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Abstract

The preliminary aircraft design is often performed based on low-fidelity aerodynamic
models facilitating the evaluation of best-suited aircraft configurations thanks to low com-
putational costs and reasonable accuracy at this early design stage. The Full Potential
equation, based on the inviscid and isentropic assumptions, has demonstrated its ability
to meet those requirements. However, the mathematical nature of this partial differential
equation highlights that when the flow switches from subsonic to supersonic, it converts
from elliptic to hyperbolic. This flow physics change needs to be reflected in the numerical
implementation. DARTFlo, a full-potential solver, is implemented based on a physics-
dependent solution experiencing mesh-dependency. Thenceforward, the present thesis aims
at characterising the mesh-dependency of this physics-dependent solution and to propose
alternatives to withdraw it.

The current physics-dependent implementation is studied through a mesh convergence
analysis in three different test cases to characterise the mesh-dependency. The analysis
relies on two comparison axes, the first is a study of global flow parameters and the second
treats the problem from a local point of view. The three test cases are constructed to
study the behaviour of each solution in different situations. The original DARTFlo
implementation illustrates its mesh-dependency by local flow parameters which do not
converge with respect to the mesh refinement as well as by instabilities appearing in the
supersonic zones when the mesh is highly refined.

In parallel, three alternatives are derived and compared with the original implemen-
tation to assess their improvements in removing the mesh-dependency problem. The first
alternative demonstrates improved mesh convergence and enables to partially remove the
results mesh-dependency according to the case studied. However, the two others do not
reveal to act on the mesh-dependency of the physics-dependent solutions.

- ii -



Contents

Acknowledgment i

Abstract ii

Contents iii

1 Introduction 1

2 Theoretical background 5

2.1 Aerodynamic levels of fidelity . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Full potential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Physics-dependent solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 DARTFlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Finite element formulation . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Supersonic regions treatment . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Finite element discretisation . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Stabilisation solutions 21

3.1 Fixed length correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Sonic density bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Switching function reformulation . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results 26

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1 Mesh convergence process . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Reference solution computation . . . . . . . . . . . . . . . . . . . . 28

- iii -



CONTENTS

4.2 Weak shock test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Fixed length selection . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Strong shock test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Fixed length selection . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Three-dimensional test case . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Fixed length selection . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.4 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion 73

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Suggestions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Fixed length selection process . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Upwind density computation . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Density gradient computation . . . . . . . . . . . . . . . . . . . . . 77
5.2.4 Unsteady computations . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography I

Appendices V

Appendix A One-dimensional shock code VI

A.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

Appendix B Test cases shock strength validation VIII

- iv -



CONTENTS

B.1 Weak shock test case validation . . . . . . . . . . . . . . . . . . . . . . . . VIII
B.2 Strong shock test case validation . . . . . . . . . . . . . . . . . . . . . . . VIII
B.3 Three-dimensional test case validation . . . . . . . . . . . . . . . . . . . . IX

Appendix C Additional reference solution computations X

C.1 Three-dimensional reference solution . . . . . . . . . . . . . . . . . . . . . X

- v -



1Introduction

The aviation sector has been constantly growing for decades. The main reasons linked
to the constant development of the air traffic are the general population and economic
growth as well as the globalisation of world trade. Estimations have shown that the world
population will reach 9.7 billions people by 2050 [1]. Moreover, according to S&P Global
[2], the population’s purchasing power is also bound to increase given that 2 people out of 3
will be associated to the middle class. This increase in purchasing power has a direct impact
on the percentage of the population travelling by plane as much as the democratisation of
air transport over the years. Finally, the globalisation of trade plays an undeniable role in
the increase in cargo flights given the internationality of companies and their activities.

The International Air Transport Association (IATA) predicts the international air pas-
senger traffic to almost double during the next 20 years [3]. In 2016, the total number of
annual passengers reached 3.8 billions and is expected to enlarge to 7.2 billions in 2035, an
increase of approximately 90% over 19 years. Additionally, Boeing predicts a 4% growth
in air cargo per year from 2021 to 2040 [4].

Given these forecasts and within the climate debate, global and aviation authorities
are voting policies to reduce the environmental impact of air traffic in future years. This
impact is the result of various factors. The main one is the combustion of fuel in the
aircraft’s engines, which releases carbon dioxide CO2 and nitrogen oxides NOx into the
atmosphere. Other factors also play an important role, such as the noise produced by the
engines. According to David S. Lee et al. [5], in 2018, the share of CO2 emissions due to
aviation in total emissions is more or less 2.5%. Clean Aviation, with the aim of carbon
neutrality within 2050 for the aviation sector, established different aircraft category targets
in their "Strategic Research and Innovation Agenda" [6]. For example, for short-medium
range commercial aircraft within 2035, they wish to reach a 50% fuel burn reduction, 86%
emissions reduction compared to technologies available in 2020. In addition, the European
Commission published its vision of the aviation within 2050 in an objective report named,
"Flightpath 2050: Europe’s vision for aviation" [7]. In this official report, the High-Level
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Group on Aviation Research plans that the technologies and procedures available in 2050
would allow a 75% reduction in CO2 emissions per passenger per kilometre to support the
Air Transport Action Group (ATAG) target and a 90% reduction in NOx emissions. In
addition, the noise level should be reduced by 65%. These reductions are computed relative
to the capabilities available in 2000. Another example to illustrate the involvement of
aviation companies in the climate debate is the "ZEROe programme" developed by Airbus
[8]. They have the ambition to develop the first zero-emission commercial aircraft by 2035.
In summary, the involvement of the various aviation stakeholders in the environmental
cause is growing.

Based on forecasts predicting the increased development of the aviation sector in the
coming years, another essential aspect to be taken into account in the future of this sector
is the aircraft fuel consumption. If the air transport sector wants to remain economically
profitable, the aircraft fuel consumption has to be reduced as much as possible. Fuel is the
most important aircraft operating cost for an airline [9, 10]. For example, Airbus predicted,
in 2003 that fuel represented about 28% of total operating cost for a typical A320 family
operator [11]. But in the near future, it could be more than 45% of all operating costs
of an aircraft. Estimations have illustrated that every 500 grams of an aircraft’s weight
including crew, passengers, baggage and the aircraft itself, represents more or less 10.000$
in annual airline fuel costs. Moreover, given the daily evolution of the fuel price, the
aviation industry is highly dependent on the fuel trade. This dependence has a direct
impact on flight prices, since if the fuel price is high, the airline’s operating costs increase
accordingly. This increase also results in a slight reduction in the demand for air travel and
air cargo. Therefore, the aircraft fuel consumption reduction is at the centre of concerns
in the future aircraft design.

Reducing the environmental impact of aviation sector and aircraft fuel consumption
can be achieved using various approaches such as improving the engine and fuel efficiency,
the structural weight, the aircraft aerodynamic performance, air and ground traffic or using
new types of fuel. Efficient modeling tools must be developed to enable the developments
of these new technologies. This is especially the case for the preliminary design stage,
where the primary objective is to identify best suited aircraft configurations to accomplish
a given transport mission at an economic optimum while meeting prescribed requirements.
Improving the aircraft preliminary design is of paramount importance in the era of transi-
tion in which aviation is currently in. A multitude of new technologies needs to be rapidly
tested to confirm or deny their relevance and feasibility. With powerful, fast and as ac-
curate as possible modelling tools, this evaluation is facilitated, faster and cheaper. In
other words, developing better modelling tools for the preliminary aircraft design means
improving the results accuracy while keeping the lowest computational time as possible
which, in turns, allows to make better design choices. Thenceforth, more efficient final
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aircraft designs can be achieved based on better physics modelling inducing better design
choices in early design stages.

Aerodynamic modelling is one of the key concepts in aircraft design. Always in search
of the best trade-off between results accuracy and computational cost in the aerodynamic
models, different categories can be defined based on their level of fidelity, i.e. their level of
approximation with respect to the physics that they represent. The highest level of fidelity
is the solution of the Navier-Stokes equations, also called Direct Numerical Simulations
(DNS) whereby, the equations are solved without any turbulence model. In other words,
all the flow time and length scales are computed. This implies very fine meshes to capture
all these scales and thus, extremely expensive computations. Instead of resolving the
smallest flow length scales, which are the most computationally expensive, they can be
cut off through a low-pass filter and computed by turbulence models. Therefore, coarser
mesh grids can be used which drastically reduces the computational time. This is called
Large-Eddy Simulations (LES), only the largest turbulent length scales are solved while the
smallest are computed thanks to models. However, DNS and LES computations remain
highly expensive. Consequently, they are not preferred during early stages of aircraft
design even if they accurately capture flow physics and turbulence. Therefore, the highest
level of fidelity used in the preliminary aircraft design is the Reynolds-Averaged Navier-
Stokes (RANS) equations derived from the Navier-Stokes equations using the Reynolds
decomposition and by time-averaging. In this aerodynamic model, all the turbulent length
scales are modelled using turbulent models which highly lowers the computational time.

Several hypotheses can be made to simplify the Reynolds-Averaged Navier-Stokes equa-
tions and further reduce the computational time. The first assumption is to neglect the
viscosity of the fluid and to resort to the Euler equations. This assumption is valid, ex-
cept in the boundary layer, where viscous effects are dominant and drive the flow. In
addition, viscous-inviscid interaction method can be implemented to counter-balance the
inviscid assumption since this process is much less computationally expensive than taking
into account fluid viscosity. Furthermore, if the flow is considered isentropic, it becomes
irrotational and the Euler equations reduce to the Full potential equation.

Nowadays, most of the commercial airliners fly in a transonic regime which implies
supersonic regions in the flow and possible shocks. However, the isentropicity hypothesis
constraints the Full potential equation to be strictly valid for flows without embedded
shocks. Nevertheless, it has been demonstrated that if the entropy change across the
shock remains relatively small, flows with weak shocks can be modelled based on potential
assumptions. This level of fidelity has been highlighted as providing reliable results for
short computational time [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. This is
the reason why this level of fidelity is relevant for preliminary aircraft design.

- 3 -



Solving the Full potential equation in a transonic flow poses a major challenge. When
the flow switches from subsonic to supersonic regime, the flow physics changes which is
transcribed in the mathematical nature of this partial differential equation. Henceforth, it
has to be solved differently in the implementation.

This research work focuses on DARTFlo, an unstructured finite element, full potential
solver for steady transonic aerodynamic and aeroelastic modelling during preliminary air-
craft design, mostly developed by Crovato [27] at the University of Liège. More specifically,
on the physics-dependent implementation currently implemented in DARTFlo, which is
based on density upwinding. However, this solution experiences mesh-dependency which
alters mesh generation and mesh convergence analysis process.

The thesis is the continuation of the Crovato’s work [27]. The main objective of this
research work is to improve the stabilisation process by withdrawing mesh-dependency.
To this end, two phases are set up. The first one is the characterisation of the den-
sity upwinding mesh-dependency through a mesh convergence analysis using the current
DARTFlo implementation in different test cases. These tests cases will also be compared
to a reference solution obtained by a state-of-the-art solver. The second one is to inves-
tigate, develop and implement corrections to the physics-dependent solution implemented
in DARTFlo. Afterwards, the corrections are tested on the same test cases defined for
the mesh-dependency characterisation phase in order to assess the improvements.

The master thesis is organised as follows. In Chapter 2, the developments and the
hypotheses to derive the Full potential equation from the highest level of fidelity considered
at the preliminary stage of an aircraft design are recalled. Afterwards, its mathematical
nature is studied to bring into light one of the main challenges of solving transonic flows
based on the Full potential equation. Then, a literature review about how this challenge
has been addressed is detailed. To finish, the implementation of DartFlo is outlined to
illustrate how the code has been built.

Chapter 3 presents the new solutions to take into account the change in physics of
the Full potential equation depending on the flow. They are mathematically detailed and
justified. In addition, the finite element formulation is updated taking into account the
changes.

From then on, the different implementations are compared in Chapter 4 in order to
validate their improvements compared to the current DartFlo implementation. First,
the analysis methodology and the different test cases are explained. Afterwards, each new
solution implementation is compared to the current DartFlo implementation and the
reference solution based on several parameters. As a conclusion, the results are discussed.

Chapter 5 summarises the work and draws conclusions from the results. In addition,
it presents suggestion for future works.
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2Theoretical background

Throughout this chapter, the theoretical concepts relevant for an optimal research un-
derstanding are detailed. First, the Full potential equation is re-derived starting from the
highest level of fidelity considered during the preliminary aircraft design stage. Then, the
mathematical properties of this partial differential equation are studied to illustrate the
main challenge in solving transonic flows based on this level of fidelity. Finally, a de-
tailed review about how transonic flows are solved based on the Full potential equation is
performed.

2.1 Aerodynamic levels of fidelity

The highest level of fidelity considered during the preliminary stage of an aircraft design
is the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations expressed as follows,

∂ρ

∂t
+∇ · (ρu) = 0, (2.1.1)

∂ρu

∂t
+∇ · (ρu⊗ u+ pI)−∇ · τ = 0, (2.1.2)

∂ρe

∂t
+∇ · (ρeu+ pu)−∇ · (τ · u+ µ?cp∇T ) = 0, (2.1.3)

where, ρ is the fluid density, u the velocity vector, e the specific energy, p the pressure,
cp the specific heat capacity at constant temperature and T the temperature. The stress
tensor τ is defined for a Newtonian fluid as given by the following relation.

τ = µ

(
∇u+∇uT − 2

3
I∇ · u

)
, (2.1.4)

where, µ and µ∗ are the total viscosity derived from a combination of the dynamic quantities
denoted by the subscript d in Eq. 2.1.5, property of the fluid and turbulent quantities
computed based on the Spalart-Allmaras’s model [28] depicted by the subscript t,

µ = µd + µt,

µ? =
µd

Prd
+

µt

Prt

, (2.1.5)
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2.1. AERODYNAMIC LEVELS OF FIDELITY

with Pr is the Prandtl number defined as the ratio of momentum diffusivity to thermal
diffusivity.

In the context of aeronautical flows during preliminary aircraft design, a first approxi-
mation that can be introduced into the aerodynamic model is the non-viscosity of the fluid
expressed by, {

τ = 0,

µ = µ∗ = 0.
(2.1.6)

Neglecting viscous effects is acceptable anywhere in a flow except in the boundary layer
developing in the immediate vicinity of an immersed body. In this thin shear layer, they
drive most of the flow physics. However, since it only represents a small fraction of the
flow field, the inviscid assumption is relevant in early aircraft design stages.

Therefore, it enables to derive the Euler equations cast as follows,

∂ρ

∂t
+∇ · (ρu) = 0, (2.1.7)

∂ρu

∂t
+∇ · (ρu⊗ u+ pI), (2.1.8)

∂ρe

∂t
+∇ · (ρeu+ pu) = 0. (2.1.9)

In addition, if the flow is assumed to be steady and isentropic, the irrotationality condition
ensues, which implies that the velocity u derives from a potential φ such that,

u = ∇φ. (2.1.10)

Introducing Eq. 2.1.10 in the Euler mass conservation equation (Eq. 2.1.7) taking into
account all the assumptions established so far, the conservative form of the Full potential
equation (FPE) can be derived,

∇ · (ρ∇φ) = 0, (2.1.11)

where, the density ρ can be obtained based on the isentropic flow relations resulting in the
following expression,

ρ = ρ∞

[
1 +

γ − 1

2
M2

∞
(
1− |∇φ|2

)] 1
γ−1

, (2.1.12)

where, ρ∞ is the freestream density, γ the heat capacity ratio and M∞ freestream Mach
number.

The effect of these levels of fidelity have been compared by several authors [12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. The conclusion drawn from these analyses
deduces that using the Full potential equation as the aerodynamic model for preliminary
aircraft design is justified since reliable results can be obtained for small computational
costs. As a result, the Full potential equation is studied in detail in the following section.
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2.2. FULL POTENTIAL EQUATION

2.2 Full potential equation

The Full potential equation can be written in different forms, the conservative form has
been obtained by assuming a steady inviscid, isentropic and thus, irrotational flow starting
from the RANS equations as derived in Sec. 2.1.

∇ · (ρ∇φ) = 0, (2.2.1)

with, ρ is the fluid density and φ the potential.

By definition, the Full potential equation is strictly valid for flows without shocks due
to the isentropicity condition. However, its use can be extended to model transonic flows
containing weak shocks provided that the associated entropy production remains relatively
small. The entropy produced by a shock wave depends on the normal Mach number, Mn

in front of the shock such that the entropy change can be cast as,

∆SE = O
(
M2

n − 1
)3
. (2.2.2)

Based on the work of Steger and Baldwin [29], the agreement between the inviscid solution
and the experiments can be verified for a normal Mach number just before the shock
Mn ≤ 1.3 − 1.35. This constitutes an upper limit for the normal Mach number to ensure
the validity of the results provided by the Full potential equation in transonic flows.

The non-conservative form of the Full potential equation can be derived by first entirely
developing Eq. 2.2.1.

∇ · (ρ∇φ) = ρxφx + ρφxx + ρyφy + ρφyy + ρzφz + ρφzz = 0. (2.2.3)

The expression of the density spatial derivatives can be obtained from the density isentropic
relation Eq. 2.1.12, the speed of sound definition a =

√
γRT with R, ideal gas constant

and T , the temperature as well as the isentropic density-pressure relation expressed as,

p

ργ
=
γ + 1

2γ
. (2.2.4)

From then on, the Full potential equation can be transformed into its non-conservative
form,(
a2 − u2

)
φxx +

(
a2 − v2

)
φyy +

(
a2 − w2

)
φzz − 2uvφxy − 2uwφxz − 2vwφyz = 0, (2.2.5)

with, a is the speed of sound and (u, v, w) are the local velocity components.

