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1 Introduction

1.1 Context

Thanks to an advantageously low electrical resistivity, copper has been the metal of choice
for interconnects in modern nanoelectronics, covering virtually all layers of the back end of
line. However, the resistivity of nanostructured copper rises dramatically as the dimensions
are reduced below 30 nm, as a result of extra carrier scattering at the sidewalls and on grain
boundaries. At a system level, this unacceptably leads to more latency and a higher power
consumption as we move forward into the CMOS roadmap. Subsequently, alternative metals,
and most promisingly ruthenium and metals of the platinum group, are being considered for
replacement of copper. Despite a lower bulk electrical conductivity than copper, these met-
als have indeed shown a reduced sensitivity to dimensions such that they might outperform
copper at the smallest dimensions. In this context, characterizing these metals and under-
standing how their properties are impacted by dimensions become of the utmost importance.

At those scales however, the mechanical electrical characterization of materials becomes
difficult. As a result, the traditional four-points probe technique becomes inadequate and
one has to move to other type of characterization, such as optical characterization of ma-
terials. The nanoscopic world is full of promising features that are able to overcome the
limitations of the bulk materials, and there is therefore a need for studies on nanomate-
rials to explore those properties. Nowadays, they may be characterized electrically and
mechanically by direct contact with the nanomaterials. However, due to their non-contact
and non-invasive nature, the optical methods are able to characterize nanomaterials with-
out significantly modifying or damaging them. Common optical characterization methods
include reflectance/absorbance/transmittance spectra, photoluminescence, and Raman scat-
tering measurement [1] [2] [3] [4].

These properties related to nanometric scales are of particular interest in the semicon-
ductor industry, where the dimensions of the features kept decreasing over time. In that
field, there are two main manufacturing processes that call for a particular monitoring and
characterization. The front-end-of-line (FEOL) is the first step of fabrication in integrated
circuits (IC) where the individual devices (transistors, capacitors, resistors, etc.) are pat-
terned in the semiconductor. FEOL generally covers everything necessary to form isolated
devices, which then require metallic interconnection. The back end of line (BEOL) is the
second portion of IC fabrication where the devices get interconnected with wiring on the
wafer. Metals such as copper or aluminum are typically used. This work deal with the
photonic properties of periodical arrays of nanometer-wide metal lines, which belong to the
back end of the line [5] [6] [7].

1.2 Metrology

Metrology is the science of measuring and characterizing structures and materials. It is a
concept that refers not only to an act of measurement itself but to a measurement performed
by taking errors and accuracy into account. If measurements are not within a given specified
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range, a manufactured device might operate as designed, in which case the manufacturing
details of the device must be reworked. Metrology and inspection are important for the
management of the semiconductor manufacturing process. There are 400 to 600 steps in the
overall manufacturing process of semiconductor wafers. If any defect is detected early, all the
subsequent work will be wasted. Metrology and inspection processes are therefore established
at critical points of semiconductor manufacturing process to ensure that a certain yield can
be confirmed and maintained. There are different tools and technologies available, whether
mechanical or optical, as for example: atomic force microscopy (AFM), critical-dimension
scanning electron microscope (CD-SEM), X-ray scattering metrology, model-based infrared
reflectometry (MBIR), optical critical dimension (OCD) scatterometry, spectroscopic ellip-
sometry, transmission electron microscope (TEM), Raman spectroscopy, [8] [9] [10] [11] [12]...
This work focuses on the photonic properties of arrays of metal lines, and in particular, on
the effect of the geometry on those properties. Two techniques are of particular interest:
OCD scaterrometry and Raman spectroscopy.

1.2.1 Scatterometry

Scatterometry is a novel metrology approach for process control that in addition to being
precise and accurate, is fast, cheap and versatile. The method can simultaneously measure
critical dimension (CD), side wall angle (SWA), and thickness of more than one layer. It
analyzes the scattered light from a periodic array of lines or holes that represent the sur-
face structure of the measured sample. As the structure dimension shrinks considerably,
producing high precision results becomes more critical. As technology advances, the FEOL
did not only shrink in size but also moved on to new geometries such as 3D transistors like
the finFETs or GAAFETs, while the BEOL mostly kept decreasing in size. Conventional
metrology tools are unable to precisely monitor some interconnect attributes such as trench
sidewall angle due to limited capability or excessive cycle time. But scatterometry can be
used to address these shortcomings while also potentially providing additional measurement
capabilities that enable more comprehensive characterization of interconnect attributes. To
date, reports on the deployment of scatterometry in real production environment have fo-
cused on FEOL applications, however, BEOL process control has not been widely reported
[13] [14] [15].

1.2.2 Raman spectroscopy

Raman spectroscopy is a non-contact and non-destructive characterization method for
the molecular composition and external structure of a material, which exhibits a non-linear
electric field sensitivity.

In the semiconductor field, Raman spectroscopy is particularly efficient in establishing
the characteristics of microelectronic devices. The ability to measure alloy composition and
strain in semiconductor structures is essential for the calibration of growth processes and
control of the electrical and optical behavior of these materials.

Raman spectroscopy has recently been extended to probe nanometer-scaled volumes such
as finFETs. Because of its high sensitivity to the electric field transmitted in the substrate,
it is also extremely sensitive to the geometry of the nanostructure. This feature can be
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used to understand how light couples into complex heterostructures and to study photonic
properties of nanostructures such as periodic arrays of semiconducting lines as a function of
their geometry [16] [17].

1.3 State of the art

Recently, Raman measurements on periodic arrays of deep subwavelength semiconduct-
ing trenches (which geometry is typical to that of finFETs) have put forward the existence of
a resonant coupling phenomenon when light is TM polarized and the trench width becomes
small compared to the incident wavelength. This discovery has relaunched the hope for the
possible non-contact characterization of mechanical stress in state-of-the- art semiconductor
devices with Raman spectroscopy. It is key to understand this enhancement to extend non-
destructive optical measurements of semiconductor devices to dimensions smaller than the
diffraction limit and to reach the sensitivity required to probe very small devices [18].

Later, it was shown how the light coupling into periodic arrays of nanoscale silicon lines
strongly depends on the geometry of the grating, namely on the periodicity, and that the
coupling is enhanced when it is increased. The insight developed there is crucial to un-
derstand the effect of 3D geometry on the light interactions with such structures and will
facilitate the design of optical process and metrology tools required for the fabrication and
the characterization of 3D device [19].

Then, it was shown how it is possible to geometrically tailor the refractive properties
of periodic structures to values different than those of the material constituting the arrays
depending on the spectral region considered. Some fundamental insight was established
which could facilitate the development and manufacturing of nanoelectronic devices, such as
finFETs, as well as the design of light harvesting applications like photovoltaics [20].

The strong dependence on CD of the Raman signal when light is TM polarized was shown
in [17]. This effect was used to analyze the geometric dependence of the signal for a tungsten
nanograting.

In [21], the unexpected optical properties of a metallic film with subwavelength holes
were highlighted. It was also described how they can be controlled by tailoring the geometry
of the structure.

In [22] it is shown how nanometric gaps in noble metals can lead to enhanced light-matter
interactions, such as enhanced emission, absorption or Raman scattering, which are function
of the size of the gap. It is also shown that these are induced by surface plasmon polaritons.

In [23], the optical properties of a 1D metal nanograting made of gold on quartz substrate
are studied and surface plasmon polaritons (SPPs) are observed.

It appears that the FEOL is of greater importance to the applied physics community
than the BEOL, as FEOL metrology was more extensively studied than BEOL metrology.

15



Some studies deal with the interaction of light with 1D metallic nanograting. However, they
are mostly concerned with the plasmonic effects like SPPs rather than the effect of geometry
and they usually base their observations on experimental data. The purpose of this work is
to understand how the geometry of such a metallic nanograting impacts the propagation of
light, using theory and computer simulations.

1.4 Outline

To begin with, some theory necessary to the thorough understanding of this master thesis
is covered in section 2.

In section 3, the theory derived in the previous section is applied to a periodic array
of perfect electrical conductor (PEC) lines and a qualitative analytical model is derived to
study the reflectance and transmittance spectra as a function of the pitch (periodicity of
the array), width and height of the PEC lines. The model is compared with quantitative
numerical FEM simulations.

In section 4, the same procedure is applied to an array of copper lines and the observa-
tions are compared to the ones obtained for the PEC lines.

Finally, 5 provides a conclusion and an outlook.
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2 Important theoretical concepts

In this section, some key theoretical concepts are reviewed. Namely, both the microscopic
and macroscopic formulations of the Maxwell’s equations are presented along with the in-
terface conditions that they must satisfy. These equations are used to derive the plane wave
equation in non-dissipative media. The wave formalism is then extended to the dissipative
media. To do so, the complex formulation is presented. Then, some key features of light
propagation such as TE and TM polarizations are described. The interaction of light with
homogeneous media is presented, introducing the reflection and transmission coefficient, and
the reflectance, transmittance and absorptance are defined. The description is then ex-
tend to several interfaces and finally to patterned structures such as diffraction gratings and
waveguides. A discussion on the surface plasmon polaritons concludes this section.

2.1 Maxwell’s equations

Since this works deals with the interaction of light with different materials, Maxwell’s
equations are used to build an understanding of the different phenomena that are encoun-
tered. Let us therefore remind the differential form of the four Maxwell’s equations [24] [25]:

∇ ·D = ρf (Gauss’s law), (1)

∇ ·B = 0 (Magnetic Gauss’s law), (2)

∇×E = −∂B
∂t

(Faraday’s law), (3)

∇×H = Jf +
∂D

∂t
(Ampère’s law), (4)

where E is the electric field in V/m, B is the magnetic flux density in Teslas, ρf is the free
volume charge density in C/m3, Jf is the free current density in A/m2, D is the electric
displacement field in C/m2 and H is the magnetic field in A/m. The position and time
dependence (r, t) of the vector and scalar fields are omitted for clarity.
The electric displacement field D and the magnetic field H are respectively related to E and
B by material-dependent constitutive equations. For linear, isotropic, homogeneous (LHI)
media, the constitutive equations write [24]:

D = εE, (5)

H =
1

µ
B, (6)

where ε is the electric permittivity in F/m and µ is the magnetic permeability in H/m.

2.1.1 Interface conditions

Equations (1) to (4) describe the electromagnetic fields in a medium of permittivity ε and
permeability µ. At an interface between two media characterized by different permittivity
and permeability, they also describe what happens to those fields in terms of normal and
tangential components. Each of Maxwell’s equations yields a boundary condition for the
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corresponding fields. From the integral form of those equations applied on the boundary
between two media 1 and 2, with a normal n, the following conditions are obtained [26]:

(D2 −D1) · n = σs, (7)

(B2 −B1) · n = 0, (8)

n× (E2 −E1) = 0, (9)

n× (H2 −H1) = Js, (10)

where σs is the surface charge density and Js is the surface current density. The consequences
of those relations are the following:

• The normal component of D can be discontinuous if there is a surface charge σs,

• The normal component of B is continuous,

• The tangential component of E is continuous,

• The tangential component of H can be discontinuous, if there is a surface current
density Js.

However, the concept of surface charge and current densities only apply to ideal conductors
which, according to Gauss’s law, have no charge in their interior. Instead, the entirety of the
charge of the conductor resides on the surface. In the case of finite conductivity, there exist
volume charge and current densities and the fields D and H are also continuous across the
interface [27].

2.2 Electromagnetic waves

Maxwell’s equations are able to describe most of the electromagnetic physical phenomena,
including the propagation of light. Let us assume that the amplitudes of the electric field and
magnetic field are time-harmonic quantities with a single frequency, such that the complex
exponential or phasor notation can be used. For the amplitude of a time-harmonic vector
field A(t) = a cos(ωt+ φ), the phasor notation writes A(t) = a exp(jφ) exp(jωt). The time-
dependence of such a field therefore only lies in the exp(jωt) factor. As a consequence, the
time derivative of those fields is simply: ∂

∂t
A(t) = jωA(t). This notation is a mathematical

convenience to make calculations easier, and the physical field can be retrieved by taking
the real part of the phasor: A(t) = Re (A(t)).

2.2.1 Electromagnetic waves in vacuum

Let us consider Maxwell’s equations in vacuum, with no free charge density nor cur-
rent source (i.e. ρf = 0 and Jf = 0), with free-space permittivity ε0 and and free-space
permeability µ0. Equations (1) and (4) become

∇ ·E = 0, (11)

∇×H =
∂D

∂t
. (12)
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Now by using the following vector identity (∆ = ∇2 being the Laplacian operator) :

∇× (∇×A) = ∇ (∇ ·A)−∆A (13)

where on E and H , one obtains [26]:

∆E + ω2µ0ε0E = 0, (14)

∆H + ω2µ0ε0H = 0, (15)

the electromagnetic wave equations in vacuum. In accordance to the axis drawn on Fig. 2,
let us seek a solution for an electric field pointing along the y direction and traveling along
the z direction: E = E(z)ey. A solution of Eq. (14) for such a field writes [24]:

E = E0 exp (−jkz)ey. (16)

Plugging this result back into (14) yields the dispersion relation, which relates the frequency
and the wave number through:

k2 = ω2µ0ε0, (17)

where k is the wave number in m−1, which represents the spatial periodicity of the wave
and is linked to the wavelength λ through k = 2π/λ. Moreover, the wave number k is the
magnitude of the wave vector k. This vector also gives the direction of propagation of the
wave. The magnetic field is obtained by plugging (16) into (3) and using (6) and (17), one
obtains:

∇×E = −∂B
∂t

, (18)

⇐⇒ −jkE0 exp(−jkz)ex = −jωµ0H , (19)

⇐⇒ H = E0

√
ε0
µ0

exp (−jkz)ex = H0 exp (−jkz)ex, (20)

where E0/H0 =
√
µ0/ε0 = Z0, the wave impedance of free space.

Figure 2: Orientation of the fields for a plane wave traveling along the z axis.

Furthermore, by definition of the Poynting vector S = E ×H , which represents the
directional energy flux of an electromagnetic wave, and therefore its direction, it appears
that the wave propagates in a direction orthogonal to both E and H , as can be seen on
Fig. 2.
In summary, the electric field solution (16) to equation (14) is independent of both x and y:
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the value of E is constant over any plane perpendicular to z. This solution is therefore called
a plane wave solution. Moreover, the amplitudes of both E and H are uniform along those
planes and the solutions are called uniform plane waves and can be visualized on Fig. 3. It
is also noted that, at all times, the electric field and magnetic field are orthogonal to each
other, and both orthogonal to the direction of propagation.

k

Figure 3: Spatial periodicity of the uniform fields of a plane wave, traveling along k.

In vacuum, electromagnetic waves propagate at the speed of light c = 1/
√
µ0ε0.

2.2.2 Electromagnetic waves in non-dissipative media

In a linear, homogeneous and isotropic (LHI) medium with permittivity ε and permeabil-
ity µ, the wave equation can be obtained in the same way as it was done for a vacuum: the
vacuum constants (ε0, µ0) must simply be replaced by the values in the medium of interest
(ε, µ), such that Eq. (14) and (20) become:

∆E + ω2µεE = 0, (21)

∆H + ω2µεH = 0. (22)

When propagating through a medium characterized by a permittivity ε = εrε0 and perme-
ability µ = µrµ0, light is slowed down and travels at the phase velocity vp = c/n, where n
is the refractive index of the medium. This velocity can also be written vp = 1/

√
µε, which

results in a relation between the refractive index, the permittivity and the permeability of
the medium:

vp =
c

n
, (23)

⇐⇒ n =
√
µrεr. (24)

In most materials, and as will be assumed throughout this master thesis, µr = 1 and the
relation becomes:

n =
√
εr. (25)
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Upon entering a medium, the frequency of a wave is unchanged, while its wavelength is
scaled down by the refractive index n. Indeed, by denoting λ0 the free-space wavelength,
one has:

vp =
c

n
=
λ0f

n
= λf =

ω

k
, (26)

where λ is the compressed wavelength inside the medium and is related to the wave number
through: k = 2π/λ = 2πn/λ0 = k0n. In general, the refractive index n of a material depends
on the wavelength λ0. Note that in some cases, the refractive index can be smaller than 1,
which means that the phase velocity is greater than the speed of light. This is not a problem
however, as information not necessarily travels at the phase velocity but rather at the group
velocity, which is given by:

vg =
∂ω

∂k
, (27)

and is typically smaller than the speed of light.

2.2.3 Electromagnetic waves in dissipative media

2.2.3.1 Drude model

Until now, only the propagation of electromagnetic waves in vacuum or in non-dissipative
media has been considered. This was done under the assumption that there were no particu-
lar interaction between the light propagating in a medium and the medium itself. With that
in mind, a medium where there was no free current density Jf , or equivalently, a perfectly
insulating material where the conductivity σ = 0, was considered.
Let us now consider the Drude model to describe an electrically conducting medium., where
the material is viewed as a collection of positively charged ions from which free electrons
were detached. Under the influence of an electric field, the electrons are set into motion
and experience collisions with the relatively massive and immobile ions. For a direct current
(DC) electric field, the Drude model results in the formulation of Ohm’s law [28]:

Jf =

(
ne2τ

m

)
E = σ0E, (28)

where n is the density of free electrons, e is the elementary charge, m is the electron mass, τ
is the mean free time between ionic collisions and σ0 is the DC conductivity of the material.
Joule’s first law states that the passage of an electric current through a conductor produces
heat, and therefore generates losses. It is therefore the ability of a material to conduct an
electric current, i.e. having a finite conductivity, that is responsible for losses. In addition,
the separation of charges resulting from an external electric field on a conductive material
in turn generates its own electric field, which opposes the external one. As a consequence,
after a characteristic time ε/σ0 which represent the time needed for the free charges to
redistribute at the surface of the conductor, the external field is screened and the field inside
the conductor is zero.
Let us now consider a time-varying electromagnetic field impinging on a conductive material
and examine how it responds to this excitation. The Drude model can also predict the
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alternative current (AC) as a response to a time-dependent electric field with an angular
frequency ω. The complex conductivity is [26] [28]:

σ(ω) =
σ0

1− jωτ
=

σ0
1 + ω2τ 2

− jωτ σ0
1 + ω2τ 2

, (29)

The real part of the complex conductivity describes the conductive current and the
imaginary part corresponds to a displacement current. The complex conductivity relates
both the magnitude and the phase of the current density to the magnitude and phase of the
applied electric field such that

Jf (t) = Re (σ(ω)E0 exp (jωt)) , (30)

with
E(t) = Re (E0 exp (jωt)) . (31)

The higher the conductivity, the better the charges can follow the applied electric field. In
other words, for sufficiently low frequency, or for a high conductivity, the charges can perfectly
move and adapt to the AC field, so that the external field is effectively screened. However,
if the frequency is too high or the conductivity too low, the charges cannot redistribute
themselves sufficiently quickly and the external field is able to penetrate the material. The
characteristic frequency at which this transition occurs is called the plasma frequency and
is written as follows [29]:

ωp =

√
ne2

ε0m
. (32)

2.2.3.2 Complex formulation

To model how a dissipative medium leads to losses and to the inhibition of wave propa-
gation, the permittivity, refractive index and wave number are treated as complex quantities
such that [26]:

ε̃ = ε′ − jε′′, (33)

ñ = n− jκ, (34)

k̃ = k0ñ, (35)

where κ is called the extinction coefficient. In this text, the real part of the refractive index
is referred to by writing n (without tilde). It is possible to relate the complex refractive
index to the complex permittivity through a relation analogous to Eq. (25), by extending it
to the complex formulation, which yields:

ñ =
√
ε̃r =

√
ε′r − jε′′r . (36)

By separating the real and imaginary parts of ñ2, the following relations are obtained [30]:

ε′r = n2 − κ2, (37)

ε′′r = 2nκ. (38)
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All the mathematical formulations of the previous sections on non-dissipative materials
can be extended to lossy media by simply replacing the real quantities by the complex ones.
To illustrate the dissipative effect of a material on a wave propagation, the complex wave
number can be plugged into the plane wave solution (16) to the wave equation:

E = E0 exp

(
−j 2π

λ0
nz

)
exp

(
−2π

λ0
κz

)
ey, (39)

where the imaginary exponential represents the propagation of the wave and the real decaying
exponential accounts for the attenuation of the electric field in the medium due to losses
through the extinction coefficient κ. The intensity of an electromagnetic wave is related to
the square of the electric field, which means that it decays with a factor exp (−4πκz/λ0) =
exp (−αz), where α = 4πκ/λ0 is called the absorption coefficient, and the formulation of
Beer-Lambert’s law is retrieved [31]:

I(z) = I0 exp (−αz). (40)

This coefficient can be linked to the penetration depth dp, the distance after which the in-
tensity is reduced by a factor 1/e through dp = 1/α = λ0/4πκ.

