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Abstract

The aim of this thesis consists of the development of an automatic drowsiness mon-
itoring system based on the electrocardiogram (ECG). Moreover, as the feasibility
of this physiological signal to detect drowsiness is still not proved, this thesis also
investigates its feasibility.

This thesis is based on an experiment were subjects were sleep deprived during 28
hours. At 3 speci�c moments of sleep deprivation, subjects performed psychomotor
vigilance task (PVT). During these tasks, di�erent physiological signals whose elec-
troencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG)
were recorded. Based on the EEG and EOG signals, which are the references to as-
sess drowsiness, the true state of each subject is known on the Karolinska Drowsiness
Scale and can be de�ned as awake or drowsy given a de�ned threshold.

First, this thesis performs a review of the literature to �nd the possible parameters
indicative of drowsiness computed from the ECG. Then, a complete processing chain
of the ECG signal is implemented to be able to compute these parameters in the time
and statistical domains, the non-linear domain, and �nally in the frequency domain
from the raw ECG of the subjects. As the respiratory signal can be derived from
the ECG (ECG-Derived Respiration signal), this thesis also incorporates parameters
from the respiratory domain in order to see if this domain can be use to detect
drowsiness.

Once these parameters are computed, a machine learning phase is developed. During
this phase, the issue of the variability of the features between the subjects was
highlighted. Several techniques to compensate this variability have been tested but
none improved the results obtained. This variability makes the system developed to
be not reliable enough on all the subjects of the experiment to only use the ECG to
predict drowsiness.
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Figure 1: Work �ow performed in this thesis.
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Figure 2: Summary of the algorithm developed for the R peaks detection based on [1].
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Fold 1 (subjects 35 and 8) : area = 0.77

Fold 2 (subjects 33 and 12) : area = 0.59

Fold 3 (subjects 10 and 21) : area = 0.72

Fold 4 (subjects 26 and 18) : area = 0.32

Fold 5 (subjects 17 and 29) : area = 0.43

Fold 6 (subjects 31 and 34) : area = 0.85

Fold 7 (subjects 27 and 16) : area = 0.28

Fold 8 (subjects 19 and 23) : area = 0.67

Luck

Mean ROC (area = 0.58)

Figure 3: The ROC curve of one on the model developed during this thesis during a cross-
validation. Each color corresponds to a fold. Note that observations of the same subject are
never split between the di�erent fold. One can observe the issue of the variability between
the subjects encountered during this thesis.
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Chapter 1

Introduction

Drowsiness is an important cause of major injuries or deaths in car accidents through-
out the world. For instance, in the European Union, drowsiness at the wheel is
estimated to be responsible for 20 to 25% of road accidents [2]. This proportion is
similar to the one of car accidents caused by drunk driving (25% according to Eu-
ropean SafetyNet study devoted to alcohol [3]). Di�erent studies have shown that
driving after 24 hours of sleep deprivation has the same e�ect as driving with 0.9
g/l of alcohol in the blood (an illegal rate everywhere in the UE) [2].

According to another study of the AAA Foundation for Tra�c Safety published in
2014, in the United States, 13% of the car crashes involved people that then were
hospitalized and 21% of the fatal car crashes involved a drowsy driver [4]. However,
objective data are di�cult to �nd. Indeed, it is very complicated to estimate the
drowsy state of the conductor just before the accident. On one hand, there are of
course the physical consequences (invalidity or death) of these accidents. But on
the other hand, there are also the economical consequences of such accidents. For
instance, for the year 2011, the total amount of costs (direct and indirect) of these
accidents was estimated at 160 billion Euros in Europe [2].

To overcome this problem, research and technologies to detect drowsiness events in
cars are in progress. However, the reliability of these systems is not always proved.
Moreover, lots of these systems try to assess the state of the driver based on his/her
behavior (i.e. steering wheel movements, car motion on the road, ...). They are thus
not based on a monitoring system recording physiological data from the driver.

Currently, through the scienti�c community, the method that is considered as the
reference to monitor drowsiness from physiological data is the polysomnography
consisting of the electroencephalography (EEG) and the electrooculography (EOG)
signal. Electroencephalography (EEG) monitors the electrical activity of the brain
thanks to electrodes placed on the scalp of the patient. Electrooculography (EOG)
monitors the activity of the eye. More precisely, there exists a di�erence of potential
between the cornea and the retina with the cornea being taken as the positive
side. This di�erence of potential generates an electric �eld in the cells around the
eye. When the eye moves, this electric �eld modi�es its direction. Therefore, the
movement of the eye can be recorded via electrodes placed near the eye [5].

However, the problem with these 2 techniques is that they are quite intrusive for
a driver in a car. The work presented in this thesis is therefore focused on the
Electrocardiogram (ECG). In the ECG technique, the electrical activity of the heart
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is monitored thanks to electrodes. This technique is considered in this thesis because
it is less intrusive to monitor the ECG compared to the use of the EEG and/or EOG.
For instance, Jung et al. developed a system based on capacitive active electrodes
placed on the seat and that detects the ECG of the driver without direct contact [6].
An other example of a non-intrusive technique to monitor the ECG is the AliveCor's
Apple Watch ECG. The society AliveCor is improving the Apple smart watch with
electrodes on it to be able to monitor the ECG. Up to now they are in the prototype
phase. The release in the US is planned during the 2016 year when the product
will have been approved. Therefore, the possibility to captured the ECG in a fully
non-intrusive way for the driver is really present.

However, the use of the ECG to detect drowsiness events is still a new �eld in
research, and studies have not yet proved completely the feasibility or not of the
ECG to detect drowsiness. This is why this work will also be devoted to see whether
the development of an automatic system based on the ECG to detect drowsiness is
achievable or not.

More precisely, this thesis is based on a study performed in 2014 at the University
of Liège. During this study, several subjects performed three psychomotor vigilance
tasks at three di�erent degrees of sleep deprivation. During these tests, several phys-
iological signals were monitored including the EEG, EOG and ECG. The analysis of
the EEG and the EOG was performed as part of projects that preceded this thesis
work.

As the EEG and EOG signals are considered as the standards among the scienti�c
community to monitor drowsiness, the EEG and EOG are used as the reference to
determine if a subject is drowsy or awake. Based on the analysis of the ECG, predic-
tion of the state of the subjects of the experiment will be done. These predictions
will be compared to the reference known states of the subjects, determined from
EEG and EOG, to assess the reliability or not of the ECG to predict drowsiness.

To perform this work, the thesis is divided in four main chapters that represent
chronologically all the work performed during it.

Chapter 2 gives an introduction about drowsiness, the physiology of the heart, and
the ECG. The chapter also introduces the heart rate variability concept and the
use of the tachogram. It is from this heart rate variability that drowsiness will be
predicted based on the ECG.

Chapter 3 explains all the processing chain of the ECG implemented in this thesis.
Then, the rest of the chapter presents the review of the standard parameters de�ned
among the scienti�c community than can be computed to assess the heart rate
variability. The di�erent domains in which these parameters can be obtained and
the way to compute them are detailed all along the chapter.

Chapter 4 gives an introduction to the machine learning technique that will be
used to develop the automatic system. In the chapter, the way the reference states
of subjects were obtained by analyzing the EEG and EOG will also be explained.
Finally, the chapter will detail the machine learning procedure developed during this
thesis and the performance measures that will be used to evaluate the monitoring
system of drowsiness.

Chapter 5 presents the results obtained when the parameters computed in Chapter
3 are used with the machine learning models presented in Chapter 4. Based on the
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results obtained on the experiment this thesis is using, the feasibility or not of the
ECG to predict drowsiness will be discussed.

Finally, the last chapter consists of the conclusion of the thesis and the possible
perspectives for future works.

The main personal contributions of this thesis are as follows:

• I made the review of the literature to identify the di�erent parameters indica-
tive of drowsiness that can be computed from the ECG.

• I have implemented all the feature extraction part on Matlab. For this part, I
�rst needed to identify the R peaks in the ECG. To do so, I implemented the R
peaks detection algorithm explained in the paper of Benitez et al. [1]. Then, I
computed all the features in their respective domains. As the respiratory signal
can be derived from the ECG (ECG-Derived Respiration signal), I decided to
add parameters of the respiratory domain to the learning algorithms in this
thesis. To do so, I derived the respiratory signal from the ECG using the
variations of amplitudes of the R peaks as explained in [7].

• After de�ning the procedure to follow in order to build and assess the models
for the machine learning part, I implemented them in Python using the Scikit-
Learn library.

• I also tried 3 di�erent techniques in order to try to compensate the variability
between the subjects.
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Chapter 2

Drowsiness and electrocardiogram
(ECG): does there exist a possible
link?

In this chapter, drowsiness is de�ned and generalized in the �rst part. Then, the
ECG, the physiology of the heart and the possible con�gurations of an ECG will be
approached. Next, the state of the art of the detection of drowsiness using the ECG
will be addressed. Finally, the �owchart of the work performed during this thesis
will be presented.

2.1 Drowsiness

2.1.1 De�nition

Drowsiness is generally de�ned as a state between wakefulness and sleep. During
drowsiness, the person irresistibly wants to fall asleep if there is no stimulation
[8]. Staying awake require some e�orts and sleeping is the only solution that can
e�ciently responds to this need and to durably restore wakefulness. Generally,
drowsiness and fatigue are often mixed in the usual language. However, in medical
applications, there are not the same. Fatigue corresponds to a moral or physical
weakening felt after a sustained e�ort. The rest (not necessarily sleeping) is the only
solution to restore a su�cient level of performance. For instance, nervous fatigue
occurs roughly every two hours. The consequences of this fatigue are a diminution
of attention and concentration. This phenomenon explains for example why drivers
are encouraged to take a rest of 15-20 min after two hours of driving on a rest area
[9]. During this resting time, they do not necessarily have to sleep. They just need
to stop their driving activity to be more focused on the road when they get back in
their cars.

Sleep and wakefulness cycles are regulated by two physiological mechanisms:

• The �rst one is the circadian cycle. This cycle is the internal clock of our body
that maintains our activity according to a 24-hour rhythm. Typically, with
the circadian cycle, the sleepiness peaks are in the middle of the afternoon
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(2-4 pm) and in the early morning (2-6 am). Figure . 2.1 shows the in�uence
of this cycle on the sleep propensity.

Figure 2.1: Circadian cycle in�uence on sleep propensity (taken from [10]).

• The second mechanism is the homeostatic regulation of sleep. It is measured
through the sleep pressure. The longer the waking period, the higher the sleep
pressure. Therefore, this pressure increases all along the day with the mental
activity. When we sleep, the sleep pressure decreases accordingly to the sleep
time. Through the sleep/wake cycle, there is an homeostatic regulation of the
sleep pressure.

Circadian cycle and sleep pressure are thus the two systems regulating the sleep/wake
cycle. However, external factors can also in�uence this cycle like: drugs, alcohol,
sleep deprivation, task performed (monotonous or stimulating, unpredictable or not,
short or long, ...), the environment (quite or noisy, bright or dark, alone or in crowed
environment), etc.

The main consequences of drowsiness are the followings [2]: loss of alertness, dif-
�culty keeping the eyes in focus, loss of concentration and wandering thoughts,
reduced awareness of the environment, memory lapses, increase of reactions times.

2.1.2 How to assess drowsiness ?

Drowsiness can assessed in two di�erent ways. The �rst one is to assess drowsiness
based on subjective tests. In these tests, the subject responds to a series of ques-
tions. On the basis of the responses chosen, a drowsiness score can be attributed.
However, this technique is far from reliable. The second method to assess drowsiness
is the objective methods based on physiological data. In the scienti�c world, the
reference to assess drowsiness is the polysomnography. This method uses the elec-
troencephalogram (EEG) and the electrooculography(EOG). More precisely, speci�c
activity in a given frequency spectrum of the EEG, or slow eyes movements of the
EOG, are considered to be indicators of drowsiness. Based on these two signals,
a drowsiness score can be attributed to the subject. This score is called the KDS
(Karolinska Drowsiness Scale) score [11, 12]. The way to obtain this score will be
explained in more detail with a speci�c example in chapter 4 of this thesis. Note
that the KDS score, which is an objective method to assess drowsiness, must not
be confused with the KSS (Karolinska Sleepiness Scale) score, which has nearly the
same name but is a subjective method.
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2.2 The electrocardiogram

2.2.1 A few words about the physiology of the heart

The role of the heart is crucial for living beings. Indeed, it is through the pump-
ing movement of the heart that blood circulates trough the di�erent vessels of the
organism and brings oxygen and nutrients to its di�erent cells.

During each beat of the heart, the depolarization and repolarization of the my-
ocardium (layer of the heart made of contractile cells) generate electrical activity
[13]. Therefore, thanks to two electrodes placed on the skin of the body, we can
detect a variation of potential between these two electrodes during the activity of
the heart. This variation of potential through the time is known as the electrocar-
diogram (ECG). The global activity of the heart is recorded in an ECG.

Each heart beat corresponds to a speci�c pattern in the ECG. This pattern comprises
�ve waves (P, Q, R, S, and T) as it can be seen in Fig. 2.2. The �rst wave is the P
wave. It corresponds to the atrial depolarization initiated by the sinoatrial node (SA
node). It is during this phase that the contraction of the auricles occurs (= atrial
systole). Then it is the QRS complex consisting of the ventricular depolarization
just before its contraction for the ventricular systol. During this complex, there is
also the atrial repolarization (= atrial diastole). Finally, the last wave is the T wave
corresponding to the ventricular repolarization leading to the ventricular diastole.

The heart has the ability to autonomously generate depolarization at a speci�c
frequency. This phenomenon can be seen for instance during heart transplant. The
heart continues to beat when it is extracted from the body of the donor. This ability
comes from the pacemaker cells present in the heart. These cells slowly depolarize
themselves from their resting potential. After a certain time, the potential of the
membrane will reach the threshold potential. Therefore, an action potential will be
generated resulting in a heart beat. There are 3 main parts for the pacemakers cells
[16] as it can be seen in Fig. 2.3 :

• Sinotrial node: it is situated at the junction between the superior vena cava
and the right atrium (Fig. 2.3). This node has frequency of 60 to 100 beats
per minute. Action potential is transfered from this node in the atrium until
the atrioventricular node.

• Atrioventricular node: this node is situated near the valve of the right atrium
(Fig. 2.3). The propagation signal is delayed during a small time at this node
to allow the full contraction of the atria. Then, it is transmitted trough the
ventricles.

• His bundle: this bundle is a link between the atrium and the ventricle (Fig. 2.3).
This bundle is thus spitted in two parts to reach the two ventricles. The prop-
agation goes down trough this bundle until reaching the Purkinje �bers. It
is in the Purkinje �bers that the myocardial cells are excited leading to the
ventricular contraction.

In a normal heart, it is the sinotrial node that has the highest depolarization fre-
quency. It is thus this node that determines the heart beat.
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(a) ECG wave (taken from [14])

(b) Depolarization wave trough the heart (taken from [15])

Figure 2.2: Link between the heart activity and the ECG pattern.

