
Monitoring vegetation seasonality in

Central Africa using Sentinel-2 data
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particular thanks to Anais-Phasiphaé Gorel for the proofreading and pertinent remarks. I

am also very thankful to Jonathan Bitton for his availability and listening skills.

Furthermore, I would like to mention the fieldworkers that acquired the ground data

necessary for my work.

I would like to extend my heartfelt thanks to my mum and dad for their unconditional

love and encouragement. To my brother, Jonas, our friendship and mutual support are

precious to me. To my sisters Annie and Elise who always covered my back. A special

thanks to Johan, my beloved secretary, who dared to endure my stress during this period.

At last, thank you, Thomas, Marie, Tanguy and Daphné, you embellished these five years
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Abstract

Tropical forests in Central Africa are found under dry and seasonal climates. The vegetation

adopts a seasonal pattern as depicted by localized field studies, but its importance and extent

are barely known. The recent Sentinel-2 mission provides new opportunities to monitor

vegetation phenology from space.

The first objective of this study was to assess the potential of Sentinel-2 data to monitor

vegetation seasonality in Central Africa. The use of Sentinel-2 data further aimed to address

the questions of how seasonal are Central African forests, and how is this seasonal functioning

related to rainfall seasonality in Central African Republic (Mbäıki) and Democratic Republic

of Congo (Luki) subjected to reverse rainfall regimes. This work relied on three data types:

(i) Sentinel-2 images, (ii) ground data consisting of regular observations of phenophases and

(iii) rainfall data from the Global Precipitation Measurement mission.

The resulting rainfall and Enhanced Vegetation Index times series allowed respectively

the retrieval of the start of rain and the start of the season further compared to the ground

observations. An additional wavelet analysis was performed on the Mbäıki site to determine

the frequency and timing of the periodic vegetation events.

This work has demonstrated the suitability of the recently available Sentinel-2 data for

monitoring vegetation dynamics when cloud contamination remains reasonable. In addition,

annual vegetation cycles dominated at the study sites, in line with the seasonality of rainfall.

Comparison between sites confirmed a shift in vegetation seasonality from Mbäıki to Luki

in response to the inversion of rainfall patterns across the Equator. In Mbäıki, the forest

EVI signal was on average 16.9 ± 4.4 days before the rainfall signal, supporting the ultimate

control of rainfall. In contrast, for both study sites, the earliest onset of rainfall resulted

in the earliest onset of the season in 2019, supporting the hypothesis that rainfall exert a

proximal control.

To conclude, Sentinel-2 data are suited to monitor vegetation seasonality but would

require the combination with additional images to cope with continuously clouded areas.

Keywords: Remote sensing, Phenology, Sentinel-2, Tropical forests, Central Africa,

Enhanced Vegetation Index.
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Résumé

Les forêts tropicales d’Afrique centrale se trouvent sous des climats secs et saisonniers. La

végétation adopte un schéma saisonnier comme le montrent des études de terrain localisées,

mais son importance et son étendue sont à peine connues. La récente mission Sentinel-2 offre

de nouvelles opportunités pour suivre la phénologie de la végétation depuis l’espace.

Le premier objectif de cette étude était d’évaluer le potentiel des données Sentinel-2 pour

suivre la saisonnalité de la végétation en Afrique centrale. L’utilisation des données Sentinel-2

visait à répondre aux questions suivantes : quelle est la saisonnalité des forêts d’Afrique cen-

trale, et comment ce fonctionnement saisonnier est-il lié à la saisonnalité des précipitations en

République centrafricaine (Mbäıki) et en République démocratique du Congo (Luki) soumises

à des régimes pluviométriques inversés. Ce travail s’est appuyé sur trois types de données:

(i) les images Sentinel-2, (ii) les données au sol consistant en observations régulières des

phénophases et (iii) les données pluviométriques de la mission ”Global Precipitation Mea-

surement”.

Les séries temporelles de précipitations et d’”Enhanced Vegetation Index” qui en résultent

ont permis respectivement de détecter le démarrage des pluies et le début de la saison.

Le début de la saison a ensuite été comparé aux observations de terrain. Une analyse

supplémentaire des ondelettes a été effectuée sur le site de Mbäıki pour déterminer la

fréquence et le moment des événements périodiques de végétation.

Ce travail a démontré l’adéquation des données Sentinel-2 récemment disponibles pour

le suivi de la dynamique de la végétation lorsque l’ennuagement reste raisonnable. En outre,

les cycles annuels de végétation ont dominé sur les sites étudiés, en lien avec la saisonnalité

des précipitations. La comparaison entre les sites a confirmé une inversion de la saisonnalité

de la végétation de Mbäıki à Luki en réponse à des régimes pluviométriques inversés de

part et d’autre de l’Equateur. À Mbäıki, en moyenne, le signal de la forêt était 16,9 ± 4,4

jours avant le signal des précipitations, ce qui supporte le contrôle ultime des précipitations.

En revanche, pour les deux sites d’étude, le démarrage le plus précoce des précipitations a

entrâıné le début le plus précoce de la saison en 2019, soutenant l’hypothèse des précipitations

comme facteur proximal.
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En conclusion, les données Sentinel-2 sont adaptées au suivi de la saisonnalité de la

végétation mais nécessiteraient la combinaison avec des images supplémentaires pour faire

face aux zones continuellement ennuagées.

Mots-clés: Télédétection, Phénologie, Sentinel-2, Forêts tropicales, Afrique centrale,

’Enhanced Vegetation Index’.
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and Luki. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Alpha diversity maps: Shannon index over the study areas. On the left:
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Chapter 1

Introduction

1.1 Background

The current decline in biodiversity occurs at an unprecedented rate since the last mass extinc-

tion 65 million years ago and is considered as the 6th mass extinction (Ceballos et al., 2015).

In this regard, tropical forests are crucial as they harbour 70 to 90 per cent of the terres-

trial biodiversity (Myers, 1996). Despite their significant importance in terms of ecosystem

functions and services, anthropogenic pressures threaten tropical forests (Malhi et al., 2014).

Substantial changes in land use, biotic species (invasion, extinction), biogeochemical cycles

and the climate system have led to the recognition of a new geological era: the Anthropocene

(Lewis et al., 2015).

Phenology is one of the 20 Essential Biodiversity Variables, developed by the Group on

Earth Observations Biodiversity Observation Network (GEO BON, 2017) to monitor the

response of individuals, populations and communities to climate change. Under modified

climatic conditions, the recurrent vegetation development cycles such as leaf flushing and

shedding, flowering and fruiting, named phenology (Bush et al., 2017), is likely to shift in

timing (Menzel and Fabian, 1999; Fu et al., 2015; Yu et al., 2017). Global warming implies

irreversible changes in ecosystems, which further feedback the rate of climate change.

At present, models agree that tropical phenology is expected to change in the future

(Cleland et al., 2007) although the expected responses of tropical vegetation to climate

variability are still unclear in the scientific community. Phenological studies in the tropics

are relatively recent compared to temperate ecosystems, as tropical ecosystems have long

been considered stable systems with little variability in climate and phenology (Abernethy

et al., 2018). There is however a diversity of phenology strategies (Newstrom et al., 1994,

Sakai, 2001) and responses to climate change. Huete et al. (2006) showed in their study from

2000 to 2005 over the Amazon, an abnormal increase in greenness in response to drought

2



CHAPTER 1. INTRODUCTION 3

using remote sensing data while models and flux tower suggest browning vegetation (i.e. a

decline in canopy photosynthesis). A first and key step before being able to predict any long-

term impacts of climate change is to monitor and assess the current seasonal functioning of

tropical forests.

1.2 Tropical phenology

Tropical forests are characterised by high species richness distributed in multi-layered canopies

going from emergent trees in the top canopy to shade-tolerant species and C3 grasses in the

understory (Ratnam et al., 2011). The extent of tropical forests is bounded between the

tropics where the temperatures lie above 15°C all year long (Pan et al., 2013). Annually,

tropical forests may experience a dry season that spatially varies in length and intensity. The

rainfall seasonality is driven by the Inter-Tropical Convergence Zone (ITCZ) (Siebert, 2014)

which is the meeting point of trade winds resulting in a band of clouds and high precipitation

near the Equator. The ITCZ follows a seasonal pattern attracted to areas that receive the

most solar heating (Yan, 2005) that varies annually according to the orbit position of the

Earth. In January, the ITCZ lies about 15S over South America and Africa. In July, it lies

at about 25N over Africa and about 30N over Asia (Yan, 2005, Figure 1.1).

During the annual dry season, deciduousness is an evolutionary strategy adopted by some

tropical trees to cope with water shortages (Santiago et al., 2016). In this regard, Guan et al.

(2015) identified a minimum annual precipitation threshold of approximately 2000 mm yr-1

for leaves to persist during the dry season in tropical rainforests worldwide.

In temperate ecosystems, strong changes in temperature and day length from one season

to another trigger phenological events resulting in annual phenophases for the majority of

species. In opposition, the tropical climate offers the ability for plants to grow and reproduce

at any time of the year in the majority of tropical regions (Menaut et al., 1995); Bush et al.,

2017; Adamescu et al., 2018). Therefore, tropical forests display a wide diversity of phe-

nological strategies (Newstrom et al., 1994; Sakai, 2001) that vary spatially and temporally

(Wright and Calderón, 2006 in Panama; M. E. Brown et al., 2010 in Africa; Angoboy Ilondea

et al., 2019 in Democratic Republic of Congo) and between and within species (De Bie et al.

1998 as cited in Ryan et al., 2017). The diversity of tropical phenology patterns has been

summarized into four groups by Newstrom et al. (1994): supra-annual, annual, sub-annual

and continuous. Newstrom et al. (1994) also underlined that geographic variability in phe-

nological patterns is more likely to occur in the tropics than in temperate regions due to

high phenological diversity. In addition, tropical systems exhibit dense canopies, very high

species diversity and sophisticated structures that exacerbate the complexity of their spatio-

temporal dynamics. The intrinsically simpler functioning coupled with the larger occurrence

of long-term datasets of temperate phenology explains the preponderance of phenological

studies on temperate forests (Bush et al., 2017).
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Figure 1.1: Mean locations of the Intertropical Convergence Zone (ITCZ) around the globe in January and July, from

Robinson and Henderson-Sellers (1991) according to Yan (2005).

Gradually, phenology studies were extended through tropical areas around the 1970s, with

a major focus on flowers and fruits related to the study of animal diet. Mainly because of

their importance in terms of wildlife and their easier observation compared to the acquisition

of information on leaf phenology in semi-evergreen or evergreen forests (Alberton et al., 2017

as cited in Abernethy et al., 2018). In the 1990s, tropical phenology gained scientists’ interest

after the proven impact of climate change causing rapid and considerable shifts in temperate

phenology (Abernethy et al., 2018). In 1993, Tutin and Fernandez determined that minimum

temperature could trigger flowering and fruiting events in Gabon. Progressively researchers

began to focus on deciduousness and several environmental cues have been reported to affect

leaf phenology. In 1994, Wright and Van Schaik underscored the concordance of leaf flushing

with the peak of irradiance when water is available in tropical forests. Current knowledge

highlights sunlight (Huete et al., 2006), rainfall seasonality and inter-annual variability (Gond

et al., 2013; Guan et al., 2015) as key factors triggering the onset of leaf flushing and shedding

in tropical forests (Philippon et al., 2019).

