft
company in Namur. Built in a full aluminium frame and powered with a single Rotax
914F four-stroke piston engine, it is mainly intended for the market of flight schools
as its performances allow for an easy maneuverability at low speeds [4]. It abides to the
Certification Specifications for Very Light Aeroplanes (CS-VLA) enacted by the European
Union Aviation Safety Agency (EASA). In particular, the CS-VLA 629 specifies certain
requirements in terms of aeroelastic behavior: "It must be shown [...] that the aeroplane
is free from flutter, control reversal, and divergence for any condition of operation within
the limit V-n envelope, and at all speeds [...]" [5]. All three phenomenon listed here above
are caused by energy exchanges between the flexible aircraft structure and the air stream
around it. They all present a tremendous risk for flight safety:

• control reversal is the loss of maneuverability due to flexibility of the main aerostruc-
tures [6], and was one of the possible explainations for the crash of the USAir Flight
427 in 1991 [7] ;

• divergence, which always occurs past a certain airspeed, describes a static deflection
of the lifting surfaces that can lead to tearing as it was demonstrated in experimental
conditions;

• flutter is related to modification of the apparent damping of the structure in flight
conditions. Above a critical speed, certain modal damping terms of the system can
become negative, so that any exterior excitation can trigger a possibly destructive
neutrally stable or unstable oscillation regime.

1



1 INTRODUCTION 1.0

The present work is focused on theoretical flutter analysis of the Sonaca 200. This phe-
nomenon was well experienced on airplanes of World War I and remains critical nowadays
as it caused the crash of a F117 bomber during an airshow in 1997. This being known
to manufacturers, the first flutter testing campaigns were initiated in 1935 on German
aircrafts [8] by measuring the maximum response amplitude as a function of airspeed. As
the risks involved were too important for both the machines and the pilots, the testing
techniques evolved to become safer and safer throughout the twentieth century. Flight
flutter testing remains a recommended method by flight authorities to prove airworthi-
ness of a prototype under development. Nonetheless, reliable analytical approaches were
demonstrated in the past decades in order to offer good forecasting without the cost and
logistics of experimental setups. Rationale analysis is indeed one of the three possible
methods requested by the EASA to justify absence of flutter in the flight envelope [5].
Theodorsen’s aerodynamics played a big role in the progress of the different techniques,
like the British Flutter Method [9] established in 1982, and grounds the theoretical frame-
work of the aeroelastic solutions presented in this report.

Certification of the Sonaca 200 was supported by a flutter analysis conducted by the Le-
ichtwerk AG company. Vibrational behavior of the structure was obtained with ground
vibration testings and aerodynamic effects were tackled using a 2D strip theory approach
on a finite number of sections of the lifting surfaces: 66 in total. Twenty different con-
figurations of the airplane were considered, including presence or not of fuel and luggage,
locking or not of the control surface angles, and different altitudes. Conclusions of the
study highlighted two possible cases for flutter to occur with speeds up to 1.2VD, where
VD is the airplane dive speed. The first one is related to an eventual disconnection of the
trim tab that generates strong instabilities in antisymmetric modes. Failure of the trim
system is although rather unlikely and its airworthiness can easily be checked before flight.
The second flutter occurrence appears at high altitude in control free conditions, without
payload nor fuel, for the vibration mode corresponding to fuselage torsion. However this
was not confirmed by flight flutter tests. Still, in order to ensure that this mode of flut-
ter does not arise during flight, a boundary in terms of altitude and equivalent airspeed
conditions was suggested in conclusion of the report. It corresponds in fact to a more
convenient way to limit the true airspeed for the pilot, since this value is not displayed
inside the aircraft cockpit. This given, the middle-term objective for the company is now
to dispose of a reliable tool allowing for flutter analysis without requiring intervention of
a third-party firm. It would benefits further developments of the aircraft in cases where
assessment of compliance to the regulation is needed. It might be especially relevant in
the possible prospect of an aerobatic version of the Sonaca 200 to be released. As an
outcome, a second study was carried out in the framework of a master thesis to propose
a solution using a finite element model of the wing and an approach to the aeorelastic

2



1 INTRODUCTION 1.0

problem relying on the three-dimensional Vortex Lattice Method (VLM) developed by
Dimitriadis [3]. The Sonaca 200 was then limited to its main wing and it came out that
the obtained results were comparable Leichtwerk findings. The present work fits in the
continuation of this endeavour since the goal is to obtain an aeroelastic model for the
full aircraft. Therefore, creation of a complete finite element model that is suitable for
aeroelastic analysis is investigated and the VLM code is extensively modified to be able
to process multiple lifting surfaces in interaction. The structural part of this project is
treated by exploiting the Computer Aided Design (CAD) resources of Sonaca Aircraft for
geometrical data gathering and finite element models are created with Samcef using the
NX 12 user interface. According to the company’s engineers, use of the industrial finite
element environment is avoided in order to save a consequent amount of training time.
As to the aeroelastic part of the project, it relies on Matlab scripts and the Matlab API
to execute certain C++ functions.

After detailing the hypotheses and methodology for the structural description of the
Sonaca 200, this report focuses on the practical creation of the finite element model and
results of the numerical modal analysis. The last section is dedicated to definition of
the actual aeroelastic model in the context of the Vortex Lattice Method and how the
computed solutions compare with the reference material provided by Leichtwerk.

3



2 STRUCTURAL APPROXIMATION 2.1

2 Structural approximation

2.1 Preliminary considerations

2.1.1 Definition of the problem

The Sonaca 200 exhibits a conventional architecture with a bottom main wing in the front
and a classical empennage at the rear. Most of its structural components are made out
of aluminium Al-6061-T6 which possesses the following mechanical properties:

• Young modulus: E = 68.69 GPa;

• Density: ρ = 2700 kg/m3;

• Poisson’s ratio: ν = 0.33.

Layout of the structure is illustrated in Figure 2.1, in combination with the system of
axes used in all the following discussions. The global basis is noted (eX , eY , eZ) and
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Figure 2.1: Projected views of the Sonaca 200, reproduced from [10]; in the top left corner:
front view; in the bottom left corner: section A-A; on the right: isometric illustration.

the body-attached bases defined at the different steps of the structural analysis use the
lower case notation (ex, ey, ez). In this regard, it is decided that ex is always the out-
of-plane vector when cross-sections are considered. The aircraft is studied in the empty
configuration of the FTA2 version (March 2018), as used for the ground vibration testing
campaign. Its total empty weight amounts to 473.50 kg and a ballast of 75 kg at the left
seat is also taken into account to simulate the crew’s mass. Other geometrical parameters
of interest for the present study are listed in Table 1. From this point, acronyms are
introduced to refer more easily the different aircraft members: WNG for the wing, HTP
for the Horizontal Tail Plane and VTP for the Vertical Tail Plane. When necessary,

4



2 STRUCTURAL APPROXIMATION 2.1

it is also specified wether the fixed or the moving parts are under consideration. The
control surfaces are thus referenced with ELV for the elevator and RD for the rudder.
The purpose of the structural modelling is to obtain a set of vibration modes of the

Symbol Value

WNG HTP VTP WNG HTP VTP
Span [mm] sw sHTP sVTP 20.341 7.963 20.341

Root chord [mm] cw
root cHTP

root cVTP
root 20.341 7.963 20.341

Tip chord [mm] cw
tip cHTP

tip cVTP
tip 20.341 7.963 20.341

Sweep angle [◦] Λw
1/4 ΛHTP

1/4 ΛVTP
1/4 0 3.3 29.8

Root AOA [◦] αw
0 αHTP

0 αVTP
0 1.5 -2 0

Twist angle [◦] εw
g εHTP

g εVTP
g 2 0 0

Table 1: Main geometrical parameters of the lifting surfaces, as measured on the CAD
model of the Sonaca 200.

system using a finite element approach, including the corresponding eigenfrequencies and
effective masses. These data must allow to study the fluid-structure interactions of the
flying aircraft, as developed in Section 4. In order to dispose of a finite element model that
is pertinent for aeroelastic analysis, its mode shapes must describe general deformations
of the main structural members and not those of individual components like skin panels
and small mechanical parts. From return of experience by engineers of Sonaca Aircraft,
the full finite element model used for stress analysis is thus not the most suited for the
present study. A better solution is to have a simplified description of the aircraft where
the fuselage, wing, tail and vertical fin are treated as flexible beams in interaction.

2.1.2 Principle of the structural approximation

The full set of considered flexible members is represented in Figure 2.2 including po-
sitioning and numbering of different sections. The same naming conventions as those
graphically defined are conserved in the subsequent discussions. Regions of the structure
that are not represented in Figure 2.2 are basically treated as rigid bodies and boundary
conditions between the different elements, which are of great importance, are discussed in
Section 3. In order process the considered system with the Samcef finite element solver,
cross-sections are considered to be constant over the segments represented in Figure 2.2.
For this reason, positions of the subdivisions are chosen consistent with discontinuities in
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ELV0

RD0

RD4

HTP0

VTP0

FUS0

FUS16

VTP4

HTP5

ELV5

Rear fuselage

Horizontal tail plane

Elevator

Vertical tail plane

Rudder FUS0

FUS16
VTP0

VTP4

HTP0 HTP5

ELV5

ELV0
RD0

RD4

Rear fuselage

Horizontal tail plane

Elevator

Vertical tail plane

Rudder

Wing

Figure 2.2: Simplified 3D representation of the main flexible members of the Sonaca 200
displaying the sections of interest; these geometries are recreated from accurate measure-
ments on the CAD model the aircraft and are used to extract coordinates of the sections.

the internal structure, in addition to allow for a fair enough description of the proportion
and size variations of external shape. The section properties at the different stations can
be used to define a piecewise beam approximation of the structure. They can be obtained
either by running numerous load cases on the full finite element model, or by proxy of an
analytical approach. The first method was implemented to produce a finite element model
of the previous iteration of this work [11]. As stated in the introduction, it was validated
with experimental modal data and serves here as a foundation to add the missing parts.
To save training time on the finite element analysis environment of Sonaca Aircraft, an
analytical approach is this time chosen to tackle the rear fuselage and empennage. It
is thus necessary to select the right theoretical framework, which informs on the useful
parameters to extract from the geometry and material properties.

2.1.3 Choice of the theoretical beam model

Timoshenko beam elements, which take into account orientation of the cross-section with
respect to the neutral axis, are good candidates since they give more physically accurate
results than the classical Euler-Bernouilli model. This latter, where shear strains are
neglected, would be easier to implement but a simple example can highlight obvious
differences in terms of modal analysis, as shown in Table 2. The values presented here
result from modal analysis of a 1 m -long, 100 mm × 100 mm C-beam with a 10 mm-thick
wall in clamped-free conditions. Timoshenko and Euler-Bernouilli models are tested using
Nastran for 10 elements over the total length in both cases. It appears that a higher
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2 STRUCTURAL APPROXIMATION 2.2

Frequencies [Hz] f1 f2 f3 f4 f5 f9

E-B 88.4811 108.853 519.835 573.359 1259.67 2346.04
Timoshenko 46.7593 88.4811 136.85 213.863 241.65 519.835

Table 2: Comparison of E-B and Timoshenko beams in terms of eigenfrequencies for a
C-beam in clamped-free conditions.

number of modes is obtained with the Timoshenko model in the low frequency range,
hence the obvious frequency mismatch at a given mode order between the two methods.
The additional eigenvalues mostly describe torsion modes that are not visible with the
Bernouilli model at low frequencies. As to correlated vibration modes, which apparently
share the same frequency while having here different mode orders, literature [12] [13]
indicates that more or less significant frequency differences can be observed depending on
the simulation settings. It can at least be noted that the 108.853 Hz frequency is here
not predicted by Timoschenko. Observing the mode shapes reveals that the 136.85 Hz
frequency provided by this model corresponds to a similar bending mode around the ez
axis as the one associated to f2 with Euler-Bernouilli. The main difference is presence
of a coupling with torsion around ez in the case of Timoschenko. For all these reasons,
Euler-Bernouilli model is discarded. Timoshenko beam elements are supported by the
Samcef commercial finite element solver which allows to define custom cross-sections by
encoding the proper list of parameters. As described in the software documentation [14],
the properties of interest are the A cross-section area, the Iy and Iz moments of inertia
in the principal transverse directions, the IT torsional moment of area and the ky and kz
shear factors, also expressed as reduced areas. These parameters are related to the mass
and stiffness matrices of the equation of motion defined in the framework of Timoshenko
theory [15], also discussed in Section 3.