Let us consider again a material with finite conductivity σ(ω), such that, in phasor
notation, Jf = σ(ω)E. The displacement field then writes D = εLE, where εL is the
permittivity associated to the lattice, without the effect of the conduction electrons. Let us
also consider a time-harmonic electric field with a single frequency. With those considerations
in mind, and under the assumption that the total current density Jtot is the sum of a
conduction and a displacement current, respectively Jf = σ(ω)E and Jd = ∂D/∂t, a relation
for the permittivity of a conductive medium is derived:

Jtot = Jf +
∂D

∂t
, (41)

= σ(ω)E + jωεLE, (42)

= jω

(
εL − j

σ(ω)

ω

)
E, (43)

= jωε̃E, (44)

with ε̃ = εL − jσ(ω)/ω. Here, the conductivity is equivalent to a dielectric conductivity
which sums over all the dissipative mechanisms of the material and which includes both di-
electric losses and ohmic losses, although it is understood that in metals, it is the conduction
mechanism that is responsible for losses while in good dielectrics, they are associated to the
polarization mechanisms. Since this text deals with the interaction of light with metals, it
will be assumed from now on that the dielectric conductivity is dominated by the conduction
mechanism. It is therefore possible to rewrite the complex permittivity in terms of the real
permittivity and properties of the material by inserting the complex conductivity into the
expression for the complex permittivity obtained above:

ε̃ = εL − j
σ(ω)

ω
=

(
εL − τ

σ0
1 + ω2τ 2

)
− j

(
1

ω

σ0
(1 + ω2τ 2)

)
, (45)
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or in terms of real and imaginary parts of the permittivity :

ε′ =

(
εL −

τσ0
1 + ω2τ 2

)
, (46)

ε′′ =
1

ω

(
σ0

1 + ω2τ 2

)
. (47)

It is possible to derive some insight from these results. By considering the high frequency
regime with which this work deals, i.e. ωτ � 1, the permittivity simplifies to:

ε̃ ≈ ε′ ≈ εL −
σ0
ω2τ

= εL

(
1− σ0

ω2τεL

)
= εL

(
1−

ω2
p

ω2

)
, (48)

where ωp is the plasma frequency. From Eq. (48), it can be seen that the high frequency
region can now be subdivided into two sub-regions: ω < ωp and ω > ωp. In the first one, the
permittivity ε′ is negative. From Eq. (37), this means that κ > n. As it will be shown later,
a high κ corresponds to a highly absorbing and highly reflecting material which inhibits the
propagation of waves. In the second region, above the plasma frequency, the permittivity is
positive such that n > κ and the material is now more transparent to the incoming waves.
This is also consistent with the short description of the plasma frequency of the end of section
2.2.3.1. Typically, a material with high conductivity, i.e. a metal, features a high extinction
coefficient κ and has a negative real permittivity.

As an example, let us consider the case of copper. Its plasma frequency ωp is around
ωp = 2.13 · 1015 rad/s, or in terms of wavelength, λp = 137 nm. For a wavelength longer than
λ0,p, the extinction coefficient κ should be larger than the refractive index n. Fig. 4 depicts
the optical constants of copper in the range 200− 2000 nm, obtained from [32].

This wavelength range is above the plasma wavelength and therefore one can indeed see
that κ > n. In addition, the optical constants of a metal in the visible range are not subject
to extreme variations as a function of the wavelength as it is often the case for semiconduc-
tors. As a consequence, only a single wavelength for the incoming light will be considered in
this work, as the result for another wavelength are not expected to differ much as it could
be the case for non-metallic materials.

2.3 Polarization

Polarization is a property of waves that specifies the geometrical orientation of the oscil-
lations. By convention, the polarization of electromagnetic waves refers to the direction of
oscillation of the electric field. In the previous section, an electric field pointing along the y
direction was considered. In that case, according to the phasor notations of section 2.2, the
physical field writes:

Re(E) = E0 cos (ωt− kz + φ)ey. (49)

However, for plane wave propagating along z, the field can also have a component along the x
direction in addition to the y direction, while the direction of propagation remains unchanged,
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Figure 4: Refractive index n and extinction coefficient κ of copper as a function of the
wavelength.

since it is only required that the electric field is perpendicular to both the magnetic field and
direction of propagation. If the y component is non-zero, one has:

E = A(z)ex +B(z)ey, (50)

a solution to equation (14) is given by:

E = A exp (−jkz)ex +B exp (−jkz)ey, (51)

and the physical field writes:

Re(E) = A cos (ωt− kz + φa)ex +B cos (ωt− kz + φb)ey. (52)

The solution (51) can be inserted back into equation (14) to show that the dispersion remains
unchanged. There exist different types of polarizations: linear, circular and elliptical. In
this work however, only the linear polarization will be considered.

2.3.1 Linear polarization

An electromagnetic wave is said to be linearly polarized when its electric field oscillates
in a straight line, as pictured in Fig. 5. This was the case for the field of solution (16), which
oscillates only along ey. For solution (51), which has a component along two directions, x
and y, the field can be decomposed into two linear polarizations, respectively along x and y,
if the phase difference between those components is either 0 or π:

φa − φb = 0 or φa − φb = π. (53)
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Figure 5: Linear polarization along a single axis (left). Linear polarization along both axis
(right).

2.3.2 TE and TM polarizations

When light is impinging upon an interface or a device, the orientation of the fields with
respect to it is relevant. Indeed, the boundary conditions for the electric and magnetic fields
will differ if their direction are tangential or normal to the interface or device. Therefore,
the behavior of the light when interacting might be different. By defining the plane of
incidence as the plane which contains the incoming wave vector and the normal to the
interface or device, two cases are distinguished: when the incident electric field only has a
component perpendicular to the plane if incidence (Transerve Electric) or when it is the
incident magnetic field that only has a perpendicular component. (Transverse Magnetic).

2.4 Light interaction at the interface between two semi-infinite
media

2.4.1 Snell’s law

Fig. 6 depicts an electromagnetic wave impinging on an interface between a medium 1
characterized by n1 and medium 2 characterized by n2. The interface is infinite along ex, the
incident wave propagates along ez and ex. Upon arriving at the interface, a part of the wave
will be reflected back into medium 1, while a part of it will be transmitted into medium 2.

Without loss of generality, let us consider a non-conductive medium, i.e. ñ=n and k̃ = k.
Since the interface is infinite along ex, the x component of the wave vector is conserved,
therefore:

kx,i = kx,r = kx,t. (54)

From this relation, we can derive Snell’s law:

n1 sin θi = n2 sin θt. (55)

Since the refractive index is the same for the incident and reflected wave, it can also be
inferred that the angle of incidence must be equal to the angle of reflection: θi = θr.

In the case of an interface with a conductive medium, in accordance to the complex
formulation described above, the angles can take complex values. It is possible to derive an
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Figure 6: Refraction of light at an interface between two semi-infinite media.

expression which takes into account the absorbing nature of the material and which can be
written in a form similar to Eq. (55), with a coefficient which also depends on the angle of
incidence. The main result is that due to the absorption, the surfaces of constant amplitudes
and the surfaces of constant phase of the wave no longer coincide with each other, yielding
a wave in the metal that is inhomogeneous [33].

2.4.2 TE polarization

Fig. 7 depicts a situation similar to Fig. 6: an electromagnetic wave is impinging on an
interface between a medium 1 characterized by ñ1 and medium 2 characterized by ñ2. The
interface is infinite along ex, the incident wave propagates along ez and ex and the electric
field is linearly polarized along ey (TE mode). The magnetic field is oriented such that
E×H gives the direction of propagation of the wave. Upon arriving at the interface, a part
of the wave will be reflected back into medium 1, while a part of it will be transmitted into
medium 2.

For the TE polarization, and for a finite conductivity for the two media, the tangential
components of both the electric field and magnetic fields are continuous across the interface.
Satisfying those conditions, we obtain the following relations [26]:

rTE =
ñ1 cos θi − ñ2 cos θt
ñ1 cos θi + ñ2 cos θt

, (56)

tTE =
2ñ1 cos θi

ñ1 cos θi + ñ2 cos θt
, (57)

where rTE and tTE are respectively the reflection and transmission coefficient, which represent
the ratio of the reflected (resp. transmitted) complex electric field amplitude to the incident
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Figure 7: Reflection and transmission of TE polarized light at an interface between two
media.

one, for the TE polarization. As a consequence, the following identity must hold:

1 + rTE = tTE. (58)

2.4.3 TM polarization

Let us now consider a TM polarized wave incident on the same interface. In this case, it
is the magnetic field which has a component only along ey. The electric field is oriented such
that E×H gives the direction of propagation of the wave, as illustrated in Fig. 8. Following
the same development as for TE polarization, we get, for TM polarization [26]:

rTM =
ñ2 cos θi − ñ1 cos θt
ñ2 cos θi + ñ1 cos θt

, (59)

tTM =
2ñ1 cos θi

ñ2 cos θi + ñ1 cos θt
. (60)

The same identity as for TE polarization must hold:

1 + rTM = tTM . (61)

2.4.4 Reflectance, Transmittance and Absorptance

Fig. 9 depicts an light beam impinging on an interface between two semi infinite media.
The reflectance is defined as the ratio of reflected power to incident power [34]:

R =
Φr

Φi

=
IrAr

IiAi

, (62)
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Figure 8: Reflection and transmission of TM polarized light at an interface between two
media.

where Im denotes the intensity of the light beam in medium m, given by

Im =
nm ε0 c |E0|2

2
, (63)

Am is the area of the light beam and nm is the real part of the refractive index of medium
m. The situation is depicted in Fig. 9. Recalling that r = Er/Ei, and since the medium is
the same for the incident and reflected wave, we have Ir/Ii = |r|2, and since the angle of
incidence is equal to the angle of reflection, the area of the beam is the same and Ar/Ai = 1.
Therefore, the reflectance is given by:

R = |r|2. (64)

Similarly to the reflectance, the transmittance is defined as the ratio of transmitted power
over the incident power [34]:

T =
Φt

Φi

=
ItAt

IiAi

. (65)

This time, the media are different and the width of the light beam changes upon crossing
the interface: At/Ai = wt/wi = cos θt/ cos θi, where w is the width of the beam. The
transmittance is therefore given by:

T =
nt cos θt
ni cos θi

|t|2 =
kt
ki
|t|2, (66)

where kt and ki are the real part of the wave numbers.
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Finally, in a dissipative material of finite thickness, light is also absorbed. Absorptance
is defined as the ratio of power absorbed by the material to the incident power [34]:

A =
ΦA

ΦI

. (67)

By conservation of energy and since the reflectance, transmittance and absorptance are
defined with respect to the incoming power, they must add up to 1:

1 = T +R + A. (68)

2.5 Light interaction with multiple interfaces

2.5.1 Multiple reflections

When there are several interfaces to cross, light is also reflected from the additional
surfaces and therefore interferes with the incoming light, leading to either constructive or
destructive interferences, depending on the phase change acquired by the reflected light.
Now instead of a simple interface, let us consider a thin film with thickness h and refractive
index ñ sandwiched between two infinite media with refractive indices ñ1 and ñ2. Fig. 10
depicts how an incoming plane wave interacts with multiple interfaces: light impinging on
the thin film will first be transmitted and reflected by the first interface, with coefficient r1
and t1, then propagate through the thin film, then be transmitted and reflected by the second
interface with coefficients r2 and t2 = 1 + r2. Light reflected by the second interface will
travel back through the film, then be transmitted and reflected through the first interface
in opposite direction, with coefficients r′1 = −r1 and t′1 = 1 + r′1. Light reflected there
will travel back into the thin film, get reflected again and so on until infinity. The total
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Figure 10: Multiple reflections inside a thin film of thickness d.

reflection coefficient for the thin film can be obtained thanks to the relations between Fresnel
coefficients and by accounting for the multiple reflections happening inside the film through
a geometrical series. At normal incidence, we obtain [35]:

r =
r1 + r2 exp (−2jk̃h)

1 + r1r2 exp (−2jk̃h)
, (69)

t =
(1 + r1)(1 + r2) exp (−jk̃h)

1 + r1r2 exp (−2jk̃h)
, (70)

where 2k̃h = 2k0ñh contains the phase change acquired by the wave during a round trip of
distance 2h across the thin-film.

Let us first consider the case with no absorption, i.e. κ = 0 and ñ = n. Fig. 11 illustrates
the reflectance R = |r|2 and transmittance T = (n2/n1)|t|2 for a silicon oxide thin film of
thickness h below an air layer with n1 = 1 and above a silicon substrate with n2 = 4.15. The
real refractive index n of the oxide is n = 1.46, such that the wave propagates into media of
increasing reactive index, i.e. n1 < n < n2. The reflectance and transmittance are plotted as
a function of the film thickness normalized to multiples of a quarter wavelength. As can be
seen, the reflectance oscillates as a function of the height and features maxima and minima.
The condition on the height for each peak can be obtained by imposing ∂R/∂h = 0. This
condition is satisfied and interferences (either destructive or constructive) will occur when
the phase difference between the incident wave and reflected wave is an integer multiple of
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π. The following relation must therefore be satisfied:

mπ = 2kh, m ∈ Z. (71)

Since k = 2πn/λ0, the condition for the film thickness becomes:

h =
mλ0
4n

, m ∈ Z, (72)

that is, there will be interferences when the optical thickness nh is an integer multiple of a
quarter wavelength.
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Figure 11: Reflectance R = |r|2 and transmittance T = (n2/n1)|t|2 for a thin film of thickness
h and real refractive index n = 1.46 with n1 = 1 and n2 = 4.15, as a function of the film
thickness normalized to multiples of a quarter wavelength, under normal illumination with
λ0 = 532 nm.

The nature of the interference (either constructive or destructive) will depend on the
difference between the refractive indices of the different media. Indeed, the sign of the re-
flection coefficients (56) and (59) can be negative if n2 < n1 (TE polarization) or n1 < n2

(TM polarization). A negative reflection coefficient corresponds to a phase shift of π, which
will swap the positions of constructive and destructive interference.
This can be visualized in Fig. 12. In this case, n1 = 1 and n2 = 4.15. Therefore, there
is a π phase shift at the first interface if for example n = 0.9 < 1, which leads to a shift
in the condition for constructive/destructive interferences. Since we are dealing with two
interfaces, two phase shifts of π can possibly occur which can each interchange the nature
of the peaks.
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Figure 12: Reflectance R = |r|2 for a thin film of thickness h and several real refractive indices
n with n1 = 1 and n2 = 4.15, as a function of the film thickness normalized to multiples of
a quarter wavelength, under normal illumination with λ0 = 532 nm. The consequence of a
negative reflection coefficient (i.e. when n < n1, in this case when n = 0.9, is to induce a π
phase shift which swaps the condition for constructive and destructive interferences).

The coefficients (69) and (70) are general and are valid in the case of absorbing materials
with κ 6= 0. However in that case, the condition on the height for interferences obtained in
Eq. (72) only constitutes a first approximation, as the peaks will slightly get shifted from
those height values as the extinction coefficient κ increases. The analytical condition for
peaks when taking absorption into account is a lot harder to derive and is out of the scope
of this master thesis.

In this work, only a single thin film will be considered, but it is possible to extend this
concept to a multi-layered structure with multiple films on top of each other, and deal with
the mathematical expressions for an arbitrary number of films using the transfer-matrix
method [35] [2].

2.5.2 Absorptance as a function of thickness

When a light beam propagates inside a dissipative material across a single interface, its
intensity decreases exponentially according to Beer-Lambert’s law (Eq. (40)), which takes
the form:

ΦT = ΦE exp (−αz), (73)
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where ΦE is the fraction of power entering the sample: ΦE = Φ0 − ΦR, α is the attenuation
coefficient described in the previous section and z is the distance traveled inside the dissipa-
tive material. In the case of a film of finite thickness however, the intensity of the light inside
the film is not just a decreasing exponential which follows Beer-Lambert’s law. Indeed, the
thin-film interferences induced by the second interface must be taken into account. How-
ever, thanks to the conservation of energy, it is easy to obtain the absorptance of a film of
thickness h through A = 1−R− T , where R = |r|2 and T = (n2/n1)|t|2 and the coefficients
r and t are those of Eq. (69) and Eq. (70).

The finite thickness of the sample must now be taken into account: an infinitely thick
absorbing sample will totally absorb the light inside the material and will not transmit any-
thing, as illustrated in Fig. 13. The intensity of the thin-film interferences is attenuated as
the thickness increases and as more light is absorbed, preventing it to go back and interfere
with the incoming light.
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Figure 13: Reflectance, transmittance and absorptance of a sample of increasing thickness h
with refractive index n = 1.46 and extinction coefficient κ = 0.25, with n1 = 1 and n2 = 4.15.
The light normally incident and has a free-space wavelength λ0 = 532 nm.

Fig. 14 illustrates the relations between reflectance, transmittance and absorptance of a
sample of thickness h as a function for the extinction coefficient and for a fixed n.
Now, an important remark has to be made about a counter-intuitive result. Let us remember
that the attenuation coefficient is related to the extinction coefficient through α = 4πκ/λ0.
Intuitively, one would therefore expect that a piece of material with a high κ would have a
very large absorptance. This is however not the case, is can be seen that the absorptance
evolves non-monotonically with κ and actually decreases for large values. Indeed, the ex-
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tinction coefficient also intervenes in the expression of the reflection coefficients (56) and
(59) when extended to dissipative materials. The reflectance increases along with κ, which
reduces the amount of light penetrating inside the sample. In other words, a high extinc-
tion coefficient increases how strongly light is absorbed inside a material as a function of
the depth, but also decreases the maximum amount of light that can be absorbed, since a
more significant part of it will be reflected and will not penetrate the material at all. This
is consistent with what can be observed in reality: metals, which have a high extinction
coefficient, actually reflect a lot of light and appear shiny to the eye.
It is indeed the reflectance which dominates for large values of κ, while the absorptance and
the transmittance both go to zero. When κ = 0, there is no absorptance and the reflectance
and transmittance take the value for the the initial non-absorbing thin film. An interesting
observation is that there exist a value of κ that maximizes the absorptance.
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Figure 14: Reflectance, transmittance and absorptance of a sample of thickness h = 100 nm
and real refractive index n = 1.46, as a function of the extinction coefficient κ, with n1 = 1
and n2 = 4.15. The incident light is TE polarized and has a free-space wavelength λ0 =
532 nm.

2.6 Light interaction with patterned structures

Until now, only waves propagating in uniform media have been considered. In such
media, light propagates as a uniform plane waves as described in section 2.2. However, when
the wave comes across a structure with finite dimensions, the plane wave is disturbed. As
a result, the propagation of the wave might be hindered, and it may propagate in forms
different than that of a plane wave to accommodate to the presence of the structure. In
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this work, two structures are of particular interest: the perfect electrical conductor parallel
plate waveguide and the diffraction grating. Indeed, a periodic array of parallel metal lines
can be considered as an array of metallic waveguides from which light can diffract due to
their periodic nature. It is therefore crucial to understand how light interacts with those
structures in the framework of this work.