1.3 Central African phenology

Central Africa is one of the most understudied areas of the world (Philippon et al., 2019) and

studies focusing on the tropical forests of the Congo basin are even rarer (Verbeeck et al.,

2011). The lack of robust long-term ground-based observations of tropical phenology (Adole

et al., 2016; Abernethy et al., 2018; Bush et al., 2020) and in situ climatic measurements

(Washington et al. 2013 as cited in Philippon et al., 2019) make it difficult to monitor and
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understand the processes influencing phenology.

In Africa, the main biomes’ distribution is related to the length of the dry season (Figure

1.2). Tropical forests in Africa are found under drier and more seasonal climates than the

other tropical regions (Guan et al., 2015) and most tropical forests are below the threshold

of 2000 mm yr-1 (Philippon et al., 2019; Guan et al., 2015). As a result, the water carried

over from the preceding wet season may not be sufficient to meet the dry season needs and

is a limiting factor for plant photosynthetic activity (Guan et al., 2015). In response to

unfavourable conditions, tree growth can be paused by leaf shedding for deciduous trees.

Though, deciduousness is not evenly distributed across the forest area (Ouédraogo et al.,

2016; Réjou-Méchain et al., 2021) but shows a clear spatial pattern in Central Africa, with

more evergreen forest in wet and coastal areas (Atlantic Central Africa) and more semi-

deciduous forest covering vast areas further inland (Bouvet et al., 2018, Réjou-Méchain et

al., 2021). Beyond the Equator, the majority of forests are found to be semi-deciduous to

deciduous alongside the increasing length of the dry season.

Rainfall is not the single driver of the leaf shedding and flushing events. Light is reported

in the literature as the main factor, at the same level as water availability in the tropics (Van

Schaik et al., 1993; Wright and Van Schaik, 1994). In Gabon, despite a precipitation level

below the 2000 mm yr-1 threshold, evergreen forests are maintained. Philippon et al. (2019)

link the persistence of leaves in the canopy by the reduction of water demand in the dry

season owing to a light-deficient climate. Specifically, the high degree of cloud cover during

the dry season limits evapotranspiration. Geology has also been highlighted as a determinant

of tropical forest deciduousness in the Sangha River Interval by Ouédraogo et al. (2016). In

their study, they showed that the relationship between rainfall level and deciduousness is

mediated by the geological substrate.

Diverse spatial and temporal vegetation dynamics emerge in response to the above-

described factors. The regional extent and timing of the vegetation response to environ-

mental variables are still vague and poorly documented. Yet, an annual seasonal functioning

was demonstrated for flowering in a cross-site analysis from Adamescu et al. (2018). The

dominance of annual cycles in flowering in tropical Africa was confirmed by Ouédraogo et

al. (2020) using herbarium data. However, the considerable intra-specific and inter-annual

variation in phenology behaviour was underpinned by Bush et al. (2017) in Lopé, Gabon.

The complexity and inter-individual variation in flowering and fruiting patterns in differ-

ent study sites in Africa was further highlighted by Adamescu et al. (2018). More recently,

Réjou-Méchain et al. (2021) were able to map forest types at a regional scale based on species

composition but also deciduousness in Central Africa. Progress is underway, but further re-

search on understanding the functioning of the semi-deciduous forests is still needed.



CHAPTER 1. INTRODUCTION 6

Figure 1.2: Paralleling biomes distribution to dry season length in Africa. Taken from Bouvet et al. (2018).

1.4 Land surface phenology

Satellite remote sensing offers the opportunity to undertake large-scale studies allowing spa-

tial comparisons and improving the knowledge on tropical phenology. In particular, leaf

phenology can be captured by optical remote sensors through vegetation indices and green-

ness proxies based on the reflectance properties of the leaves (Helman, 2018). Such studies

using space-borne optical sensors at a regional to global scale are named land surface phe-

nology (Helman, 2018). Time-consuming and expensive ground observations, which record

the different phenophases of individual trees, are generally difficult to maintain over the

long term. In contrast, the simultaneous monitoring of vegetation phenology on different

landscapes is possible at a moderate cost with satellites. Optical data at coarse to medium

spatial resolution and high temporal frequency are subject to a growing use to monitor trop-

ical forests’ canopy. Several studies were able to monitor leaf phenology through optical

remote sensing, mainly in Amazonia (Asner et al., 2000; Xiao et al., 2006; Silva et al., 2013)

in Monsoon Asia (Huete et al., 2008; Suepa et al., 2016) and in Africa (Adole et al., 2018).

Researchers largely depend on open access products and first call on Landsat data, starting

the vegetation monitoring from space (Henebry and de Beurs, 2013). Then, products moving

from Advanced Very High Resolution Radiometer (AVHRR) to Moderate-resolution Imaging

Spectroradiometer (MODIS) sensors prevailed. The commonly used information retrieved

in land surface phenology is the start of the season, end of the season and peak of the season

(Misra et al., 2020).

Despite the promising results in capturing leaf phenology by remote sensing products,

some shortcomings lead to misinterpretation of observed trends (Helman, 2018). First, the

signal acquired from a spaceborne sensor is influenced not only by vegetation properties but

also by multiple other factors. Lange et al. (2017) state that ”these effects include atmo-
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spheric interference, snow cover, soil-wetness, viewing geometry and illumination conditions

as well as the distorted signal under overcast conditions”. In addition, the studies of Mor-

ton et al. (2014) and Huete and Saleska (2010) both revealed that artefacts from changes

in sun sensor geometry could lead to a wrong interpretation of the vegetation indices. For

instance, a green-up was observed during drought conditions over the Amazonian forest

(Morton et al., 2014). Secondly, the intrinsic nature of leaf phenology is rapid and dynamic

(Longman and Jeǹık, 1974) implying frequent observation in order to capture the pheno-

logical events. However, cloud cover contamination occurs frequently with optical sensors

limiting the acquisition of images. The minimum number of images required to accurately

capture phenological events depends on the timing and availability of cloud-free images and

the vegetation type studied (Zeng et al., 2020). In the tropics, cloudiness and haze are highly

persistent (Asner, 2001) and result in a lack of good quality images. Temporal resolution is

therefore a key factor to monitor vegetation seasonality. Thirdly, mixed pixels are recurrent

in land surface phenology studies (Lange et al., 2017) and refer to the possibility that a

single observation point may or may not represent the overall pixel characteristics (White

et al., 2009) because of heterogeneous landscape and complex multi-canopy layers systems

(Helman, 2018). To limit this adverse effect, a fine spatial resolution is required. There is

thus a trade-off between temporal and spatial resolution when using a single satellite time

series as the data source (Zeng et al., 2020).

The recent launch of the Sentinel-2 satellite by the European Space Agency (ESA) is

promising to overcome those limitations by providing high-resolution (10-30 m depending

on the spectral band, Figure 1.3) multispectral data with a temporal resolution of up to five

days. The Sentinel-2 mission arises to ensure the data continuity and improve the perfor-

mance of earlier missions such as Landsat and SPOT (ESA, 2015a). Sentinel-2 consists of

a twin-satellite system designed to provide data for land monitoring, emergency manage-

ment, security purposes and climate change assessment (ESA, 2015a). In particular, data

acquired from this mission provide geographical information on land cover and related vari-

ables such as vegetation state via the assessment of biogeophysical parameters. The first

sensor (Sentinel-2A) acquires images since 2015 while the second (Sentinel-2B) was launched

in 2017. Therefore, the Sentinel-2 mission provides new opportunities to monitor land sur-

face phenology at high spatial resolution and high revisit frequency. With five years of data,

the use of the Sentinel-2 sensors has gained importance in terms of plant phenology studies

(Misra et al., 2020). Below are presented a non-exhaustive list of studies building Sentinel-2

time series, either alone or combined with other datasets for several purposes such as:

(i) To map and monitor croplands dynamics. For instance, Veloso et al. (2017) and

more recently Meroni et al. (2021), investigated the temporal behaviour of crops using

sentinel-1 and -2 data. Both Mercier et al. (2020) and d’Andrimont et al. (2020) as-

sessed the potential of using sentinel-1 and -2 data to identify the phenological stages

of the rapeseed. In 2020, Liu et al. developed an algorithm used to map cropping

intensity in China by combining Landsat, Sentinel-2 images and Google Earth Engine.
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(ii) To monitor grasslands. Vrieling et al. (2018) retrieved vegetation phenology of grass-

lands and maize based on Sentinel-2 time series. Both Pastick et al. (2020) and Griffiths

et al. (2020) characterised land surface phenology from Landsat and Sentinel-2 time

series.

(iii) To map wetlands. Mahdianpari et al. (2019) and Cai et al., 2020 used Sentinel-2

time series to map wetlands respectively in Newfoundland and in the Dongting Lake

wetland.

(iv) To characterise the phenological dynamics of urban areas as in a study of Granero-

Belinchon et al. (2020).

(v) To map and monitor forest species. For instance, Grabska et al. (2019) mapped the

mosaic of the forest species in the Polish Carpathian Mountains. The monitoring of

boreal forest phenology was performed by Jönsson et al. (2018). In contrast, Lange

et al. (2017) and Kowalski et al. (2020) used Sentinel-2 data to monitor the phenology

of temperate species.

Figure 1.3: Spatial resolution versus wavelength. Sentinel-2’s 13 spectral bands covering the visible and the near-

infrared to the shortwave infrared and their respective field of application. The spatial resolution is 10, 20 or 60 m;

taken from: ESA (2015b).
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1.5 Aims

Despite their crucial importance, phenology studies in Central Africa are rare and lead to a

lack of knowledge on the importance and extent of the seasonal functioning of vegetation.

Using remotely sensed data is an opportunity to cope with the lack of field measurements.

Few studies have exploited the potential of the Sentinel-2 mission to understand the sea-

sonality of African tropical forests, and how is this seasonal functioning related to rainfall

seasonality.

The main objective of this work is to assess the potential of Sentinel-2 data to monitor

vegetation seasonality in Central Africa through the development of a workflow for the pro-

cessing of Sentinel-2 data. The method will be calibrated based on a first study site located

in the Central African Republic (Mbäıki). At this stage, the link between the vegetation

seasonality and the rainfall pattern will be investigated. In a second step, the method will

be applied to a second study site, in the southern hemisphere (Luki). The aim is twofold.

Firstly, to determine the possibility of using sentinel-2 data to carry out multi-site studies.

Secondly, to highlight the influence of different rainfall regimes on vegetation dynamics.

The questions below will be specifically addressed:

(i) Are Sentinel-2 data suitable to monitor the vegetation seasonality in Central Africa?