2.2 Beam properties computation

Theoretical foundations detailed by Megson [1] are particularly useful to contemplate
shear and torsion loading of a thin walled cross-section beam. The purpose of the following
discussion is to explicitly retrieve the corresponding shear factors and torsional moment
of area by pursuing the approach of the reference book. In the meantime, the cross-
section area directly comes from measurements on the CAD model of the aircraft, and
the principal moments of inertia are given by the classical formulas

Iy =
∫
A
z2dA, (2.1)

and
Iz =

∫
A
y2dA. (2.2)

7



2 STRUCTURAL APPROXIMATION 2.2

2.2.1 Expression of the shear factors as a function of the shear flow

Shear factors are related to stress distribution in the beam under a shear load. Without
losing generality, applying a shear load along direction ez to a beam of cross-section area A
actually generates some shear deflection and warping in the elastic domain, as illustrated
in Figure 2.3. This deformation can be parametrized with the shear strain angle γ, which

Tz

Tz+дxTzδx

γ

x

z

γmax

δx

Figure 2.3: Shearing of a small symmetrical beam segment

is equal to zero on the top and bottom surfaces and varies inside the profile. In this
case, the avergae shear strain γ̄ can be defined as the the angle of the deformed neutral
axis with its original direction. Dimensional analysis then suggests a convenient relation
between this average value and the norm of the shear load,

γ̄ = Tz
A′zµ

, (2.3)

where µ = E
2(1+ν) is the shear modulus of the material, E its Young modulus, ν its Poisson’s

ratio, and A′z = kzA the reduced sectional area to take into account non-uniformity of the
shear stress. It thus defines kz the vertical shear factor. The horizontal shear factor is
expressed in the exact same way in the case of an horizontal loading Ty. It can be noted
that a uniform shear stress distribution would imply γ̄ = Tz

Aµ
. Assuming that the deformed

cross-section does remain planar with a constant shear strain γ̄, the infinitesimal work of
external forces on a small beam segment of length δx can be expressed as

δ2Wext = Tzδ
Tz
A′µ

δx = δ
T 2
z

2A′µδx. (2.4)

Considering a conservative system, writing the balance between the work of external
forces and the variation of internal energy is a way to obtain an explicit formulation for
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2 STRUCTURAL APPROXIMATION 2.2

A′z, hence kz (and ky by analogy). The general expression for the infinitesimal energy
variation of the beam slice is

δ2Eint =
∫
A
σ : δεdAδx, (2.5)

where the double dot denotes the double contracted product between the 3 × 3 σ stress
tensor, and the 3 × 3 δε strain tensor. Regarding pure shear state in the (ex, ez) plane,
expression for the shear tensor in the local basis of cartesian coordinates writes

δε =


0 0 δεxz
0 0 0
δεxz 0 0


(x,y,z)

. (2.6)

Besides, in the framework of thin walled cross-section beams which is used to describe

C

s

s=0

β
ez

ez es

ey
ey

et

Figure 2.4: Contour parametrization and base change in a thin walled cross-section beam.

aircraft components, elements of the tensor can be expressed in the basis attached to the
section contour, as displayed in Figure 2.4. Tensor δε can be thus written in the (ex, es, et)
local basis using the base change

δε(x,t,s) = RTδε(x,y,z)R, with R =


1 0 0
0 cos(β) sin(β)
0 − sin(β) cos(β)

 . (2.7)

9



2 STRUCTURAL APPROXIMATION 2.2

It leads to

δε =


0 − sin(β)δεxz cos(β)δεxz

− sin(β)δεxz 0 0
cos(β)δεxz 0 0


(x,t,s)

=


0 δεxt δεxs
δεxt 0 0
δεxs 0 0


(x,t,s)

,

(2.8)
where β is the angle between the section contour direction and the vertical axis. Moreover,
under the hypothesis that the skin thickness is small enough to locally ensure plane stress
state in the (ex, es) plane, the stress tensor can be given by

σ =


σxx 0 σxs
0 0 0
σxs 0 σss


(x,s,t)

. (2.9)

Injecting Equation 2.9 and Equation 2.8 into Equation 2.5 allows to explicitly compute
the tensorial product and transform the integral term into

δ2Eint =
∫
A

2σxsδεxsdAδx

=
∫
A

2σxs
δσxs
2µ dAδx

=
∫
A

1
2µδσ

2
xsdAδx.

(2.10)

Transition from the first to the second equality in Equation 2.10 relies on Hooke’s law
which prescribes that 2δεxs = σxs/µ. Defining now the shear flow as

q(s) = tτ(s), (2.11)

where τ(s) = σxs, the energy variation can be formulated as an integral on the section
contour,

δ2Eint =
∫
s

1
2µδ

(
q

t

)2
tdsδx =

∫
s

1
2µtδq

2dsδx. (2.12)

Writing the equality δ2Eint = δ2Wext then provides

T 2
z

2A′zµ
=
∫
s

1
2µtq

2ds. (2.13)

Imposing a unit shear load while recalling that kz = A′
z

A
also yields

kz = 1
A
∫
s

1
t
q2ds

. (2.14)
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2 STRUCTURAL APPROXIMATION 2.2

In the same way,
ky = 1

A
∫
s

1
t
q2ds

, (2.15)

provided that q is generated by a unit shear load in the y direction. In both cases, q re-
mains an unknown function of s that needs to be evaluated for each particular cross-section
in the different components of the Sonaca 200. In practice, the considered structures have
the shape of thin walled beams reinforced with stringers described as booms. Therefore,
the reduced area of the full section must include contribution of the stiffening members.
As shown in Annex A, it can be analytically justified that contribution of the shear stress
in the booms is noticeably negligible in front of that in the skin. A correction factor must
still be used to have the proper value of the shear factor: kz thus becomes

k∗z = A

A+ Ast
kz, (2.16)

where Ast is the total area of the booms, which can be rather important relatively to the
total area A+ Ast. And similarly,

k∗y = A

A+ Ast
kz. (2.17)

For the sake of simplicity, k∗y and k∗z are noted ky and kz in the following.

2.2.2 Computation of the shear flow in the fuselage sections

The rear part of the fuselage can be considered as a thin walled tapered beam with
stringers modelled as cylindrical booms distributed over the skin. Geometry of the cross
sections is extracted at different locations along the X direction of the structural basis
as illustrated in Figure 2.5. The four main fuselage segments delimited by the RIBS03,
RIBS04 and RIBS05 structural frames are divided in four equal parts and the corre-
sponding sections indexed in the diagram are measured from the CAD file. Gathered
geometrical dimensions are then exploited to recreate a simplified but accurate represen-
tation of the fuselage in 3D using sheet bodies, as represented in Figure 2.2. From this
step, coordinates of the sections are extracted and processed in Matlab. It can be noticed
that three different patterns of stringers are found along the structure to offer the proper
rigidity. Any of the closed section mid-line are parametrized with a curvilinear abscissa
s equal to zero at the uppermost point, similarly to the illustration of Figure 2.4. In this
context, the shear flow distribution generated by an external load is expressed as the sum
of two terms:

q(s) = qo(s) + q0, (2.18)
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RIBS03
RIBS04

RIBS05
Empennage 

support

12345678910111213141516

FSEC15
FSEC3FSEC6

X

Figure 2.5: Discretization of the rear fuselage of the Sonaca 200, displaying the different
sectional layouts along the X direction of the structural basis; radii of the represented
boom sections are proportional to their actual area.

where qo(s) is the open shear flow computed with a virtual cut in the contour at s = 0
and q0 is the constant part corresponding to q(s = 0). Under the assumption that the
deformed sections remain planar, it can be established [1] that the open shear flow writes

qo(s) = qTy
o (s) = − 1

Iz

∫ s

0
ytds+

∑
i:si≤s

yiAi

 (2.19)

in the case of a Ty load in the y direction, and

qo(s) = qTz
o (s) = − 1

Iy

∫ s

0
ztds+

∑
i:si≤s

ziAi

 (2.20)

in the case of a Tz load in the z direction. The Ai coefficients here refer to the boom areas
and the Ty and Tz input shear loads are taken as unit forces. The constant parts are then
evaluated by enforcing a no-twist condition of the section, which holds when shear loads
pass through its shear center. If it were not the case, the section would actually twist, a
moment equilibrium should be verified and effects of taper should be taken into account.
Developing the expression for the displacement field of a twisted closed section and using
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the principles of linear elasticity provides the relation
∮
s

q

µt
ds = 2Ah

∂θ

∂x
, (2.21)

where ∂θ
∂x

is the twist rate of the section, Ah = 1
2
∮
s pds is the area swept by the vector

pointing from the centroid of the section to its mid-line, and p is the local distance
from the centroid to the local tangent to the mid-line. Therefore, using ∂θ

∂x
= 0 and the

decomposition of Equation 2.18 in Equation 2.21 leads to

q0 = −
∮
s qo(s)ds∮

ds
. (2.22)

Another concept related to twist is torsion inertia of the section. It is defined to describe
the amount of deformation that a Mx axial moment can generate:

IT = Mx

θ,xµ
. (2.23)

Under pure torsion, shear stress in the contour is constant. With q = q0, it can be deduced
from Equation 2.21 that

θ,x = q0

2Ahµ

∮
s

1
t
ds. (2.24)

Furthermore
Mx =

∮
pqds = q0

∮
pds = 2Ahq0. (2.25)

Consequently:
IT = 4A2

h∮ 1
t
ds
. (2.26)

Coming back to shear flow distribution, results of Equations 2.19, 2.20 and 2.22 can
be implemented in Matlab to evaluate q(s) over any of the measured fuselage sections.
The dedicated function is called secanalysis.m (and secanalysis_multiCell.m for the
lifting surfaces). Figure 2.6 displays the computed shear flow along the contour of FUS3
and indicates the placement of shear center S with respect to centroid C. Symmetry of
the distribution is clearly visible, which should be expected from the horizontal symmetry
of the fuselage section. As mentioned above, S corresponds to the point verifying that
shear loads passing through it do not generate twist in the section. Its coordinates can
be found by writing the balance equations for the two load cases:

yS =
∮
s
qTzpds, (2.27)
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(a) Geometry of FUS3 with the applied
shear loads, centroid and shear center

(b) Computed shear flow around the con-
tour of FUS3.

Figure 2.6: Results of the 2D analytical approach for section FUS3; the geometrical
representation of FUS3 is true-to-scale with the actual positions of the centroid and shear
center respectively represented at the C and S points.

and
zS =

∮
s
qTypds, (2.28)

where qTz is the shear flow induced by Tz and qTy is the shear flow induced by Ty. Position
of the shear center provides a first degree of validation for the structural analysis since
it must lie on the eventual symmetry axes of the section. It can here be verified that
yS is very close to zero in comparison to the section width, which is consistent with the
fact that (C, ez) is a symmetry axis. This observation can be done for all the processed
sections as presented in Figure 2.15b showing that the position errors remains lower than
0.5% along the fuselage. It should also be checked that shear loads are well recovered
from the shear stress distribution, which can be performed by calculating

T̃y =
∫
s
q(s)ds · ey, (2.29)

and
T̃z =

∫
s
q(s)ds · ez, (2.30)

where ds = dses is the contour orientation vector. As Ty and Tz are assumed to be unit
shear loads, all values of T̃y and T̃z should be very close to 1. Small errors may occur due
to the approximation of integral terms by discrete sums in the computation code. Apart
from this, it appears, as shown in Figure 2.7, that the implemented structural analysis
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(a) Shear center position error vs Section
index

(b) Recovered shear load error vs Section
index

Figure 2.7: Verification of the computed shear flow distribution in terms of recovered
shear loads and position of the shear center.