2.6.1 Perfect electrical conductor parallel plate waveguide

A waveguide is a structure that restricts the propagation of waves into a specific direction,
allowing the power to be guided into that direction instead of decreasing with the distance
(for a spherical wave for example), therefore allowing the transfer of information to a specific
location. Waveguides concern both electromagnetic waves or physical waves such a sound
waves. These can come in various form: a hollow metallic tube or rectangular cavity, a fiber
made of dielectric material with higher refractive index than the surrounding medium, or
with a varying refractive index, a periodic arrangement of reflecting material, an air duct, a
horn, ... In most cases, the driving principle is the internal reflection of the wave inside the
structure (reflection from metallic plates, total internal reflection for dielectric waveguides,
...).

A perfect electrical conductor (PEC) is an ideal material with infinite conductivity σ.
According to the results of section 2.2.3.2, this means that the material also has an infinite
extinction coefficient κ. In other words, the electric field cannot penetrate at all inside a
PEC and is always 0, and any light impinging on its surface is entirely reflected.

Let us now consider a medium with permittivity ε̃ and permeability µ0, sandwiched
between two infinite plates of such perfect electrical conductor separated by a distance d,
upon which an plane wave impinges. Since we consider a specific structure which can be
characterized by a particular direction (infinite plates along y and z), the two different
polarizations, TE and TM, must be treated separately.

2.6.1.1 TE polarization

In this case, the only non-zero electric field component is along y and is tangential
to the PEC plates, as can be seen in Fig. 15. Between the plates, the electric field must
satisfy Eq. (14). Since the tangential components of the electric are continuous, the electric
field must be 0 at the PEC plates. Given the infinite nature of the plate along y and z,
their presence can only influence the electric field distribution along x. The electric field,
propagating along z, therefore writes:

E = E0F (x) exp (−jk̃zz)ey, (74)

where F (x) is a function to be determined which satisfies the boundary conditions F (0) =
F (d) = 0. Plugging this field into Eq. (14) yields [26]:

F (x) = sin (kx,mx), (75)
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Figure 15: Incoming TE plane wave on a PEC parallel plate waveguide.

where kx is the wave number along x and can only take discrete values according to the
so-called guidance condition [26]:

kx,m =
mπ

d
, m ∈ N0. (76)

Here, the integer m is the index of the mode propagating through the waveguide. It describes
the distribution of the fields along x, which are labeled with the index m and are referred to
by the TEm denomination. The corresponding magnetic fields along x and y can be obtained
from Eq. (3), and the fields for each mode m are given by:

Ey,m = E0 sin
(mπx

d

)
exp (−jk̃z,mz), (77)

Hx,m = − k̃z,m
ωµ0

E0 sin
(mπx

d

)
exp (−jk̃z,mz), (78)

Hz,m =
jkx,m
ωµ0

E0 cos
(mπx

d

)
exp (−jk̃z,mz). (79)
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Figure 16: Spatial distribution along x of the Ey,m component, for the four first modes of
the TE polarization.

For the TE polarization considered here, m = 0 yields a trivial solution with Ey = 0
everywhere, and is therefore not acceptable. The four first modes for the electric field are
plotted in Fig. 16. Each odd-labeled mode is symmetrical around the center of the waveg-
uide, at x = d/2, while the even-labeled modes are anti-symmetrical.
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Plugging the electric field inside the waveguide for a mode m in Eq. (14) yields the
dispersion relation for the TE polarization PEC parallel plate waveguide:

k̃z,m =
√
ω2ε̃µ0 − k2x,m =

√
ω2ε̃µ0 −

(mπ
d

)2
, m ∈ N0. (80)

By normalizing the wave number along z to the free-space wave number k0, an expression
for k̃z,m as a function of the refractive index and geometrical parameters is obtained:

k̃z,m
k0

=

√
ñ2 −

(
mλ0
2d

)2

= ñeff,m, (81)

where ñ is the refractive index of the medium between the parallel plates. The ratio k̃z,m/k0
can be assimilated to an effective refractive index associated to the mode m and in this
text, it will be referred to as such. In the case where the medium between the plate is
non-dissipative, i.e. for air, ñ is purely real, and one can see that k̃z,m is either purely real or
purely imaginary. In accordance to section 2.2.3.2, an imaginary wave number corresponds
to an evanescent wave, while a real one corresponds to a propagating wave. When a given
wave number k̃z,m is imaginary, the corresponding mode with index m is said to be cutoff.
For each mode m, a cutoff frequency is defined, below which the mode does not propagate
but is instead evanescent:

ωc,m =
1√
ε̃µ0

mπ

d
. (82)

Equivalently, for a fixed free-space wavelength or frequency, a cutoff distance dc,m below
which the mode m is evanescent can be defined:

dc,m =
mλ0
2ñ

. (83)

Sincem cannot be 0 for TE, light cannot propagate inside such a waveguide until its frequency
is higher than the cutoff frequency for the TE1 mode. These results can be summarized and
visualized easily with a band structure, plotted for ñ = 1.45 in Fig. 17. There, for a fixed
wavelength, the normalized wave number of the five first modes are plotted as a function
of the separation distance between the plates d. Below its cutoff distance dc,m, a mode m
has a purely imaginary wave number and the associated wave is evanescent. The imaginary
part goes to infinity as d decreases, but when d increases, it goes to 0 as the wave number
becomes purely real. This means that as the separation distance d gets closer to the cutoff
distance, the wave is less and less evanescent and has a greater penetration depth, until
it finally propagates. Above the cutoff distance, the wave number is purely real and the
associated wave is propagating. As the distance between the two plates increases, the wave
number of each mode converges towards k0ñ, the wave number in the medium between the
plates, or equivalently, the effective refractive index of a mode converges towards that of
the said medium. A band structure yields an easy way to visualize, at a fixed parameter
of interest, which modes are available for propagation, along with their effective refractive
index. In summary, light in a waveguide cannot propagate just as a plane wave like in an
infinite medium. Instead, it must adapt to the presence of the parallel plates by having its
field distribution along x modified, and it can only propagate as some particular modes, for
which there exists a cutoff frequency
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Figure 17: Band structure for the five first modes of the TE polarization for PEC parallel
plate waveguide, for a free-space wavelength λ0 = 532 nm and ñ = 1.45. The solid lines
represent the real part of the wave number, while the dashed lines represent the opposite of
its imaginary part.

2.6.1.2 TM polarization

In this case, it is the magnetic field which only has a non-zero component along y, and
the incident electric field’s only non-zero component is along x, as pictured in Fig. 18. Inside
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Figure 18: Incoming TM plane wave on a PEC parallel plate waveguide.
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the waveguide, the magnetic field must satisfy Eq. (15), which has the same form as the wave
equation for the electric field. Under the same assumptions as for the TE polarization, we
write:

H = H0G(x) exp (−jk̃zz)ey, (84)

where G(x) is a function to be determined. To do so, the boundary conditions of the PEC
plates must be applied to the tangential components along z of the electric field, which are
obtained from Eq. (4), and we obtain [26]:

G(x) = cos (kx,m), (85)

where kx is the wave number along x and can only take discrete values according to the same
guidance condition as for the TE polarization:

kx,m =
mπ

d
, m ∈ N. (86)

except that this time, m = 0 is a valid mode of propagation. Now the fields are referred to
by the TMm denomination, and are given by:

Hy,m = H0 cos
(mπx

d

)
exp (−jk̃z,mz), (87)

Ex,m = − k̃z,m
ωε̃

H0 cos
(mπx

d

)
exp (−jk̃z,mz), (88)

Ez,m =
jkx,m
ωε̃

H0 sin
(mπx

d

)
exp (−jk̃z,mz). (89)
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Figure 19: Spatial distribution along x of the Hy,m component, for the four first modes of
the TM polarization.

It appears that the m = 0 mode is similar to a plane wave, since in that case both Hy,0 and
Ex,0 are uniform, although they are confined between the plates, and Ez,0 = 0. As a result,
this TM0 mode is commonly referred to as TEM mode, for transverse electromagnetic mode.
The magnetic field for the first four modes of the TM polarization are plotted in Fig. 19. In
opposition to the TE polarization, each even-labeled mode is symmetrical around the center
of the waveguide, at x = d/2, while the odd-labeled modes are anti-symmetrical.
Plugging the solution for Hy,m back into Eq. (15) yields the same dispersion relation as for
the TE mode, although in that case m = 0 is valid too:

k̃z,m =
√
ω2ε̃µ0 − k2x,m =

√
ω2ε̃µ0 −

(mπ
d

)2
, m ∈ N. (90)
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The effective refractive index Eq. (81) is also the same for these modes although m can be
zero. The cutoff frequencies and distances are the same as well:

ωc,m =
1√
ε̃µ0

mπ

d
, and dc,m =

mλ0
2ñ

, (91)

although the fact that the TEM mode exists and that it has no imaginary part means that
there always is a mode available for light propagation, even at low frequency or for very close
plates. Fig. 20 illustrates this with the help of the band structure calculated for ñ = 1.45
for the TM case. As can been seen the m = 0 mode is always available regardless of the
separation distance d. This mode corresponds to the TEM wave propagating inside the
waveguide, with a wave number equal to that of a plane wave with in the cladding medium.
In summary, a TM polarized wave must adapt to the presence of the parallel plates just as
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Figure 20: Band structure for the six first modes of the TM polarization for PEC parallel
plate waveguide, for a free-space wavelength λ0 = 532 nm and ñ = 1.45. The solid lines
represent the real part of the wave number, while the dashed lines represent the opposite of
its imaginary part.

a TE polarized wave does: by modifying the fields distribution along x and by allowing only
certain discrete modes of propagation. The main difference lies in the fact that the m = 0
mode exists for TM but not for TE. The other main difference lies in the distribution of the
fields themselves.
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2.6.2 Diffraction grating

When light is incident on a surface with irregular profile at a length scale comparable to
the wavelength, it is reflected and refracted in many different directions. If the irregularities
are periodic, the interferences will produce replicas of the incident (resp. transmitted) beams
in reflection (resp. transmission) and in different directions. When incident light impinges
upon a grating, such as illustrated in Fig. 21 the boundary conditions require the tangential
component of the wave vector to be continuous. Upon entering a periodic grating, the phase
matching conditions is [36]:

k̃x,m = k̃x,i +mK, m ∈ Z, (92)

where the subscript i stands for incident, m is an integer and K is the wave number of the
grating, assuming that K = Kex. Using Snell’s identity, the so-called grating equation is
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ñr

ñt
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Figure 21: Phase matching condition on the tangential component of the incoming wave
vector incident on a periodic grating with wave vector K.

obtained:

ñr,t sin (θm) = ñi sin (θi) +m
λ0
Λ
, m ∈ Z, (93)

where the subscripts r, t, i stands respectively for reflection, transmission and incident, and
Λ = 2π/K is the periodicity of the grating. Replicas of the incident beam are created at an
angle θm when the grating equation is satisfied for the corresponding integer m. An incident
beam being diffracted by the grating is illustrated in Fig. 22. If the incident wave is a plane
wave, the reflected and transmitted replicas will also be plane waves, propagating at an an-
gle. However, those replicas will interact together and with the initially reflected/transmitted
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plane wave in their respective media, leading to interference patterns in the electric field dis-
tribution.
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Figure 22: Example of diffraction orders for an incoming plane wave with incidence angle
θi. In this case, nt > ni and more modes are available in transmission than in reflection.

It is possible to derive a dispersion relation similar to those for the parallel plate waveguide
from the phase matching condition (92):

k̃z,m =
√
k20ñ

2
r,t − (k0ñi sin (θi) +mK)2, m ∈ Z (94)

or, when normalized to the incident wave number:

k̃z,(r,t),m
k0

=

√
ñ2
r,t −

(
ñi sin (θi) +

mλ0
Λ

)2

, m ∈ Z. (95)

Similarly to the waveguide, for each mode m, there exists a cutoff pitch below which the
wave number is imaginary and for which the corresponding diffracted mode is evanescent:

Λc,(r,t),m =


λ0m

(ñr,t − ñi sin (θi))
if m > 0,

λ0|m|
(ñr,t + ñi sin (θi))

if m < 0,
(96)

This relation depends on the refractive index of the medium of interest, which means that
modes where the refractive index is higher will become available more quickly as the pitch is
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increased, since the corresponding cutoff pitches are smaller. Besides, the m = 0 mode always
exists and corresponds to the plane wave mode propagating in the medium of refractive index
ñr,t, or in other words, to the initially reflected and transmitted part of the incident plane
wave. It is also possible to plot a band structure for the diffraction modes using Eq (95),
as shown in Fig. 23 and Fig. 24, for reflection and transmission, respectively. For a given
set of parameters ñi, ñt, θi and λ0, it is easy to visualize which modes are available for
propagation as a function of the pitch Λ. Given a mode index m, the angle θm at which the
corresponding mode propagates can be inferred. Fig. 24 shows how for a greater refractive
index in transmission, more modes are available at a given pitch, compared to a lower
refractive index (see Fig. 23 compared to 24). In reflection, ñr = ñi which is equal to 1 in
this example. As a result, there are fewer modes in reflection than in transmission for which
ñt = 4.15.
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Figure 23: Band structure for 0th order and three first modes in reflection of a diffraction
grating, for a free-space wavelength λ0 = 532 nm, ñi = ñr = 1 and θi = 15◦. The solid lines
represent the real part of the wave number, while the dashed lines represent the opposite of
its imaginary part.
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Figure 24: Band structure for 0th order and three first modes in transmission of a diffraction
grating, for a free-space wavelength λ0 = 532 nm, ñi = ñr = 1 and θi = 15◦. The solid lines
represent the real part of the wave number, while the dashed lines represent the opposite of
its imaginary part.

2.6.3 Surface plasmons polaritons

Surface plasmons (SPs) are coherent electron oscillations that exist at the interface be-
tween any two materials where the real part of the dielectric function changes sign across
the interface (e.g. a metal-dielectric interface, such as a metal sheet in air). Surface plasmon
polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air
interface. The term polariton refers to the coupling of the light with the charge density in
the metal [37].

The surface charge density oscillations associated with surface plasmons at the interface
between a metal and a dielectric can give rise to strongly enhanced optical near-fields which
are spatially confined near the metal surface. At normal incidence, coupling of photons into
SPPs can be achieved using a coupling medium such as a diffraction grating to match the
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photon and SPP wave vectors. As a result, a plasmon becomes excitable at [38]:

ksp = mK, (97)

where ksp is the wave number of the SP, m is the diffraction order and K is the wave number
of the grating .In the case of a metallic grating, SPPs may be excited at the passing off of
a diffraction order (termed a Rayleigh anomaly), when the associated diffracted plane wave
is grazing and propagates along the metallo-dielectric interface. It is then possible to obtain
a finite longitudinal component of the wave vector thanks to diffraction, even at normal
incidence. The wavelength is then calculated from the dielectric functions of the assumed
lossless dielectric (air in this case) and metal by [3]:

λspp ≈

√
ε′metal + εair
ε′metalεair

λ0, (98)

where ε′ is the real part of the dielectric function, in accordance to the notations of section
2.2.3.2, and where it was assumed that |ε′′metal| � |ε′metal|. As SPPs propagates along the
surface, they lose energy to the metal due to absorption, and they may affect the reflectance
and transmittance spectra of a structure accordingly. Finally, since a SPP is propagating
along the metal interface and confined in the normal direction, it requires a non-zero elec-
tric field inside the metal. Therefore, SPPs are expected only for real metals and not for a
theoretical perfect electrical conductor, inside which an electric field cannot penetrate.

As an example taken from [39], Fig. 25 depicts some SPPs by plotting the squared norm
of the component of the electric normal to the interface |Ey|2, which is confined to it and
which is responsible for the SPP propagation along ex. In this illustrations, a plane wave
is normally incident and interacts with a periodic silver thin film grating. The period is
1.62µm, the thickness of the thin film is 50 nm and its width is 1.48µm. The top layer is
air while the bottom layer is silica.

Figs. 25a and 25b respectively show the Rayleigh anomalies, or the passing of a diffraction
order, for the first diffraction order in reflection and second order in transmission. In other
words, the wavelength is such that a diffraction mode becomes propagating. When this occur,
the corresponding angle is 90◦ and is grazing. In that case, a SPP along ex can be excited.
Those are depicted in Figs. 25c and 25d for the reflection and transmission respectively. The
SPPs are characterized by jets decreasing exponentially away from the grating.
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(a) First-order air side Rayleigh anomaly.
(b) Second-order silica side Rayleigh
anomaly.

(c) First-order silver-air interface plasmon.
(d) Second-order silver-silica interface plas-
mon.

Figure 25: Color map of the |Ey|2 field resulting from the interaction of a plane wave at
normal incidence with a silver thin film grating on top of a substrate layer and below an air
layer. The field is decomposed into the diffraction (25a and 25b) and SPPs (25c and 25d)
contributions. The period is 1.62µm, the thickness of the thin film is 50 nm and its width is
1.48µm.
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3 Light interaction with periodic arrays of nanometer-

wide PEC lines

3.1 Methodology and modeling

The objective of this chapter is to study the impact of geometry on the photonic prop-
erties of periodic arrays of nanometer-wide metal lines. In particular, the reflectance and
transmittance spectra of the structures are studied as a function of the periodicity of the
array as well as the width and height of the lines, while maintaining the wavelength of in-
coming light fixed.

To do so, some simple analytical equations featured in the band structures for the PEC
parallel plate waveguide and diffraction gratings are used to qualitatively describe the light
interaction. The qualitative description is then compared to quantitative simulations per-
formed by the finite element method software COMSOL Multiphysics R©.

The study presented here is relevant for metrology application in the semi-conductor
field. Therefore, a sample which is close to what is measured in practice is modeled: an
array of metal lines, embedded into a cladding of dielectric material, on top of a substrate
of semiconducting material. Fig. 26 depicts the structure of interest, which is composed of
a periodic array of perfectly conducting metallic lines of width w and height h separated
by a pitch Λ. The cladding material is silicon dioxide (SiO2) while the substrate is silicon (Si).

The structure is idealized by considering that it is infinite in the horizontal direction
and in the direction perpendicular to the plane. Moreover, the lines are considered perfectly
parallel to each other (no tapering), equidistant and all with the same height. Besides, the
oxide cladding and silicon substrate refractive indices are approximated as purely real, i.e.,
there is no absorption in those materials.

As discussed at the end of section 2.2.3.2, a single incident wavelength is studied and is
fixed at λ0 = 532 nm, which is one of the wavelength typically used in lasers and in metrol-
ogy tools. The diffraction regime as well as the subwavelength regime are considered, with
a pitch varying from around λ0/5 to 2λ0. Typically, the fin height is of the order of 100nm
while the fin width is of the order of tens of nm, although since this is a theoretical work,
the effect of greater heights and widths are also explored.