A simplified version of the equation can further be derived assuming that lifting bodies
induce small disturbances compared to the mean flow such that the total potential φ can
be decomposed into a freestream potential φ∞ and a disturbance potential ϕ = φ − φ∞.
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2.2. FULL POTENTIAL EQUATION

It implies that the the flow is aligned with a particular coordinate direction, usually x-
direction by formalism.

The steady Transonic Small Disturbance equation (TSD) is thus, derived by substitut-
ing these small-disturbance velocity components into the non-conservative form of the Full
potential equation Eq. 2.2.5 and neglecting small terms with respect to the mean flow,[

1−M2
∞ −M2

∞(γ + 1)
ϕx

u∞

]
ϕxx + ϕyy + ϕzz = 0, (2.2.6)

where, ϕ is the small-disturbance potential and M∞ the freestream Mach number, u∞
freestream velocity and γ the heat capacity ratio.

This simplified version of the Full potential equation will only be used to illustrate
the first major advances that have been made to solve transonic flows based on potential
assumptions.

Two major challenges arise when solving transonic flows based on the potential as-
sumptions. The first one is about the irrotionality assumption which induces that no
aerodynamic loads can be produced. Therefore, an additional condition has to be enforced
in order to meet the physical observations, named the Kutta condition. Since it is not the
topic of this work, just the details of its implementation will be discussed.

On the other hand, the second challenge is the main concern of this research work.
The difficulty in solving transonic flows based on the Full potential equation is the change
in flow physics between sub- and supersonic regimes inducing a change in the equation’s
mathematical nature. Thus, a change in the numerical method to solve the problem
is required. To illustrate this physical change, the mathematical properties of the Full
potential equation can be developed.

The motivation behind studying the mathematical properties of a partial differential
equation is first to acquire insight into the physics that it describes. Secondly, it helps to
correctly develop the numerical solutions for the implementation in relation to the physics.

Starting from Eq. 2.2.5, assuming a two-dimensional case to be able to study the
mathematical nature of this partial differential equation analytically, the non-conservative
form of the Full potential equation Eq. 2.2.5 becomes,(

a2 − u2
)
φxx − 2uvφxy +

(
a2 − v2

)
φyy = 0, (2.2.7)

where, a is the speed of sound, (u, v) are the local velocity components and φ the potential.
Eq. 2.2.7 is a second-order two-dimensional partial differential equation. Using Eq. 2.1.10,
defining the velocity u = (u, v) deriving from a potential φ, it can be deduced that,

u =
∂φ

∂x
, (2.2.8)

v =
∂φ

∂y
, (2.2.9)
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2.2. FULL POTENTIAL EQUATION

the non-conservative form of the Full potential can be reexpressed as a first-order partial
differential equation, (

a2 − u2
) ∂u
∂x
− 2uv

∂v

∂x
+
(
a2 − v2

) ∂v
∂y

= 0. (2.2.10)

If Eq. 2.2.8 and 2.2.9 are mixed, the following system of first-order partial differential
equations can be built, (

a2 − u2
) ∂u
∂x
− 2uv

∂v

∂x
+
(
a2 − v2

) ∂v
∂y

= 0, (2.2.11)

∂v

∂x
− ∂u

∂y
= 0. (2.2.12)

From this system, the characteristic equations can be obtained,([
a2 − u2 −2uv

0 −1

]
nx +

[
0 a2 − v2
1 0

]
ny

)
︸ ︷︷ ︸

Aknk

[
u
v

]
= 0, (2.2.13)

where, nx and ny are the characteristics in respectively x− and y−directions and Ak the
matrix corresponding to the characteristic along the k−direction.

A non-trivial solution of the characteristic equations such that U = [u v] 6= 0 is,

det|Aknk| = 0. (2.2.14)

The mathematical properties of the Full potential equation directly depend on the nature
of the characteristics. If λ = nx

ny
is posed, the characteristics can be determined by solving

the following equation with respect to λ,

(a2 − u2)λ2 − 2uvλ+ (a2 − v2) = 0. (2.2.15)

Henceforth, the two characteristics are given by,

λ1,2 =
2uv ±

√
4u2v2 − 4(a2 − u2)(a2 − v2)

2(a2 − u2)
. (2.2.16)

From Eq. 2.2.16, the nature of the characteristics can be deduced from the sign of the
square root. Knowing that the Mach number is defined by M = V

a
with |u| is the local

velocity magnitude and a the speed of sound.

• if M < 1, all n characteristics are complex which implies that the Full potential
equation is hyperbolic,

• if M = 1, less than n real characteristics which implies that the Full potential equation
is parabolic,

• if M > 1, all n characteristics are real which implies that the Full potential equation
is elliptic,
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Therefore, the equation switches from elliptic to hyperbolic when the flow becomes
supersonic which transcribes a change in the flow physics. An elliptic partial differential
equation represents an information transport mainly driven by diffusion phenomena such
that the information propagates in every direction. Whereas, a hyperbolic partial differen-
tial equation describes an information propagation dominated by convection phenomena
and thus, transmitted along one specific direction.

This change in the mathematical nature of the Full potential equation is one of the main
challenges for transonic predictions. It has to be reflected in the numerical implementation
to obtain a physics-dependent differentiation and thus, has to use suitable and stable
discretization schemes for the different types of the equation.

In the next section, the different physics-dependent solutions which have been developed
since the beginning of the Full potential age are reviewed in order to have a clear overview
on what has been done and how they work.

2.3 Physics-dependent solutions

This section outlines the main advances over the years regarding, how physics change is
handled numerically and thus, nonlinear potential methods based on the literature review
of Holst [20] and Crovato [27].

First breakthroughs to solve transonic flows with Full potential equation have been
performed using the steady Transonic Small Disturbance equation by Murman and Cole
in 1971 [30]. The Murman and Cole algorithm switches from central differencing to upwind
differencing when the equation goes from elliptic to hyperbolic. As explained in Sec. 2.2,
since an elliptic equation is dominated by diffusion, a central-differencing scheme is suitable
to take into account information from all directions around the current element. On the
contrary, a hyperbolic equation describes convection phenomena such that an upwind
differencing scheme is suitable since the information travels along one specific direction.
Therefore, they implemented a discretization scheme which represents the change in flow
behaviour between subsonic and supersonic regions of the flow.

In two dimensions1, the steady Transonic Small Disturbance equation into its conser-
vative form can be written as follows,

∇ · F = ∇ ·
[
f
g

]
= ∇ ·

[
(1−M2

∞)ϕx − γ−1
2
M2

∞ϕ
2
x

ϕy

]
, (2.3.1)

where, f and g are the fluxes depending on M∞ the freestream Mach number, ψ the
disturbance potential and γ the heat capacity ratio.

1All the mathematical details are specified in two dimensions for conciseness.
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Based on the Murman and Cole algorithm formulation [30], the equation can be dis-
cretized using a central difference scheme and modifying the fluxes in the flow direction
defined by the small-disturbance assumption to enable the switch to upwind differencing
when the flow becomes supersonic.

f̄i+1/2,j − f̄i−1/2,j

∆x
+
gi,j+1/2 − gi,j−1/2

∆y
= 0, (2.3.2)

with, i and j subscripts designate the location of the point in the mesh grid and ∆x and
∆y are the spatial steps in x- and y-directions, such that the element coordinates in the
flow domain are defined as, x = i∆x and y = j∆y. The modified flux f̄ is defined by,

f̄i+1/2,j = µifi+1/2,j + (1− µi) fi−1/2,j, (2.3.3)

where, µi is the switching function enabling to move from central to upwind differencing
with respect to the following expression,

µi =

{
1, Mi,j 6 1

0, Mi,j > 1
, (2.3.4)

with, Mi,j is defined as the local Mach number computed at the point (i, j) of the mesh
grid. This scheme is automatically second-order accurate and centrally-differenced in the
subsonic regions and first-order accurate and upwind-differenced in the supersonic regions
of the flow.

After having worked on the steady Transonic Small Disturbance equation, the re-
searchers started to look into the Full potential equation and the first two-dimensional
codes appeared in the early seventies thanks to the work of Steger and Lomax [31] and
also Garabedian and Korn [32]. In their formulation, the equation is discretized using finite
differences on grids mapped from a circle to airfoils. This provides an elegant grid gener-
ation option and allows for simplified application of boundary conditions. An extension
has been developed by Bauer et al. [33] to enable an incorporation of a boundary layer
correction. Thereafter, some generalisations to solve more complex geometries have been
performed by several authors such as axisymmetric blunt bodies [34, 35], inlets [36, 37, 38,
39], and turbomachinery airfoil cascades [40, 41].

In 1974, the first three-dimensional full potential solver was implemented by Jameson
and Caughey [42, 43]. This code still uses conformal mapping to build the grid on which
the finite differences are applied. However, Jameson and Caughey enhanced the Murman
and Cole algorithm [30] with the key concept of rotated differencing. Instead of switching
from a central scheme to an upwind one, a stable discretization scheme for the elliptic form
of the Full potential equation is developed and then, artificial viscosity is added when it
becomes hyperbolic to stabilise the scheme.
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2.3. PHYSICS-DEPENDENT SOLUTIONS

The concept of the rotated difference scheme consists in splitting the fluxes F into
physical fluxes f and g and artificial viscosity terms P and Q. Therefore, the fluxes of the
Full potential equation can be rewritten under the form,

∇ · F = ∇ ·
[
f + P
g +Q

]
. (2.3.5)

From then on, the Full potential equation can be discretized given by the following
relation,

←−
δ ξ

(
fi+1/2,j + Pi+1/2,j

)
+
←−
δ η

(
gi,j+1/2 +Qi,j+1/2

)
+ Ai,j = 0, (2.3.6)

where, ←−δ represents an upwind derivative and (ξ, η) are the coordinates of the computa-
tional space computed through conformal mapping from the physical coordinates (x, y).

The physical fluxes are derived from an average of the momentum at the faces of the
cell such that,

fi+1/2,j =
1

2

[
ρu

J

∣∣∣
i+1/2,j+1/2

+
ρu

J

∣∣∣
i+1/2,j−1/2

]
,

gi,j+1/2 =
1

2

[
ρv

J

∣∣∣
i+1/2,j+1/2

+
ρv

J

∣∣∣
i−1/2,j−1/2

]
,

(2.3.7)

where, u and v are the velocity components and J is the Jacobian matrix of the confor-
mal mapping from the physical space (x, y) to the computational space (ξ, η). In addition,
the fluxes acting as artificial viscosity can be derived in the computational space from these
relations,

Pi+1/2,j =

{
µρ
Ja2

(u2δξξ + uvδξδη)φi,j, ui+1/2,j > 0,

− µρ
Ja2

(u2δξξ + uvδξδη)φi,j, ui+1/2,j < 0,

Qi,j+1/2 =

{
µρ
Ja2

(uvδξδη + v2δηη)φi,j, vi,j+1/2 > 0,

− µρ
Ja2

(uvδξδη + v2δηη)φi,j, vi,j+1/2 < 0,

(2.3.8)

where a is the speed of sound and µ the switching function which enables to activate the
artificial viscosity terms depending on the region of the flow. The switching function is
defined as follows and depends on a user-specified cut-off Mach number MC ,

µ = max

(
0, 1− M2

C

M2

)
, (2.3.9)

with, M is the local Mach number.

To finish, the term Ai,j is a recoupling term to restore the continuity between the odd
and even points.

Based on the successful concept of rotated difference, several authors [44, 45, 46] have
developed another type of spatial discretization scheme for the conservative form of the
Full potential equation, the artificial density method.

The concept has similarities with rotated difference [42, 43] developed by Jameson i.e.
add artificial viscosity when the flow becomes supersonic (hyperbolic PDE) to stabilise the
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second-order accurate centrally-differenced scheme stable and suitable for subsonic flows
(elliptic PDE). However, the artificial viscosity term is not added directly to the equation,
but through an upwind bias applied to the density in the discretized equation. It provides
an upwind influence in supersonic regions without the explicit addition of an artificial
viscosity term in the Full potential equation. Instead, the stabilising effect is accomplished
through the modified density computed by biasing the physical density with an upwind one
which is mathematically equivalent to rotated differences. The interest of this approach
is that it simplifies the introduction of an upwind influence into the numerical equation
(cfr. solving techniques [27]) when the flow is supersonic. The upwind bias applied to the
physical density is computed in different ways according to the authors.

In 1978, Eberle [44] proposes the first density upwinding formulation.

ρ̃ ≈ ρ+ ε max
(
0, 1− 1

M2

)
(ρH − ρ), (2.3.10)

where, ε is a constant in the entire flow field and ρH density computed at a point which
lies on a small distance upstream from the current element. Thus, on the one hand, the
accuracy of the method can be increased with small ε, and on the other hand iterative
convergence from case to case can be guaranteed with large ε.

One year later, another formulation is developed by Holst and Ballhaus [45] inspired
from the switching algorithm implemented by Murman and Cole [30]. In one dimension,
the upwinded density can be evaluated based on the following expression,

ρ̃i+ 1
2
= (1− νi) ρi+ 1

2
+ νiρi− 1

2
, (2.3.11)

where νi = max(0, 1 − a2/u2). Holst and Ballhaus observed that this switching function
formulation produces pre-shock overshoots that often resulted in numerical instabilities.
Therefore, an alternative definition for ν was introduced,

ν =

[
1− (ρ/ρ∗)σe M ≥ 1

0 M < 1

]
, (2.3.12)

with ρ∗ is the density computed at sonic conditions, σe is a constant determined by nu-
merical experiment at six and M the local Mach number.

In the same year, Hafez and Murman [46] present another alternative to express the
upwinded density by subtracting from the physical density, an upwind bias computed with
the density gradient between an upwind and the current element.

ρ̃ = ρ− µ∆s
←−
δsρ ≈ ρ− µ(ρ− ρU), (2.3.13)

where, µ = µCmax
(
0, 1− M2

C

M2

)
dependent on MC a cut-off Mach number used to define

the extent of the region where the bias is applied and µC an amplification of the density
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bias. Moreover, ∆s is the upwind streamwise cell size,←−δsρ streamline upwind derivative of
the density and ρU is the density computed at an upwind element defined through several
processes.

Furthermore, an improvement has been developed for the artificial density approach
which consists of upwinding the entire mass fluxes [47, 48, 49, 50, 51, 52, 53]. It enables
good shock capturing characteristics and to smooth flow gradients through sonic lines.
Although for weak shocks, the flux upwinding provides slightly better results, the gain in
accuracy is not worth the increase in computational cost.

2.4 DARTFlo

This research work focuses on DARTFlo (Discrete Adjoint for Rapid Transonic Flows),
an open-source C++/Python, unstructured finite element, full potential solver, developed
at the University of Liège by Dr. Adrien Crovato [27] under the supervision of Pr. Vincent
E. Terrapon and Pr. Grigorios Dimitriadis. DARTFlo aims to perform transonic aero-
dynamic and aeroelastic computations during the preliminary stage of the aircraft design
process partially thanks to the development of an aerodynamic modeling tool performing
such computations with low costs. This code is currently able to rapidly solve steady tran-
sonic flows on arbitrary configurations, ranging from 2D airfoils to 3D full aircraft (without
engine). A low-fidelity aerodynamic model has been preferred. The Full potential equation
has been validated as being a relevant choice for this early design stage. As detailed in
Sec. 2.2, the Full potential equation switches from elliptic to hyperbolic when the flow
moves from a subsonic to a supersonic regime. However, the subsonic regions still represent
a large portion of the flow in transonic flows. Henceforth, the finite element method has
been chosen in DARTFlo since it is well adapted for solving elliptic partial differential
equations and only needs to be adapted for hyperbolic partial differential equations.

2.4.1 Finite element formulation

The finite element formulation of a partial differential equation can be derived based on
its weak form and the associated boundary conditions using a discretisation procedure.