(ii) What is the vegetation dynamics in Mbäıki and Luki?

(iii) What is the influence of the rainfall regime on the vegetation seasonality in Mbäıki

and Luki?

This study should result in a methodology that consists of a powerful tool for undertaking

multi-site studies.



Chapter 2

Material and methods

This section aims to give an overview of the study sites, describe the data used and fi-

nally present the method developed and implemented. This work relies on three data

types:(i) Sentinel-2 data, satellite images collected in the frame of the Sentinel-2 mission,

(ii) ground data collected in Mbäıki and in Luki consisting of regular observations of differ-

ent phenophases (flowering, fruiting, leaf flushing and shedding) in tree crown, (iii) satellite

rainfall data from the Global Precipitation Measurement Mission (GPM).

2.1 Study sites

Two study sites from the two hemispheres were considered. The first one (Mbäıki) was used

to calibrate the approach while an additional site (Luki) was used to carry out a cross-site

comparison on both side of the Equator (Figure 2.1 a). For each site, the study focuses on

a frame of 25 x 25 km² marked in Figure 2.1b) and c) as black frames.

The first study site is located nearby the city of Mbäıki (3°52’N, 17°59’E) in the Lobaye

Province, Central African Republic (Figure 2.1). Mbäıki is located at the northern margin

of the Congo Basin. The climate is humid tropical and seasonal with three months dry

season from December to February accumulating 84.5 mm of rainfall (Figure 2.1b). The

mean annual precipitation is equal to 1636 mm1 (Figure 2.1a). The soil type is classified

as Ferralsol by the World Reference Base for Soil Resources soil classification (WRB, IUSS

Working group, 2014). The vegetation consists of a mix between semi-deciduous forests and

savanna (Gourlet-Fleury et al., 2013, Ouédraogo et al., 2011).

The second site corresponds to the Luki Man and Biosphere Reserve in the Province of

Bas-Congo, Democratic Republic of Congo (Figure 2.1a). The Luki Reserve is considered

1Rainfall data source: GPM data (G. Huffman et al. (2019)). Temperature data source: National Oceanic

and Atmospheric Administration (NOAA).

10
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representative of the Mayombe forest (Lubini, 1997 cited in Angoboy Ilondea et al., 2019)

and gathers a semi-deciduous forest (Angoboy Ilondea et al., 2019) growing on ferralitic soil.

The rainfall seasonality is unimodal with a strong dry season from June to September and

12.2 mm1 of accumulated rainfall (Figure 2.1c). The dry season in Luki is stronger compared

to Mbäıki in terms of both intensity and duration.

Figure 2.1: (a) Location of the study sites in Central Africa. The northern blue pin locates the Mbäıki forest experiment

(in a logging concession) on the upper part of the Equator. The southern blue pin locates the Luki reserve on the

lower part of the Equator. Basemap: ©Bing.(b) and (c): Mbäıki and Luki study sites marked as a black frame on the

basemap of tree cover (0-100 %, Hansen et al. (2013)). The roads and rivers are coloured respectively in orange and

blue. (d) and (e): Walter and Lieth diagram over from 2016 to 2020 respectively for Mbäıki and Luki. The red line

represents the mean monthly temperature, the blue line the mean monthly rainfall. The dry season is represented by

the dotted area, the humid period by vertical hatching. When the monthly rainfall is greater than 100 mm, the scale is

increased from 2mm/ºC to 20mm/ºC. Rainfall data source: GPM data (G. Huffman et al. (2019)). Temperature data

source: National Oceanic and Atmospheric Administration (NOAA).

2.2 Ground data

One of the major challenges in land surface phenology estimation in Africa is ground vali-

dation (Adole et al., 2016) although important to interpret them adequately and reliably.

In the Mbäıki Experimental Station (3°90’N, 17°93’E), 14 different species from five

botanical families are monitored since 2005. Among them, 12 are deciduous. The most

represented species is E.cylindricum with 125 individuals followed by T.scleroxylon with 114

individuals. The dataset consists of crown observations from the ground taken at a 15 days



CHAPTER 2. MATERIAL AND METHODS 12

frequency for trees located within ten plots of four hectares. The plots are monitored since

1982 while the dominant phenophase for these trees is reported since 2005 by a single person

present on site (Fidèle Baya). The field reports provide the day of year corresponding to the

leaf shedding while leaf flushing cannot be captured because of it coexistes with flowering

(considered as the dominant phenophase). In 2007, new trees were added to enlarge the

species diameter range. In 2013, the phenology monitoring was interrupted due to socio-

political troubles in the country. In the frame of this work, the seasonal vegetation behaviour

is retrieved from the ground datasets at the 2007-2013 and 2016-2018 periods.

In the Luki Man and Biosphere Reserve, the phenology was monitored from 1947 to 1958

by the same field team. The number of monitored species reaches 158 among which 52 are

deciduous. The most represented species are P.balsamifera with 194 individuals, followed by

T.superba with 184 individuals. The phenological data were taken at a frequency of 10 days

along six paths (Angoboy Ilondea et al., 2019). In Luki, the ground data are used to give

an overview of the yearly dynamic of the trees given the non-concordance of the field data

(1947-1958) and the remote sensing images (2015-2020).

In both cases, a tree is defined as defoliated when the field worker considers the tree to

be completely leafless.

2.3 Rainfall data

The precipitation dataset came from the Global Precipitation Measurement (GPM) mission.

This mission is based upon the success of the Tropical Rainfall Measuring Mission (TRMM).

The National Aeronautics and Space Administration (NASA) and the Japan Aerospace Ex-

ploration Agency (JAXA) launched the TRMM in 1998. TRMM data are widely used by

scientists to investigate climate drivers of tropical phenology in Africa (Zhang et al., 2005,

Philippon et al., 2016, Ryan et al., 2017, Guan et al., 2015, Philippon et al., 2019). In

2019, Camberlin et al. compared several satellite-based rainfall products (ARC, CHIRPS,

CMORPH, PERSIANN, TAPEER, TARCAT, TRMM) in Central Africa. Their study re-

vealed that TRMM products perform the best rainfall estimation for the mean monthly

rainfall regimes and daily rainfall over Central Africa.

Following the widespread use of the TRMM mission, the NASA and the JAXA build up

an advanced network of satellites as part of the Global Precipitation Measurement (GPM)

mission in 2014 (Hou et al., 2014). The GPM core observatory aims to provide a continuous

record from the TRMM as well as additional and advanced information on precipitation

characteristics (G. J. Huffman et al., 2020). The GPM core observatory spacecraft gath-

ers cutting-edge sensors allowing to include light-intensity precipitation and falling snow

measurements (Hou et al., 2014). In the literature, the GPM products are often referred

to as the Integrated Multisatellite Retrievals for GPM (IMERG) products. IMERG is a
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multisatellite algorithm developed by the NASA that “intercalibrates, merges, and time-

interpolates ”all” satellite microwave precipitation estimates in the GPM constellation, then

incorporates microwave calibrated infrared satellite estimates and precipitation gauge analy-

ses” (G. J. Huffman et al., 2020)”. Dezfuli et al. (2017) assessed the evolution of the quality

of IMERG products compared to its predecessor TRMM over Africa. They showed that

IMERG performed better than TRMM to capture the diurnal cycle while the annual cycle

is not significantly better depicted for IMERG although they both show reasonable results.

For this work, data for the 2015-2020 period were downloaded freely on the GES DISC

platform (NASA) at a temporal and spatial resolution respectively of 1 day and 0.1°x 0.1°.
The daily accumulated rainfall was averaged over the 4 pixels of each study area given the

low spatial variation between the pixels.

2.4 Preprocessing of Sentinel-2 data

This section details primarily the Sentinel-2 data and preprocessing (Figure 2.2). The pre-

processing consists in the images selection and download and then how to transform the raw

physical variables measured by the space-born sensors (reflectance in different wavelengths)

into greenness proxies in the form of vegetation indices. All the data were processed in

RStudio 1.4.11.06 using R4.0.4.

The first Sentinel-2 satellite was launched in June 2015 with a revisit frequency of 10 days

at the Equator and in the absence of clouds, rising to 5 days with the entry of the second

satellite in March 2017. The data description is presented in Table 2.1. The spatial resolution

depends on the spectral band (Figure 1.3). The relevant bands to monitor vegetation are

the spectral bands in the visible domain corresponding to blue, green and red channels (B02,

B03, B04), three red-edge bands (B05, B06, B07), a Near Infrared (NIR) broadband (B08),

a NIR narrow band (B8A), and two Short-Wave Infrared (SWIR) bands (B11 and B12)

(Figure 1.3).

Table 2.1: Characteristics of Sentinel-2’s products available on the Copernicus Open Access Hub platform. TOA

(Top-of-atmosphere), BOA (Bottom-of-atmosphere) adapted from ESA (2015a).

Type Description Format

Level-

1C

Non corrected data: TOA reflectances

in cartographic geometry

orthoimages: 110 x 110 km² in

UTM/WGS84 projection

Level-

2A

Corrected data: BOA reflectances in

cartographic geometry

orthoimages: 110 x 110 km² in

UTM/WGS84 projection

https://disc.gsfc.nasa.gov/datasets
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2.4.1 Images selection

Before 2017 and the launch of the second Sentinel-2 satellite, the theoretical revisit frequency

was 10 days. After this date, a mean of one image every five days is reached. To reduce

the downloading time, a preliminary step of images selection was performed. Two different

approaches were successively implemented on the Mbäıki site to retrieve the land surface

phenology time series.

(i) Approach 1: by selecting cloud-free images, this approach aims to have a high-quality

dataset. It allows having a high degree of confidence in the data produced and avoids

misinterpretation. It reduces considerably the download and computational time as

well as the disk space used. The first selection step consisted of filtering of the images

having a cloud coverage constrained below 30 % on the Sentinel-2 tile of interest. For

all the data fulfilling this criterion, a visual classification in four distinct classes was

made based on the preview images available on Sentinel Playground. From A: very

high quality to D: mediocre quality. The D class images are then removed resulting

in a dataset of 84 images. Some products provided are defective (corrupted zip files).

Therefore, a last filtering of the resulting images was made (from 84 to 80 images).

The 80 images list were used as input for the downloading step.

(ii) Approach 2: this approach aims to gather a large number of data regardless of the

quality. It allows monitoring at a higher time resolution required to capture the quick

phenology changes. In this case, images were removed from the dataset in case of a

defective zip file or of a 100 per cent cloud cover. It led to an amount of 261 images.

The first approach resulted in a large number of data gaps leading to large time spans

between two images. However, the leaf shedding and flushing is rapid and dynamic and

requires a high frequency of observations. The results produced by approach 1 could not be

interpreted adequately. The second approach was then preferred for both sites.

2.4.2 Download

Sentinel-2 tiles can be downloaded freely on the Copernicus open access hub. However, the

oldest and least used Sentinel-2A and B data have been removed from the online ESA archive

and stored in the long term archive. It is though possible to request a query of products in

the long term archive. The ESA server restores the products online within 24 hours after

triggering the retrieval. Nevertheless, the ordering process undergoes failures quite often.

