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Introduction

Since the beginning of the 20th century, research in low-temperature plasmas has grown
into a major field of plasma science. In particular, confined plasmas are of great interest
for a large range of technological applications: from domestic with lightning and plasma
displays panels (PDPs) [7], to electric space propulsion [34, 45] (e.g. the Hall thruster
in Fig. 1) and, more recently, medicine [51]. This vast domain of application gives rise
to many numerical models whose specificities are adapted to current needs. From the
literature, two main approaches are used: the first one is the kinetic approach, also
referred as particle methods, which consist of describing the plasma at the level of the
particle. This means that the motion of every particle is tracked at each time. Another
approach are the fluid models that describe the average motion of the particles and are
based on the resolution of velocity-moment of the Boltzmann equation. The former is
the most fundamental approach with very accurate results, but has a very high numerical
cost. In opposition, the latter is less precise but exhibits more reasonable computational
time. Hybrid models combining the fluid and the kinetic description have also shown
cheaper alternatives for low-temperature plasma modelling [46, 37].

Fig. 1: H9 Hall thruster (Credit: Univeristy of Michigan, USA)[1]

The main difficulties in plasma modelling is the very large mass disparity between
electrons and the other species that compose the ionised gas. This intrinsic multiscale
property makes the numerical problem very stiff. On the other hand, this mass ratio
plays a fundamental role in the plasma behaviour. In particular, in low collisional plasma
in which it leads to a large disparity in the motions of electrons and ions. The latter
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conducts to many physical phenomena such as: the two stream instabilities, the plasma
sheath or the electron drift instability appearing in magnetised plasma.

Fig. 2: Schematics of a typical discharge in which the sheath appear [14]

This project aims to simulate and study two of these common features: the first one
being the two-stream instabilities of a quasi-neutral mixture in a periodic domain. The
second one is the plasma sheath, a charge boundary layer in the vicinity of the walls
in which charge neutrality does not apply, as shown in Fig. 2. In both configurations,
disparate temporal and spatial scales are encountered, justifying the use of highly accurate
numerical algorithm to capture the multiple scales.
In this work, the numerical simulation of a two-fluid low-temperature plasma with the
use of Discontinuous Galerkin finite element Methods (DG-FEM) is presented. For this
purpose, the coupled resolution of the electrons and ions transports equations with a
Poisson’s equation for the electrical potential is carried out through a fully-implicit strat-
egy. This choice permits to overcome the strict stability constraints coming from the
electrons/ions mass disparity that affect explicit schemes.

Within the current state-of-the art, numerous numerical methods have been proposed
to simulate the two-fluid equations [48, 47, 69, 68, 27, 26, 25, 56]. In particular, specific
methods have been developed to face the main difficulties that arise in plasma modelling.
First, one may quote Asymptotic Preserving (AP) schemes [25, 29, 28], with the recent
breakthrough proposed by Alvarez Laguna et al.[2], which preserve the quasi-neutral
asymptotic limit without any need on the resolution of the intrinsic multiscale definition
of low temperature plasma [44]. In parallel to that, the very low mass ratio involved
between the electron and the other species yields in a very low Mach regime for the
electron. To face that, AUSM+-up method [48, 47] has been proposed as an alternative to
classical preconditions methods [70]. Finally, it has been shown that the low temperature
conditions introduce unsimilar difficulties in the management of the source terms which
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can be dominant (w.r.t the pressure terms). A proposed solution is the use of well
balanced schemes [53, 6].
Throughout this description, only a few have been performed using DG-FEM [68, 69,
56], and even less address fully coupled solving of the Euler-Poisson system of equations.
This work with its fully coupled resolution continues the one started by N. Corthouts [24]
during his M.Sc thesis In this writing, he intended to solve only the particles equations
and has derived an approximate expression for the potential.

This work is organised in three parts: one dealing with the plasma physics, one for the
numerical methods and one presenting the results. In the first part, a brief description
of the plasma physics is provided, the multi-fluid model is then derived and from the
Boltzmann’s equation. The transport equations associated to electrons and ions are
obtained as well as the Poisson’s equation for the electrical potential. The application
to the current two-fluid configuration is presented with the definition of the different
problems cover here. The structure of the two-fluid equation is studied to highlight the
characteristics.
In the second part, the DG-FEM is described and applied to the current configuration.
The strategy used to couple the diffusive and convective part of the problem is also
presented. The time integration using a fourth-order six-stages Explicit first stage, Single
Diagonally Implicit Runge-Kutta (ESDIRK) is then described with special consideration
made to the potential coupling and the ionisation contribution.
The last part corresponds to the presentation of the obtained results. First, a preliminary
work done onto the unidimensional Burgers equation is done presenting common features
of nonlinear schemes. Then, the results obtained for a two-stream periodic perturbation
configuration are presented. A comparison of the results obtained with explicit and fully
implicit time integrator is made. Finally, the results obtained for a plasma confined in a
cylinder with equipotential walls is presented and compared to state of the art solution,
as the one proposed by Alvarez Laguna et al. [2].
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Part I

Plasma physics
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Chapter 1

Plasma physics and multi-fluid
model

This chapter presents the physics associated to low-temperature plasma. Its common
features such as the electrons/ions mass disparity, the sheath formation and the Debye
length are introduced here. From that, the multi-fluid model is derived from the statis-
tical description made in the Boltzmann’s equation to the fluid electrons/ions transport
equations. These last are closed using a Poisson equation for the potential.

1.1 Physics of plasma

The behaviour of plasmas and its interaction with walls are well described by Chabert
& Braithwaite [14]. This section briefly introduce their main features. Let us consider
a plasma mixture composed of only single-charged particles of ions and electrons in a
background gas of neutral particles at rest of density much larger than those of the
charged species. The latter induces a weakly ionised plasma. The thermal velocity of
these charged particles are expressed as follow:

vth,e =
√

kBTe
me

and vth,i =
√

kBTi
mi

(1.1)

where vth,α is the mean velocity of the particle α, Tα is its temperature, mα is its mass
and kB is the Boltzmann constant. Because of the huge mass disparity between the ions
and electrons, i.e. mi � me, one has

|vth,e| � |vth,i| (1.2)

This means that electrons have much more mobility than ions. One the one hand, this
huge disparity lead mainly to numerical models that are very stiff to resolved. On the
other hand, it introduces particular features in the case of bounded plasma, e.g. the
sheath problem.
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Fig. 2: Schematics of the formation of the scheath

Let us introduce the features attached to this sheath and consider a plasma binary
mixture confined in an tank with equipotential walls (or floating walls) and a unidimen-
sional problem. A more detailed description of the sheath problem used for this work
is presented in section 2.3. At the beginning of the experiment, the tank is composed
of a quasi-neutral mixture of electrons and ions. This means that they have comparable
number densities, i.e. ne ∼ ni. The presence of the floating walls then induces a mean
flux of electrons Γe = nevth,e and ions Γi = nivth,i at the boundaries. Because of Eq. (1.2),
one has

|Γe| � |Γi| (1.3)
and so an higher number of electrons impacts the boundary charging it negatively. This
process hence creates a negative charge region close to the wall called the sheath in
which the quasi-neutrality is no more respected. A schematics of this sheath formation
is available in Fig. 2.
This region extends over several λD from the walls with λD called the Debye length:

λD =
√
ε0kBTe
n0e2 (1.4)

with ε0 being the dielectric permittivity of the vacuum, Te the electron temperature and
n0 the reference number density (usually associated to the initial electron number density,
i.e. n0 ∼ ne0). This parameter plays a key role in the size of the sheath as it quantifies
the distance over which significant charge separation occurs. Values around λD ∼ 10−4m
yields huge constraints onto the spatial resolution of the problem near the walls. The
Debye length can also be expressed as the ratio between the electron thermal velocity
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vth,e and the electron plasma frequency ωpe

λD = vth,e
ωpe

(1.5)

where the latter also plays an important role in the numerical stability of the problem.
This last phenomenon is explained in more detailed in section 5.1.

Now that physics of the sheath is well defined, their governing equations can be dis-
cussed. These are developed in the following sections.

1.2 Boltzmann’s Equation

As introduced in the previous sections, a plasma is a mixture of charged particles.
Because of the huge number of particle involved (e.g. n0 ∼ 1016 m3 for a typical gas
discharge [14]), a statistical approach is preferred. The evolution of the plasma system is
thereby described by the mean of a distribution function fα(x,v, t) (a positive function in
the six-dimensional phase space (x,v)) for the particle α. The evolution of fα is governed
by the Boltzmann’s equation [17]:

∂fα
∂t

+ v∂xfα + ∂v

(Fα

mα

fα

)
= Cα + Iα (1.6)

where Fα(x, t) is the total exerted force on a particle α at a position x and mα is the
particle mass. ∂x and ∂v denote respectively the divergence operators with respect to
the position and velocity of the particle. For a particle carrying a charge e, subjected
to a local electric field E and in the absence of any magnetic field B, the force term
Fα = e [E + v ×B] reduces to

Fα = eE (1.7)
The right hand side of Eq. (1.6) takes into account the effect of particle interactions
denoted by the elastic collision between the particles Cα and the particles ionisation Iα.
In the present work, the effect of these elastic particle collisions is assumed to be negligible
compared to the ionisation one. Boltzmann’s equation for collisionless plasma becomes

∂fα
∂t

+ v · ∇xfα + eE
mα

· ∇vfα = Iα (1.8)

This last equation will be the base of the plasma fluid description presented in the next
section.

1.3 Multi-fluid model

The Multi-fluid description of the plasma is derived from the Boltzmann’s equation
(1.8). Before diving into the derivation of the multi-fluid transport equations, let’s make
some assumptions:
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• The plasma mixture is assumed to be isothermal, meaning that their temperatures
remain constant, i.e. Tα(x, t) = Tα;

• Isotropic plasma and constant particle masses, i.e.mα(t) = mα, are also considered;

• The right hand side of Eq. 1.8 accounting to ionisation processes is neglected to
facilitate the derivation. This will be taken into account at the end of the develop-
ment.

The Multi-fluid model is then obtained following the methodology of Braginskii [11].
It introduces first the number density

nα(x, t) =
∫

3
fα(x,v, t)dv (1.9)

and the mean velocity

Vα(x, t) = 〈vα(x, t)〉 = 1
nα

∫
3
v fα(x,v, t)dv. (1.10)

These are two macroscopic quantities determined from the first two moments of the
particle distribution function fα. The density and momentum transport equations are
then obtained respectively from the zeroth and first velocity moments of the Boltzmann’s
equation (1.8), they are1

∂tnα + ∂x (nαV ) = 0
∂t (mαnαVα) + ∂x (mαnα 〈vv〉)− eαnαE = 0

(1.11)

By defining the perturbation velocity v′ = v − V whose average is zero, one has

〈vivj〉 =
〈(
Vi + v′i

) (
Vj + v′j

)〉
= 〈ViVj〉+

〈
v′iv
′
j

〉 (1.12)

If the plasma is isotropic, 〈
v′iv
′
j

〉
= 0, ∀ i 6= j (1.13)

and if only one direction gives non-zero component of the average velocity, then

〈vivj〉 = 0, ∀ i 6= j

〈vivj〉 = Vi
2 +

〈
v′i

2〉
, ∀ i = j

(1.14)

For a motion in the x direction, Eq. (1.11) can be written in the form

∂tnα + ∂x (nαVα) = 0
∂t (mαnαVα) + ∂x

(
mαnα

〈
vx

2
〉)

= eαnαEx
(1.15)

1Because the fluid is assumed isothermal, i.e. species’s temperature remains constant, the energy
equation is neglected in this development.
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where Vα and Ex represents the average velocity and the electric field in the x direction.
The macroscopic temperature of particle Tα can then be obtained from the expression of
the microscopic kinetic and temperature energy

mα

〈
vx
′2
〉

2 = kBTα
2 (1.16)

where vx′ = vx−Vα is the velocity fluctuation in the x direction and kB is the Boltzmann
constant. Recalling that 〈vx′〉 = 0, it gives〈

vx
2
〉

=
〈
(Vα + vx

′)2〉
= Vα

2 +
〈
vx
′2
〉

= Vα
2 + kBTα

mα

(1.17)

Substituting Eq. (1.17) in Eq. (1.15) and given that the electric potential φ follows the
relation Ex = −∂xφ, one get

∂tnα + ∂x (nαVα) = 0

∂t (nαVα) + ∂x

(
nαVα

2 + nαkBTα
mα

)
= eαnα

mα

∂xφ
(1.18)

One may note that Eq. (1.18) is not sufficient to completely solve the system as there
is no equation for φ. An additional one in then added to close the system. It takes the
form of a Poisson equation for the electric potential

∂xxφ = ρ

ε0
(1.19)

where
ρ =

N∑
α=1

nαeα (1.20)

is the electric charge density of a plasma mixture composed of N different species and ε0
is the dielectric permittivity of the vacuum.
Finally, the ionisation effect from the right hand side of the Boltzmann’s Equation is
taken into account. Since this phenomenon impacts only the amount of particles in the
discharge, it is mostly felt by the number density of each particle. As a result, the
ionisation rate is expected to appear only in the right hand side of the density transport
equation.

Therefore, taking into account the ionisation and the Poisson equation, the isothermal
Multi-fluid model for a particle α can be written in a general way following

∂tnα + ∂x (nαVα) = Jα

∂t (nαVα) + ∂x

(
nαVα

2 + nαkBTα
mα

)
= eαnα

mα

∂xφ

∂xxφ = −
N∑
α=1

nαeα
ε0

(1.21)
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where Jα represents the particle’s ionisation phenomena. This equation will be partic-
ularise to the current single-charged electrons and ions configuration in the following
chapter.
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Chapter 2

Application to a binary mixture
configuration

Now that the Multi-Fluid model has been derived, it has to be applied to the current
configurations which considered a binary mixture of electrons and ions. Eq. (1.21) then
reduces to a so-called Two-Fluid model discussed here. Then, a more precise description
of these configurations used in this work is presented alongside the boundary conditions
involved in the plasma sheath. Finally, the non-dimensional version of the Two-fluid
model is derived revealing its three key parameters, namely: the electron-to-ion mass
ratio, the ion-to-electron temperature ratio and the non-dimensional Debye length.