Figure 2.3: Cardiac conduction system (taken from [17]).

2.2.2 Action of the nervous system on the heart

As said before, the heart has the ability to generate heart beat autonomously thanks
to pacemaker cells. However, the autonomic nervous system (ANS) is able to interact
with the heart to change its activity [18]-[10]. This system is divided in two parts.
The �rst one is called the parasympathetic nervous system and slows down the heart.
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This system uses the vagal nerve as the main road. This is why the parasympathetic
action is also called the vagal activity. The second system is the sympathetic nervous
system. It can speed up the beats frequency of the heart. The sympathetic activity
is also able to increase the contractile force of the heart.

The parasympathetic nervous system releases acetylcholine from the terminals of its
ganglia whereas it is noradrenalin that is released for the sympathetic system. The
acetylcholine released by the vagal activity �x in the M2 muscarinic receptor. This
binding triggers the inhibition of the spontaneous depolarization of the sinotrial
node (also called the negative chronotropic e�ect). For the sympathetic system,
the noradrenalin attach to beta 1 receptors. The consequence is an increase of the
speed of the depolarization of the sinotrial node which increases the heart frequency
(positive chronotropic e�ect). Moreover, the action of the noradrenalin will also lead
to a rise of the intracellular calcium concentration thanks to a series of biocehmical
reactions. This rise of calcium will increase the contractile force of the heart [18]-
[19]. These two antagonist systems trigger thus variations of heart rate. However,
the time-scale of their actions is not the same. There is a time delay of 5s after the
stimulation for the sympathetic response. This response remains for 20-30s. The
parasympathetic reaction is faster (400ms of delay) and is shorter [20].

2.2.3 Lead con�guration

The electrodes required in the ECG can be placed at di�erent locations on the body.
However, these locations are not anywhere on it. Indeed, if two ECGs of the same
patient are compared, any changes detected in the ECGs records must be caused
by a heart problem and not simply a change of the positions of the electrodes.
Therefore, the location of the electrodes are universal. This leads to the universal
12-lead ECG. The lead term is used to represent the di�erence of voltage between
two electrodes. Each lead measures the electrical activity of the heart along one
direction. A 12-lead ECG machine consists of 10 wires [21]:

• 6 chest electrodes placed on the rib cage. There are labeled as V and are
numbered from 1 to 6. Fig. 2.4a shows the position of these electrodes.

• 4 limb electrodes placed at the periphery of the body. Two are on the right and
left wrists and two are on left and right ankles as it can be observed in Fig. 2.4b.
The electrode connected to the right ankle is used as the neutral point. This
neutral point allows for instance the so-called driven right leg con�guration
[22]. In this con�guration, the common mode is reduced thanks to a negative
feedback into the right leg electrode which contributes to a higher reduction of
electric interference. Therefore, the driven right leg con�guration enhances the
ECG signal. The three other electrodes are labeled aV for augmented vector.

We have thus a total of 10 wires , one of which 1 is used as the neutral. This leads to
a number of 9 leads called the unipolar leads. The three remaining leads are called
the bipolar leads and are placed in a triangle con�guration with the heart at the
middle (Fig. 2.5).The lead I is between the aVR and the aVL, lead II is between the
aVR and the aVF and lead III is between the aVL and the aVF.

At the end we have thus a 12-leads ECG as it can be seen in Fig. 2.6 and each
lead conveys information about the heart activity along one direction. However, the
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(a) Position of the 6 chest electrodes (b) Position of the 4 limb elec-
trodes

Figure 2.4: Universal 12-lead ECG (taken from [23]).

ECG data collected during the experiment from which this thesis is based only came
from a lead I con�guration.

Figure 2.5: Bipolar leads forming the Einthoven's triangle with the heart on the middle
(taken from [23]).

Figure 2.6: Example of a 12 lead ECG recording (taken from [24]).

9



2.2.4 Heart rate variability (HRV)

The ECG signal is not constant overt time. More precisely, there are variations in
the time di�erence between successive R peaks. The heart rate variability refers to
this beat-to-beat alterations in the heart rate [25]. In the literature, RR variability
is a common synonym used when speaking of HRV [26]. A term that is also often
used is the NN interval. This term stands for normal sinus to normal sinus inter
beat interval [27].

The �rst thing to do when dealing with HRV is to compute and draw the RR
tachogram. As can be seen in Fig. 2.7, a tachogram is a graph where both axes
have time units. The horizontal one corresponds to the beats locations in the time
domain. The vertical axis indicates the time elapsed between the current beat and
the previous one. It is important to notice that, as the tachogram re�ects HRV, it is
an unevenly (irregularly) spaced signal along time (on the horizontal axis) [10]. The
tachogram of Fig. 2.7 is a tachogram computing during this thesis. We will explain
later how this signal was obtained.
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Figure 2.7: Example of a tachogram computed during Chapter 3.

Once this tachogram is available, HRV can be quanti�ed by using some metrics.
These metrics can be analyzed in three main di�erent domains [26]:

1. Time domain: in this domain, di�erent statistical parameters are computed
based of the time elapsed between R peaks.

2. Geometrical domain: in the geometrical domain, NN time series are displayed
according to a speci�c pattern. For instance, it can be the density distribution
of the duration of NN intervals.

3. Frequency domain: variations of the RR intervals can also be observed in the
frequency domain. The analysis in the frequency domain is done thanks to
the power spectral density (PSD) of the tachogram. For instance, there is
the power in the low frequency part (LF: [0.04; 0.15] Hz), the one in the high
frequency part (HF: ]0.15; 0.40] Hz), ...
The HF interval is mainly driven by the parasympathetic system. This result
is generally accepted by scientists [26]. However, for the LF interval, there
are lots of controversies. Some scientists think that the vagal and sympathetic
activities are present in this interval. Others consider that the LF part only
re�ects the activity of the sympathetic activity. The LF/HF ratio is thus
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estimated as the sympathovagal balance between the vagal and sympathetic
systems. Generally, in a PSD, two peaks can be observed [10]. One is in the LF
interval around 0.1Hz due to Meyer waves. The other is around 0.25Hz in the
HF band and is due to respiratory oscillations (respiratory sinus arrhythmia
(RSA)).

2.3 State of the art of the use of ECG to detect

drowsiness

Based on the di�erent parameters obtained from the HRV analysis, di�erent research
teams have conducted experiments to try to predict the state of drowsiness of people.

Mahachandra et al. carried out a study in which they attempted to predict the
sleepiness event thanks to HRV [28]. More precisely, they asked several drivers
to drive in a simulator during three and one half hours starting at 8 pm. The
domination of the θ activity in frequency band of the EEG during 3 to 14 seconds
was used to detect sleepiness events. The authors wanted to �nd HRV parameters
that would allow to detect sleepiness events eight minutes before they are recorded
on the EEG. The results of this study showed that the root mean square of squared
di�erences of successive RR intervals (RMSSD) and the SD1 parameters of the
Poincaré plot were the two parameters with the best sensitivity/discriminability
index (d') to detect drowsiness. In their study, they noticed that the parameters
of the frequency domain did not perform well. The authors explain it by the fact
that parameters were computed eight minutes before each sleepiness event really
occurred in the driver's body and were detected by the EEG.

Another study by Ibanez et al. tried to asses the drowsiness of ten professional
driver based on their HRV parameters [29]. During the experiment, subjects drove
in their real environment. Videos were recorded when subject was driving. Thanks
to these videos, two independent observers classi�ed the drowsy states of subject
based on their eyes movements, eyes closed time, etc. The results have shown a
reduction of the beat frequency and a higher HRV. Moreover, this study concludes
that HRV parameters can be used to detect drowsiness. However, these parameters
must be used together.

In the work performed by Chua et al., 24 subjects were forced to remain awake
during 40 hours in a constant environment beginning at 8 am. Every 2 hours, they
performed a psychomotor vigilance task (PVT) during 10 minutes [30]. In these
tests, subjects had to respond the fastest they could to stimuli on a screen. The
time between successive stimuli was randomly chosen between 2 and 10 seconds. If
the patient had a reaction time higher than 0.5 seconds, it was considered as a PVT
lapse. The number of lapses was considered as a re�ection of the drowsiness state.
During the 16 �rst hours, the number of lapses found was quite small. Then, during
the normal hours of sleep, this number increased reaching a peak after 24 hours of
wakefulness. After this moment, the number of lapses decreased a bit but remained
much higher than the number obtained during the 16 �rst hours of the procedure.
This recovering was assumed to be the action of the circadian cycle.

To establish their results, Chua et al. �rst normalized with the z-normalization
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the PVT lapses and the di�erent physiological parameters within subjects. Then,
thanks to the Pearson coe�cient, they found the best HRV parameter that linearly
correspond to the PVT pro�le. This parameter was the RR-interval PSD in the 0.02
to 0.08 Hz frequency range. Next, they compared the ability of this parameter with
the EEG PSD and the PERCLOS (=percentage of eyelid closure over the pupil over
time) to forecast the increase of PVT lapses above di�erent thresholds (25%, 50%,
and 75%) thanks to a binary classi�cation. This increase of PVT lapses is relative to
performance of the subject during the baseline (= beginning of the experiment when
the subject was considered as fully awake). Based on the ROC curves, the optimal
threshold is found for each feature. At its optimal threshold, RR-interval PSD in
the 0.02 to 0.08 Hz frequency range provided similar results to the PERCLOS and
the EEG. These results tend to conclude that, if the RR-interval PSD in the 0.02
to 0.08 Hz observed at a speci�c moment is compared to the one when he is well
rested, it is possible to predict the increase of PVT lapses above speci�c threshold.

Vicente et al. also tried to predict the drowsiness based on the HRV [31]. In this
study, two databases provided by FICO MIRRORS S.A. were used. The �rst one
consists of 11 subjects deprived of sleep in a driving simulator during 120 minutes.
The second contains the ECG of ten professional drivers without sleep deprivation
was recorded during six hours. Every two hours, these drivers needed to take a
break in their drive. In each of these data banks, an external observer classi�ed, in
every minute, the state of the driver as drowsy or awake based on the EEG record.
The ECG was analyzed during �ve minutes. Thanks to a moving window by step
of one minute, they were able to predict the subject's condition every minute. The
HRV signal was obtained thanks to the integral pulse frequency modulation model.
Then the HRV parameters were computed from the Smoothed Pseudo Wigner-Ville
Distribution. The classi�er used in this study was based on a linear discriminant
analysis. When using the two data banks together to have roughly the same propor-
tions of drowsy (1663) and awake (2162) states and only the best features, a positive
predictive value of 93% and a sensitivity of 85% was obtained.

The use of the HRV derived from the ECG to detect drowsiness is a new �eld of study.
Therefore, even if some research has found good results for predicting drowsiness
based on the HRV, there exist some variations in the results. For instance the ratio
LH/HF has been regarded a lot as being the re�ection of the sympathovagal balance.
Machandra et al found that the ratio LH/HF increases when drowsiness at wheel
occurs [28]. On the other hand, in a study of Sahayadhas et al [32], a decrease of
this ratio was observed when subjects were very drowsy. Shinar et al also studied
the frequency component of the HRV during the transition between wakefulness and
sleep in subjects without sleep deprivation [33]. They noticed a reduction of the LF
power in normal subjects (without sleep troubles) around the sleep onset contrary
to HF part that did not signi�cantly changed. Therefore the sympathovagal balance
shifts towards an increase of the parasympathetic activity.

The main problem in all these studies is that the results do not always come from
the same protocol of experiment. In some studies the reference to detect drowsiness
is the EEG; in others it is the recording of videos that is used as the reference.
Therefore, the de�nition of drowsiness is not always the same from one study to
another. An other problem may be the variability of the state of the driver between
di�erent experiments. In some research work, drivers were sleep deprived before
doing the test while it was not the case for other research work. Finally, the use of
HRV is still a new �eld of research.
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For all of these reasons, the aim of this work is to establish the feasibility, or not, of
the ECG to detect drowsiness.

2.4 Flowchart of the work performed in this thesis

The core of this thesis is about the development of an automatic drowsiness mon-
itoring system using the ECG. As previously said, the detection of the drowsiness
using the ECG is a recent �eld of research and development. Therefore, di�erent
di�erent studies do not always reach the same conclusions and/or the same protocol
of experimentation. For these reasons, the goal of this thesis is not only to develop
the drowsiness monitoring system but is also to assess the feasibility of the ECG to
detect drowsiness.

The experiment that this thesis is based on is an experiment conducted 2 years ago
at the University of Liège. 25 healthy volunteer subjects were chosen to perform
three psychomotor vigilance task (PVT) tests at three di�erent degrees of sleep
deprivation. The evolution of the experiment with time is the following:

Each subject arrived in the lab for the �rst PVT test at 8 am after a normal night
of 8 hours of sleep (subjects were asked to wake up at 7 am). The �rst PVT test
was done between 8 and 9 am. The following signals were collected during each
test: EEG (Fz, Cz, Pz, C3, and C4 canals), ECG, EMG, EOG and eyes images.
The drowsy state of each subject is known by using the ECG, EOG. The study of
these two signals was analyzed previously to this work. Clémentine François and
Baudouin Fortemps de Loneux formed by the Doctor Robert Poirrier analyzed these
signals and gave the corresponding KDS score re�ecting the drowsiness state of the
subject. The second PVT test was done between 2 and 3 am after 19 hours of sleep
deprivation. Finally, the last test took place between 11 and 12 am after 28 hours of
sleep deprivation. Each PVT test lasts 10 minutes and consists of a light stimulus
displayed on a screen during 400 milliseconds. The time elapsed between two light
stimuli is chosen randomly between 5 and 15 seconds. At each stimulus, the subject
has to press the fastest possible on a button. This task, considered as boring, is
used to facilitate the drowsy events.

The work �ow of this thesis can thus be summarized in Fig. 2.8. The �rst block
in this Figure is the problem de�nition. The problem de�nition has already be
explained previously in this chapter such as the data collection. The next steps
of the �owchart are the data processing and the features extraction. These two
blocks will be explained in details in chapter 3. Then, the next block is the machine
learning part and the presentation of the results. Chapters 4 and 5 will deal of these
two blocks. Finally, a discussion of the results will also be performed at the end of
this thesis.