ClampedTz

Ty

Figure 2.8: Finite element model of the extruded version of FSEC3 with the applied
boundary conditions and shear loads.

method provides expected results. Deviations in terms of shear loads actually remain
below 2% over the full set of considered sections.

Error curves presented here above support reliability of the implemented 2D approach but
it is especially interesting to see how relevant this method is to describe the 3D structure.
To have some reference data in terms of shear flow distribution, a finite element model of
an extruded version of FUS3 is created using first order shell elements for the skin and
rod elements for the booms. As shown in Figure 2.8, one side of the structure is clamped
in the inertial frame and the other is considered as a rigid body connected to a single node
at the shear center where forces are applied. Both load cases are simulated with nominal
values of Ty = Tz = 1000N . The shear stresses distribution around the cross section
contour are subsequently extracted at a location not too close to the extremities to avoid
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(a) σxy in the skin under horizontal loading. (b) σxz in the skin under vertical loading.

Figure 2.9: Stress distribution over the finite element model based on FUS3.

singularities. It was verified that the exact axial coordinate of the considered station in
the finite element model has almost no influence over the gathered values. This can be
visually confirmed with the provided stress fields, as shown in Figure 2.9. The stress
tensors provided in cartesian coordinates by the software are beforehand expressed in the
local (ex, et, es) basis in order to retrieve the σxs shear stress in the skin mid-surface. The
base change is similar to Equation 2.7 at the difference that the angle of rotation is of
opposite sign. It gives here

σ(x,t,s) =


σxx 0 cσxz − sσxy
0 0 0

cσxz − sσxy 0 c2σzz + s2σyy − 2csσyz


(x,t,s)

, (2.31)

where c = cos(β), s = sin(β), and the zero elements come from the plane stress state
in the skin. The shear stress σxs can be identified as σxs = cos(β)σxz − sin(β)σxy and
the corresponding shear flow is simply obtained with q = tσxs. The simulated stress
distribution is then plotted on top of the analytical one and it can be observed in Figure
2.10 that the two sets of data are quite close to each other. It thus seems to ground the
relevance of the 2D approach. Applying the result of Equations 2.14 and 2.15 also yields
a quantitative comparison between the 2D analytical approach and the 3D numerical
results. As presented in Table 3, the resulting shear factors are fairly similar, with a
maximum relative error of 7%, which tends to further confirm the implemented analytical
method. It can be mentioned that the same process as the one described for FSEC3 was
repeated for FSEC5 to check reliability of the presented solutions. Finally, it must be
ensured that the assembly of the beam elements containing the section properties gives
a satisfying description of the actual fuselage. The 1D finite element model of the rear
fuselage is obtained by gathering the parameters found with the analytical approach and
summarized in Figure 2.11. It can be noticed that the transitions between the three
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(a) Analytically computed shear flow and finite element results around the contour of FUS3.

(b) Analytically computed shear flow and finite element results around the contour of FUS5.

Figure 2.10: Comparison between the analytical and finite element approach at two dif-
ferent stations of the rear fuselage.

17



2 STRUCTURAL APPROXIMATION 2.2

(a) Shear factors along the rear fuselage. (b) Inertia along the rear fuselage.

(c) Areas along the rear fuselage. (d) Excentricity along the rear fuselage..

Figure 2.11: Distribution of the different useful sectional parameters along the rear fuse-
lage of the Sonaca 200, as used for Timoshenko beam elements creation in Samcef.
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Section
FEM results Analytical results

ky [-] kz [-] ky [-] kz [-]
FSEC3 0.6989 0.7104 0.6837 0.7527
(Err [%]) - - (2.2) (6.0)

FSEC5 0.5867 0.6322 0.5823 0.6762
(Err [%]) - - (0.8) (7.0)

Table 3: Comparison between the analytically computed shear factors and the finite
element analysis results.

different regions of the rear fuselage clearly translate as discontinuities in the mechanical
properties. The first four sections actually have a much higher area and subsequently
higher bending moments of area. It also illustrates in terms of shear factors with significant
jumps at each transition. The shear factor in the z direction remains higher than the one
in the y direction and this difference increases as the the fuselage section becomes more
and more narrow towards the tip. It can be explained with Equation 2.3 which shows
that the shear deformation decreases when the reduced area increases. So, it can be
expected that the reduction factor increases in the direction where the structure becomes
stiffer, and thus less prone to shear deformation. Furthermore, a simplified 3D finite
element model of this part of the airplane is also completed. It takes into account taper
of the structure and accurate positioning of the sections with respect to each other. It
uses the same kind of elements as the mesh presented in figure 2.8 and similar boundary
conditions are imposed at the two extremities. The same configuration is reproduced
with the beam model and in both cases, shear loads Ty = 1000 N, Tz = 1000 N and a
torsion moment Mx = 1000 dN × m are applied at the tip of the structure. Values of
the maximum measured displacement are reported in Table 4. It can be observed that

uy [mm] uz [mm] θx [◦]
3D model 0.302 0.299 0.416
1D model 0.316 0.290 0.447
(Err [%]) (4.6) (3.0) (7.6)

Table 4: Comparison of the fuselage deflection between the 3D and 1D finite element
models.

the two models display similar values, which was the point of all the steps described here
above. It can thus be conceded that the simplified model provides a relatively accurate
image of the complete structure while being more adapted for flutter analysis due to the
reasons mentioned in the Section 2.1.
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2.2.3 Computation of the shear flow in the empennage sections: Horizontal
tail plane

Computation of the shear factors in the lifting surfaces follows the same principles as
for the fuselage. The only difference is that the cross-sections are composed of multiple
cells delimited by the wing spars. A convenient approach is to follow the methodology
described by Megson [1] in the case of a wing profile with multiple spars. The first step
remains computing the open shear flow in the skin contour by using virtual cuts on the
upper walls as illustrated in figure 2.12. Free branches are processed in the first place
using the same exact formulas as in Equations 2.19 and 2.20. Shear flow on branches

C S

1 2 Ns

Tz

Ty

Figure 2.12: Nc-cell wing section subjected to shear loads passing through its shear center.

located between two intersections is then computed using a conservation relationship at
the nodes. Keeping the notations introduced in Figure 2.13, it is actually verified that

A Bs

s’

s’’

s’’ = 0

Figure 2.13: Parametrization of the section contour around a node.

qo(s′′B) = qo(sA) + qo(s′A) +
∫ s′′

B

0
∂s′′qo(s′′)ds′′, (2.32)

where qo(s′′B) is the shear flow at the abscissa of point B in the third branch, qo(sA) is the
shear flow at the abscissa of point A in the first branch and qo(s′A) is the shear flow at
the abscissa of point A in the second branch. The integral term is here expressed in its
most general form and can be computed with Equations 2.19 or 2.20 depending on the
load case. Once the open shear flows are computed, the constant terms corresponding to
the values a the cuts are found with the no-twist condition. It must here be applied to
each cell of the section by taking into account contributions of the neighbour cells. For
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the ith cell, i ∈ {1, ..., Nc}, this relation writes

θ,x = 1
2Aihµref

−qi−1(0)l̄ii−1 + qi(0)l̄i +
∮

celli

qo

t µ
µref

+ qi+1(0)l̄i+1
i

 = 0, (2.33)

where notation l̄ = l/t indicates the reduced length of a given branch arc of length l and
thickness t, l̄i is the reduced perimeter of cell i, and l̄ii−1 (resp. l̄i+1

i ) is the reduced length
of the dividing wall between cell i and cell i− 1 (resp. i and i+ 1). Assuming that all the
cells are horizontally aligned, the full system of equations can be put in the form

l̄1 −l̄21 (0)
−l̄21 l̄2

. . .
. . . . . . −l̄ii−1

−l̄ii−1 l̄i
. . .

. . . . . . −l̄Nc
Nc−1

(0) −l̄Nc
Nc−1 l̄Nc





q(0)1

q(0)2

...
q(0)i
...

q(0)Nc


= −



∮
cell1(...)∮
cell2(...)

...∮
celli(...)

...∮
cellNc(...)


, (2.34)

and can easily be solved by inverting the tri-diagonal matrix. This method provides the
closed shear flow in all the walls of the section and the shear factors can be retrieved
using Equations 2.19 and 2.20. Function secanalysis_multiCell.m is programmed in
Matlab to perform this task. The horizontal tail plane being separated between the static
structure and the elevator, the two regions of the section are separately studied. Figure
2.14 displays the results obtained for HTP3. Obvious discontinuities in the individual
shear flow distributions of each cell are due to summations at the intersection nodes. This
is why symmetry of the distribution is not as visible as for the fuselage sections in this
display. Nonetheless, it appears that the shear center lies as expected on the horizontal
symmetry axis in both parts of the horizontal tail plane. Its position is computed as
described for the fuselage with the difference that orientation of the contour with respect
to the centroid must be carefully taken into account. Error in terms of zS remains very
small for all the considered sections in this component of the aircraft, as it can be seen in
Figure 2.15. Besides, shear flow in the section can also be integrated to verify that shear
loads are correctly recovered. It appears in the graph of Figure 2.15 that the inaccuracy
barely reaches 1% of the applied shear load which is considered satisfactory. The portion
of the lifting surface characterized with the approach presented in this paragraph is then
modelled as a system of two parallel beams possessing the properties displayed in Figures
2.16 and 2.17.
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(a) Geometry of HTP3 with the applied
shear loads, centroid and shear center.

(b) Computed shear flow around the con-
tour of HTP3.

(c) Geometry of ELV3 with the applied
shear loads, centroid and shear center.

(d) Computed shear flow around the con-
tour of ELV3.

Figure 2.14: Results of the 2D analytical approach for sections HTP3 and ELV3; the
geometrical representations are true-to-scale with the actual positions of the centroid and
shear center respectively represented at the C and S points.

22



2 STRUCTURAL APPROXIMATION 2.3

(a) Shear center position error vs Section
index

(b) Recovered shear load error vs Section
index

Figure 2.15: Verification of the computed shear flow distribution in terms of recovered
shear loads and position of the shear center.

2.2.4 Computation of the shear flow in the empennage sections: vertical tail
plane

Computation of the shear flow in the vertical tail plane follows the same rules as for the
horizontal tail plane. The only difference is the variation of the section pattern close to
the tip of the structure. Computation results are presented in Figures ?? and 2.19. As
mentioned earlier for HTP, presence of large stiffening elements at the root of the vertical
tail plane induces a larger bending inertia. Elongated shape of the profiles also explains
why ky appears much higher than kz. Moreover, errors in terms of shear center position
and recovered shear loads are still very small.

2.3 Conclusions

The method described in this section might be an alternative to the use of a complete finite
element model to evaluate mechanical properties of the structures. It however requires a
fair amount of programming to apply the analytical relations to the full set of data in a
proper way, especially for multi-cell cross-sections. Final results appear to be consistent
with the 3D structure in terms of static behavior, which is satisfactory. It remains that
modal parameters of the system are the desired properties. The following section is thus
dedicated to defining the actual finite element model of the Sonaca 200 and to comparing
the numerical solutions to available reference material.
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2 STRUCTURAL APPROXIMATION 2.3

(a) Values of the shear factors along the half
span of the horizontal tail plane.

(b) Inertia of the sections along the half
span of the horizontal tail plane.

(c) Areas of the sections along the half span
of the horizontal tail plane.

(d) Excentricity of the sections along the
half span of the horizontal tail plane.

Figure 2.16: Horizontal tail plane (HTP): distribution of the different useful sectional
parameters, as used for Timoshenko beam elements creation in Samcef.
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(a) Shear factors along ELV. (b) Inertia along ELV.

(c) Cross-sectional area along ELV. (d) Excentricity along ELV.

(e) Recovered shear load error along ELV. (f) Shear center position error along ELV.

Figure 2.17: Elevator (ELV): distribution of the different useful sectional parameters, as
used for Timoshenko beam elements creation in Samcef.
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(a) Shear factors along VTP. (b) Inertia along VTP.

(c) Cross-sectional area along RD. (d) Excentricity along VTP.