In addition, only two concurrent downloads are allowed on the Copernicus open access hub.

Finally, no automatic download is initiated when the products are available.

Regarding the high amount of images needed to build a consistent time series, a manual



CHAPTER 2. MATERIAL AND METHODS 15

download of the images is not efficient. The R toolboxes (sen2r, getSpatialData) tested

to order and download the data through the ESA server resulted in recurrent failure when

ordering the images from the ESA server to retrieve long term archive products.

Therefore, the retrieval and download of Sentinel-2 data were made through the French

access to sentinel products, PEPS (Figure 2.2). The main advantages are the quick data

availability and reliability compared to the ESA server. Manually, the images in a given

time range and for a tile of interest were selected and put in a cart on PEPS. Then a

file with a .cart extension was downloaded and used as input of the peps downloader app.

Automatically, when the images are online, peps downloaded the zip file containing the data

and metadata. Afterwards, the zip files were unzipped and put in the input folder ready to

be corrected by an automated R script.

2.4.3 Correction

The ESA developed a prototype processor called sen2cor that performs atmospheric, terrain

and cirrus correction and a scene classification (ESA, 2018). The algorithm takes as input the

Level-1C images and a raster representing the topography (Digital Elevation Model (DEM)).

The Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Data located on

the study site of interest is downloaded freely on The CGIAR-CSI GeoPortal. The version

sen2cor 2.5.5 was used for data before 2017 and the updated and faster 2.8.0 version for

ulterior dates acquisitions. The sen2r toolbox developed by Ranghetti et al. (2020) was used

to launch the sen2cor algorithm from R (’Apply sen2cor’ step in Section 2.2).

2.4.4 Band selection, cropping and resampling of images

In a first step, the required bands (B02, B03, B04, B05, B06, B07, B08, B8A, B11 and B12)

were selected. In addition, the cloud mask based on the scene classification band produced

by sen2cor was retrieved. At this step of the processing chain, the data were still in the

form of Sentinel-2 tiles (meaning a 110 x 110 km² square). The images were then clipped on

the study area extent and resampled to the desired resolution by bilinear interpolation (10

m). Those steps were performed thanks to the stars R package. All the bands were then

gathered in one raster stacked file.

2.4.5 Compute indices

Numerous vegetation indices based on reflectance in different wavelengths can translate the

vegetation status. Among them, the following indices are computed.
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The Normalized Difference Vegetation Index (NDVI)

The NDVI, developed by Rouse et al. (1974), has been the most widely VI used in quantifying

green vegetation. It is the normalized ratio between green leaf scattering in NIR wavelengths

and chlorophyll absorption in red wavelength. Its formula adapted to Sentinel-2 bands is:

NDV I =
B08 −B04

B08 +B04
(2.1)

Leaf phenology’s characteristics used to be largely depicted through the NDVI. Though,

NDVI appears to have some limitations such as saturation in multi-layer closed canopy

(Gitelson, 2004 as cited in Henebry and de Beurs, 2013) typical in the tropics. It is also

established that the NDVI is sensitive to atmospheric aerosols and soil brightness and colour

(Xue and Su, 2017).

The Enhanced Vegetation Index (EVI)

Progressively the EVI replaced the NDVI in land surface phenology to get rid of the limi-

tations appearing in tropical regions. Its calculation is based on the NIR (B08) and RED

(B04) bands and its formula is:

EV I = 2.5 ∗ (B08 −B04)

(B08 + 6.0 ∗B04 − 7.5 ∗B02) + 1.0
(2.2)

The modified red-edge Normalized Difference Vegetation Index (mNDVI705)

In areas with high plant species diversity and functionality, vegetation indices tend to be

poorly correlated with chlorophyll content, mainly due to leaf surface reflectance (Sims and

Gamon, 2002). The mNDVI705 was developed based on the NDVI705 by Sims and Gamon

(2002) to reduce the effect of differences in leaf surface reflectance that appeared. This index

displays a great sensitivity for high chlorophyll content.

The mNDVI705 uses the vegetation red-edge band (B06) in its formula showed in Equation

2.3. The red-edge band is particularly sensitive to biophysical parameters of forests (Zhu

et al., 2017).

mNDV I705 =
B06 −B05

B06 +B05 − 2 ∗B02
(2.3)

The Continuum Removed ShortWave InfraRed index (CRSWIR)

The SWIR band domain includes broad water absorption features. The CRSWIR takes

advantage of this sensitivity to vegetation water and reacts positively with a decrease in leaf
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water content.

CRSWIR =
B11

B8A+ (λB11 − λB8A) ∗ (B12−B8A)
(λB12−λ8A)

(2.4)

2.4.6 Cloud and green mask

Clouds and non-vegetated areas such as water and urban surfaces’ reflectance do not depict

the vegetation response. Therefore, the pixels contaminated by clouds or located in urban or

water areas have to be removed. The pixels filtering calls on two raster masks named ’cloud

mask’ and ’green mask’.

The R code produced an enhanced cloud mask based on the initial cloud mask provided

by the sen2cor algorithm and radiometric filtering. The latter eliminates pixels with high

reflectance ( >5 %) in the blue band (B02) and low reflectance ( <20 %) in the NIR band

(B08) filtering for suspected clouds and cloud shadows respectively. One cloud mask is

associated with each acquisition date.

In opposition, the green mask is common for all the dates and was computed based on

an NDVI threshold. To account for recent changes, the NDVI values are taken for the latest

cloud-free image. All values below 0.5 are considered urban areas.

For each index and each date, the corresponding cloud mask and the green mask are

applied (Figure 2.2).
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Figure 2.2: Flow diagram of the main downloading and processing steps of Sentinel-2 products implemented to obtain

the preprocessed spectral indices.
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2.5 Data analysis

After the processing stage, for each date, four raster images corresponding to the four indices

(NDVI, EVI, mNDVI705 and CRSWIR) consisting of the inputs for the data analysis stage.

Below are presented the main analysis performed to validate the method and investigate the

link between rainfall and vegetation seasonality.

2.5.1 Land cover classification

The vegetation cover is not uniform across each study site. The sites are mainly covered by

forests and savannas, but also by agricultural mosaics and, to a small extent, by roads and

villages. Starting on this observation, the tree cover map from Hansen et al. (2013) (Figure

2.3) was used to distinguish the forested pixels (tree cover ≥ 70, Achard et al., 2014) from

the non-forested pixels. The latter class, including essentially savannas and less extensively

agricultural areas, will be recalled as ”non-forest”. Both sites harbour a mosaic landscape

with a variable percentage of tree cover (Figure 2.3). They are mainly covered by forest with

89.9 % for Mbäıki and 76.9 % for Luki.

In addition, to give an overview of the spatial diversity of species in each study sites, an

alpha diversity analysis is performed thanks to the BioDivMapR R package developed by

Féret and de Boissieu, 2020. It uses the spectral information to retrieve information on the

species diversity.



CHAPTER 2. MATERIAL AND METHODS 20

Figure 2.3: On the left: Histogram distribution of the pixels according to the tree cover percentage for Mbäıki and

Luki. The vertical dotted line represents the threshold differentiating the forest from the savanna. On the right: Tree

cover maps from Hansen et al. (2013) representing the tree cover percentage for Mbäıki and Luki.

2.5.2 Method validation

In a first approach, the purpose is to implement a method to study the vegetation season-

ality. The assessment of exploitable results was a preliminary step. Therefore, the pixels’

information was aggregated in one mean value for each date, separately for each land cover

class. Then, the data were smoothed using a Savitsky-Golay filter. The same approach was

applied to rainfall data. Then, the data were summarized to an upper level, the index and

rainfall data were monthly averaged over the five years. This method was implemented to

the four vegetation indices.

The ground data were used to check the concordance between the main defoliation periods

and decrease in vegetation indices. The comparison is then made at a finer scale correspond-

ing to the pixel level. Seventeen regularly defoliated individuals from the highly seasonal

Milicia excelsia’s species were selected in the ground dataset from Mbäıki. In parallel, the

corresponding pixels were extracted from the satellite images as well as the surrounding pix-

els in a 10 m buffer to account for the entire tree crown. The signal obtained is therefore,

the average of the pixels extracted for each individual.
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2.5.3 Start Of the Season (SOS) and Start Of Rain (SOR)

The relationship between the vegetation index rise, interpreted as the Start Of the Season

(SOS) and the start of the rainy season recalled as the Start Of Rain (SOR) was investigated.

For this purpose, Sentinel-2 data were first adjusted to the spatial resolution of the tree

cover percentage from Hansen et al. (2013) used to distinguish forested pixels from non-

forested pixels. The Sentinel-2 images were therefore aggregated to 30 x 30 m² resolution

using a bilinear method. The SOS corresponds to the annual first sharp increase in the

vegetation index and was detected based on an adapted method from Archibald and Scholes

(2007) (also used in Ryan et al. (2017)). The SOS was defined as the first day that satisfies

the following condition:

movagEV I(t : t+ 3) > movagEV I(t− 10 : t) (2.5)

t represents a punctual observation while movag corresponds to the moving average.

The SOS period starts in January and in July respectively for Mbäıki and Luki. The

achieved revisit frequency with both satellites is five days, however, cloud cover leads to

frequent loss of data. To obtain one value every five days, a linear data gap filling was

performed. To reduce the noise of the time series, a smoothing filter (Savitsky-Golay) was

then applied. For some pixels, the large amount of gap-filling consequently to data gaps

lead to abnormal SOS values occurring on the first day of the SOS period of interest. The

seasonal minimum was not captured by the satellites images and the SOS detected first day

was not reliable. Thus, those pixels are removed from the analysis.

In the tropics, according to Köppen’s climate classification, a month is considered very

dry if the amount of rainfall is less than 50 mm (coloured by red dots in Figure 2.1b,c) and

very wet when it receives more than 100 mm of rainfall (filled with blue in Figure 2.1b,c).

Thus, the end of the rainy season was marked by a threshold of rainfall exceeding 25 mm in

15 days. The beginning of the rainy season was detected for each pixel as the first fortnight

with more than 25 mm. The SOR corresponds to the first day of this fortnight.

2.5.4 Frequency analysis

The detection of the most dominant frequencies from vegetation index time series is useful

to monitor the vegetation dynamics. Typically, the Fourier analysis has been previously

used to determine the dominant frequencies in vegetation index time series and to test for

seasonal trends (Azzali and Menenti, 2000, Stöckli and Vidale, 2004, Bush et al., 2017).

This approach compares the data with a superposition of basis sine and cosine functions.

However, the Fourier analysis does not provide any information on the timing at which the

regular events occur. This weakness can be compensated by an enhanced method based
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on the Fourier analysis named Windowed Fourier Transform (Martinez and Gilabert, 2009).