Definition of 
the problem

Data 
collection 

Data 
processing

Feature 
extraction

Machine 
learning Results

Figure 2.8: Flowchart of the work performed in this thesis.
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Chapter 3

Feature extraction

In order to develop a system that automatically predicts the level of drowsiness
of a person, a machine learning model needs to be developed. This model will be
explained in detail in the next chapter. For the moment, a machine learning model
can be seen as a black box. This black box receives parameters (also called features)
as input. Then, based on the algorithm insides this black box, the model predicts
the output by using the parameters given as input. The input parameters are thus
important for the model to work. In our problem, the di�erent features computed
should normally be a function of the drowsiness. This chapter is devoted to the
computation of these features. In the �rst part, all the signal �ltering steps to
detect the R peaks in the ECG is explained. Once this �ltering step is done and
the R peaks are identi�ed, the features from the ECG can be computed. Therefore,
the second part of this chapter describes the features of the heart rate variability
(HRV) in the di�erent domains. The de�nitions and the formulas of these features
are also explained in this chapter. Finally, the last part of this chapter deals with
the respiratory features. More precisely, it explains how it is possible to derive the
respiratory signal from the ECG and how features in the respiratory domain can be
derived from this last signal.

3.1 R peaks detection algorithm

The ECGs recorded during the di�erent PVT tests can not be used directly in order
to extract the di�erent features indicating the level of drowsiness of the subjects.
Indeed, a processing step must be performed in order to �nd the R peaks of the
ECG and then extract these parameters.

The R peaks detector algorithm developed in this thesis is strongly based on the
article of Benitez et al. [1]. In the literature, lots of algorithms developed use
the MIT-BIH arrhythmia database to evaluate their accuracy. This database is an
open-source database [27]. Each ECG record of the database has been annotated
independently by two cardiologists. Thanks to these annotations, it becomes easy
to assess the di�erent algorithms. The one designed by Benitez et al. detects the
R peaks in the QRS complex of the ECG with a sensitivity of 99.94%, a positive
prediction rate of 99.93% and an average detection rate of 99.87%. As it provides
good results on this database, we decided to choose this algorithm for the
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This algorithm is thus reimplemented based on the description of Benitez et al. [1].
The main components of this algorithm are summarized in Fig. 3.1. The rest of
this section will be devoted to the explanation of the role of each component. In
Fig. 3.1, the �rst part is the �ltering part. As its name says, it �lters the raw ECG
signal. Then, the derivative of the signal is computed. After this step, the Hilbert
transform of the derivative is taken. Based on this last signal, a �rst peak detector
is applied to locate the positions of the R peaks candidates. Finally, based on the
positions of these candidates, the true peaks in the original signal are found.

Filtering x[n] y[n] = d(x[n])/dt Hilbert transform
h[n] = H(y[n])

y[n]
Peak detection

h[n]

Subset windowing Real peak detection R peaks in ECG

Probable R peaks

ECG

Figure 3.1: Flowchart of the algorithm developed for the R peaks detection based on [1]

3.1.1 Filtering

If the plot of a raw ECG as a function of time is observed, this signal contains
lots of noise. If fact, there exists several sources of noises for the ECG [34, 35].
The frequency components of these noises are di�erent for each one. As the useful
bandwidth of an ECG is comprised between 0.05 and 100 Hz, these noises act on
di�erent parts of the spectrum of the ECG.

The �rst kind of noise is the power line interference at 50 Hz (as the study was
conducted in Europe). Figure 3.2a shows the consequence of this noise. The second
kind of noise is mainly due to respiration. This noise is a low frequency noise (below
0.1-0.5 Hz) [34]. The consequence of this noise is that the horizontal reference line
of the ECG is moving with time. This phenomenon is called the baseline drift.
An example of baseline drift is displayed in Fig. 3.2b. Another noise is the motion
artifacts. This noise occurs when the patient is moving during the recording and is
shown in Fig. 3.2c. It is characterized by big spikes in the ECG. Finally the last
source of noise is the muscular noise (also called the EMG noise). This kind of noise
generally interacts in the high frequency part of the useful band of the ECG. The
consequences of this noise are generally spikes at a high frequency. This noise was
not clearly identi�ed in the dataset of the experiment conducted at the University
of Liège. The probable explanation is that this noise was present but is hidden by
the important contribution of the power line interference in the signal.

In order to get rid o� these noises, a �ltering process has been used. The �lter
implemented is a band pass �nite impulse response �lter (FIR �lter) using a Kaiser-
Bessel window.

A FIR �lter can be represented by the block diagram in Fig. 3.3. In this �gure, the
order of the FIR �lter is equal to N. As the �lter has an order N, there are also N
delays. Therefore, a FIR �lter is also called a tapped delay line. Based on Fig. 3.3,
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(a) Power line interference at 50 Hz in an ECG.
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(b) Baseline drift e�ect in an ECG.
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(c) Motion artifact occurring in an ECG.

Figure 3.2: Noise e�ects occurring in di�erent ECGs used in this project.
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the impulse response of this �lter can simply be written as:

h[n] =


0 if x < 0

bn if 0 ≤ n ≤ N

0 if n > N

(3.1)

Figure 3.3: Block diagram of an FIR �lter (taken from [36]).

Based on Eq. 3.1, the number of elements bn di�erent from zero (M) is equal to
the order of the �lter (N) plus one (M = N + 1). This number M is clearly �nite.
Therefore, impulse response is also �nite which gives the name to the �nite impulse
response. The output of the �lter can be written as:

y[n] =
l=+∞∑
l=−∞

h[l] ·x[n− l]

=
l=N∑
l=0

bn ·x[n− l]

= b0 ·x[n] + b1 ·x[n− 1] + ...+ bN ·x[n−N ]. (3.2)

Another interesting property of the FIR �lter is that it can have a linear phase.
This condition is met when the coe�cients bi are symmetric with respect to the
coe�cient at the center bN

2
. If this condition is true, the phase of the frequency

response is linear. Therefore, the delay is the same for all the samples (half of the
order of the �lter) and there is no delay distortion. This delay distortion can also
called phase distortion.

The FIR �lter implemented in this work is a band pass �lter between 8 and 20 Hz.
The Kaiser-Bessel window was used as the window technique. In fact, all types of
�lter (band pass, band stop, high pass) can be understood and obtained from the
low pass �lter type. An ideal low pass �lter is a �lter that let pass all the frequencies
below its cut-o� frequency and it is the inverse for all the frequencies higher than
this cut-o� frequency. Figure . 3.4 shows the modulus of the frequency response of
the ideal low pass �lter. The frequency axis of Fig. 3.4 is expressed in rad/s. Note
that as the signal is in the digital world, the maximal achievable frequency is half
of the sampling frequency according to the Nyquist criterion.
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Figure 3.4: Modulus of the frequency response of the ideal low pass �lter (taken from [37]).
The frequency is expressed in rad/s and the cut-o� frequency is named B.

The impulse response of this ideal �lter is equal to:

h[n] = DTFT−1(H(ω))

=
1

2π

∫ +ωc

−ωc

ejωndω

=
1

2πjn
[ejωcn − e−jωcn]

=
sin[ωcn]

πn
= 2fcsinc[2fcn], (3.3)

where ωc and fc are respectively the cut-o� frequency in rad/s and in Hz (with the
relation ω = 2πf).

Sample n
-20 -10 0 10 20

2
f c

si
n
c[
2
f c

n
]

-0.1

0

0.1

0.2

0.3

0.4
f
c
 = 0.2 Hz

Figure 3.5: Impulse response of an ideal low pass �lter (the cut-o� frequency = fc).

The problem of the impulse response of Fig. 3.5 is that this impulse response is
in�nite and non-causal. However, the one of the FIR �lter (Eq. 3.1) has a �nite
length and is causal. To tackle this problem, �rst the impulse response is shifted
to the left. This step introduces the delay between the signal at the output of the
�lter and the signal at its input. Then, a window technique is used to obtain a
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�nite number of samples. This window technique can be of di�erent shape: Kaiser-
Bessel, Hamming, Rectangular, Bartlett, ... This window has a �nite number of
coe�cients di�erent from 0. As each element of the impulse response is multiplied
by the corresponding element of the window, the result becomes �nite. Indeed, only
the samples of the impulse response multiplied by the non-zeros coe�cient of the
window will be di�erent from 0. Having a �nite number of samples in the impulse
response has as consequence that ripples appear in the frequency response of the
�lter. Moreover, the transition band is not a straight line as in the ideal low pass
�lter.

Taking into account the delay and the windowing, the impulse response of the FIR
low pass �lter can be �nally written as:

hFIR[n] =

{
W [n] · 2fcsinc[2fc(n− N

2
)] if n 6= N

2

W [n] · 2fc if n = N
2

(3.4)

where W [n] is the value of the window at sample n, fc is cut-o� frequency, and N is
the order of the �lter.

Here a band pass �lter is required for �ltering the ECG. If h1 is a low pass �lter with
a cut-o� frequency fc1 and h2 is another low pass �lter with a cut-o� frequency fc2
(fc2 > fc1), a band pass �lter between fc1 and fc2 can be obtained just by subtracting
h2 to h1. Therefore, the impulse response of the band pass FIR �lter can directly
be written as:

hBPFIR
[n] =

{
W [n] ·

(
2fc2sinc

[
2fc2(n− N

2
)
]
− 2fc1sinc

[
2fc1(n− N

2
)
])

if n 6= N
2

W [n] ·
(
2(fc2 − fc1)

)
if n = N

2

(3.5)

In this work, fc1 = 8 HZ and fc2 = 20 Hz (in absolute frequency). The window used
is a Kaiser-Bessel window. Therefore, W [n] can be developed as:

W [n] =

I0 ·

(
β

√
1−

(
n−N

2
N
2

)2)
I0(β)

β =


0.1102 · (α− 8.7) if α > 50

0.5842 · (α− 21)0.4 + 0.07886 · (α− 21) if 21 ≤ α ≤ 50

0 if α < 21,

where I0 is the modi�ed Bessel function of order 0 and α is the sidelobe attenuation
in decibels (dB).

The optimal order of the �lter and the window coe�cients W [n] were found using
the method kaiserord of Matlab. The speci�cations were to have an attenuation
of 30dB between 7Hz (= fc1 − 1) and 8Hz (= fc1) and between 20Hz (= fc2) and
21Hz (= fc2 + 1). The maximal pass band ripple was chosen to be 10%. Given all
these speci�cations, the function kaiserord designed a �lter of order N = 788. The
frequency response and the impulse response of this �lter are shown respectively
in Fig. 3.6a and Fig. 3.6b. From the impulse response shown in Fig. 3.6b, it is
clearly visible that the condition of symmetry around the center point (N

2
) is veri�ed.
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Therefore, the �lter has a linear phase as it can be also seen in Fig. 3.6a. There is
thus no phase distortion and the delay introduced by the �lter is equal to:

delay =
N

2
=

788

2
= 394 samples =

fs=512Hz
7.69 · 10−1 second

There is thus a delay of 7.69 · 10−1 second between the raw ECG and the �ltered one.
As in the �owchart of Fig. 3.1 the original signal is used at the end to �nd back the
true position of the R peaks. There must not be any delay between the raw ECG
and the �ltered one. To do so, the �ltered signal must be shifted to the left of a value
equal to the delay of the �lter to compensate this delay. This delay compensation
has a cost. Indeed, the 394 last samples will be lost with this operation. However,
as it only represents 7.69 · 10−1 second, a negligible part of the ECG is lost in this
operation.
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(a) Frequency response of the band pass FIR �lter.
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Figure 3.6: Frequency response and impulse response of the band pass FIR �lter imple-
mented in this work. The passband is between 8Hz and 20Hz.

Figure 3.7 shows the three noisy cases of Fig. 3.2 after the �ltering step. In fact, by
removing all the frequencies that do not belong in the pass band frequency of the
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�lter, all the noise that has a frequency outside this pass band (for instance 50Hz
noise) is removed. However, the shape of the ECG waveform is a bit modi�ed as all
the frequencies of the useful spectrum of the ECG are no longer present. But the
remaining frequencies highlight the QRS complex of the ECG [1].

3.1.2 Derivative

The second step in the processing chain is to take the derivative of the signal.
The ECG signal here is in the digital domain. Therefore, the numerical derivative
must be taken. For all the samples except the 2 at the limit, the central di�erence
approximation is thus used [38]:

ECG′[n] ≈ ECG[n+ 1]− ECG[n− 1]

2T
, (3.6)

where ECG′[n] is the derivative of the ECG at sample n, T is the inverse of the
sampling frequency fs (= 512Hz).

For the �rst and last point of the ECG, this method can not be used. The backward
and forward derivative are respectively used for these 2 points [38].

3.1.3 Hilbert transform

For the third step of the �owchart, the Hilbert transform of the derivative of the
ECG obtained at the last step is computed. If x(t) is a real signal, its Hilbert
transform (noted x̂(t)) is de�ned as:

x̂(t) = x(t)⊗ 1

πt
,

where the symbol
otimes is used to represent the convolution.

If X(f) represents the Fourier transform of x(t), the Hilbert transform can also be
de�ned as:

X̂(f) = −j · sgn(f) ·X(f)

=


−j ·X(f) if f > 0

0 if f = 0

+j ·X(f) if f < 0

where sgn(f) is the sign of the frequency (i.e. 1 if f > 0 and -1 if f < 0).

Therefore, in the frequency domain, the Hilbert transform can be easily understood.
For the frequencies higher than 0, the signal X(f) is shifted by −π

2
. And a shift of

+π
2
is applied for the frequencies below 0.

The Hilbert transform is an odd �lter. It means that the Hilbert transform will be
equal to zero every time there is an in�ection point in the original signal. Therefore,
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(b) Baseline drift e�ect in an ECG.
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Figure 3.7: Impact of the FIR �lter on the di�erent noise e�ects of Fig. 3.2. In blue, the
original noisy signal. In green, the FIR �ltered signal.
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a crossing of the horizontal axis in the original signal located between a positive
and a negative in�ection point will be translated as a peak in the Hilbert transform
signal [1]. As the derivative of the ECG crosses 0 between a positive and a negative
in�ection point, locating the peaks in the Hilbert transform of the derivative of the
ECG can be used to detect the positions of the R peaks in the ECG.

The Hilbert transform is computed using the function hilbert of Matlab.

3.1.4 First R peak detector and subset windowing

Once the Hilbert transform is computed, an adaptive threshold (τ) is applied to it
to �nd the positions of the R peaks candidates. In fact, a moving window of 1456
points is taken. The length of this window is obtained by adapting the length taken
by Benitez et al. ([1]) given the sampling frequency used in this work. At each
time, the beginning of the next window corresponds to the last R peak found in
the previous window. First, the level of noise in the current window is computed.
This level of noise is obtained by using the root mean square (RMS) value of the
signal, and it is used later to �nd the threshold to locate the peaks. The maximum
value of the Hilbert transform signal is also computed in the window and is named
M(H[n]). Another parameter γ equal to 1.4 is also introduced. Then:

• if RMS noise ≥ 0.18 ·M(H[n]), where · means multiplication, a high level
of noise is present in the current window. Therefore, the threshold is set to
τ = 0.39 · γ ·M(H[n]).

• if RMS noise≥ 0.18 ·M(H[n]) and ifM(H[n]) > 2 ·M−1(H[n]), whereM−1(H[n])
is the maximum value of the Hilbert transform in the previous window, a high
level of noise is present in the current window but the threshold is adjusted to
τ = 0.39 · γ ·M−1(H[n]).