2.1 Two-Fluid model

The Two-fluid model coupled with a Poisson equation, also know as the two-fluid Euler-
Poisson equations, has been proven to be a useful tool for the simulation of isothermal
collisionless plasma and is then used in the current work. It consists of particularising
Eq. (1.21) when only two species are considered. The first one are the electrons carrying
a charge −e and the second one are ions with a charge e, where e = 1.602176634 · 10−19

C represents the elementary charge. The two-fluid Euler-Poisson equations then read

∂tne + ∂x (neue) = ne ν

∂tni + ∂x (niui) = ne ν

∂t (neue) + ∂x

(
neue

2 + pe
me

)
= ne e

me

∂xφ

∂t (niui) + ∂x

(
niui

2 + pi
mi

)
= − ni e

me

∂xφ

∂xxφ = ne − ni
ε0

e

(2.1)

where the subscripts e and i represent quantities attached to electrons and ions, ne and ni
are then the number densities ue and ui are the velocities, pe = nekBTe and pi = nikBTi
are the local pressures assumed to follow the perfect gas law, me and mi are the masses,
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e is the positive elementary charge, φ is the electric potential and ε0 is the dielectric
permittivity of the vacuum. One may notice the same ionisation Je,i = neν, with ν
the ionisation rate, is encountered by both species. Indeed, when an electron is created
through ionisation an ion is also created so that they both have the same expression.

In this work, the complete two-fluid Euler-Poisson system of equations given in Eq. (2.1)
will be solved numerically. This system will be used to resolve two different problems:
the first one being two-stream periodic perturbations and the second one dealing with
the plasma sheath problem. A description of these is available in the following section.
During the simulation because of the huge constraint coming from the electrons/ions
disparity, an implicit time marching will be implemented.
Despite the more flexibility in term of numerical stability, the implicit time stepping
allows us to integrate the evolution equations for the particles together with the Poisson
equation for the potential. Indeed, the latter is not an evolution equation, but a relation
that needs to be satisfied at each instant in time - including the sub-timesteps of the
Runge-Kutta time integrator. The equations resulting from the implicit time integration
of the particle equations on the one hand, and the Poisson system on the other, are
therefore combined in a single Newton iteration at each sub-timestep.

2.2 Definition of the two-stream perturbation prob-
lem

This first problem consists of the propagation of a two-stream instability in a low-
temperature collisionless isothermal plasma [27, 26] and will serve as a validation of the
project implementation. This instability occurs in a uniform mixture of density n0 and
where there is a relative velocity u0 between the electrons and the ions [18]. In this
problem, thermal plasma is considered. This means that electrons and ions possess the
same temperature, i.e. Te = Ti. In addition, ions that are 104 heavier than the electrons
are considered as well as periodic boundary conditions. A resume of the specifications
associated to the two-stream instability covered here is available in table 2.1 [2].

Two-stream instability
normalised reference density n0 1 Electron-to-ion mass ratio ε = me/mi 10−4

normalised reference velocity u0 1 Ion-to-electron temperature ratio κ = Ti/Te 1
domain length L 1 normalised Debye length λ = λD/L 10−4

Table 2.1: Characteristic parameters of the two-stream instability problem [2].

The specificity of this test case is that it neglects the ionisation phenomena inside the
mixture, i.e. ν ≈ 0. This leads to a right hand side that accounts only for the parti-
cles/potential interaction. In addition to that, an analytical solution to this problem is
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available [27, 25]. The latter takes the form of a sine wave of frequency ω and wave-
length k that is convected in the direction of the velocity u0. Mathematically, it has the
expression (see Appendix C for a detailed derivation)

u(x, t) = u0(x) + ũ sin (kx− ωt) (2.2)

with u0 the steady value and ũ the perturbation amplitudes. The tilde is here to empha-
sise the perturbed value. Assuming a fixed wavelength k = 2π, the value of ω is retrieved
from the characteristics equations of the electrons/ions transport system that takes the
form of a fourth-order dispersion relation [14] (see Appendix C.1 for a derivation)

F (k, ω) ≡ α4ω
4 + α3ω

3 + α2ω
2 + α1ω + α0 = 0 (2.3)

with

α4 = εχ, α3 = −2εχku0, α2 =
(
εk2χ

(
u2

0 − κ
)
− εn0 − k2χ− n0

)
α1 = 2

(
k2κχ+ n0

)
εku0 and α0 = −εk2u2

0n0 − εχk4κu2
0 + k4κχ+ k2n0 (κ+ 1)

(2.4)
Then, if Eq. (2.3) admits four real roots, it has been shown that the obtained ω will lead
to a stable solution.

2.3 Definition of the plasma sheath problem

As briefly introduced in section 1.1, the sheath problem that studied here consists of a
binary mixture plasma trapped inside a cylinder with equipotential walls of infinite height
and a radius equals to unity (in non-dimensional units), commonly refer as a discharge.
The problem is also considered unidimensional, with x representing the position of a
particle along the cylinder diameter. This problem has been well described by Chabert
& Braithwaite [14]. A resume of the specifications for discharge composed of Argon+ is
available in table 2.2.

Dimensionnal quantities Dimensionless quantities
reference number density n0 1016 m−3 Electron-to-ion mass ratio ε = me/mi 1.36× 10−5

Ion mass mi 40 u Ion-to-electron temperature ratio κ 0.025
Ion temperature Ti 0.05 eV Normalized Debye length λ = λD/L 3.5× 10−3

Electron temperature Te 2 eV Normalized ionization rate ν̃iz 0.0139
Bohm velocity uB 2187.87 ms−1 Normalised square of the electron Debye length χ = λ2

Electron plasma period ω−1
p 1.77× 10−10 s Normalized plasma period ω̃−1

p = ω−1
p uB/L 1.29× 10−5

Table 2.2: Characteristic values of an Argon+ RF Discharge [14].

For this problem a quasi-neutral plasma of density ne = ni = n0 is considered at the
beginning. After a certain time, because of the huge disparity in mass, and hence in
mobility, a region of depleted electrons grows in the vicinity of the walls. In this sheath,
the quasi-neutrality is no more respected and lead to a very steep gradient of the potential
between this region and the central region, called bulk.
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The purpose of this work is therefore to find a steady state to this sheath formation as
it has been done by Alvarez Laguna et al. [2] with its AP-scheme. An illustration of the
steady state solutions coming from his work is depicted in Fig. 2.1. One can noticed the
violation of the quasi-neutrality in the sheath and the steep gradient of the potential.

Fig. 2.1: Solution of a low temperature Argon+ plasma trapped in a RF discharge found
with a fluid model [2, 65].

2.3.1 Boundary conditions

In the near wall this region, the plasma is characterised by a depletion of electron and
is no longer quasi-neutral. Although the sheath can be describe following the Child-
Langmuir law [20, 50], the boundary conditions are set following the theory developed
by Rieman et al. [65].

A Maxwellian distribution function for the electron is assumed and that all the electrons
are absorbed by the wall [36]. If there is no secondary emission, the flux of electrons
collected by the walls is analog to Γe in Eq. (1.3), hence

neue|left = − neue|right = −ne
√

kBTe
2πme

(2.5)

On the other hand, a common practice is to consider that the charged heavy ions must
satisfy what is called the Bohm criterion. This condition states that the ions must enter
the sheath at velocity higher than its own speed of sound [8] which is commonly called
the "Bohm speed" and reads

uB =
√

kBTe
mi

(2.6)

As a consequence, the ions are supersonic when entering the sheath, and leaving the
domain [60]. For this reason, Neumann boundary conditions with zero gradients at the
walls are used for the ions quantities ni and niui. This means that their inner values are
imposed at the boundaries.
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In order to find a steady state flux of ions exiting the domain, particular attention has
to be paid onto the definition of the ionisation frequency ν. In addition to that, Riemann
et al.[65] has revealed that the ν is an eigenvalue of the problem. This means that there is
only one value of ν that permits to find a steady state solution. Alvarez Laguna et al.[2]
proposed an iterative procedure to obtain this value of ν that guarantee the solution to
reach a steady state which, for a domain length L, is given by

ν(t) = |niui(x = 0, t)|+ |niui(x = L, t)|∫ L
0 ne(x, t) dx

(2.7)

Finally, the boundary conditions associated with the potential has to be defined. Since
the potential is referrenced at the wall, one has

φ(x = 0) = φ(x = L) = 0 (2.8)

2.4 Non-dimensional equations

A non-dimensional form of the Two-fluid Euler-Poisson equations given in (2.1) can be
obtained by introducing some reference quantities: n0 ≡ ne0 ≡ ni0, the reference number
density common to both electrons and ions, L0 = l, the reference length, Te, the electrons
temperature andmi, the ions mass. The other reference quantities are then obtained from
the previous ones: the reference velocities is based on the Bohm speed u0 ≡ uB =

√
kBTe
mi

and the characteristics time t0 = L0
uB

is obtained from the reference length and velocity.
The electric potential is also scaled by φ0 = kBTe

e
. Note that the electric potential is

scaled by the electron temperature expressed in eV for low-temperature plasma [14]. It
gives the following non-dimensional quantities

ñe = ne
n0
, ñi = ni

n0
, ũe = ue

u0
, ũi = ui

u0
, x̃ = x

L0
, t̃ = t

t0
and φ̃ = φ

φ0
. (2.9)

where the quantities with (̃·) are non-dimensional. This "tilde" is dropped in the following
chapter in order to avoid clutter.
While for most of the term the treatment is classical and straightforward, a particular
attention is made on some terms as they are specific to the current problem. In these
terms, the remaining dimensional quantities will be highlighted in an other colour to
make the derivation clearer.

For the local pressure term assumed to follow prefect gas law, the scaling is

∂x

(
pe
me

)
= ∂x

(
nekBTe
me

)
= ∂x

(
nekBTe
εmi

)
= 1
L0
∂x̃ (n0 uB

2ε−1ñe) = n0uB
t0

∂x̃ (ε−1ñe)

∂x

(
pi
mi

)
= ∂x

(
nikBTi
mi

)
= ∂x

(
nikBκTe
mi

)
= 1
L0
∂x̃ (n0 uB

2κñi) = n0uB
t0

∂x̃ (κñi)

(2.10)
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The electric forcing term becomes :

ne e

me

∂xφ = ne e

εmi

∂xφ = n0 e

miL0
ε−1ñe∂x̃

(
kBTe
e

φ̃

)
= n0 uB

2

L0
ε−1ñe∂x̃φ̃ = n0 uB

t0
ε−1ñe∂x̃φ̃

−ni e
mi

∂xφ = − n0 e

miL0
ñi∂x̃

(
kBTe
e

φ̃

)
= −n0 uB

2

L0
ñi∂x̃φ̃ = −n0 uB

t0
ñi∂x̃φ̃

(2.11)
The non-dimensional ionisation term can be easily obtained from the adimensional ioni-
sation frequency ν̃ = ν t0, giving

neν = n0

t0
ñeν̃ (2.12)

Finally, the Poisson equation is nondimensionalised following

∂xxφ = ne − ni
ε0

e (2.13)

⇔ 1
L0

2∂x̃x̃

(
kBTe
e

φ̃

)
= n0 e

ε0
(ñe − ñi) (2.14)

⇔ ∂x̃x̃φ̃ = n0 e
2 L0

2

kBTe
(ñe − ñi) (2.15)

⇔ ∂x̃x̃ = χ−1 (ñe − ñi) (2.16)

Following these results, the non-dimensional expression of Eq. (2.1) reads

∂t̃ñe + ∂x̃ (ñeũe) = ñe ν̃

∂t̃ñi + ∂x̃ (ñiũi) = ñe ν̃

∂t̃ (ñeũe) + ∂x̃
(
ñeũ

2
e + ñeε

−1
)

= ñeε
−1∂x̃φ̃

∂t̃ (ñiũi) + ∂x̃
(
ñiũ

2
i + ñiκ

)
= − ñi∂x̃φ̃

∂x̃x̃φ̃ = χ−1 (ñe − ñi)

(2.17)

One can notice the appearance of three non-dimensional parameters defined as:

1. ε = me

mi

, the electron-to-ion mass ratio;

2. κ = Ti
Te

, the ion-to-electron temperature ratio;

3. χ = λD
2

L0
2 = kBTe

n0 e2L0
2 , the squared non-dimensional Debye-length.

Those non-dimensional parameters plays an important role in the numerical behaviour of
the system. The first two quantities, ε and κ, play a role in the definition of the system’s
propagation speed as shown in section 3.2, while χ, appearing in the Poisson’s equation,
has an impact in the evaluation of the non-dimensional electric potential φ̃(x) [2].
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We can now reformulate the boundary conditions introduced in the section before in
scaled quantities. The normalised electron flux passing through the boundaries becomes

neue|left = − neue|right = − ñe√
2πε

(2.18)

Similarly, for the non-dimensional potential, one has

φ̃left = φ̃right = 0 (2.19)
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Chapter 3

Structure of the equations

In this chapter, the mathematical structure of the Two-fluid model proposed in Eq. (2.1)
is studied, highlighting the contributions of two different subsystems namely, the fluid
one and the electrostatic equation. The eigenvalues and eigenvectors of the hyperbolic
scheme are then computed as well as the characteristic velocities of the system. Finally, a
discussion of the characteristics entering and leaving the domain is presented, since they
have a strong impact on the implementation of the boundary conditions.