However, the latter requires stationary time series (Martinez and Gilabert, 2009). This is not

the case when dealing with vegetation index time series as they present fluctuations going

from the seasonal to long-term time scale (Ben Abbes et al., 2018).

In this context, the wavelet approach presents two main advantages: (i) the absence of the

stationary requirement, (ii) the borrowing of three dimensions information: frequency, time

and intensity (Moreira et al., 2019). Firstly, the wavelet transform compares the data with

local basis functions that are stretched and translated to retrieve respectively the frequency

and the timing (Martinez and Gilabert, 2009). Secondly, the wavelet coherence enables the

analogy with two different time series by providing information on how two signals co-vary

on different scales over time (Percival et al., 2004).

The wavelet transform was applied on the EVI and rainfall time series while the wavelet

coherence was used to analyse the rainfall influence on the EVI time series. Both imply

setting up some mathematical parameters. The chosen mother wavelet (i.e. the original

function stretched and translated to construct the set of basis functions (Martinez and Gi-

labert, 2009)) was the Morlet wavelet. The statistical significance level of coherence is 0.95.

Finally, both techniques require a constant time step between each value. In this case, the

chosen time step is 5 days based on the theoretical revisit frequency of the Sentinel-2 satel-

lites. To fulfil this condition, the EVI time series were filled calling on a bilinear interpolation

method. Regarding the rainfall, the daily accumulated rainfall was summed over 5 days.



Chapter 3

Results

This chapter first gives an overview of the data for the two study sites. The main results

obtained at the first study site (MBaiki) were described as follows: the ground data overview

and method validation, then, the vegetation seasonality and the influence of precipitation

on vegetation functioning. Less intensively, the results obtained at the Luki study site were

presented on the same basis as Mbäıki’s.

3.1 Data overview

3.1.1 Spectral species diversity

The results presented in Figure 3.1 correspond to the application of the BioDivMapR package

on the latest high-quality images for each site. The same spatial patterns were obtained for

the dry/wet season (results not shown). Regarding Mbäıki, the highest Shannon index’

values were gathered by the forest with a mean ± sd of 2.62 ± 0.31 while the non-forest

displayed a lower mean diversity value of 1.93 ± 0.53. The forest values in Luki were slightly

lower with 2.34 ± 0.30 but the non-forest values were higher in Luki with 2.12 ± 0.54.

Figure 3.1: Alpha diversity maps: Shannon index over the study areas. On the left: Mbäıki. On the right: Luki.

23
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3.1.2 Temporal resolution

The major impact of the persistent cloud cover and revisit frequency on the data quality

is demonstrated by Figure 3.2. Before 2017, given the reduced satellite revisit frequency,

the number of images was poor in both study sites. In total, the number of images with

more than 50% cloud-free pixels was 84 for the first study site (Mbäıki) and plummeted to

only 6 for the second study site (Luki). In addition, on 242 images, 135 did not provide any

information (0 pixels available) in Luki. This led to less than half of the data available. In

Mbäıki, the average time lapse between two values was 19.9 days before 2017 against 9.3

days after 2017. In contrast, in Luki the average time laps between two values was 36.9 days

before 2017 against 15.8 days after 2017. For the two sites, the results prior to 2017 were

discarded for further analysis due to the large time gap between two observations.

Figure 3.2: Pixel availability i.e. the proportion of cloud-free pixels, according to time. The striped bars represent the

alternation dry (light) and wet (dark) seasons. In grey, Mbäıki. In brown, Luki.

3.2 Mbäıki

3.2.1 Ground data and method validation

The ground dataset available in Mbäıki was used to calibrate the approach. The seasonal

variation of leaf shedding for the 12 deciduous species is shown in Figure 3.3. On average,

the observed defoliation took place mainly around December to February with 7.41 % of

the trees defoliated at this period. These defoliation events were in line with the dry season

from December to February (Figure 2.1) and observed in the majority of the individuals and

two thirds of the species. August showed the second most important percentage of defoli-

ated trees (3.69 %). The August defoliation was mainly observed for E.angolense, E.candolei,
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E.cylindricum and T.scleroxylon species which is probably associated with caterpillar preda-

tion. September and October were also subject to above-average defoliation for E.angolense,

E. candolei and K. anthotheca. Finally, C.boukokense’s individuals were deciduous only in

September and by a low percentage (0.22 %).

Figure 3.4 ties together the ground observations measuring the end of the season and

the mathematical detection of the start of the season. The validation was made based on

17 trees from the M.excelsa species which present regular and marked defoliation induced

by the dry season. The extracted EVI signals showed an annual seasonal pattern although

its temporality highly depends on the individual. For each of the 17 trees, the defoliation

events appear regularly at each annual minimum EVI value or a bit subsequently. For the

years 2017 and 2018, the observed defoliation was closely followed or even preceded by the

SOS. Accounting for all the trees, the average differences between the observed defoliation

and the SOS was 20.2 ± 25.2 in 2017 and 2.2 ± 8.9 in 2018.

Figure 3.3: Monthly percentage of defoliated individuals (deciduousness) for each species (12) and accounting for all

deciduous species (species summary) of the Mbäıki study site over the 2007-2013 and 2016-2018 periods. n represents

the number of individuals. In parallel, the monthly rainfall (averaged over 2016-2020).
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Figure 3.4: Savitsky-Golay smoothed EVI time series of 17 regularly defoliated trees of M. excelsa. The red vertical

lines represent the ground observed defoliation for the period 2017 to 2019. The green vertical lines represent the Start

Of the Season (SOS) for the years 2017 and 2018.

3.2.2 Vegetation dynamics

Globally, the four vegetation indices retrieved from Sentinel-2 images were able to capture the

seasonal behaviour occurring in semi-deciduous forests and forest savannas and agricultural

fields such as Mbäıki’s (Appendix 6.1). Among all, the EVI was chosen for the remainder of

this work because of its wide use in land surface phenology studies.

The seasonal dynamics of the EVI was presented in Figure 3.5 for the forest and non-

forest pixels. Each land cover class accounted for a different number of pixels. The most

represented land cover was the forest with 89.9% of the pixels. Each year, the two signals

plummeted in the lowest rainfall months (grey bars in Figure 3.5). The rainfall time series

revealed a regular annual rainfall pattern with, on average, the accumulated rainfall over the

driest months (December to February) reaching 84.8 mm. However, the rainfall pattern was

subject to interannual variations in intensity. The driest month was January commonly for

each year although the dry period differs in the amount of rainfall accumulated. The year

2018 contained the driest month with 0 mm of accumulated rainfall. In contrast, the wettest

month took place in October 2019 with 332 mm. Though, the wettest year of the time series

was 2017 (total of 1803 mm). Regarding the EVI, the average amplitude, i.e. the difference

between the seasonal maximum EVI and the seasonal minimum EVI, was equivalent to 0.32

± 0.02 for the non-forest pixels. In the forest, the average amplitude was lower and reached

the value of 0.21 ± 0.02. This higher amplitude in the non-forest compared to the forest
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came from the systematically lower minimum and higher maximum encountered.

The patterns observed in Figure 3.5 were summarized annually in Figure 3.6. The lowest

EVI value occurred at the end of the dry season (February) regardless of the land cover class,

going from 0.39 (forest) to 0.35 (non-forest). The non-forest maximum EVI exceeded the

forest with a value reaching 0.61 at the end of the wet season (October) against 0.57 for the

forest in the middle of the wet season (May). While the rainfall seasonality was unimodal,

two modes emerged in the vegetation dynamics with a secondary diminution in the EVI in

the July to September period (Figure 3.6).

Figure 3.5: Savitsky-Golay smoothed time series of mean EVI (green and yellow lines) in parallel with the monthly

rainfall time series (grey bars). Each index value was averaged over the study site (Mbäıki). In dark green, the forest

class. In yellow, the non-forest class. The dotted black line mark the launch of the second Sentinel-2 satellite.
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Figure 3.6: Synthetic year of the EVI for each land cover class. Each index value was monthly averaged over the study

site (Mbäıki) and the study period (2015-2020). In dark green, the forest class. In yellow, the non-forest class. The

bars are the monthly accumulated rainfall averaged yearly.

A deeper analysis of the seasonality in the Mbäıki site was made through a mathematical

investigation: the wavelet transform. The interpretation of the continuous wavelet transform

is based on the power coefficients to detect periodicity. The higher the power coefficient,

the greater the similarity between the EVI signal and the signature of the parent wavelet

(Morlet wavelet). The measured coefficients are given according to two components: time

(x axis) and period (y axis). Therefore, the continuous wavelet transform indicates a given

periodicity at a given time as a function of the value of the power coefficient. The cone of

influence marks out the region in which the wavelets coefficient estimates are reliable.

The main resulting observation was the continuous yearly component appearing in both

scalograms (Figure 3.7). Outside the cone of influence, the method was limited by the edge

effect and the data should be interpreted carefully. However, given the continuous pattern

occurring at the yearly scale, the annual frequency was considered as dominant for both

forest and non forest. Nevertheless, the further ahead in the time series, the more the value

of the coefficients faded, especially for the forest. After 2019, the forest coefficients were not

significant anymore though still high. Regarding the non-forest pixels, the annual pattern

was considered significant almost until the end of the time series (mid-2020). For both land

cover classes, a semi-annual frequency was detected from mid-2018 for the forest class and

from mid-2019 for the non-forest class, indicating the bimodality of the seasonal profile. The

global power spectrum of the forest indicated another important frequency of 2 to 3 months

matching yearly with the dry season timing. The non-forest seemed to undergo the same

monthly recurrent events in the same years as the forest.
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Figure 3.7: Power spectrum on the left and the global power spectrum on the right respectively for the forest and

non-forest pixel EVI from 2017 to 2020 in Mbäıki. The shades from blue to yellow indicate the intensity of events,

from low to high power coefficients. The significant coefficients are circled. The dotted line draws the limit of the cone

of influence, i.e. non affected by the edge effects.
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3.2.3 Rainfall influence

The influence of the rainfall on the vegetation greenness of Mbäıki was investigated based

on the comparison between the Start Of the Season (SOS) and the Start Of Rain (SOR).

The SOS matched in timing with the SOR season for both land cover (Appendix 6.2). For

a given land cover class, the offset between the SOS and the SOR varied from one year to

the next (Appendix 6.2, Table 3.1). The non-forest pixels tended to green up later than the

forest pixels with respectively a mean day of year (doy) of 57.2 and 34.0 (February, Table

3.1). Moreover, on average, the non-forest greened up subsequently to the SOR while for

the forest, the SOS is almost synchronized with the SOR. The earliest green-up occurred in

2019 (mean doy of 41.4, February) and matched with the earliest rain onset (doy of 20.0,

January). The between years standard deviation of the SOS when considering both land

covers was 4.9 against 12.7 for the SOR. Spatially, both land cover displayed between pixels

variation around the same range from 16.4 (non-forest) to 18.7 (forest).