• if RMS noise < 0.18 ·M(H[n]), the level of noise is low in the current window.
The threshold level (τ) becomes equal to τ = 1.6 · γ ·RMS noise.

The parameter γ has been added compared to the work of Benitez et al. [1]. The
main reason is that the ECG signal in our work seems to be more noisy that the one
of the MIT-BIH arrhythmia database. That is why the threshold τ is incorporated
in this work. However, we recognize that it will be more robust to this this optimal
threshold automatically.

Once the threshold is obtained for the current window, the R peaks candidates can
be simply found by searching the peaks above this threshold. This step is done
by using the function findpeaks of Matlab. However, the peaks in the Hilbert
transform cannot be too close. In the work of Benitez et al., the minimum time
duration between successive peaks is equal to 0.2 s. However, here the criterion of
Goldberger et al. is used [27]. Therefore the minimum duration between successive
peaks is equal to 0.4 s. It means that only one peak can be kept when 2 successive
peaks are separated by less than 0.4 s. The one kept is found by using an adaptive
criterion. More precisely, we keep the one that is closer compared to the previous
located true peak to to the mean interval duration between successive peaks and
which is also closer to the mean amplitude of the previous true peaks found.
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3.1.5 Second peak detector

Finally, the last step of the �ltering (see Fig. 3.1) consists in �nding the true location
of each peak in the initial ECG. This is done by searching the true maximum in ±
15 samples around the peak candidate.

The R peaks in the ECG are therefore found. This was the �rst step in the feature
extraction problem.

3.1.6 Result of the R peaks detection algorithm

Once the algorithm to detect the R peaks is programmed, it can be tested on the
ECGs obtained during the PVT tests. To illustrate the accuracy of the algorithm
developed, the noisy ECGs of Fig. 3.2 can be used for test in order to determine the
performance of the algorithm on noisy ECGs. The result is shown in Fig. 3.8. In
this �gure, the ECG is shown in blue and the identi�ed R peaks are indicated by
green crosses. Figure 3.9 represents the results obtained after the Hilbert transform
of the three noisy signals.

From Fig. 3.8a and Fig. 3.8b, one can conclude that the algorithm correctly �nds
the R peaks in presence of power line interference and baseline drift. In Fig. 3.8c,
the problem of the motion artifacts e�ects can be seen. In fact, the motion artifacts
generate lots of close peaks in the Hilbert transform. These peaks are nearly all
above the threshold of the current window as it can be seen in Fig. 3.9c. The chosen
peaks are based on the minimum time duration between successive peaks and the
location with the previous true peaks as explained above. Even if this situation can
lead to detection of false R peaks, in the next section, we will propose an additional
criterion in order to �lter these false R peaks found.

3.2 Computation of the features

3.2.1 Creation of the tachogram

Once the R peaks are found, the tachogram can be generated. Just as a reminder, a
tachogram is a graph were the horizontal axis corresponds to the beats locations in
the time domain. The vertical axis indicates the time elapsed between the current
beat and the previous one.

To compute all the features that the model will need, only the normal to normal
(also called NN) intervals must be kept. There are intervals that are located between
2 consecutive QRS complexes and triggered by the depolarization of the sinotrial
node [26]. Therefore, all the non NN intervals are removed. The criterion to decide
if an interval must be kept or not is based on the work of Gari D. Cli�ord [10]. If
RRn is the time interval between the R peak occurring at time n and the one at
time n-1, therefore this interval is kept if and only if:

0.755 ·RRn−1 < RRn < 1.325 ·RRn−1

where RRn−1 is the time interval between the R peak occurring at time n-1 and the
one at time n-2.
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(b) Baseline drift e�ect in an ECG.
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Figure 3.8: Results of the R peaks detector algorithm on the noisy ECGs of Fig. 3.2. The
R peaks are shown by green crosses.
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(a) Hilbert transform the power line interference
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(b) Hilbert transform of the baseline drift e�ect in
an ECG of Fig. 3.2b.
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Figure 3.9: Hilbert transform of the three ECGs with noise shown in Fig. 3.2. The Hilbert
transform is shown in blue. The threshold computed according to the level of noise ECG
in that window is shown in black. The red crosses are peaks of the Hilbert transform above
the threshold that are false peaks. The green crosses are the peaks found that are correct
true peaks.
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Then, it can still remain some problems in the remaining NN intervals. Indeed,
sometimes, the R detection algorithm can detect a R peak that is not correct or
it can miss a peak. The consequence is that some outliers can be present in the
tachogram and, therefore, the features computed from this tachogram could be
a�ected by these outliers. It is thus also important to remove them. Just to give an
example of the importance of removing the outliers, according to Goldberger et al.,
some features in the frequency domain that will be explained later can be incorrect
by more than 1000% just due to the presence of outliers [27].

Therefore, we must remove these outliers. The rule of Goldberger et al. is used
here. First, if a NN interval is greater than two seconds, this interval is removed.
Then, we use a moving window. The length of this window is equal to 41 samples.
This window is centered on the current NN interval that is evaluated. Therefore,
there are 20 NN intervals in each side of the current NN interval and we take the
mean of these 40 NN intervals (named ∆t40). We then compute the range of the
possible time duration for the current interval as [0.8 ·∆t40 ; 1.2 ·∆t40 ]. If the current
evaluated interval is not in this range, we remove it and it is considered as an outlier.

The impact of removing these outliers on the tachogram is shown in Fig. 3.10. This
�gure shows, at the top, the the raw tachogram of the R peaks coming from the
R peaks detection algorithm. This tachogram is the one obtained from the subject
with motion artifacts of Fig. 3.2c. The tachogram lasts during all the PVT session
here. At the middle of Fig. 3.10, we only keep the NN intervals. Finally, the bottom
of Fig. 3.10 shows the NN intervals with the outliers removed. In Fig. 3.8c, we
observed that the detection of R peaks results sometimes to detection of false R
peaks for that subject during motion artifacts (around 250s on the horizontal axis).
However, we can see in Fig. 3.10 that these false peaks are removed and, at the end,
the tachogram without non NN intervals and outliers is obtained. However, it is
important to remark that for some subjects, the number of non NN intervals and
the number of outliers is smaller.

3.2.2 Time duration from which the features are computed

The features can be computed on time intervals of di�erent lengths. The greater
the time interval, the higher information in the ECG there is. However, a prediction
of the model must be available as frequently as possible. Indeed, imagine a system
that predicts the drowsiness state of the driver every �ve minutes. It means that
every �ve minutes, the model predicts if the driver has been drowsy or not during
the last �ve minutes. This time interval is too large to be useful. Indeed, in �ve
minutes the driver has lots of time to fall asleep and to cause an accident. Therefore,
the analysis of the features should be done on short time intervals of the ECG.

Another important constraint for this work is that the three PVT tests done during
the experiment had a duration of 10 minutes each. This means that for each test, the
ECG signal lasts 10 minutes. Therefore, to reach a su�ciently big dataset, features
can not be extracted on an ECG of long duration. Moreover, during this experiment,
the drowsy state of each subject was assessed using polysomnography signal (EEG
and EOG). This assessment was based on windows of 20 seconds of EEG and EOG.
Therefore, the predictions of the state of the subjects are only available every 20
seconds.
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Figure 3.10: Successive steps in the generation of the �nal tachogram. Top: raw tachogram
just after the R peak detection algorithm. Middle: the result when only the NN intervals
are kept. Bottom: the outliers are also removed.
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Finally, the Task Force of the European Society of Cardiology and Others have de-
�ned a minimum time duration for computing parameters in a given domain [26].
For instance, in the frequency domain, short term recording of the ECG are com-
prised between two and �ve minutes.

For all these reasons, we choose a moving window principle to compute the features
on the ECG. Figure 3.11 shows this principle that can be summarized as follows:
For each subject i during the the PVT test j, the tachogram on all the duration of
the test (600 seconds) is computed using the technique explained previously. Then,
we take only a window of 120 seconds of the complete tachogram. The features
are computed on this window. Each window is then shifted by 20 seconds and we
repeat the process until reaching the end of the tachogram. The model will therefore
predict the state of the driver every 20 seconds based on an record of 120 seconds.

0 20 40 60 80 100 120

120 s

120 s

120 s

120 s

120 s

120 s

600...

...

tachogram 1

tachogram 2

tachogram 3

tachogram 4

tachogram 5

tachogram 6

Time [s] :

Subject i, session j

Figure 3.11: Illustration of the principle of the moving window used to compute the features
for the machine learning model.

3.2.3 The HRV features in the di�erent domains

The Task Force of the European Society of Cardiology and Others de�ned in its work
the di�erent parameters that can be computed from an ECG in order to assess the
heart rate variability (HRV) [26]. It is these parameters that will be used as the
features for the model.

These parameters can be computed in di�erent domains. Here, three domains are
used: time and the statistical domains, non linear domain, and. the frequency
domain.

Note that as we only keep the NN intervals in the tachogram, in the next of this
thesis, a RR interval will always be a NN interval.

We know present the three domains of interest

Time and statistical domains

From all the features that can be computed, the ones in the time and statistical
domain are the easiest to compute and to understand. The parameters computed
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in this domain are summarized in Table 3.1. Some parameters are the mean of a
speci�c value like the mean of selected RR interval series (mean RR), and the mean
of the hear rate (mean HR). The square root of the mean of the square of di�erences
of successive RR intervals (RMSSD RR) is also based on the computation of a kind
of mean. An other parameter is equal to the standard deviation of the NN intervals
(SDNN). Finally, we also compute the number of consecutive RR intervals that di�er
more than 50 ms (NN50) and the percentage of this number in the whole intervals
(pNN50).

Type Units De�nition Formula

Mean RR s Mean of selected RR interval
series

∑nb_RR
i=1 (RRi)

nb_RR

SDNN s Standard deviation of se-
lected RR interval series

√
var(RR_intervals)

Mean HR 1
min

Mean heart rate of selected
RR interval series

60
MeanRR

RMSSD RR s Root mean square of di�er-
ences of successive RR inter-
vals

√[∑nb_RR−1
i=1 ((RR)i+1−(RR)i)

2
]

nb_RR−1

NN50 [-] Number of consecutive RR
intervals that di�er by more
than 50 ms

∑nb_RR
i=2 1 if RRi − RRi−1 >

50ms

pNN50 [-] Percentage of consecutive RR
intervals that di�er by more
than 50 ms

NN50
nb_RR

Table 3.1: Table summarizing the names, units, de�nitions, and the formulas of the features
in the time and statistical domains.

Non linear domain

Two parameters can be computed in the non linear domain, sometimes also called
the fractal analysis [28]. These parameters are derived from the Poincaré plot. A
Poincaré plot is a graph in which the horizontal axis is the duration of the current
RR interval (RRn). The vertical axis corresponds to the duration of the next RR
interval (RRn+1). Figure 3.12 represents an example of a Poincaré plot. The two
non linear parameters that can be extracted from the Poincaré plot are called SD1
and SD2 [39]. SD2 represents the standard deviation (std) according to the identity
line (i.e. the diagonal line with an angle of 45 degrees). SD1 is the std in the
perpendicular direction to this identity line. SD1 and SD2 are in fact respectively
the semi-minor axis and the semi-major axis of an ellipse. This ellipse is also shown
in Fig. 3.12. More information about how to compute SD1 and SD2 can be found
in Table 3.2.
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Figure 3.12: Example of a Poincaré plot. The �gure shows the two parameters SD1 and
SD1 extracted from this plot. (Taken from [40]).

Type Units De�nition Formula

SD1 s Dispersion of the points (std) in
the perpendicular direction of the
identity line

SD12 = 0.5 ∗ variance(RRn −
RRn+ 1)

SD2 s Dispersion of the point (std) in
the direction of the identity line

SD22 = 2SDNN2 - SD12

Table 3.2: Table summarizing the names, units, de�nitions, and the formulas of the features
in the non linear domain.

Frequency domain

The variations of the RR intervals can also be observed in the frequency domain.
The analysis in the frequency domain is done thanks to the power spectral density
(PSD) of the tachogram. The explanation of how to compute this PSD will be given
later in this section.

By de�nition, the PSD of the tachogram, is divided in the frequency domain in
speci�c intervals: the ultra low frequency (ULV: ≤ 0.03 Hz), the very low frequency
(VLF: ]0.03; 0.04] Hz, the low frequency (LF: [0.04; 0.15] Hz) and the high frequency
part (HF: ]0.15; 0.40] Hz) [26]. However, in recordings from two to �ve minutes like
the ones used here (two minutes), the Task Force recommends to only compute the
VLF, LF, and HF components. For the VLF component, the Task Force even admits
that it is a parameter that must be avoided for short recordings. Therefore, only the
LF and the HF components are computed. Generally, it is advised to express these
2 parameters in absolute and normalized units. The normalization process enables
to get a perception of the symptovagal balance. All the parameters in the frequency
domain computed in this work as well as their units, and the way to compute them
can be found in Table 3.3.

To compute the features in the frequency domain, the PSD of the tachogram must
�rst be computed. Generally, the Fourier transform or an auto-regressive method
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Type Units De�nition Formula

LF_f_peak Hz Frequency of the max in
the LF band

max(PSD([0.04; 0.15 ]
Hz))

HF_f_peak Hz Frequency of the max in
the HF band

max(PSD(]0.15; 0.40] Hz))

LF_power s2 Power in the low-
frequency band

∫ f=0.15

f=0.04
PSD(f) · df

HF_power s2 Power in the high-
frequency band

∫ f=0.4

f=0.15
PSD(f) · df

LF_power_norm [-] Power in the low-
frequency band divided by
the sum of the power in
the low and high frequency
bands

LF_power

LF_power+HF_power

HF_power_norm [-] Power in the high-
frequency band divided by
the sum of the power in
the low and high frequency
bands

HF_power

LF_power+HF_power

LF
HF [-] Ratio of the power in

the low-frequency band di-
vided by the power in the
high frequency bands

LF_power

HF_power

Table 3.3: Table summarizing the names, units, de�nitions, and the formulas of the features
in the frequency domain.

are the two most common ways of computing the PSD. However, these two methods
operate on an evenly sampled signal (a signal in which a data is available every T
second where T is the inverse of the sampling frequency fs). But here, the tachogram
is by de�nition an unevenly sampled signal. Indeed, there are variability in the
heart rate: if it was not the case, it would not be possible to assess the HRV and
the tachogram would be a constant, i.e. a perfect horizontal line. Therefore, to use
the Fourier transform technique or the auto-regressive method, the tachogram needs
to be re-sampled uniformly. This can be done for instance by using the linear or
cubic-spline re-sampling techniques [10]. However, these techniques are not perfect.
Indeed, they make the assumption that the tachogram signal evolves according to a
speci�c shape between the di�erent heart beats (RR intervals). Fortunately, there
exists a technique that can compute the PSD on an unevenly sampled signal. This
method is called the Lomb periodogram. It was not very popular at the beginning
of the HRV analysis because of its high computational complexity. However, today,
there are fast algorithms that have been implemented. Moody conducted a study
in which he compared the Fourier transform, the auto-regressive method, and the
Lomb technique [41]. His conclusion was the following: "The Lomb method avoids
all of the complications and pitfalls of re-sampling and replacement of outliers, and
introduces no drawbacks of its own; in consequence, it is the method of choice for
PSD estimation". Cli�ord also concluded in his work that the Lomb method was
better than the Fourier transform technique applied to a signal re-sampled uniformly
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using cubic spline interpolation and where ectopics beats had been removed [10].