3.1 Hyperbolic and elliptic equations

The normalised two-fluid Euler-Poisson equations used to describe plasma sheath prob-
lem are the following:

∂tne + ∂x (neue) = ne ν

∂tni + ∂x (niui) = ne ν

∂t (neue) + ∂x
(
neue

2 + neε
−1
)

= neε
−1∂xφ

∂t (niui) + ∂x
(
niui

2 + niκ
)

= − ni∂xφ
∂xxφ = χ−1 (ne − ni)

(3.1)

This system of equations can be split into two subsystems: a hyperbolic one, which
consists of the first four equations of Eq. (3.1) and an elliptic one, composed of Poisson’s
equation for the electric potential. Because of their structures, these two subsystems
exhibit totally different behaviours. As an example, the hyperbolic schemes presents
characteristics lines in the domains. This means that the simulation depends of finite
propagation speeds that must be determined. This will be done in the next section.
On the other hand, for the elliptic subsystem

∂xxφ = χ−1 (ne − ni) (3.2)

no real characteristics can be found since Eq. (3.2) is characterised by infinite speed of
propagation of a perturbation. In this case, a solution at given position in the domain
would depend on the whole domain including the boundaries. The only condition to find
a definite solution to Eq. (3.2) is then to impose a set of boundary conditions.
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3.2 Eigenvalues and eigenvectors of the hyperbolic
equations

Let us consider here the first four equations of Eq. (3.1)

∂tne + ∂x (neue) = ne ν

∂tni + ∂x (niui) = ne ν

∂t (neue) + ∂x
(
neue

2 + neε
−1
)

= neε
−1∂xφ

∂t (niui) + ∂x
(
niui

2 + niκ
)

= − ni∂xφ

(3.3)

This set of equation can be rewritten in conservative form as

∂tu+ ∂xF = S (3.4)

with the conservative variable vector

u =
(
ne ni neue niui

)T
F =

(
neue niui neue

2 + neε
−1 niui

2 + niκ
)T

S =
(
neν neν neε

−1∂xφ −ni
)T (3.5)

denote respectively the unknowns vector u, the fluxes vector F and the source term
vector S. Alternatively, Eq. (6.4) can also be written as

∂tu+A∂xu = S (3.6)

with

A = ∂F

∂u
=


0 0 1 0
0 0 0 1

ε−1 − ue2 0 2ue 0
0 κ− ui2 0 2ui

 (3.7)

The matrix A admits a set of real and non degenerate eigenvalues

λ0 = ue −
√
ε−1

λ1 = ue +
√
ε−1

λ2 = ui −
√
κ

λ3 = ui +
√
κ

(3.8)

which represent the propagation speeds of the information in the system. The system
eigenvectors are then

v0 =
(
1 0 λ0 0

)
v1 =

(
1 0 λ1 0

)
v2 =

(
0 1 0 λ2

)
v3 =

(
0 1 0 λ3

)
(3.9)
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From Eq. (3.8), one can extract the normalised speed of sound of the electrons ce =√
ε−1 and ions ci =

√
κ. In the case of Argon+ plasma, they equal [14]

ce =
√
ε−1 ' 271 ci =

√
κ ' 0.16 (3.10)

For the sheath, this strong velocity disparity between the electrons and ions is very
constraining to the numerical simulation. Indeed, the numerical scheme must be able
to capture phenomena that happen at very different speeds. This coupled with steep
gradient encountered in the presheath and the sheath, results in a very stiff problem to
solve. Those difficulties will be summarised in section 5.1 speaking about the stability of
the numerical schemes.

3.2.1 Boundary conditions and characteristics lines

A quick analysis of the characteristics behaviour at the frontier of the domain will
permit to correctly set the different boundary conditions. As explained in section 2.3.1,
in the case of the sheath problem ions are supersonic when they enter the sheath and
are expected to be supersonic when they collide with the walls. As a consequence, the
characteristics associated to λ2 and λ3 are pointing outward the domain. In other words,
the ions take the information from inside the discharge and convect it outside. For this
reason, there is no need of specifying a boundary condition for the ions.
Conversely, from Eq. (2.18), one find an electron velocity at the boundary that ranges√

1
2πε ' 108 <

√
ε−1 (3.11)

It means that the electrons are subsonic when they collide with the wall. The charac-
teristics associated to λ0 and λ1 are always organised as one pointing inside the domain
and the other pointing outside. The electrons takes thereby the information from both
outside and inside the domain. Since at each boundary only one characteristics enters
the domain, one has to specify only one boundary condition per walls for the electrons.
This quick analysis permits to correctly set the boundary conditions of the sheath prob-
lem. However, if the numerical flux is a true upwind scheme, it will not consider the
values at the boundaries if the particle is supersonic.
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Part II

Numerical methods
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Chapter 4

Discontinuous Galerkin Finite
Element Method

This Chapter presents the Discontinuous Galerkin finite element method (DG-FEM) and
its application to the current plasma model. This method uses discontinuous interpolation
in combination with a Galerkin variational formulation. The main property of DG-FEM is
the broken trial space. The solution is fully regular inside the element, but not necessarily
continuous across elements. In contrast to most finite element method in which the
solution has to be at least C0 across elements.
Since 1973, this methods has developed a vast domain of application [63, 21] although it
starts being used more frequently over the recent years. Indeed, working with DG-FEM
has several advantages:

• the capability to provide a consistently high order of accuracy in terms of interpo-
lation and spectral properties, almost independent of (unstructured) mesh quality;

• the element boundary flux formulation allows for a straightforward and fully precise
implementation of boundary conditions without local modification of the method;

• the lack of continuity introduces extra flexibility in the local choice of interpolation
order and the use of non-standard shape functions. (e.g. Multi-order DG-FEM).

The Chapter is organised as follows. First, the DG method is presented in a general man-
ner and applied to a very general conservative law. Then, the discretisation is applied to
the current plasma system of equations, with a discussion of proper numerical fluxes, the
internal penalty method and the computation of the source term. Finally, a description
of ForDGe, the DG-FEM solver used for this work, is made.

4.1 Application to a conservative system

Let us consider the general conservative system [39]

∂tu(x, t) + ∂xF (u, x, t) + ∂xD(u, ∂xu, x, t) = S(u, x, t) x ∈ Ω, t ∈ R+ (4.1)
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with Ω being the unidimensional domain, x the position on Ω, and t the temporal variable.
u is the state vector of conserved variables, F is the convective flux vector, D is the
diffusive flux vector and S represents the source term vector.
Moreover, the diffusive flux D can be expressed in the following manner [39] (Einstein
notation has been adopted, i.e. summation occurs on repeated indices)

Dk
m = −Dmnkl

∂un
∂xl

(4.2)

where D is the Jacobian matrix of D with respect to the solution gradient, with m and
n the indices over the variables, and k and l on the coordinate directions. A particular
attention will be addressed to this contribution.

4.1.1 Galerkin variational formulation

In order to express a general form of the Galerkin Variational formulation, a generic
flux G = F +D is considered here so that Eq. (4.1) is reformulated as

∂tu(x, t) + ∂xG(u, ∂xu, x, t) = S(u, x, t) x ∈ Ω, t ∈ R+ (4.3)

A weak form of Eq. (4.3) can be obtained by multiplying both members by φ(x), φ ∈
C1(Ω) and integrating over the whole domain Ω. After integration by parts, it gives the
following "weak form"∫

Ω
(∂tu− S) ϕdV −

∫
Ω
G ∂xϕdV +

∮
∂Ω
G · nϕdS = 0 (4.4)

where n is the normal of the face boundary ∂Ω pointing outward of the element.
Let us consider now that the domain Ω is partitioned in N non-overlapping elements
with Ωe corresponding to an element. The frontier ∂Ωe is then the union of the faces f
of the element. Mathematically, it means that

∂Ωe =
⋃
f

If (4.5)

where If represents the interfaces between two elements or between one element and the
boundary of the domain. As a result, Eq. (4.4) becomes

∑
e

∫
Ω

(∂tu− S) ϕdV −
∑
e

∫
e
G ∂xϕdV +

∑
f∈∂Ωe

G · nϕdS

 = 0 (4.6)

where the subscript e stands for an element and f the element’s faces. The last term
involves inter-element flux which depends on the value of u and ϕ at the two sides of the
boundary such as∑

f∈∂Ωe
G · nϕdS =

∑
f

∫
f
ϕG · ndS (4.7)

=
∑
f

∫
f

(
ϕ+G+ · n+ + ϕ−G− · n−

)
dS (4.8)
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n
u+ u−

Fig. 4.1: Schematics of the convention used for suffixes + and − carried by the solution
when approaching the interface (represented by the thick line).

The + and − are here to distinguish the values at both side of an interface, depending
on the element from which the interface is approached. As illustrated in Fig. 4.1, the
sign + corresponds to the elements of which its exterior normal corresponds to that of
the oriented face, while −corresponds to the other (i.e. n+ = n and n− = −n). The
general Galerkin variational formulation is hence∑

e

∫
Ω

(∂tu− S) ϕdV −
∑
e

∫
e
G ∂xϕdV +

∑
f

∫
f
γ
(
u+,u−;ϕ+, ϕ−;n

)
dS = 0 (4.9)

where the first term accounts for the temporal derivative of the elemental solution and
its source term S, the middle term is related to the element’s volume flux G and the last
one to the interface flux γ. A particular attention will be paid onto the definition of the
last flux γ since this term has no general expression. Moreover, its formulation depends
strongly on the subsystem that is considered, either the hyperbolic one, nor the elliptic.

4.1.2 Convective variational formulation

It has been found that the discretisation of the convective part of Eq. (4.9) is stabilised
by using the approximate Riemann solvers F∗, previously developed for the finite volume
method as the basis for the interface flux [39, 21]:

γF
(
u+,u−;ϕ+, 0;n

)
= ϕ+F∗

(
u+,u−;n

)
(4.10)

This choice satisfies all of the requirements for a stable and convergent numerical method
[30, 39]:

1. Conservativity: The conservation principle of Eq. (4.4) has to be retrieved at the
discrete level. This is translated by the fact that the flux balance should be closed
at the level of the interface, requiring:

F∗
(
u+,u−;n

)
= −F∗

(
u−,u+;−n

)
(4.11)

2. Consistency: The numerical flux is said to be consistent if the residual equation1

Vi∂tu = −
∑
j∩i 6=∅

∫
fij
F∗
(
u+,u−;n

)
dS (4.12)

1For the sake of simplicity, the normal of the face fij is pointing outward of the cell i into the cell j
in this example.
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evaluated with the actual solution u is zero. The true solution is the same on either
side of the face such that we find the requirement

F∗
(
u,u;n

)
= f(u) · n (4.13)

3. Stability: the numerical flux should be chosen such that the solution is unique.
One exmaple of stable flux is the "E-flux" (standing for "Entropy-consistent flux").
A numerical flux is then a E-flux if, ∀v ∈ {θu− + (1− θ)u+} , θ ∈ [0, 1], one has(

F∗
(
u−,u+;n

)
− f(v)

) (
u+ − u−

)
≥ 0 (4.14)

This stability criterion guarantees that the entropy of the system does not grow.
Since the mathematical definition of the entropy corresponds to an energy of the
solution, it must decrease with time or at least remains a constant

4.1.3 Diffusive variational formulation

An Interior Penalty Method (IPM) is used for the discretisation of the viscous term of
Eq. (4.1). This method provides compact evaluation of the residual and hence simplifies
greatly the evaluation of the Jacobian [39]. On the other hand, IP methods depends
on a tunable, seemingly arbitrary parameter. Sharp estimates for this parameter were
developed in the thesis of Hillewaert [39].

IP methods can be constructed starting from the reinterpretation of DG methods as
elementwise FEM problems, which strive for a continuous solution across boundaries by
imposing the solution in the neighbouring elements as a Dirichlet condition on the element
boundary.
To illustrate this, let considered a simple linear elliptic problem of a scalar u on a domain
Ω with Dirichlet boundary conditions on ∂Ω

∂u

∂t
+∇ · (−D · ∇u) = 0 ∀x ∈ Ω

u = u∗ ∀x ∈ ∂Ω
(4.15)

for which an approximate finite element solution u is sought using the Galerkin variational
formulation:∫

Ω
ϕ
∂u

∂t
dV +

∫
Ω
∇ϕ · (D · ∇u) dV −

∮
∂Ω
ϕ (D · ∇u) · n dS = 0, ∀ϕ ∈ C1(Ω) (4.16)

A common approach would be to impose strongly the value of u at ∂Ω. This is relatively
easy to implement and has the intuitive advantage to use the exact the solutions at those
locations where it is a priori known. However, this may not be very well suited in case the
boundary condition data are noisy, as illustrated by the red line in Fig. 4.2. One would
prefer an approach analogue to the green line that minimises the average interpolation
error between u and u∗.
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Fig. 4.2: Strong (red) and weak imposition (green) of Dirichlet boundary conditions. The
strong imposition may lead to large error and potentially very rapidly varying values. The
weak one would be preferred as it proposes much smoother values with also a lower global
error [39].

The idea is then to penalise the difference u−u∗ through an additional term DP , called
Galerkin penalty term such that
∫

Ω
ϕ
∂u

∂t
dV +

∫
Ω
∇ϕ · (D · ∇u) dV −

∫
∂Ω
σϕ (u− u∗) dS︸ ︷︷ ︸

DP

−
∫
∂Ω
ϕD∇u · n dS︸ ︷︷ ︸

DD

−θ
∫
∂Ω

(u− u∗)D∇ϕ · n dS︸ ︷︷ ︸
DT

= 0 (4.17)

where the penalty parameter σ is chosen such that the positive contribution of the penalty
term dominates the boundary flux term. The term DD denotes the boundary flux term
and is retained here for consistency1. The last term DT is an additional consistency
term. Finally, θ is an arbitrary parameters, that can take three value depending on the
type of IPM [39]:

• θ = 1 for symmetric interior penalty (SIPDG) method, which exhibits optimal
convergence.