(e) Recovered shear load error along VTP. (f) Shear center position error along VTP.

Figure 2.18: Vertical Tail Plane (VTP): distribution of the different useful sectional pa-
rameters, as used for Timoshenko beam elements creation in Samcef.
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(a) Shear factors along RD. (b) Inertia along RD.

(c) Cross-sectional area along RD. (d) Excentricity along RD.

(e) Recovered shear load error along RD. (f) Shear center position error along RD.

Figure 2.19: Rudder (RD): distribution of the different useful sectional parameters, as
used for Timoshenko beam elements creation in Samcef.
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3 NUMERICAL MODAL ANALYSIS OF THE AIRPLANE 3.1

3 Numerical modal analysis of the airplane
Partial ground vibration testing results have been provided by the LeichtwerkAG com-
pany in addition to their report, which offers some material to compare with the sim-
ulations. As it is explained in detail in Section 4, only the out-of-plane displacement
components of the eigenvectors are useful for flutter analysis. It remains that the full
eigenvectors with six degrees of freedom per node are here computed to ensure that the
model behaves as realistically as possible.

3.1 Theoretical principles of numerical modal analysis

ex

ez

ey

u

w

v

ψx

ψz

ψy

2

1

Figure 3.1: Nomenclature used for beam elements cinematic description.

All beam elements of the structural model are described by a pair of nodes, each of them
having six degrees of freedom: three rotations and three translations in the orthonormal
local basis (ex, ey, ez) as shown in Figure 3.1. Shear angles are here designated with
variables ψy and ψz. To take into account elemental physical properties, mass and stiffness
matrices have to be generated. The bending energies in planes (ex, ey) and (ex, ez), as
well as the extension and torsional deformation energies of the Timoshenko beams derive
from the following integrals[16]:

Vbendxy = 1
2

∫ l

0
EIz

(∂ψz
∂x

)2
+ µA′z

(
−ψz + ∂w

∂x

)2

dx, (3.1)

Vbendxz = 1
2

∫ l

0
EIy

(∂ψy
∂x

)2
+ µA′y

(
−ψy + ∂v

∂x

)2

dx, (3.2)

Vext = 1
2

∫ l

0
EA

(∂u
∂x

)2
dx, (3.3)

Vtorsion = 1
2

∫ l

0
µIT

(∂Ψx

∂x

)2
dx. (3.4)
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3 NUMERICAL MODAL ANALYSIS OF THE AIRPLANE 3.2

It can be noted that the bending energies take into account both bending of the neutral
fiber and shearing of the cross-section. Sum of the energy terms gives the internal potential
energy Vint of the deformed beam element. As the elemental displacement fields are
described by proxy of linear shape functions, development of the integral terms can provide
a matrix form of the potential:

Vint,e = 1
2qTeLKeLqeL, (3.5)

where qeL is a column vector containing the twelve degrees of freedom of the beam element:

qeL = (u1, v1, w1, ψx1, ψy1, ψz1, u2, v2, w2, ψx2, ψy2, ψz2)T . (3.6)

Kinetic energy of the beam element, which is defined by

Te = 1
2

∫ l

0
m(u̇2 + v̇2 + ẇ2+)dx+ 1

2

∫ l

0
mr2

t Ψ̇x
2
dx, (3.7)

can similarly be written using an elementary mass matrix MeL :

Te = 1
2 q̇elTMelq̇el. (3.8)

The matrices can then be expressed in the structural basis and assembled to form the
structuralM and K mass and stiffness matrices. The assembly process is not detailed here
but more information can be found in that regard in the reference book by Gerardin [16].
At this point, Hamilton’s principle can theoretically be applied for the whole structure in
absence of external forces:

δ
∫ t2

t1

(1
2 q̇TMq̇ − 1

2qTKq
)
dt = 0, (3.9)

which leads to the structural equation of motion

Mq̈ +Kq = 0. (3.10)

By Looking for oscillating solutions of the form q(t) = xeiωt, the equation of motion can
be reduced to the following eigenvalues problem:

Kx = ω2Mx. (3.11)

Finding the eigenvalues then provides the natural frequencies of the structure in absence
of damping and the eigenvectors describe the different mode shapes. In the present case,
only the modes up to 50 Hz are considered since it was the limit during the ground
vibration testing campaign.
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3 NUMERICAL MODAL ANALYSIS OF THE AIRPLANE 3.2

3.2 Full finite element model of the Sonaca 200

3.2.1 Mass distribution

Mass of the flexible components Using the computed sectional parameters to gen-
erate beam elements in the finite element software is equivalent to extruding the different
profiles, which generates an under-evaluated mass distribution. To take into account ad-
ditional mass in the real aircraft components, it is assumed that they have a trapezoidal
m′ mass distribution along their x coordinate. The slope and intercept of the related
functions are assessed with use of the value for the total mass and the position of the
center of gravity. This information is provided in the CAD files and the weight sheet of
the aircraft. For a trapezoidal distribution, abscissa xCG of the centroid is actually given
by

xCG = b− a
3

m′(a) + 2m′(b)
m′(a) +m′(b) , (3.12)

where x = a and x = b, a < b, are the boundaries of the component in the axial direction.
In the same time, the analytical expression for the area of a trapeze ensures that

m′(a) = 2m
b− a

−m′(b), (3.13)

where m is the total mass of the considered part. It then comes that

m′(a) = 2m
b− a

[
2− 3xCG

b− a

]
, (3.14)

and
m′(b) = 2m

b− a

[3xCG

b− a
− 1

]
. (3.15)

The mass functions can thus be integrated between the different sections to provide
lumped masses that are added in the finite element model.

Rigid masses Components of the airplane that are not modelled with beam elements
are added as concentrated masses connected to the structure with rigid link elements.
They are separated in seven groups:

• seats: 15.00 kg;

• instrument panels: 15,00 kg;

• firewall forward, cabin and electrical (FF): 222,65 kg;

• main landing gear: 52,09 kg;

• front landing gear: 8.33 kg;
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3 NUMERICAL MODAL ANALYSIS OF THE AIRPLANE 3.2

• remaining mass: 10,87 kg;

• lest in the left seat: 75,00 kg.

The remaining mass corresponds to the difference between the estimated mass of the
Sonaca 200, including all the parts, fasteners and paint, and the actually weighted empty
mass of 473.5 kg. The corresponding 0D elements are mostly located with help of the
weight sheet that indicates some of the locations for the centers of gravity. Position of
FF, which is not explicitly stated, is tweaked to respect position of the global center of
mass in absence of lest. This latter is deduced from the masses measured at each of the
two landing gears. Knowing that the front gear sustains a mass of 367.09 kg and the nose
gear a mass of 106.50 kg, a simple momentum balance provides that the abscissa of the
global center of gravity is situated 1,138 m behind the nose gear. This given, the finite
element model of the airplane is expected to possess mass and inertia properties that are
fairly similar to those of the real structure.

3.2.2 Assembly of the components and boundary conditions

Given complexity of the structure at the connection points, it may be abusive to use
pure beam elements to link the different members of the aircraft together. Bushings
with very high translation stiffness terms are here preferred to model the connections. In
particular, it is easy enough to tweak their properties in order to perform some amount of
reverse engineering. This approach is chosen to adapt the boundary conditions between
the fuselage and the elements of the empennage to match the experimental data. It
would otherwise be delicate to predict the combined influence of the different parts of the
assembly whereas the stiffness values have a critical impact on the mode shapes. In each
case, a first guess is made by selecting a reference cross section that is close enough to the
connection point between two components. The bushing properties are then estimated by
relying on the assumption of pure bending of beams. This latter actually leads to a simple
expression for the angular stiffness terms KRy and KRz using the principal moments of
area. Hooke’s law for a cantilever beam under a bending moment My actually writes

My = κEIy, (3.16)

where κ is here the beam curvature which is equal to the second derivative of the dis-
placement field. It verifies

uz(l) = κ

2 l
2 (3.17)

with the notations of Figure 3.2. In the same time, the maximum deflection can be
parametrized with angle φ, which can be seen as the deflection angle of the bushing
element:

uz(l) = l sin(φ), (3.18)
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φ

l

uz(l)

ez

ex

x0

My

Figure 3.2: Pure bending of a cantilever beam

which means that
sin(φ) = κl

2 . (3.19)

Using Equation 3.16 in the previous expression and linearizing sin(φ) for a small angle
then yields

KRy = My

φ
= 2EIy

l
. (3.20)

In the exact same way
KRz = 2EIz

l
. (3.21)

According to the ground vibration testing results [17], bending is largely predominant
in the frequency range of interest for the empennage. Considering that the involved
components are here the vertical and the horizontal tail plane, the torsion stiffness KT of
the bushings thus does not play a big role in modal analysis. For the sake of simplicity,
it is set to

KT = 1
4(1 + ν)

(
KRy +KRz

)
, (3.22)

which corresponds to the case where the torsion inertia IT is approached by the sum of
the two principal inertia terms under the assumption that KT = µIT/l. To match the
testing conditions as much as possible, the whole structure is linked to the inertial frame
using a 0D bush element with low stiffness terms. It can be noted that the value for the
vertical translation stiffness Kz is fixed to respect the 1.7 Hz frequency of the suspension
mentioned in the ground vibration testing report [17]. Knowing that the total weight of
the system is 548.5 kg it comes that the required stiffness amounts to 62580 N/m. It is
observed that values of the other terms must not be too high in order to avoid unexpected
behaviour of the mode shapes. The final assembly is represented in Figure 3.3. Using
the parameters discussed in this paragraph, it is possible to obtain eigenmodes that are
comparable with outputs of the experimental modal analysis.
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Figure 3.3: Finite element model of the full airplane; added rigid masses are represented
with red squares.

3.3 Comparison of the finite element analysis results with ex-
perimental data

Eigenmodes provided by numerical modal analysis are compared to the ground vibration
testing results in terms of out-of-plane displacement for the different lifting surfaces. It
would be even more relevant to consider the fuselage deformation, however the correspond-
ing experimental data were not available. This is actually the only degree of freedom that
is useful in the aeroelastic analysis method implemented in this work. Numerical data for
six of the fourteen identified experimental modes of the structure were provided by the
Leichtwerk company. As an outcome, the comparison presented in this section is mainly
focused on these modes, for which it is possible to compute the modal assurance criterion,
commonly referenced as MAC [18]. This indicator gives a quantitative estimation of the
degree of correlation between two sets of eigenvectors. It is given by

MAC =
|vT

expvFEM|2(
vT

expvext
)

(vT
FEMvFEM)

, (3.23)

where vexp is the vector of nodal out-of-pane displacements for the experimental data and
vFEM is the vector of nodal displacements for the finite element model outputs. A required
precaution to use the formula of Equation 3.23, is that nodal values must be extracted at
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Figure 3.4: Graphical representation of the auto-correlation matrix computed for the
experimental modes.

the exact same locations. To do so, the finite element modes are interpolated at the nodes
of the experimental mode shapes using spline functions. The method discussed here can
although return spurious results if the number of degrees of freedom being compared is
too low. In that case, a mode from the first family can appear to correlate equally with
several modes of the second family. Therefore, it is useful to check that the number of
considered degrees of freedom is high enough. One way is to compute the MAC of the
experimental results with themselves, which is called the Auto-MAC. Coefficients must
be very close to one for a same mode and very low for two different modes. As illustrated
in Figure 3.4, the graphical representation of the auto-correlation matrix is diagonal, with
diagonal coefficients being close to 1. It proves that the number of degrees of freedom is
high enough. As stated above, the results presented hereafter are the consequence of an
iterative process for adjusting the stiffness terms at the internal and external boundaries
of the model. The selected configuration is the one that exhibits the best overall frequency
and mode shapes matching between the numerical and experimental modes. This is not to
negate the fact that better correlations may be found by spending more time on fine-tuning
the different parameters. It can also be noted that testing conditions are not explicitly
known which make it difficult to have truly realistic boundary conditions between the
ground and the structure.
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(a) Experimental mode (10.431 Hz).
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(b) FE mode (7.963 Hz).