The spatial extent of the SOS and the associated histogram showing the frequency of

the pixels for each SOS are presented in Figure 3.8. The pixels distribution was centred

around the 20th (January) and 75th (March) doy for the 4 years. During the first year

though, a second modality of lesser extent was observed from the 75th (March) and 100th

(April) doy. Looking at the maps, each year, a group of orange-coloured pixels stands out

testifying for a recurrent late green-up. Those pixels were found in the histogram from the

50th (February) to 100th (April) doy. The late green-up location matched with low tree

cover percentage areas (Figure 2.3). The year 2019 attracts attention with an early SOR

of 20 (January) compared to the other years. The pixels were greening synchronously and

the distribution presents a main spike around the 24th (January) day, earlier than for the

other years. Finally, the analysis of the in-between years spatial correlation of the green-up

day revealed significant correlations going from 0.36 between 2018 and 2020 to 0.50 between

2017 and 2019.

Table 3.1: Yearly Start Of Rain (SOR) and Start Of the Season (SOS) expressed in day of year (doy) for each land

cover class and for both in Mbäıki. The mean represents the averaged value over the 4 years. Spatial SD is the averaged

spatial standard deviation (between pixels). Temporal SD is the temporal standard deviation (between years).

2017 2018 2019 2020 Mean Spatial

SD

Temporal

SD

SOR 41.8 36.0 20.0 50.0 37.0 1.6 12.7

SOS forest 39.0 34.2 27.3 35.5 34.0 18.7 4.9

SOS

non-forest

65.6 54.7 53.1 55.4 57.2 16.4 5.7

SOS all 41.4 36.1 29.7 37.5 36.2 18.4 4.9
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Figure 3.8: Yearly Start Of the Season (SOS) expressed in doy (day of year) over the 2017-2020 period represented on

the left by a histogram and on the right by the spatial distribution. The green to orange colour palette highlights the

timing of the SOS: early to late pixels. The vertical blue line sets the Start Of Rain (SOR). The grey bars express the

corresponding month: January (J), February(F), March (M), April (A).

The wavelet coherence consists of a powerful tool to assess the correlation between the

EVI signals and rainfall seasonality. The higher the correlation, the more signals evolve

similarly and follow the same periodicity. In addition, the wavelet coherence provides infor-

mation on the phase shifts between the two analysed signals (pinned by arrows in Figure

3.9). The results obtained for each of the land cover classes are presented in Figure 3.9.

Focusing firstly on the yearly component, there was a high correlation between the forest

and the rainfall signals as well as with the non-forest and the rainfall signals. The arrows

pointing slightly to the upper right imply that the forest signal was ahead of the rain signal.

The rainfall and non-forest signals were completely in phase. Regarding the semi-annual

frequency, both the forest and the non-forest showed the same results: a high correlation

between the rainfall and the EVI signals with the EVI that lags behind the rainfall. A final

element can be drawn from the forest scalogram, a high correlation was detected at the 3

months period level from August 2018 to February 2020. The arrows stabilized as a phase

between the forest and the rainfall signals. A similar phenomenon appeared in the non-forest

coherence power spectrum from August 2018 to March 2019 but at the scale of 2 months.

The non-forest was however late compared to the rainfall with a phase shift of approximately

1 month. The wavelet-coherence phase shifts resulted in an average advance of the forest

of 16.9 ± 4.4 days. The non-forest areas showed an average delay of 1.9 ± 4.4 days for the

2017 - 2020 period.



CHAPTER 3. RESULTS 32

Figure 3.9: Wavelet coherence power spectrum (on the colour scale) and phase shift (arrows) between the forest and

rainfall and the non-forest and rainfall. The blue (close to 0) indicates a low correlation while the yellow (close to 1)

indicates a high correlation. An arrow pointing to the right specifies a phase match while an arrow to the left specifies

a phase opposition. The correlations above 0.7 were circled.

3.3 Luki

In this section, the method was applied to a second study site located south of the equator

in order to assess its potential for multi-site comparison.

3.3.1 Ground data

Figure 3.10 juxtaposes the rainfall and the ground observed deciduousness temporality over

one average year. The main defoliation peaks were detected in September (9.40 %) and

October (11.65 %), shifted toward the end of the dry season.
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Figure 3.10: Monthly percentage of defoliated individuals (deciduousness) accounting for all deciduous species (species

summary) of the Luki study site over the 1947-1958 period. n represents the number of individuals. In parallel, the

monthly rainfall (averaged over 2016-2020).

3.3.2 Vegetation dynamics

As stated in Section 3.1.2, the Luki site was subject to high cloudiness and large data gaps

were recurrent. Nevertheless, the time series displayed a seasonal behaviour although the

low amount of data points produced unstable curves (Figure 3.11). A seasonal pattern could

be observed in the EVI signals that bottomed out during the dry season (Figures 3.12).

The lowest EVI values occurred for both land cover classes in August. On average, the

minimum forest value was 0.41 and the minimum non-forest value was 0.38. In opposition,

during the rainy season, the signals reached a maximum of 0.58 (forest) and 0.59 (non-forest).

The rainfall seasonality was marked by a pronounced dry season. On average, from June to

September, the accumulated rainfall reached 12.2 mm. Not a drop of water has fallen in July

during the period of interest from 2017 to 2020 making it the driest month. In opposition,

the wettest month occurred in November 2020 with 233 mm of accumulated rainfall whereas

the wettest year was 2019 (1257 mm). Regarding the EVI time series (Figure 3.11), the

forest and non-forest followed a similar yearly pattern. However, the non-forest reached

lower minimum values but higher maximum values making its average amplitude of 0.27 ±
0.07 against 0.23 ± 0.06 for the forest.
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Figure 3.11: Savitsky-Golay smoothed time series of mean EVI (green and yellow lines) in parallel with the monthly

rainfall time series (grey bars). Each index value was averaged over the study site (Luki). In dark green, the forest

class. In yellow, the non-forest class. The dotted black line marks the launch of the second Sentinel-2 satellite.

Figure 3.12: Synthetic year of the EVI for each land cover class. Each index value was monthly averaged over the

study site (Luki) and the study period (2015-2020). In dark green, the forest class. In yellow, the non-forest class. The

bars are the monthly accumulated rainfall averaged yearly.
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3.3.3 Rainfall influence

Accordingly to the land cover class, there was a slight difference between the mean SOS of the

forest greening approximately 1 day later than the non-forest (Table 3.2). However, it was

not systematically the case with the greening of the non-forest in 2017 and 2018 later than

the forest. On average and for both land cover classes, the SOS occurred before the SOR.

In terms of spatial deviation, the non-forest and forest displayed analogous values around 30

days. Regarding the rainfall, the SOR was rather similar from one year to another except in

2019 for which the SOR of 266.5 (September) deviated the most from the average of 279.9

(October). In the same year, the corresponding SOS for both land cover classes showed the

earliest green-up.

The three histogram distributions from 2017, 2019 and 2020 were bimodal (Figure 3.13)

with a group of pixels greening up before the rainy season and another later. The year 2018

though only presented late green-up from the 280th (October) to 365th (December) doy.

The earliest SOR occurring in 2019 was marked in the histogram (Figure 3.13) by the main

spike of greening earlier compared to the other years. In 2017 and 2020 a notable number of

pixels presented NA values, meaning that no green-up has been detected. This came from a

lack of available images at the beginning and end of the time series. Finally, the analysis of

the in-between years spatial correlation of the green-up day revealed significant correlations

going from 0.02 between 2017 and 2018 to 0.20 between 2017 and 2020.

Nevertheless, for a considerable number of pixels, the large time lapse between two ob-

servations prevented the capture of the EVI minimum suspected to occur in the dry season.

Therefore, when applying the same method as for Mbäıki, the green-up was rarely detected

(NAs values in white on Figure 3.13). By taking two random pixels (Appendix 6.3), there

was no trend of early or late green-up compared to the start of the rainy season. The timing

between the SOS and SOR differed from one year to the next.

Table 3.2: Yearly Start Of Rain (SOR) and Start Of the Season (SOS) expressed in day of year (doy) for each land

cover class and for both, in Luki. The mean represents the averaged value over the 4 years. Spatial SD is the averaged

spatial standard deviation (between pixels). Temporal SD is the temporal standard deviation (between years).

2017 2018 2019 2020 Mean Spatial

SD

Temporal

SD

SOR 289.5 282.5 266.5 285.2 279.9 0.6 9.0

SOS forest 300.3 303.3 247.8 257.8 277.3 32.3 28.6

SOS

non-forest

305.5 305.8 247.0 245.5 276.0 30.7 32.3

SOS all 301.3 303.8 247.6 254.7 276.9 32.0 29.8
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Figure 3.13: Yearly Start Of the Season (SOS) expressed in doy (day of year) over the 2017-2020 period represented

on the left by a histogram and on the right by the spatial distribution. The green to orange colour palette highlights

the timing of the SOS: early to late pixels. The vertical blue line sets the Start Of Rain (SOR).The grey bars express

the corresponding month: July (J), August (A), September (S), October (O), November (N), December (D).



Chapter 4

Discussion and perspectives

This work demonstrated the suitability of Sentinel-2 data for phenology analyses in Central

Africa despite the shortness of the time series. The discussion is divided into three main

parts: the methodological approach (i), the vegetation seasonality (ii), and finally the rainfall

control on phenology (iii).

4.1 Sentinel-2 data to monitor vegetation seasonality

4.1.1 Computational properties

The need was to produce a workflow that is easily applicable to multiple study sites. The

challenge is met since the methodology that emerged has been applied to two study sites

with a reverse seasonality due to northern (Mbäıki) and southern (Luki) influence. The

combination of open access data sources including Sentinel-2 images and tree cover map from

the Global Forest Watch open data portal (Hansen et al., 2013) allows the easy replication

on multiple sites. Another significant advantage is its accessibility on standard desktop

machines (typically i5 processor and 8 GB RAM) although dealing with Sentinel-2 data

requires minimum disk space. In total, for one study site, the storage required reached 575.4

GB (Appendix 6.2). Comparatively to the sen2R toolbox from Ranghetti et al. (2020), the

time requirement of the developed R codes used to perform the preprocessing steps was

approximately two times higher (Appendix 6.1). The main limiting step is the atmospheric

and topographic correction performed by the sen2cor algorithm developed by the ESA,

followed by the retrieval of the start of the season and the start of rain (five hours and a

half). In particular, the start of the season determination requires fulfilling a conditional

statement for each measurement date and each pixels of the study area. This represents

almost 700 000 pixels to process (30 m resolution, 25 x 25 km study area). The choice of 30

m resolution for start of the season extraction is justified by the reduction in time and RAM

37



CHAPTER 4. DISCUSSION AND PERSPECTIVES 38

required compared to the high computing power needed with 10 m resolution.

A point of interest for further work is to improve the codes’ efficiency or use a more

powerful machine to run in a lower amount of time in order to apply the method at a larger

scale.

4.1.2 Method validation

The validation of the method was carried out by comparing ground data and satellite mea-

surements and revealed the usability of the method outputs.