• θ = −1 for non-symmetric interior penalty (NIPDG) method, which elimitates the
destabilising effect of the interface terms, and hence only require σ > 0.

• θ = 0 for incomplete interior penalty (IIPDG) method, which only has the advan-
tage of simplicity. one has to impose a value for σ that is bigger than a critical
value σc.

Sharp optimal parameters for the "arbitrary" parameter σ were proposed in [39].

1In the "strongly" case, the value of u was imposed at the boundary, meaning that the method did
not solve for the solution on this boundary, hence ϕ = 0. Now in the "weak" form, it is not the case so
that this term has to be taken into account.
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Therefore, for the current system of conservative equations (Eq. (4.9)), the expression
of the diffusive interface flux γD is obtained based on these penalty terms

γD
(
u+,u−;ϕ+, ϕ−;n

)
= σ[[ϕ]] · [[u]] + [[ϕ]] · {{D}}+ θ[[u]] · {{D}} (4.18)

where the operators {{·}} and [[·]] represents respectively the average and the jump
operator (see Appendix A for more details of these operators).

4.1.4 Shape functions and residual equation

In this section, the choose of the linearly independent function ϕi (called shape func-
tions) is presented. Let us consider a set C0

∞(Ω) of function that are infinitely contin-
uously differentiable on an element Ωe and whose support is this element, and ϕi be a
basis function of C0

∞(Ωe). Then ϕ ∈ C1Ω and Galerkin variational formulation given in
Eq. (4.9)is still valid for any ϕi and reads
∑
e

∫
Ω

(∂tu− S) ϕi dV −
∑
e

∫
e
G ∂xϕi dV +

∑
f

∫
f
γ
(
u+,u−;ϕ+

i , ϕ
−
i ;n

)
dS = 0 (4.19)

The basis test function chosen here are the Gauss-Lobatto-Legendre (GLL) polynomials.
This means that shape functions ϕj(x) consist of based on Lagrange interpolants based
upon the Lobatto-Legendre quadrature rule control points. An illustration of these GLL
polynomials for order 5 and 7 is available in Fig. 4.3. In literature, it is shown that this
choice provides a much higher robustness for higher orders of interpolation. As a results,

Fig. 4.3: Illustration of the Gauss-Lobatto-Legendre test function of order 5 (on the left)
and order 7 (on the right). One can see that all of these polynomials pass by the same
control points (denoted by the red dots). In addition to that, they equal 1 only once
above one of these points.

the approximate solutions coming from these projections can be expressed following:

uh(x) ≡
N∑
j=1
ujϕj(x) (4.20)
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and then the approximated contributions are found by evaluating their expression with
the approximated solution and its gradient

Fh(x) ≡ F (uh(x)) Dh(x) ≡D(uh(x),∇uh(x)) Sh(x) ≡ S(uh(x),∇uh(x)) (4.21)

where the subscript h is chosen here to emphasise the difference between the approximated
and the true solution. It will be omitted in the next parts of the reports to avoid clutter.
This gives rise to the final discretised equations

∑
e

∫
e
ϕiϕj∂tujdV −

∑∫
e
∂xϕi (Fh +Dh) dV +

∑
e

∫
e
ϕiShdV

+
∑
f

∫
f
γ
(
u+,u−;ϕ+

i , ϕ
−
i ;n

)
dS

(4.22)

with e the elements and f the interfaces in the mesh. Since a shape function ϕi is
supported on a single element, this further simplifies to the semi-discrete form

Mij∂tuj = Ri (4.23)

with Mij the mass matrix defined as

Mij =
∫
e
ϕiϕjdV (4.24)

with e the common element on which both ϕi and ϕj are defined, and Ri the (steady)
residual associated to shape function ϕi:

Ri =
∑∫

e
∂xϕi (Fh +Dh) dV −

∑
e

∫
e
ϕiShdV −

∑
f

∫
f
γ
(
u+,u−;ϕ+

i , ϕ
−
i ;n

)
dS (4.25)

This expression can be reformulated as a set of ordinary differential equations for each of
the unknowns, by inverting the mass matrix:

∂tui = M−1
ij Rj (4.26)

The fact that the mass matrix is defined per element allows for its exact inversion. This is
one of the advantages of DGM since this inversion is a prerequisite for fully accurate time
integration. This equation will be integrated in time using the time integrator discussed
in Chapter 5

4.2 Application to the plasma equations

Now that the general formulation of DGM has been established, let us apply this
method to the current system of plasma equations. First, the construction of the numer-
ical flux is developed. Then, a presentation of the current application of internal penalty
terms is provided. In the last section, a small discussion on the implementation of the
ionisation frequency is depicted.
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4.2.1 Mapping

In this section, the different terms presented in Eq. (4.1) are particularised here to the
isothermal plasma system of equations. Recalling the isothermal plasma system to be
discretised

∂tne + ∂x (neue) = ne ν

∂tni + ∂x (niui) = ne ν

∂t (neue) + ∂x
(
neue

2 + ε−1ne
)

= ε−1ne∂xφ

∂t (niui) + ∂x
(
niui

2 + κni
)

= − ni∂xφ
∂xxφ = χ−1 (ne − ni)

(4.27)

one obtains for an element i and unknowns ui =
(
ne ni neue niui φ

)T

Fi =


neue
niui

neue
2 + neε

−1

niui
2 + niκ
0

 Di =


0
0
0
0
∂xφ

 Si =


neν
neν

neε
−1∂xφ

−ni∂xφ
χ−1 (ne − ni)

 (4.28)

4.2.2 Numerical fluxes

The numerical fluxes F∗ used for this work is the Roe numerical flux [66]. It’s con-
struction is developed in this section.
Recalling Eq. (3.4), the hyperbolic part of the plasma equations can be reformulate as

∂tu+A∂xu = S (4.29)

where A = ∂F
∂u

. The Roe methods is based onto the approximation of the matrix A(u)
by 1 Ah(uL,uR) whose construction has to ensure [52]:

1. conservativity with Ah(uL,uR) [uL − uR] = F (uL)− F (uR)

2. hyperbolicity of the system with a Ah that has real eigenvalues,

3. consistency with A(uL, uR) that tends to ∂F
∂u

(u) when uL,uR → u

It gives a numerical flux that has the expression

F∗(uL,uR) = F (uL) + F (uR)
2 + |Ah(ul,ur)| (ur − ul) (4.30)

where the matrix |Ah(uL,uR)| has the same eigenvectors as Ah and has eigenvalues that
are the absolute values of the eigenvalues of Ah.

1For the sake of simplicity, the convention used in section 4.1.1 regarding the value at both side of
the interface is replaced by (·)Left and (·)Right in the present section.

29



Then, if λ̄i and v̄i are respectively the eigenvalues and eigenvectors of Ah(uL,uR),
Eq. (4.30) becomes

F∗(uL,uR) = F (uL) + F (uR)
2 − 1

2
∑
α

aα
∣∣∣λ̄α∣∣∣ v̄α (4.31)

The idea proposed by Roe [66] is then to compute λ̄ and v̄i as the eigenvalues of the
matrix Ah(ū) evaluated at an average states ū, called Roe’s average.
Following Eq. (3.7), the matrix Ah(ū) is then

Ah =


0 0 1 0
0 0 0 1

ε−1 − ū2
e 0 2ūe 0

0 κ− ū2
i 0 2ūi

 (4.32)

with
ūe =

neueL√
neL

+ neueR√
neR√

neL +√neR
and ūi =

niuiL√
niL

+ niuiR√
niR√

niL +√niR
(4.33)

the electron and ions Roe averaged velocities. Analogue eigenvalues and eigenvectors
than those found in Eq. (3.8) and (3.9) are retrieved from Ah. The eigenvalues are

λ̄0 = ūe −
√
ε−1

λ̄1 = ūe +
√
ε−1

λ̄2 = ūi −
√
κ

λ̄3 = ūi +
√
κ

(4.34)

for the eigenvectors

v̄0 =
(
1 0 λ̄0 0

)
v̄1 =

(
1 0 λ̄1 0

)
v̄2 =

(
0 1 0 λ̄2

)
v̄3 =

(
0 1 0 λ̄3

)
(4.35)

Knowing Eq. (4.30) and (4.31), the jump factors aα are computed from
1
2
∑
α

aαv̄α = (uL − uR) (4.36)

so that for each quantities

a0 = (neR − neL) λ̄1 − (neueR − neueL)
2
√
ε−1

a1 = −(neR − neL) λ̄0 − (neueR − neueL)
2
√
ε−1

a2 = (niR − niL) λ̄3 − (niuiR − niuiL)
2
√
κ

a3 = −(niR − niL) λ̄2 − (niuiR − niuiL)
2
√
κ

(4.37)

30



Injecting Eq. (4.34), (4.35) and (4.37) in Eq. (4.31), gives therefore the following Numer-
ical flux for the plasma convective part

F∗ = F (uL) + F (uR)
2 −



a0

∣∣∣λ̄0

∣∣∣+ a1

∣∣∣λ̄1

∣∣∣
2

a2

∣∣∣λ̄2

∣∣∣+ a3

∣∣∣λ̄3

∣∣∣
2

a0

∣∣∣λ̄0

∣∣∣ λ̄0 + a1

∣∣∣λ̄1

∣∣∣ λ̄1

2
a2

∣∣∣λ̄2

∣∣∣ λ̄2 + a3

∣∣∣λ̄3

∣∣∣ λ̄3

2


(4.38)

4.2.2.1 Harten entropy fix

It has been shown that the Roe numerical flux may give the wrong answer when
velocities approach the sonic point, i.e. |ūα| ≈ cα [59]. At this point, the Roe lienarisation
may lead to solution that is not entropy stable (i.e. Eq. (4.14) that is not fulfilled). One
solutions is then to add an entropy fix to the numerical flux implementation. Due of its
simplicity, an Harten entropy fix [38] is chosen for the current implementation. This fix
consists of using a modified eigenvalues qH(λ̄α) in Eq. (4.31) instead of λ̄α, such that

qH(λ̄α) =


(λ̄α)2

4εk
+ εk if

∣∣∣λ̄α∣∣∣ < 2εk∣∣∣λ̄α∣∣∣ if
∣∣∣λ̄α∣∣∣ ≥ 2εk

(4.39)

where the parameter εk is a positive constant value, which Harten suggests to be chosen
in the interval

(
0 , 1

2

)
[59, 38]. This small fix will ensure that the Roe flux always satisfies

Eq. (4.14).

4.2.3 Penalty terms

As presented in section 4.1.3, an internal Penalty method is used for the evaluation
of the diffusive interface flux γD. In this case, an incomplete interior penalty method
(IIPM) (i.e. θ = 0) is considered with the choose of σ such that

σ =


1.001

2 if the diffusive tensor D is symmetric

1.001 otherwise
(4.40)

Consequently, it gives a diffusive interface flux that is expressed as

γD = σ[[ϕ]] · [[u]] + [[ϕ]] · {{D}} (4.41)

However, a particular attention has to be paid onto the application of this Galerkin
penalty term. Indeed, Eq. (4.28) shows that the diffusive flux D has a non-zero value
only for the last equation. For this reason, the penalty will be activated only for the last
unknown of each element, and deactivated for the others.
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4.2.4 Source term computation

A particular attention has also been paid onto the computation of the Source term S.
The latter is split in two contributions: a first one accounting for the ionisation processes
Sν and a second one that refers to the potential interactions between the species momenta
and the Poisson’s equation Sφ. Mathematically, this means S = Sν + Sφ such that

Sν =


neν
neν
0
0
0

 and Sφ =


0
0

neε
−1∂xφ

−ni∂xφ
χ−1 (ne − ni)

 (4.42)

This split architecture has been used in order to compute the ionisation contribution only
when it is necessary. As an example, in the two-stream perturbation test case this term
is deactivated since it neglects ionisation effects.
The ionisation frequency ν is computed following Eq. (2.7) where the integral of electron
density over the domain has been computed using the Gauss quadrature rule

∫ L

0
ne dx ≈

(
JGe
)−1 p∑

j=1

N∑
i=1

wjnei (4.43)

for a domain composed of N elements of order p. JGe is the geometrical jacobian of an
element.

4.3 ForDGe solver

This section describes the DG-FEM solver, called ForDGe, used to solve the plasma
equations given in Eq. (2.17). ForDGe is a cartesian adaptive DGM solver. The specificity
of this solver is that an immersed approach is used for the geometrical discretisation which
eases substantially the mesh generation on complex geometry. Still under development
in the Aerospace departmement of the University of Liège, the aims of ForDGe are to
provide highly accurate solutions to generic complex physics in complex and evolving
geometry (i.e. in 3D printing, in topology optimisation).
ForDGe is implemented using C++ programming language and allow multi-thread res-
olution with the use of OpenMP library. Its architecture is organised around 5 main
classes:

• FMesh class: This first class regroups all the in formations related to the mesh
such as the number of dimension, the domain size in each dimension, the number
of elements as well as their interpolation order. It stores these information for each
element and reorganise data for efficient interface computation.

• FConservationLaw class: As shown in Fig. 4.4, it defines the template in which all
the conservation law that are implemented. The derived classes then integrate all

32



the information in relation to the physics and the types of the considered variables
as well as the definition of the fluxes, the initial conditions and the boundary condi-
tions. It also integrates the computation of post-process parameters (e.g. pressure,
kinetic energy, etc.). In the frame of this work, the FPlasmaCLaw and the FBurg-
erCLaw have been implemented. This allows to define all of the finite element and
integration operations independently of the specific physics.

Fig. 4.4: Architecture of the FConservationLaw class which accounts for the physics of
a given conservation law. For this work, the FBurgersClaw and FPlasmaCLaw classes
have been implemented.