Figure 3.5: Graphical representation of mode S1 in terms out-of-plane displacements

3.3.1 First bending mode of the wing (S1)

First computed vibration mode of the system corresponds to bending of the wing at
7.963 Hz. In comparison, ground vibration testing suggests a first frequency at 10,431
Hz. Participation of other components of the airplane is negligible in the mode shape.
Therefore, this mainly illustrates behavior of the base finite element model created for the
wing by itself. It remains that deformation of the wing is very similar to the experimental
mode shape. This can be confirmed with the actual correlation between the real and the
simulated mode which amounts to 0.9883. As expected, the computed generalized mass
of 20.341 kg×cm2 is also rather similar to the 22.690 kg×cm2 given by experimental data.
The 23.7 % error in terms of eigenfrequency may come from approximations regarding
the mass distribution or non-linearities in the real system. Connection stiffness terms at
the root should not a priori be adapted in this case since they were explicitly evaluated
with the full finite element model of the Sonaca 200.

3.3.2 Fuselage two-nodes bending (AR2_2)

The mode corresponding to a 2-nodes bending of the fuselage cannot clearly be identified
among the outputs of the numerical modal analysis. It is characterized in the experimental
data by a rotation of the empennage as a rigid body around the X-axis, and by a relatively
low frequency compared to the other modes under consideration. The numerical mode
presented in Figure 3.6 may share these attributes but it is obviously combined with
anti-symmetrical bending of the wing which is absent from the reference material. It was
observed that amplitude of the wing bending largely depends on the boundary conditions,
both internal and external, and was very delicate to control. The compromise chosen in
the present case does not allow to generate a mode shape for AR2_2 that is satisfactorily
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(a) Experimental mode (21.123 Hz)
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(b) FE mode (12.222 Hz)

Figure 3.6: Graphical representation of mode AR2_2 in terms of out-of-plane displac-
ments

close to the experimental results. Focusing on quality of the other modes was actually
preferred.

3.3.3 Wing in-plane bending (SX1)
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(a) Experimental mode (31.704 Hz)
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Figure 3.7: Graphical representation of mode SX1 with in-plane and out-of-plane dis-
placements.

The third mode that can be compared with experimental data describes in-plane bending
of the wing at 31.465 Hz, which is very close to the 31.704 Hz of the testing results.
As illustrated in Figure 3.8, in-plane bending is also coupled with slight bending of the
horizontal tail plane, almost negligible for the the experimental mode shape but rather

36



3 NUMERICAL MODAL ANALYSIS OF THE AIRPLANE 3.3

visible in the numerical results. Only normal displacements are exploited to study aeroe-
lastic behavior of the structure. Nonetheless, deformation along the X axis is represented
in Figure 3.8 since it offers a better comparison between the two cases. In this regard,
the two modes have a very strong correlation of 0.933 if only in-plane displacements are
taken into account. Differences in terms of generalized mass, with 12.437 kg×cm2 against
26.020 kg×cm2 can be explained with the phase difference regarding plunging of the
wing between the two modes: the wing and horizontal tail plane vibrations are actually
phase shifted in the testing data whereas it is not the case with the finite element model.
It may still result from approximated mass properties of the wing in the finite element
model, non-linearities in the real structure or even inaccuracies in the horizontal tail plane
parameters.

3.3.4 Horizontal tail plane bending (SH)
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(a) Experimental mode (35.373 Hz).
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(b) FE mode (36.201 Hz).

Figure 3.8: Graphical representation of mode SH in terms of out-of-plane displacements.

Bending of the horizontal tail plane is the fourth mode that can be compared with the
experimental results. Vibration frequency of the simulated mode is quite similar to the
actual frequency, with respectively 36.201 Hz and 35.373 Hz, which accounts for a 2.3%
error. It also appears that SH is one of the modes that actually displays a good correlation
between the two sets of data. This latter amounts to 0.8504, which can be confirmed by
the graphical representations of Figure 3.8. In both cases, deformation of the horizontal
tail plane is clearly predominant with very few contribution of the main wing. Like for
the first mode, this resemblance translates in terms of generalized mass with respectively
5.621 kg×cm2 and 4.895 kg×cm2 for the simulated and experimental mode.
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(a) Experimental mode (37.148 Hz)
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(b) FE mode (39.926 Hz).

Figure 3.9: Graphical representation of mode VTB in terms of out-of-plane bending.

3.3.5 Vertical tail plane bending (VTB)

With the created finite element model, the mode corresponding to bending of the vertical
tail plane appears at 39.926 Hz which only represents a difference of 7.5 % with the
experimental results that suggest an eigenfrequency of 37.148 Hz. According to Figure
3.9 it can be observed that deformation is predominant on VTP in both cases in spite
that the mode shapes apparently differ from each other. The fact that the surface remains
almost planar in the experimental mode shape can be put in parallel with the measurement
setup for this part of the structure. Indeed, it appears in the ground vibration testing
report [17] that the normal deflection on VTP is only extracted at four points roughly
situated at the four corners of the surface. It thus limits the amount of details that can be
represented, hence the simplified appearance of the mode shape. Nonetheless, the small
contribution of the horizontal tail plane and wing, that have similar amplitudes in both
cases, are phase shifted in the numerical analysis outputs. It is however delicate to correct
this issue easily. The present choice of parameters for connection stiffness terms remains
a good compromise between similarity of the mode shapes concerning VTB and frequency
matching for all the other modes.

3.3.6 Second wing bending (S2)

The mode corresponding to second wing bending clearly appears in the finite element
analysis at 40.672 Hz. It is very close to the experimental frequency of 40.160 Hz. More-
over the two mode shapes are quite similar, as it can be seen in Figure 3.11. In both cases
deformation of the tail does appear in synchronization with the wing. Unfortunately, only
a graphical representation of the deformation is available for the experimental eigenvector.
As an outcome, it is not possible to numerically evaluate the correlation between the two
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(a) Experimental mode [17] (40.160 Hz). (b) FE mode (40.672 Hz).

Figure 3.10: Graphical representation of mode S2.

cases, which could be expected to be rather close to 1. For the same reason, it hinders
from exploiting the experimental results of this mode with the developped aeroelastic
solver later introduced in this report .

3.3.7 Wing torsion (ST)
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(a) Experimental mode (49.471 Hz).
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Figure 3.11: Graphical representation of mode S2.

Symmetrical wing torsion appears at 45.450 Hz using the finite element model. It is
fairly close, with a 8.3 % error, to the so-called torsion mode extracted from GVT data.
While ST is explicitly described by Leichtwerk as torsion of the main wing, it is obviously
coupled with a form of 2-node bending which is not present with numerical modal analysis.
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Surprisingly, generalized masses remain close enough but this can not be interpreted with
a strong similarity between the two modes.

3.4 Conclusions

Modes
Experimental data FEM

MAC
f [Hz] µ [kg×cm2] f [Hz] µ [kg×cm2]

S1 10.431 22.690 7.963 20.341 0.988(Err [%]) - - (23.7) (10.6)

AR2_2 21.123 10.435 12.222 34.780 <0.5(Err [%]) - - (42.1) (233.3)

SX1 31.704 26.020 31.465 12.437 0.943(Err [%]) - - (0.8) (52.2)

SH 35.373 4.895 36.201 5.621 0.850(Err [%]) - - (2.3) (14.8)

VTB 37.148 4.600 39.926 2.062 0.679(Err [%]) - - (7.5) (55.2)

S2 40.160 45.79 40.672 20.302 -(Err [%]) - - (1.3) (55.7)

ST 49.471 16.940 45.450 15.705 <0.5(Err [%]) - - (8.3) (7.3)

Table 5: Synthesis of the modal parameters for the different compared modes.

Results presented above are synthesized in Table 5. At the exception of AR2_2, all the
simulated modes present a certain level of similarity with their experimental counterpart,
in regard of the eigenfrequencies and/or generalized masses as well as visually and in
terms of correlation factor for some of them. Four additional vibration modes presented
in Annex B were also given by numerical modal analysis but could not be paired with the
ones described by Leichtwerk. It does not necessarily mean that they are unphysical: part
of the lack of correlation between the results comes from undetermination in the boundary
conditions with the ground. In other words they might correpsond to vibration modes that
can be encountered in real life but not in the conditions of the ground vibration testing.
Nonetheless, the final objective remains computation of aeroelastic solutions. This step
only can validate wether or not the finite element model outputs can compare with an
experimental approach in the present context. Aside from this, it can be noted that some
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improvement to the model could be beneficial in further studies. It could actually be
relevant to consider the engine mount as a flexible structure whereas it is treated here
as a rigid body. Mobility of the control surfaces can also be tackled. It can be stated
that the followed methodology may provide a good basis to articulate the mobile parts
with respect to the main frame as their mechanical properties are separately evaluated.
In absolute terms it would mean changing the rigid links between HTP and ELV, VTP
and RD into hinge elements.

4 Aeroelastic modelling

4.1 Principles of flutter analysis using the frequency-domain
Vortex Lattice Method with multiple lifting surfaces

The goal of the Vortex Lattice Method (VLM) is to simulate unsteady phenomena taking
place between the aircraft structure and the wake it generates. As described by Katz and
Plotkin [2], this approach lies in the framework of incompressible potential flow theory. It
is thus adapted for the study of subsonic flight in attached flow conditions. Two notorious
benefits of this method are the ability to describe 3D effects like the roll-up of the wake and
to consider large motions of the lifting surfaces. But it is also convenient to contemplate
vibrational phenomena, which makes of it a good tool for flutter analysis, as described
in this section. The studied implementation relies on the formulation of Dimitriadis [3]
which elaborates the modal frequency-domain use of the VLM in order to simplify the
aeroelastic stability analysis. It is question here of its generalization to N lifting surfaces
in order to obtain solutions from practical aeroelastic systems.

4.1.1 Definition of the general aeroelastic model

The theoretical system under consideration consists in a simplified aircraft structure com-
posed of N flexible lifting surfaces arranged in space in presence of an air flow of free
stream velocity Q∞. In the most general case, such lifting surfaces could be used to de-
scribe fuselage panels but the analysis carried out hereafter assumes a classical definition
of the lifting surfaces: wing, canard, tail, fins. As mentioned above, the assumption of po-
tential flow is made, which implies that thickness of the aerodynamic profiles is neglected.
In each lifting surface, the motion of a given point is described by a single out-of-plane
translation v. Its direction is chosen to be consistent with the general orientation of the
surface, e.g. eZ for a wing, eY for a vertical fin. It is then possible to consider a modal
expansion on nm structural modes of the form:

v(x, y, z, t) =
nm∑
i=1

wi(x, y, z)ri(t), (4.1)

41



4 AEROELASTIC MODELLING 4.1

Wing and wake panels

Bound vortex rings

Wake vortex rings

Collocation points
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Figure 4.1: Aeroelastic model of a wing as used in the Vortex Lattice Method.

where wi(x, y, z) is the ith modeshape function and ri(t) is the ith generalized coordinate.
Besides, dynamics of the system can be described as an equilibrium between internal
forces in the structure and generalized aerodynamic forces using Lagrange’s formalism:

∀i ∈ {1, ..., nm}
d
dt

(
∂(T − V)

∂ṙi

)
− ∂(T − V)

∂ri
= Qi, (4.2)

where T − V = E is the total energy of the system, T is the kinetic energy, V is the
potential energy and Qi(t) is the generalized force acting on mode i. It can be expressed
in terms of pressure difference on the whole set of lifting surfaces:

Qi(t) =
∫
S1∪...∪SN

∆p(x, y, z, t) ∂v
∂ri

dS. (4.3)

In order to compute the unsteady pressure field on member k, k ∈ {1, ..., N}, which is
considered to be a wing for convenience reasons, impermeability and Kutta conditions
need to be applied. To do so, the wing planform is discretized in mk chordwise and nk
spanwise panels which are defined on the mean camber surface as seen in Figure 4.1.
This base mesh allows to build vortex rings, the leading edges of which coincide with the
quarter-chord lines of the underlying panels. Panels and vortex rings are also added in
the wake, with the leading edge of the first ring corresponding to the trailing edge of the
last wing vortex ring.