Considering a domain Ω bordered by a surface Γ illustrated in Fig. 2.1 and assuming
that the potential φ is contained in the Sobolev space, the Full potential equation is mul-
tiplied by test functions ψ and integrated over the domain Ω to build its weak formulation
cast as, ∫

Ω

ρ∇φ · ∇ψdV −
∫
Γ

ρ∇φ · nψdS = 0, ∀ψ ∈ H1(Ω), (2.4.1)

where ρ is the density evaluated based on Eq. 2.1.12, φ the potential, ψ the test functions,
n is the unit normal vector to the surface Γ and H1(Ω) the Sobolev space.
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Boundary surfaces of the domain Γ can be split into an upstream boundary Γu, farfield
boundary Γf and the body boundary Γb as depicted in Fig. 2.1. To solve the problem,
boundary conditions have to be imposed on these surfaces. Firstly, an impermeability
condition is imposed on the body surface Γb through a Neumann condition such that, the
normal velocity components to the body surface are null,

∇φ · n
∣∣
Γb

= 0. (2.4.2)

Secondly, boundary conditions are also imposed to control the flow in the domain. The
freestream flow is imposed at the upstream surface to dictate the inlet flow through a
Dirichlet condition,

φ̄
∣∣
Γu

= φ∞, (2.4.3)

where, φ∞ is the freestream potential at the coordinates (x, y, z) defined as follows,

φ∞ = x cosα cos β + y sin β + z sinα cos β, (2.4.4)

with, α is the angle of attack and β the sideslip angle (only in three-dimensions).
In addition, a condition has to be set to model the undisturbed flow at the farfield

surfaces. A Neumann boundary condition is adopted,

∇φ · n
∣∣
Γf

= U∞ · n, (2.4.5)

where U∞ is the freestream velocity.
The last condition to be enforced concerns the potential assumptions. As explained in

Sec. 2.2, since the flow has been assumed to be irrotational, no aerodynamic loads can be
produced by the immersed body, which is not physical. From experiments which illustrated
that real fluids are viscous and can not turn around sharp corners such as the trailing edge,
Kuethe and Schetzer [54] stated that a body with a sharp trailing edge which is moving
through a fluid will create about itself a circulation of sufficient strength to hold the rear
stagnation point at the trailing edge. Many formulations of the Kutta condition exist.
The DARTFlo Kutta condition considers a flat wake sheet denoted Γw starting from the
trailing edge of the body to the downstream farfield surface as illustrated in Fig. 2.1. This
wake sheet is duplicated to enforce the equality of the mass fluxes on the upper and lower
sides of the wake such that,∫

Γw,u

ρ∇φ · ndS = −
∫
Γw,l

ρ∇φ · ndS, (2.4.6)

where, u and l subscripts denote the upper or lower side of the wake sheet. This condition
can be particularised at the trailing edge such that, Eq. 2.4.6 becomes,∫

ΓTE,u

|∇φ|2ψdS −
∫
ΓTE,1

|∇φ|2ψdS = 0, ∀ψ ∈ H1 (ΓTE,u) , (2.4.7)
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with, ΓTE denotes the trailing edge surface.

To finish, a third condition to avoid the wake sheet to behave as a wall is to prevent
any pressure jump across the wake. For potential flow, it is equivalent as imposing the
continuity of the velocity magnitude such that,∫

Γ

(ψ +Ψ)
[[
|∇φ|2

]]
dS = 0. (2.4.8)

where, the brackets denote a jump of the quantity across the wake sheet. The test function
is stabilised using a Petrov Galerkin formulation such that,

Ψ =
1

2

h

u∞
(u∞ · ∇φ) , (2.4.9)

with u∞ is the freestream velocity and h a characteristic length.

ቚത𝜙
Γ𝑢

= 𝜙∞

∇𝝓 ȁ∙ 𝒏 Γ𝑓 = 𝑼∞ ∙ 𝒏

∇𝝓 ȁ∙ 𝒏 Γ𝑏 = 0

𝛼

𝑼∞ = [𝑐𝑜𝑠 𝛼 , 𝑠𝑖𝑛(𝛼)]

Domain 𝜴

Γ𝑤

Figure 2.1: Domain definition for finite element computations and illustration of the
boundary conditions from [27].

2.4.2 Supersonic regions treatment

As explained in Sec. 2.2, the supersonic regions of the flow have to be stabilised. The
formulation proposed by Hafez and Murman [46] has been chosen such that the physical
density is replaced by a biased (i.e. upwinded) density,

ρ̃ = ρ− µ(ρ− ρU), (2.4.10)

where, ρ̃ is the upwinded density, ρ the physical density computed with Eq. 2.1.12, µ =

µCmax
(
0, 1− M2

C

M2

)
dependent on MC a cut-off Mach number used to define the extend

- 16 -



2.4. DARTFLO

of the region where the bias is applied and µC an amplification of the density bias and ρU
the density computed at an upwind element.

In DartFlo, the upwind element is exactly determined based on the local velocity
vector. As illustrated in Fig. 2.2, the upwind element with respect to the current one is
chosen along the adjacent elements by minimising the scalar product between the local
velocity vector denoted in blue and the vector joining both centroïds.

Figure 2.2: Identification process of the upwind element in DartFlo for the density
upwinding procedure [27].

The density upwinding in DARTFlo has demonstrated an increased sensitivity to
mesh density which leads to highly variable results depending on the mesh sizes and dis-
tributions. Mesh convergence analyses have been performed on different test cases by
Crovato [27]. For a weak shock test case, despite the refinement of the mesh, local flow
parameters keep varying despite a shock position convergence. For a strong shock test
case, DARTFlo is capable to capture a shock but the difference between its solution and
state-of-the-art solvers increases, compared to the weak shock case. In addition, further
refining leads to oscillatory behaviours of the local variables in the supersonic regions.

2.4.3 Finite element discretisation

The discretisation process is performed using the continuous Galerkin method [55]. The
goal is to particularise the Full potential finite element formulation for each element and
then, create a global system of equations. The potential φ and test functions ψ are ex-
pressed as,

φ = Niφi,

ψ = Niψi,
(2.4.11)

where, Ni are the shape functions unique for each element and used to interpolate the
nodal values. They are defined as being equal to one at the node i and zero at others such
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that, they are to meet the following requirement,∑
i

Ni = 1, (2.4.12)

over their support.

From then on, the weak formulation of the Full potential equation (Eq. 2.4.1) can be
discretised,∑

e

∫
Ωe

ρ̃e∇Njφj · ∇NiψidVe −
∑
e

∫
Γe

ρ∇φe · neNiψidSe = 0, ∀ψi, (2.4.13)

where, the subscript e denotes elemental quantities and ρ̃ the upwinded density computed
based on Eq. 2.4.10.

The boundary conditions are also discretised which are particularised for each element.
The Neumann boundary conditions described in Eq. 2.4.2 and 2.4.5 becomes,

∇φe · ne

∣∣
Γbe

= 0,

∇φe · ne

∣∣
Γfe

= U∞ · ne.
(2.4.14)

In addition, the Dirichlet condition (Eq. 2.4.3) is expressed as follows,

φ̄e

∣∣
Γue

= φ∞, (2.4.15)

The Kutta condition is also discretised. First, the continuity in the mass flux through
the wake can be reexpressed as,∑

e

∫
Ωw,ee

ρ̃e∇Njφj · ∇Niψiw,l
dVe +

∑
e

∫
Ωw,ue

ρ̃e∇Njφj · ∇Niψiw,l
dVe = 0, ∀ψi ∈ Ωw,l.

(2.4.16)
The latter equation can be particularised for the trailing edge, uniquely in three-dimensional
cases.∑

e

∫
ΓTE,ue

∇φ · ∇NjφjψiTE,u
dSe −

∑
e

∫
ΓTE,le

∇φ · ∇NjφjψiTE,u
dSe = 0, ∀ψi ∈ ΓTE,u.

(2.4.17)
Likewise, the no pressure jump condition across the shock is discretised,∑

e

∫
Γwe

(ψ +Ψ)w,u

(
[∇φ · ∇Njφj]w,u − [∇φ · ∇Njφj]w,l

)
dSe = 0, ∀(ψ +Ψ)w,u, (2.4.18)

where, the stabilised test functions are computed based on the following expression,

(ψ +Ψ)w,u = Niψi +
1

2

h

U∞
(U∞ · ∇Niψi) , ψ ∈ Γw,u. (2.4.19)
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2.4.4 Numerical scheme

The discretised Full potential equation has to be written as a set of equations using a
residual vector R since any test function ψ has to verify the equation such as,

R = 0. (2.4.20)

However, since the Full potential equation is non-linear, the system of equations can only
be solved iteratively. Thus, a Taylor expansion is developed around a known solution φs

giving,
R+

∂R

∂φ
(φ− φs) +O

(
(φ− φs)

2
)
= 0. (2.4.21)

Therefore, the iterative process can be built neglecting the second-order term and taking
as known solution the potential φn at iteration n resulting in the following numerical form
of the Full Potential equation,

Jn (φn+1 − φn) = −Rn, (2.4.22)

where, φn+1 is a better approximation of the solution than φn, Rn the residual vector
at iteration n and Jn the Jacobian matrix at iteration n defined as the variation of the
residual vector with respect to the solution φ computed around the known solution at φn,

Jn =
∂R

∂φ

∣∣∣∣
φn

. (2.4.23)

Two iterative methods are implemented in DARTFlo to solve Eq. 2.4.22, the Picard
iteration with relaxation, and a quasi-Newton algorithm combined with line search. Picard
iteration scheme has demonstrated poor convergence characteristics and sometimes does
not even converge in presence of shocks. Consequently, this method is constrained to solve
compressible flows without supersonic regions. Henceforth, only the quasi-Newton scheme
has been used in the scope of this thesis to solve the Eq. 2.4.22 and derive the solution at
next iteration φn+1.

Based on the weak form of the Full potential equation Eq. 2.4.1 and the discretisation
process described in Eq. 2.4.11, the residual vector can be discretised as follows,

Ri =

∫
Ωe

[(1− µ)ρe + µρU] ∂kφ∂kNidVe −
∫
Γe

ρ∂kφnkNidSe. (2.4.24)

In the quasi-Newton algorithm combined with line search, the Jacobian can be com-
puted either numerically or analytically. However, to obtain the lowest computational
time, the Jacobian matrix is determined analytically by deriving the residual vector R

with respect to the potential φ.
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J =
∂R

∂φ
= =

∫
Ω

∂

∂φ
{ρ̃}∇φ · ∇ψdV +

∫
Ω

ρ̃
∂

∂φ
{∇φ · ∇ψ}dV,

=

∫
Ω

(1− µ) ∂
∂φ
{ρ∇φ · ∇ψ}dV

+

∫
Ω

µ

(
∂

∂φ
{ρU}∇φ · ∇ψ + ρU

∂

∂φ
{∇φ · ∇ψ}

)
dV

+

∫
Ω

− (ρ− ρU)
∂

∂φ
{µ}∇φ · ∇ψdV,

(2.4.25)

where the derivatives of the parameters with respect to potential result from the parameter
definition expressions,

∂

∂φ
{ρ} = −M2

∞ρ
2−γ∇φ · ∂

∂φ
{∇φ},

∂

∂φ
{µ} = µCM

2
C

(
2

M3

∂

∂φ
{M}

)
,

∂

∂φ
{M} =M

[
1

|∇φ|2
+
γ − 1

2

1

a2

]
∇φ · ∂

∂φ
{∇φ}.

(2.4.26)

Note that the derivative of the switching function is particularised for the supersonic regions
since it is null otherwise. In addition, the speed of sound is computed based on,

a =

√
1

M2
∞

+
γ − 1

2
(1− |∇φ|2). (2.4.27)

Based on the finite element discretisation, the Jacobian expression can be discretised,

Jij =

∫
Ωe

(1− µ)
[
∂ρ

∂φ
∂kφ∂kNi + ρe∂kNj∂kNi

]
dVe

+

∫
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µ
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∂ρU
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∂kφ∂kNi + ρU∂kNj∂kNi

]
dVe

−
∫
Ωe
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∂φ
∂kφ∂kNi

]
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(2.4.28)

where, the different derivatives become,
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e
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1√

∂kφ2a2e
+
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2

√
∂kφ2

3
√
a2e

)
∂kφ∂kNj,

(2.4.29)

with, the subscript U denotes the upwind element.
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3Stabilisation solutions

In this chapter, different options to solve the mesh density sensitivity problem of the
stabilisation process implemented in DARTFlo are presented. Firstly, the general concept
of each method is specified and then, the mathematical details are carried out to justify
their relevance compared to previous stabilisation processes reviewed in Sec. 2.3. Lastly,
the different numerical equations are updated, based on the corrections.

Note that with the aim of gaining insight about the original DARTFlo density up-
winding, a one-dimensional finite-element, full potential code has been implemented. The
objective of this test code is to correctly understand the functioning of the stabilisation
process in a simple case and thus, propose corrections for the mesh-dependency. However,
within the thesis duration, the code could not be fully operational. Therefore, an annex is
devoted to the details of the implementation (cfr. Sec. A).

3.1 Fixed length correction

As explained in Sec. 2.4 and demonstrated in Crovato’s thesis [27], DARTFlo current
implementation experiences increased sensitivity of the stabilisation process to mesh den-
sity. Therefore, the first solution aims to correct the biased density formulation to reach
mesh-independency. The mesh sizes directly influence the upwind bias since the finer the
mesh, the more the bias ρ−ρU tends to zero in Eq. 2.3.13 and thus, the lower the amount
of artificial viscosity and inversely. Thenceforth, the numerical scheme is not correctly
stabilised anymore in the supersonic regions involving oscillations and/or no local results
convergence with respect to the mesh and in worst cases, prevents solver convergence.

To withdraw this mesh dependency, starting from the density upwinding formulation
developed by Hafez and Murman (Eq. 2.3.13), the concept is to compute the streamwise
density gradient based on upwind numerical differentiation and multiply the upwind bias
by a fixed length that has to be characterised in order to keep consistent units. Henceforth,
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3.1. FIXED LENGTH CORRECTION

the upwind bias depends on a constant length in the entire flow field and a density gradient
independent of the mesh grid.

ρ̃ = ρ− µL
←−
δsρ = ρ− µL(ρ− ρU)

∆s
, (3.1.1)

where ρ̃ is the upwinded density, ρ the physical density, µ = µC max
(
0, 1− M2

C

M2

)
dependent

on MC a cut-off Mach number and µC an amplification of the density bias. In addition, L
is the fixed length, ∆s the streamwise cell size and ρU the density computed at an upwind
element defined following the procedure detailed in Sec. 2.4.

The streamwise cell size ∆s is approximated based on the distance between current
and upwind element centroïd locations.

From then on, the finite element formulation Eq. 2.4.13 needs to be adapted using the
new biased density formulation Eq. 3.1.1 in DARTFlo implementation.∑

e

∫
Ωe

(
ρe − µ

L

∆s
(ρe − ρU)

)
∇Njφj · ∇NiψidVe −

∑
e

∫
Γe

ρ∇φe · neNiψidSe = 0, ∀ψi,

(3.1.2)
where, the subscript e denotes elemental quantities, Ωe is the element volume, Γe the
element surface, Nk, φk and ψk are respectively the shape function, the potential and the
test function for the node k and n the element unit normal vector.

Given the updated finite element formulation Eq. 3.1.2 for the fixed length correction,
the residual vector can be updated,

Ri =

∫
Ωe

[(
1− L

∆s
µ

)
ρe +

L

∆s
µρU

]
∂kφ∂kNidVe −

∫
Γe

ρ∂kφnkNidSe, (3.1.3)

which implies that the Jacobian matrix J can be analytically re-derived,

J =
∂R

∂φ
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∫
Ω

∂

∂φ
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+
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+
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− L
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∂

∂φ
{µ}∇φ · ∇ψdV,

(3.1.4)

where, the derivatives with respect to the potential φ are identical to the original imple-
mentation Eq. 2.4.26. Finally, based on the discretisation process Eq. 2.4.11 and potential
derivative expressions, the discretised Jacobian matrix becomes,

Jij =

∫
Ωe

(
1− L

∆s
µ

)[
∂ρ

∂φ
∂kφ∂kNi + ρe∂kNj∂kNi

]
dVe

+

∫
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∂ρU
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∂kφ∂kNi + ρU∂kNj∂kNi

]
dVe

−
∫
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L

∆s
(ρe − ρU)

[
∂µ

∂φ
∂kφ∂kNi

]
dVe,

(3.1.5)
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3.2. SONIC DENSITY BIAS

with, the discretised derivatives identical compared to the DARTFlo original implemen-
tation (Eq. 2.4.29).

3.2 Sonic density bias

Another solution to apply a mesh-independent bias on the physical density is to simulate
an upwind influence with quantities computed at flow scale. The idea is to use a constant
in the entire flow field to compute the density bias. In other words, changing the influence
of the associated upwind element density ρU in the original DARTFlo density upwinding
Eq. 2.3.13 by a constant independent on the position in the domain and on the mesh.

The process of upwinding the density consists in adding a positive bias to the physical
density in order to retard it. By definition, the physical density decreases with respect
to the Mach number in supersonic regions such that the bias computed with an upwind
element in Eq. 2.3.13 is always positive inducing that,

ρU ≥ ρ, (3.2.1)

is always true. Therefore, the constant used to upwind the physical density has to always
be larger or equal at any point in the supersonic regions to reach the same effect as density
upwinding concept. As Eq. 2.1.12 suggests, in the supersonic regions, the highest value of
the physical density is the one computed at sonic conditions. Henceforth, the formulation
of the biased density is rewritten as follows,

ρ̃ = ρ− µ(ρ− ρ∗), (3.2.2)

where ρ̃ is the upwinded density, ρ the physical density, µ = µC max
(
0, 1− M2

C

M2

)
dependent

on MC a cut-off Mach number and µC an amplification of the density bias. Moreover, ρ∗

denotes the density computed at sonic conditions thanks to the isentropic relations. The
parameters at sonic conditions are determined by equalling the local Mach number at one
in the isentropic flow relations such that, the following expressions can be derived,

ρ∗ =

(
1− γ − 1

2
M2

∞
(
(a∗)2 − 1

))1/(γ−1)

, (3.2.3)

where, the critical speed of sound is determined by,

a∗ =

√
M−2

∞ + (γ − 1)/2

(γ + 1)/2
, (3.2.4)

with, M∞ is the freestream Mach number and γ the heat capacity ratio.
Taking into account this change, the finite element formulation can be updated.∑

e

∫
Ωe

(ρe − µ(ρe − ρ∗))∇Njφj ·∇NiψidVe−
∑
e

∫
Γe

ρ∇φe ·neNiψidSe = 0, ∀ψi, (3.2.5)
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where, the subscript e denotes elemental quantities, Ωe is the element volume, Γe the
element surface, Nk, φk and ψk are respectively the shape function, the potential and the
test function for the node k and n the element unit normal vector.