For all these reasons, in this thesis, the Lomb method is chosen as the technique
to compute the PSD estimation in the frequency domain. Figure 3.13 shows the
result of the PSD estimation using the Fourier transform and the Lomb method.
As can be seen in this �gure, it also seems that the Lomb method is more precise
than the Fourier transform one. Indeed, it seems to have periodic pic in the Fourier
transform. Moreover, the 2 peaks of the PSD can be more clearly with the Lomb
method. The �rst peak is due to the Meyer wave (0.1Hz) and the second peak is
due to respiratory oscillations (0.25Hz) (respiratory sinus arrhythmia (RSA)) [10].
Moreover, the Meyer waves (0.1Hz) peaks . The second one is around 0.25Hz in the
HF band and is due to respiratory oscillations (respiratory sinus arrhythmia (RSA)
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(a) PSD using the Fourier transform and cu-
bic spline interpolation.
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(b) PSD using the Lomb method.

Figure 3.13: Comparison of the PSD estimation using the Fourier transform and the Lomb
method. Only the frequency in the LF and HF parts of the spectrum are represented as
the PSD is based on a short term record of 120 seconds. (a): result of using the Fourier
transform. Before applying this transform, the signal was re-sampled by using cubic spline
interpolation at 8 Hz. (b): result of the Lomb method applied to the unevenly sampled
signal.

The Lomb method implemented in this work is the Lomb-Scargle periodogram.
Matlab already implements a method called plomb to estimate this periodogram.
Therefore, this method was used in this project.

A periodogram is a power spectral density estimate of a signal. If x(tk) (k =
{1, ..., N}) are the N equally spaced measurements of the signal at times tk, the
periodogram is de�ned as

Px(ω) =
1

N

N−1∑
k=0

∣∣x(tk)e
−jωtk

∣∣2
=

1

N

N−1∑
k=0

[
(x(tk) cos(ωtk))

2 + (x(tk) sin(ωtk))
2] . (3.7)

Scargle modi�ed the formula of the periodogram for the case of an unevenly signal
as follows: If x(ti) (i = {1, ..., N}) are the N unevenly spaced measurements of the
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signal at times ti, the periodogram is de�ned as

Px(ω) =

[∑N
i=1 x(ti) cos (w (ti − τ))

]2
∑N

i=1 cos (w (ti − τ))2
+

[∑N
i=1 x(ti) sin (w (ti − τ))

]2
∑N

i=1 sin (w (ti − τ))2
, (3.8)

with τ such as
N∑
i=1

cos (w (ti − τ)) sin (w (ti − τ)) = 0.

Scargle shows in the appendix C of his paper that this de�nition of the periodogram
was identical to the equation of the least squares �tting of the unevenly sampled
signal by sine waves that Lomb previously established [42, 43].

Indeed, in his paper, Lomb �ts the unevenly signal by sine waves to estimate the fre-
quency component. More precisely, if x(ti) (i = {1, ..., N}) are the N measurements
of the signal at times ti, unevenly spaced, each sample x(ti) is �tted by a function
xf

xf (ti) = A cos(wti) +B sin(wti).

The mean square di�erences between the model and the samples of the signal is
given by

E(ω) =
N∑
i=1

[x(ti)− xf (ti)]2 .

The best model is the one with the A and B values that will reduce E(ω) to its
minimum value, called Emin(ω). This last value, Emin(ω), can then be minimized
as a function of ω. Scargle rewrites then di�erently the problem as

∆E(ω) =
N∑
i=1

[x(ti)]
2 −

N∑
i=1

[x(ti)− xf (ti)]2︸ ︷︷ ︸
=Emin(ω))

, (3.9)

and searching the minimum of Emin(ω) is the same as �nding the maximum of
∆E(ω). Lomb has shown in its paper ([43]) that if the model to �t the sample is
modi�ed a little bit with

xf (ti) = A · cos (w (ti − τ)) +B · sin (w (ti − τ)) ,

with τ such as
N∑
i=1

cos (w (ti − τ)) sin (w (ti − τ)) = 0,

therefore Eq. 3.9 can be simpli�ed to

∆E(ω) =

[∑N
i=1 x(ti) cos (w (ti − τ))

]2
∑N

i=1 cos (w (ti − τ))2
+

[∑N
i=1 x(ti) sin (w (ti − τ))

]2
∑N

i=1 sin (w (ti − τ))2
. (3.10)
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Scargle concluded in his paper that this last equation (3.10) corresponds to the
de�nition of the periodogram of Eq. 3.8. Fitting the unevenly signal with sine waves
can thus be used to estimate the periodogram. We also see from Eq. 3.10 that
the frequency that maximizes the periodogram will be the same as the one that
maximizes ∆E(ω).

Equation 3.8 correspond to the case where the unevenly signal has a zero mean and
a unit variance. In the general case, the Lomb-Scargle periodogram can be written
as

PLS(ω) =
1

2σ2


[∑N

i=1 (x(ti)− x̄) cos (w (ti − τ))
]2

∑N
i=1 cos (w (ti − τ))2

+

[∑N
i=1 (x(ti)− x̄) sin (w (ti − τ))

]2
∑N

i=1 sin (w (ti − τ))2

 ,

(3.11)

where x̄ and σ2 are respectively the mean and the variance of the unevenly signal
x(ti). Equation 3.11 corresponds to the formula used by the plomb function of
Matlab.

3.2.4 The respiratory features

In addition to the HRV features, we decided to compute respiratory variability (RV)
features. Generally, the respiratory signal is used to detect apnea during sleep.
However, some studies also established the link between the respiratory variability
and the psychological state of people [44, 45, 46]. For instance, during mental stress,
it was shown that the RV increased [44]. The mental stress in [44] was triggered
by a competition. More precisely, during the mental stress task, the subjects had
to respond the fastest they could to arithmetic tests. The subject who responded
the fastest and with the best accuracy received a speci�c reward. To the contrary,
during sustained attention states, the RV decreased. In the same study ([44]), the
task requiring sustained attention was also an arithmetic test but with no pressure
of time and reward.

In the work presented in this report, subjects had to respond the fastest they could
to stimuli occurring at random times during the PVT tests. These tests can be
de�ned as sustained attention tasks as no pressure was put on the subjects (there
was neither reward nor penalty if they were too slow). And when subjects became
drowsy, it can be assumed that their attention for the task was reduced, which can
be interpreted by a variation in the RV. This is why the RV is used in this thesis.
Moreover, in the literature, there are only few scienti�c papers using the respiratory
signal directly as a feature to detect the drowsiness.

In the experiment of this thesis conducted at the University of Liège, the respiratory
signal was not directly available. Indeed, the subjects did not wear any devices
during their PVT tests that would directly record the respiratory signals. Therefore,
if we wish to have the respiratory signal, we must derive it from the ECG. This can
be done by using the technique of the ECG-Derived Respiration signal (or EDR
signal).

The method developed to compute the EDR signal is based on the work performed
by Widjaja et al. in [7]. The EDR signal is based on the following principle: when
the subject is breathing during the experiment, his/her rib cage in�ates and de�ates
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at the whim of breathing. It means that the distance between the electrodes and the
heart is varying according to time. There is thus a modi�cation of the impedance,
and the ECG is altered by this modi�cation. Therefore, there are small variations in
the amplitude of the ECG and the amplitudes of the R peaks will be also modi�ed
in time due to the respiration. By interpolating theses variations, the respiratory
signal is obtained. In [7], the variations of the R peaks must be compared to the
baseline. Therefore, the baseline must be removed from the ECG. We thus take the
ECG after the FIR �lter of Fig. 3.1 as the baseline is already removed on this signal
in order to get the real amplitudes of the R peaks. The locations of the R peaks are
taken back from the R peaks detection algorithm previously described in this thesis.
Once the amplitudes of the R peaks are found, the signal is interpolated using cubic
spline interpolation at 10 Hz. The interpolated signal is then �ltered by a low-pass
FIR �lter with a cut-o� frequency of 0.4 Hz. The order of this �lter is equal to N =
48 and a Hamming window is used, the equation of which is given by

W [n] = 0.54− 0.46 · cos
(

2π
n

N

)
,

where N is the order of the �lter.

Then, we �nd the local extrema in the signal. These extrema corresponds to the
inspirations and exhalations. A breath to breath (BB) interval is de�ned as the time
elapsed between two maxima (resp. between two minima). Finally, two additional
criteria are used to validate or not the BB intervals [7]:

• in time: a BB interval must at least have a duration of 1500ms to be accepted.

• in amplitude: the amplitude between a pair of successive maximum and min-
imum must be greater than 15 % of the mean of the previous and the next
di�erences of amplitudes.

Figure 3.14 shows the result of the plot of the BB intervals as a function of time for a
subject during a PVT test. From this �gure, we can compute the mean duration of
the BB intervals which is equal to 4.3 seconds and which corresponds to a respiratory
rate of 15 breaths per minute. This result is within the usual range for a human
adult which is between 12 and 18 breaths per minute [47].

Once the correct BB intervals are found, the features in the respiratory domain can
be computed. The names, units, de�nitions, and the formulas of these features used
in this work are summarized in Table 3.4.
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Figure 3.14: BB intervals computed from the ECG-Derived Respiration signal for a subject
during a PVT test.

Type Units De�nition Formula

mean BB s Mean of the BB intervals
∑nb_BB

i=1 (BBi)

nb_BB

SDBB s Standard deviation (std) of
the BB intervals

√
var(BB_intervals)

di� BB s Di�erence between the
largest and the smallest BB
interval

max(BB)−min(BB)

RMSSD BB s Square root of the mean of
the squared di�erence of suc-
cessive BB intervals

√[∑nb_BB−1
i=1 ((BB)i+1−(BB)i)

2
]

nb_BB−1

SDSD s Standard deviation (std) of
the di�erence of successive
BB intervals (signal notated
BB?)

√
var (BB?)

Table 3.4: Table summarizing the names, units, de�nitions, and the formulas of the features
in the respiratory domain.

37



Chapter 4

Machine learning

The previous chapter was devoted to the signal processing of the ECG and the
computation of the features. Once these features are computed, the algorithm for
the machine learning part of this thesis can be implemented in order to predict the
drowsiness state of people. First, this chapter explains the logic and the functioning
of a machine learning model. Second, the reference method used to determine if
someone is awake or drowsy will be detailed. Third, we explain the method that is
implemented in this thesis. We also describe in this third part the performance mea-
sures that can be used in order to assess the reliability of the drowsiness monitoring
system developed.

4.1 Introduction and theory about machine learn-

ing

The machine learning �eld can be seen as a sector that develops algorithms in order
to enable machines or computers to learn. In a machine learning problem, there
are always observations on the input side of the model. These observations are also
called samples. For each observation, there is a number k of features. The features
can be of really di�erent natures. For instance, in a medical application, a feature
can be the weight of a person represented as a real number. Another feature could
be the sex of the person represented as a class. This last feature can only take two
possibilities, male or female, and can be represented in di�erent ways. For instance
the number 1 could be used for a male and 0 for a female. Another possibility is
the use of the letters M or F.

The goal of the machine learning model is to learn properties from the features
of the observations that the model has at its disposition. Once these properties
are learned, the algorithm receives unknown observations at its input and tries to
predict as accurately as possible the properties of these unknown observations based
on what it has previously learned [48].

More generally, the machine learning problems can be separated in two main do-
mains:

• Supervised learning: each observation at the input of the training is associated
with one or several outputs. The algorithm will therefore try to �nd the
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function predicting the output. If this function is called f , the output y can
be simply written as

y = f(x1, x2, ..., xk)

where x1, x2, ..., xk are the k features of the current unknown observation.

• Unsupervised learning: the model tries to �nd speci�c patterns in the data
without looking at input-output relations. Speci�c �elds exist like clustering,
where the algorithm tries to �nd families of data. There is also the density
estimation for which the distribution of the observations in the input space is
estimated. Finally, there is the dimensionality reduction. This process consists
of projecting data from a high dimensional space to a lower one (generally 2D
or 3D) in order to be able to visualize the date more easily.

In this thesis, the supervised learning technique is used. Indeed, for each observation,
there is a known output value which it the state of the subject in our case. Once
the model has been trained, it will try to predict these states from the features of
unknown data. The supervised learning technique can be separated in 2 parts:

1. Regression: the output is one or several numerical value(s).

2. Classi�cation: the output is a class. The class of the output can only belong
to a speci�c set of possible classes. If the output can only belong to 2 classes,
this problem is called binary classi�cation.

The main di�erence between classi�cation and regression is that for classi�cation
the output is a discrete value in a given set of possibilities whereas, for regression,
the output is continuous. In this thesis, a choice had to be made between these
2 possibilities. The choice made and the reasons that justify this choice will be
explained later in this chapter.

4.2 The output of the model

4.2.1 The KDS score

As previously explained in Chapter 2, each subject of the experiment performed
three PVT tests at three di�erent moments of the day (Fig. 2.8). Each PVT test
lasts 10 minutes. During each test, di�erent physiological signals were recorded:
EEG, EOG and ECG. In the literature, the reference to asses the drowsiness state
of people is the EEG and EOG. The analysis of these two physiological signal were
done by three people at the University of Liège before this thesis: the Doctor Robert
Poirrier, François Clémentine, a PhD candidate at the University of Liège in the
drowsiness �eld and Baudouin Fortemps de Loneux, during his master thesis [49].
Based on this analysis, the level of drowsiness for each subject at di�erent moments
during the PVT tests is known and we can give a score from 0 to 10 to on the
Karolinska drowsiness scale of the drowsy state of the subject [11, 12]. The lower
the score, the more awake and alert the subject is.

Table 4.1 shows an example of how the assessment of the level of drowsiness of a
subject during the PVT test is done. In this table the subject is the subject number
8 during his third PVT test (called session 7 in Table 4.1). As already mentioned,
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each PVT lasts 10 minutes. These 10 minutes are split in 30 windows of 20 seconds.
Each window of 20 seconds is then separated again in 10 intervals of 2 seconds. For
each interval of 2 seconds, the activity of the EEG and the EOG is analyzed.