42



4 AEROELASTIC MODELLING 4.1

4.1.2 Impermeability condition for the full airplane

Vortices are commonly used singularities in potential flow theory. They are solutions of
Laplace’s equation:

∆φ = 0, (4.4)

where φ is the scalar potential from which the velocity field is derivated and ∆ is the
laplacian operator. In order to verify the impermeability condition on a given lifting
surface, the potential must verify the following boundary condition at any point:

∇φ · n = ∇(φs + φ∞) · n = 0, (4.5)

where φs is the auto induced part of the potential and φ∞ is the contribution of the free
stream. This latter is known at each time but φs has to be evaluated using vortex ring
elements. Influence of a vortex line segment of constant strength Γ between point 1 and
point 2 on an arbitrary point P is given by Biot-Savart’s law [2]:

q1.2 = − Γ
4π

r1 × r2

|r1 × r2|2
r0 ·

(r1

r1
− r2

r2

)
, (4.6)

where q1,2 is the induced velocity and where the geometrical vectors are defined in Figure
4.2. According to the superposition principle, the velocity induced by a vortex ring is

ex

ez

ey

1

2

P

r2

r1

r0

Figure 4.2: Nomenclature used for vortex line segment theory.

the sum of the velocities induced by the four segments forming its contour. They are
computed here at collocation points situated on the center line of the wing panels at
three-quarters of the chord. For a given collocation point in position (i, j), the influence
of vortex (i′, j′) writes

(u, v, w)ij,i′j′ · nij = aij,i′j′Γi′j′ , (4.7)
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where aij,i′j′ is the velocity induced by a unit strength singularity in (i′, j′), Γi′j′ is the
strength of the vortex situated in (i′, j′), and nij is the normal vector to wing panel (i, j).
From a structural point of view, geometry of wing k and its wake are frozen throughout the
time history and the relative air flow due to structural displacements and the free stream
velocity U∞ = (U V W )T is represented with downwash terms. The impermeability
condition is imposed at each collocation point where the induced velocities are computed.
It leads to a matrix equation involving the downwash terms associated to wing k, as well
as the vortex strength distributions of all the other lifting surfaces:

Q∞diag
(
ÛknT

k

)
−
(
U
∂vk
∂x
− ∂vk

∂t

)
+

N∑
l=1

Ãb
l,kΓb

l +
N∑
l=1

Ãw
l,kΓw

l = 0, (4.8)

where, Ûk is the mknk×3 matrix whose rows are all equal to U∞/Q∞, nk is the mknk×3
matrix of unit vectors normal to the wing panels, vk is the mknk × 1 vector of normal
displacements, Ãb

l,k is the mlnl×mknk influence coefficients matrix of the bound vortices
of surface l on the collocation points of surface k, Ãw

l,k is the mw
l nl × mw

k nk influence
coefficients matrix of the wake vortices of surface l on the collocation points of surface k.
Finally, Γb

l is themlnl×1 vector of the strengths of the bound vortex rings of surface l and
Γw
l is the corresponding mlnl × 1 vector of the strengths of the wake vortex rings. Using

the matrix notation vk = Wkr(t), where Wk is the mknk×nm matrix of the eigenvectors
introduced in Equation 4.1, Equation 4.8 can also be written:

Q∞diag
(
ÛknT

k

)
− U∂xWkr(t)−Wkṙ(t) +

N∑
l=1

Ãb
l,kΓb

l +
N∑
l=1

Ãw
l,kΓw

l = 0. (4.9)

4.1.3 Unsteady Kutta condition

The trailing row of bound vortices is propagated in the wake which ensures that the 2D
Kutta condition is respected on each panel of the wing over time. After leaving the lifting
surface, the vorticity is shed on the subsequent vortex rings at a constant strength after
a time step ∆t. It means that the ith chordwise row of wake vortices at time t has the
same strength as the trailing row of bound vortices at time t − i∆t. This explicit time-
marching implementation of the Kutta condition implies that

(
Γb
l

)
l=1,..,N

is the only set
of unknowns in Equation 4.9. It remains that ∑N

l=1,l 6=kmlnl other equations are necessary
to solve the problem for surface k. They can be found by writing the impermeability
conditions for all the other surfaces. It leads to a system of Ne = ∑N

l=1mlnl independent
equations with Ne unknowns that can be expressed in the following matrix form:

Q∞diag
(
ÛnT

)
− U∂xWr(t)−Wṙ(t) + AbΓb + AwΓw = 0, (4.10)
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where Û is the Ne × 3 matrix of free stream velocities, n is the Ne × 3 matrix of normal
vectors, and W is the Ne × nm matrix of eigenvectors. These matrices are obtained by
vertically concatenating the matrices introduced in the individual impermeability condi-
tions, like in Equation 4.9. Similarly, Γb and Γw are the Ne×1 and ∑N

l=1m
w
l nl×1 vectors

of vortex strength defined as:

Γb =


Γb

1
...

Γb
N

 , and Γw =


Γw

1
...

Γw
N

 . (4.11)

As to the influence coefficients, Ab is the Ne × Ne influence coefficients matrix of the
bound vorticity, defined by block as:

Ab =


Ãb

1,1 . . . Ãb
N,1

... . . . ...
Ãb

1,N . . . Ãb
N,N

 , (4.12)

and Aw is the Ne ×
∑N
l=1m

w
l nl influence matrix of wake vorticity, defined by blocks as:

Aw =


Ãw

1,1 . . . Ãw
N,1

... . . . ...
Ãw

1,N . . . Ãw
N,N

 . (4.13)

As mentionned earlier, the wake vorticity shed by surface k is directly related to its bound
vorticity with the relation

Γw
k (t) =



Γb
mk,1(t−∆t)

...
Γb
mk,nk

(t−∆t)
...

Γb
mk,1(t−mw

k ∆t)
...

Γb
mk,nk

(t−mw
k ∆t)


=


Pc
kΓb

k(t−∆t)
...

Pc
kΓb

k(t−mw
k ∆t)

 , (4.14)

where Pc
k is the nk × mknk matrix Pc

k =
[
Onk×(mk−1)nk

Ink

]
. In order to have a more

convenient expression of the wake vorticity that does not contain values of the bound
vorticity, it is possible to consider the Fourrier transform of Equation 4.9:

Q∞diag
(
ÛnT

)
δ(ω)− U∂xWr(ω)− iωWr(ω) + AbΓb(ω) + AwΓw(ω) = 0. (4.15)
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As the Fourrier transform of f(t−∆t) is e−iω∆tF (ω), the frequency domain expression of
Γw
k becomes

Γw
k (ω) =


Pc
kΓb

k(ω)e−iω∆t

...
Pc
kΓb

k(ω)e−mw
k iω∆t

 = Pc
k


Γb
k(ω)e−iω∆t

...
Γb
k(ω)e−mw

k iω∆t

 = Pe
k(ω)Pc

kΓb
k(ω), (4.16)

with Pe
k the nkmw

k × nk matrix given by

Pe
k =


Ink
e−iω∆t

...
Ink
e−m

w
k iω∆t

 . (4.17)

The decomposition displayed in Equation 4.16 applies to the whole set of lifting surfaces,
which can be summarized in the compact form

Γw(ω) = Pe(ω)PcΓb(ω), (4.18)

where Pe(ω) and Pc are respectively the ∑N
l=1 nlm

w
l ×

∑N
l=1 nl and

∑N
l=1 nl × Ne block

diagonal matrices respectively given by

Pe(ω) =


Pe

1(ω) (0)
. . .

(0) Pe
N(ω)

 , and Pc =


Pc

1 (0)
. . .

(0) Pc
N

 . (4.19)

Substituting in Equation 4.15 and solving for Γb(ω) then provides

Γb(ω) = −
(
Ab + AwPe(ω)Pc

)−1
(

diag
(
Q∞ÛnT

)
δ(ω)− (U∂xW + iωW) r(ω)

)
.

(4.20)
It can be noticed that Equation 4.20 has the exact same form as the expression obtained
by Dimitriadis [3] for a single lifting surface.

4.1.4 Computation of the lift

Knowing the vorticity over the full aeroelastic model allows to compute the generalized
lifting force as a function of the modal coordinates. This can be performed with the
expression introduced by Katz and Plotkin [2] for computing the aerodynamic normal
force contribution of the (i, j)th panel of a given surface. The subsequent transformations
in the frequency domain are out of the scope of this report but may be found in the
references for further information. The final form of the lift is a Ne × 1 vector given as

46



4 AEROELASTIC MODELLING 4.1

a function of the reduced frequency κ = ωb/Q∞ with b the half chord of the reference
lifting surface:

L(κ) = −ρQ2
∞ (L0δ(κ)− L1(κ)r(κ)) , (4.21)

where δ(κ) is the Dirac delta function. The two terms L0 and L1(κ) respectively refer
to the static and dynamic parts of the lift force. They are obtained using the previously
defined influence and propagation matrices, as well as the geometric properties of the
wing panels:

L0 = Gcs
(
Ab + AwPe(0)Pc

)−1
diag

(
ÛnT

)
, (4.22)

and
L1(κ) =

(
Gcs + i

κ

b
GA

) (
Ab + AwPe(κ)Pc

)−1
(
∂xW + i

κ

b
W
)
, (4.23)

where GA is the Ne × Ne diagonal matrix, the diagonal elements of which are the wing
panel areas, and Gcs is a Ne×Ne matrix involving the in-plane orientation vectors of the
wing panels 1. The current expression for the lift can then be used as the right member in
the equation of motion. Nonetheless, it must be noted that Equation 4.21 is the outcome
of a linearization that relies on several assumptions:

• all the surfaces have a small camber and a small dihedral angle so that the induced
downwash terms are negligible, which is respected in the case of the Sonaca 200;

• induced velocities in the tangent directions remain small;

• the yaw angle of the airplane also remains small throughout time.

4.1.5 Equation of motion

The equation of motion for the considered system has the general time-domain expression

Mv̈(t) +Kv(t) = L(t). (4.24)

Applying the modal decomposition v(t) = Wr(t) and multiplying by WT to the left
allows to write the modal form of Equation 4.24,

Ar̈(t) + Er(t) = Q(t), (4.25)

where A = WTMW is the modal mass matrix of the system, E = WTKW is the modal
stiffness matrix, and Q(t) = WTL(t) is the generalized force vector corresponding to
the definition given in Equation 4.3. Applying the Fourier transform to Equation 4.25

1GA and Gcs are obtained from the definitions given by Dimitriadis [3] by proxy of the same block
matrix formalism as for Pe and Pc in Equation 4.19
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and substituting with the expression for L(κ) given by Equation 4.21 provides a new
expression for the modal equation of motion,(

−
(
κQ∞
b

)2
A+ E − ρQ2

∞Q1(κ)
)

r(κ) = −ρQ2
∞Q0δ(κ), (4.26)

where Q1(κ) = WTL1(κ) and Q0 = WTL0. On the one hand, solving for r(0) at κ = 0
can give the static deflection of the structure at a fixed airspeed. On the other hand,
obtaining non-trivial solutions in terms of κ and Q∞ for κ > 0 takes to cancel the flutter
determinant:

det
(
−
(
κQ∞
b

)2
A+ E − ρQ2

∞Q1(κ)
)

= 0. (4.27)

In conjunction with a search procedure like Newton-Raphson algorithm, Equation 4.27 can
be exploited to find an eventual flutter speed and the corresponding frequency in the flight
envelope of the aircraft. Besides, the flutter determinant solution can be correlated with
the outputs of the p− κ method, also based on Equation 4.27. This particular approach
is further introduced to discuss the practical solutions of the aeroelastic problem. But for
this purpose, the structural model of the Sonaca 200, presented in Section 2, first needs
to be integrated in the VLM code developed in Matlab.