• FDGBase class: This third class deals with the DG aspect of the discretisation. It
is the basis for all operations that involve the finite element discretisation, includ-
ing post-processing. Its main function is to support the assembly, and therefore
it provides the main functionality to compute the different contributions to the
residual. Fig. 4.5 illustrates the different contributions that are considered for the
computation of this residual. It is also the class that integrate the IPM strategy
presented in section 4.2.3 and make the collocation from the quadrature points to
the interpolation ones.

Fig. 4.5: Architecture of the FDGBase class which incorporate the DGM formula-
tion in ForDGe. The contribution of FSourceTerm, FSourceTermIonization and FDG-
GaugeTerm are specific to this work while the shock capturing one is used for another
physics.

• The FIterator class provides a generic interface for methods that solve a particular
steady set of equations, either in the case of steady state solutions, or resulting from
the implicit systems that need to be solved during time integration.

• FTimeIntegrator class: Finally comes the class that make the time integration of the
discretise equation (4.26). At the present states, It allows explicit and implicit time
integration. The former based on the fourth-order Runge Kutta (RK4) methods
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and latter based on ESDIRK64 or RORK implicit methods1.

Next to this classes, optimised data structures are available that exploit the structure
of the DGM solution by reinterpreting in matrix form as discussed in [39], in view of
optimising assembly. In the same vein, a dedicated sparse matrix is implemented.

1ESDIRK64 stands for fourth-order six-stages Explicit first stage, Single Diagonally Implicit Runge-
Kutta and RORK for Rosenbrock-Runge–Kutta. For this work, the ESDIRK64 method is used as describe
in the next chapter.
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Chapter 5

Time discretisation

This chapter presents the time discretisation of the system. In the current work, a
fourth-order Explicit Step, Single Diagonally Implicit Runge-Kutta (ESDIRK64) scheme
is used to carry out the time integration of the coupled Euler-Poisson system. This type
of Runge-Kutta (RK) implicit iterator has demonstrated an accuracy that are well suited
to match the spatial accuracy of DG methods and exceeds that obtained with classical
Backward Differentiation Formulas (BDF) methods [3].
It has been shown in the previous chapters that the physics of plasma introduces stringent
constraints to the simulation. The stability of the numerical scheme is thereby firstly
discussed. By supposing a fixed time step throughout the simulation, this allows us to
find a condition on the definition of the time step. Then, the RK family of integrator is
presented in a more general before diving into the description of the ESDIRK64 scheme.

5.1 Stability of the numerical scheme

As already mentioned, a fixed time step is used for all the simulation. This parameter
plays a key role in the (linear) stability of the explicit time discretisation. In the case of
plasma, this stability is mainly restricted by a Courant–Friedrichs–Lewy (CFL) condition
that takes into account the scale of the convective characteristic speeds and a condition
accounting for the characteristics time scale of the source term [25, 28]. If ∆t and ∆x
denote respectively the time step and the element size, the CFL number is given by

CFL = ∆t |λmax|
∆x < 1 (5.1)

with |λmax| = max(λ0, λ1, λ2λ3) the maximum propagation speed. Since ε � κ, a more
restrictive CFL condition is found for the electrons than the ions and then |λmax| =
(λ0, λ1) in general. In the context of DG methods, Eq. (5.1) is reformulated to take into
account the order p of the interpolants. It gives the following condition to the time step
[22]

CFL = ∆t |λmax|
∆x

2p+1
< 1 (5.2)

35



Additional constraints come from the source term definition. The first one related to the
electrostatic force contribution imposes a stability condition onto the the resolution of
the electron plasma period [29]. Mathematically, this means that

∆tωpe < 1 (5.3)

with ωp =
√

ne
χε
. The second constraint comes from the ionisation term that imposes that

∆t should be able to capture the characteristic ionisation time. Hence,

∆t ν < 1 (5.4)

From these conditions, the stability of the temporal scheme is ensured if

max (CFL , ∆tωpe , ∆tν) < 1 (5.5)

It has been shown that if ∆x does not resolve the Debye length, the most restrictive
constraint is the resolution of the electron plasma period [2]. On the other hand, if the
Debye length is resolved, one only has to fulfill the convective CFL condition to satisfy
t < ω−1

pe . As a consequence, the maximum time step that is allowed ranges

∆t '
{

10−6 in the case of the two-stream perturbation problem
3.7× 10−5 in the case of the plasma sheath problem

(5.6)

Although formally the CFL condition determines the linear stability of explicit time inte-
grators, it is also likely to govern the non-linear stability of the implicit time integrators
- which are linearly inconditionally stable - since the time integration needs to follow the
physics in order to avoid running into unrealistic conditions.

5.2 Runge-kutta integrator

In a general way, the implementation of Runge-Kutta schemes is relatively easy. It
starts from the expression of Eq. (4.26)

∂tui = M−1
ij R(uj) (5.7)

where R(uj) is called the residual vector. To avoid clutter, the subscript j is omitted in
the rest of the development.
The RK methods integrates Eq. (5.7) from time tn to tn+1 with s intermediate stages
following [71]

ûk = un + ∆t
s∑
j=1

aij∂tû
k = un + ∆t

s∑
j=1

aijM
−1R(ûj) , k = 1, . . . , s

un+1 = un + ∆t
k∑
j=1

bjM
−1R(ûj)

(5.8)
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where ûj and ∂tûj represent the approximate solution and time derivative at stage j. The
coefficient aij and bj, called Butcher coefficients, are organised in the Butcher tableau B:

B = cT A
0 b ⇒

0 a11 a1,2 · · · a1s
c2 a21 a22 · · · a2s
... ... . . . · · ·
cs as,1 as,2 · · · as,s
0 b1 b2 · · · bs

(5.9)

In the case of explicit time integration, one hase to considered only the terms aij that are
strictly below the diagonal. A particularisation to the fourth-order explicit RK methods
is available in Appendix B. Conversely, for implicit solving, all the values of the Butcher
tableau are taken into account. In addition, implicit schemes offer better stability than
the explicit ones making those adequate to address stiff problem.

5.3 Single Diagonally Implicit Runge–Kutta meth-
ods

The methods used for the time integration of u in this work is the fourth-order six-
stage Explicit first stage, Single Diagonally Implicit Runge-Kutta (ESDIRK64) scheme.
Starting from

∂tui = M−1
ij R(uj) (5.10)

The multistage algorithm is then [71]

u0 = un

us = un −∆t
i∑

j=1
aijM

−1R(uj)

un+1 = ush

(5.11)

For a detailed description of the Butcher tableau associated to this scheme the reader
must refer to the appendix of [71]. The first stage is explicit as shown in Eq. (5.18) with
the term u0 = un. This is due to the fact that the term Butcher coefficient a11 = 0 in
this methods. Conversely, the last stage updates the solution at the next time. Between
these two terms, the scheme is composed of s non-linear problems that has to be solved
numerically.

The system of s non-linear equations is solved using a classical Newton-Raphson ap-
proach [62]. If one considers the non-linear system B(u), such methods permit to solve
numerically

B(u) = 0 (5.12)
by expandingB using a Taylor series around a certain value u0 (called intial guess vector)
so that

B(u) ' u0 + ∂B

∂u
(u0) (u− u0) (5.13)
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For this method, the derivative ∂B
∂u

(u0), called Jacobian formally needs computing for
each stage. However, by design all diagonal coefficients aii are the same, such that the
Jacobian is the same for all stages, and therefore usually computed only at the first stage.
Only if the convergence rate of the Newton algorithm between stages j and j+1 is above
a given tolerance, it is deemed that the solution has changed too much for the Jacobian
still to be relevant. In practice, the Jacobian can even be kept over several time steps.
Mathematically, the conditions for updating the Jacobian, used in ForDGe, read

‖∆uj+1‖2
‖∆uj‖2

> tolj and n∆t > 10 (5.14)

As a result, one has to determine the jacobian ∂B
∂u

(u0). In the present work, the nonlinear
system to be solved is

B ≡ us − un + ∆t
i∑

k=1
aikM

−1R(uk) (5.15)

where the residual vector R is expressed as

Ri =
∑∫

e
∂xϕi (Fh +Dh) dV −

∑
e

∫
e
ϕiSh dV −

∑
f

∫
f
γ
(
u+,u−;ϕ+

i , ϕ
−
i ;n

)
dS (5.16)

This means that the jacobian of each term of Eq. (5.16) has to be computed.

5.3.1 Treatment of the potential equation

Due to the absence of temporal derivative in the Poisson’s equation

∂xxφ = χ−1 (ne − ni) (5.17)

the potential equation cannot formally be integrated in time along-with the transports
equations using ESDIRK64, but would be solved separately at each subtime step. Usu-
ally, it is done using a two-step strategy, meaning that the temporal scheme first solves
the system of transport equations and then solves the instantaneous Poisson’s equation.
Before passing to the next time, this back and forth resolution at a time ti is kept until
the convergence of the results.
A different approach is used in this work and consists in a modification of the classical
ESDIRK64 scheme to solve both the time integration and the potential equation in a
fully coupled fashion. It is done in practice by treating the potential equation in the
same way as the particle equations, whilst deactivating the inertial term associated to
the last unknown (φ) in the implicit integrator. Practically, it consists of reformulating
Eq. (5.18) as

u0 = βun

us = βun −∆t
i∑

j=1
aijM

−1R(uj)

un+1 = βush

(5.18)
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with

β =


1
1
1
1
0

 (5.19)

The same procedure is applied onto the diagonal elements of the jacobian matrix
(i.e. β diag

(
∂B
∂u

)
).

This modification made onto the classical implementation of ESDIRK64 permits to treats
the Poisson’s equation alongside the particles equations during the Newton iterator, en-
hancing its convergence.

5.4 Linearisation

An automatic linearisation of the Jacobian matrix is carried out to prevent the need of
defining and encoding all the different analytical expressions of the Jacobian. A a result,
the different first order derivatives that compose ∂B

∂u
are evaluated following a first-order

central difference method

∂B

∂u
≈ B(u+ ε)−B(u− ε)

2ε (5.20)

where the perturbation parameter ε is chosen to be proportional to the L2 norm of the
solution. In order to provide a perturbation halfway the precision of the computation,
the square root of the machine precision is used (as given by the C++
std::numeric_limits<FDTYPE>::epsilon).

5.4.1 Treatment of the ionisation frequency

A particular attention is paid to the evaluation of the Jacobian associated to the Source
term S. Following the reasoning given in section 4.2.4, the Jacobian matrix JS is split in
two contributions: one from the ionisation JSν and one from the potential interactions
between the particles momenta and the Poisson’s equation JSφ . Mathematically, this
means

JS = JSν + JSφ (5.21)
For JSφ the linearisation procedure described in the previous section is used, while for
JSν , the ionisation frequency ν is assumed to be constant at each time step. The latter
prevents a global coupling of the system after passing into the linearisation. Indeed, since
the ionisation frequency is computed via integrals on the whole domain ν, using an exact
linearisation as before Eq. (2.7) will results in a full matrix, which would have significant
impact on the practical implementation.
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The analytical expression of JSν is hence used for this contribution, this reads

JSν =


ν 0 0 0 0
0 ν 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (5.22)
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Part III

Results
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Chapter 6

Preliminary work : the Burgers’
equation

In this chapter, a brief detour from the theory of plasma is taken to present a prelimi-
nary study carried out onto the Burgers’ equation. This chapter is therefore presented as
a self-consistent chapter in which the unidimensional Burgers’ model is developed from
scratch.

As one of the few "canonical" nonlinear Partial Differential Equations (PDE) which
can be solved analytically for an arbitrary initial condition [41], the Burgers’ equation
appears often as a toy model and a mandatory passage to understand some of the inside
behaviour of general nonlinear systems. Indeed, it combines the effect of two prior topics
namely: the nonlinear advection that tends to introduce discontinuous shocks and the
diffusion law that tends to smooth them away. The former phenomenon occurs even
if the initial condition is smooth making Burgers’ equation a proper model for testing
numerical algorithms in flows where severe gradients or shocks are anticipated [67, 58].
This chapter is segmented into three parts: first, the Burgers’ model is described by con-
sidering both inviscid and complete formulation. Then, the discretisation using DG-FEM
is briefly presented with a discussion on the numerical fluxes. Finally, three numerical
experiments are considered to analyse its numerical solution.

6.1 Burgers model

The one-dimensional Burgers’ equation as firstly introduced by J.M. Burgers [12] and
H. Bateman [4] is the quasi-linear parabolic PDE

∂tu+ u ∂x − ν ∂xxu = 0 (6.1)

in which the velocity u(x, t) is the dependent variable and ν the fluid viscosity. The
operators ∂t and ∂x denote, respectively, the temporal and spatial differentiation.
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In the case of fluids with negligible viscosity, the last term of Eq. (6.1) vanishes leading
to

∂tu+ u ∂xu = 0 (6.2)
which corresponds to the one-dimensional Inviscid Burgers’ Equation.

6.1.1 Inviscid case

The 1D inviscid Burgers equation is the scalar non-linear advection equation given by
Eq. (6.2). This formulation without any viscosity-dispersion term represents a purely
hyperbolic PDE [40].
The main feature of Eq. (6.2) is the formation of shocks, which are discontinuities that
may appear after a certain finite time and then regularly propagate within the domain.
This induces significant difficulties in the computation of Burgers’ solution for which
the Reynolds number Re = uL

ν
→ ∞, corresponding to steep wavefronts. In many

cases, the numerical solution produces results with large unphysical oscillations near the
discontinuity.