Afterwards, based on the new finite element discretisation, the residual vector has to
be reexpressed,

Ri =

∫
Ωe

[(1− µ)ρe + µρ∗] ∂kφ∂kNidVe −
∫
Γe

ρ∂kφnkNidSe, (3.2.6)

which implies that the Jacobian matrix J can be analytically re-derived Eq. 3.2.6.

J =
∂R

∂φ
=

∫
Ω

∂

∂φ
{ρ̃}∇φ · ∇ψdV +

∫
Ω

ρ̃
∂

∂φ
{∇φ · ∇ψ}dV,

=

∫
Ω

(1− µ) ∂
∂φ
{ρ∇φ · ∇ψ}dV

+

∫
Ω

µρ∗
∂

∂φ
{∇φ · ∇ψ}dV

+

∫
Ω

− (ρ− ρ∗) ∂

∂φ
{µ}∇φ · ∇ψdV,

(3.2.7)

where, the different derivatives are unchanged and computed based on Eq. 2.4.26. The
discretised formulation of the Jacobian matrix becomes,

Jij =

∫
Ωe

(1− µ)
[
∂ρ

∂φ
∂kφ∂kNi + ρe∂kNj∂kNi

]
dVe

+

∫
Ωe

µρ∗∂kNj∂kNidVe

−
∫
Ωe

(ρe − ρ∗)
[
∂µ

∂φ
∂kφ∂kNi

]
dVe,

(3.2.8)

with, identical derivatives as for the original DARTFlo implementation Eq. 2.4.29.

3.3 Switching function reformulation

The last solution to investigate is to change the formulation of the switching function.
As explained in Sec. 2.3, Holst and Ballhaus [45] developed a new switching function
formulation in response to numerical instabilities experienced by their solver due to pre-
shock overshoots based on a previous switching function formulation similar to DARTFlo
one.

Therefore, the expression of the switching function in Eq. 2.4.10 becomes,

µ =

[
1− (ρ/ρ∗)σe M ≥ 1

0 M < 1

]
, (3.3.1)

where, ρ∗ is the density computed at sonic conditions, ρ the physical density, M the local
Mach number and σe a constant determined by numerical experiments. The value of this
constant has been evaluated by Holst and Ballhaus [45] at six.
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3.3. SWITCHING FUNCTION REFORMULATION

The expression of the residual vector (Eq. 2.4.24) as well as the Jacobian matrix
(Eq. 2.4.25) stays unchanged, the only difference with the original DARTFlo implemen-
tation is the switching function formulation and its derivative with respect to the potential.

Particularised for supersonic regions, the derivative of the switching function with re-
spect to the potential is computed based on Eq. 3.3.1.

∂

∂φ
{µ} = −σe

(
1

ρ∗

)σe

ρσe−1 ∂

∂φ
{ρ}, (3.3.2)

using the original expression for the density derivative Eq. 2.4.26.
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4Results

Within this chapter, a complete comparison between the different modified stabilisation
solutions, the original DARTFlo density upwinding implementation and a reference so-
lution is performed. Firstly, the analysis methodology is explained to detail the mesh
convergence process and reference solution computations. In addition, the different test
cases are described. Lastly, the different stabilisation methods are compared in the latter
different test cases in order to assess the improvements.

4.1 Methodology

The thorough comparison of the different implementations in DARTFlo relies on two
main biases. The first is mesh convergence analyses allowing to characterise how the
global and local flight parameters evolve with respect to the mesh density in different test
cases for the stabilisation solutions detailed in Chap. 3. For consistency, three test cases
have been set up in order to illustrate the behaviour of the implementations in different
situations. They are described later in dedicated sections. The second bias is the use of
a reference solution as a point of comparison to verify that the results accuracy has not
been altered by cancelling the mesh-dependency.

4.1.1 Mesh convergence process

In each test case, a mesh convergence analysis is performed using each implementation. In
DARTFlo, the mesh structure is an input parameter built with an external mesh gener-
ator. Henceforth, a mesh input file needs to be specified in configuration files. Currently,
the code only supports GMSH native format mesh files [56].

The mesh density is commanded, based on different types of control points as illustrated
in Fig. 4.1 and 4.2. Firstly, the farfield mesh control points define the element sizes at the
domain boundaries. Secondly, control points are placed at the leading and trailing edge of
the airfoils defining the different wing planforms of the problem.
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4.1. METHODOLOGY

The mesh convergence analysis is conducted by first fixing the farfield mesh size at
different values and then, for each farfield mesh size, the leading and trailing edge mesh
sizes are varied. To minimise the influence of the surface mesh evolution along the air-
foil(s), the mesh sizes at the leading and trailing edge associated to the same airfoil are
identically varied and will be denoted as surface mesh size. Note that all the mesh sizes
are adimensionnalised by their associated chord length for consistency.

Domain 𝜴

Farfield mesh control point Leading edge mesh control point Trailing edge mesh control point

Figure 4.1: Different types of mesh control points in a two-dimensional case in GMSH.

Farfield mesh control point

Wing root leading edge mesh control point

Wing root trailing edge mesh control point

Wing tip leading edge mesh control point

Wing tip trailing edge mesh control point

Domain 𝜴

Figure 4.2: Different types of mesh control points in a three-dimensional case in GMSH.
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Several parameters are studied in order to draw a clear comparison between the different
implementations. Firstly, two global parameters, the lift and drag coefficients with respect
to the mesh density providing first clues about the results convergence and stability of
the implementation. Secondly, the pressure coefficient distribution is studied, which gives
more information about the shock shape and the local behaviour in the supersonic regions.

4.1.2 Reference solution computation

The second bias to perform a complete comparison between the different implementations
in DARTFlo is the computation of a reference solution with a state-of-the-art solver for
each test case. The simulation tool selected for this research work is SU2, an open-source
multiphysics simulation and design software [57]. This code enables to solve transonic flows
based on different levels of aerodynamic fidelity whose Euler equations. The equations are
spatially discretized on an unstructured dual-grid using a finite volume method with a
cell-vertex based approach and multiple ready-to-use convective schemes. Two different
convective schemes are going to be tested to derive an optimal numerical configuration.
The first one is a central scheme, the Jameson-Schmidt-Turkel (JST) scheme [58] in which
scalar dissipation can be introduced by second and fourth order dissipation coefficients. In
addition, no limiters can be applied to this numerical scheme. The second is an upwind
scheme, named ROE scheme. Several options are available to modify numerical parameters
whose a dissipation relaxation coefficient and limiters which are studied.

An Euler modelling has been chosen as a point of comparison to observe whether
withdrawing the mesh dependency with new implementations does not alter the results
accuracy. Using a higher level of fidelity to compare the results enables to have an accuracy
target to quantify if the updated stabilisation solutions do not lead the results in the wrong
direction.

The reference solution evaluation can be divided into two phases. The first phase
consists in defining converged mesh sizes for each test case providing relevant results.
The latter is performed using the JST central scheme with the by-default second and
fourth order dissipation coefficients since it offers a good compromise between accuracy
and robustness. During the second phase, the specific numerical parameters of each scheme
are investigated in order to determine the optimal simulation configuration and thus, a
relevant reference solution. The selection criterion of the optimal numerical configuration
follows the goal of obtaining a stable solution capturing a pressure drop as steep as possible
by minimising over- and under-shoots on either side of the shock.
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4.2. WEAK SHOCK TEST CASE

4.2 Weak shock test case

In this section, the stabilisation solutions are tested in a weak shock test case. Firstly,
a case description is carried out. Then, the different stabilisation solutions are compared
based on the different parameters detailed earlier. Lastly, the results are discussed.

4.2.1 Case description

The weak shock test case aims to set up a two-dimensional transonic flow with an embedded
weak shock. By definition, a transonic flow is obtained for freestream Mach numbers
between 0.8 and 1.2 [59]. In addition, a weak shock is characterised by a local Mach
number upstream of the shock around 1.1 and a small change in the flow parameters.

Nowadays, commercial aircraft mostly fly at transonic regime. Specific airfoil shapes
have been developed for this type of flow to obtain efficient aerodynamic behaviour in
cruise. Supercritical airfoils are optimised for transonic cruise. A commonly used airfoil for
solver validations is the RAE2822 since several experimental test cases have been performed
in wind-tunnel [60].

From then on, the weak shock test case’s characteristics are given in Tab. 4.1.

Airfoil Mach number M [−] Angle of attack α [◦] Dimensions
RAE2822 .72 1. 2D

Table 4.1: Flow characteristics of the weak shock test case.

This case configuration allows reaching the above-mentioned conditions as illustrated
in the appendices Sec. B.1.

The computational domain is chosen to be rectangular whose dimensions have been
determined through a convergence analysis by Crovato during DARTFlo development.
Fig. 4.3 illustrates the conclusions drawn from this analysis. The different domain surfaces
are placed at precise dimensions with respect to the airfoil. The upstream surface is located
at a distance equal to five times the chord length with respect to the leading edge position.
The downstream surface is also five times the chord length away from the trailing edge.
Concerning the top and bottom surface, their dimensions have been defined as being equal
to five times the chord length from the airfoil. Note that the Neumann boundary conditions
applied at the farfield and body surfaces enabled to build a relatively small flow domain
as the solution is less sensitive to such boundary conditions reducing the influence of the
boundary surface on the solution.
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5 × chord 5 × chord

1
0
×

ch
o
rd

chord

Domain Ω

Figure 4.3: Computational domain dimensions in the two-dimensional weak shock test
case.

4.2.2 Reference solution

The first phase in the reference solution computation is to perform a mesh convergence
analysis on the aerodynamic coefficients with the aim of defining converged mesh sizes.
The mesh convergence analyses have been conducted following the methodology described
earlier. As explained in Sec. 4.1.2, these computations are carried out by SU2 based
on the Euler equations using the Jameson-Schmidt-Turkel scheme with by-default scalar
dissipation coefficients.

Fig. 4.4 illustrates the evolution of the aerodynamic loads with respect to the airfoil
surface mesh size for different farfield mesh sizes. The influence of the farfield mesh size
shows that values around 1 [−] can be considered as converged since the curves start to
superimpose. In addition, a change in the curve slopes is noticed from a surface mesh
size of 10−2 [−] which can be associated to the start of the convergence. However, a fully
converged surface mesh size could not be experienced since from a value of 2 × 10−3 [−],
the solver diverges due to infinite over- and under-shoots just before and after the shock.
Therefore, the finest surface mesh size that has been simulated is considered as converged.
The latter assumption is valid since the slope computed between two coarse surface mesh
sizes (coarser than 10−2 [−]) and between two fine mesh sizes (finer than 10−2 [−]) is
drastically reduced tending to zero.

As a conclusion, for the weak shock test case in SU2, the converged mesh characteristics
are summarised in Tab. 4.2.

Farfield mesh size [−] Surface mesh size [−]
1 .002

Table 4.2: SU2 converged mesh characteristics of the weak shock test case.
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(a) Two-dimensional lift coefficient Cl [−] mesh
convergence analysis.

(b) Two-dimensional drag coefficient Cd [−] mesh
convergence analysis.

Figure 4.4: Mesh convergence analysis on the aerodynamic coefficients performed with
SU2 using the Jameson-Schmidt-Turkel convective scheme with by-default dissipation co-
efficients [57].

The second phase consists in studying the different convective schemes implemented
in SU2 to determine the best numerical configurations. In the Jameson-Schmidt-Turkel
scheme, the influence of the second and fourth order dissipation coefficients is characterised
to determine the optimal combination for the weak shock test case. In order to do so, the
2nd order dissipation coefficient is fixed at its default value (0.5) and the 4th order one
is variable to evaluate the optimal value. Then, the inverse process is performed, the 4th

order dissipation coefficient is fixed at its best-suited value and the 2nd order one is studied.
Fig. 4.5 highlights that the larger the 4th order dissipation coefficient, the smaller the

under- and over-shoots at the shock. However, the largest value allowing the SU2 solver
to converge is 0.12. Thenceforth, for the weak test case, the latter is set at 0.12.

(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the weak shock.

Figure 4.5: Influence study of the 4th order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the by-default 2nd order
dissipation coefficient for the weak shock test case.
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Since the optimal 4th order dissipation coefficient has been determined, the 2nd order
one can be studied. As observed in Fig. 4.6, the influence of this coefficient is minimal
such that its value is kept as the default one.

(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the weak shock.

Figure 4.6: Influence study of the 2nd order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the optimal 4th order dissipa-
tion coefficient for the weak shock test case.

In ROE upwind scheme, two numerical parameters have to be investigated. Firstly,
the use of limiters is assessed. Then, the influence of the dissipation relaxation coefficient,
’ROE kappa’, is analysed. In Fig. 4.7, it is observed that limiters have a reduced impact
on the oscillations. However, limiters minimising the formation of over- and under-shoots
across the shock are the Venkatakrishnan limiters [61].

(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the weak shock.

Figure 4.7: Influence study of limiters in ROE scheme using SU2 based on the converged
mesh with the default dissipation relaxation coefficient.

Thenceforth, Fig. 4.8 highlights the evolution of the pressure coefficient distribution
with respect to the dissipation relaxation coefficient. As for the limiters, the latter does
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not have a notorious impact on oscillations across the shock. However, as the goal is to
minimise the over- and under-shoots, ROE kappa can be fixed at values smaller than 0.1,
all providing similar results.

(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the weak shock.

Figure 4.8: Influence study of the dissipation relaxation coefficient ROE kappa in ROE
scheme using SU2 based on the converged mesh with Venkatakrishnan limiters for the
weak shock test case.

The optimal numerical configurations based on the two different schemes are compared
to finally determine the reference solution for the weak shock test case. The configuration
respecting the selection criterion described in Sec. 4.1.2 is the JST central scheme with
second and fourth order dissipation coefficients respectively equal to (0.5, 0.12). As illus-
trated in Fig. 4.9, the optimal JST numerical configuration offers a relatively steep shock
capturing while providing minimal oscillations across the shock compared to optimal ROE
configuration.

(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the weak shock.

Figure 4.9: Comparison between the optimal numerical configuration determined for both
JST and ROE scheme in the weak shock test case context using SU2 and the converged
mesh.
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As a conclusion, the reference solution for the weak shock test case is defined using SU2
based on the Euler equations discretised with Jameson-Schmidt-Turkel scheme setting with
second and fourth order dissipation coefficients defined at (0.5, 0.12).

Aerodynamic coefficient Value
Cl [−] .61
Cd [−] .00089

(a) Aerodynamic coefficients of the reference so-
lution.

(b) Pressure coefficient distribution of the refer-
ence solution.

Figure 4.10: Characteristics of the reference solution for the weak shock test case.

4.2.3 Fixed length selection

As explained in the solution description of the fixed length correction, the fixed length has
to be determined in relation to the test case.

In this section, the influence of the fixed length L [m] on the aerodynamic coefficients is
studied in a weak shock test case. The most suitable value is evaluated with the objective
of performing a mesh convergence analysis using the fixed length correction described in
Sec. 3.1.

For different refined mesh configurations, the fixed length L [m] is varied to quantify its
impact. For a weak shock test case in DARTFlo, it has been demonstrated that a mesh
density of around 6000 elements is already enough to accurately capture the shock [27].
This mesh density corresponds to a farfield mesh size of 1 and a surface mesh size equal
to 1/200 of the chord length. For the sake of completeness, a configuration twice as coarse
is used as the coarsest mesh configuration, corresponding to a farfield of 1 and a surface
mesh size equal to 1/100 of the chord length (3739 elements). From this starting mesh
configuration, the element sizes are refined to build the different fixed mesh configurations
used for the fixed length analysis.

Fig. 4.11 represents the evolution of the aerodynamic coefficients with respect to the
fixed length L [m] for different mesh configurations. The first important interpretation
from the analysis is the independence of the aerodynamic coefficient with respect to the set
length. In the length range allowing the solver convergence, the variation of the parameters
is null. In addition, the comparison between different farfield mesh sizes illustrates that
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its impact is negligible since the convergent length ranges do not vary when the farfield
mesh is refined. Concerning the influence of the surface mesh size, it can be noticed that
the finer the surface mesh size, the smaller the fixed lengths. However, for highly refined
surface mesh sizes, the ranges allowing solver convergence seem to stabilise.

(a) Farfield mesh size = 0.5. (b) Farfield mesh size = 0.5.

(c) Farfield mesh size = 1. (d) Farfield mesh size = 1.

Figure 4.11: Evolution of the aerodynamic coefficients with respect to the fixed length
L for different fixed mesh size configurations in the weak shock test case using the fixed
length correction implementation in DARTFlo 3.1.

To approximately determine an optimal fixed length in a weak shock test case, for
each mesh configuration, the average of the length range is computed. The results are
summarised in Fig. 4.12. For highly refined mesh configurations, the fixed length converges
to a value between 0.005 and 0.01 [m]. Therefore, it can be concluded that for a weak shock
test case, the fixed length can be set in the latter range. Henceforth, the fixed length L [m]

is defined based on Fig. 4.12 with the finest mesh configuration leading to L = 0.0065 [m].
This value is used in the next section to perform the mesh convergence analysis using the
fixed length correction implementation.

However, a further analysis concerning the determination of the fixed length should be
performed in order to assess the selection process.
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Figure 4.12: Evolution of the averaged converging fixed length for the different mesh
configurations in the weak shock test case.