More precisely, if, during this interval, there is an activity α or θ in the EEG or
if there is speci�c slow eye movements in the EOG, it is indicated (by a letter) in
the corresponding box of the Table 4.1, meaning that there is a drowsiness sign for
this interval. Having a letter,like α or θ, during an interval can be seen as putting a
value equal to 1 for this interval. When two activities are present during the same
interval (like for instance for the 7th interval of the 5th window of Table 4.1 where
there is at the same time an activity α and θ of the EEG), this case also corresponds
to a value equal to 1 for this interval. To the contrary, if there is no activity of the
EEG or EOG in the interval, a value of 0 is simply put for that interval. The global
score for the window of 20 seconds is then simply obtained by summing the di�erent
values of the 10 intervals of 2 seconds. By doing so, the level of drowsiness of a
person is a discrete number comprised between 0 and 10. This discrete number is
called the KDS score [11, 12]. The acronym KDS stands for Karolinska drowsiness
scale. The lower the score, the more awake and alert the subject is. When the KDS
score increases, the subject becomes more drowsy. For instance, in the example of
Table 4.1, the subject has big KDS scores, which seems logical as the subject was
performing this test after roughly 28 hours of sleep deprivation.

As explained in Chapter 3, the duration of the time window from which the ECG
features are computed is equal to 120 seconds. The moving window technique of
Fig. 3.11 was also explained in Chapter 3. As the KDS score is available every 20
seconds, a technique must be used to combine the di�erent scores of the six intervals
of 20 seconds in order to have the global score of the window of 120 seconds. We
decided to deal with the maximum score of the di�erent windows. The main problem
of the mean of several intervals is that it smooths the KDS score of the window of
120 seconds. Therefore, the resulting score could be low if a large score is surrounded
by lower ones. For this reason, we keep the maximum score of the 6 intervals.

4.2.2 Choice between regression and classi�cation

We decided to take the supervised learning method for this thesis. Indeed, the
output values of the di�erent observations are the KDS scores and the learning
model will use these outputs. However, as said in the introduction section of the
present chapter, a supervised learning method can be implemented either using
regression or classi�cation. A supplementary decision has to be taken to decide if
we use the regression or the classi�cation in this thesis.

The �nal choice was to deal with classi�cation. Indeed, as a �rst reason, in the
literature, this approach is generally the one used. The machine learning model
will try to predict if someone is drowsy or not at a given time based on its ECG
recorded during the past 120 seconds. In this case, the classi�cation problem seems
to be simpler. Indeed, compared to the regression, the binary classi�cation can be
done more easily. A given threshold is put on the KDS score before training the
model. In the literature, the threshold is normally �xed at 5 on a scale from 0 to 10.
However, in Anund et al. [12]; big decrements of performances were observed for
lower values than 5. Moreover, the if the reaction time to the stimuli is observed,
it can be seen that there is already an important rise of the reaction time for KDS
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Protocol PVT KDS Scoring Sheet Legend
Subject 8 Scorer alpha α spindle s
Session 7 Scoring date theta θ vertex v
Starting time 11:12:38 eye e K-complex k

Epoch Time Score 1 2 3 4 5 6 7 8 9 10

1 11:12:38

2 11:12:58 5 e e e θ e

3 11:13:18 4 e e e e

4 11:13:38 6 e e e e e e

5 11:13:58 4 e eθ e e

6 11:14:18 7 e e eθ e e e e

7 11:14:38 5 eθ eθ e e e

8 11:14:58 2 e e

9 11:15:18 8 e e e e e e e e

10 11:15:38 4 e θ e e

11 11:15:58 5 e θ e e e

12 11:16:18 6 e e e e e e

13 11:16:38 1 e

14 11:16:58 8 e θ e e e eθ e e

15 11:17:18 5 e e e e e

16 11:17:38 4 e e e e

17 11:17:58 3 e e e

18 11:18:18 3 e e e

19 11:18:38 3 e e e

20 11:18:58 0

21 11:19:18 0

22 11:19:38 2 e e

23 11:19:58 3 e e e

24 11:20:18 4 e e e e

25 11:20:38 1 e

26 11:20:58 3 e e e

27 11:21:18 4 e e e e

28 11:21:38 2 e eθ

29 11:21:58 3 e e θ

30 11:22:18 3 e e e

Table 4.1: Example of the scoring sheet used to assess the level of drowsiness of a subject
during a PVT test on the Karolinska drowsiness scale.
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scores lower than 5 compared to the windows for which the subjects have a KDS
score of 1 or 2. Therefore, it was decided to choose a threshold of 4. It means that if
someone has a KDS score below 4, this person is considered as awake. If the person
has a score equal or larger than 4, this person is considered as drowsy. Therefore,
the output of the model is a class that can only take two values: 1 if the person is
drowsy or 0 if not.

As previously said in this thesis, the feasibility or not of the ECG to detect drowsiness
is still not proven. Therefore, another reason for which the binary classi�cation is
that it is not sure that this system will be precise enough to discriminate the di�erent
states on the KDS scale. That is why we decided to see whether the ECG can be
used to more generally discriminate between the 2 classes: drowsy or awake.

Finally, another reason for which classi�cation is used instead regression is that the
regression approach would lead to a continuous KDS score at the output of the
machine learning model. A threshold on this output should then be used to obtain
at the end the state of the person (awake or drowsy). However, this threshold must
be adapted with the training set. Indeed, if there are more awake states in the
training set, the model will probably tend to predict lower KDS scores. Therefore,
the threshold to �nd if someone is drowsy or not will not be the same as the one in
the literature. It also means that this optimal threshold should be found. Therefore,
as regression requires to �nd the optimal continuous threshold to �nd if someone is
drowsy or not, the classi�cation method was chosen by simplicity.

4.3 Machine learning model developed

4.3.1 The �nal dataset

The approach to develop the supervised learning method in binary classi�cation
must be developed. All the subject for which the KDS score was available were
taken for the development of the model (four subjects did not get the KDS score
and were therefore not considered). Therefore, the data set comprises 21 subjects.
For each subject, there are 25 observations for each PVT test, consisting of 20
features on the input side and the binary class on the output side. However, if
we observe the dataset with more details, we can notice that some subjects have
strange behaviors. Some subjects resulted with no drowsy events during the three
tests. On the other hand, others were considered as drowsy for all the three PVT
tests. These subjects were thus removed from the dataset. The reason is that when
the algorithm is tested, evaluations parameters are used. These parameters, which
will be explained later in the present chapter, require to have unknown observations
from both classes. Moreover, a problem with the acquisition of the ECG signal
was also noticed for a male subject of the experiment. Figure 4.1 shows the ECG
recorded during this acquisition problem. One can see in this �gure that the ECG
signal is full of noise and no useful information can be derived from this signal. The
reason is that the electrodes were not correctly placed on the skin of the subject
when the subject had lots of hairs on his chest. At the end, after removing these
"curious subjects", there remains 16 subjects inside the dataset.

One must divide the remaining data set in two parts. One is the learning set (LS).
They are the data used by the model to learn. The other part is the test set
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Figure 4.1: Example of a male subject that was removed from the dataset due to an acqui-
sition problem. The ECG is totally corrupted and full of noise. No useful information can
be derived from a signal with so much noise.

(TS). They are the unknown data for the model. Once it has been trained, the
model receives only the features of each observation in the TS. Based on what it
learned with the LS, it predicts the output of the unknown data. By comparing the
estimated outputs to the true ones in the TS, it is possible to assess the reliability
of the model. However, the main problem of this method is that the model could be
specialized to correctly �t the given TS. If a totally new TS is given to the model,
the results could be worse than expected. This phenomenon is call the over�tting.
The next section will explain a method that allows to avoid this problem.

4.3.2 The cross-validation

In the previous section, the importance of avoiding a specialization on a single
LS-TS case was highlighted. Moreover, we also need to pay attention to avoid
putting observations of the same subjects in the TS and the LS. Indeed, if the LS
contains already have several observations of a given subject in its LS, when others
observations on that subjects will be tested, it will have less di�culty to predict the
level of drowsiness. Therefore, the performance of the model will be overestimated.
When the model will be really used on a totally new subject, the results will probably
be less as expected.

Therefore, we use the k-fold cross-validation to assess the model. This technique
consists of splitting the dataset in k parts that are called the folds [50]. Then,
the following procedure is repeated k times: the model is learned on the whole
dataset expect the kth part. This kth part is used for the test. The error on each
fold is then averaged to have a global assessment of the model. Here, the k-fold
cross-validation is a little bit di�erent to take into account the requirement that
di�erent subjects must be used for the learning and the testing parts. Therefore,
the implemented procedure is the following: all the subjects except 2 are used for the
TS. The 2 remaining subjects are placed in the TS. The model is trained on the LS
and assessed with the TS. This process is repeated k times until the cross-validation
is �nished. The number of folds is therefore equal to 8 and there are 2 subjects by
fold.
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4.3.3 Di�erent estimators used to build the model

Di�erent types of machine learning estimators exist in order to build a model. For
this work, two main estimators were chosen. The �rst one is the support vector
machine (SVM). This method o�ers several advantages [48]. First of all, SVM is
memory e�ective. It means that it only keeps speci�c points from the LS, called
support vectors, for the decision function. Moreover, this technique is generally
e�cient in high dimensional spaces by using a speci�c method called the kernel
trick [50]. Finally, it is possible to use easily di�erent kernel functions (linear,
gaussian, polynomial, ...). In this thesis the linear kernel and the Gaussian Radial
Basis Function (rbf) kernel were used. [48].

The second estimator tried is the random forest (RF). Its name really indicates
what it is. This estimator consists of a series of trees. A tree is one of the most
representative machine learning technique. It consists of a series of nodes. At each
node, a criterion separates the data in two parts as a function of a speci�c criterion.
At the end, it remains leaves of the tree. Each leaf corresponds to a speci�c value
of the output. If there are k trees in the forest, k di�erent learning samples will
be drawn from the original one by using the bagging technique (= sampling with
replacement). Each tree of the forest thus predicts the class corresponding to the
unknown observations. The �nal class chosen is the one that gets the majority of
votes among the forest. The random forest belongs to the ensemble of methods
family [50, 48]. In fact, each tree is built on a bootstrap samples of the LS (by using
the sampling with replacement). By building the trees in di�erent bootstrap LS,
the variance as a function of the LS is reduced. However, the precision of the model
built with a RF estimator is a bit reduced due to the fact that information in the
di�erent LS is smaller than in the original LS due to the sampling with replacement.

Others general estimators like the nearest neighbor or the neural network also exist
in the literature. However, these estimators were not used for this thesis. The
reason depends on the technique. For the nearest neighbor, it is very sensitive to
noise. Therefore this estimator was avoided here as it is suspected that there is a
consequent number of noise in the dataset. For the neural network method, the
network is quite complicated to build, and this method was thus no used in this
thesis.

4.3.4 Performance measures

To assess the precision of a machine learning model in binary classi�cation, the
confusion matrix (also called the contingency matrix) is a nice tool to summarize
the results. This matrix takes the form of Table 4.2. The positive class corresponds
to a drowsy event in this thesis. It is the opposite for the negative class. Based on
this matrix, we can de�ned four important properties:

1. Sensitivity (Se): TP
TP+FN

. It corresponds to the percentage of correct true pre-
dictions (drowsy estimations) in all the true classes of the TS. The sensitivity
can also be named the recall (R).

2. Speci�city (Spe): TN
TN+FP

. It corresponds to the percentage of correct false
predictions (awake estimations) in all the false classes of the TS.
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3. Positive predicted value (PPV): TP
TP+FP

. It represents the proportion of true
positive predictions among all the positive predictions of the model. This
parameter is often named the precision (Pr).

4. Negative predicted value (NPV): TN
TN+FN

. It represents the proportion of true
negative predictions among all the negative predictions of the model.

Ideally, the number of FP and FN is equal to zero. Therefore, all the four parameters
are equal to 1 for the ideal case. If the number of FN and FP increases, these
parameters decrease and the model is less precise. Note that the number of FP
corresponds to the number of false alarms. The number of FN corresponds to the
number of times we predict a subject as awake whereas his true state is drowsy.

One additional parameter can be added to the four ones previously described. This
additional parameter is the accuracy and is equal to:

accuracy =
TP + TN

TP + TN + FP + FN
.

If we know the accuracy, the error rate can be easily derived as

error rate = 1 - accuracy.

True (known) values

Positive Negative

Predicted values
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 4.2: Example of a confusion matrix used in binary classi�cation.

Generally, in binary classi�cation, the output of the model is a class probability.
Then a speci�c threshold is set. If the class probability is above this threshold, the
observation belongs to this class. If it is not the case, in binary classi�cation, it
belongs to the other class. Let's take an example (in binary classi�cation). If the
class probability to belong to the �rst class is 0.3 and the threshold is set to 0.5, this
observation will be predicted as belonging to the second class as its class probability
for the �rst class is below the threshold.

For a speci�c threshold, the confusion matrix as in Table 4.2 can be built. However,
this threshold can also be modi�ed to impact the sensitivity and speci�city. This
principle is used to build a ROC curve (receiver operating characteristic curve).
A ROC curve is a plot representing the sensitivity as a function of one minus the
speci�city (1-speci�city) for di�erent thresholds values. Figure 4.2 shows an example
of a ROC curve. In a ROC curve, the optimal point is the one in the upper left
corner. Indeed, this point reaches a sensitivity of 1 and a speci�city of 1. Based
on the ROC curve, the optimal threshold value can be found in order to maximize
the sensitivity and speci�city. Another performance measure that can be derived
from the ROC curve is the area under the curve. The higher this area is, the better
it is. The diagonal dashed line in Fig. 4.2 corresponds to the result of a random
classi�cation (also named random result in this thesis). If the ROC curve is very
close to this diagonal, it means that the model has nearly the same results as the
random predictor and did not learn useful information during the training phase to
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be able to correctly predict the new data in the TS. However, if the model is far
away below this diagonal line, it does not mean that the model is not good. It is
just that the predicted output must be inverted in order to have the real class. Note
that in Fig. 4.2 the ROC curve is not a continuous curved line. It comes from the
fact that only a discrete number of threshold values were used.
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Figure 4.2: Example of a ROC curve. The diagonal dashed line corresponds to the random
result.

4.4 Conclusion of the chapter

In this chapter, the procedure of the cross-validation without mixing the di�erent
subjects in the folds has been chosen and detailed. Moreover, we also explained how
the two possible classes at the output of the model (drowsy or awake) were obtained.
Then the di�erent performances measures that can be used to evaluate the model
were explained. Based on the features computed in Chapter 3 and all the procedure
and performance measures detailed in the present chapter, the automatic model in
order to detect the drowsiness can be developed in order to see if it is possible or
not to detect drowsiness based on the ECG. The results obtained will be explained
in the next chapter.
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Chapter 5

Results obtained and discussion

In the previous chapter, we detailed the the procedure of the machine learning
approach developed in this thesis. We also explained the performance measures
that enable the evaluation of the model developed. In the present chapter, this
procedure will be tested on the data from the subjects. The results obtained will
be analyzed. Some tests performed in order to enhance the quality of the model
will also be explained in this chapter. Moreover, a discussion of the results obtained
will also be conducted through this chapter. Finally, some perspectives in order to
improve these results will be given.