To study the interaction of light with periodic arrays of metal lines, a plane wave of a
fixed wavelength incoming on the periodic structure is considered. Upon encountering the
first interface, the plane wave is reflected. Since it encounters a periodic structure, it does
so according to the modes allowed by the corresponding diffraction grating. Moreover, the
array of parallel lines essentially act as an array of PEC parallel plate waveguides, with a
separation distance of d = Λ − w. Therefore, light can only propagates into the grating
according to the modes described by the TE or TM band structures, depending on the
polarization of the incoming light. It is important to emphasize that the modes are the same
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Figure 26: Model of the idealized periodic array of PEC lines upon which a plane wave is
incident.

for the periodic as for the single waveguide. Indeed, the field inside a unit cell of the grating
does not influence that of the neighboring ones since the lines are made of PEC. Finally,
light propagating through a periodic structure also diffracts at the exit, once again according
to the modes described by the band structure for diffraction in transmission.
The light interaction is therefore described by three phenomena: diffraction in reflection,
PEC parallel plate waveguide and diffraction in transmission. Each of those phenomena is
characterized by its own band structure as described in section 2.6. The model upon which
this study is based is a superposition of those three band structures, essentially describing
how light interacts with the array.
In accordance with the physical parameters associated with the structure described above,
the dispersion relation for the waveguide modes (or grating modes), diffraction in reflection
modes and diffraction in transmission modes respectively become:

ñeff,m =
k̃z,g,m
k0

=

√
n2
SiO2
−
(

mλ0
2 (Λ− w)

)2

, m ∈ N, (99)

k̃z,r,p
k0

=

√
n2
air −

(
nair sin (θi) +

pλ0
Λ

)2

, p ∈ Z, (100)

k̃z,t,q
k0

=

√
n2
Si −

(
nair sin (θi) +

qλ0
Λ

)2

, q ∈ Z, (101)

where g stands for grating and refer to the waveguide modes, r stands for reflection and
t stands for transmission. In the case of TE polarization, m cannot be 0. The complete
band structure for TE and TM are very cumbersome and are therefore presented in the ap-
pendix (Figs. 112 and 113) for the most general case, with all modes featured below a pitch
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Λ = 1000 nm and non-normal incidence.

In this master thesis however, only the normal incidence is explored. In that case, the
dispersion relations become:

ñeff,m =
k̃z,g,m
k0

=

√
n2
SiO2
−
(

mλ0
2 (Λ− w)

)2

, m ∈ N, (102)

k̃z,r,p
k0

=

√
n2
air −

(
pλ0
Λ

)2

, p ∈ Z, (103)

k̃z,t,q
k0

=

√
n2
Si −

(
qλ0
Λ

)2

, q ∈ Z. (104)

Here, a simplified version of the band structures is presented in Figs. 27 and 28 for readability.
It considers normal incidence, so that the diffraction modes are degenerate, and it features
only the symmetric waveguide modes, which, as shall be seen later, are the only one that are
excited. In addition, only the four first diffraction modes in transmission are plotted, since
the higher order ones are barely excited, as shall also be seen later.

In this work, we propose to make an extensive use of the band structures to qualitatively
describe how light interacts with the array. For a given set of parameters Λ, w, h and θ, a
band structure associates, a wave number along z to each mode. In the case of PEC lines, for
each set of parameters, the associated wave number is either purely real or purely imaginary,
meaning that the mode either propagates without absorption or is evanescent.

3.1.1 COMSOL Multiphysics R©

The band structure is a powerful tool to understand qualitatively how light interacts
with the array. However, it is not quantitative and it does not tell how the power is dis-
tributed into each propagating mode. For this calculation, a more elaborate numerical [40]
or analytical [41] approach has to be applied. The more similar the field distributions of
the exciting wave and the excited mode are at the matching plane, the higher the excitation
efficiency of these modes by the incident field is. This similarity is expressed by an overlap
integral [41]. Furthermore, the similarity between the propagation constant of the incoming
wave, k0,z = k0 cos (θi), and the propagating constant inside the grating, k̃z,m, also determine
how much energy of the incident wave is coupled into a specific mode [42]. In this study,
the analytical part is limited to the qualitative band structure while the quantitative part is
performed by FEM simulations.

COMSOL Multiphysics R© is a cross-platform finite element analysis, solver and multi-
physics simulation software. It allows conventional physics-based user interfaces and coupled
systems of partial differential equations and it provides an IDE and unified workflow for elec-
trical, mechanical, fluid, acoustics, and chemical applications. COMSOL encompasses all of
the steps in the modeling workflow: from defining geometries, material properties, and the
physics that describe specific phenomena to solving and postprocessing models for producing
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Figure 27: Band structure for the array of PEC lines under TE illumination, which features
only the modes that are excited below a pitch Λ = 1000nm, for a free-space wavelength
λ0 = 532 nm, width w = 34 nm, refractive indices nair = 1, nSi = 4.15, nSiO2 = 1.45
and θi = 0◦. The solid lines represent the real part of the wave number, while the dashed
lines represent the opposite of its imaginary part. Blue curves correspond to waveguide
modes, green curves correspond to diffraction in reflection modes and red curves correspond
to diffraction in transmission modes. To make the plot more readable, only the first few
diffraction modes are plotted since the higher order ones are barely excited. Similarly, only
the symmetric TE waveguide modes are plotted, as the asymmetric modes are not excited
by a symmetrical plane wave.

accurate and trustworthy results [43].

In this master thesis, COMSOL Multiphysics R© is used to simulate the situation repre-
sented in Fig. 26 and compute the fields distribution resulting from the interaction of light
with the structure, which is then used to calculate the reflectance and transmittance spectra
in a quantitative way. The analytical model, i.e., the band structure framework, is used to
explain how those spectra vary as a function of the geometrical parameters.
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Figure 28: Band structure for the array of PEC lines under TM illumination, which features
only the modes that are excited below a pitch Λ = 1000nm, for a free-space wavelength
λ0 = 532 nm, width w = 34 nm, refractive indices nair = 1, nSi = 4.15, nSiO2 = 1.45
and θi = 0◦. The solid lines represent the real part of the wave number, while the dashed
lines represent the opposite of its imaginary part. Blue curves correspond to waveguide
modes, green curves correspond to diffraction in reflection modes and red curves correspond
to diffraction in transmission modes. To make the plot more readable, only the first few
diffraction modes are plotted since the higher order ones are barely excited. Similarly, only
the symmetric TM waveguide modes are plotted, as the asymmetric modes are not excited
by a symmetrical plane wave.

To model our structure, a 2D unit cell is defined in COMSOL with the geometrical pa-
rameters of the array, and periodic boundary conditions are applied on each side to simulate
the infinite nature of the idealized structure. Fig. 29 depicts the geometry implemented in
the software. Periodic boundary conditions are applied on the left and right vertical edges.
An input port from which the incident is excited is defined on the top horizontal edge. This
is also where the reflectance is calculated. Similarly, an output port is defined on the bot-
tom horizontal edge, where the wave exits and where the transmittance is calculated. The
refractive index of each medium is applied to the corresponding area. The schemes of this

52



implementation are pictured in the appendix from Figs. 114 to 116. For metals, the n and κ
values are interpolated from a set of experimental data found in literature [44]. To simulate
a perfect electrical conductor, the corresponding PEC boundary condition (total reflection)
is applied on the edges of the metal line. The triangular mesh is generated automatically
while making sure that the elements are able to capture the smallest geometrical feature and
therefore have a maximum length of the order of w/5. The software then solves the wave
equation over the computational domain according to the boundary and initial conditions
that were specified. Any physical field or scalar value (reflectance, transmittance, absorp-
tance, electric field distribution, ...) can then be retrieved from the study. It is also possible
to sweep any geometrical or material parameter to conduct a study on the effect of that
parameter on the reflectance and transmittance spectra.
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Figure 29: Geometry defined in the COMSOL software.

3.2 Effect of the geometry

In order to study how varying the geometrical parameters of the array modify the re-
flectance and transmittance spectra, let us consider again a normally incident plane wave on
the PEC grating. Since the pitch has been at the center of our analysis thus far, it is be the
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first parameter to be analyzed. The reflectance and transmittance spectra are presented as
a function of the pitch. Then the variations of the electric field distribution in the unit cell
are also presented to support the observations and to highlight the key features of the pitch
influence. Like the pitch, the width has an effect on the availability of modes and therefore is
the next parameter to be studied. Finally, it is the effect of height that is studied. Especially,
a comparison is made between the spectra and 2D maps of an array of 500 nm tall lines with
an array of 100 nm lines, as a function of the pitch. Then the reflectance spectrum is also
studied as a function of the height. For each of these geometrical parameters, the TE and
TM polarizations are compared.

3.2.1 Effect of pitch

The simulation consists in a normally incident plane wave on an array of PEC lines of
width w = 34 nm and height h = 100 nm. The pitch is responsible for the number of modes
that are available for both grating and diffraction modes: the larger the pitch, the more
modes are propagating. The associated cutoff pitches Λc for each mode (grating or diffrac-
tion in reflection/transmission) and each order that is featured in the band structures of
Figs. 27 and 28 are gathered in Table 1. The grating modes are labeled with the associated
polarization (TE or TM) for which the mode is symmetric. This notation is used because the
anti-symmetric modes are not excitable. For each polarization, the first mode is symmetric.
However the index for the symmetric modes are different in each case due to the existence
of order 0 in the case of TM polarization, which brings a shift in the indices.

Mode\Order 0 1 2 3 4 5
Grating 0 (TM0) 217,44 (TE1) 398,75 (TM2) 581,13 (TE3) 763,51 (TM4) 945,9 (TE5)
Reflection 0 532 / / / /
Transmission 0 128 256 384 512 /

Table 1: Cutoff pitches (nm) for each mode featured on the band structure associated to a
normally incident plane wave on an array of PEC lines of width w = 34nm. The polarization
label for the grating modes indicate for which polarization the associated mode is symmetric.
The dashes correspond to modes which have a cutoff pitch larger than 1000 nm and are
therefore not featured here or which are barely excited and not relevant to the study.

Figs. 30 and 31 (resp. 32 and 33) feature the reflectance and transmittance spectra of an
array of PEC lines as a function of the pitch in the case of TE (resp. TM) polarized light.
These wil be explained using the band structures of Figs. 27 and 28.

For TE polarized light at low pitch, the cutoff pitch for TE1 mode at Λ = 217 nm is
not yet reached and light cannot propagate into the array but is reflected instead, yielding
a maximum in reflectance. When approaching the cutoff pitch, light starts to penetrate
more deeply. As the penetration depth increases, a fraction of the light reaches the sub-
strate, reducing the total reflectance until it starts decreasing more sharply due to light
being coupled into the now propagating TE1 mode, which is now propagating. As the pitch
further increases, the fill factor decreases and so does the reflectance. This is in line with
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Figure 30: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of PEC lines with width w = 34 nm and height h = 100 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 31: Transmittance spectrum of a normally incident TE polarized plane wave interact-
ing with an array of PEC lines with width w = 34 nm and height h = 100 nm, as a function
of the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.

55



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total
m=0
m=  1

Figure 32: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of PEC lines with width w = 34 nm and height h = 100 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total
m=0
m= 1
m= 2
m= 3
m= 4
m= 5
m= 6
m= 7

Figure 33: Transmittance spectrum of a normally incident TM polarized plane wave inter-
acting with an array of PEC lines with width w = 34 nm and height h = 100 nm, as a
function of the pitch Λ. The plot features the different diffraction orders. The spectrum is
calculated using FEM.
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intuition, as the proportion of reflecting PEC with respect to transmitting oxide is reduced.
At Λ = 532 nm, there is a sharp transition in the spectrum as the cutoff pitch for the first
diffraction order for reflection at Λ = 532 nm is reached and light is also coupled into the
first diffraction mode in reflection.

For TM polarized light, the reflectance in Fig. 32starts at 1 when w = Λ, and quickly
drops to very small values. According to our band structure model featured in Fig. 28, this
result is unexpected. Indeed, the dispersion relations of the TM modes depicted there show
that the wave number associated to the TM0 mode is a constant which has no imaginary
part, i.e. the mode is propagating with the same wavelength regardless of the pitch and
is not attenuated. As a consequence, the reflectance is expected to be smaller than 1 and
constant, irrespective of the pitch. In the asymptotic case where the pitch is equal to the
width, the unit cell is completely filled with perfectly conducting metal, which fully reflect
the incoming light. It is therefore easy to see that the current model fails to capture how light
couples into the TM0 mode as the fill factor w/Λ gets close to 1: according to this model,
light should propagate in the same way in an array of PEC lines, irrespective of pitch, as it
does in an homogeneous oxide, which does not follow the intuition and which is not what
is observed in the simulations. While the TM0 mode does propagates like in the oxide for
increasing pitch, it is expected that light gets entirely reflected when the array converges to
a slab of PEC, as seen in the spectra obtained in Figs. 33 and 32.

There is a problem with the current model: it considers that the fundamental mode of
the TM polarization is non-dispersive as a function of the pitch, while the simulations clearly
show that this is not the case. It is however possible to explain the spectrum by replacing
the TEM mode with a mode calculated using an effective medium approximation (EMA), so
that the pitch dependence is incorporated into the model. The structure can be considered
as an homogeneous medium with an associated effective permittivity ε̃eff that is a function
of the geometrical parameters.

There exist several effective medium theories that were developed by different authors to
homogenize a medium (Maxwell-Garnett, Bruggeman, and others...) [45] [46] [47] [48]. The
EMA replaces the periodic array by an homogeneous but anisotropic material, i.e. which
exhibits birefringence, and is well suited for this study. The effective permittivity for the
TM polarization is then given by:

1

εeff,TM

=
1

fSiO2

εSiO2
+ fPEC

εPEC

, (105)

where fPEC = f is the fill factor w/Λ and fSiO2 = 1− f , and the permittivity writes:

1

εeff,TM

=
1

1−f
εSiO2

+ f
εPEC

. (106)

In the case of TM polarization, a finite permittivity which is a function of the fill factor
f = w/Λ is obtained and is given by:

εeff,TM =
εSiO2

1− f
, (107)
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from which an effective refractive index is derived:

neff,TM =
nSiO2√
1− f

. (108)

From this equation, one can see that the effective refractive index tends to that of an ho-
mogeneous oxide slab when the fill factor is small but goes to infinity when the fill factor
approaches 1, corresponding to a PEC slab for which the reflectance goes to 1. This be-
havior is in qualitative agreement with what is expected from the structure and therefore
this effective refractive index is included in the model instead of the TEM mode, to which
it converges for increasing pitch. Moreover, this new TM0 mode will be referred to as the
EMA mode. The band structure is modified in accordance to this result in Fig. 34.

Moving back to Fig. 33, the reflectance starts at 1, as expected by our modified model,
then decreases to a very small value, which is in the case unexpected as the effective refrac-
tive index of the EMA mode decreases monotonically. This unexpected phenomenon of very
high transmittance is known as extraordinary optical transmission (EOT): in the case of
TM polarization, it is possible to achieve very high transmission even for tiny transmitting
apertures in a reflecting medium, through the coupling of light into the EMA fundamental
mode, which undergoes thin-film interferences in the grating [49]. Indeed, in the low-pitch
region, the effective refractive index of the EMA mode varies very quickly. As a result, the
conditions for thin-film interferences are scanned over very quickly, as per Eq. (72), and the
reflectance varies a lot. At around Λ = 100 nm, the effective refractive index is such that
there is a minimum in reflectance due to this phenomenon. As the pitch increases, the effec-
tive refractive index converges to a constant and so does the reflectance. When the cutoff
for diffraction in reflection is reached, there is no resonance in reflectance as it was the case
for the TE polarization. This is due to the fact that the 0th order light in air and silicon
are plane waves which perfectly match the EMA mode of the grating, which is also a plane
wave. As a consequence, light mostly couples into these very similar modes and a lot less
into the higher diffraction orders, which propagate at an angle and therefore do not match
very well with an normally incident plane wave.
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Figure 34: Band structure for the array of PEC lines under TM illumination, which features
only the modes that are excited below a pitch Λ = 1000nm, for a free-space wavelength
λ0 = 532 nm, width w = 34 nm, refractive indices nair = 1, nSi = 4.15, nSiO2 = 1.45
and θi = 0◦. The solid lines represent the real part of the wave number, while the dashed
lines represent the opposite of its imaginary part. Blue curves correspond to waveguide
modes, green curves correspond to diffraction in reflection modes and red curves correspond
to diffraction in transmission modes. To make the plot more readable, only the first few
diffraction modes are plotted since the higher order ones are barely excited. Similarly, only
the symmetric TM waveguide modes are plotted, as the asymmetric modes are not excited
by a symmetrical plane wave. The TEM mode is replaced by the EMA mode obtained by
effective medium approximation.
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Based on the cutoff values of Table 1, it is possible to identify several spectral regions
depending on the pitch and to visualize the electric field distribution in each of these regions,
highlighting how light propagates in the air, grating and silicon substrate. Each region fea-
tures a cutoff pitche, and covers the pitch range up to the next cutoff. For each region, the
electric field distribution around the cutoff pitch and its evolution up to the next cutoff pitch
is analyzed. The different pitch regions are labeled on the superposition of the TE and TM
band structure in Fig. 35.

Re(k̃z,m)

k0

Figure 35: Label of the different spectral regions extracted from the band structure and
defined by the cutoff pitch of each mode, for a PEC grating with width w = 34 nm and
height h = 100 nm.
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3.2.1.1 Region 1: Λ ∈ [0, 127] nm

Figs. 36 (resp. 37) depict the TE (resp. TM) electric field distribution of spectral region
1, characterized by a pitch smaller than 127 nm. They highlight how TE is cutoff while TM
propagates at low pitch. In this case, only the 0th orders are available and so light only
propagate as a plane wave as the array supports only the TM propagating mode, and the
TE1 mode is cutoff.

The cutoff is visible in Fig. 36 for TE polarization: the incident plane wave is reflected
from the array and creates a standing wave above the structure by interfering with the
incident wave. The standing wave is characterized by nodes (blue) and peaks (red) in the
2D map. The wave is evanescent in the array and so the norm of the electric field quickly
vanishes below the first interface. In the case of the TM polarization, Fig. 37 shows that
the electric field does not vanish as the wave penetrates the array by coupling into the
EMA mode, which has no cutoff, and so the norm is finite in the substrate and the wave
propagates. At first sight, it might be surprising that the electric field intensity is smaller in
the substrate than in the air, while at the same time observing a phenomenon of extremely
high transmittance, meaning a very low reflectance. This is because the transmittance is not
only proportional to the ratio of electric fields (i.e. the transmission coefficient t) but it must
also be scaled up by the ratio of the refractive indices of the two media (i.e. by nSi/nair = 4.15
in this case) as per Eq.(66). There is also a standing wave due to reflection but its intensity
decreases as the minimum reflectance value around Λ = 100 nm is approached. It is possible
to visualize the jump in electric field between the metal line and the oxide in the case of TM
polarization, as there exist a component of the electric field that is normal to the interface
and hence discontinuous.
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(a) TE, Λ = 35 nm. (b) TE, Λ = 40 nm. (c) TE, Λ = 50 nm.

(d) TE, Λ = 75 nm. (e) TE, Λ = 100 nm. (f) TE, Λ = 125 nm.

Figure 36: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 1 (Λ between
0 nm and 127 nm).
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(a) TM, Λ = 35 nm. (b) TM, Λ = 40 nm. (c) TM, Λ = 50 nm.

(d) TM, Λ = 75 nm. (e) TM, Λ = 100 nm. (f) TM, Λ = 125 nm.

Figure 37: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 1 (Λ between
0 nm and 127 nm).
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3.2.1.2 Region 2: Λ ∈ [127, 217] nm

Fig. 38 (resp. 39) depict the TE (resp. TM) electric field distribution of spectral region
2, characterized by a pitch lying between 127 nm and 217 nm. They highlight the activation
of the first diffraction mode in transmission for TM.