4.2.4 Results comparison

In this section, the original and new stabilisation implementations are compared in the
context of the weak shock test case. Firstly, the evolution of the lift Cl and the drag Cd co-
efficients with respect to the mesh density is studied to characterise the mesh-dependency
of the original implementation and observe the improvements of the new stabilisation pro-
cesses described in Chap. 3. Secondly, the pressure coefficient Cp distributions with respect
to mesh sizes are compared to gain insight into the local behaviour of the flow computed
based on the different implementations. The process of analysing the results is conducted
in two phases. First, the original implementation is studied in order to characterise the
mesh dependency of the global and local results. Then, the results obtained with the new
implementations are compared to the original to highlight possible improvements.

Lift and drag coefficients

In the first instance, the lift coefficient is analysed. Fig. 4.13 illustrates the evolution of
the lift coefficient Cl with respect to the mesh density for the different implementations in
the weak shock test case. The original DARTFlo implementation results are shown in
Fig. 4.13a. Concerning the mesh at the domain boundaries, farfield mesh sizes from around
one are considered as converged since the associated curves are almost superimposed.
Whereas, a farfield mesh size equal to 3 provides not converged results since the yellow
curve in Fig. 4.13a has a completely different behaviour from the other two farfield mesh
sizes. As for the surface mesh size, a change in the curve slopes is detected from 10−2 [−]
related to the start of the convergence. However, depending on the farfield mesh size,
DARTFlo solver stops converging for surface mesh sizes O(10−3) [−] i.e. the mesh could
not be further refined. Note that for all the simulations, the mesh has been refined as long
as the solver was converging.

- 36 -



4.2. WEAK SHOCK TEST CASE

The results obtained with the original DARTFLo implementation can be compared
with those computed with SU2. It can be observed that DARTFLo globally seems to
converge to a similar range of lift as SU2 taking into account the different levels of fidelity
that both solvers represent and that DARTFlo results have not already fully converged
at the surface mesh sizes from which it stops converging.

The fixed length correction lift coefficient evolution is illustrated in Fig. 4.13b. A great
improvement of the mesh convergence can be highlighted since the surface mesh size can
be refined by one order of magnitude further compared to the original implementation.
The latter leads to surface mesh sizes refined to O(10−4) [−]. In this case, the results
convergence is clearly observed since the curve slope tends to zero for surface mesh sizes
finer than 5× 10−3 [−]. Note that the conclusion for the farfield mesh size convergence is
also valid for this fixed length correction implementation. Concerning the comparison with
SU2 reference lift coefficient, the lift curves converge to similar values taking into account
the different levels of fidelity on which both solvers are based. For example, the relative
error between the SU2 reference lift coefficient and the one computed with the finest mesh
is around 4.22%.

The lift coefficient evolution computed based on the sonic density bias solution is illus-
trated in Fig. 4.13c. As for the previous solution, the mesh convergence is highly improved
given that the surface mesh refinement can be performed to almost 10−4 [−] while keeping
a converging solver. In addition, the farfield mesh convergence is still observed for values
around one. Based on this new implementation, it can be deduced that the lift coeffi-
cient computed with the finest mesh gets closer to the reference one than for the previous
solution since the relative error between the two decreases to 3.14%.

Fig. 4.13d pictures the lift evolution with respect to the mesh density based on the
switching function reformulation. The first observation is that the convergence improve-
ment compared to the other stabilisation solutions is lower since the surface mesh can be
refined to the order of the original density upwinding implementation (O(10−3) [−]). This
stop in the mesh convergence leads to the same conclusions drawn for the original imple-
mentation. The surface mesh sizes, at which the DARTFlo solver does not converge,
result in not fully converged lift coefficients.
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(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.0065.

(c) Sonic density bias 3.2. (d) Switching function reformulation 3.3.

Figure 4.13: Evolution of the lift coefficient Cl with respect to the farfield and surface
mesh sizes for the different stabilisation solutions in the weak shock test case.

In a second phase, the evolution of the drag coefficient with respect to the mesh density
is studied in Fig. 4.14. The first observation confirmed with the drag coefficient evolutions
for each stabilisation solutions is the convergence of the farfield mesh size. Values finer or
equal to one are converged while coarser farfield mesh sizes do not provide relevant results.
Indeed, chaotic drag oscillations are observed for coarse farfield mesh sizes. In addition,
the start of the convergence for surface mesh finer than 10−2 [−] is endorsed since highly
variable drag coefficients are observed for coarser surface mesh sizes. After this threshold,
the drag coefficient curves stabilise.

The convergence improvements provided by the fixed length correction and the sonic
density bias are verified in the drag coefficients graphs. Much finer surface mesh sizes
can be reached with these two solutions than the original one and the switching function
reformulation. The results convergence is clearly illustrated by the curve slope change
which turns to zero from surface mesh sizes finer than 10−2 [−] and farfield mesh sizes
smaller or equal to one.

The small oscillations observed for farfield mesh size equal to one can be explained by
the order of magnitude of the drag coefficient (O(10−4) [−]). Since the fluid is considered
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to be inviscid, the only drag contribution is the pressure drag generated by the size and
the shape of the immersed body. However, in the cases of streamlined bodies as airfoils or
wings, the pressure drag represents a small portion of the total physical drag. Consequently,
the order of drag magnitude is very low which results in a high degree sensitivity of the
drag to numerical errors and mesh configurations.

Lastly, in all configurations, the drag estimate approximately clings to the reference
solution, taking into account the different levels of fidelity represented in both solvers.

(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.0065.

(c) Sonic density bias 3.2. (d) Switching function reformulation 3.3.

Figure 4.14: Evolution of the drag coefficient Cd with respect to the farfield and surface
mesh sizes for the different stabilisation solutions in the weak shock test case.

Pressure coefficient distributions

The section aims at analysing the influence of the mesh density on the pressure coefficient
distributions. For different farfield mesh sizes, the surface mesh size is varied. Fig. 4.15
illustrates the evolution of the pressure distribution with respect to the surface mesh size
for a farfield mesh size equal to 1/2 of the airfoil chord length with the different stabilisation
implementations.

First, the original DARTFlo density upwinding implementation is studied. Fig. 4.15a
confirms that the original stabilisation process experiences high mesh sensitivity. Despite
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the convergence of the shock position, the pressure distribution does not converge when
the mesh is refined. The shock capturing varies with respect to the mesh density since the
pressure distribution on around the shock keeps evolving even for highly refined surface
meshes. This reflects a dependence on the mesh size of the stabilisation process since the
results do not tend to one single pressure distribution. Another important point to note is
the appearance of short-wavelength oscillations in the supersonic zone of the airfoil suction
side. The latter prove that when the surface mesh size is refined, the numerical scheme
becomes unstable which prevents the solver from converging for finer surface mesh sizes.
This is explained by the decrease of the density upwinding stabilisation effect when the
mesh is refined as explained previously. The density upwinding being mesh-dependent, the
more the mesh is refined, the less the artificial viscosity is added to the numerical scheme
which implies that the supersonic regions are less and less stabilised involving appearance
of oscillations in the supersonic zones.

In addition, the shock position predicted by the original DARTFlo implementation
is delayed by more or less 5% of the chord length with respect to the computations with
the Euler equations in SU2. The shock strength is also larger than SU2 estimates. This is
due to the different levels of aerodynamic fidelity which lead to different approximations.

The fixed length correction pressure distribution evolution for a farfield mesh size equal
to 1/2 of the chord length is illustrated in Fig. 4.15b. A real improvement in the local
flow behaviour is observed. Firstly, the oscillations occurring in the supersonic regions are
fully cancelled, which enables the surface mesh to be much further refined while conserving
a converging solver as characterised in the lift and drag analysis. Secondly, in addition to
the convergence of the shock position, the shock capturing stops varying when the surface
mesh is enough refined. In other words, the pressure distributions are identical when the
surface mesh size is finer than 1/100 of the chord length as depicted in Fig. 4.15b by the
associated curves. Thenceforth, the improvements observed in the lift and drag analysis
are confirmed with the pressure coefficient distributions.

Concerning the sonic density bias adaptation, the associated pressure coefficient evolu-
tions are plotted in Fig. 4.15c. In the lift and drag analysis, a convergence improvement
has been noticed allowing to further refine the surface mesh on the airfoil. However, it
can be observed that no shock is captured since no rapid pressure change is detected by
the solver. The artificial viscosity added by the upwind bias computed with the density
evaluated at sonic conditions is too large which leads to highly diffused shock capturing.

Fig. 4.15d shows the evolution of the pressure coefficient distribution with respect
to the mesh density for the switching function reformulation implementation. Similar
problems as for the original DARTFlo implementation arise. Despite the shock position
convergence, the pressure distributions do not converge during the mesh refinement since

- 40 -



4.2. WEAK SHOCK TEST CASE

over- and under-shoots increase as the surface mesh is refined until the solver convergence
is prevented. Moreover, this stabilisation solution also experiences short-wavelength oscil-
lations in the supersonic region of the flow. Thenceforward, a mesh-dependency can be
retrieved based on these observations which place this implementation in front of the same
problem as with the original density upwinding solution.

(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.0065.

(c) Sonic density bias 3.2. (d) Switching function reformulation 3.3.

Figure 4.15: Evolution of the pressure coefficient distribution Cp with respect to the
surface mesh size with a fixed farfield mesh size at 1/2 of the chord length for the
different stabilisation solutions in the weak shock test case.

The farfield mesh size is increased to 1 of the chord length in Fig. 4.16 where the
pressure distribution evolutions are recomputed for all the stabilisation solutions. First,
the impact of the farfield mesh size on the pressure distribution is evaluated in the original
DARTFlo implementation case. Fig. 4.16a shows that when the farfield mesh gets
coarser, the shock capturing starts to degenerate, the shock position and the pressure
distribution become highly variable depending on the surface mesh size and the mesh is
too diffusive to correctly capture any shock since no steep pressure drop is discerned. In
addition, the oscillations in the supersonic regions observed in the 0.5 farfield mesh case
are slightly accentuated.
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The fixed length correction results illustrated in Fig. 4.16b for a farfield mesh equal
to 1 of the chord length still bring out improved results compared to the original imple-
mentation. The pressure distribution as well as the shock location respectively converge
towards one single curve or chordwise position when the surface mesh is sufficiently refined.
However, long-wavelength oscillations are observed before the shock in the supersonic zone,
probably due to the farfield mesh which becomes slightly too coarse to maximise the results
accuracy inducing a large growth mesh rate.

Concerning the sonic density bias solution, as described in the previous mesh config-
uration, no shock capturing is enabled with this stabilisation solution since the artificial
viscosity introduces too much diffusion. The latter conclusion is still valid for a farfield
mesh size equal to one of the chord length.

Fig. 4.16d depicts the evolution of the pressure distribution with respect to the surface
mesh for a farfield mesh size of one of the chord length computed with the switching
function reformulation. The same conclusions as for the original implementation can be
drawn i.e. the shock capturing is degenerated when the farfield mesh size becomes coarse.
The shock location does not converge anymore with respect to the surface mesh size nor
the pressure distribution. In addition, the short-wavelength oscillations in the leading edge
region of the airfoil suction side are still appearing as well as large wavelength in all the
supersonic regions. One improvement with respect to the equivalent mesh configuration
with the original implementation is the shock capturing. Even if no convergence is observed
for the pressure distribution curve and the shock position, a pressure drop is observed
transcribing a shock capturing.
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(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.0065.

(c) Sonic density bias 3.2. (d) Switching function reformulation 3.3.

Figure 4.16: Evolution of the pressure coefficient distribution Cp with respect to the
surface mesh size with a fixed farfield mesh size at 1 of the chord length for the
different stabilisation solutions in the weak shock test case.

Lastly, the farfield mesh size gets coarser to 3 times the chord length as illustrated
in Fig. 4.17. For each stabilisation implementation, heavy oscillations emerge in the su-
personic region of the airfoil suction side. A too coarse farfield mesh is the only reason
producing these oscillations. From a certain threshold of mesh size at the domain bound-
aries, the mesh growth rate between the surface and the farfield is too large. This implies
that the mesh quickly becomes too coarse to capture any physics in the supersonic regions.
In other words, the evolution from the surface where the mesh is highly refined to the
farfield at 3 times the chord length is too fast such that even in the suction side near-field,
the mesh is too coarse.
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(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.0065.

(c) Sonic density bias 3.2. (d) Switching function reformulation 3.3.

Figure 4.17: Evolution of the pressure coefficient distribution Cp with respect to the
surface mesh size with a fixed farfield mesh size at 3 of the chord length for the
different stabilisation solutions in the weak shock test case.

4.2.5 Discussion

In this section, the results obtained for the different stabilisation processes in the weak
shock test case are discussed.

In the weak shock test case, original DARTFlo implementation and more precisely,
the density upwinding demonstrated its high mesh-dependency through oscillations ap-
pearing in the supersonic zone when the surface airfoil mesh is refined and the variable
pressure distribution depending on the mesh configuration. The latter phenomena imply
that over- and under-shoots are progressively created during the refinement of the mesh
which consequently kills the solver convergence. However, reliable results can be computed
for well-chosen mesh sizes. The farfield mesh size must be imperatively finer than 1 of the
chord length in order to avoid as much as possible strong oscillations in the supersonic
regions and to decrease the mesh growth rate. In addition, the start of the convergence
has been observed from surface mesh sizes finer than 1/100 of the chord such that the flow
physics can be more or less correctly captured in the most sensitive regions of the flow.
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Although reliable results can be reached for precise mesh sizes, the local flow parameters
stay highly mesh-dependent such that the results vary from one mesh size to another.

The analysis of the fixed length correction demonstrated that improved results could
be achieved in the weak shock test case. The mesh-dependency clues cited in the original
DARTFlo implementation analysis are withdrawn. Mesh convergence is facilitated by
increasing the solver refinement capability. In addition, converged mesh sizes enable to
reach solutions which do not vary with the mesh anymore. Mesh-independent results are
attained by setting the farfield mesh sizes at finer values than 1 coupled with surface mesh
sizes smaller than 1/1000 of the chord length. Given the improvements derived by this
stabilisation solution, it should be further investigated in other test cases.

Concerning the sonic density bias, it illustrated during the lift and drag coefficients
analysis that improvements were possible to increase the mesh convergence range. How-
ever, the local analysis highlighted no shock capturing due to high numerical diffusivity.
Therefore, this stabilisation solution is discarded from further analysis.

Lastly, the last stabilisation solution that has been implemented is the reformulation
of the switching function. Both global and local analyses proved that similar mesh-
dependency problems were observed in the weak shock test case. The problem experienced
by DARTFlo with its original density upwinding has simply been reformulated in another
form. Indeed, the reformulated switching function is a rearranged expression of the original
one based on equivalent flow parameters. Consequently, this stabilisation implementation
is excluded from further analyses.

4.3 Strong shock test case

In this section, the stabilisation solutions are tested in a strong shock test case. Firstly, the
strong shock test case is described. Then, the different stabilisation solutions are compared
based on the different parameters detailed earlier. Lastly, the results are discussed.

4.3.1 Case description

The strong shock test case aims to set up a two-dimensional transonic flow with an embed-
ded strong shock within the local Mach number validity range for the potential assumption
(Mn < 1.3). The Mach numbers corresponding to transonic flows is identical to the ones
defined for the previous test case. Concerning the shock strength, a strong shock is con-
sidered as a large change in the flow parameters and a local Mach number just before the
shock around 1.2 - 1.25. The same airfoil as the one used in the weak shock test case is
considered, the RAE2822 supercritical airfoil. These requirements lead to the test case
configuration summarised in Tab. 4.3.
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Airfoil Mach number M [−] Angle of attack α [◦] Dimensions
RAE2822 .73 1. 2D

Table 4.3: Flow characteristics of the strong shock test case.

As illustrated in appendices Sec. B.2, the configuration detailed in Tab. 4.3 meets
the test case requirements. The computational domain for this strong shock test case is
exactly the same as for the weak shock test case illustrated in Fig. 4.3.

4.3.2 Reference solution

In the strong shock test case, the reference solution evaluation is based on the same method-
ology as for the first test case. Firstly, one converged mesh is determined. Thereafter, the
different numerical schemes as well as their parameters are studied with the aim to build
the optimal numerical configuration.

Given that the weak and strong shock test case describes almost the same physics apart
the shock strength, the converged mesh can be considered the same. Therefore, based on
the mesh convergence analysis performed for the evaluation of the reference solution for
the weak shock case, the mesh characteristics can be summarised in Tab. 4.4.

Farfield mesh size [−] Surface mesh size [−]
1 .002

Table 4.4: SU2 converged mesh characteristics of the strong shock test case.

Based on the latter converged mesh, the numerical schemes are studied. For the
JST central scheme, the same process is performed concerning the scalar dissipation. In
Fig. 4.18, the influence of the fourth order dissipation coefficient on the shock capturing is
assessed with the default second order dissipation coefficient. The smaller the coefficient,
the more the over- and under-shoots are reduced leading to choose the smallest value.
However, the extreme coefficient values illustrated in the figure are the SU2 convergence
bounds. Thenceforth, 4th order dissipation coefficient is set at the smallest value allowing
solver convergence which is at 0.01.

The process is inverted to study the impact of the second order dissipation coefficient on
the solution by fixing the fourth one at the optimal value. It is observed in Fig. 4.19 that
the larger the second order coefficient, the smaller the over- and under-shoots. However,
another important point to note is from a value around 0.8, the second order dissipation
coefficient has no impact on the pressure coefficient distribution anymore. Therefore, it can
be concluded that the optimal configuration is reached when the second order dissipation
coefficient is equal to 0.8.
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(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the strong shock.