Firstly, the satellite metrics appeared to be sensitive to the main defoliation periods

observed in the ground data collected in Mbäıki. The satellite signal is marked by a first

decrease in greenness from December to February. The second wave of defoliation (August-

September) is flagged by the signal but less intensively. These results support that Sentinel-2

satellites can capture the decrease in greenness further interpreted as leaf shedding. The

validity of the Sentinel-2 EVI time series to retrieve phenological events such as leaf flushing

and shedding has been previously assessed by Vrieling et al. (2018) by comparing the results

from Sentinel-2 data and field cameras in a Dutch barrier island. In a validation study from

Lange et al. (2017), Sentinel-2 leaf flush and leaf shed were found to be more consistent with

ground-based sensor products than MODIS. Finally, the comparison of Sentinel-2 data with

the PhenoCam metric in the Arctic tundra showed a high degree of similarity using the EVI

as a vegetation index (Descals et al., 2020).

Secondly, the EVI has proven to be a successful indicator of greenness, as evidenced by

its common use in land surface phenology studies (Adole et al., 2018; Moreira et al., 2019;

Descals et al., 2020) from various satellite sensors (MODIS, Sentinel-2, etc.). However, the

comparison between EVI values from different sensors must be done gingerly. The differences

in hardware and software configuration from one sensor to another produces dissimilarities in

the vegetation index values (Yoshioka et al., 2012). To limit this effect, the EVI definition is

adapted depending on the sensor, in this case, suited for the Sentinel-2 sensors. Furthermore,

even if only one sensor is considered, e.g. Sentinel-2, the characteristics of the location of

interest may also influence the EVI values due to differences in atmospheric aerosol and soil

brightness and colour (Xue and Su, 2017). This effect is however limited when using EVI

that avoids the influence of the ground (Xue and Su, 2017).

Thirdly, the green-up day validation was made through the comparison of 17 monitored

trees from M.excelsa to their corresponding EVI signal. The detected green-up occurred

close to the measured defoliation. The simultaneity between these two processes, which at

first sight seem antagonistic, actually reveals the validity of the green-up detection. Indeed,

the ground measured defoliation is suspected to be shifted in time. First of all, the 15 days

time interval between two observations may result in a delay in the leaf shedding detection.
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This delay also comes from the ground definition of defoliation that is denoted when a field

worker estimates the tree as totally defoliated. It is likely that when a tree is observed as

defoliated from the ground, new leaves have already started to regrow on the top canopy.

However, the spectral response evolves with leaves ageing (Roberts et al., 1998). The growth

of young leaves causes a sudden rise in the EVI signal, detected as a green-up. In addition,

although limited, two artefacts come into play. Firstly, the EVI signal is averaged over a 10m

radius buffer around the georeferenced trees. It is likely that some of the averaged pixels are

not part of the tree crown of interest and create noise such as evergreen trees or shrubs in

the underlying canopy. Secondly, the accuracy of the georeferenced points is questionable.

Despite their ability to capture vegetation dynamics in Mbäıki, Sentinel-2’s optical sen-

sors may have some limitations that need to be taken into account when dealing with very

dense canopies. In multi-layered forests, the understorey likely influences the reflectance

measured by the satellite (Helman, 2018). Although the top canopy trees stand leafless,

some of the understorey species may not be affected. This phenomenon is illustrated in

Figure 4.1a, where the emergent trees are experiencing leaf loss and the underlying vege-

tation remains leafy. In addition, as reported by Helman (2018), the smoothing technique

tends to erase the small variations in the signal. Especially in the case of very dense forests

where the understorey layers buffer the changes in greenness in the top canopy. The complex

multilayered system could hinder the Sentinel-2 satellite to capture low greenness variations

that could represent some phenomena occurring in the canopy.

At last, in the present work, the use of the 70 % threshold to distinguish the forest

from the non-forest, including mostly savanna but also rural complex around villages, is

arbitrary. However, the savanna-forest distinction is vague in the literature and cannot rely

on structural information only (Ratnam et al., 2011; Aleman et al., 2020). The lack of a

clear definition of the tree savanna makes it difficult to compare with other studies. Figures

4.1a), b) and c) show the evolution from evergreen seasonal forest to tree savanna through

transitional forest. The forest class is represented schematically by Figures a) and b). The

non-forest is comparable to Figure 4.1c with a simpler structure and a continuous grass

understorey (Ratnam et al., 2011).

Figure 4.1: Schematic representation of a multi-layered canopy. a) Evergreen seasonal forest b) Transitional forest. c)

Tree savanna. Figure taken from Longman and Jeǹık (1974).
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4.1.3 Cloud contamination: a major weakness

Owing to cloud interference, the time lag between two clear images can be substantial (up

to 15.8 days in Luki). However, changes in leaf phenology occur rapidly (up to less than

15 days, Longman and Jeǹık, 1974). Interpolation is therefore required to build continuous

time series. In Luki, the persistent cloud cover masked a considerable number of pixels. A

large amount of data gaps in the time series led to poor quality results. In fact, the western

part of Central Africa is one of the most cloudy regions across the tropics (Philippon et al.,

2019). The images quality obtain through optical remote sensors is lower than in other parts

of Central Africa as reported by Gond et al. (2013). The limited accuracy may prevent the

detection of the phenological response of the vegetation. In addition, undesirable effects

appear from time to time in Sentinel-2 images leading to spatio-temporal inhomogeneity

(Sudmanns et al., 2020). The higher the number of images, the less these noise-generating

point effects will affect the results. This suggests that using Sentinel-2 as the unique data

source is not enough when dealing with areas steadily contaminated by clouds.

The few authors using Sentinel-2 data recalled on complementary datasets to increase

the number of observations. Kowalski et al. (2020) demonstrated that Sentinel-2 data alone

are not sufficient in mountainous regions where the cloud cover is frequent and recognized

the valuable use of Landsat-8 data to broaden the data acquisition. The revisit frequency

goes from 5 days up to 3.5-4 days around the Equator from Sentinel-2 satellite only to

combined Sentinel-2 and Landsat-8 data. Claverie et al. (2017) developed the Harmonized

Landsat-Sentinel-2 (HLS) dataset that consists of consistent surface reflectance products

derived from Sentinel-2 and Landsat 8 observations. Nowadays, HLS data are available

over restricted areas of the world (mainly the USA) but were successfully used by several

authors (Bolton et al., 2020; Griffiths et al., 2020). Another way to densify the land surface

phenology time series is to use Synthetic Aperture Radar (SAR) images from Sentinel-1

coupled with Sentinel-2 data. On top of increasing the number of observations, SAR sensors

are not tributary of cloudiness. At the present time, several studies investigated the potential

benefit of combining those two datasets (Stendardi et al., 2019; d’Andrimont et al., 2020;

Mercier et al., 2020; Meroni et al., 2021). Most revealed the relevance and complementarity of

Sentinel-1 and -2 to monitor phenology. Combining these two datasets is not straightforward,

as evidenced by the inability of Bush et al. (2020) to couple them when attempting to benefit

from Sentinel-1 SAR and Sentinel-2 optical data in Gabon. An easily reproducible method is

therefore needed for future research. To improve the interoperability of the here developed

method, a solution is to incorporate Sentinel-1 to compensate for the lack of data. This

combined use of Sentinel-2 and Sentinel-1 data would help to get rid of the cloud sensitivity

from the optical sensors and increase the number of observations.

Finally, the last method adopted by scientists to increase temporal resolution and get

rid of cloud cover problems is to use ground/canopy cameras, i.e. below the clouds (Nagai

et al., 2016). These cameras, called Phenocams, take pictures automatically on a daily
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basis. Phenocams are cost-effective and provide highly valuable continuous time series to

monitor vegetation (Richardson et al., 2009;Alberton et al., 2017). For now, many studies

benefited from the advantages of Phenocams in temperate forests, among others Richardson

et al. (2009) in the USA and Wingate et al. (2015) in Europe. Vrieling et al. (2018) even

combined Sentinel-2 and field cameras observations in a Dutch barrier. However, at present,

images from digital cameras are still sparse in the tropics (Alberton et al., 2014; T. B.

Brown et al., 2016). Lopes et al. (2016) though investigated the dry season green-up in

central Amazon thanks to Phenocams. To undertake large scale studies in Central Africa,

the Phenocams network needs to be extended.

4.2 Vegetation dynamics

The retrieval of the periodicity in the vegetation dynamics revealed the dominance of annual

cycles both in Mbäıki and in Luki that vary in intensity depending on the land cover.

4.2.1 The annual pattern dominates

In both study sites, the EVI signal testifies for annual periodicity. The wavelet analysis

further attests the dominance of annual cycles in vegetation functioning for the Mbäıki site.

The preeminence of annual flowering and fruiting cycles has been previously demonstrated

in Africa: in La Lopé National Park, Gabon (Bush et al., 2017), in a cross-site analysis

(Adamescu et al., 2018), in Luki (Angoboy Ilondea et al., 2019) and using herbarium records

(Ouédraogo et al., 2020).

As data became more available with the years, bi-annual patterns seem to emerge in the

Mbäıki time series. Bi-modality has been earlier highlighted in the study area by regionaliza-

tion of vegetation types based on seasonal functioning across the Sangha River interval using

MODIS time-series (Gond et al., 2013, Figure 4.2). Philippon et al. (2019) extended this

work by mapping forest types at the scale of Central Africa based on their EVI seasonality

as well as the elevation, soils, ground data, and vegetation maps.
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Figure 4.2: Vegetation map across the Sangha River interval. The mean EVI time series is shown for each vegetation

class (solid line) as well as the mean time series over the entire study area (dashed line). Bars represent monthly

rainfall. Figure taken from Gond et al. (2013).
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4.2.2 Land cover influence

Distinct phenological behaviours separate the forest from the non-forest pixels. For in-

stance, during the rainy season, the non-forest area is greener than the forest. Indeed, the

tree crowns, consisting of old and new leaves, send a composite image of different spectral

signatures and thus EVI values. In opposition, the areal part of herbaceous species greens

up rather uniformly and sends a higher EVI signal.

In contrast, in the dry season, the forest is greener than the non-forest. A hypothesis

comes from the complex multi-layered structure of the forest. It is suspected that the decline

in the trees’ greenness is compensated by the underlying vegetation but also by the appear-

ance of new young leaves on the tree crown. In an ecosystem composed of fewer structural

layers such as the non-forest (Figure 4.1a, b), the leaf shedding/yellowing leads to a drastic

decrease in greenness.

A second hypothesis explaining the low minimum values of the non-forest is the practice

of slash and burn agriculture (Longman and Jeǹık, 1974). Especially in Mbäıki where the

population is located close to the study region and the inhabitants regularly (once to two

times a year) burn the wooded savannas and destroy the green part of the non-forest plants.

The impact of these practices is largely dependant on the primary species composition.