5.1 Balanced and normalized dataset

For the �rst test, all the features computed after the processing of the ECG and
explained during the Chapter 3 are used. The dataset used is the one with the 16
subjects as explained in Chapter 4. The three models with the three estimators
used in this thesis (the random forest and the SVM using the linear and Gaussian
kernels) are tested on this dataset with the default parameters of the estimators.
The performance measures are then obtained during a cross-validation. This cross-
validation consists of 8 folds. In each fold, there are 2 di�erent subjects. The model
is therefore trained on 7 folds (14 subjects) and tested on the remaining fold (2
subjects). This operation is repeated 8 times in order to have each fold used once as
TS. Therefore the same subjects are never used for the training and testing phase.

The �rst block of Table 5.1, called No balancing, shows the results obtained during
a cross-validation for the 3 models. The same cross-validation is used for the 3
di�erent models. As can be observed, the results of this solution are not good.
In fact, the model nearly always predicts an unknown observation as awake. The
sensitivity is very low as the model does not recognize drowsy events in the TS.

However, if the data collected during the experiment are analyzed in more detail, we
can observe that the number of observations labeled as drowsy events is much smaller
than the number of awake events. Indeed, on average during the cross-validation,
only 30% of the LS is composed of drowsy events. To tackle this issue, the LS is
adapted to be balanced. More precisely, in each LS, the number of observations
is equal to the number of moving windows of 120 seconds in the three PVT tests.
As each moving window is separated by 20 seconds (Fig. 3.11), there are thus 75
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windows during the three PVT tests per subject. As there are 14 subjects in each
LS, this gives 1050 input-output relations in the train. The number of outputs
equal to 1 (drowsy events) is then computed. Then, the same number of awake
events (outputs equal to 0) are randomly picked from the LS. By doing so, the LS is
balanced between the two classes and the model will be less prone to overestimate
awake events. The main drawback of this solution is that the size of the dataset is
reduced.

Estimator Se Spe PPV NPV

No balancing

SVM: linear 0.126 0.902 0.318 0.705
SVM: Gaussian 0.139 0.918 0.272 0.700
Random forest 0.366 0.844 0.458 0.753

Balancing

SVM: linear 0.509 0.571 0.359 0.718
SVM: Gaussian 0.278 0.718 0.249 0.688
Random forest 0.456 0.752 0.452 0.762

Balancing SVM: linear 0.488 0.605 0.369 0.743

+ Normalization
SVM: Gaussian 0.447 0.650 0.418 0.760
Random forest 0.423 0.791 0.471 0.765

Table 5.1: Results of the sensitivity (Se), speci�city (Spe), positive predicted value (PPV),
and the negative predicted value (NPV) for the di�erent machine learning models built with
the 3 estimators used with their default parameters. The �rst block, called No balancing,
consists of the raw dataset. The second block, called Balancing, consists of the balanced
dataset. The third block, called Balancing + Normalization, consists of the balanced and
normalized dataset.

This balanced dataset was then tested. The sensitivity (Se), speci�city (Spe), pos-
itive predicted value (PPV) and the negative predicted value (NPV) were assessed
for the 3 models. The second block of Table 5.1, called Balancing, shows the im-
provement when the balancing is done.

However, even with the balancing, the model built on the SVM estimator using
the Gaussian kernel provided still low results. This comes from the fact that this
estimator is not a scale invariant method [48]. Moreover, in this work, the or-
der of magnitudes of the di�erent features is really di�erent from one feature to
another (for instance the meanHR (60 to 80 beats per minute) compared to the
LF_f_peak([0.04; 0.15] Hz). Therefore, the features were normalized. The mean
and the variance of each feature of the LS are computed. Then each feature of the
LS and the TS are normalized by using the z-normalization

Xz =
X − X̄
σX

where Xz, X, X̄, and σX are respectively the z-normalized feature, the original
value of the feature, the mean, and the standard deviation of that feature for all the
subjects in the LS.

Once the dataset is balanced and the features are normalized, the Se, Spe, PPV,
and the NPV can be re-computed. The results are shown in the third block of
Table. 5.1 named Balancing + Normalization. From these results, it can be seen
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that the features normalization is only important for the model using the Gaussian
kernel.

From Table. 5.1, it can also be observed that the results obtained depend on the
estimator used. On the other hand, even for the same estimator, there exist pa-
rameters that can be modi�ed (for instance the number of trees in the forest) and
that can in�uence the results. Therefore, each model was optimized by searching
for these optimal parameters. To do so, parameters were tuned by hand and the
ones providing the best results were kept. More precisely, another cross-validation
was performed. The performance measures were obtained for each fold. Then, they
were averaged over the di�erent folds.

For the random forest, the best parameters were: a number of trees of 150, in which
the number of features looked at each node to �nd the one leading to the best split
is equal to the square root of the number of the features, and �nally the minimum
number of samples to split a node is equal to 9.

For the SVM estimator using a Gaussian kernel, two parameters are important
to tune. The �rst one is the penalty parameter C. This parameter is a trade-o�
between the complexity of the model and the miss classi�cation weight of the LS.
If this parameter is increased, the model tends to correctly classify more and more
LS cases and increases its number of support vectors [48]. The other important
parameter is the γ parameter that re�ects the importance of a single observation of
the LS. The best parameters for the Gaussian kernel are the following: a penalty
parameter C of 25 and a kernel coe�cient γ of 0.01.

Finally, for the SVM estimator using the linear kernel, the best parameter found
was a penalty parameter of 5.

Table 5.2 shows the four performance measures of the models with these parameters.
The results are obtained by taking the mean of the performance measures of a cross-
validation. In this table, the class probability to say if a TS observation belongs to
the �rst class or not is the default one (= 0.5). From Table 5.2, it can be seen that
the speci�city is the parameter that increases the most compared to the random
case. However, the increase of the sensitivity is lower. All the three models have
therefore more di�culty to �nd the drowsy events compared to the awakes ones.

Also, it can be noticed from Table 5.2 that the best model among the three seems
to be the one using the SVM estimator with the linear kernel.

SVM: Gaus-
sian kernel

SVM: linear
kernel

Random forest Random case
= luck

Se 0.534 0.593 0.490 0.490
Spe 0.640 0.709 0.687 0.508
PPV 0.391 0.522 0.389 0.300
NPV 0.759 0.801 0.767 0.695

Table 5.2: Results of the sensitivity (Se), speci�city (Spe), positive predicted value (PPV),
and the negative predicted value (NPV) between the di�erent machine learning models for
the balanced LS. The estimators of the models are used with their best parameters found.

The results from Table 5.2 give some general information of the performance of
the models. As previously said, the ROC curve is another tool that can be used.
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Therefore, the ROC curve can also be drawn during the cross-validation. Figure 5.1
illustrates this ROC curve. In this �gure, each color corresponds to a fold. The black
dotted line is the mean of the ROC curve of the 8 di�erent folds. From Fig. 5.1,
the �rst thing that can be noticed is that for the 3 models, there are subjects that
provide good results; and others for which the model is less good and makes wrong
predictions more often. From this �gure, it also seems that the model using the
SVM estimator with the linear kernel seems better as it shifts nearly all the folds
up.

However, results of Fig. 5.1 are for a speci�c cross-validation. Several di�erent cross-
validation have thus been tested in order to see if there were or not lots of variations
in the ROC curves in function of the di�erent subjects placed in the folds. Figure 5.2
represents thus the 3 ROC curves for the 3 models for another cross-validation. From
this Figure, it can still be observed that the di�erent models provide good results
for some subjects and poor results for others. Moreover, if Fig. 5.2 is compared to
Fig. 5.1, it can be observed that there are more pairs of subjects that provide low
results in Fig. 5.2.

Figure 5.1 and Fig. 5.2 show the ROC curves during 2 di�erent cross-validations.
However, it was shown that, even after a cross-validation, there exist variations from
one mean ROC curve to another one due to the fact that it is not the same pair of
subjects that are used for the di�erent folds. Indeed, the subjects must be randomly
shu�ed before creating the di�erent folds for the cross-validation. To avoid this
variability, all the combinations of 2 subjects among the dataset (C2

16 = 120 possible
combinations) must be taken. As this number is not so important in this case, all
these combinations have been computed.

The mean accuracy on all these combinations for the three models is around 60% for
each model. The detail of the sensitivity, speci�city, positive and negative predicted
values is given in Table 5.3.

Estimator Se Spe PPV NPV

SVM: linear 0.536 0.657 0.414 0.769
SVM: Gaussian 0.526 0.643 0.390 0.760
Random forest 0.466 0.671 0.382 0.757

Table 5.3: Results of the sensitivity (Se), speci�city (Spe), positive predicted value (PPV),
and the negative predicted value (NPV) between the di�erent machine learning models on all
the possible combinations. The estimators of the models are used with their best parameters
found.

The mean ROC curve of each model can also be drawn from all these combinations
as one can see in Fig. 5.3. From this �gure, it can be noticed that the 3 models
have more or less the same results on all the combinations of the subjects of the
experiment. However, the model built on the SVM estimator with a linear kernel
is a little bit better than the 2 other models. The best points of each curve are
respectively:

• SVM with Gaussian kernel: Se=0.61, Spe=0.63, for a class probability of 0.46

• Random forest: Se=0.65, Spe=0.63, for a class probability of 0.43

• SVM with linear kernel: Se=0.64, Spe=0.65, for a class probability of 0.49

50



0.0 0.2 0.4 0.6 0.8 1.0

1- specificity

0.0

0.2

0.4

0.6

0.8

1.0
S
e
n
si

ti
v
it

y
Fold 1 (subjects 8 and 10) : area = 0.69

Fold 2 (subjects 34 and 18) : area = 0.62

Fold 3 (subjects 16 and 33) : area = 0.42

Fold 4 (subjects 35 and 26) : area = 0.56

Fold 5 (subjects 17 and 29) : area = 0.42

Fold 6 (subjects 12 and 23) : area = 0.80

Fold 7 (subjects 21 and 27) : area = 0.52

Fold 8 (subjects 31 and 19) : area = 0.81

Luck

Mean ROC (area = 0.60)

(a) SVM: Gaussian kernel
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(b) SVM: linear kernel
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(c) Random forest

Figure 5.1: The three ROC curves obtained during a cross-validation. Each model is used
with all the features and the optimal parameters of the estimators are used. The same
cross-validation is used for the 3 models. The area under the ROC curve is also indicated.
The gray diagonal dotted line corresponds to random predictions.
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(a) SVM: Gaussian kernel
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(b) SVM: linear kernel
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Figure 5.2: The three ROC curves as in Fig. 5.1 during a cross-validation for another set of
folds. Each model is used with all the features and the optimal parameters of the estimators
are used. The same cross-validation is used for the 3 models. The area under the ROC
curve is also indicated. The gray diagonal dotted line corresponds to random predictions.
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Note that these values are a bit di�erent from the ones that would be obtained
by looking at the optimal point of each curve of Fig. 5.3. Indeed, these values are
obtained by computing the mean of the optimum point of each ROC curve obtained
for a possible combination which is di�erent as taking the optimum point of the
mean of the ROC curves of all the combinations, as shown in Fig. 5.3.

0.0 0.2 0.4 0.6 0.8 1.0

1- specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
si

ti
v
it

y

Luck

SVM Gaussian kernel (area = 0.59)

Random forest (area = 0.62)

SVM linear kernel (area = 0.63)

Figure 5.3: Mean ROC curves for the 3 models obtained on all the combinations of the
subjects of the experiment. Each color corresponds to a model using a speci�c estimator.
The area under each ROC curve is also indicated. The gray diagonal dotted line corresponds
to the random predictions called luck in the legend.

5.2 Discussion of the results obtained for the nor-

malized dataset

From the results of Fig. 5.3, one can conclude that for each of the 3 models, the
results obtained are better than for the random case. However, even if these results
are better than the random case, the mean accuracy obtained on all the combinations
of the subjects was equal to roughly 60%. This result is not really large. Therefore,
the use of the ECG to predict if someone is drowsy or not seems to be not precise
enough.

In fact, the main problem is that there exists important variations between the
subjects. This phenomenon is called subject variability. To illustrate this problem,
an inspection of all the features of all the subjects for di�erent KDS scores has been
done. More precisely, each feature of the whole dataset (the 16 subjects for the
3 PVT tests) was taken one by one. Each of the features was then separated in
function of the di�erent KDS scores. Then, for each feature at a given KDS score,
the mean and the standard deviation were computed and plotted for the 16 subjects
grouped together.

Fig. A.1 of the Appendix A shows these 20 plots for all the features as a function of
the KDS score. In this �gure, the mean is represented by the blue dotted line. The
standard deviation is represented by the vertical bar. A vertical bar has a length
equal to two times the standard deviation (one std from each side of the mean). This
vertical bar shows the dispersion of the values of the feature for the same KDS score
between the di�erent subjects. They are therefore also called the error bar. From
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the 20 plots in Fig. A.1, one can directly observe that the error bars are important
for all the features. Therefore, there is an important variability between the subjects
for the same feature at the same KDS score. This variability between subjects is
one of the main issue and di�culty to predict the drowsiness from the ECG.

We tried di�erent techniques in order to compensate this variability between the
subjects:

1. The �rst technique is also based on the z-normalization. During the �rst
300 seconds of the �rst PVT test of each subject, the mean and the standard
deviation of each feature is computed. Then, for each time interval, the feature
is z-normalized using the corresponding mean and standard deviation. This
technique is called z-baseline in this thesis.

2. The second technique removes the mean of each feature. More precisely, the
mean of each feature is computed during the �rst 300 seconds of the �rst test
for each subject. Then, the corresponding mean is simply subtracted from all
the features of the corresponding subject computed for all the others moments.
This technique is called sub-baseline in this thesis.

3. The third technique divides each feature by its variance. To do so, the variance
of each feature is computed during the �rst 300 seconds of the �rst test for
each subject. Then, for each subject, each feature is divided by this variance.
This last technique is called div-var-baseline in this thesis.

These 3 techniques were then used to recompute the di�erent features. To do so,
the 3 models were tested with the same optimal parameters as before on these new
LS. The performance measures of each model were therefore computed on all the
combinations of 2 subjects used in the TS and 14 in the LS. Table 5.4 presents the
results. In this table, the default class probability threshold is used (0.5). The last
block of Table 5.4, called no-compensation, corresponds to the previous case where
no variability compensation method between the subjects was used. From this Table,
it can be seen that none of the variability compensation method between subjects
improves the results. Therefore, the �rst case with no compensation method was
kept as the best one even if it was not able to remove this variability between the
subjects.