There, the TE1 mode is still cutoff, but the first diffraction mode in transmission becomes
propagating. Figs. 39a to 39d show the activation of the first diffraction order in transmis-
sion in the case of TM polarized light. The cutoff pitch is Λ = 128 nm. Right below that
value, the penetration depth of the mode is larger than it was for Λ = 125 nm in Fig. 37f,
and when reaching Λ = 128 nm, the mode becomes excitable and extends all the way down
the substrate without any attenuation, creating interference patterns in the electric field dis-
tribution by superposition the 0th order transmitted plane wave and the order ±1 diffracted
waves.
In the case of TE polarized light, this transition is not visible since barely any light is trans-
mitted through the array due to the TE1 mode being cutoff. However, as the pitch gets
closer to 217 nm, the penetration depth of the evanescent TE1 mode gets larger and more
light reaches the substrate and is able to couple into the propagating diffraction mode, and
interference patterns become slightly visible. In addition, the continuity of the electric field
is observed for the TE polarization, as it must go to 0 close to the metal line to respect the
continuity of the tangential electric field.
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(a) TE, Λ = 127 nm. (b) TE, Λ = 128 nm. (c) TE, Λ = 129 nm.

(d) TE, Λ = 135 nm. (e) TE, Λ = 175 nm. (f) TE, Λ = 200 nm. (g) TE, Λ = 215 nm.

Figure 38: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 2 (Λ between
127 nm and 217 nm).
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(a) TM, Λ = 127 nm. (b) TM, Λ = 128 nm. (c) TM, Λ = 129 nm.

(d) TM, Λ = 135 nm. (e) TM, Λ = 175 nm. (f) TM, Λ = 200 nm. (g) TM, Λ = 215 nm.

Figure 39: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 2 (Λ between
127 nm and 217 nm).
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3.2.1.3 Region 3: Λ ∈ [217, 256] nm

Fig. 40 (resp. 41) depict the TE (resp. TM) electric field distribution of spectral region
3, characterized by a pitch between 217 and 256 nm.

They highlight the activation of the TE1 mode. The cutoff pitch for the TE1 mode is
Λ = 217.44 nm. For the TE polarization, a sharp transition between cutoff and propagation
could be expected at that pitch. However, since the height of the PEC line is small (100 nm),
the penetration depth of that mode was already larger than 100 nm while below the cutoff
(dp = 107 nm at Λ = 210 nm). A smooth transition is therefore observed in the reflectance
spectrum and in the electric field distribution. Moreover, the wavelength of the associated
mode is larger than the height and it is therefore impossible to visualize a full period over
that small distance, although it is possible to visualize a very sharp transition and a full
wavelength by moving to taller lines. In that case the penetration depth is always smaller
than the line, so that light can only reach the substrate once the cutoff is reached, and the
periodicity related to the propagation of the wave can be visualized. This shall be presented
in a later section.
In the case of TM polarization, the mode is not activated at all since it is asymmetric and
therefore there is no transition to be seen.
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(a) TE, Λ = 220 nm. (b) TE, Λ = 235 nm. (c) TE, Λ = 250 nm.

Figure 40: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 3 (Λ between
217 nm and 256 nm).
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(a) TM, Λ = 220 nm. (b) TM, Λ = 235 nm. (c) TM, Λ = 250 nm.

Figure 41: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 3 (Λ between
217 nm and 256 nm).
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3.2.1.4 Region 4: Λ ∈ [256, 384] nm

Fig. 42 (resp. 43) depict the TE (resp. TM) electric field distribution of spectral region
4, characterized by a pitch between 256 nm and 384 nm. They highlight the activation of the
second order in transmission.

In this range, the second diffraction mode in transmission is activated at 256 nm. Accord-
ing to Fig. 30, the reflectance of the TE polarization is not affected by this mode activation.
However, the reflectance in Fig. 32 exhibits a little bump at that pitch and the transition
should be more visible. Let us see in Figs. 43a to 43c how the electric field distribution
varies around that pitch. In the TM case, some more interference patterns appear when the
transition occur, meaning that some light couples into the second order diffraction mode in
transmission.
In the case of TE polarization, the electric field distribution also changes a bit although
there is no effect on the transmittance. Increasing the pitch up to 380 nm leads to a decrease
(resp. increase) in reflectance for TE (TM) polarization. In both cases, the electric field
distribution evolves as a result of the geometry variation and not due to the activation of
further modes.

69



0

1.95 |E0|

(a) TE, Λ = 256 nm. (b) TE, Λ = 257 nm. (c) TE, Λ = 260 nm.

(d) TE, Λ = 300 nm. (e) TE, Λ = 340 nm. (f) TE, Λ = 380 nm.

Figure 42: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 4 (Λ between
256 nm and 384 nm).
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(a) TM, Λ = 256 nm. (b) TM, Λ = 257 nm. (c) TM, Λ = 260 nm.

(d) TM, Λ = 300 nm. (e) TM, Λ = 340 nm. (f) TM, Λ = 380 nm.

Figure 43: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 4 (Λ between
256 nm and 384 nm).
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3.2.1.5 Region 5: Λ ∈ [384, 398] nm

Fig. 44 (resp. 45) depict the TE (resp. TM) electric field distribution of spectral region
5, characterized by a pitch between Λ = 384 nm to Λ = 398 nm. They highlight the lack of
sharp transition for the third diffraction order in transmission.

This range features the cutoff pitch of the third diffraction order in transmission at
384 nm. Due to the high order nature of this diffraction mode and the availability of the
previous orders, this mode is hardly visible in the 2D maps.
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(a) TE, Λ = 384 nm. (b) TE, Λ = 385 nm. (c) TE, Λ = 390 nm.

Figure 44: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 5 (Λ between
384 nm and 398 nm).
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(a) TM, Λ = 384 nm. (b) TM, Λ = 385 nm. (c) TM, Λ = 390 nm.

Figure 45: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 5 (Λ between
384 nm and 398 nm).
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3.2.1.6 Region 6: Λ ∈ [398, 512] nm

Fig. 46 (resp. 47) depict the TE (resp. TM) electric field distribution of spectral region
6, characterized by a pitch between Λ = 398 nm and Λ = 512 nm. they highlight the acti-
vation of TM2 mode and increasing decaying length of the first diffraction order in reflection.

Let us try to visualize the activation of the TM2 mode, for which the cutoff is Λ = 398 nm.
As can be seen in Fig. 47, this transition is very subtle and is not localized at the cutoff pitch.
As the pitch increases, the electric field slowly moves from an homogeneous spatial distri-
bution to a distribution that is slightly more intense midway between the two metal lines
and less intense close to the line, in accordance with the TM2 symmetric cosine featured in
Fig. 19 for m = 2. The reason why this transition is not sharp is because most of the light
prefers to couple into the EMA mode, which has a better matching with the incoming plane
wave. However, as the pitch increases and as the cutoff pitch for the first diffraction order
in reflection is approached, the penetration depth of that mode increases. As a result, the
electric field distribution in the air is modified and better matches the TM2 grating mode
and more light couples into that mode, so that the distribution inside the grating is modified
accordingly.
This is visible in particular in the case of TE polarization,where the TE1 mode has already
a varying spatial distribution which allows a better coupling between that mode and the
evanescent first diffraction order in reflection, resulting in an electric field distribution in air
which is a lot more affected than in the case of TM polarized light. The next region covers
the activation of the first diffraction order in reflection.
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(a) TE, Λ = 398 nm. (b) TE, Λ = 400 nm.

(c) TE, Λ = 450 nm. (d) TE, Λ = 500 nm.

Figure 46: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 6 (Λ between
398 nm and 512 nm).
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(a) TM, Λ = 398 nm. (b) TM, Λ = 400 nm.

(c) TM, Λ = 450 nm. (d) TM, Λ = 500 nm.

Figure 47: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 6 (Λ between
398 nm and 512 nm).
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3.2.1.7 Region 7: Λ ∈ [512, 532] nm

Fig. 48 (resp. 49) depict the TE (resp. TM) electric field distribution of spectral region
7, characterized by a pitch between Λ = 512 nm and Λ = 532 nm. They highlight how the
fourth diffraction order in transmission is not visible and how the first diffraction order in
reflection is close to being propagating.

This range features the cutoff pitches of the fourth diffraction order in transmission.
Now, a sharp transition in either reflectance or electric field distribution as a result of the
activation of a diffraction mode in transmission is no longer expected. Indeed, the previous
order was barely excited and the higher orders will be so even less. The variation in the
distribution actually comes from the first diffraction mode in reflection as its cutoff pitch
is approached and the field above the grating starts to be modified by the increased decay
length of the evanescent mode. The next region covers the activation of that mode.
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(a) TE, Λ = 512 nm. (b) TE, Λ = 520 nm. (c) TE, Λ = 530 nm.

Figure 48: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 7 (Λ between
512 nm and 532 nm).

0

1.65 |E0|

(a) TM, Λ = 512 nm. (b) TM, Λ = 520 nm. (c) TM, Λ = 530 nm.

Figure 49: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 7 (Λ between
512 nm and 532 nm).
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3.2.1.8 Region 8: Λ ∈ [532, 581] nm

Fig. 50 (resp. 51) depict the TE (resp. TM) electric field distribution of spectral region
8, characterized by a pitch between Λ = 532 nm and Λ = 581 nm. They highlight how the
first diffraction order in reflection becomes propagating.

As discussed above, close to 532 nm, the decay length of the first diffraction mode in re-
flection increases with the pitch. As a consequence, the electric field distribution is modified
both in the air and in the grating as a result of the coupling between the associated modes.
The electric field distribution in the air changes from a uniform plane wave to a non-uniform
distribution as a result of interferences. However, below 532 nm, the first diffraction mode
is still evanescent and only the electric field close to the array is modified. When the cutoff
is reached, the mode is no longer attenuated when moving away from the grating, and the
interference patterns affect the whole medium above the array. Again, this is especially vis-
ible in the case of the TE mode, as the diffraction modes in the case of TM polarization are
excited a lot less efficiently due to light mostly coupling into the plane wave-like EMA mode.
In accordance with those observations, the reflectance varies a lot more around a pitch of
532 nm for TE than for TM polarization.
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(a) TE, Λ = 531 nm. (b) TE, Λ = 533 nm.

(c) TE, Λ = 535 nm. (d) TE, Λ = 550 nm. (e) TE, Λ = 570 nm.

Figure 50: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 8 (Λ between
532 nm and 581 nm).
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(a) TM, Λ = 531 nm. (b) TM, Λ = 533 nm.

(c) TM, Λ = 535 nm. (d) TM, Λ = 550 nm. (e) TM, Λ = 570 nm.

Figure 51: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 8 (Λ between
532 nm and 581 nm).
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3.2.1.9 Region 9: Λ ∈ [581, 763] nm

Fig. 52 (resp. 53) depict the TE (resp. TM) electric field distribution of spectral region
9, characterized by a pitch between Λ = 581 nm and Λ = 763 nm. They highlight how the
TE3 is hard to visualize.

This region features the activation of the TE3 mode at 581 nm. It is again hard to
visualize a sharp transition as the penetration depth of the mode is already a larger than the
height of the array while below 581 nm (dp = 141 nm at Λ = 570 nm) and the wavelength
of the associated mode is larger than the height of the grating. Furthermore, this mode
may not be efficiently excited due to it being higher order. Its appearance shall be better
visualized when considering a larger height in the next section.
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(a) TE, Λ = 581 nm. (b) TE, Λ = 600 nm.

(c) TE, Λ = 650 nm. (d) TE, Λ = 700 nm. (e) TE, Λ = 750 nm.

Figure 52: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 9 (Λ between
581 nm and 763 nm).
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(a) TM, Λ = 581 nm. (b) TM, Λ = 600 nm.

(c) TM, Λ = 650 nm. (d) TM, Λ = 700 nm. (e) TM, Λ = 750 nm.

Figure 53: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 9 (Λ between
581 nm and 763 nm).
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3.2.1.10 Region 10 and 11: Λ ∈ [763, 1000] nm

Fig. 54 (resp. 55) depict the TE (resp. TM) electric field distribution of spectral region
10, characterized by a pitch between Λ = 763 nm and Λ = 946 nm while Fig. 56 (resp. 57/)
depict the TE (resp. TM) electric field distribution of spectral region 11, characterized by a
pitch between Λ = 946 nm and Λ = 1000 nm. They highlight how the TM4 and TE5 modes
are hard to visualize.

These ranges feature the TM4 and TE5 cutoffs at 763 nm and 946 nm. Yet again, in both
cases, the activation of the mode is hard to visualize with such a small height. Moreover,
those are higher order modes and might not be efficiently excited. It might also become hard
to distinguish if the electric field distribution is modified through a change in geometry or
solely due to the activation of an additional mode. Here, the geometry might play a greater
role since most of the light is already coupled into the lower order modes.
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(a) TE, Λ = 763 nm. (b) TE, Λ = 770 nm.

(c) TE, Λ = 800 nm. (d) TE, Λ = 850 nm. (e) TE, Λ = 900 nm.

Figure 54: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 10 (Λ between
763 nm and 946 nm).
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(a) TM, Λ = 763 nm. (b) TM, Λ = 770 nm.

(c) TM, Λ = 800 nm. (d) TM, Λ = 850 nm. (e) TM, Λ = 900 nm.

Figure 55: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 10 (Λ between
763 nm and 946 nm).
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(a) TE, Λ = 946 nm.

(b) TE, Λ = 950 nm. (c) TE, Λ = 1000 nm.

Figure 56: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 11 (Λ between
946 nm and 1000 nm).
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(a) TM, Λ = 946 nm.

(b) TM, Λ = 950 nm. (c) TM, Λ = 1000 nm.

Figure 57: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 100 nm in pitch region 11 (Λ between
946 nm and 1000 nm).
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The main features that were observed for each spectral region are summarized succinctly
in Table 2.

Region Highlight
1 Cutoff for TE, transmission for TM
2 Activation of first diffraction order in transmission
3 Activation of TE1

4 Activation of second diffraction order in transmission
5 Third diffraction order mode in transmission hard to visualize

6
Activation of TM2,
increasing decaying length for first diffraction mode in reflection

7
Fourth diffraction order mode in transmission hard to visualize,
first diffraction mode in reflection close to propagation

8 First diffraction mode in reflection becomes propagating
9 TE3 hard to visualize
10 TM4 hard to visualize
11 TE5 hard to visualize

Table 2: Key features presented in each spectral region for Figs. 36 to 57.

The 2D maps allowed the visualization of light propagation through the array by analyz-
ing the electric field distribution in the unit cell. It was possible to visualize the activation of
the different modes according to which light is reflected and transmitted. The activation of
these modes is a direct consequence of the variation of geometry, i.e., changing the periodic-
ity of the array. Another parameter of interest is the width of the array, which is discussed
in the next section.
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3.2.2 Effect of width

The relevant scale for the width (or critical dimension cd) of a line in the semiconductor
industry is typically of the order of tens of nanometers. Since this is a theoretical study, a
larger range can be covered. Fig. 58 (resp. 59) represents the reflectance spectrum of the
array for several pitches between 100 nm and 1000 nm, for a height h = 100 nm, as a function
of the fill factor, for TE (resp. TM) polarized light.
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Figure 58: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of PEC lines for several pitches for a height h = 100 nm, as a function of the
fill factor w/Λ. The spectrum is calculated using FEM.

As expected, for the TE polarization the reflectance is at a minimum when the width is
at a minimum too. Here, the minimum value for the width is 0.1, such that there is always
a metallic line and the waveguide and diffraction modes always exist. The reflectance for an
oxide slab (i.e. when the width is 0 and there is no reflective PEC line at all) is R = 0.112.
As the width increases, the reflectance increases up to 1 as the PEC starts filling up most of
the unit cell. The reflectance reaches 1 before the PEC completely fills the unit cell as the
separation distance between two PEC interface becomes smaller than the cutoff distance for
the TE1 mode, i.e. Λ−w < 217 nm. A shift of this cutoff is observed in Fig. (58) as the pitch
is modified. In addition, for lower pitch values, the increase in reflectance is very smooth,
while for increasing values of the pitch, some oscillations become visible in the reflectance
spectrum. Both the diffraction modes and the thin-film interferences may contribute to
these. The former become available as the pitch increases, while the latter is induced by the
effect of width on the effective refractive index through Eq. 102. These modes are available
for a given pitch, and remain propagating as the width is modified. As the electric field
distribution is modified at the interfaces between different media, the matching between the
modes is modified too and the diffraction modes can be more or less excited as result, causing
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Figure 59: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of PEC lines for several pitches for a height h = 100 nm, as a function of the
fill factor w/Λ.

the oscillations that are observed in the spectrum.

For the TM polarization, all curves converge to the same reflectance R = 0.112 when
w = 0. In addition, they all converge together above w/Λ = 0.9 and meet at R = 1 when
w = Λ. The reflectance seems to be swapped vertically from the TE spectrum: indeed,
it is now at the lowest pitch that the reflectance is minimum, which then decreases with
increasing pitch. The curve for 100 nm is non-monotonic as a result of thin-film interferences
and features the minimum observed in the previous section and which was linked to ex-
traordinary optical transmission (EOT). It is interesting to notice that to achieve the lowest
possible reflectance, one should rather consider small pitches than larges ones.

For both TE or TM polarization, varying the width has an effect on the reflectance
opposite to varying the pitch, since the dispersion relation featured in Eq.102 depends on
the difference between Λ and w. Just as the pitch, the width dictates which modes are
propagating or evanescent. The big difference lies in the fact that the width only impacts
the grating modes and not the diffraction modes, which only depend on the periodicity of
the array, i.e. the pitch.

This is illustrated in Figs. 60 and 61. There the first diffraction order is always available
regardless of the width. For the TM reflectance, the diffraction is finite as soon as the width
is different than 0 nm or 1000 nm. Indeed, at w = 0, there is no line at all and therefore no
periodicity in the structure, and so no diffraction can occur. At w = 1000 width, the PEC
takes the whole unit cell and so the medium is homogeneous, which means no diffraction
can take place either. In both cases, several diffraction orders in transmission are available.
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Figure 60: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of PEC lines for a pitch Λ = 1000 nm, for a height h = 100 nm, as a function
of the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 61: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of PEC lines for a pitch Λ = 1000 nm, for a height h = 100 nm, as a function
of the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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For both reflection and transmission modes, the efficiency of the excitation is modulated by
the matching of the electric field at the interfaces, which varies as a function of the width.
However, the availability of the diffraction modes is not a function of the width. The lack of
effect of width on the diffraction orders activation can be further highlighted by considering
an array with a pitch of 400 nm, for which the diffraction in reflection is evanescent, although
the three first modes in transmission are still available. These spectra are depicted in Figs. 62
(resp. 63) for TE (resp. TM) polarization.
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Figure 62: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of PEC lines with pitch Λ = 400 nm and height h = 100 nm, as a function of
the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.

At 400 nm pitch, the reflectance spectra show that the power is entirely located into the
0th order mode. For the TE polarization, the spectrum is a lot more simple, as the reflectance
simply decreases smoothly with the width. The TM spectrum features some oscillations as
the diffraction orders in transmission are more excited than in the case of TE polarization.

In conclusion, globally the width has an effect similar and opposite to that of the pitch,
minus the impact on the diffraction orders dispersion relation: as the width increases, so
does the reflectance, and the width also dictates which grating modes are available through
the separation distance Λ−w present in their dispersion relation. However, for a same value
of this separation distance, different values of the fill factor w/Λ are possible, which can also
yield different reflectance values. Finally, the electric field distribution is also different and
therefore, the diffraction modes are excited differently than as a function of the pitch.
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Figure 63: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of PEC lines with pitch Λ = 400 nm and height h = 100 nm, as a function of
the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.

3.2.3 Effect of height

In this section, an array similar to the one simulated previously is considered, but this
time featuring fins of height h = 500 nm instead of 100 nm. The reflectance and transmit-
tance spectra of both TE and TM polarized light are analyzed and compared to the 100 nm
case.

Fig. 64 and 65 (resp. 66 and 67) shows the reflectance and transmittance spectrum of an
array of PEC 500 nm tall lines under TE (resp. TM) illumination.