4.2 Practical aeroelastic model of the S200: integration of the
structural model in the VLM code

4.2.1 Preliminary considerations

The practical aeroelastic model defined in this section 2 only considers the interactions of
the main lifting surfaces with the air flow and neglects the aerodynamic behavior of the
fuselage. As an outcome, the finite element model of the fuselage developed in Section
2 only acts as flexible connection between the wing and the empennage and its nodal
outputs are not needed in the subsequent steps. It only ensures that members of the
aircraft can move as rigid bodies in relation to each other in a way that is consistent
with the mechanical behavior of the real structure. Only the outputs of the finite element
model given at the locations of the wing, tail and vertical fin are integrated in the Vortex
Lattice Method developed in Matlab to simulate fluid structure interactions. The nodal
displacements provided by modal analysis are actually interpolated to describe deforma-
tions of the chord surfaces. As described in the following, the extracted mode shapes are
then converted into deformations of the properly discretized lifting surfaces to build the
W and ∂xW matrices. As a side note, the modal mass and stiffness matrices of Equation

2All the steps mentionned in Section 4.2.2 to Section 4.2.4 are explicitly related to the corresponding
Matlab codes, which can be found in the resource files.
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4.27 are obtained from the frequencies and modal masses given by Samcef with: A = diag (µ)
E = A diag (ω)2 , (4.28)

where µ is the vector of the modal - or effective - masses, and ω is the vector of the
computed natural frequencies.

4.2.2 Discretization of the three lifting surfaces in vortex panels

This step consists in obtaining a three dimensional mesh similar to that of Figure 4.1
by using the actual geometrical specifications of the Sonaca 200. To do so, the wing
planform is first discretized in mwing chordwise and nwing spanwise panels, respecting
a linear increment for the mwing + 1 chordwise points and a sinusoidal distribution for
the nwing + 1 spanwise points. It thus creates a higher panel density at the wing tips
where wake roll-up phenomena take place, hence the need for a finer relative velocity field
description at these locations even if the wake is frozen in the present case. It can be
noted that the chord length distribution along the span is linearly interpolated between
the values measured on the CAD model at the root and at a certain distance y close to the
tip of the wing. Therefore, dimensions of the base configuration along the x axis do not
correspond to a projection of the three dimensional wing on the ground, which should be
elliptical due to the twist angle, but to an untwisted representation of its chord surface.
The initial grid is then deformed in the vertical direction to follow the camber line Ȳ (x)
of a NACA 4415 using the analytical formula

Ȳ (x) =


εx
q2 (2q − x

c
) for 0 ≤ x

c
≤ q,

ε(c−x)
(1−q)2 (1 + x

c
− 2q) for q ≤ x

c
≤ 1,

(4.29)

with ε = 0.04 and q = 0.4, where c is the local chord length, εc is the maximum camber
and qc is the distance between the leading edge point and the point of maximum camber
along the x axis. To account for the influence of the dihedral angle, the camber is then
multiplied by a factor cos(d) and the proper elevation is added with a linear function of
y:

∆zd(y) = y sin(d). (4.30)

The local angle of attack is finally generated by rotating each section in the (x, z) plane
of an amount α(y) around its leading edge point, with

α(y) = α0 + y

s
εg. (4.31)

The horizontal and vertical planes of the empennage have no camber nor dihedral, so sheer
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(a) Empennage of the
Sonaca 200 assembled on
the fuselage
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Figure 4.3: Simplified aeroelastic model of the empennage for implementation in the VLM
code

interpolations of values measured on the CAD file allow to recover the base shape of these
components. Geometrical simplifications are made at the roots where the surfaces are
simply extended toward their inner extremity, and toward the lower point of the rudder
in the case of the vertical fin. As displayed in Figure 4.3, it is intended to account for
the parts of the empennage masked by the rear fuselage. It can be higlighted that values
for mHTP and nHTP corresponding to the tail, as well as mVTP and nVTP corresponding
to the vertical fin, are scaled from mwing and nwing by using the local values for the
span and chord length. It thus ensures conservation the panel density over the different
lifting surfaces. The process for obtaining the bound vortex rings and wake vortex rings
distributions follows the principles described in Section 4.1 and is performed with the
VLMmesh.m Matlab function. As to the shed vortices, the chordwise extent of the wake
generated by the main wing is defined from its trailing edge as a multiple cw

wing of cwing.
In order to facilitate control over the full mesh, lengths of the two other computed wakes
are adapted so that the wing, tail and vertical fin have their wake stopping at the same
location. For any lifting surface with a chord length c and m chordwise panels, the chord
increment of the wake vortex rings has a constant value of c/m. It comes that the number
of chordwise wake vortex is given by

mw =
⌈
cwm

c

⌉
, (4.32)

where cw is the wake length of the corresponding surface, determined by cw
wing and the

airplane geometry. As illustrated in Figure 4.4, the procedure described here above allows
to obtain a vortex lattice with a rather uniform mesh density over its different components,
in addition to being easily modifiable.
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Figure 4.4: Aeroelastic model of the Sonaca 200 as used for flutter analysis, here repre-
sented with m = 12, n = 30 and cw

wing = 8cwing for the sake of clarity.

4.2.3 Computation of the influence coefficient matrices.

Once the aeroelastic mesh is created, influence coefficients matrices are computed with
a double loop on each surface of the system. At each (i, j) iteration, Matlab function
influence.m evaluates both the influence coefficient sub-matrix of bound vortex rings
attached to surface i on collocation points of surface j and and the influence coefficient
sub-matrix of wake vortex rings generated by surface i on collocation points of surface j.
The underlying procedures are managed with C scripts using the Matlab API based on
the guidelines given by Katz and Plotkin [2]. The global influence coefficients matrices
are then assembled as displayed in Equations 4.12 and 4.13. It is always verified that all
coefficient are non-zero.

4.2.4 Combination of the aeroelastic model with the structural eigenmodes

Interpolation of the mode shapes Thus far, normal displacement obtained from
numerical modal analysis helped describe rigid motion of the chord at a few different lo-
cations along the span. It allowed to validate the finite element model of the airplane but
further interpolations need to be performed in order the structural mesh to be finer than
the aeroelastic mesh. Indeed, values of the displacement are linearly interpolated at the
collocation point of the aeroelastic model. As an outcome, having a too coarse structural
mesh would result in a linear pattern of the displacement field between neighbour collo-
cation points, which should be avoided. For this purpose, the raw finite element mode
shapes which contain 16 sections for the wing, 12 sections for the tail and 7 sections for
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the vertical fin are fitted with spline curves in Matlab. The resulting functions are then
re-evaluated on a mesh of resolution n = 100×m = 50 to form operable extended mode
shapes. The number of chordwise divisions is in fact here not important since no defor-
mations are taken into account along the stream direction. This set of values is validated
by a convergence study on the number of aeroelastic panels to use, as developed further
in this section. The aeroelastic mode shapes produced with theses parameters, as used to
form the W and ∂xW matrices, are obtained with the VLMmodes function in Matlab and
displayed in Figure 4.5.

Mesh convergence in terms of flutter speed The flutter determinant method in-
troduced in Section 4.1 can be applied to the aeroelastic mode shapes in order to fix
an aeroelastic model resolution by studying convergence of the flutter speed. It however
appears that the studied configuration of the aircraft does not exhibit any flutter phe-
nomenon in the subsonic range where the VLM applies. This study is thus carried out for
the wing by itself which displays a flutter speed around 1050 km/h EAS at 0 km altitude
in absence of the empennage. The chosen control variable is a rough measure of the panel
density defined by

D = mn

cs
. (4.33)

This variable is progressively increased while keeping a constant n/m ratio until the
flutter speed and frequency stabilize. This process is successively repeated for n/m = 0.5,
n/m = 1.4, n/m = 2.8, and n/m = 5.4. As shown in Figure 4.6, it appears that decreasing
the value for n/m leads to a quicker convergence of the flutter speed. However, a too low
n/m ratio generates vortex rings with a very high aspect ratio in the spanwise direction,
especially in the linear part of the sine distribution. It can be detrimental in terms of
mode shapes description since it gives the deformation a more jagged aspect for a given
number of panels, which is illustrated in Figure 4.7. This issue could be fixed by increasing
the number of panels but it would be all the more demanding in computation time, as
the small chord length of the stretched panels implies a finer time increment for vortex
shedding. It can actually be noticed in Table 6 that the lowest value for n/m at 150
panels/m2 displays a slight increase in computation time in comparison to the second and
third tested values.

D = 150 m−2

n/m [-] 0.5 1.4 2.8 5.4
CPU time [s] 21.84 20.69 20.55 23.93

Table 6: Comparison of the computation times for a fixed panel density and different
values of the n/m ratio.
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(f) Mode ST (49.471 Hz).

Figure 4.5: Numerical aeroelastic mode shapes of the Sonaca 200, obtained by combining
the aeroelastic model with the extended finite element modes; the initial configuration is
represented in grey and the deformation in black.
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(a) Flutter speed vs panel density (b) Flutter frequency vs panel density

Figure 4.6: Convergence curves of the flutter velocity and flutter frequency with respect
to the panel density computed with Equation 4.33 for different m/n ratios; equivalent
airspeeds are given at 0 km altitude.

(a) n/m = 0.5 and D = 65 m−2. (b) n/m = 2.8 and D = 65 m−2.

Figure 4.7: Comparison between the aeroelastic mode shapes obtained for a fixed panel
density but two different n/m ratios in the case of mode ST.
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To sum up, having a n/m ratio between 1 and 3 seems to be a reasonable compromise
between convergence of the aeroelastic solution, fidelity of the mode shapes and required
computation resources. Therefore, n/m = 2 is chosen for all the subsequent aeroelastic
simulation, with D = 150 to ensure a fairly stabilized solution. It can be translated in
terms of chordwise and spanwise panels, which gives n = 64 and m = 32. This result
confirms the choice of structural mesh density used to build the extended mode shapes.

4.3 Flutter analysis results

4.3.1 p− κ method

This approach uses the dynamic part of the equation of motion. It allows to get the damp-
ing ratios and eigenfrequencies of all the considered modes at any airspeed by applying
an iterative procedure to Equation 4.27. This latter is transformed into an eigenvalue
problem by introducing a new complex variable p verifying

det
(
−p2A+ E − ρQ2

∞Q1(κ)
)

= 0. (4.34)

An initial guess is made on the value of κ and, as discussed by Hassig [19], subsequent
solutions of the determinant are assumed to appear in complex conjugate pairs:

p = δ

2πω ± iω, (4.35)

where δ is a negative logarithmic decay rate and ω a damped frequency. For a given
mode, iterating with a new value for κ given by κ = ωb/Q∞, with ω = Im(p), then
allows converge toward a (p, κ) couple that satisfies Equation 4.34. Once the damped
frequency is converged, the natural frequency is obtained with ωn = |p| and the damping
ratio is deduced with ζ = −Re(p)/ωn. This procedure, as illustrated in Figure 4.8, must
be repeated for each mode and multiple airspeed in the range of interest in order to have
an overview of the aeroelastic behavior of the system.

4.3.2 Validation of the method with experimental modes

Outputs provided by the p − κ method can be compared with reference flutter analysis
curves of the Sonaca 200. In order to first validate the VLM code without influence of
the finite element model, a resolution is carried out on the set of available experimental
modes. The experimental aeroelastic modes are obtained with the same techniques as for
the finite element aeroelastic modes and are displayed in Figures ?? and 4.9.
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Choose an airspeed Q∞

Aeroelastic model of 
the airplane

Equation of motion

Choose the i th 
degree of freedom

Set an initial value 
for ωi, hence кi 

Store the converged 
value of ωi 

Sort the eigenvalues in ascending 
order of imaginary part 

Compute the eigenvalues 
p of Equation (3.24) 

END 

Set ωi = Im(pi)

<ε?

All degrees 
of freedom 
processed?

All airspeeds 
investigated?

Yes

Yes

No

No

NoYes

Figure 4.8: Implementation of the frequency matching process to obtain damping and
frequency curves with the p− κ method
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Figure 4.9: Experimental aeroelastic mode shapes of the Sonaca 200, obtained by combin-
ing the aeroelastic model with the extended mode shapes generated on the experimental
data provided by Leichtwerk AG (Part.2); the initial configuration is represented in grey
and the deformation in black.
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The resulting curves are presented in Figure 4.10 in comparison with the reference ma-
terial. It can be observed that the computed aeroelastic solution shows rather similar
trends in terms of frequencies and damping ratio.