Plenty of exact solution exist for the Burgers’ equation depending on the method
used (see e.g. [5]). One way is to use the Characteristics method which for an initial
u(ξ, 0) = F (ξ) gives the solution

u(x, t) = F (ξ)
ξ = x− u t

}
t ≥ 0 (6.3)

In addition, the conservative form of Eq. (6.2) reads

∂t + ∂x

(
u2

2

)
= 0 (6.4)

that can be reformulated in the following to highlight the scalar hyperbolic flux f(u)

∂tu+ ∂x [f(u)] = 0 (6.5)

with f(u) = u2

2 and appears as a quadratic function of u. A weak solution of the following
equation can be defined. In other words, if u(x, t) is a smooth solution of Eq. (6.4) in the
domain Ω, and ϕ(x, t) is a infinitely smooth function that vanishes on the boundary of
Ω, then

∫∫
Ω

[
∂t +

(
u2

2

)
x

]
ϕdx dt = 0 becomes after integrating by parts

∫∫
Ω

[
u ∂tϕ+ u2

2 ∂xϕ
]
dx dt = 0 (6.6)

This equation admits a weak solution to Eq. (6.4) defined as a function of u(x, t), not
necessarily continuous, that satisfies Eq. (6.6) for all Ω and ϕ.
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Suppose now that there is a discontinuity at the position x = s(t) so that the left and right
value follows uL(x, t) < ṡ(t) < uR(x, t), one solution of Eq. (6.6) is the Rankine-Hugoniot
jump condition [61, 42]

ṡ = f(uR)− f(uL)
uR − uL

=
uR

2

2 −
uL

2

2
uR − uL

= 1
2 (uL + uR) (6.7)

describing the speed of the propagating discontinuity.
Although Eq. (6.7) gives a solution to Eq. (6.6) in the presence of discontinuity, it does
not guarantee the solution uniqueness. As a consequence, an additional condition must be
imposed to eliminate non-physical weak solutions, called the Entropy condition. It yields
that a discontinuity propagating with speed ṡ is permitted only if f ′(uR) > s > f ′(uL).
This additional condition translates the fact that a fluid passing a shock or a discontinuity
must increase in entropy.

6.1.2 Viscous case

When the fluid viscosity is non-negligible, the full one-dimensional Burgers’ equation
problem reads [41] {

∂tu+ u ∂xu− ν ∂xxu = 0
u(x, 0) = u0(x) (6.8)

representing one of the simplest non-linear advection-diffusion problem and a parabolic
scheme [40].
Unlike the inviscid case, the last term introduces dispersion into the system so that the
discontinuity that may appear is smoothed out. A smooth exact solution of the problem
exposed in Eq. (6.8) is available and has been derived by Cole [23] and Hopf [41], giving
the following expression:

u(x, t) =

∫ +∞

−∞

x− y
t

exp
[
−(x− y)2

4νt − 1
2ν

∫ y

0
u(ξ, 0) dξ

]
dy

∫ +∞

−∞
exp

[
−(x− y)2

4νt − 1
2ν

∫ y

0
u(ξ, 0) dξ

]
dy

(6.9)

6.2 Numerical implementation

This section presents the DG-FEM applied to the one-dimensional Burgers’ equation.
In its conservative form, the Burgers’ convection-diffusion problem reduces to

∂tu+ ∂xF + ∂xD = 0 (6.10)

where F (u, x, t) is the convective flux and D(u,∇u, x, t) is the diffusive flux. In the
present case, no source terms were considered. Recalling section 4.1, a particular attention
has to be paid on the definition of these two contributions. For example, one has to choose
an appropriate numerical flux that accommodates the entropy stability of the system.
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6.2.1 Convective term

As introduced in the previous section, the convective flux F is a quadratic function of u

F = u2

2 (6.11)

To ensure that the entropy condition of the solution is satisfied at the discontinuity, and
hence the entropy stability, many techniques have been developed. They can be divided
into two categories: the first one consists of adding some numerical diffusion operators in
the expression of F , by introducing Lax-Friedrichs type or Roe type fluxes to an entropy
conservative flux [43, 16, 32, 13]. The second one uses the entropy stability of upwind
numerical fluxes [19]. In this preliminary work, the former method is used following the
work of Ismael & Roe [43], because it permits better control of the amount of entropy
introduced in the system. The following formulation of the entropy-stable (ES) interface
flux has been implemented

F∗ = 1
6
(
uL

2 + uLuR + uR
2
)
− 1

4 |uL + uR| (uR − uL)︸ ︷︷ ︸
Lax-Friedrichs type flux

(6.12)

where (·)L and (·)R denote the value at the left and right position of the interface re-
spectively. It provides a scheme that is entropy-conservative and has a net production of
entropy using a Lax-Friedrichs type flux, ensuring the entropy stability.
However, it has been shown that the entropy produced by the Lax-Friedrichs flux is
not large enough. At the position of the shock, it should be O

([
uL+uR

2

]3)
. Ismail &

Roe [43] propose to add an entropy production term to equation (6.12) to obtain the
entropy-consistent (EC) flux, yielding

F∗ = 1
6
(
uL

2 + uLuR + uR
2
)
− 1

4 |uL + uR| (uR − uL)− |uR − uL| (uR − uL)
12 (6.13)

The first term is therefore entropy conserving, the second term enforces entropy stability
and the third term yields entropy production of O

([
uL+uR

2

]3)
.

6.2.2 Diffusive flux

The diffusion part of the Burger’s equation can be treated as the classical linear-
diffusion problem. The diffusion flux is then expressed as a function of the velocity
gradient ∇u(x, t) using the Fick’s laws of diffusion [31]. The diffusion volume flux D and
interface flux γD are thereby

D = −ν∇u and γD = −ν∇u (6.14)
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6.3 Numerical experiments

In this section some numerical experiments specific to the Burgers equation are reported
depicting the different behaviours of the Burgers’ numerical solution. For all experiments,
Gauss–Lobatto–Legendre (GLL) interpolating functions proposed in section 4.1.4 are used
to limit as much as possible the appearance of numerical oscillations at discontinuity
locations. Periodic boundary conditions are considered. A Fourth-order Runge Kutta
integrator is used for all the expermients meaning that a CFL condition lower than 1 is
imposed to ensure the numerical stability of the solution.
First, the inviscid case is investigated through the study of a sine wave propagation
problem and a Riemann problem. The aim of this part will be the comparison of the
different entropy fix strategy proposed in the previous section. After that, the complete
Burgers (i.e. viscous) model is presented through a wave propagation test case.

6.3.1 Inviscid Wave propagation

Let us consider as first test case the smooth initial condition from [33]

u(x, 0) = 1
2π ts

sin (2π x) (6.15)

where ts is the breaking time from which shock appears. With its contribution to
Eq. (6.15) as a scaling parameter, this breaking time will permit to monitor the shock
appearance. A value of ts = 1 sec is used for this study. The associated exact solution is
then computed using Characteristics method and is

u(x, t) = 1
2π ts

sin
(
2π [x− u(x, t) t]

)
, t > 0 (6.16)

A comparison of the results found using ES and EC schemes in the case of 10 and 11
elements of order 6 are presented in Fig. 6.1 for a simulation time t = 0.9 sec and Fig. 6.2
for a time t = 1.4 sec.
In the case of smooth results (i.e. before the shock appearance), Fig. 6.1 shows a good
fit of the results for both ES and EC schemes even if the number of elements is even
or odd. In contrast, Fig. 6.2 exhibits a clear improvement of the solution by using EC
flux on 10 elements. Spurious oscillations are seen for the ES scheme demonstrating
insufficient production of entropy through the shock. This shows the benefit of adding
entropy production term.
However, oscillations remain in the EC scheme when considering an odd number of el-
ements (i.e. 11 elements). In this case, the centre of the domain is aligned with the
centre of an element. These troubles come from the fully regular hypothesis of the shape
function inside the element which can not handle a flow discontinuity at its centre. As
a consequence, this function exhibits strong oscillations. This problematic can be solved
by implementing shock capturing methods (see e.g. [72]). Because the purpose of this
chapter is more to understand the inside behaviour of a nonlinear model, such techniques
are not covered here. One may note some small oscillations starting in the smooth case
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(see Fig. 6.1) around x = 0.5 which come from the same phenomenon. In Fig. 6.2, this
phenomenon was not seen in the even configuration (at least, for the EC scheme) because
the flow discontinuity coincides perfectly with an element’s interface where it is allowed
by the DG-FEM.
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Fig. 6.1: Solution at time t = 0.9 sec with ES flux (in blue) and EC flux (in red).
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Fig. 6.2: Solution at time t = 1.4 sec with ES flux (in blue) and EC flux (in red).

6.3.2 Inviscid Riemann problem - Rarefaction with stationary
shock

Let us consider now the following initial value problem [43, 49]

u(x, 0) =
{
−1 if 1

3 ≤ |x| ≤ 1
1 if |x| < 1

3
(6.17)
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which is computed until time t = 0.32 sec. This step-like initial condition will evolve into
a rarefaction fan on the left side while on the right side will remain a stationary shock
[43]. The exact solution to this problem is [49]

u(x, t) =


−1 −∞ < x < b1
−1 + 2 x−b1

b2−b1
b1 < x < b2

1 b2 < x < bshock
−1 bshock < x < +∞

(6.18)

where
b1 = −1

3 − t, b2 = −1
3 + t and bshock = 1

3 (6.19)

A comparison between the results obtained by Ismail & Roe [43] who uses a first-order
Finite Volume Methods scheme, the exact solution and the proposed model is made in
Fig 6.3, considering both ES flux (on the left) and EC flux (on the right). As in [43].
A domain composed of 40 equally spaced elements of order 1 with periodic boundary
conditions is considered. The numerical solution is evaluated at time t = 0.32 sec for
which a CFL number of 0.8 was prescribed.
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Fig. 6.3: Rieman problem at time t = 0.3 sec, N = 40, order k = 0 and CFL = 0.8. The
numerical results of ForDGe (in red) are compared with reference ones (in blue) [43].

Fig. 6.3 shows results that are very similar to those proposed by Ismail & Roe [43]. On
the left, the same spurious oscillations are generated near the shock by the ES flux,
demonstrating not enough entropy produced across the shock. On the right, it can be
seen that adding the entropy consistency term removes these spurious oscillations and
provides extra smoothing in the rarefaction fan. One may note some small discrepancies
between the results at the extremities of this part. One may also note that the rarefaction
remains under-resolved with the EC term. At order 0, one way of improvement is to use a
second-order Total Variation Diminishing (TVD) method (see e.g. [43]). Another one is
to go to higher-order as proposed in Fig. 6.4. Even if a better resolution of the rarefaction
is seen, spurious oscillations appear again near the shock for both flux types and start to
develop at the rarefaction extremities.
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Fig. 6.4: Rieman problem at time t = 0.32 sec, N = 40 cells, order k = 1, 2, 3, 4 and CFL
= 0.8. The results found with ES flux (in blue) are compared with those found with EC
flux (in red)

6.3.3 Viscous Wave propagation

The full Burgers’ equation is then tested using the same sine wave initial condition
presented in Eq. (6.15) with a breaking time ts = 1 sec. The exact solution is computed
following Eq. (6.9) based on Cole-Hopf transformation [41]. Its expression is recalled here
for convenience

u(x, t) =
∫+∞
−∞

x−y
t

exp
[
− (x−y)2

4νt −
1
2ν
∫ y
0 u(ξ, 0) dξ

]
dy∫+∞

−∞ exp
[
− (x−y)2

4νt −
1
2ν
∫ y

0 u(ξ, 0) dξ
]
dy

(6.20)

The numerical solution obtained for this wave propagation is availabe in Fig. 6.5 for a
simulation time t = 0.9 sec and in Fig. 6.6 for a simulation time t = 1.4 sec. In each of
these figures, a comparison between the configuration with 10 equally spaced elements of
order 6 and 11 equally spaced elements of order 6 is depicted in which Entropy-consistent
(EC) fluxes are used. The fluid viscosity ν is also varied giving a comparison between
the results for ν = 0.001, 0.005 and 0.008.
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As in the inviscid case, good fit of the exact solution is performed by the numerical
results at t = 0.9 sec for both even and odd number of elements. On the other hand,
the discontinuity encountered for the inviscid sine wave at time t = 1.4 sec (cfr. Fig. 6.2)
is smoothed out by the adding viscosity. The spurious oscillations that were seen when
considering an odd number of element (i.e. 11 elements) are also removed by the viscous
term so that the results follow quite well the analytical one after the breaking time.
However, one may notice that, for ν = 0.001, some discrepancies are still observed between
the numerical and exact solutions with some point grouped in "cluster" near x = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
x [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u 
[m

/s
]

= 0.001
= 0.005
= 0.008

(a) 10 elements

0.0 0.2 0.4 0.6 0.8 1.0
x [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u 
[m

/s
]

= 0.001
= 0.005
= 0.008

(b) 11 elements

Fig. 6.5: Viscous sine wave numerical results (dots) and analytical solutions (solid line)
at time t = 0.9 sec, order 6, and fluid viscosity ν = 0.001, 0.005, 0.008 using EC flux.
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Fig. 6.6: Viscous sine wave numerical results (dots) and exact solutions (solid line) at
time t = 1.4 sec, order 6, and fluid viscosity ν = 0.001, 0.005, 0.008 using EC flux.
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Chapter 7

Propagation of a two-stream
periodic perturbation

In order to prove that the discretisation has been properly done, the propagation of a
two-stream instability in a low-temperature collisionless plasma is performed. This case
has been widely used in the past for convergence study of the two-fluid plasma system
as in the work of Crispel et al.[27, 26] which assumed the isentropic law, or the work of
Alvarez Laguna et al. [2] for isothermal plasma as in the current work.