By comparing with Fig. 30, one can see the drastic change of spectrum that occur when
moving from small fins to taller ones. The first observation is that the light is entirely
reflected while below the cutoff pitch for the TE1 mode. The wave inside the grating is
therefore perfectly attenuated. At 217 nm however, the mode suddenly becomes propagating
and the reflectance drops very sharply. This was expected, however, one can also notice some
very sharp oscillations too when reaching the cutoff. The oscillations are characteristics of
thin-film interferences, but here instead of varying the height, it is the effective refractive
index that increases from 0 as the pitch increases above the cutoff, while maintaining the
height fixed. There are two reason why such sharp peaks are observed: first the effective
refractive ratio evolves very quickly when it becomes real, i.e. right after the cutoff pitch,
and second, it starts off very small since it is 0 at cutoff and it appears at the denominator
of Eq.(72). As a consequence, the conditions for maxima or minima resulting from thin-film
interferences are scanned over extremely quickly as the pitch increases, yielding peaks in the
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Figure 64: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of PEC lines with width w = 34 nm and height h = 500 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 65: Transmittance spectrum of a normally incident TE polarized plane wave interact-
ing with an array of PEC lines with width w = 34 nm and height h = 500 nm, as a function
of the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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spectrum that are very close together. Such oscillations are therefore visible as a mode gets
activated. In Fig. 64, one can clearly see that it happens for the TE1 and first diffraction
mode in reflection at 217 nm and 532 nm respectively. It is less obvious for the TE3 mode
at 581 nm as its oscillations may be superposed to that of the diffraction mode. A different
phenomenon occurs for the transmittance, as can be seen in Fig. 65: the oscillations of the
first, second and third diffraction modes follow those of the grating modes and do not occur
when their own cutoff pitch is each (resp. 128 nm, 256 nm and 384 nm), most likely due to a
better matching of the electric fields of the respective modes at the interface for those pitch
and height values.
It should be noted however that the conditions for oscillations discussed previously are no
longer entirely exact. While Eq.(72) allows us to understand qualitatively why the peaks in
the spectrum appear in such a way, it does not predict very accurately their position. First,
Eq.(69) for the total reflection coefficient of a thin film is obtained for an homogeneous thin
film and might no longer be valid for a patterned structure. Second, and most importantly,
Eq.(72) is obtained for a varying height and a fixed refractive index, and the height values
corresponding to a peak are the solutions of the following equation:

∂R

∂h
= 0. (109)

In our case however, the height is fixed and the pitch values corresponding to a peak are the
solutions of the following equation:

∂R

∂Λ
= 0 (110)

Through the dispersion relation of Eq.(102), the pitch Λ appears in both reflection coef-
ficients of Eq.(69) and also in the wave number of the exponential. From there arises an
extremely complicated expression which exact solution is out of the scope of this thesis, but
which could explain the nature and position of the peaks that are observed in the spectrum.

The TM case is a lot less spectacular. Fig. 66 shows the reflectance spectrum for the
array with 500 nm tall lines in the case of TM illumination.

Since the EMA mode is always propagating, there is no cutoff to be highlighted due
to taller lines. Regarding the thin-film interferences, there is also no big oscillation to be
seen, but rather very little bumps when the TM2 and first diffraction mode in reflection get
activated at respectively 399 nm and 532 nm. The reason is yet again that most of the power
is located into the EMA mode which is a lot more easily excited. Moreover, it has a flat
band structure at large pitch (above 200 nm) and its associated effective refractive index is
constant. In accordance to the above discussion on the conditions for thin-film interferences,
this means that this mode cannot be responsible for such oscillations since both the height
and the effective refractive index are fixed. The other modes however (TM2, first diffraction
mode) do have a varying effective refractive index which can be responsible for oscillations,
but since very little power is distributed into these modes, the peaks are not very intense,
although it is possible to distinguish them. The extraordinary optical transmission observed
for 100 nm is not as intense for 500 nm. There is still a resonance due to thin-film inter-
ference, as demonstrated by the non-monotonic spectrum and minimum in reflectance, but
it is less intense at this height. In addition, like it was the case for the 100 nm lines, the
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Figure 66: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of PEC lines with width w = 34 nm and height h = 500 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 67: Transmittance spectrum of a normally incident TM polarized plane wave inter-
acting with an array of PEC lines with width w = 34 nm and height h = 500 nm, as a
function of the pitch Λ. The plot features the different diffraction orders. The spectrum is
calculated using FEM.
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diffraction modes are in general a lot less efficiently excited for the TM polarization than
for the TE polarization, as can be observed in Fig. 67. For the TE polarization, thanks to
the taller lines and as shall be seen later in this section, the waveguide modes have room to
establish themselves and drastically change the electric field distribution inside the grating,
therefore allowing a better matching at the interface between the grating and the substrate,
whereas for 100 nm lines the spatial distribution was not changed as much, yielding weaker
diffraction. Now for the TM polarization, even though several wavelengths of the EMA mode
are now visible, the spatial distribution is still that of the initial plane wave, which explains
why the matching at the interface is similar to the 100 nm case and the why diffraction is
also weak.

A taller fin height should allow a better visualization of the modes propagating through
the grating as the fin height is no longer smaller than the wavelength of the mode propagat-
ing inside the fins. To visualize them, let us again divide the band structure into different
regions, each featuring the activation of a grating mode and this time ignoring the diffraction
modes. The different regions are labeled according to the cutoff of the grating modes only
and are represented similarly as it was done for the 100 nm case in Fig. 68.

Re(k̃z,m)

k0

Figure 68: Label of the different spectral regions extracted from the band structure and
defined by the cutoff pitch of each grating mode, for a PEC grating with width w = 34 nm
and height h = 500 nm.
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3.2.3.1 Region 1’: Λ ∈ [0, 215] nm

Fig. 69 (resp. 70) depict the TE (resp. TM) electric field distribution of spectral region
1′, characterized by a pitch between Λ = 0 nm and Λ = 215 nm. They highlight how TE is
cutoff while TM propagates. Several wavelengths are visible.

In this range, only the EMA mode of the TM polarization is propagating since the cutoff
pitch for the TE1 mode is at 217 nm. For the TE illumination, Fig. 69 shows how the TE1

mode is evanescent below the cutoff located at Λ = 217 nm and does not propagate at all
in the grating. Fig. 69d shows how the penetration depth increases when getting closer to
the cutoff: the intensity is a lot less attenuated but the mode still does not propagate and
there is no periodicity of the field. In the case of TM illumination, Fig. 70 shows how the
EMA mode is present from the start. Its wavelengths are manifest now that there is room
for several wavelengths with a 500 nm tall grating.
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(a) TE, Λ = 50 nm. (b) TE, Λ = 100 nm.

(c) TE, Λ = 150 nm. (d) TE, Λ = 200 nm.

Figure 69: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 1′ (Λ between
0 nm and 215 nm).
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(a) TM, Λ = 50 nm. (b) TM, Λ = 100 nm.

(c) TM, Λ = 150 nm. (d) TM, Λ = 200 nm.

Figure 70: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 1′ (Λ between
0 nm and 215 nm).
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3.2.3.2 Region 2’: Λ ∈ [215, 400] nm

Fig. 71 (resp. 72) depict the TE (resp. TM) electric field distribution of spectral region
2′, characterized by a pitch between Λ = 215 nm and Λ = 400 nm. They highlight how TE1

becomes propagating and how more wavelengths are visible as the pitch increases.

Here, the transition of the TE1 mode is now clearly visible in. At 220 nm, the mode is
propagating but its associated wavelength is larger than the height of the array. However,
this wavelength changes with the pitch and decreases as the pitch increases, and the wave-
lengths of the mode becomes visible as well. As before, in the case of TM polarization, the
electric field distribution inside the grating is unaffected in this pitch range.
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(a) TE, Λ = 215 nm. (b) TE, Λ = 216 nm. (c) TE, Λ = 217 nm.

(d) TE, Λ = 218 nm. (e) TE, Λ = 220 nm. (f) TE, Λ = 225 nm.
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(g) TE, Λ = 230 nm. (h) TE, Λ = 250 nm.

(i) TE, Λ = 300 nm. (j) TE, Λ = 350 nm. (k) TE, Λ = 380 nm.

Figure 71: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 2′ (Λ between
215 nm and 400 nm).
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(a) TM, Λ = 215 nm. (b) TM, Λ = 216 nm. (c) TM, Λ = 217 nm.

(d) TM, Λ = 218 nm. (e) TM, Λ = 220 nm. (f) TM, Λ = 225 nm.
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(g) TM, Λ = 230 nm. (h) TM, Λ = 250 nm.

(i) TM, Λ = 300 nm. (j) TM, Λ = 350 nm. (k) TM, Λ = 380 nm.

Figure 72: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 2′ (Λ between
215 nm and 400 nm).

107



3.2.3.3 Region 3’: Λ ∈ [400, 580] nm

Fig. 73 (resp. 74) depict the TE (resp. TM) electric field distribution of spectral region
3′, characterized by a pitch between Λ = 400 nm and Λ = 580 nm. They highlight the acti-
vation of TM2.

This range features the activation of the TM2 mode at 398 nm. The observations here
are the same as for the 100 nm tall lines: the transition is not sharp at the cutoff in Fig. 74a
because most of the power is in the EMA mode but it becomes increasingly more visible in
Figs. 74c to 76a as the first diffraction mode in reflection appears at 532 nm and couples into
the now available TM2 mode. The electric field distribution inside the grating in the case of
the TE illumination does not change in this pitch range. It varies slightly when approaching
the cutoff for the next grating TE3 mode at 598 nm.
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(a) TE, Λ = 400 nm. (b) TE, Λ = 450 nm.

(c) TE, Λ = 500 nm. (d) TE, Λ = 550 nm.

Figure 73: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 3′ (Λ between
400 nm and 580 nm).
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(a) TM, Λ = 400 nm. (b) TM, Λ = 450 nm.

(c) TM, Λ = 500 nm. (d) TM, Λ = 550 nm.

Figure 74: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 3′ (Λ between
400 nm and 580 nm).
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3.2.3.4 Region 4’: Λ ∈ [580, 763] nm

Fig. 75 (resp. 76) depict the TE (resp. TM) electric field distribution of spectral region
4′, characterized by a pitch between Λ = 580 nm and Λ = 763 nm. They highlight the acti-
vation of TE3.

This region features the activation of the TE3 mode at 581 nm. For TE polarization,
the electric field distribution was already starting to change in the previous region when the
pitch approached 580 nm. As can be seen in Fig. 75, after the cutoff, the field distribution
is strongly modified not only due to the TE3 mode being activated but also due to the big
oscillations induced by thin-film interferences that were mentioned previously. The total
field becomes quite complex as the different modes superpose each other, but once the oscil-
lations have settled down above 700 nm, a pattern can be distinguished resulting from the
superposition of the sine spatial distributions of the m = 1 and m = 3 modes represented
in Fig. 16. Since the wavelengths associated to these two modes are different, the electric
field distribution no longer seems periodic along the length of the lines. However, since
both modes are propagating and therefore periodic, the periodicity exists but even longer
lines are required to visualize it. Fig. 76 shows how the electric field distribution of the TM
illumination is not affected in this pitch range.
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(a) TE, Λ = 580 nm. (b) TE, Λ = 581 nm.

(c) TE, Λ = 581 nm. (d) TE, Λ = 585 nm. (e) TE, Λ = 590 nm.
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(f) TE, Λ = 595 nm. (g) TE, Λ = 600 nm.

(h) TE, Λ = 650 nm. (i) TE, Λ = 700 nm. (j) TE, Λ = 750 nm.

Figure 75: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 4′ (Λ between
580 nm and 763 nm).
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(a) TM, Λ = 580 nm. (b) TM, Λ = 581 nm.

(c) TM, Λ = 582 nm. (d) TM, Λ = 585 nm. (e) TM, Λ = 590 nm.
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(f) TM, Λ = 595 nm. (g) TM, Λ = 600 nm.

(h) TM, Λ = 650 nm. (i) TM, Λ = 700 nm. (j) TM, Λ = 750 nm.

Figure 76: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 4′ (Λ between
580 nm and 763 nm).
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3.2.3.5 Region 5’: Λ ∈ [763, 945] nm

Fig. 77 (resp 78) depict the TE (resp. TM) electric field distribution of spectral region
5′, characterized by a pitch between Λ = 763 nm and Λ = 945 nm. They highlight how TM4

is hard to visualize.

This region features the cutoff pitch of the TM4 at 763 nm. However, this mode is of
high order: it is harder to excite and it is harder to distinguish between the presence of the
different modes and the influence of geometry.
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(a) TE, Λ = 763 nm. (b) TE, Λ = 765 nm. (c) TE, Λ = 800 nm.

(d) TE, Λ = 830 nm. (e) TE, Λ = 900 nm. (f) TE, Λ = 900 nm.

Figure 77: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 5′ (Λ between
763 nm and 945 nm).
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(a) TM, Λ = 763 nm. (b) TM, Λ = 765 nm. (c) TM, Λ = 800 nm.

(d) TM, Λ = 830 nm. (e) TM, Λ = 900 nm. (f) TM, Λ = 900 nm.

Figure 78: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 5′ (Λ between
763 nm and 945 nm).
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3.2.3.6 Region 6’: Λ ∈ [945, 1000] nm

Fig. 79 (resp. 80) depict the TE (resp. TM) electric field distribution of spectral region
6′, characterized by a pitch between Λ = 945 nm and Λ = 1000 nm. They highlight how it is
difficult to distinguish the TE5 from the other modes.

This region features the cutoff pitch of the TE5 mode at 946 nm. Similarly to the TM4

mode of the previous region, it is a high order mode is harder harder to excite. It is also diffi-
cult to distinguish between the presence of the different modes and the influence of geometry.
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(a) TE, Λ = 945 nm. (b) TE, Λ = 946 nm.

(c) TE, Λ = 947 nm. (d) TE, Λ = 950 nm. (e) TE, Λ = 1000 nm.

Figure 79: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 6′ (Λ between
945 nm and 1000 nm).
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(a) TM, Λ = 945 nm. (b) TM, Λ = 946 nm.

(c) TM, Λ = 947 nm. (d) TM, Λ = 950 nm. (e) TM, Λ = 1000 nm.

Figure 80: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of PEC lines with width w = 34 nm, height h = 500 nm in pitch region 6′ (Λ between
945 nm and 1000 nm).
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The main features that were observed for each spectral region are summarized succinctly
in Table 3.

Region Highlight
1’ Cutoff for TE, transmission for TM, several wavelengths are
2’ Activation of TE1, several wavelengths become visible
3’ Activation of TM2

4’ Activation of TE3

5’ TM4 hard to visualize
6’ TE5 hard to distinguish from other modes

Table 3: Key features presented in each spectral region for Figs. 69 to 80.

It was seen how modifying the height of the array can strongly modify how the pitch af-
fects the reflectance spectrum due to thin-film interferences and wave attenuation. It is also
relevant to analyze the reflectance spectrum of the array as a function of the height. Fig. 81
(resp. 82) shows this spectrum in the case of TE (resp. TM) illumination and illustrates
the thin-film interferences occurring when the refractive index (related to pitch here) is fixed
and the height is varied.

For the TE polarization, the first observation is that at low pitch, i.e. below the TE1 cut-
off of 217 nm, the reflectance quickly goes to 1 as the height increases. This is in accordance
with the observations of the previous sections: when the mode is cutoff, at small height, a
portion of the light which was not fully attenuated is still able to reach the substrate and
propagate. When the height of the array increases however, the lines are tall enough so that
no light reaches the substrate and the reflectance therefore goes to 1. One can also see how
at a 200 nm pitch, being closer to the cutoff, the penetration depth is larger and more light
reaches the substrate for small height than in the case of 100 nm pitch.
The next observation is that there are indeed oscillations induced by height when the TE1

mode is able to propagate, i.e. for pitch 300 nm and above. It appears that each curve is
different: for each pitch, the peaks occur for different height values. This can be explained
from the dispersion relation presented in the band structure of Fig. 27, where it can be seen
that the effective refractive index, which intervenes in the condition for thin-film interfer-
ences, evolves with the pitch. Therefore, each curve has a different condition on the height
multiples for peaks to happen.
In addition, the oscillations are not as regular as in the case of an homogeneous material. A
reason for this is that the medium is no longer homogeneous but is a patterned structure to
which an effective refractive index can be associated, which is however still an approximation
and the structure might behave differently with respect to thin-film interferences.
Two surprising phenomena can be seen in Fig. 81. First, the maxima and minima seem to
change as the height increases. This is unexpected since the material is not absorbing and
the height should only induce the peaks but not have an effect on the value of the peaks
themselves. However, as it was seen just before, even though the material is not absorbing,
the light propagates through the structure by coupling into the TE1, TE3 and TE5 modes,
which have a cutoff. It is therefore possible that some of the light tries to couple into higher
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order modes but gets more efficiently attenuated as the height increases, which explains the
increase in reflectance. Second, some unexpected additional oscillations are present at higher
pitch. Indeed, for 800 nm and 1000 nm pitch, there is a bump around 150 nm and 350 nm
height, respectively. This kind of oscillation is not present in the case of an homogeneous
medium, in which the light propagates according to a single mode. Here, several modes are
available, and in the case of 800 nm and 1000 nm pitch, both the TE1 and TE3 modes are
propagating, and even the TE5 mode for 1000 nm pitch. Since there is a different effective
refractive index associated to each of those modes, the condition for thin-film interference
might differ from one another, and a phenomenon similar to a superposition of periodic
functions with different frequencies appear, resulting in that additional elbow.
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Figure 81: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of PEC lines with width w = 34 nm as a function of the height h. The plot
features several values for the pitch of the grating. The spectrum is calculated using FEM.

In the case of TM polarization, there is very little discrepancy between the different
pitches. This can again be explained by the fact that most of the power is located in the
EMA mode, which effective refractive index tends to a constant value (that of silicon oxide
nSiO2) for pitches above 100 nm, as can be seen in the band structure of Fig. 34. At 100 nm
pitch, the ratio is slightly higher than for the other curves, which explains the slightly higher
reflectance and the slightly shifted positions of the peaks. If the pitch was to decrease fur-
ther, it was seen that the reflectance would go to 1, regardless of the height, as the array
approaches a slab of PEC. In addition, Fig. 82 confirms that the EOT observed previously
is indeed a consequence of thin-film interferences, as the reflectance is minimum at around
100 nm height, while for 500 nm height, it is indeed smaller at low pitch, as it was observed
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at the beginning of this section.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pitch=100nm
Pitch=200nm
Pitch=300nm
Pitch=400nm
Pitch=600nm
Pitch=800nm
Pitch=1000nm

Figure 82: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of PEC lines with width w = 34 nm as a function of the height h. The plot
features several values for the pitch of the grating. The spectrum is calculated using FEM.