(a) Eigenfrequencies computed with the
VLM code vs free stream velocity.

a 
b
c
d
e
f

a

b

de

f

c

(b) Eigenfrequencies provided by Le-
ichtwerk AG vs free stream velocity [20].

(c) Damping ratios computed with the
VLM code vs free stream velocity.

a

b

d
e
f
c

a 
b
c
d
e
f

(d) Damping ratios provided by Leichtwerk
AG vs free stream velocity [20].

Figure 4.10: Comparison between the VLM solutions and the flutter analysis data pro-
vided by Leichtwerk AG exploiting in both cases the same experimental modal a anlysis
outputs; reference curves on the right are reproduced from [20] and slightly edited for
better visualization; computed solutions are based on the experimental aeroelastic modes
presented in this report (Figures ?? and 4.9).

In both cases, S1 appears to be the most damped structural mode, whereas SX1 is very
lightly damped in comparion to the other modes considered. The relative importance of
the other modes on the damping plot is also almost identical between the reference and

58



4 AEROELASTIC MODELLING 4.3

simulated results. The only difference concerns modes SH and VTB, which in both cases
have close damping values but are inverted with respect to the reference data in the VLM
solution. In this regard, it can be noted that symmetrical and antisymmetrical modes were
separately handled in the initial flutter analysis. As presented in [20], degrees of freedom
of the system seem to have first been expanded on all the symmetrical modes to obtain
the corresponding damping curves and on all the antisymmetrical modes afterwards. It
suggests that SH, which is symmetrical, and VTB, which is antisymmetrical, might have
been expressed in two different bases, hence the slight noticeable variations. It could also
explain why these modes have intersecting frequency curves while this behaviour is not to
be seen in the current solution. Unfortunately, too few details are unveiled in the technical
report of Leichtwerk AG, which does not grant to confirm nor refute these hypotheses. A
last remark concerns the obvious difference in magnitude regarding the damping ratios.
The results obtained by Leichtwerk AG are actually almost two times higher than those
of the VLM code, which was already observed by Lempereur [11] in the first iteration of
the aeroelastic model of the S200. A possible explanation may be a different definition
of the damping ratio in use for the reference data. Besides, it can be reminded that the
company fell back on a 2D strip theory approach to estimate the aeroelastic solution,
whereas the implemented procedure relies on 3D aerodynamics.

4.3.3 Comparison with the FEM modes

In total, eleven vibration modes were extracted from finite element analysis. Similarly
to the experimental data, they can be converted into aeroelastic modes and processed
with the VLM code to obtain frequency and damping curves. As shown in Figure 4.11,
the resulting graphs display similar tendencies as previously. Natural frequencies remain
almost stationary while damping ratios monotonously grow with the free stream velocity.
It is comforting to observe than no flutter phenomenon happens in the airspeed range of
interest, which is consistent with the behavior of the real aircraft.
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(a) Eigenfrequencies computed with the
VLM code vs free stream velocity.

(b) Damping ratios computed with the
VLM code vs free stream velocity.

Figure 4.11: Results of the p− κ method applied to the numerical aeroelastic modes.

Like in the experimental case, it can be observed that the first mode is the most damped
but it is hard to distinguish the other damping curves due to them being cluttered around
the same values. In order to have a better overview of the finite element results and to
compare them with data generated with the experimental aeroelastic modes, the six modes
of Section 4.3.2 are isolated. The aeroelestic solution is thus computed only with these
latter, neglecting contribution of the other eigenmodes. It can first be observed in Figure
4.12 that reducing the number of modes in such a way has very few effects.
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(a) Eigenfrequencies computed with the VLM code vs free stream velocity.

(b) Damping ratios computed with the VLM code vs free stream velocity.

Figure 4.12: Comparison between the frequency and damping curves computed with the
VLM code for experimental aeroelastic mode shapes and the finite element aeroelastic
mode shapes.

It can be noticed by looking for instance at the unchanged values for the damping ratio
of S1 and AR2_2 at 1.2VD. Resemblance of the finite element based solutions to the ex-
perimental based ones varies depending on the eigenmode. The damping curves provided
for mode ST almost perfectly overlap in spite of the low modal correlation factor stated
in Section 3.3. More surprisingly, the two curves obtained for AR2_2 are also quite close

61



4 AEROELASTIC MODELLING 4.4

even though matching between the two modes was very loosely established. Similarity
between the experimental and finite element damping curves for SH that can be seen on
the graph was more likely since it is one of the best fitted modes. Another remark is that
SX1 is no longer the less damped mode in the case of the finite element results. It may
be justified by the fact that, as mentioned in Section 3.3, vertical tail plane bending has
a non negligible contribution in the computed eigenvector.

4.4 Conclusions

The implemented VLM does not contradict the analysis carried out by Leichtwerk outside
the influence of the finite element model. It may be vain to expect a perfect match between
the different curves since the implemented methods a priori significantly differ. Relevance
of the computed results can still be put forward, as developed in Section 4.3.2 and offers
good prospect to eventually apply the algorithm to other configurations. Using the finite
element data in the code highlighted sensitivity of the solutions to modal parameters,
which invites to respect a critical distance from the evaluated numerical values. This
given, it might be interesting to observe the computed flutter speed in cases where it can
be computed. It would however requires extensive improvements of the finite element
model to take into account control surfaces.
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5 General conclusions
This work illustrates how it is possible to break down analysis of a complex system into
different simplification steps. For aeroelastic modelling of th Sonaca 200, they can be
listed as: mechanical description of the aircraft by proxy of thin structures theory, cre-
ation of a finite element model with beam elements, aeroelastic modelling of the plane
using a well chosen set of surfaces and aeroelastic solving with a vortex lattice method.
The aeroelastic solution computed with the VLM code based on experimental vibration
modes does not contradict the 2D approach regarding behavior of the damping and fre-
quency terms. Besides, results remain fairly consistent in the case of finite element modes.
It thus illustrates that the methods applied in the different resolution stages were viable
to a certain extend. It is not completely surprising as numerous verification phases were
respected throughout this study to ensure a progression relying on physically acceptable
data. In addition to this, present study especially highlights capability of the frequency-
domain Vortex Lattice Method in an industrial case. As an outcome, it can be established
that the practical implementation of the method for a full airplane has good prospects
in further development of the presented work. Nonetheless, a few limitations remain. It
would indeed have been beneficial to posses more experimental modal data to compare
the VLM outputs with the 2D approach. There might also be place for improvement
in terms of description of the lifting surfaces, without saying that aerodynamic influence
of the fuselage was neglected from the beginning. Moreover, it could be interesting to
investigate possibilities of creating a more accurate finite element model in terms of mass
distribution, internal and external boundary conditions. It however remains delicate due
to sensitivity of the modal analysis results to geometrical or physical adjustments in the
model. In practice, a more comprehensive description of the boundaries between the
structural members using an appropriate analytical approach instead of rough approxi-
mations, or specific finite element simulations, could help improve quality of the model.
This can also be coupled with a definition of stiffness terms describing the flexible engine
mount. A more obvious modification to the model would be to take into account rigid
body degrees of freedom of the control surfaces to perform modal analysis on the control
free configuration which were identified as critical by Leichtwerk AG. The main objective
would be to ensure that flutter can be predicted in the corresponding flight conditions.
Since operable experimental data are not available to do so, the alternative to develop is
thus using data provided by the finite element model incorporating mobile control sur-
faces. This can be performed by defining cinematic connections instead of rigid links
between the wing and ailerons, horizontal tail plane and elevator, vertical tail plane and
rudder, with a software such as Mecano. The developed algorithm and structural analysis
methodology could then be validated as a satisfying way to predict flutter phenomena.
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Annex
A Shear stress in stiffener sections
Let i index a stiffener of cross section area Ai fixed to and arbitrary thin structure under
shear load Tz. Its total cross section contour is noted li and its wall thickness ti. As shown

C

s’=0

s’1
s z

zi

zi

0

(i)s’
Tz

Figure A.1: Parametrization of the skin-stringer connection.

in Figure A.1, its contour is parametrized with abscissa s′ going from 0 to s′1, respectively
corresponding to z̃i and zi. It can be recalled that

Tz
A′

=
∫
A
σ2
xsdA, (A.1)

where A is here the total area of the thin structure cross section, which is separated
between the skin area and the stringers area. As an outcome:

Tz
A′

=
∫
Ask

σ2
xsdA+

∫
Ast
σ2
xsdA, (A.2)

where Ask is the total area of the skin and Ast is the total area of the stringers. Under
the sufficient condition that |zi| >> li it can be shown that

∫
Ai

σ2
xsdA ≤

T 2
z z

2
iA

3
i

I2
y t

2
i

. (A.3)

Proof. From the definition of the shear flow, the integral over the stringer area writes
∫
Ai

σ2
xsdA =

∫ s′
1

s′=0

1
ti
q2(s′)ds′. (A.4)

And

q(s′) = −Tz
Iy

∫ s′

0
tiz(s′′)ds′′, with

 z(s′′) = z̃i + f(s′′)
|f(s′′)| ≤ s′′

. (A.5)
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So
Iy
Tz
q(s′) = z̃itis

′ +
∫ s′

0
f(s′′)ds′′. (A.6)

It yields
z̃its

′ − ti
∫ s′

0
s′′ds′′ ≤ Iy

Tz
q(s′) ≤ z̃its

′ + ti

∫ s′

0
s′′ds′′, (A.7)

which means
z̃its

′ − ti
2 s
′2 ≤ Iy

Tz
q(s′) ≤ z̃its

′ + ti
2 s
′2. (A.8)

In the case where z̃i ≥ 0,
z̃its

′ + ti
2 s
′2 ≤ z̃iAi + A2

i

2ti
. (A.9)

And
z̃iAi + A2

i

2ti
≤ 2Aizi ⇐⇒ 2zi − z̃i ≥

Ai
2ti

= 1
2 li, (A.10)

which is verified since 2zi− z̃i ' zi. Furthermore z̃its′− ti
2 s
′2 is positive for s′ ≤ 2z̃i which

is the case according to the initial assumption. In other words

0 ≤ Iy
Tz
q(s′) ≤ 2Aizi (A.11)

The case where z̃i < 0 is symmetrical and similarly leads to

−2Aizi≤
Iy
Tz
q(s′) ≤ 0. (A.12)

It can thus be written that
|q(s′)| ≤ 2AiziTz

Iy
. (A.13)

As an outcome:∫ s′
1

s′=0

1
ti
q2(s′)ds′ ≤ 2 T

2
z

I2
y ti

∫ s′1

0
z2
iA

2
i ds
′ = 2T

2
z z

2
iA

2
i

I2
y

li = 2T
2
z z

2
iA

3
i

I2
y t

2
i

. (A.14)

Returning now to the equation for the reduced cross-section area, it comes that

A

A′
= A

Tz

∫
Ask

σ2
xsdA+ A

Tz

∫
Ast
σ2
xsdA, (A.15)

which can write
1
k∗z

= A

Ask

1
kz

+B, (A.16)
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Section A
Ask

1
kz

B

FUS3 3.9957 0.2398
FUS6 6.1786 0.0262
FUS10 2.6150 0.0316

Table 7: Comparison of the skin and stringers related terms in the equation for the shear
factor.

where B verifies
B ≤ A

∑
i

2z
2
iA

3
i

I2
y t

2
i

. (A.17)

By comparing numerical values of the two terms in Equation A.16, it appears that B
remains negligible, as it is shown in Table 7. The final expression for the shear factor can
thus be reduced to

k∗z = Ask

Ask + Ast
kz. (A.18)
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B Additional finite element vibration modes
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(a) Mode 3 (30.305 Hz).
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(b) Mode 5 (31.884 Hz).
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(c) Mode 6 (35.598 Hz).
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(d) Mode 10 (44.450 Hz).

Figure B.1: Additional numerical modes that were not validated with experimental data;
the initial configuration is represented in grey and the deformation in green.
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