5.3 Feature selection

In Chapter 3, the 20 features used in this thesis were explained. However, it is
possible that some features are less signi�cant than others to determine if a person
is awake or drowsy. For instance, it has been decided to incorporate features from
the respiratory domain by using the EDR method. However, few studies have used
this signal to detect drowsiness. Therefore, some features computed in Chapter 3
may be useless. Some estimators like the random forest are quite robust to the
presence of irrelevant features. However, it is better to try to �nd the best subset
of features that can be used for our applications for three reasons:

• The �rst reason is that if some features are not relevant, there is no need to
compute them, so this saves computing resources during the computation of
the features.
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Estimator Se Spe PPV NPV

z-baseline

SVM: linear 0.408 0.585 0.282 0.690
SVM: Gaussian 0.412 0.623 0.312 0.706
Random Forest 0.303 0.658 0.260 0.682

sub-baseline

SVM: linear 0.497 0.693 0.391 0.746
SVM: Gaussian 0.453 0.676 0.385 0.734
Random Forest 0.461 0.651 0.377 0.731

div-var-baseline

SVM: linear 0.297 0.693 0.225 0.685
SVM: Gaussian 0.419 0.623 0.244 0.705
Random Forest 0.249 0.840 0.301 0.736

no compensation

SVM: linear 0.536 0.657 0.414 0.769
SVM: Gaussian 0.526 0.643 0.390 0.760
Random Forest 0.466 0.671 0.382 0.757

Table 5.4: Comparison of the Sensitivity (Se), Speci�city (Spe), Positive Predicted Value
(PPV) and the Negative Predicted Value (NPV) for four cases. The three �rst cases (z-
baseline, sub-baseline, and div-var-baseline) attempts to remove the variability between the
subjects. The fourth case (no compensation) is the case with no variability compensation
method.

• The second reason is that by incorporating irrelevant features, the number of
features in the model increases as its complexity and computing time.

• Finally, the third reason is that these irrelevant features can be seen as noise
incorporated in the model.

The model on which this feature selection is done is the one using SVM with the
linear kernel which is the best one of Fig. 5.3.

5.3.1 Use of the coe�cient of correlation to select the features

A �rst simple approach to �nd a good subset of features is to use of the coe�cient
of correlation. The same procedure as the one used to obtain Fig. A.1 of Appendix
A was performed. When each feature for all the subjects was obtained, its linear
coe�cient of correlation as a function of the KDS score was computed. Then, only
the features with an absolute coe�cient of correlation above 0.25 were kept. Five
features were found out of 20. These features are: SDNN, SD1, SD2, LF_power,
mean_BB. Then, a comparison of the results obtained by using the SVM estimator
with the linear kernel on all the features or only the 5 best ones was performed.
These results, obtained on a cross-validation, are presented in Table 5.5. Note that
only the SVM model with the linear kernel was used as it was the one with the best
results among the 3 tested models (Fig. 5.3). Table 5.5 shows that the linear SVM
model increases its sensitivity to the price of a reduction of the speci�city when only
the 5 features with a good coe�cient of correlation are used compared to the case
where all the features are used.
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Se Spe PPV NPV Accuracy

All features 0.471 0.681 0.407 0.758 0.652

5 best features 0.571 0.618 0.385 0.772 0.642
Table 5.5: Comparison of the performance measures obtained for the model using the SVM
estimator with the linear kernel. In the �rst line all the features are used. In the second line
only the 5 features found with an absolute coe�cient of correlation above 0.25 are used.
The performance measures are: the sensitivity (Se), speci�city (Spe), positive predicted
value (PPV) and the negative predicted value (NPV).

5.3.2 The use of the random forest to rank the features

To select the features, a second approach can be to use the random forest. Indeed,
this forest is composed of several trees. Each tree consists of a series of nodes at
which the data set is separated in 2 parts. The tree searches at each node the feature
that maximizes the class separation. Therefore, features used at the top of the tree
are more important than features used at the bottom as they maximize the class
separation in a more general case. Based on that principle, a ranking of the features
can be obtained. In the random forest, the ranking of the di�erent features among
the trees of the forest will be averaged in order to have this global ranking according
to the forest. It therefore decreases the variance compared with the use of a single
tree [48]. Here, the exact model used for the feature selection is the extra trees.
This model is based on the same principle as the forest. The main di�erence is that
instead of searching the best threshold value for each feature (of the subset used at
the node to make the split), the extra trees estimator randomly chooses a threshold
for each feature. Then, the feature with the best randomly chosen threshold is kept.
This property has the consequence of reducing the variance from one set to another
one. But it increases the bias a little bit (the precision of the model compared to
the optimal one) [48].

To perform this ranking, again a eight folds cross-validation is used. The result over
the eight folds is averaged in order to have the global ranking on the cross-validation.
Figure 5.4 shows the ranking obtained. From this �gure, one can notice that the
standard deviation of the variability of the features in the tree is important.

Based on this ranking, di�erent subset of features have been tried on the same cross-
validation. The improvement on the ROC curve is shown in Fig. 5.5. In this �gure,
one can observe that the best subset of features found is the one in green. The
features in this subset are: SDNN, SD2, SD1, mean_BB, RMSSD, LF_power, and
di�_BB. This subset consists in fact of the 9 best features of Fig. 5.4 except the
mean_HR and the mean_RR. The di�erence when these 2 last features are added
to the 7 best ones is shown in red in Fig. 5.4. It can be seen that these 2 features
tend to decrease the performance of the model, whereas they are respectively at
the �rst and at the fourth position of the ranking of Fig. 5.4. The real reason of
this consequence has not been found. However, it is suspected that these 2 features
di�er a lot between the subjects. So, even if they can be useful for the LS, in the
TS the subjects have not the same values for these features. Therefore, it triggers
miss classi�cation at the end.

With the optimal subset found, all the combinations of 2 subjects among the 16
have been tested. The optimal point obtained has a sensitivity of 0.67, a speci�city
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of 0.69 for a class probability of 0.51.

Another important remark is that the 5 features with a coe�cient of correlation
higher than 0.25 are also found in the �nal subset of the best features.
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5.4 Discussion of the features computed

In Chapter 2, the in�uence of the parasympathetic and sympathetic nervous system
on the heart was explained. These two systems act respectively in the high and
low frequency parts of the spectrum of the ECG signal. The ratio of the power
in the low frequency spectrum over the one in the high frequency part is thus a
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re�ection of the symptovagal balance. However, due to the important variability
of the features between the subjects (Fig. A.1), it is di�cult to draw a general
tendency. Moreover, as previously said in chapter 2, di�erent studies do not �nd
the same results. Mahachandra et al. found that this ratio increases when drowsiness
occurs [28]. On the other hand, in a study of Sahayadhas et al [32], a decrease of
this ratio was observed when subjects were very drowsy. Here, if one just look at
the mean of this ratio (Fig. A.1), it can be observed that it tends to increase as
drowsiness occurs in concordance to Mahachandra et al.

We also made the choice of adding features computed from the respiratory domain
in this thesis However, in the literature, there are few studies that try to use the
features from this respiratory domain to assess the drowsiness. It was previously
shown than 2 features in this domain are present in the 7 subset of the best features.

However, there exist others methods that enables the selection of the features. A
famous one is the recursive feature elimination with cross validation [48]. This
technique automatically �nds the set of optimal features by using a cross-validation.
More precisely, if the estimator gives weights to its features, it will be trained on
the LS with the whole set of features. Then, features with the smallest weights are
removed. This procedure is stopped when the accuracy of the model built becomes
to decrease (meaning that we reach the important features). Unfortunately, this
technique was not implemented in this thesis and is let as a possible improvement.

5.5 Discussion about the sleep deprivation of the

subjects

The variability of the features between the di�erent subjects was already high-
lighted before. However, there is also an important variability of the drowsy pro�les.
Fig. B.1 of Appendix. B shows the number of windows of 120 seconds in which a
given subject gets a given KDS score. From this Figure, one can observe that there
are important variations in the way the subjects resisted to sleep deprivation. For
instance, there are subjects like subject 19 that only gets a KDS score of 4 (the ref-
erence threshold to say that the subject is drowsy) only �ve times. To the contrary,
there are subjects like subject number 18 that gets very often drowsy episodes.

5.6 Conclusion of the results

From this work, the results obtained tend to conclude that the ECG is not precise
enough to detect the drowsiness. Three machine learning models have been tested.
From the results presented in the present chapter, it is visible that the models
developed learn some information from the features computed. Moreover, when all
the di�erent combinations are taken, the results are encouraging. However, it was
shown that there were subjects for which the model correctly matches, and others
for which the model was not able to predict correctly drowsy events. Therefore, the
model developed is not robust enough to work on all subjects. Finally, the results
obtained in this work are lower than the ones presented in the state of the art of
this thesis. There are several possible reasons that explain this:
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• First of all, the protocol of the experiment. Indeed, during the experiment,
the subjects only performed 3 PVT tests of 10 minutes each. It gives 30 min
of ECG signal per subject in this study whereas the studies in the literature
generally use ECG recordings of several hours.

• Also, the acquisition of the data was not optimized for the ECG during the
experiment. Indeed, the ECG were recorded only by two electrodes on the
chest of the subjects. Moreover, experimenters admitted that, for some male
subjects, it was di�cult to correctly place the electrodes due to hairs on the
chest.

• Another constraint of this work is the small size of the dataset. Indeed, only
16 subjects were �nally available for the creation and the assessment of the
model. Moreover, some subjects were considered only at the limit of drowsiness
during few events during the protocol (Fig. B.1 of Appendix B). This issue
was highlighted by the need of balancing the dataset in order to have the same
number of drowsy and awake events in it (at the price of a reduction of 30%
of its size). Therefore, it would be better to restart a new experiment with
more subjects and in which the sleep deprivation lasts longer in order to get
more subjects with events of larger KDS scores. Moreover, if more subjects
are present and the dataset increases its size a lot, it would be possible to
cut the dataset in 3 parts (50% for the LS, 25% for the TS and 25% for the
validation set (VS)). The di�erent models tested would be trained on the LS
and assessed on the VS. Then, the best one would be tuned on the LS+VS and
the performance would be estimated based on the TS. As the TS would not be
used for the choice of the model or its parameters, the estimated performance
would be closer to the one obtained when totally new subjects are tested.

• In this work, features of the respiratory domain were extracted. The respi-
ratory signal was not directly available from the experiment. Therefore, this
signal was derived from the ECG. However, if we really want to validate with
more accuracy the use of the the features derived from the respiratory domain,
it would be better to use a speci�c device that monitors this signal, like the
pneumograph.

• Finally, the main problem encountered during the model evaluation was the
important variability between the subjects. Di�erent techniques were tried in
order to compensate these variations but they did not improve the results.

Therefore, the conclusion from the present chapter is that the ECG is not suited to
detect the drowsiness on its own. This technique should instead be added to others
techniques (like the EOG or the EEG) in order to improve their accuracy. However,
this conclusion should be validated with another experiment with more subjects and
with higher sleep deprivations times.
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Chapter 6

Conclusion

The aim of this work was to develop a system that automatically predicts drowsiness
based on the ECG signal. Moreover, as the detection of drowsiness is a recent topic,
its feasibility to detect drowsiness has not been totally proved among the scienti�c
community. Therefore, another goal of this study was to test the system developed
on a study performed 2 years ago at the University of Liège.

In this thesis, we performed a review of the literature in order to determine the
di�erent features indicative of drowsiness that can be computed from the ECG.
This review highlighted the apparition of di�erent domains in which these features
can be computed.

Rapidly, we noticed that the detection of the R peaks in the ECG was the �rst step
to do in order to obtain the di�erent features. Therefore, the �rst part of this thesis
consisted in the �ltering of the ECG and in the development of an algorithm to
automatically detect these peaks based on [1]. Once these peaks were found, the
di�erent features in the time and statistical domains, the non-linear domain, and
�nally in the frequency domain were computed. As one can derive the respiratory
signal from the ECG (ECG-Derived Respiration signal), this thesis also incorporates
parameters from the respiratory domain in order to see if this domain can be use to
detect drowsiness.

Once these features were computed, three di�erent machine learning models in bi-
nary classi�cation were tested. The binary classes were awake or drowsy. The
predictions of the model were compared to the true states of the subjects obtained
from the KDS (Karolinska Drowsiness scale) score. Based on this score, a threshold
was put to decide if the true state of the subject at a given time was drowsy or not
[12]. The best model among the three tested was the one using the SVM classi�er
with a linear kernel.

The results of this thesis show that the ECG is not precise enough to predict drowsi-
ness. In fact, the main problem found during this thesis was the important variability
between the di�erent subjects. Three techniques were tested in order to compensate
this variability. However, none of these techniques manages to improve the results.
Due to this important variability between the subjects, the features computed di�er
a lot from one subject to another, as the precision at the output of the model. This
is why the developed model is not su�cient to only detect the drowsiness on its own
based on the ECG.
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However, this conclusion is based on the results obtained from one experiment.
Other work on this very interesting domain must be continued in order to keep
developing an automatic drowsiness monitoring system and assess its reliability.
There are lots of perspectives for future work on this subject. The main ones are
the followings:

• In the frequency domain, the Lomb method has been used to derive the PSD
of the tachogram. This technique was shown to be more bene�cial with re-
spect to the Fourier transform. However, the auto-regressive method could be
investigated in order to compute the PSD.

• One of the main obstacle of the reliability of the ECG to predict drowsiness
was the important variability between the subjects. The 3 techniques used in
order to attenuate this variability did not perform in this thesis. Therefore, a
research of possible other variability compensation techniques or other features
(for instance male/female) could be continued in order to try to compensate
this variability.

• Also, another protocol of experiment could be developed. This protocol would
have a higher number of subjects. Moreover, the ECG signal would be col-
lected continuously during the experiment instead of at speci�c time intervals.
Finally, subjects with higher sleep deprivation could be taken.

• During this thesis, the binary classi�cation was chosen as the approach for the
machine learning model. The regression approach could also be tested instead
of the binary classi�cation.

• One could also test new kind of estimators (linear discriminant analysis, boost-
ing methods,...) when building the machine learning model.

• Also, the ECG could be combined to the EEG or EOG to see if it is possible to
enhance the reliability of the predictions of these 2 signals to detect drowsiness
when the ECG is added.

There are thus lots of possible perspectives for future work.
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Appendix A

Features as function of the KDS
score
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Figure A.1: Plots of the mean and the standard deviation of each feature of interest for all
the subjects of the experiment as a function of the KDS score. The mean is the blue dotted
curve. For each value, the standard deviation (std) is represented by the vertical bar. Each
vertical bar has a length of two std. This vertical bar gives information about the error on
that value of the feature. A long vertical bar means that there are big variations of that
feature for the same KDS score between the subjects. One can �nd the full name of the
acronyms used inTables 3.1, 3.2, 3.3, and 3.4 of Chapter 3.
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Appendix B

Distribution of the KDS score per
subject
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Figure B.1: Distribution of the KDS scores as a function of the subjects of the experiment.
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