In conclusion, as the height does not appear in the mathematical expressions of the disper-
sion relations (102) to (104), it does not modify how light propagates through the structure.
The modes and their cutoff are the same as when the height h is 100 nm. However, the height
can have an effect in two ways. First, by having a larger height, while at a pitch below the
cutoff for a given mode, the corresponding evanescent modes are fully attenuated by the time
light reaches the substrate interface. Indeed, as it was seen previously, the evanescent mode
can have a penetration depth which is larger than 100 nm, so that light with finite intensity
could reach the substrate in the case of 100 nm lines. This is longer be the case when con-
sidering taller fins, where the evanescent modes are completely attenuated before reaching
the substrate and it is possible to observe sharp transitions when the modes are activated.
Second, a height which is of the order of the incoming wavelength may give rise to thin-film
interferences due to the reflection on the substrate interface. Moreover, this effect can be
coupled with the variation of the pitch, which modifies the effective refractive index, which
in turns affects the position of the maxima and minima resulting from thin-film interferences.
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3.3 Summary

The effect of the geometrical parameters on the reflectance and transmittance spectra
was discussed based on the band structures of Figs. 27 and 28.
It was seen how the pitch is responsible for the activation of both the grating and the
diffraction modes. For TE polarization, the cutoff as well as the first diffraction orders
were visualized in Figs. 30 and 31. The cutoff was highlighted thanks to some 2D maps in
Fig. 38. For TM polarization, there was no such cutoff, but a phenomenon of extraordinary
optical transmission (EOT), as seen in Fig. 32, while the diffraction orders were less efficiently
excited. The band structure failed to capture the geometric dependence of the TEM mode
and the effective medium approximation (EMA) was invoked to adapt it into the band
structure of Fig. 34 as the EMA mode.
The width was also responsible for the activation of the grating modes but had no effect on
the diffraction modes. Increasing the width had an effect similar to decreasing the pitch.
The height was responsible for thin-film interferences, featured in Figs. 81 and 82, and allowed
a better visualization of the attenuation of the evanescent modes and the sharpness of their
transition at a cutoff, such as in the 2D maps of Fig. 69. For the TE polarization, the strong
dependence of the effective refractive index on the pitch lead to very different characteristics
of the thin-film interferences. In addition, this strong dependence lead to intense oscillations
of the reflectance around cutoffs, as seen in Fig. 64. For TM polarization, the almost constant
effective refractive index of the EMA mode at large pitch lead to very similar curves instead.
However at low pitch, its quick variation was responsible for the EOT.

4 Light interaction with periodic arrays of nanometer-

wide metal lines

4.1 Methodology and modeling

Let us now analyze how light interacts with the same periodic array composed of real
absorbing metal lines instead of perfect electrical conductor. The situation is basically the
same as it was for the PEC lines and is described in section 3.1, but the PEC is replaced by
a real metal.
In particular, copper is studied, which n and κ values are taken from [44]. At a free-space
wavelength of λ0 = 532 nm, they take the following values: n = 1.11 and κ = 2.6. The
main difference is of course that the extinction coefficient κ is now finite, in opposition to
the PEC where it was infinite. Now, the interface conditions of Eq.(7) to (10) state that
the displacement and magnetic fields must be continuous at an interface with copper, since
there is no surface charge or current density for a real metal. Besides, the electric field inside
a real metal can be finite, therefore, the waveguide theory developed in section 2.6.1 is no
longer valid, as the electric field cannot be imposed to be 0 at the metal interface. As a
result, an analytical expression for the dispersion relation of the grating modes for copper
lines is not easily derived. However, it is possible to derive a band structure numerically by
solving an eigenvalue wave equation in a weak formulation using COMSOL [20]: the results
for both TE and TM polarizations are plotted in Figs. 83 and 84 respectively. Since the
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diffraction phenomenon is a direct consequence of the periodicity only and not of the nature
of the periodic element, the dispersion relation of the diffraction modes is not expected to
be modified from a PEC to a real metal.

There are some noticeable differences between this band structure and the one for PEC
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Figure 83: Band structure for the symmetric grating modes of the array of copper lines
under TE illumination below Λ = 1000 nm, for a free-space wavelength λ0 = 532 nm, width
w = 34 nm, refractive indices nair = 1, nSi = 4.15, nSiO2 = 1.45 and θi = 0◦. The solid lines
represent the real part of the wave number, while the dashed lines represent the opposite of
its imaginary part.

featured in Fig. 17. First, the wave number has now both a real and imaginary part, whereas
in the case of PEC lines, it was entirely real or imaginary, respectively above or below the
cutoff pitch for the corresponding mode. This means that in the case of copper, a mode
can have an oscillatory propagating component, which is simultaneously attenuated as it
propagates, as can be seen by plugging a complex refractive index ñ = n− jκ into the wave
equation, as it was done in Eq. 39. Second, there is no sharp cutoff of the modes, where
the imaginary part of the wave number goes to 0 and its real part quickly grows. Instead,
the transitions are a lot smoother, and although the real (resp. imaginary) part of the wave
number tends to 0 when a mode is cutoff (resp. propagating), it is still finite. However it is
still possible to associate a cutoff pitch to each mode, by defining it as the pitch at which the
real part becomes larger than the imaginary part. One can see that those cutoff pitches are
similar to those of PEC modes (see Table 1). For the TE polarization, since the TE1 mode
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Figure 84: Band structure for the symmetric grating modes of the array of copper lines
under TM illumination below Λ = 1000 nm, for a free-space wavelength λ0 = 532 nm, width
w = 34 nm, refractive indices nair = 1, nSi = 4.15, nSiO2 = 1.45 and θi = 0◦. The solid lines
represent the real part of the wave number, while the dashed lines represent the opposite of
its imaginary part.

is not as efficiently cutoff at low pitch as it was in the case of PEC lines, light is expected to
be coupled into that mode and be transmitted even at low pitch.
The TM band structure of Fig. 84 bears more similarities with its PEC counterpart: although
there always is a finite real part for the higher order modes, their imaginary part is always
a lot larger than the real one, and than that the TM0 mode, until their respective cutoff. In
addition, the TM0 is never cutoff, as it was the case for the PEC band structure.

4.2 Effect of the geometry

Similarly to what was done in section 3.2, the effect of the pitch, width and height of the
copper array on the reflectance and transmittance spectra are studied on the basis of the
band structures of Figs. 83 and 84. In addition, some key 2D maps are provided to highlight
the main observations. The results are compared to those obtained for the PEC grating.
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4.2.1 Effect of pitch

Figs. 85 and 86 (resp. Figs. 88 and 89) depict the reflectance and transmittance spectra
for the TE (resp. TM) polarization, for the structure composed of copper lines with width
w = 34 nm and height h = 100 nm.

First, for the TE polarization, it appears that the reflectance does not go to 1 as the fill
factor w/Λ approaches 1, i.e. at low pitch. The reflectance does go to a maximum value but
the light is not entirely reflected. This does not mean however that it is transmitted instead
for a slab of copper: the finite optical constants of copper mean that part of the light is re-
flected and part of it penetrates into the material, where it is absorbed. The part of light that
was not yet absorbed when reaching the substrate can be transmitted (but also reflected) at
the substrate interface, into which it propagates. Therefore, for a slab of copper, i.e. when
w = Λ, the reflectance takes the finite value of a copper thin film, including interferences.
However, as can be seen in Fig. 86, no light is transmitted and everything is in fact absorbed
by the copper film. Fig. 87 represents the absorptance of the copper grating as a function of
the pitch. By conservation of energy, the absorptance is simply the difference A = 1−R−T .
One can see that it is greater at low pitch, when the fill factor is close to 1 where most of the
grating is composed of absorbing material. As the pitch increases however, the transmittance
directly increases as some light is able to propagate through the oxide, whereas for the PEC
line the TE1 cutoff had to be reached before any transmission occurred. Surprisingly, at low
pitch, the absorptance also increases with the pitch, until it reaches a maximum. This can be
explained by noticing that once light starts propagating into the grating, the active surface of
the copper lines is larger and there is therefore more room for absorption through the sides of
the lines, whereas light only penetrated the material from the topmost interface when w = Λ.
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Figure 85: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines with width w = 34 nm and height h = 100 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 86: Transmittance spectrum of a normally incident TE polarized plane wave inter-
acting with an array of copper lines with width w = 34 nm and height h = 100 nm, as a
function of the pitch Λ. The plot features the different diffraction orders. The spectrum is
calculated using FEM.
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Figure 87: Absorptance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines with width w = 34 nm and height h = 100 nm, as a function of
the pitch Λ. The spectrum is calculated using FEM.

The evolution of the TM spectra in Fig. 88 is a lot sharper at low pitch, as light quickly
couples into the fundamental TM mode once the oxide starts filling the grating. Both
polarizations seem to converge to the same R,T,A values of a silicon oxide slab as the pitch
gets larger.

A second observation is that the diffraction occurs for the same pitch as it did for the PEC
lines, comforting us in the idea that the diffraction dispersion relation is not impacted by the
nature of the lines. The spectra for the diffraction modes have a similar shape to those ob-
served for the PEC lines but they seem to be less efficiently excited in the case of copper lines.
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Figure 88: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines with width w = 34 nm and height h = 100 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 89: Transmittance spectrum of a normally incident TM polarized plane wave inter-
acting with an array of copper lines with width w = 34 nm and height h = 100 nm, as a
function of the pitch Λ. The plot features the different diffraction orders. The spectrum is
calculated using FEM.
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Figure 90: Absorptance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines with width w = 34 nm and height h = 100 nm, as a function of
the pitch Λ. The spectrum is calculated using FEM.

Let us have a look at some 2D maps of the electric field distribution to highlight the
differences between the copper lines and PEC lines. Fig. 91 and 92 contain the electric field
2D maps for several key values of the pitch between 0 and 1000 nm.

Let us start with the TE polarization. The 2D maps of Fig. 91 indeed confirm that there
is some transmission even at low pitch, as the norm of the electric field in the substrate is
finite, and that there is no transition between fully evanescent and fully propagating but
instead a smooth one. As a consequence of the finite transmittance, the first diffraction
mode in transmission is now visible in the case of TE polarization, where it was not the case
for the PEC lines. The transition from evanescent to propagating mode is clearly visible in
Figs. 91a to 91c. In addition, the 2D maps show that the electric field is not 0 inside the
metallic lines, like it was for PEC. Instead, the field is finite but is quickly attenuated when
moving away from the edges. The field is also attenuated in the oxide, as the modes are not
either propagating or evanescent but always a combination of the two, so there is also some
attenuation there. Around 128 nm for example, the band structure of Fig. 83 indicates that
the extinction coefficient of the TE1 mode is close to 1, which is two times lower than the
extinction coefficient of copper at for a wavelength of 532 nm. From the same band structure,
it can be inferred that the extinction coefficient of the TE1 mode will decrease as the pitch
increases and more light will reach the substrate, leading to more transmission. In both the
PEC and copper cases, the continuity of the tangential components of the electric field is
satisfied.
The 2D maps also show that the maximum intensity of the electric field is lower than it was
for PEC lines. This is both due to absorption and transmission: some of the intensity is lost
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(a) TE, Λ = 127 nm. (b) TE, Λ = 128 nm. (c) TE, Λ = 129 nm.
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(e) TE, Λ = 531 nm. (f) TE, Λ = 533 nm.

directly through absorption through the lines, while a portion of the light is transmitted,
spreading the power more evenly. As a consequence, the standing wave observed on top of
the grating for low pitch does not have peaks at 2 |E0| but at 1.5 |E0| and does not have
nodes at 0 but at some finite value. Moreover, the diffraction modes are excited a lot less
intensely than with the PEC lines, and the diffracted wave in reflection is weaker for the
copper lines, resulting in less intense interference patterns. At pitches between 532 nm and
1000 nm, the field looks more like the incident plane wave than the pattern resulting from
intense interferences.
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(h) TE, Λ = 850 nm. (i) TE, Λ = 1000 nm.

Figure 91: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of copper lines with width w = 34 nm, height h = 100 nm, and for several pitches
between 0 nm and 1000 nm.

Let us now move to TM polarization. Surprisingly, the diffraction order in transmission
at 128 nm is no longer visible in the 2D maps of Fig. 92. However some interference patterns
are visible for higher pitches. The diffraction in reflection is even weaker than for the TE
polarization and little change is observed in the electric field distribution when sweeping the
pitch values: the field above the grating does not shift much from its initial plane wave ge-
ometry as the diffracted reflected wave does not cause much interferences. The electric field
inside the copper is a lot less intense than the one in the oxide, as permitted by the disconti-
nuity of the normal component of the electric field. Due to the low amount of diffraction, the
reflectance and transmittance spectra both vary very smoothly from their minimum (resp.
maximum) to maximum (resp. minimum) value, with little interferences.
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(a) TM, Λ = 127 nm. (b) TM, Λ = 128 nm. (c) TM, Λ = 129 nm.
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(e) TM, Λ = 531 nm. (f) TM, Λ = 533 nm.
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(h) TM, Λ = 850 nm. (i) TM, Λ = 1000 nm.

Figure 92: Distribution of the phasor norm of the TM electric field in the unit cell, for an
array of copper lines with width w = 34 nm, height h = 100 nm, and for several pitches
between 0 nm and 1000 nm.

4.2.2 Effect of width

The effect of the width on the array of copper lines is now compared with respect to its
effect on the array of PEC lines. Figs. 93 and 94 (resp. 95 and 96) depict the reflectance
and transmittance spectra for TE (resp. TM) polarization as a function of the width, for a
fin height of 100 nm and several pitches between 0 nm and 1000 nm.
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The reflectance for the TE polarization in Fig. 93 does not feature the cutoff of the PEC
lines, where the reflectance would go to 1 as soon as Λ − w = 217 nm. Here instead, the
reflectance start from its value for an oxide slab and smoothly increases to its value for a
copper thin film. At low pitch, this increase is smoother as there is no diffraction mode to
induce any oscillation. Some small oscillations are however visible for higher pitches. In fact,
the results are very similar to the PEC lines in terms of shape of the spectra. Indeed, the
effect of the cutoff put aside, the reflectance spectrum of the TE polarization looks like a
scaled down version of the PEC case: the reflectance is minimum when the width is minimum
and increases with it. The main difference lies in the maximum value of the reflectance: it
goes up to 1 for a PEC slab but only up to around 0.6 for the copper slab, as is expected
from the finite optical constants and absorptance.
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Figure 93: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines for several pitches for a height h = 100 nm, as a function of the
fill factor w/Λ. The spectrum is calculated using FEM.
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Figure 94: Transmittance spectrum of a normally incident TE polarized plane wave inter-
acting with an array of copper lines for several pitches for a height h = 100 nm, as a function
of the fill factor w/Λ. The spectrum is calculated using FEM.

For the TM polarization, the different curves in Fig. 95 are a lot more similar than for the
PEC ones. However, the same comments can somewhat be made for the TM polarization
regarding the graph being a scaled down version of the PEC one, although due to absorption,
the minimum in reflectance observed in Fig. 95 no longer corresponds to a maximum in
transmittance, as can be seen in Fig. 96. In addition, there is more no obvious minimum
in reflectance (or EOT) to be seen. The reason is that the thin-film interferences observed
for the PEC lines do not occur at the same pitch for the copper lines and that there is
absorption. In addition, the reflectance increases almost linearly for all pitches when the fill
factor approaches 1. Whereas some light was still transmitted at low pitch for the PEC lines,
there is almost no transmission when the fill factor is larger than 0.6 as the light coupled into
the fundamental TM mode is also absorbed. Finally, less oscillations are visible in general
due to the more weakly excited diffraction orders.
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Figure 95: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines for several pitches for a height h = 100 nm, as a function of the
fill factor w/Λ. The spectrum is calculated using FEM.
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Figure 96: Transmittance spectrum of a normally incident TM polarized plane wave inter-
acting with an array of copper lines for several pitches for a height h = 100 nm, as a function
of the fill factor w/Λ. The spectrum is calculated using FEM.

The comments about diffraction are highlighted by considering a pitch Λ = 1000 nm.
They can be further highlighted by removing some of the diffraction induced by the high
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pitch value and considering a array with 400 nm pitch, as it was done for the PEC grating.
The results are pictured in Figs. 97 and 98 (resp. 99 and 100) for the TE and TM spectra
for a pitch Λ = 1000 nm (resp. Λ = 400 nm). For a pitch of 1000 nm, the first diffraction
mode is again excited as soon as the fill factor is different than 0 or 1, as it was the case for
the PEC lines. The curves are very similar to the PEC ones as the same diffraction orders
are excited in the same proportions and the main difference lies in the maximum reflectance
value. At Λ = 400 nm, the power is again entirely located in the fundamental mode for the
reflectance and the graph is mostly a scaled down version of the PEC reflectance, to which
the same comment on the maximum reflectance value applies.
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Figure 97: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines with pitch Λ = 1000 nm and height h = 100 nm, as a function
of the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 98: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines with pitch Λ = 1000 nm and height h = 100 nm, as a function
of the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 99: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines with pitch Λ = 400 nm and height h = 100 nm, as a function of
the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 100: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines with pitch Λ = 400 nm and height h = 100 nm, as a function of
the width w. The plot features the different diffraction orders. The spectrum is calculated
using FEM.

Now that a real metal is considered, it might be possible to observe surface plasmon
polaritons (SPPs). As explained in section 2.6.3, those field enhancement confined to the
metal and propagating along its surface can be excited if there is a longitudinal component
of the electric field. At normal incidence, this component is maximum at the passing of a
diffraction order, when the angle associated to the diffracted mode is 90◦. Fig. 101 shows the
comparison between the distribution of |Ey|2 for a copper thin film and PEC thin film.

As can be seen, there is a concentration of the electric field localized on the metal surface
for the copper, which is absent in the case of the PEC. Indeed, Fig. 101a can be seen as
a superposition of Figs. 25a and 25c. This indicates that an electromagnetic wave travels
laterally at the metal-air interface. As the width is varied, a resonance effect can be observed
where the SPPs reflected as the edge of the thin film interfere together and they become
more intense when w ≈ λ0/2. The presence of SPPs is a manifestation of the absorbing
nature of the metal, however their direct effect on the reflectance and transmittance spectra
presented in this section are unclear, as their impact is shadowed by that of diffraction, and a
mode decomposition method is required to separate their various consequences, which is out
of the scope of this master thesis. Besides, it is the effect of the geometrical parameters on
the general reflectance and transmittance spectra that this study is concerned with, which
is why the SPPs are not studied in more details. It should also be noted that SPPs were not
observed in transmission in these simulations.
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(a) Copper tihn film (b) PEC thin film

Figure 101: Distribution of the squared norm of the y electric field component |Ey|2 at a
pitch Λ = 533 nm, i.e. at the passing of the first diffraction order in reflection, for a 100 nm
thin film with width w = 420 nm under TM illumination at λ0 = 532 nm.

4.2.3 Effect of height

In the same fashion as for the PEC lines, the height of the lines is increased to h = 500 nm
to highlight the effect of taller lines while varying the pitch. Figs. 102 to 104 feature the R,T
and A spectra of the TE polarization while Figs. 105 to 107 feature those of the TM polar-
ization.

For the TE polarization, one can quickly see that the absorptance is larger for 500 nm
than it is for 100 nm. The reason is obvious: the copper lines being taller, there is a higher
quantity of absorbing material. Looking at the reflectance spectrum, one can distinguish
some slight oscillations around 200 nm and 600 nm. Those pitch regions correspond to the
cutoff pitch regions of the TE1 and TE3 modes. The origin of those oscillations is the same
that was discussed in the case of the PEC lines, however they are a lot less intense for the
copper lines. Let us recall that for the PEC grating, the oscillations had their origin in the
rapidly varying refractive index of a mode as a function of the pitch. As a consequence, the
conditions for peaks due to thin-film interference were quickly scanned over, leading to fast
oscillations. In the case of copper lines, one can see from the band structure of Fig. 83 that
the refractive index vary a lot more slowly around the cutoffs than the PEC did, leading to
less intense oscillations. With taller lines, the diffraction modes are also now more efficiently
excited. This could be due to the modification of the electric field distribution inside the
grating, which taller line allows for several wavelengths to develop which can lead to a better
matching between the grating electric field and that of the diffraction modes.
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Figure 102: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines with width w = 34 nm and height h = 500 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 103: Transmittance spectrum of a normally incident TE polarized plane wave inter-
acting with an array of copper lines with width w = 34 nm and height h = 500 nm, as a
function of the pitch Λ. The plot features the different diffraction orders. The spectrum is
calculated using FEM.
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Figure 104: Absorptance spectrum of a normally incident TE polarized plane wave inter-
acting with an array of copper lines with width w = 34 nm and height h = 500 nm, as a
function of the pitch Λ. The spectrum is calculated using FEM.