7.1 Problem set up

For this test case, the two-fluid Euler-Poisson equations given in Eq. (2.17) is used
for the simulation where the ionisation processes involved in the density source terms are
assumed to be negligible. However, the impact of the potential gradient is still considered
for the momentum source terms. The following system of equations is then solved:

∂tne + ∂x (neue) = 0
∂tni + ∂x (niui) = 0
∂t (neue) + ∂x

(
neue

2 + neε
−1
)

= neε
−1∂xφ

∂t (niui) + ∂x
(
niui

2 + niκ
)

= − ni∂xφ
∂xxφ = χ−1 (ne − ni)

(7.1)

The goal of this case is to simulate a two stream instability that occurs in a uni-
form quasi-neutral plasma of density n0 when there is a relative velocity u0 between the
electrons and the ions [18]. The advantage of the two-stream perturbation is that an
analytical solution in the form of a sine wave is available [27, 26]. This solution takes
the form of a sine wave of frequency ω and wavelength k. A detailed derivation of this
analytical solution is available in Appendix C.
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In this problem, thermal plasma is considered, so that κ = 1. The electron-to-mass
ratio is ε = 10−4. The domain length is set to 1 and contains 104 Debye lengths, i.e. λ =√
χ = 10−4. Periodic boundary conditions are applied. The background plasma has a

normalised density n0 = 1 and an electrons velocity of u0 = 1. The latter corresponds
to the Bohm’s speed at these conditions. Under these conditions, if the wavelength of
the perturbation is fixed to k = 2π, the dispersion relation [14] (see Appendix C.1 for a
derivation)

F (k, ω) ≡ α4ω
4 + α3ω

3 + α2ω
2 + α1ω + α0 = 0 (7.2)

with

α4 = εχ, α3 = −2εχku0, α2 =
(
εk2χ

(
u2

0 − κ
)
− εn0 − k2χ− n0

)
α1 = 2

(
k2κχ+ n0

)
εku0 and α0 = −εk2u2

0n0 − εχk4κu2
0 + k4κχ+ k2n0 (κ+ 1)

(7.3)
reveals four real values, meaning the perturbation is stable [2]. For this problem, we
choose the solution ω = 8.885726989. From this result, the initial fields reads

ne(x, 0) = 1 + 2.41425× 10−2 sin (2πx)
ni(x, 0) = 1 + 2.41425× 10−2 sin (2πx)
neue(x, 0) =

[
1 + 2.41425× 10−2 sin (2πx)

] [
1 + 10−2 sin (2πx)

]
niui(x, 0) =

[
1 + 2.41425× 10−2 sin (2πx)

] [
3.41425× 10−2 sin (2πx)

]
φ(x, 0) = 2.41421× 10−2 sin (2πx)

(7.4)

7.2 Numerical results

The solution obtained with the ESDIRK64 scheme on 20 equally spaced elements of
order 4 and a ∆t = 7.0713×10−7 sec, and compared with the analytical one is available in
Fig. 7.1. The solution obtained with an explicit fourth-order Runge-Kutta (RK4) scheme
is also provided (see Appendix B for more detail on the method). Since the latter does
not solve for the Poisson’s equation, the analytical solution of the potential gradient that
reads

∂xφ = 4.82842π × 10−2 cos (2πx− 8.885726989t) (7.5)
is imposed onto the momentum source terms at each time step. The solutions presented
are in good agreement with the reference solution except the electron momentum in the
explicit case. Several causes can be stated such as the lack of spatial resolution, the
low-Mach regime of electrons that induces nonphysical results from the Roe numerical
flux, or the fact that this oscillation might be a transient component of the flow which is
damped in time.
For the first two causes, a solution with a higher spatial resolution may be helpful.
Fig. 7.2 shows the solution obtained at t = 1 sec with 50, 100 and 300 elements of order
5, a ∆t = 7.0713× 10−7 sec and RK4 scheme. No matter how high the spatial resolution
of the problem is, the same solution is obtained. Similarly, the solution obtained at 3
different higher time is depicted in Fig. 7.3. The spurious oscillation that travels the
electron momentum is still visible at much larger time t = 1 sec.
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N. Corthouts [24] encountered a similar problem in his M.Sc. thesis in which only the
electrons/ions transport equations have been solved with the same analytical expression
of the potential gradient as the one given in Eq. (7.5). From his results, he has concluded
that it could come either from an instability of the system, nor from the very low-mach
regime of the electrons. Since no correction for low-mach numbers was implement in the
current implicit resolution, these oscillations can be addressed to the use of an explicit
time integration that does not solve for the potential. Indeed, in the implicit resolution,
the Fully coupled system is solved in one go. The potential can then adapt its value to
counter act the electron momentum fluctuation leading to a results that follow better the
reference.

The solution obtained at a larger time t = 0.7071 sec is available in Fig. 7.4. A
discrepancy develops between the reference and the implicit results with the sine peaks
that lightly come to each other. Several causes can be addressed:

1. A lack of consistency in the implementation of the Roe’s numerical flux for low-
mach regime may show difficulties in resolving the non-linear system of Euler-
Poisson equations. The development of advanced numerical strategy that correct
this features for low-mach conditions is then let for future work.

2. This nonlinear behaviour may have been simply ignored in the computation of the
reference solution. Indeed, linear Fourier analysis was used for its determination (see
Appendix C). In the future, one should develop new strategies to find this analytical
solution that is consistent with the non-linear behaviour of the equations.

Fig. 7.5 shows simulation carried out with the ESDIRK64 scheme with a much larger
time step, ∆t = 1.4142 × 10−4 sec and 20 elements of order 4. Similar results as the
one obtain in Fig. 7.1 are obtained despite not resolving the plasma electron period,
∆t� ω−1

pe = 10−6 . It shows therefore the increased stability of implicit schemes and the
benefit in term of computation cost.

Finally, the convergence study of the L2 error norm is presented in Fig. 7.6. For this,
the number of element as well as the interpolant order is varied and the L2 norm of the
absolute error between the numerical and the analytical results are computed following

L2 =

√√√√√ N∑
j=1

∣∣∣∣∣∣uj − u∗j ∣∣∣∣∣∣2 (7.6)

where uj and u∗j are respectively the numerical and reference solutions at point j, and
N is the total number of points. The final time is t = 0.057 sec and a time step of
1.4142 × 10−7 sec is used. It can be seen that the L2 decreases as long as the domain
is refined. Moreover, one can retrieve the interpolant order from the slope of this curve.
However, all the values converge toward a constant error around 10−5. One cause could
be the non-linearity explained above. Indeed, this shifting of value tends to introduce a
biase in the evaluation of the L2. An other cause would be the the fact that the error
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associated to the time integration starts to be dominant again. As a result, one would
have to decrease even more the time step.

Fig. 7.1: Comparison of the analytical solution of the two-stream perturbation and the
solution obtained with an explicit RK4 scheme and an fully implicit ESDIRK64 scheme at
time t = 0.057sec using 20 equally spaced elements of order 4 and ∆t = 7.0713×10−7sec.
For the potential, only the solution provided by the ESDIRK64 method is presented since
the RK4 does not solve for the potential.
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Fig. 7.2: Comparison of electron momenta obtained in the reference solution and with
an explicit RK4 scheme at time t = 1 sec using 50, 100 and 300 equally spaced elements
of order 5 for a ∆t = 7.0713 × 10−7 sec. The solution does not change when increasing
the spatial resolution.
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Fig. 7.3: Numerical electron momenta obtained with an explicit RK4 scheme, ∆t =
7.0713 × 10−7 sec and 300 equally spaced elements of order 5 at three different times:
t = 0.996 sec, t = 1.0013 sec and t = 1.0030. Spurious oscillations are still visible in the
solution.
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Fig. 7.4: Comparison of the analytical solution of the two-stream perturbation and the
solution obtained with a fully implicit ESDIRK64 scheme at time t = 0.7170 sec using
20 equally spaced elements of order 4 and ∆t = 7.0713× 10−7sec. A discrepancy appears
between the two solutions with the peaks of the waves that come to each other.
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Fig. 7.5: Comparison of the analytical solution of the two-stream perturbation and the
solution obtained with a fully implicit ESDIRK64 scheme at time t = 0.057 sec using 20
equally spaced elements of order 4 and ∆t = 7.0713×10−4sec. Despite ∆t� ωpe = 10−6,
results are still in good agreement with the reference solution.
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Fig. 7.6: Mesh convergence study of the numerical solution to the two-stream perturba-
tion obtained with an implicit ESDIRK64 scheme and for different orders and 10, 20, 40,
80 and 160 equally spaced elements. The evolution of the L2 norm reflect relatively well
the order of interpolant used. However, all the error seems to converge to a fixed value
of ∼ 10−5.
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Chapter 8

Plasma sheath problem

This chapter presents the results obtained during the simulation of the complete plasma
sheath model. The problem set up is recalled and the different numerical results are
discussed.

8.1 Problem set up

The problem consists of a one-dimensional low-temperature isothermal plasma con-
fined inside a cylinder with equipotential walls. The equations to be solved here are the
complete two-Fluid model, whose formulation is given by

∂tne + ∂x (neue) = ne ν

∂tni + ∂x (niui) = ne ν

∂t (neue) + ∂x
(
neue

2 + neε
−1
)

= neε
−1∂xφ

∂t (niui) + ∂x
(
niui

2 + niκ
)

= − ni∂xφ
∂xxφ = χ−1 (ne − ni)

(8.1)

The boundary conditions described in section 2.3 are chosen and an ionisation rate ν
that counter balance the ions flux that leaves the domain is computed at each time step
following [2]

ν = |niui(x = 0, t)|+ |niui(x = L, 0)|∫ L
0 ne(x, t) dx

(8.2)

A collisionless Argon+ plasma discharge that has the properties described in table 2.2
is considered here [14]. Its electron-to-ion mass ratio is ε = 1.36 × 10−5, its ion-to-
electron temperature ratio is κ = 0.025 and the non-dimensional Debye length is set to
λ = √χ = 10−2. At the beginning, a quasi-neutral plasma of number density n0 at rest
and with no potential is assumed in the discharge leading to the following initial field{

ne(x, 0) = ni(x, 0) = n0

neue(x, 0) = niui(x, 0) = φ(x, 0) = 0
(8.3)
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The idea is then to let run the simulation until a steady state is reached. In this work,
this steady state solutions will be assessed when the relative difference in the solution L2
norm is under a given tolerance. In this work, an arbitrary relative tolerance of 10−5 is
considered. Mathematically, these stopping conditions reads∣∣∣L2

[
un+1
j

]
− L2

[
unj
]∣∣∣

L2
[
unj
] < 10−5 (8.4)

where the unj and un+1
j are respectively the solution obtained at two successive times tn

and tn+1.

8.2 Numerical results

A comparison between the reference solution of Alvarez Laguna et al.[2] and the solution
obtained with the current implementation is available in Fig. 8.1. A simulation carried out
on 100 equally spaced elements of order 4 with the modified ESDIRK64 time intregator
for a time step ∆t = 1.5 × 10−5 sec is then presented. The final time is t = 2 sec and
is steady regarding Eq. (8.4). The obtained results are in strong agreement with the
references ones, and capture perfectly the formation of the sheath. The quasi-neutrality
violation is observed within it as well as the steep potential gradient at the beginning of
the presheath. Moreover, the value of the potential drop at the presheath φp and from
the presheath to the wall φW must follow the expression derived by Lieberman et al.[54]
(given in dimensional units)

φp = −kBTe
2e φW = −kBTe

e
ln
(

mi

2πme

)1/2

(8.5)

This gives the following expression for the total drop from the bulk to the wall

∆φ = φp + φW ' −5.187 (8.6)

in the case of Argon+ discharge. As shown in Fig. 8.1, this value is well estimated by
the numerical solver.

To assess that the proposed solution has reached a steady state, the time evolution of
the relative difference of the solution L2 norm between two successive time is presented
in Fig. 8.2 for the same conditions. Regarding the condition established in Eq. (8.4),
the steady state can be ensure. However, this steady solution required a subsequent
computational effort to be reached by classical time integration. To give an example,
to reach the current solution more than 133333 time iterations have been needed. One
must keep in mind that, for each of these iteration, a set of nonlinear equations is solved
several times and multiple loops are conducted to ensure the convergence of the Newton
methods. As a consequence, a proper alternative that can be the base for future works,
would be to solve directly the coupled plasma system in steady state solution through a
steady Newton method. This would help to save a lot of computation effort.
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Finally, the sheath width is determined by the use of the Bohm criterion [8] which
states that ions must enters the sheath at given velocity uB, called the Bohm speed,
whose expression is recalled:

uB =
√

kBTe
mi

(8.7)

For this purpose, the velocity scaled by uB is displayed in Fig. 8.2. Following convention
the sheath edge extends till the distance at which this scaled velocity is equal to 1. From
this criterion, a sheath width of 8.09λis found for the current configuration, which follows
quite well the theoretical results [64, 65]. Indeed, if one consider the density left wall of
Fig. 8.1, below a distance x ≈ 8λ the electrons and ions starts to have different number
densities violating the quasi-neutrality

Fig. 8.1: Comparison of the reference and the numerical solution obtained with 100
equally spaced elements of order 4 and ∆t = 1.5 × 10−5sec. The final time is t = 2 sec.
A steady state is achieved and gives results that are in very good agreement with the
reference ones. The potential at the wall φW derived by Lieberman et al.[54] is also very
well estimated by the current simulation.
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Fig. 8.2: Time evolution of the L2 norm relative difference described in Eq. (8.4). 100
equally spaced elements of order 4 and a time step ∆t = 1.5 × 10−5 are considered.
Following our criterion, a steady state is assessed for simulation time bigger than t ≈ 1.9
sec.