Figure 4.18: Influence study of the 4th order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the by-default 2nd order
dissipation coefficient for the strong shock test case.

(a) Evolution of the pressure coefficient distribu-
tion.

(b) Zoomed in pressure drop zone corresponding to
the strong shock.

Figure 4.19: Influence study of the 2nd order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the optimal 4th order dissipa-
tion coefficient for the strong shock test case.

Concerning the analysis of the ROE scheme and its numerical parameters, the valid-
ity of the limiters applied on the scheme is assumed to be the same illustrated for the
weak shock test case in Fig. 4.7. Henceforth, Venkatakrishnan limiters are added to the
ROE numerical scheme. Then, the dissipation relaxation coefficient is varied. Fig. 4.20
brings into light that this coefficient has almost no impact on the pressure coefficient dis-
tribution. Consequently, the default value is selected to build the optimal ROE numerical
configuration.
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Figure 4.20: Influence study of the dissipation relaxation coefficient ROE kappa in ROE
scheme using SU2 based on the converged mesh with Venkatakrishnan limiters for the
strong shock test case.

Lastly, both optimal numerical configurations are compared based on their pressure
coefficient distribution in Fig. 4.21. The latter provide extremely similar results in terms
of pressure distribution. Consequently, referring to the selection criterion mentioned in
Sec. 4.1.2, both configurations can be identified as an optimal one. Henceforth, for con-
sistency, the optimal numerical configuration for the strong shock test case is the JST
central scheme with second and fourth order dissipation coefficients respectively equal to
(0.8, 0.01).

Figure 4.21: Comparison between the optimal numerical configuration determined for
both JST and ROE scheme in the strong shock test case context using SU2 and the
converged mesh.

As a conclusion, the reference solution for the strong shock test case is defined using
SU2 based on the Euler equations discretised with Jameson-Schmidt-Turkel scheme setting
with second and fourth order dissipation coefficients defined at (0.8, 0.01).
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Aerodynamic coefficient Value
Cl [−] .63
Cd [−] .0012

(a) Aerodynamic coefficients of the reference so-
lution.

(b) Pressure coefficient distribution of the refer-
ence solution.

Figure 4.22: Characteristics of the reference solution for the strong shock test case.

4.3.3 Fixed length selection

As explained in the solution description of the fixed length correction, the fixed length has
to be determined in relation to the test case.

In this section, the influence of the fixed length L [m] on the aerodynamic coefficients is
studied in a strong shock test case. The most suitable value is evaluated with the objective
of performing a mesh convergence analysis using the fixed length correction described in
Sec. 3.1.

The same analysis methodology as for the weak shock test case is applied. Different
mesh size configurations are fixed and then, the fixed length L [m] is varied to determine
the most suitable value. Fig. 4.23 represents the evolution of the aerodynamic coefficients
with respect to fixed length for different mesh configurations. The first observation is the
independence of the aerodynamic coefficients in relation to the fixed length which proves
that introducing this additional parameter does not increase the number of variables in
the solver. In addition, in the strong shock test case, finding a length range leading to
solver convergence becomes much more difficult since it is narrowed compared to the weak
shock test case. For example, in Fig. 4.23c and 4.23d, for a farfield mesh size of 1 and a
surface mesh size equal to 1/500 of the chord length, the solver converges for one single
fixed length value. However, the evolution of the convergent length range with respect to
the mesh configurations seems to behave as for the weak shock test case. The fixed lengths
also decrease with the surface mesh sizes until reaching a certain threshold for which it
converges. Thenceforth, the average of each convergent length range are computed and
shown in Fig. 4.24. It can be seen that for sufficiently refined surface mesh sizes, the
averaged optimal fixed length converges to the same value. As a conclusion, based on
Fig. 4.24, the fixed length L [m] is chosen at 0.008 in the strong shock test case to
perform the mesh convergence analysis using the fixed length correction.
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(a) Farfield mesh size = 0.5. (b) Farfield mesh size = 0.5.

(c) Farfield mesh size = 1. (d) Farfield mesh size = 1.

Figure 4.23: Evolution of the aerodynamic coefficients with respect to the fixed length L
for different fixed mesh size configurations in the strong shock test case.

Figure 4.24: Evolution of the averaged converging fixed length for the different mesh
configurations in the strong shock test case.
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4.3.4 Results comparison

In this section, the original and fixed length correction implementations are compared
in the context of the strong shock test case. Firstly, the evolution of the lift Cl and
the drag Cd coefficients with respect to the mesh density is studied to characterise the
mesh-dependency of the original implementation and observe the improvements of the
new stabilisation process described in Chap. 3. Secondly, the pressure coefficient Cp

distributions with respect to mesh sizes are compared to gain insight on the local behaviour
of the flow computed based on the different implementations. The process of analysing the
results is conducted in two phases. First, the original implementation is studied in order
to characterise the mesh dependency of the global and local results. Then, the results
obtained with the fixed length implementation are compared to the original to highlight
possible improvements. Note that the observations drawn in the weak test case have been
taken into account to drive the mesh convergence analysis.

Lift and drag coefficients

Firstly, the lift coefficient Cl is studied. Fig. 4.25b illustrates the evolution of the lift
coefficient with respect to the mesh density for the original DARTFlo and fixed length
correction implementation in the strong shock test case. The increase in shock strength
makes mesh convergence somewhat more complicated based on the original implementation
of DARTFlo. A start of the convergence is initialised from a mesh surface equal to 1/100

of the chord length. However, the results computed with the finest mesh sizes in Fig. 4.25a
are not fully converged since the mesh could not be further refined. The observation
concerning the farfield mesh size explained in the weak shock test case is also valid for
this test case. A farfield mesh size finer or equal to 1 [−] is considered as converged since
the curves are almost superimposed in Fig. 4.25. The results obtained with the original
DARTFlo implementation can be compared with those computed with SU2. DARTFlo
results globally converge to the same lift coefficient range taking into the different levels
of fidelity as well as the mesh convergence is not fully completed.

The fixed length correction lift coefficient evolution is depicted in Fig. 4.25b. A slight
mesh convergence improvement can be detected for a farfield of 0.5 [−]. On the other hand,
the mesh convergence is reduced for the farfield of 1 [−] configuration. This phenomena
is entirely due to the difficulty of determining a perfectly suitable fixed length. However,
a convergence improvement is achieved for farfield mesh sizes for which the fixed length is
optimal. For example, in this test case, the fixed length has been chosen for a farfield mesh
size equal to 0.5 [−] which directly induces a convergence improvement. Another point to
notice is that introducing a correction in the DARTFlo density upwinding formulation
does not affect the results since the curves are similar whatever the implementation.
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(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.008.

Figure 4.25: Evolution of the lift coefficient Cl with respect to the mesh density for the
original DARTFlo stabilisation solution and fixed length correction in the strong shock
test case.

Secondly, the drag coefficient Cd is analysed. Fig. 4.26 shows the evolution of the
drag coefficient with respect to the mesh density for the original DARTFlo and the fixed
length correction implementations in the strong shock test case. Based on the drag plot,
the conclusions concerning the mesh sizes are validated. The results start to converge from
a surface mesh size equal to 1/100 of the chord length and a farfield mesh size from 1 is
considered as converged. Moreover, the drag coefficient is slightly under-estimated with
respect to the higher level of fidelity which is expected due to the difference between the
approximations in the aerodynamic model. The convergence improvement is confirmed in
Fig. 4.26b for the farfield mesh size of 0.5 since the surface mesh can be further refined.

(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.008.

Figure 4.26: Evolution of the drag coefficient Cd with respect to the mesh density for the
original DARTFlo stabilisation solution and fixed length correction in the strong shock
test case.
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Pressure coefficient distributions

The section aims at analysing the influence of the mesh density on the pressure coefficient
distributions in the strong shock test case for the original DARTFlo and fixed length
correction implementations.

Fig. 4.27 summarises the case for a fixed farfield mesh size of 0.5. The original DART-
Flo implementation provides relatively relevant results since the shock position as well as
the pressure distribution converge for surface mesh sizes from 1/200 of the chord length.
The curves associated to finer surface mesh are mostly superimposed except in the re-
gions just before and after the shock where under- and over-shoots still evolve with the
surface mesh size. These numerical instabilities interrupt the convergence from a certain
surface mesh threshold. In addition, short-wavelength oscillations can be detected in the
supersonic region, sign of mesh-dependency. However, the shock strength is similar to the
reference solution.

In comparison, the evolution of the pressure distribution computed with the fixed length
correction implementation is depicted in Fig. 4.27b. Firstly, the shock strength is increased
when using this stabilisation solution compared to the original DARTFlo implementa-
tion. Therefore, this implementation drives the results in the wrong accuracy direction
since the shock strength defined by a higher level of fidelity (SU2) is lower. Secondly, the
pressure distribution curve almost converges with respect to the mesh refinement given
that the difference between the two finest mesh configurations is small. However, com-
pared to the original DARTFlo implementation, the local flow convergence is degraded
since the pressure distribution convergence is not fully complete with the fixed length cor-
rection. Lastly, the oscillations occurring in the supersonic regions are attenuated when
using the fixed length correction proving improvements concerning mesh-dependency. As
a conclusion, the fixed length correction seems to deteriorate the solution computations
despite the convergence and mesh-dependency improvements in the strong shock test case.
One of the possible reasons is the difficulty to determine an optimal fixed length L [m].
Choosing a best-suited fixed length would maybe have enabled to further refine the mesh
and illustrate the mesh-independent solutions.
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(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.008.

Figure 4.27: Evolution of the pressure coefficient distribution Cp with respect to the
surface mesh size with a fixed farfield mesh size at 1/2 of the chord length for the
different stabilisation solutions in the strong shock test case.

Henceforth, the farfield mesh size is increased to 1 to evaluate its impact on the pressure
distribution using both original DARTFlo and fixed length correction implementations in
the strong shock test case. Concerning the original DARTFlo implementation, increasing
the farfield mesh prevents the pressure distribution convergence observed for a farfield
mesh size of 0.5 illustrated in Fig. 4.27a since except the shock position, the pressure
distribution keeps evolving with the surface mesh refinement. In addition, the appearance
of large oscillations in the supersonic zone shows that using a farfield mesh size of one or
larger starts to become too coarse to enable the perfect stabilisation of the local supersonic
flow. However, the shock position approaches the one computed with SU2.

Fig. 4.28b represents the evolution of the pressure coefficient using the fixed length
correction. As for the original implementation, strong oscillations are noticed in the super-
sonic zones which are larger than the ones developed in the original DARTFlo density
upwinding case. Although the pressure distribution does not converge during the mesh
refinement, the shock position does and tends to the reference one.

Comparing the supersonic zone computed with both implementations, the original
DARTFlo implementation illustrates essentially short-length oscillations while the fixed
length correction expresses chaotic behaviour of the local flow. These different types of
oscillations stem from two different sources. On the one hand, the short-wavelength oscilla-
tions are initiated by the mesh-dependency of the density upwinding as already explained
in previous analyses. On the other hand, the chaotic behaviour appears due to the farfield
mesh size which stands at the limit of the convergence established earlier.

- 54 -



4.3. STRONG SHOCK TEST CASE

(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.008.

Figure 4.28: Evolution of the pressure coefficient distribution Cp with respect to the
surface mesh size with a fixed farfield mesh size at 1 of the chord length for the
different stabilisation solutions in the strong shock test case.

4.3.5 Discussion

In this section, mesh convergence analyses performed using both original DARTFlo and
the fixed length correction implementations are discussed in the context of the strong shock
test case.

The original DARTFlo implementation exhibited relatively accurate results. For
sufficiently refined mesh configurations, the pressure distribution converges to reach mesh-
independent solutions i.e. which do not vary with the mesh anymore in the strong shock
test case. In addition, the shock characteristics are similar to SU2 reference solution despite
the different levels of fidelity. Another important point to note is that a farfield mesh size
coarser than 1 leads to the appearance of oscillations in the supersonic zones of the flow
illustrating the start of the scheme instability.

As to the fixed length correction, the results seem to be degraded compared to original
density upwinding. Despite the convergence improvements obtained with an optimal fixed
length for certain mesh configurations and the short-wavelength oscillations stabilisation,
the pressure distribution graphs reveal that the solutions tend to the wrong accuracy
direction when the mesh-dependency is withdrawn. For a farfield equal to 0.5, the shock
strength is increased while it should at least stay unchanged or slightly decrease and the
shock position is a bit more delayed downstream. However, when the farfield mesh size is
coarsened, despite strong oscillations in the supersonic region, the shock position converges
towards SU2 location. This high variability of the solution is undoubtedly due to the
difficulty of determining an optimal fixed length in the strong shock test case. Therefore,
further analyses should be performed to draw a selection rule for the fixed length in this
type of cases.
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4.4 Three-dimensional test case

In this section, the stabilisation solutions are analysed in a three-dimensional test case.
Firstly, the three-dimensional test case is described. Then, the different stabilisation solu-
tions are compared based on the different parameters detailed earlier. Lastly, the results
are discussed.

4.4.1 Case description

The goal of the three-dimensional test case is to compare the different stabilisation solutions
on a commercial wing. The type of aircraft chosen as being a commercial reference is the
regional family which usually have a lift coefficient CL around 0.4− 0.45 [−]. Therefore, a
three-dimensional wing is designed based on common geometrical properties of commercial
regional aircraft to reach this lift coefficient target. The airfoil is the same as for the two-
dimensional cases, the RAE2822. The wing geometry is summarised in Tab. 4.5 and
depicted in Fig. 4.29. In addition, for the local flow analysis, different wingspan stations
are defined; the wing root, the mean aerodynamic chord (≈ 42%-span), 60%-span location
and the wingtip.

Figure 4.29: Top view of the three-dimensional wing designed to test the different sta-
bilisation solutions based on common regional aircraft.

Parameter
Span [m] 15.
Root chord [m] 5.
Taper ratio [−] .35
Sweep angle [◦] 25.
Twist angle [◦] -2.
Dihedral [◦] 0.

Table 4.5: Wing geometrical parameters for the three-dimensional test case.
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Airfoil Mach number M [−] Angle of attack α [◦] Dimensions
RAE2822 .794 1.5 3D

Table 4.6: Flow characteristics of the three-dimensional test case.

As illustrated in appendices Sec. B.3, the wing design achieves performance within the
lift coefficient target range for the regional aircraft class.

The computational domain is a rectangular box in three-dimensions. As for the two
dimensional cases, the symmetry plane and its parallel are scaled with respect to the wing
root chord length. The upstream and downstream surfaces are located at a distance of five
times the wing root chord length regarding respectively the leading and trailing edge of
the wing root airfoil as illustrated in Fig. 4.30 (left). The distance between the symmetry
and its parallel plane is set at two times the wing span as can be observed in Fig. 4.30
(right). As for the top and bottom surfaces, they are placed at five times the wing root
chord length away from the wing root airfoil.

Symmetry plane

5 × chord 5 × chord

1
0
×

ch
o
rd

chord

Span

2 × Span

1
0
×

ch
o
rd

Figure 4.30: Symmetry plane (left) and bottom (right) views of the three-dimensional
computational domain.

4.4.2 Reference solution

In the three-dimensional test case, the reference solution is determined based on the same
methodology as detailed in Sec. 4.1.2. Firstly, converged meshes are evaluated through
a mesh convergence analysis using by-default the JST central scheme with default scalar
dissipation. Then, different numerical schemes are tested and compared to assess the best
reference configuration.

Fig. 4.31 illustrates the evolution of the aerodynamic loads with respect to the wing
surface mesh size for different farfield mesh sizes. Note that the mesh sizes have been
non-dimensionalised by their associated airfoil chord lengths defining the different wing
planforms summarised in Tab. 4.5. Based on the mesh convergence analysis, a change in
the lift coefficient curve slope is observed for surface mesh sizes from 1/100 of the chord
lengths corresponding to the start of the convergence. Whereas from the drag evolution
graph, a convergence is observed from surface mesh sizes around 1/20 of chord lengths.
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Concerning the farfield mesh, the observations from previous test cases are verified since
from farfield mesh size equal to 1 [−], the lift evolution curves are similar and almost
superimposed.

As a conclusion, for the three-dimensional test case in SU2, the converged mesh char-
acteristics are summarised in Tab. 4.7.

Farfield mesh size [−] Surface mesh size [−]
1 .01

Table 4.7: SU2 converged mesh characteristics of the three-dimensional test case.

(a) Three-dimensional lift coefficient CL [−] mesh
convergence analysis.

(b) Three-dimensional drag coefficient CD [−] mesh
convergence analysis.

Figure 4.31: Mesh convergence analysis on the aerodynamic coefficients performed with
SU2 using the Jameson-Schmidt-Turkel convective scheme with by-default dissipation co-
efficients [57].

Based on the converged mesh configuration, the different numerical schemes described
in Sec. 4.1.2 are compared to determine the best SU2 reference solution. Firstly, the
Jameson-Schmidt Turkel scheme is studied by varying the different scalar dissipation co-
efficients. To begin, the second order dissipation coefficient is fixed at its default value to
enable the evaluation of the fourth order impact. Once the fourth order dissipation coef-
ficient value has been determined following the selection criterion described in Sec. 4.1.2,
the influence of the second order one is characterised to result with the best numerical
configuration based on JST scheme.