For the TM polarization, the same observations as for the PEC grating can be made:
since most of the light couples into the fundamental TM mode, which refractive index vary
slowly if at all, as seen the band structure of Fig. 84, there is little oscillation in the spectra
due to the thin-film interference induced by a pitch variation. However, the elbow at around
100 nm pitch is more pronounced now than for the 100 nm tall lines, as a result of thin-film
interferences, which resonant effect is manifestly more intense for 500 nm. This result is
opposite to that of the PEC grating but since the effective refractive indices of each mode
differ it is natural that the conditions for peaks are affected and differ from copper to PEC.
Again, the diffraction orders are more efficiently excited.
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Figure 105: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines with width w = 34 nm and height h = 500 nm, as a function of
the pitch Λ. The plot features the different diffraction orders. The spectrum is calculated
using FEM.
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Figure 106: Transmittance spectrum of a normally incident TM polarized plane wave inter-
acting with an array of copper lines with width w = 34 nm and height h = 500 nm, as a
function of the pitch Λ. The plot features the different diffraction orders. The spectrum is
calculated using FEM.
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Figure 107: Absorptance spectrum of a normally incident TM polarized plane wave inter-
acting with an array of copper lines with width w = 34 nm and height h = 500 nm, as a
function of the pitch Λ. The spectrum is calculated using FEM.

The previous observations can be highlighted by looking at some 2D maps of the electric
field distribution for a grating of 500 nm tall copper lines. Figs. 108 and 109 respectively the
2D maps for TE and TM polarizations.

For TE, it is interesting to look at the transition of the TE1 mode. As it was discussed
previously, with copper lines, the transition is not very sharp but rather smooth. Figs. 108a
to 108e show how light is increasingly transmitted as the TE1 mode becomes less and less
attenuating. Thanks to the taller lines, it is possible to visualize several wavelengths of the
mode, which has a similar distribution in the oxide than the PEC TE1 mode, but in this case
there is a non-zero electric field inside the line. In addition, it is possible to visualize how the
intensity of the electric field is decreased as the wave propagate in the grating, and less so
as the pitch increases and the extinction coefficient of the mode decreases accordingly. On
top of the grating, the standing wave has peaks (resp. nodes) with even lower (resp. higher)
electric field intensity than with the 100 nm tall lines. Indeed, with taller lines, even less light
can make a round trip and interference with the incoming plane wave to create a standing
wave, but these interferences increase as the pitch increases and light is less attenuated as
it travels inside the grating. Around 500 nm, Figs. 108f to 108h show how the electric field
distribution in the grating is modified, both due to the diffracted mode in reflection but also
due to the TE3 mode being less and less evanescent in this pitch range. A similar behavior
was observed for the PEC lines although the transition occurred for a higher pitch and was
sharper. Also, the field does not change that much as a result of oscillations, which are
weaker in the case of copper lines. Moving to higher pitch ranges, Figs. 108i to 108k allow us
to see that the field inside the grating is quite similar to that of the PEC grating, although

147



less intense. Indeed, the field inside the grating is mostly a superposition of the TE1 and
TE3 modes. At those high pitches, they are weakly attenuated as they propagate. Finally,
the interference patterns on top of the grating are more visible in the case of 500 nm tall line
due to the more efficiently excited diffraction modes.
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1.15 |E0|

(a) TE, Λ = 180 nm. (b) TE, Λ = 200 nm. (c) TE, Λ = 220 nm.

(d) TE, Λ = 240 nm. (e) TE, Λ = 300 nm.
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(f) TE, Λ = 500 nm. (g) TE, Λ = 540 nm. (h) TE, Λ = 600 nm.
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(i) TE, Λ = 700 nm. (j) TE, Λ = 850 nm. (k) TE, Λ = 1000 nm.

Figure 108: Distribution of the phasor norm of the TE electric field in the unit cell, for an
array of copper lines with width w = 34 nm, height h = 500 nm, and for several pitches
between 0 nm and 1000 nm.
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For the TM polarization, Fig. 109 shows that the wavelengths are already visible from
the start, according to the presence of the TM0 mode. The mode is also less attenuated
than for the TE polarization. Those observations are in accordance with the low extinction
coefficient of the TM0 mode observed in the band structure of Fig. 84. Here, the field is more
intense close to the copper line, whereas it was uniform for the PEC lines: in the case of a
real absorbing metal, the fundamental TM0 mode is no longer an homogeneous plane wave
as it was for the PEC waveguide. Due to the finite conductivity of the metal, the spatial
distribution of the electric field is affected close to the line and its intensity decreases further
into the oxide. It is also interesting to notice the presence of another mode than the TM0

one as the pitch increases: the electric field spatial distribution no longer is uniform but the
field in the center of the oxide becomes more intense. This feature was only weakly observed
in the case of the PEC lines. Finally, the interference patterns on top of the grating are also
more visible than they were for the 100 nm tall lines.
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(a) TM, Λ = 180 nm. (b) TM, Λ = 200 nm. (c) TM, Λ = 220 nm.

(d) TM, Λ = 240 nm. (e) TM, Λ = 300 nm.
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(f) TM, Λ = 500 nm. (g) TM, Λ = 540 nm. (h) TM, Λ = 600 nm.
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(i) TM, Λ = 700 nm. (j) TM, Λ = 850 nm. (k) TM, Λ = 1000 nm.

Figure 109: Distribution of the phasor norm of the TM electric field in the unit cell, for
an array of copper lines with width w = 34 nm, height h = 500 nm, and for several pitches
between 0 nm and 1000 nm.
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It was just seen how the reflectance, transmittance and absorptance spectra of the grating
evolved when the height of lines was increased from 100 nm to 500 nm. It is now time to see
how the spectra vary as a function of the height, for different values of the pitch. Figs. 110
and 111 respectively feature the TE and TM reflectance spectra of the copper array as a
function of the height.

To begin with, in the case of TE polarization for a 100 nm pitch, the reflectance quickly
goes to a constant finite value, which is not 1 like it was for the PEC lines . This is due
to two factors: first, the growing line which absorbs more and more light and second, the
high extinction coefficient of the grating modes at low pitch. As a consequence, as the height
increases less and less light reaches the substrate until no light is able to make a round trip in
the grating and the value taken by the reflectance is therefore only that of the air/substrate
interface, which is now independent of the height of the grating. The reflectance for 200 nm
is lower since light can transmit into the grating more efficiently as the TE1 mode becomes
available. Some slight oscillations are visible due to thin-film interferences but the reflectance
also converges to a constant as more and more copper is there to absorb light when the height
is increased. For larger values of the pitch, the extinction coefficient of the fundamental TE1

mode is negligible and the attenuation is now only due to the copper absorption. As a
result, thin-film interferences can now fully take place as it is seen for the higher pitches.
Those oscillations are however damped by the copper absorption and the reflectance always
eventually converges to a constant as the height becomes large enough to absorb everything.
In opposition to the PEC lines, the different curves are not too different from each other and
slowly seem to converge to a common one that would be that of a silicon oxide slab, whereas
each curve was very different for the PEC case, again due to the quickly varying refractive
index of the PEC modes compared to the copper modes. Indeed, the refractive index of the
TE1 mode featured in Fig. 83 is almost constant and very slowly increases with the pitch,
leading to very similar curves for each pitch for thin-film interferences.

Looking at the TM polarization, the behavior is similar to that of the PEC lines although
here there is more variation as the refractive index of the TM0 mode is less constant as a
function of pitch than the one for PEC, and therefore there is more variations in the different
curves, as it is seen here. Again, the curve for 100 nm is the most shifted as in that case the
refractive index changes a lot when the array is further filled with reflecting and absorbing
copper,i.e., at low pitch. The same difference between PEC and copper is present here too
as the oscillations are damped as a function of the height by the growing absorbing lines.
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Figure 110: Reflectance spectrum of a normally incident TE polarized plane wave interacting
with an array of copper lines with width w = 34 nm as a function of the height h. The plot
features several values for the pitch of the grating. The spectrum is calculated using FEM.
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Figure 111: Reflectance spectrum of a normally incident TM polarized plane wave interacting
with an array of copper lines with width w = 34 nm as a function of the height h. The plot
features several values for the pitch of the grating. The spectrum is calculated using FEM.
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4.3 Summary

The same methodology as the one of section 3 was used. The effect of the geometry on
the reflectance and transmittance spectra of an array made of copper lines was discussed
based on the band structures of Figs. 83 and 84. According to these band structures, the
effective refractive index of the grating modes can now simultaneously have a real and an
imaginary part and it varies a lot less sharply than its PEC counterpart. This translates into
attenuation and less sharp cutoff. Moreover, the absorption of the copper lead to reduced
values for the reflectance and transmittance.
The pitch was also responsible for the activation of both the grating and diffraction modes.
Figs. 85 and 88 show that the spectra globally have the same shape as the PEC ones and
that the diffraction modes were excited for the same pitch as for the PEC lines, although
less efficiently. The TE spectrum confirmed that there were no sharp cutoff for the grating
modes, as it can for example be highlighted in Fig. 91a. TM polarization was very similar to
the PEC, although no EOT was seen for 100 nm, due to a different effective refractive index.
The effect of width on the activation of the grating modes was a lot less obvious than with
the PEC array since there is no more sharp cutoff. Instead, increasing the width mostly
increased the reflectance from a minimum to a maximum, as seen in Figs. 58 and 59.
The height was again responsible for thin-film interferences, as showed by Figs. 110 and 111.
The absorption of copper can be visualized, as more light is absorbed with increased line
height. For copper, the TE effective refractive index varies a lot more slowly than the PEC
one as a function of pitch and as a consequence, the different pitches of Fig. 110 were quite
similar. However, the TM curves are more disparate as the copper TM0 is different than the
EMA mode. For the same reason, the EOT is now seen for h = 500 nm instead of 100 nm.
A taller line height also allowed a better visualization of the modes for both TE and TM,
as seen in Figs. 108 and 109. The copper TE1 mode looks similar to the PEC one while the
copper TM0 mode is a bit different than the EMA one, featuring a higher field density in the
vicinity of the metal line due to the continuity of the magnetic field across the line interface.
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5 Conclusion and outlooks

In this master thesis, the interaction of light with periodic arrays of nanometer-wide
metal lines was studied. To do so, extensive use of wave optics, waveguide and diffraction
grating theories was made to better understand the interaction of light with a structure
made of perfect electrical conductor (PEC) lines, both for TE and TM polarizations. In
particular, we proposed to gather the results of those theories in an original band structure
to understand how light can couple into the array as a function of the geometrical parame-
ters. The structure was viewed as periodic metallic waveguides simultaneously constituting
a diffraction grating. The model was used to analyze quantitative numerical finite element
calculations of reflectance and transmittance spectra and was able to explain the different
variations of the spectra, although it could not predict their amplitudes for a given set of
geometrical parameters, nor could it predict the proportion of power that was located in
each propagating mode of the band structure.

First, an array of PEC lines was studied. The effect of the geometrical parameters are
summarized in section 3.3. The pitch was responsible for the activation of both the waveguide
and diffraction modes. The cutoff was visible for TE while extraordinary optical transmis-
sion (EOT) was observed for TM. The width only affected the waveguide modes, and had
an effect opposite to the pitch. The height was responsible for thin-film interferences and
highlighted the attenuation of evanescent modes. In general, the TE band structure was
able to predict the behavior of the reflectance and transmittance spectra, while the TM
band structure had to be modified with the effective medium approximation (EMA), as the
TEM was unable to describe the geometric dependence of the spectra at low pitch due to
its non-dispersive aspect.

Then, an array of copper line was studied and compared to the array of PEC lines. The
results are summarized in section 4.3. The TE and TM band structures used for copper
predicted some attenuation for the modes as well as less sharp transitions. The pitch was
also responsible for the activation of waveguide and grating modes. No clear cutoff pitch was
visible for the former, while the cutoff pitches were the same as PEC for the latter. EOT
was observed for TM at a height different than for the PEC lines. The effect of width on the
waveguide modes was less visible due to their smoother effective refractive index. However,
it was possible to observe surface plasmon polaritons (SPPs) at large width, but their effect
on the spectra was unclear. The height was again responsible for thin-film interferences and
allowed a better visualization of the modes propagating in the grating. The spatial distribu-
tion of copper TE1 mode appeared to be very similar to the PEC one, while the TM0 mode
featured some less expected field concentration near the metal lines. The absorbing nature
of copper lead the reflectance and transmittance to be scaled down with respect to those of
PEC.

In conclusion, the insight developed by studying an array of PEC lines was crucial to
understand the interaction of light with the an array of real metal lines. While the TE
behavior could be predicted by the corresponding band structure, some particular attention
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was required by the TM description, which in some cases failed to describe the spectra.

To go further, some additional geometrical parameters could be considered, namely the
incidence angle and the tapering (sidewall angle of the metallic lines). The incidence angle is
expected to modify the dispersion relation of the diffraction modes while leaving those of the
waveguide modes unchanged. A non-normal incidence angle should nonetheless modify how
light couples into those waveguide modes as it might yield a better or worse matching at the
interface for specific modes. The sidewall angle is expected to induce a height dependence
of the effective refractive index associated to a waveguide mode, as the separation distance
between two metallic plates now depends on the height. Moreover, it is the value of this
distance at the bottom of the line, where the width is the largest, that would fix the cutoff
of a waveguide mode, and some higher cutoff pitches should result from this geometrical
feature.
Additionally, it would be interesting to put more work into the understanding of the light
coupling mechanism, i.e., the matching at an interface and the integral overlap methods.
This would allow a better physical understanding of the light interaction with the array that
is not limited to a qualitative description of the different available modes, and might give
some understanding as to why one waveguide or diffraction mode is more excited in one case
than in another, which was not always explainable in the frame of this master thesis.
Ideally, a quantitative link more elaborate than the Fresnel equations could be made between
the dispersion relations featured in the band structures and the reflectance and transmittance
of the array, as the model used in this text was not able to produce such quantitative results.
The SPPs were not covered in details in this text but it might be interesting to measure
their impact on the reflectance and transmittance spectra. Since SPPs are features of real
metals that can result from a coupling mechanism such as a diffraction grating, they could
have a place of interest in an improvement of this thesis.
Finally, some other metals could be considered as well and then compared to both the PEC
lines and copper lines to further increases the understanding of the effect of the finite optical
constants and material properties on the reflectance and transmittance spectra.
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7 Appendix
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Figure 112: Band structure for the array of PEC lines under TM illumination, which features
all the modes contained below a pitch Λ = 1000nm, for a free-space wavelength λ0 = 532 nm,
width w = 34nm, refractive indices ñair = 1, ñSi = 4.15, ñSiO2 = 1.45 and θi = 45◦. The
solid lines represent the real part of the wave number, while the dashed lines represent the
opposite of its imaginary part. Blue curves correspond to waveguide modes, green curves
correspond to diffraction in reflection modes and red curves correspond to diffraction in
transmission modes.
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Figure 113: Band structure for the array of PEC lines under TE illumination, which features
all the modes contained below a pitch Λ = 1000nm, for a free-space wavelength λ0 = 532 nm,
width w = 34nm, refractive indices ñair = 1, ñSi = 4.15, ñSiO2 = 1.45 and θi = 45◦. The
solid lines represent the real part of the wave number, while the dashed lines represent the
opposite of its imaginary part. Blue curves correspond to waveguide modes, green curves
correspond to diffraction in reflection modes and red curves correspond to diffraction in
transmission modes.
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(a) Periodic boundary condi-
tions at the air layer.

(b) Periodic boundary condi-
tions at the array.

(c) Periodic boundary condi-
tions at the substrate layer.

Figure 114: Periodic Periodicity boundary conditions.

(a) Input port. (b) Output port.

Figure 115: Input and output ports.
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(a) Automatic triangular mesh.

(b) Automatic triangular mesh - zoom.

Figure 116: Automatic triangular mesh.
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Liège, 2019.

[3] Lukas Novotny and Bert Hecht. Principles of nano-optics. Cambridge university press,
2012.

[4] Challa SSR Kumar. UV-VIS and photoluminescence spectroscopy for nanomaterials characterization.
Springer, 2013.

[5] Karen Reinhardt and Werner Kern. Handbook of silicon wafer cleaning technology.
William Andrew, 2018.

[6] Kenneth E Bean and WR Runyan. Semiconductor integrated circuit processing technology.
Addison-Wesley, 1990.

[7] Gordon E Moore. “Cramming more components onto integrated circuits”. In: Proceedings of the IEEE
86.1 (1998), pp. 82–85.

[8] Metrology. https://semiengineering.com/knowledge_centers/manufacturing/
process/metrology/. Accessed: 19/05/2020.

[9] Metrology and Inspection. https://www.hitachi-hightech.com/global/products/
device/semiconductor/metrology-inspection.html. Accessed: 19/05/2020.

[10] David J Whitehouse. Handbook of surface metrology. CRC Press, 1994.

[11] Alain C Diebold. Handbook of silicon semiconductor metrology. CRC Press, 2001.

[12] D Keith Bowen and Brian K Tanner. X-ray metrology in semiconductor manufacturing.
CRC Press, 2018.

[13] Linda Towidjaja et al. “Back end of line metrology control applications using scat-
terometry”. In: Metrology, Inspection, and Process Control for Microlithography XX.
Ed. by Chas N. Archie. Vol. 6152. International Society for Optics and Photonics.
SPIE, 2006, pp. 688–699. doi: 10.1117/12.656515. url: https://doi.org/10.
1117/12.656515.

[14] M. G. Faruk et al. “Enabling Scatterometry as an In-Line Measurement Technique for
32 nm BEOL Application”. In: IEEE Transactions on Semiconductor Manufacturing
24.4 (2011), pp. 499–512.

[15] Christopher J Raymond. “Scatterometry for semiconductor metrology”. In: Handbook of silicon semiconductor metrology
(2001), pp. 477–514.

[16] H Jobin Yvon. Strain measurements of a Si cap layer deposited on a SiGe substrate determination of Ge content.
2013.

[17] Andrzej Gawlik et al. “Critical dimension metrology using Raman spectroscopy”. In:
Applied Physics Letters 117.4 (2020), p. 043102.

163

https://doi.org/10.1155/2014/739212
https://semiengineering.com/knowledge_centers/manufacturing/process/metrology/
https://semiengineering.com/knowledge_centers/manufacturing/process/metrology/
https://www.hitachi-hightech.com/global/products/device/semiconductor/metrology-inspection.html
https://www.hitachi-hightech.com/global/products/device/semiconductor/metrology-inspection.html
https://doi.org/10.1117/12.656515
https://doi.org/10.1117/12.656515
https://doi.org/10.1117/12.656515


[18] Janusz Bogdanowicz et al. “Nanofocusing of light into semiconducting fin photonic
crystals”. In: Applied Physics Letters 108.8 (2016), p. 083106.

[19] Andrzej Gawlik et al. “Enhanced light coupling into periodic arrays of nanoscale semi-
conducting fins”. In: Applied Physics Letters 113.6 (2018), p. 063103.

[20] Andrzej Gawlik et al. “Size-dependent optical properties of periodic arrays of semicon-
ducting nanolines”. In: Optics Express 28.5 (2020), p. 6781. doi: 10.1364/oe.386964.

[21] Cyriaque Genet and Thomas W Ebbesen. “Light in tiny holes”. In: Nanoscience And Technology: A Collection of Reviews from Nature Journals.
World Scientific, 2010, pp. 205–212.

[22] Hyungsoon Im et al. “Vertically oriented sub-10-nm plasmonic nanogap arrays”. In:
Nano letters 10.6 (2010), pp. 2231–2236.

[23] I. Chernykh et al. “Optical properties of 1D metal nanogratings”. In: Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques
5 (Oct. 2011), pp. 941–944. doi: 10.1134/S1027451011100065.
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