Fig. 8.3: Scaled velocities obtained for a simulation with 100 equally spaced elements of
order 4, ESDIRK64 integration and a time step ∆t = 1.5×10−5 sec. These are scaled with
respect to the Bohm velocity (left) and the particle speed of sound (right). A normalised
sheath thickness of 8 is found after applying the Bohm criterion [8]. In addition, ions are
supersonic when entering the sheath, while the electrons are highly subsonic. Ambipolar
flow is also achieved in the bulk, meaning that both particles have the same velocity there
("they move together"), while it is not the case in the sheath. The latter justifies the need
of the Poisson’s equation in this region.
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Conclusions and future work

In this work, a numerical model for the simulation of low-temperature collisionless
plasma has been developed. The common features of plasma mixture such as the large
mass disparity between the electrons and the other particles was introduced. This paved
the way for the derivation of the two-fluid model, a system composed of electrons and
ions transport equations coupled with a Poisson’s equation for the electrical potential.

In the second part of this work, the development of the DG-FEM numerical method
has been extensively developed. The numerical aspect of the coupled hyperbolic-elliptic
system has been addressed with the implementation of specific strategies: first, a Roe
numerical flux corrected with an Harten entropy fix has been proposed for the convective
formulation; then, an incomplete internal penalty methods has been developed to treat
the diffusive interface flux. And since this diffusive terms only affect the equation for the
potential, the penalty terms associated to the particles motions are deactivated. Finally,
an extension to the classical formulation of the implicit ESDIRK scheme was provided.
Indeed, the inertia terms associates to the potential were deactivated by the introduction
of a Boolean parameter β which is equal to 1 for all the parameters excepts for the poten-
tial. As a result, this modification of the implicit method permits to treat the Poisson’s
equation alongside the particles equations during the Newton iterator, enhancing then
its convergence. An automatic evaluation of the Jacobian matrix using first order central
difference was also described with a specific treatment made onto the linearisation of the
ionisation contributions. The dependence over the whole domain for this last parameters
may results in a matrix that is full. To avoid that a constant value for the ionisation
frequency was assumed at each time step. All of these strategies were implemented in
the ForDGe solver, an immersed boundary Cartesian DG-FEM solver developed at the
University of Liege.

A preliminary work based on the study of the unidimensional Burgers’ equation has
been carried out. Although this work has served for the handling of the methods and
the ForDGe solver, it has shown the impact of bad entropy conditioning to the solution.
As a results, the entropy-consistent flux developed by Ismail & Roe has been applied to
higher order resolution.

These methods have been tested on two practical cases: the two-stream periodic per-
turbation and the sheath problem. It has been shown that the current fully-coupled
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implicit DG-FEM solver is able to tackle accurately the physics of low-temperature col-
lionsionless plasma. Besides, the use of implicit solver has demonstrated its increased
stability being able to solve the two-stream instability with a time step that is more than
two order of magnitude bigger than electron plasma frequency. This overcomes totally
one of the most stringent stability constraints for plasma flows.
Despite these very good results, a non-linearity is encountered for longer simulation. To
address this phenomena two possible explanations were proposed: the first one came
from a possible lack of consistency of the Roe flux at low-mach regime which may intro-
duce unexpected non-linear behaviour [2].The second one concerned the derivation of the
analytical solution which lies on linear Fourier simplifications.

Regarding the case of confined plasma, the ForDGe solver allowed us to reach a steady
state solution that is in very good agreement with the reference solution, but also gives
a well representation of the physics of the sheath. The main drawback of the methods is
that classical integration is used to let the solution reach step by step the steady state.
This direct approach needs a computational effort that is considerable.

8.3 Future work and perspectives

Regarding the two-stream instabilities, a natural way of future improvement of the
method is the implementation of advanced strategies for the evaluation of the Roe nu-
merical flux in the case of low-Mach regime. In this topics, one can refer to the method
suggested by Chalons et al.[15] which proposes to multiply the stabilisation part of the
numerical flux by a function f(Me) that depends on the electron Mach number. In par-
allel, Liou [55] has proposed a formulation for f(Me) that introduce a user defined cut-off
parameter. The reader will then choose a value for this parameter that avoid having a
null numerical dissipation when the electrons have zero velocity [2]. For more advance
strategy, the reader can refer to Boniface [9, 10] which has derived a low-Mach fix specific
for the Roe’s Riemann flux.

On the other hand, one may develop a steady Newton method for the plasma sheath
test case instead of the classical time integration. This would save a lot of computational
effort as it will solve directly for the steady state solution. Moreover, since the current
implementation has shown quite good results for the fully bounded plasma, the next step
would be to move onto the Langmuir probe configuration by removing one of the floating
walls. In this situation, one could refer to the work of Guittienne [35] and Merlino [57].

Regarding the plasma solver, despite going to multidimensional computation, a good
perspective is the integration of the multi-component formulation of plasma. In the
multi-fluid formulation, for a number N of different species, a system composed of 2N+1
equations is solved. These equations account for the moment transports equations of each
species and a closure one for the potential. Conversely, in multi-component formulation,
the plasma is seen as a single fluid. This means that the contributions of the different
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species are seen as a new term of these equations, keeping the number of equations
constant. As a result, this formulation allows the the possibility of simulation of large
and very heterogeneous mixtures.
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Appendix A

Jump and average operators

Following the convention presented in section 4.1.1, one can define the jump operator
[[·]] as

[[a]] = a+n+ + a−n− (A.1)
[[a]] = a+ · n+ + a− · n− (A.2)
[[a]]⊗ = a+n+ + a−n− (A.3)

It can be noticed that the jump of a scalar results in a vector, whereas for vectors
quantities the jump can be defined as an inner product, resulting in a scalar, and as an
outer product resulting in a second order tensor.

In addition, the average operator {{·}} is defined following

{{a}} = a+ + a−

2 (A.4)

{{a}} = a+ + a−
2 (A.5)

From all these definition, one can prove the following identity

[[ab]] = {{a}} [[b]] + [[a]] · {{b}} (A.6)
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Appendix B

Explicit Fourth-order Runge-Kutta
integrator

In this chapter, the implementation of the explicit fourth-order Runge-Kutta (RK4) meth-
ods is provided. As shown in section 5.2, RK integrators are based on the compact
formulation of the residual vector R(u)

∂tu = M−1R(u)︸ ︷︷ ︸
f(t,u)

(B.1)

Then, the explicit RK4 scheme integrates u from time tn−1 to tn with a time step ∆t and
N intermediate stages following

(uj)n = (uj)n−1 + ∆t
N∑
i=1

bi k, i (B.2)

where

ki = f (tn−1 + ci ∆t, yi) (B.3)

yi = (uj)n−1 + ∆t
N−1∑
s=1

ais ks (B.4)

and the values of the coefficients aij, bi and ci are stored in the Butcher tableau B given
in Eq. (5.9). In the case of the RK4 method, one obtains the following Butcher tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(B.5)

so that Eq. (B.2) simplifies to

(uj)n = (uj)n−1 + ∆t
6 [k1 + 2k2 + 2k3 + k4] (B.6)
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where tn corresponds to the time at the nth iteration, ∆t is the time step, and

k1 = f
(
tn−1 , u

n−1
j

)
k2 = f

(
tn−1 + ∆t

2 , un−1
j + ∆t

2 k1
)

k3 = f
(
tn−1 + ∆t

2 , un−1
j + ∆t

2 k2
)

k4 = f
(
tn−1 + ∆t , un−1

j + ∆tk3)
)

(B.7)

The implementation of the RK4 methods is then very straightforward and is explicit,
meaning that it allows a relatively fast resolution of the problem in comparison to implicit
RK methods. This method is used as time integrator for the Burgers equations developed
in Chapter 6. It is also used in the frame of the two-stream instability test case to procure
a comparison of the obtained values when the Poisson’s equation is solved or not with
the rest of the system.
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Appendix C

Two-stream perturbation problem

This part details the derivation of the analytical solution of the two-stream perturbation
test case presented in section 7.1 for the validation of the numerical discretisation. The
methodology used here is the one developped by Chabert & Braithwaite [14] and reused
in the work of Crispel et al. [27, 26] and Alvarez Laguna et al. [2]. It linearised Eq. (2.1)
for small perturbations with the following assumptions

• The background electron pressure gradient is negligible, though the perturbation
to the electron thermal energy density plays a key role;

• The background electric field gradients of particle drift speed are negligible, meaning
that the perturbation to the electric field E plays a key role;

• The ionisation is negligible.

Then, if one considers an harmonic perturbation ũ(x, t) to the steady solution u0(x), the
solution is

u(x, t) = u0(x) + ũ(x) (C.1)

such that

ne(x, t) = ne0 + ñe sin
(
ωt− kx

)
(C.2)

ni(x, t) = ni0 + ñi sin
(
ωt− kx

)
(C.3)

ue(x, ) = ue0 + ũe sin
(
ωt− kx

)
(C.4)

ui(x, t) = ui0 + ũi sin
(
ωt− kx

)
(C.5)

E(x, t) = E0 + Ẽ sin
(
ωt− kx

)
(C.6)

where ω is the wave frequency and k is the wave number. The steady values are found
from the initial conditions of the problem set up since these values does not vary with
time. However, in order to find the amplitudes of the perturbed values, one has to solve
the system of equations given in Eq. (7.1) for the perturbed variables.
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After linearisation, the equations for the perturbations in collisionless plasma are given
by

−i (ω − k ue0) ñe + ikne0ũe = 0
−i (ω − k ui0) ñi + ikni0ũi = 0
−ine0me (ω − k ue0) ñe + ikBTekñe = −ne0eẼ
−ini0mi (ω − k ui0) ñi + ikBTikñi = ni0eẼ

ikẼ = e

ε0
(ñi − ñe)

(C.7)

with i =
√
−1 being the imaginary unit. The last equation can be solved directly, yielding

Ẽ = e

ikε0
(ñi − ñe)⇒ φ̃ = e

k2ε0
(ñe − ñi) (C.8)

Injecting these results in Eq. (C.7) leads to

− (ω − k ue0) ñe + kne0ũe = 0
− (ω − k ui0) ñi + kni0ũi = 0

−ne0 (ω − k ue0) ñe + kvth,
2
eñe = ωp

2
e

k
(ñi − ñe)

−ni0 (ω − k ui0) ñi + kvth,
2
i ñi = −ωp

2
i

k
(ñi − ñe)

φ̃ = e

k2ε0
(ñe − ñi)

(C.9)

where
vth,e =

√
kBTe
me

and vth,i =
√

kBTi
mi

(C.10)

are respectively the thermal velocity of electrons and ions, and

ωpe =
√
ne0e2

ε0me

and ωpi =
√
ni0e2

ε0mi

(C.11)

the electrons and ions plasma frequencies.
At the condition proposed by Alvarez Laguna et al. [2] for the case of ions initially at
rest, i.e.

ne0 = ni0 = n0, ue0 = u0 = uB, ui0 = 0, vth,i = u0 (C.12)
the non-dimensional version of Eq. (C.7) is then

− (ω − k u0) ñe + kn0ũe = 0
−ω ñi + kn0ũi = 0

−n0 (ω − k u0) ñe + k
u0

2

ε
ñe = n0

kχε
(ñi − ñe)

−n0ω ñi + ku0
2ñi = − n0

kχ
(ñi − ñe)

φ̃ = (ñi − ñe)
k2χ

(C.13)
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with ε = me
mi

, κ = Ti
Te

and χ = . This system can be written in matrix form like

ku0 − ω 0 kn0 0 0

0 −ω 0 kn0 0
kχ
ε

+ n0
εk

−n0
εk

kχn0u0 − χn0ω 0 0
−n0

k
kκχ+ n0

k
0 −χn0ω 0

1
k2χ

− 1
k2χ

0 0 1




ñe
ñi
ũe
ũi
φ̃

 = 0 (C.14)

To have non zero results, one has to fix one of the values (in this case ũe ∼ ce =
√
ε−1)

and then solve the obtained Ax̃ = b system.
As a consequence, for the condition presented in section 7.1, i.e. κ = 1, ε = 10−4 and
χ = 104, the solution to Eq. (C.14) is

ñe = 2.41425× 10−2

ñi = 2.41425× 10−2

ũe = 10−2

ũi = 3.41425× 10−2

φ̃ = 2.41421× 10−2

(C.15)

C.1 Dispersion relation

A dispersion relation in the form of a fourth-order equation F (k, ω) = 0 can be found
from Eq. (C.14) when the potential is not considered (i.e. without taking its last row and
column). It corresponds to the resolution of the characteristics equations det(A) = 0,
where

A =


ku0 − ω 0 kn0 0

0 −ω 0 kn0
kχ

ε
+ n0

εk
−n0

εk
kχn0u0 − χn0ω 0

−n0

k
kκχ+ n0

k
0 −χn0ω

 (C.16)

so that

det(A) = n0
2

εχ

[
εku0

(
−kn0u0 + 2ω

(
k2κχ+ n0

))
+ εχ

(
−k4κu2

0 − 2kω3u0 + ω4
)

+ k4κχ+ k2n0 (κ+ 1)

+ ω2
(
εk2χ

(
−κ+ u2

0

)
− εn0 − k2χn0

) ]
(C.17)

The characteristic equation det(A) = 0 is then in the form of a fourth-order equation in
ω express as

F (k, ω) = α4ω
4 + α3ω

3 + α2ω
2 + α1ω + α0 = 0 (C.18)
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where

α4 = εχ, α3 = −2εχku0, α2 =
(
εk2χ

(
u2

0 − κ
)
− εn0 − k2χ− n0

)
α1 = 2

(
k2κχ+ n0

)
εku0, α0 = −εk2u2

0n0 − εχk4κu2
0 + k4κχ+ k2n0 (κ+ 1) .

(C.19)
Consequently, in order to find a value for ω, one has to solve Eq. (C.18) for a given value
of k. In the case of the condition stated in section 7.1, the solutions found are

ω0 ≈ 106

ω1 ≈ −106

ω2 = 8.88572689
ω3 = −8.88447038

(C.20)

which are found real values. Here, the value of ω = 8.885726989 is chosen.
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