Fig. 4.32 illustrates the evolution of the pressure distribution at the wing root (y = 0)
with respect to the 4th order dissipation coefficient available in the JST central scheme
for a by-default fixed second order dissipation coefficient. The wing root has been chosen
for the analysis since this wing location provides the strongest shock and thus, the most
sensitivity to numerical parameters. Therefore, if the numerical configuration provides
good solutions at this location, it is automatically the case at the rest of the wing. The
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same 4th order dissipation coefficient analysis has been performed at another wingspan
station to prove the latter assumption in appendices Sec C.1.

The first observation that can be drawn is that the smaller 4th order dissipation coef-
ficient, the steeper the shock is while keeping a reasonable over-shoot. However, from a
value around 0.01, the pressure distribution converges since it does not vary anymore with
the dissipation coefficient. Therefore, a 4th order dissipation coefficient equal to 0.01 is the
optimal numerical choice for the JST model in the three-dimensional case.

(a) Evolution of the pressure coefficient distribution
at the wing root y = 0.

(b) Zoomed in pressure drop zone corresponding to
the shock at the wing root y = 0.

Figure 4.32: Influence study of the 4th order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the by-default 2nd order
dissipation coefficient for the three-dimensional test case.

Using the optimal 4th order dissipation coefficient, the impact of the 2nd order coefficient
is evaluated. Fig. 4.33 illustrates that the larger the coefficient, the smaller the over-shoot
while keeping a steep shock. From a certain threshold, the pressure distribution converges
in a steep shock almost without over- and under-shoots. Therefore, the optimal value for
the 2nd order dissipation coefficient is 0.8.
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(a) Evolution of the pressure coefficient distribution
at the wing root y = 0.

(b) Zoomed in pressure drop zone corresponding to
the shock at the wing root y = 0.

Figure 4.33: Influence study of the 2nd order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the optimal 4th order dissipa-
tion coefficient for the three-dimensional test case.

The second numerical scheme studied in the scope of the reference solution compu-
tations is the ROE upwind scheme in which a dissipation relaxation coefficient can be
played with. No reference solution for the three-dimensional test case could be computed
whatever the coefficient value since the solver never converges. Therefore, the optimal
numerical configuration to compute the SU2 reference solution for the three-dimensional
test case is derived based on the JST central scheme with the second and fourth order dis-
sipation coefficients set to (0.8, 0.01). As a conclusion, the reference solution aerodynamic
coefficients are summarised in Tab. 4.8.

Aerodynamic coefficient Value
CL [−] .43
CD [−] .013

Table 4.8: Aerodynamic coefficients of the reference solution.
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4.4.3 Fixed length selection

As explained in the solution description of the fixed length correction, the fixed length has
to be determined in relation to the test case.

The fixed length L [m] used to correct the original DARTFlo density upwinding has to
be determined with the objective of subsequently performing a mesh convergence analysis.

The selection is conducted as follows, several fixed mesh configurations are constructed
and then, the fixed length is varied to observe its influence on the aerodynamic coefficients.
Fig. 4.34 depicts the evolution of the aerodynamic coefficients with respect to the fixed
length L for different mesh configurations. Firstly, the independence of the parameters
with respect to the fixed length is still observed in the three-dimensional test case i.e.
parameters do not vary with L. In addition, it can be deduced that from a certain mesh
threshold, the convergent length ranges almost converge. Indeed, from surface mesh sizes
equal to 1/50 of the chord lengths, the fixed lengths allowing the solver convergence tend
to the same range of validity. However, in a three-dimensional case, defining the optimal
fixed length is much more difficult since the surface mesh size varies within a large range
of values along the span.

The averages of the different convergent fixed length ranges are calculated to demon-
strate which would be the most optimal value for the three-dimensional case. Fig. 4.35
illustrates that from surface meshes finer than 0.02 [−], the means converge to relatively
different values depending on the farfield mesh size. In addition, since the results are illus-
trated for adimensionalised surface mesh sizes, the choice of the fixed length is biased. In
reality, the element size at the wing root and wingtip is different inducing that an optimal
fixed length for the wing root is not necessarily optimal for wingtip element size. There-
fore, choosing an optimal fixed length for the entire wing would deserve deeper analyses
about the selection process. However, based on Fig. 4.35, a fixed length is determined. In
order to perform the mesh convergence analysis in the next section, the fixed length L [m]

is chosen at 0.1.
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(a) Farfield mesh size = 0.5. (b) Farfield mesh size = 0.5.

(c) Farfield mesh size = 1. (d) Farfield mesh size = 1.

Figure 4.34: Evolution of the aerodynamic coefficients with respect to the fixed length L
for different fixed mesh size configurations in the three dimensional test case.

Figure 4.35: Evolution of the averaged converging fixed length for the different mesh
configurations in the three dimensional test case.
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4.4.4 Results comparison

In this section, the original and fixed length correction are compared in the context of the
three dimensional test case. Firstly, the evolution of the lift CL and the drag CD coefficients
with respect to the mesh density is studied to characterise the mesh-dependency of the
original implementation and observe the improvements of the new stabilisation processes
described in Chap. 3. Secondly, the pressure coefficient Cp distribution with respect to
mesh sizes are compared to gain insight on the local behaviour of the flow computed based
on the different implementations.

The process of analysing the results is conducted in two phases. First, the original
implementation is studied in order to characterise the mesh dependency of the global and
local results. Then, the results obtained with the new implementation are compared to the
original to highlight possible improvements. Note that the observations drawn in the weak
shock and strong shock test cases are taken into account to drive the mesh convergence
analysis.

Lift and drag coefficients

In the first instance, the lift coefficient CL is analysed. Fig. 4.36 illustrates its evolution
with respect to the mesh density for both the original DARTFlo density upwinding and
the fixed length correction in the three dimensional test case. Based on original DARTFlo
results, a change in the lift curve slope can be observed from surface mesh sizes equal to
1/50 of the chord lengths in Fig. 4.36a. Depending on the farfield mesh size, the results
are either over-estimated with respect to SU2 reference solution or similar illustrating a
relative mesh-dependency. For example, the finest mesh configuration induces a relative
error around 6% in relation to the reference solution.

Concerning the fixed length correction, Fig. 4.36b highlights a slight reduction in
convergence compared to the original density upwinding due to the difficulty of finding an
optimal fixed length for the entire wing. However, the lift coefficient curves are getting
closer to the SU2 reference solution. For example, the finest mesh configuration results in
a relative error equal to 5%. In addition, the mesh-dependency is partially removed since
the curves are almost superimposed compared to the original DARTFlo implementation
for which the lift coefficient evolution curves are distinct.
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(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.1.

Figure 4.36: Evolution of the lift coefficient CL with respect to the mesh density for
the original DARTFlo stabilisation solution and fixed length correction in the the three-
dimensional test case.

Secondly, the drag coefficient CD is studied. Its evolution with respect to the mesh
density for the two stabilisation solutions retained after both two-dimensional test cases is
plotted in Fig. 4.37. The observations concerning the mesh convergence are verified based
on the drag evolution curves. The start of the convergence is detected from surface sizes
around 1/50 of the chord lengths. The influence of the farfield mesh size on drag coefficient
evolution is noticeable illustrating mesh-dependency phenomena. However, the fixed length
correction provides a slight improvement since the curves for the different farfield mesh
sizes get closer compared to the original DARTFlo implementation. In addition, the
drag coefficient for both implementations is under-estimated which is expected due the
difference of levels of fidelity.

(a) Original DARTFlo implementation 2.4.2. (b) Fixed length correction 3.1 with L = 0.1.

Figure 4.37: Evolution of the drag coefficient CD with respect to the mesh density for
the original DARTFlo stabilisation solution and fixed length correction in the the three-
dimensional test case.
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Pressure coefficient distributions

This section aims to gain insight into the local behaviour of the flow at different positions
along the span with the pressure coefficient distributions are studied.

Firstly, the local flow at the wing root is analysed in Fig. 4.38 describing the strongest
shock experienced on the wing. The original DARTFlo implementation with a farfield
mesh size equal to 0.5 presents a shock position which has more of less converged with the
surface mesh refinement. This position sticks with the reference solution which proves that
similar results can be obtained with different aerodynamic levels of fidelity. However, the
pressure distribution does not converge with respect to the surface mesh for a farfield of
0.5 as observed in Fig. 4.38a. Indeed, the pressure curve for a surface mesh size equal to
1/50 of the chord lengths is almost fully superimposed with the SU2 solution while for a
doubly refined surface mesh, the pressure distribution keeps varying since a stronger over-
and under-shoot appears. It clearly illustrates the results mesh-dependency experienced
by the full potential solver.

Coarsening the farfield mesh size depicted in Fig. 4.38c enables the pressure distri-
bution to more or less converge. When the surface mesh size is refined finer than 1/100

of the chord lengths, the curves overlap and therefore almost merge. The pressure drop
characterising the shock becomes steeper than SU2 which gets closer to the definition of
a shock i.e. a discontinuity in the flow. In addition, the appearance of short-wavelength
oscillations is noticed in the supersonic regions of the suction and pressure sides for a re-
fined surface mesh to 1/200 of the chord lengths. These oscillations show that extremely
refining the surface mesh makes the numerical scheme unstable. Consequently, it can be
deduced that the stabilisation process loses some of its effectiveness when the mesh is re-
fined, illustrating the mesh-dependency. As already explained earlier, since DARTFlo
density upwinding depends on the mesh, the artificial viscosity effect is attenuated when
the mesh in the supersonic zones is highly refined leading the solver to become less and
less stable in these sensitive areas.

Fig. 4.38b and 4.38d demonstrate the evolution of the pressure distribution at the wing
root based on the fixed length correction implementation with respect to the mesh density.
Firstly, refining the surface mesh enables to almost converge the pressure distribution
since the difference between the two finest mesh configuration moves the shock position
by 1% which is negligible. Therefore, from a certain threshold, mesh refinement has only
a minimal impact on the results. In addition, this approximate mesh convergence enables
the results to get closer to the higher level of fidelity. However, compared the original
DARTFlo implementation, the over- and under-shoots are larger involving an increase
in the shock strength.

Then, the farfield mesh size is coarsened to 1 and the impact is studied. A priori, the re-
sults convergence is cancelled for the fixed length correction since the pressure distribution

- 65 -



4.4. THREE-DIMENSIONAL TEST CASE

does not tend to a single curve. The difficulty to determine an optimal fixed length for the
correction is an important limiting factor when the mesh is extremely refined. In addition,
another limiting factor of the three-dimensional analysis is the computational power since
large numbers of elements are directly induced when the surface mesh is refined. Indeed,
the mesh convergence analysis as well as the fixed length selection require repetitive simu-
lations. For example, if the surface mesh size could have been refined further than 1/100

of the chord lengths based on the fixed length correction, the results mesh-independency
could have been confirmed as the purple curve corresponding to the finest surface mesh size
in Fig. 4.38d converges towards SU2 reference pressure distribution. However, the oscilla-
tions experienced by the original density upwinding implementation described previously
are attenuated in the supersonic regions illustrating the slight improvement brought by
the fixed length correction for the mesh-dependency.

(a) Original DARTFlo implementation with a
farfield mesh size = 0.5.

(b) Fixed length correction implementation with a
farfield mesh size = 0.5 and L = 0.1.

(c) Original DARTFlo implementation with a
farfield mesh size = 1.

(d) Fixed length correction implementation with a
farfield mesh size = 1 and L = 0.1.

Figure 4.38: Evolution of the pressure coefficient Cp distribution with respect to the mesh
density for both original DARTFlo and fixed length correction implementations at the
wing root (y = 0 m) in the three dimensional test case context.

Afterwards, the same analysis is performed at the mean aerodynamic chord in Fig. 4.39.
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At this spanwise station, the angle of attack becomes ≈ 0.66 degrees due to the twist angle
inducing a weaker shock slightly moved upstream. Concerning the original DARTFlo
implementation, the same conclusions as the root station can be drawn. The shock po-
sition converges with the mesh refinement while the pressure distribution keeps evolving
illustrating the mesh-dependency of the stabilisation density upwinding. In addition, for
highly refined surface meshes, the oscillations appearing on the suction and pressure sides
demonstrate that the more the mesh is refined, the less the stabilisation effect of the density
upwinding acts on the supersonic regions.

Increasing the farfield mesh size leads to a slight improvement in the results convergence
since the difference observed between the two finest mesh configurations illustrated in
Fig. 4.39c is minimal. However, the oscillations become heavier further destabilising the
numerical scheme. This can be explained by the presence of a too large mesh growth factor
leading to a fast mesh evolution between the body surfaces and the domain boundaries.
Therefore, the mesh in the shock zone becomes quickly too coarse to correctly capture all
the physics.

Concerning the fixed length correction, the mesh convergence is globally better than the
original implementation since from a certain surface mesh size, the change in the pressure
distribution and the shock position is of the order of 2%. However, stronger over- and
under-shoots are experienced over-estimating the shock strength with respect to SU2. In
addition, compared to the previous wingspan station, it can be observed in Fig. 4.39d
that small oscillations are present on both suction and pressure sides with the fixed length
correction. This is in contradiction with the results at the wing root for which these short
oscillations were attenuated compared to the original density upwinding implementation.

If the farfield mesh size is coarsened to 1, the mesh convergence disappears since the
pressure curves keep varying with respect to the mesh density. In addition, the oscillations
observed for a finer mesh, get heavier in Fig. 4.39d. Therefore, at this farfield mesh size
and wingspan station, the solution seems to be deteriorated with respect to the original
density upwinding.
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(a) Original DARTFlo implementation with a
farfield mesh size = 0.5.

(b) Fixed length correction implementation with a
farfield mesh size = 0.5 and L = 0.1.

(c) Original DARTFlo implementation with a
farfield mesh size = 1.

(d) Fixed length correction implementation with a
farfield mesh size = 1 and L = 0.1.

Figure 4.39: Evolution of the pressure coefficient Cp distribution with respect to the mesh
density for both original DARTFlo and fixed length correction implementations at the
mean aerodynamic chord (y ≈ 6.3 m) in the three dimensional test case context.

As the study position moves away from the wing root, the angle of attack decreases
and thus, the shock strength is reduced and the shock position keeps moving upstream. At
60% of the wingspan (y = 9 m), the angle of attack becomes 0.3 degrees. Fig. 4.40 depicts
the evolution of the pressure distribution at this wing station with respect to the mesh
density. As observed for the original DARTFlo implementation, the shock capturing
converges since from a surface mesh size equivalent to 1/50 of the chord lengths, the
pressure distribution at the shock position does not vary anymore with the mesh. However,
the mesh-dependency is still illustrated by the short-wavelength oscillations occurring in
the supersonic zone. Henceforth, the farfield mesh size is increased to 1 reinforcing the
oscillations on the suction side due to a larger mesh growth rate. However, the local
flow at the shock still converges with respect to the surface mesh since both curves are
superimposed.

Concerning the fixed length correction results illustrated in Fig. 4.40b and 4.40d, the
conclusions are different depending the farfield mesh size. For a farfield mesh size equal
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to 0.5, the correction does not greatly improve the local flow since as for the original
implementation, oscillations occur on the supersonic suction side of the airfoil even if they
are attenuated with the fixed length correction. In addition, the pressure curves at the
shock position are still moderately modified with refined mesh sizes while with DARTFlo
density upwinding, the pressure distribution converges. In other words, in this case, the
results seem to be improved on some aspects and degenerated on others by the correction.
However, when the farfield is coarsened, the fixed length correction limits the degradation
of the results by containing the development of stronger oscillations and by keeping a
certain convergence of the results with respect to the mesh.

More globally, comparing both implementations with respect to the reference solu-
tion, the results obtained based on the fixed length correction are closer to SU2 reference
which represents a higher aerodynamic level of fidelity. This illustrates that based on the
correction, the results are not degraded and even are slightly more accurate.

(a) Original DARTFlo implementation with a
farfield mesh size = 0.5.

(b) Fixed length correction implementation with a
farfield mesh size = 0.5 and L = 0.1.

(c) Original DARTFlo implementation with a
farfield mesh size = 1.

(d) Fixed length correction implementation with a
farfield mesh size = 1 and L = 0.1.

Figure 4.40: Evolution of the pressure coefficient Cp distribution with respect to the mesh
density for both original DARTFlo and fixed length correction implementations at 60%
of the wingspan (y = 9 m) in the three dimensional test case context.
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The last station to be studied is the wingtip. Since a tip vortex singularity inducing
an infinite local velocity is experienced by three-dimensional configurations in DARTFlo
[27], studying the local flow at 95% of the wingspan is preferable. The flow variation
between the wingtip and the 95%−wingspan station is considered to be minimal. At this
wing location, the angle of attack is negative. No more shock is triggered in the flow. It
can be observed that whatever the mesh configuration or the stabilisation implementation,
the local flow undergoes strong oscillations. The main reason is the development of wingtip
vortices which have an impact on the near-flow and require finer surface meshes than those
used in this case to properly capture the local flow. Therefore, observing the improvements
of the fixed length correction is difficult at this wingspan station.

(a) Original DARTFlo implementation with a
farfield mesh size = 0.5.

(b) Fixed length correction implementation with a
farfield mesh size = 0.5 and L = 0.1.

(c) Original DARTFlo implementation with a
farfield mesh size = 1.

(d) Fixed length correction implementation with a
farfield mesh size = 1 and L = 0.1.

Figure 4.41: Evolution of the pressure coefficient Cp distribution with respect to the mesh
density for both original DARTFlo and fixed length correction implementations at the
wingtip (y = 14.25 m) in the three dimensional test case context.
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4.4.5 Discussion

In this section, the results obtained for the different stabilisation processes in the three-
dimensional test case are discussed.