As discussed by Ratnam et al. (2011), the evolutionary and ecological traits considerably

influence the differentiation between savanna and degraded forest. As far as the first class is

concerned, the mix between trees and C4 grasses are adapted to recurrent fires and recover

quickly. Regarding the degraded forest, fires are threatening the species equilibrium since

the majority of species do not tolerate fires. In Mbäıki which is located at the northern edge

of the margin of Congo Basin, the forest was progressively degraded and consists of a mix

between savanna-forest and agriculture (Gond et al., 2013, Figure 4.2). To fully understand

the mechanisms behind these dynamics, the parallel between the evolution of the vegetation

index and the fire data would be valuable for further study.

4.3 Rainfall influence: ultimate or proximate cause

The relationship between rainfall and vegetation dynamics is underpinned in this work. The

underlying is to distinguish the causality of rainfall that can exert a proximate or ultimate

control. The analysis provided evidence to differentiate if the vegetation responds directly

to rainfall or it is the result of long-term adaptation. This section will firstly relate the

vegetation seasonality to the rainfall regime. Afterwards, arguments in favour ultimate and

then proximate control of rainfall will be discussed.
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4.3.1 Linking rainfall regime and vegetation seasonality

In Mbäıki, the wavelet coherence analysis links the vegetation cycle and the rainfall sea-

sonality at the annual scale. In addition, the cross-site comparison confirmed a shift in the

vegetation seasonality from Mbäıki to Luki in response to reverse rainfall regimes on both

sides of the Equator (Ouédraogo et al., 2020). The timing of the leaf shedding events oc-

curs in November-December in the northern hemisphere (Mbäıki) against Jun-Aug in the

southern hemisphere (Luki). In contrast, on average, the green-up takes place around mid-

February in the North and end-August in the South, at the beginning of the respective rainy

season when the irradiance is high and the water available (Van Schaik et al., 1993). Rainfall

has been demonstrated to play a key role in the leafing behaviours by many other studies

(Reich and Borchert, 1984; M. E. Brown et al., 2010; Guan et al., 2015).

4.3.2 In favour of ultimate control of rainfall

In the first place, the between years comparison revealed that the start of rain displays a

notably higher variability from one year to the next compared to the start of the season.

This suggests that the principal factor triggering the leafing events is not directly the end

of the dry season as it is argued by Ryan et al. (2017) and supports the ultimate control of

rainfall.

This hypothesis is reinforced by the between years correlation. The significant correlation

systematically observed in Mbäıki and Luki implies that the pixels undergoing late (early)

green-up one year are subject to a late (early) green-up the next year. This supports a

spatial factor driving the green-up. The late and early pixels are localized respectively over

non-forested and forest pixels. In fact, in Mbäıki, the spatial pattern retrieved corresponds

to the distinction in vegetation behaviour highlighted by Gond et al. (2013) over the study

area (Figure 4.2). This involves a possible influence of the land cover on the green-up rather

than the rainfall.

Furthermore, a trend of pre-rain green-up is observed in the MBäıki’s forest: the forest

signal evolved in advance compared to the rainfall and tends to exclude the proximate cause

of rainfall. Across southern tropical Africa, the pre-rain green-up occurring in woodlands has

been recently demonstrated by Ryan et al. (2017) and is due to the synergy between abiotic

and biotic competition in temporal niche separation. However, it should not be forgotten

that this non-simultaneity between the green-up and the start of rain may also be due to

inaccuracies in the EVI, in particular, resulting from the gap-filling process.

Finally, in Mbaiki, the percentage of defoliation is important outside the dry season,

implying defoliation unrelated to water shortage. This pattern potentially originates from

genetic control. Many species have a large distribution in Central Africa, encompassing a
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wide climatic spectrum. The two extremes on either side of the Equator present a single

dry season, typically Mbäıki (North) and Luki (South). Nearby the Equator, the rainfall

pattern is bimodal and two dry seasons occur. The multi-annual pattern observed in Mbäıki

is decoupled from proximate cues and could be the result of the long evolutionary histories

of species in this wide climatic space.

4.3.3 In favour of proximate control of rainfall

For both study sites, the earliest start of rain led to the earliest start of the season in 2019

supporting the hypothesis of rainfall as proximate factor rather than ultimate. Neverthe-

less, the 4 years long time series is limited to investigate with confidence the inter-annual

variability. As soon as the Sentinel-2 time series grows in length, the investigation of the

interannual variability could reveal key results to understand the processes driving the land

surface phenology.

Furthermore, in opposition to the pre-rain green-up observed in the forest, the non-

forest green-up takes place after the start of the rainy season and goes in favour of the

proximate cause regarding the non-forest land cover. The antagonism between the early

and late green-up respectively for the woody and herbaceous species has been recurrently

observed (Sarmiento and Monasterio, 1983). In South Africa, Higgins et al. (2011) identified

two distinct strategies from the forest and the savanna: respectively pre-rain and post-rain

green-up. On average, in this work, the start of the season of the trees was 20 days before

the savanna in Mbäıki against 10 days in South Africa (Higgins et al., 2011).

Lastly, if genetic control was the main factor triggering the start of the season, it would

be expected that the spatial variation of the start of the season in the forest is higher than in

the non-forest, given its higher Shannon diversity. However, the opposite pattern appears,

the forest displayed a lower spatial variation than the non-forest. The same scenario was

observed in South Africa where the lower the tree cover, the higher the spatial variability

(Cho et al., 2017). They advanced the high dependence of grasses on water availability to

link the high spatial variability of rainfall and high spatial variability in green-up. In this

case, the low distortion in the rainfall does not allow to confirm this hypothesis. In fact, less

competition in non-forest leading to less synchronized evolutionary traits could induce the

difference. The implementation of a cross-site comparison is a powerful asset to confirm or

inform the above-mentioned hypothesis but could not be met with the poor data quality of

the Luki site.
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4.4 Beyond rainfall

Rainfall is not the only driver of the leaf shedding and flushing events. In particular, in the

case of Luki, the cloud cover alters the light availability and quality but also the atmospheric

water demand (Philippon et al., 2019). The persistent cloud cover limits the atmospheric

water demand and evapotranspiration enabling the trees to avoid water stress. Indeed, the

dry season in Luki is more pronounced than in MBaiki with 84.8 mm in 3 months against

12.2 mm in 4 months. However, the minimal EVI values obtained in Mbäıki are lower than in

Luki. Despite a strong water limitation in this period, a higher proportion of the vegetation in

the Luki reserve remains green compared to the Mbäıki region. As argued in Gabon, the high

level of cloud cover allows trees in the western part of Central Africa to maintain their leaves

despite a low level of rainfall. Annual cumulative rainfall in Gabon is indeed below the 2000

mm threshold yr-1 recognised for maintaining photosynthetic activity (evergreen canopy)

during the dry season in tropical forests worldwide (Guan et al., 2015). Luki evergreen trees

appear to be an evolutionary trait to cope with the light-deficient climate.

Afterwards, an intriguing result is the peak of defoliation observed in August in Mbäıki’s

ground data that cannot be explained by the rainfall seasonality. These defoliation events

can be associated with predation. Species such as Triplochiton and Entandophragma are

particularly enjoyed by caterpillars. Indeed, lepidopter larvae at high enough population

densities appear to be defoliators (Maisels, 2004). In the Mbäıki area, caterpillars are specif-

ically appreciated by local populations and regularly collected during this season in the forest

as non-wood forest products (Fayolle, pers. com.).

Finally, the influence of other environmental factors besides rainfall may explain the re-

verse vegetation seasonality that does not perfectly match the reverse rainfall seasonality in

tropical African forests (Ouédraogo et al., 2020). In fact, Ouédraogo et al. (2020) demon-

strated reverse seasonality but outside the forest, in the savanna area, where the rainfall

control might be more important.
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Conclusion

Through the development of a workflow, this work has enabled the use of the recently avail-

able Sentinel-2 datasets and proves its ability to monitor the seasonality of vegetation over

Central Africa as long as cloud contamination remains reasonable. As observed repeatedly

over the tropics, cloud cover is the main problem when it comes to optical sensors. This

study highlighted the need for coupling data sources to cope with cloud contamination.

By this work, the dominance of annual cycles in the leafing pattern is confirmed and a

bi-annual pattern is detected. Bi-annual cycles need to be further investigated as soon as the

Sentinel-2 time series covers a longer period. Depending on the land cover, the phenological

behaviors diverge in terms of minimum and maximum annual values although annual cycles

are observed in both.

Furthermore, the relationship between rainfall and vegetation dynamics is emphasized.

Arguments were advanced both in favor of ultimate and proximate cause that exacerbates

the requirement of extensive research to decouple the two causes. Nonetheless, the observed

forest cover pre-rain green-up is in line with the ultimate control previously suspected in the

literature.

Implementing this method at a regional scale in parallel with multiple environmental

variables (rainfall, irradiance, soil properties) would provide a deeper understanding of the

environmental cues driving the leaf shedding and flushing events in Central Africa.
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Baya, F., Beeckman, H., Däınou, K., et al. (2020). Latitudinal shift in the timing of flowering of tree

species across tropical africa: Insights from field observations and herbarium collections. Journal of

Tropical Ecology, 36 (4), 159–173.

https://doi.org/10.1017/CBO9780511753398.004


BIBLIOGRAPHY 52
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Chapter 6

Appendices

Figure 6.1: Synthetic year of NDVI, EVI, mNDVI705 and CR SWIR for each Land Cover Class. Each index value

is monthly averaged over the study site (MBäıki) and over the study period (2015-2020). The bars are the monthly

accumulated rainfall averaged yearly. In dark green, the forest pixels. In yellow, non-forested pixels, including mostly

savannas and then, fallows and crops.
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Figure 6.2: Savitsky-Golay smoothed EVI mean time series for one randomly chosen pixel of each land cover class.

The vertical green and blue lines represent respectively the Start Of the Season (SOS) and the Start Of Rain (SOR)

for 2017-2019. Site: MBäıki.

Figure 6.3: Savitsky-Golay smoothed EVI mean time series for one randomly chosen pixel of each land cover class.

The vertical green and blue lines represent respectively the Start Of the Season (SOS) and the Start Of Rain (SOR)

for 2017-2019. Site: Luki.
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Table 6.1: Time required to perform each of the main computational steps. Those approximate numbers are obtained

with a basic computer equipped with a i5 processor and a 8 Go RAM.* Considering an Internet speed of 5MB/s and

an average file size of 700MB.

Step Time (hours)

Download and unzip 0.038*/image

Sen2cor algorithm 0.5 /image (sen2cor 2.8), 0.7/image (sen2cor 2.5.5)

Crop, resample and cloud mask 3

Compute spectral indices 2

Spatial aggregation: time series 4

SOS and SOR retrieval 5.5

Ground validation 0.5

BioDivMap R 0.2

Wavelets 0.1

Table 6.2: Space disk required for the main datasets considering one study site (Mbäıki in this case).

Description Size [GB/image] Total [GB]

Level-1C 0.7 184

Level-2A 1 264

Crop and stack raster 0.1
66.2

Index raster 0.02

GPM data world 61.2

Total 575.4
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