The original DARTFlo implementation re-exhibits its mesh-dependency through dif-
ferent observations. Depending on the spanwise location, the local flow keeps varying with
the mesh density. In addition, from a certain surface mesh size, short-wavelength oscil-
lations are triggered by the stabilisation process mesh-dependency. However, DARTFlo
illustrated quite accurate results with respect to the SU2 reference solution. As observed
with the pressure distributions, the shock position computed with the original DARTFlo
implementation closely meets the SU2 prediction with an averaged relative error of ≈ 1.5%.
However, the aerodynamic coefficient analysis demonstrated that the farfield mesh size had
still a small impact on the results. In other words, refining the farfield mesh size from 1
to 0.5 has an influence of 6% on the results.

The analysis of the fixed length correction has demonstrated that some improvements
could be achieved regarding the mesh dependency limited by the choice of the fixed length
in the three dimensional case. The surface element size largely varying along the span, it
inevitably induces non-optimal fixed length everywhere over the three-dimensional wing. In
addition, another limiting factor to the analysis has been the computational power available
in the simulation computer for the three-dimensional test case. The mesh convergence and
the fixed length selection processes require repetitive simulations. However, when the
mesh is highly refined, large number of elements is treated resulting in simulations of
several hours. With more CPU power, the improvements provided by the fixed length
correction might have been more blatant. Therefore, further analyses should be conducted
concerning the fixed length selection in three-dimensional case.

4.5 Discussion

Solutions based on the different stabilisation implementations were studied in the three
different test cases. The weak shock test case has revealed that the sonic density bias
solution and the switching function reformulation do not improve the mesh dependency
of the results. However, great improvements have been obtained using the fixed length
correction since mesh-dependency is almost withdrawn and mesh convergence is much
enhanced. Therefore, the sonic density bias and the switching function reformulation
solutions have been discarded from further analyses.

In the strong shock test case, the difficulty of finding an optimal fixed length was
highlighted as being a limiting factor in the fixed length correction. The length range
allowing the solver to converge is drastically narrowed. However, slight improvements can
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be noticed in the supersonic regions where the oscillations due to the mesh-dependency
are mostly removed.

To conclude, the three-dimensional test case supported the observation made in the
previous test case concerning the fixed length selection. At each spanwise station, the
fixed length correction shown the ability to slightly decrease mesh-dependency on one or
several aspects. However, the original DARTFlo implementation illustrated to compute
relevant results with respect to the reference solution even if mesh-dependency clues can
be retrieved at each spanwise station.
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5.1 Conclusions

Within the worldwide policies to reduce the aviation environmental impact and the ongoing
quest to reduce aircraft fuel consumption, developing efficient modelling tools is one of
the major keys. During the preliminary aircraft design, using fast and relatively accurate
solvers enables to test different new aircraft configurations and thus, results in better design
choices. At these early stages of the design, low-fidelity models are preferred demonstrating
relevant results with low computational costs. Research has been performed to study the
effects of levels of fidelity on steady aerodynamics and concluded that the Full Potential
equation fulfilled the characteristics previously set out. Henceforth, the mathematical
nature study of this partial differential equation brings into light that for transonic flows,
the change in flow physics from subsonic to supersonic needs to be transcribed in the
numerical implementation.

DARTFlo, a full-potential solver dedicated to the aerodynamic modelling of transonic
flows in the preliminary aircraft design, is implemented using a density upwinding process
introducing artificial viscosity when the local flow is supersonic. Thenceforth, this solution
enables to derive a stable scheme for the subsonic flow portion and stabilise it when the
flow becomes supersonic. The concept of the density upwinding consists in retarding the
physical density with an upwind bias computed with a switching function and the upwind
density.

The present thesis is the continuation of Crovato’s work [27]. The density upwinding
solution in DARTFLo experiences mesh-dependency. Therefore, the objective of this
work was to characterise this mesh-dependency through different test cases and then, to
develop new stabilisation alternatives.

The new stabilisation solutions were developed based on a literature review about full-
potential methods and DARTFlo implementation. The first concept was to compute
the upwind bias by evaluating the upwind streamwise density gradient multiplied by a
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constant fixed length in the entire flow field to remove the mesh-dependency. Afterwards,
the second correction was to replace the upwind bias by a constant at the flow scale. To
reach the same effect as the density upwinding, the constant was determined to be the
density at sonic conditions. The last solution has been a reformulation of the switching
function based on observations provided by the literature.

The different stabilisation solutions were studied in different test cases. Two of them
are two-dimensional cases with either a weak or a strong embedded shock. The third is a
three-dimensional case based on a commercial regional aircraft wing. In each test cases,
the original DARTFlo density upwinding was analysed and then, the corrections were
compared to assess the improvements. The analysis of the original DARTFlo implemen-
tation confirmed its mesh-dependency addressed by Crovato [27]. In the whole three test
cases, the first clue illustrating the results mesh-dependency is the oscillations appearing
in the local flow parameters. When the mesh is highly refined, short-wavelength oscil-
lations are created in supersonic zones. Indeed, since the upwind bias is dependent on
the mesh size, the more the mesh is refined, the lower the stabilisation effect of the bias.
Henceforth, the numerical scheme becomes more and more unstable giving rise to these
oscillations. The second clue concerns the pressure distribution convergence. It has been
observed that despite the mesh refinement, the pressure distribution across the shock keeps
evolving showing still a large influence of the mesh on results. The last mesh-dependency
observation is the convergence difficulty of the global parameters. From a certain mesh
refinement, the solver stops converging resulting to not fully converged solutions. However,
for precise mesh configurations, relevant results can still be calculated based on the original
density upwinding compared to the higher level of fidelity, SU2.

First, the fixed length correction has shown improvements in different aspects of the
mesh-dependency. The mesh convergence is facilitated since the mesh could be refined
further. This can be achieved by almost fully attenuating the short-wavelength oscillations
occurring in the supersonic zones when the mesh is extremely refined. In addition, the local
flow could be converged with respect to the mesh refinement to reach mesh-independent
solutions except in several cases for which the fixed length was not completely optimal and
the results were not completely improved. The choice of the fixed length proved to be a
limiting factor in the comparisons in the different test cases. It has been demonstrated
that the optimal fixed length was decreasing with respect to surface mesh size until a
certain threshold for which it converged. However, for the three-dimensional test case for
example, the optimal fixed length for the wing root is not the same as for the wingtip
since the reference chord lengths are different. Therefore, the selection choice should be
investigated to develop a process to determine the optimal length anywhere in the case
study whatever the dimensions.
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The second alternative that has been proposed depicted that the artificial viscosity
introduced through the constant sonic bias was too diffusive such that no shock could be
captured by the solver. It has been illustrated by the local analysis showing nonexistent
parameter drop that would correspond to a shock capturing.

The last new stabilisation solution was the switching function reformulation. It ap-
peared that the new formulation experienced the same mesh-dependency as the original
DARTFlo density upwinding. Similar clues could be observed in the weak shock test
case analysis. This is explained by the re-expression of the switching function which is
a reformulation of the original based on other flow parameters, simply transposing the
problem under another formulation.

5.2 Suggestions for future work

Since the objectives have been partially fulfilled, the present thesis opens new questions
about the density upwinding mesh-dependency. This section outlines suggestions for future
work.

5.2.1 Fixed length selection process

As detailed in Chap. 4, the fixed length selection process described in the present work has
been a limiting factor for the full expression of the fixed length correction improvements.
Further analysis should be performed to determine if a better selection process could be
achieved enabling to choose the optimal fixed length depending on the case study or if the
selection process is a restrictive factor not allowing long-term use of this solution.

5.2.2 Upwind density computation

In DARTFlo, the evaluation of the upwind density is performed on one unique element
determined by minimising the scalar product between the local velocity vector and the
vector joining both centroïds as explained in Sec. 2.4.2.

Another approach to withdraw the mesh-dependency could be to build up the upwind
density based on a weighted average between all the adjacent upwind elements as depicted
in Fig. 5.1. Adjacent elements qualified as upwind are determined based on negative
scalar products between the local velocity vector and the vector joining both centroïds.
The weights could be distributed based on the adjacent upwind element position with
respect to the local velocity vector direction. Thenceforth, an upwind adjacent element
located closest to the opposite local flow direction would have a heavier weight than the
one positioned the furthest so that the upwind density ρU can be reconstructed.
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Figure 5.1: Multiple upwind elements approach.

TranAir is a full-potential, solution-adaptive, rectangular grid code for predicting
subsonic, transonic, and supersonic flows about arbitrary configurations developed by
Boeing company [62]. This code proposes a process to weight the influence of the up-
wind elements to compute the biased density depending on the mesh evolution between
the adjacent cells and the current one. In TranAir context of a rectangular mesh grid,
three scenarios can be stated. The first one is encountered when no mesh refinement is
experienced such that each element face has an adjacent element. However, if the adjacent
cells are refined or coarsened, all the contributions are averaged to upwind the density
based on weights depending on the element location and size.

The upwinded density is determined based on the following relation,

ρ̃ = ρ+ µ
6∑

i=1

max
(
−V̂ · ~ni, 0

)
Si(~V )

∑
j

Ci,j (ρi,j − ρ) , (5.2.1)

where, ρ is the physical density, µ the switching function, i runs over the 6 faces of the given
rectangular box, j runs over the densities averaged to obtain the density upwinded to, Ci,j

is the weight coefficient depending on the box face and the upwind element contributing to
the density upwinded to, V̂ is the normalised velocity at the centroïd of the given element,
~ni is the outward pointing normal to face i of the element, and Si(~V ) is a cubic blending
function to make the upwinding differentiable.

This technique consisting in taking into account the location of the upwind element
with respect to the opposite local flow direction to weight its associated density value could
be adapted to DARTFlo and unstructured triangular mesh grids as depicted in Fig. 5.2.
The influence of the element location to compute its corresponding weight could be taken
into account by attributing more weight to upwind elements close to the opposite flow
direction than the furthest. This weighted average is achieved by computing the cosine
between the current local velocity vector and the centroïds vector such that elements whose
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centroïd is almost aligned with the local flow direction would have cosine tending to 1 and
inversely, tending to 0.

Thenceforward, the upwinded density formulation particularised for tetrahedral mesh
element is expressed as,

ρ̃ = ρ+ µ

4∑
i=1

max
(
−V̂ · ~ni, 0

)
Si(~V )

∑
j cos θi,j (ρi,j − ρ)∑

j cos θi,j
, (5.2.2)

where, ρ is the physical density, µ the switching function described in Eq. 2.4.10, i runs over
the 4 faces of the given tetrahedral element, j runs over the densities averaged to obtain
the density upwinded to, cos θi,j represents the cosine between the local flow vector and
the vector linking both centroïds depending on the element face and the upwind element
contributing to the density upwinded to, V̂ is the normalised velocity at the centroïd of
the given element, ~ni is the outward pointing normal to face i of the element, and Si(~V )

is a cubic blending function to make the upwinding differentiable.
Note that the cosine for each upwind element is computed as follows,

cos θi,j =
s · bi,j

‖s‖‖bi,j‖
, (5.2.3)

where, s is the local velocity vector and bi,j the vector joining the current element centroïd
and the j upwind element one.

Figure 5.2: Two-dimensional multi upwind element influence inspired by TranAir up-
wind density computation routine.

5.2.3 Density gradient computation

In DARTFlo, the mesh-dependency mainly originates from the computation approxima-
tion of the streamwise upwind density gradient as initially derived by Hafez and Murman
[46] in Eq. 2.3.13. Consequently, Tatum proposes a special algorithm for upwind differenc-
ing to avoid mesh-dependency by re-expressing the gradient differently [63]. The concept
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is to determine the upwind element of a node based on the nodal velocity vector and to use
the isentropic density defined at the corresponding element corners to build the artificial
density upwinding effect as illustrated in Fig. 5.3.

Therefore, the upwind bias is computed as follows,

−∆s
←−
δsρ = (ρi − ρj)

[
u

q
cos β1 +

v

q
sin β1

]
+ (ρi − ρk)

[
u

q
cos β2 +

v

q
sin β2

]
(5.2.4)

where, the points i, j and k and the angle β1 and β2 are defined in Fig. 5.3. In addition,
(u, v) are the local velocity components whose magnitude is denoted by q.

j

k

x

y

s𝛽1

𝛽2

Element

Figure 5.3: Relationship of angles β1 and β2 to upwind nodes on an arbitrary element
depicted in [63].

5.2.4 Unsteady computations

Numerically, converging an unsteady system to steady states using time-marching pro-
cedure is better than solving directly a steady problem [64]. Even if the introduction of
time-dependence usually has an influence on the mathematical nature of the corresponding
partial differential equation, it has been demonstrated by Shankar et al. [65] that it does
not enable to reach one single mathematical nature independent on the local flow regime
in the case of the Full Potential equation.

Nevertheless, Kelley and Keyes explains that strategies such as line search combined
with the quasi-Newton algorithm for steady partial differential equations stagnate to local
minima. This behaviour is accentuated for solutions featuring complex flow characteristics
such as shocks [66] altering the solver convergence. Using pseudo-time marching methods
to compute time asymptotic steady-state solutions enables to ease the solver convergence
and to increase solver robustness. The advantage of this procedure is the non-necessity
to solve the non-linear equations until convergence, since all the intermediate steps in the
transient phase are not of interest. According to Jiang and Forsyth [67], at each time step,
only one nonlinear iteration is sufficient and occasionally, two or three if the flow varies
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drastically during the corresponding time step. Therefore, using a pseudo-time marching
procedure to derive a damped Newton method could be a good alternative to investigate
in order to assess if it could improve DARTFlo convergence and robustness.
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AOne-dimensional shock code

The purpose of the one-dimensional full-potential finite element code was to illustrate the
operation of the density upwinding process in a simple case. Afterwards, the observations
would have been used to develop corrections to withdraw the mesh-dependency. However,
the results obtained at the time do converge but the behaviour of the local flow at the
shock is abnormal compared to what it expected.

A.1 Implementation

The implementation is mainly based on DARTFlo formulation. The Full Potential equa-
tion is particularised for one-dimensional problem such as,

∂

∂x

(
ρ
∂φ

∂x

)
, (1.1.1)

where, x denotes the direction of the problem and φ the total potential. The physical
density ρ is computed based on the isentropic relations such that,

ρ = ρ∞

[
1 +

γ − 1

2
M2

∞

(
1− |∂φ

∂x
|2
)] 1

γ−1

, (1.1.2)

where, ρ∞ is the freestream density, γ the heat capacity ratio and M∞ freestream Mach
number.

Adapting the finite element formulation based on Eq. 1.1.2 and 2.4.1, the one-dimensional
full-potential finite element formulation can be cast as,∫

Ω

ρ
∂φ

∂x

∂ψ

∂x
dV −

∫
Γ

ρ
∂φ

∂x
nxψdS = 0, ∀ψ ∈ H1(Ω), (1.1.3)

where, Ω becomes the one-dimensional domain, Γ becomes nodes, psi defines the test
functions and nx is the normal of Γ.

In order to obtain a one-dimensional case with an embedded shock, Neumann boundary
conditions are imposed at the inlet and the outlet. At the inlet domain, a supersonic Mach
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number is imposed in order to build up a supersonic area before the shock is created such
that,

∂φ

∂x
nx

∣∣∣∣
Node inlet

= Uinletnx. (1.1.4)

Concerning the outlet, the same process is implemented by imposing a subsonic velocity,

∂φ

∂x
nx

∣∣∣∣
Node outlet

= Uoutletnx. (1.1.5)
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BTest cases shock strength

validation
B.1 Weak shock test case validation

Figure B.1: Local Mach number along the airfoil for the weak shock configuration de-
scribed in Tab. 4.1 for mesh sizes of 1/2 of the chord at the farfield and 1/500 at the
airfoil.

B.2 Strong shock test case validation

Figure B.2: Local Mach number along the airfoil for the strong shock configuration
described in Tab. 4.3 for mesh sizes of 1/2 of the chord at the farfield and 1/200 at the
airfoil.
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B.3. THREE-DIMENSIONAL TEST CASE VALIDATION

B.3 Three-dimensional test case validation

Mesh size Value
Farfield mesh size [m] 1
Wing root surface mesh size [m] cR

200

Wingtip surface mesh size [m] cT
200

Mesh density [elements] 2925091

Table B.1: Mesh sizes for three-dimensional case validation

where, cR corresponds to the wing root chord length and cT to the wingtip chord length.
Based on this mesh and flow characteristics summarised in Tab. 4.6, the wing aerodynamic
coefficients are computed,

Aerodynamic coefficient Value
CL [−] .446
CD [−] .009

Table B.2: Aerodynamic performances of the three-dimensional wing design.
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CAdditional reference solution

computations
C.1 Three-dimensional reference solution

Figure C.1: Influence study of the 4th order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the by-default 2nd order
dissipation coefficient for the three-dimensional test case on the pressure distribution at
the mean aerodynamic chord (y = 3.63 m).
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C.1. THREE-DIMENSIONAL REFERENCE SOLUTION

Figure C.2: Influence study of the 2nd order dissipation coefficient in Jameson-Schmidt-
Turkel scheme using SU2 based on the converged mesh with the optimal 4th order dissipa-
tion coefficient for the three-dimensional test case on the pressure distribution at the mean
aerodynamic chord (y = 3.63 m).
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