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constant help and advice throughout my project, as well as the V2i staff for their help in

explaining concepts, giving advice or helping realise the measurement campaigns.

I would also like to thank the jury members who took their time to evaluate this project.

This work would not be achieved without the help of my family and friends and
particularly the ones who made part of the measurement campaign and helped me

proofreading my work, so that I am also thankful for their help.

I am grateful for these years that brought me knowledge in various subjects, experience
throughout my implication in the student association La Centrale Des Cours - FSA and

for the numerous beautiful people that I met.

II



Résumé
Nom et prénom: PURPURA Laura
Titre du travail de fin d’études: Analyse modale d’une passerelle piétonne en utilisant
la méthode OMAX
Section: Ingénieur en aérospatiale
Année académique: 2022-2023
Promoteurs: Vincent Denoël (ULiège) & Hüseyin Güner (V2i)
indentindent L’identification des propriétés modales d’une passerelle piétonne caractérisant
son comportement vibratoire peut être réalisée grâce à des méthodes d’identification
modale. L’analyse modale opérationnelle avec des forces extérieures (OMAX), prenant en
compte les forces ambiantes et artificielles, présente de nombreux avantages par rapport
à d’autres méthodes d’identification classiques. En effet, elle permet de couvrir une plus
large bande de fréquences et d’analyser les données même quand du bruit est présent
dans le système. Le but de cette thèse est donc d’étudier l’effet d’un niveau de bruit
croissant sur l’identification des propriétés modales. Cela a pu être réalisé en appliquant
l’algorithme d’identification de sous-espaces combinée (CSI) développée dans le livre Sub-
space identification for linear systems: theory - implementation - applications par P. Van
Overschee.
indentindent Afin de tester cet algorithme, un modèle simplifié de la passerelle piétonne
suspendue de Tilff a été développé sur Matlab. Des forces artificielles ainsi que des forces
ambiantes ont été appliquées sur ce modèle et sa réponse a été calculée grâce à la méthode
de Newmark. Deux types de bruits ont été testés: un bruit aléatoire en bande limitée et
un bruit induit par des piétons marchant sur la passerelle. Comme la méthode OMAX
fait l’hypothèse que le bruit est un bruit blanc Gaussien, le second cas a permis de tester
l’algorithme quand le bruit était coloré (des composantes en fréquence sont dominantes).
En effet, la force induite par les piétons peut être décrite comme la somme de signaux
sinusöıdaux. Lorsque le bruit était hors de la bande de fréquence d’intérêt (autour d’une
des fréquences de résonance de la passerelle), les propriétés modales étaient proches de
la valeur identifiée avec 0% de bruit. Cependant, lorsque le bruit était dans la bande de
fréquence d’intérêt, une modification du coefficient d’amortissement a pu être observée.
Pour un bruit blanc, le coefficient d’amortissement décroissait au fur et à mesure que le
niveau de bruit croissait. Pour le bruit induit par les piétons, le même comportement a pu
être observé excepté le fait que plus le nombre de piétons augmentait, plus l’influence du
piéton additionnel était moindre (montrant donc un effet de saturation). Concernant la
fréquence, appliquer un bruit dans la bande de fréquence d’intérêt a causé des variations
dans la fréquence identifiée contrairement au cas où le bruit était blanc. En effet, quand
l’hypothèse que le bruit doit être blanc n’est pas respectée, l’algorithme considère le bruit
comme un pôle de la matrice d’état A et il apparâıt donc comme un pôle réel dans les
diagrammes de stabilisation.
indentindent Finalement, une campagne de mesures détaillée sur le site de la passerelle
de Tilff a été réalisée avec l’aide d’un shaker et de piétons marchant d’un côté à l’autre de
la passerelle. L’algorithme CSI a permis d’obtenir des résultats cohérents avec une autre
méthode d’identification expérimentale classique lorsqu’il n’y avait pas de bruit (piétons)
dans le système. Des résultats cohérents avec la partie numérique ont été également été
trouvés quand les piétons ont été ajoutés. Cependant, à la place d’évoluer vers des valeurs
plus faibles, le coefficient d’amortissement évoluait vers des valeurs plus élevées. De plus,
dans un système réel, le bruit n’est pas uniquement causé par les piétons mais aussi le
vent, l’eau ou le traffic sous la passerelle.
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indentindent The identification of the modal properties of a footbridge characterising its
vibration behaviour can be realised thanks to modal identification methods. The Opera-
tional Modal Analysis with eXogenous forces (OMAX) method, taking both ambient and
artificial excitations into account shows several advantages over classical identification
methods. Indeed, it allows to cover a wider frequency range and to analyse the data even
when noise is present in the system. The goal of this thesis was to study the effect of
an increasing level of noise on the identification of the modal properties. This could be
realised by applying the Combined Subspace Identification (CSI) algorithm developed in
the book Subspace identification for linear systems: theory - implementation - applications
by P. Van Overschee.

indentindent In order to test this algorithm, a simplified numerical model of Tilff cable-
stayed footbridge was developed in Matlab. Both artificial and ambient forces were applied
to that model and its response was computed with a Newmark integration method. Two
types of noise were tested: a limited band random noise and the noise induced by some
pedestrians walking on the footbridge. As the OMAX method makes the assumption
that the noise should be a Gaussian white sequence, the second case allowed to test the
algorithm when the noise was couloured (dominant frequency components). Indeed, the
force induced by the pedestrians can be described by a sum of sine signals. When noise
was outside the frequency range of interest (around one of the eigenfrequency of the foot-
bridge), the modal properties were close to the identified value at 0% noise. However,
when noise was inside the frequency range of interest, a modification of the damping ra-
tio could be observed. For the random white noise, the damping ratio decreased as the
level of noise increased. For the noise induced by the pedestrians, the same behaviour
was observed excepted the fact that as more pedestrians were added, the influence of the
added pedestrian decreased (showing a saturation behaviour). Concerning the frequency,
applying a noise in the frequency range of interest would cause variations in the identi-
fied frequency contrary to the case when noise was white. Indeed, when the white noise
assumption is violated, the algorithm considers noise as poles of the state matrix A and
they thus appear as real poles on the stabilisation diagrams.

indentindent Finally, a detailed measurement campaign on the site of the Tilff footbridge
was realised with the use of a shaker and pedestrians walking back and forth on the
footbridge. The CSI algorithm provided consistent results with another classical experi-
mental modal analysis when there was no noise (pedestrians) on the system. When the
pedestrians were added, consistent results with the numerical part were found. However,
instead of converging towards lower values, the damping converged towards higher values.
Moreover, in a real system, the noise is not only caused by the pedestrians but also by
the wind, the water or the traffic underneath the footbridge.
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NOMENCLATURE NOMENCLATURE

Nomenclature
β, γ Parameters of Newmark method

·† Moore-Penrose pseudo-inverse

·T Transpose of vector
∆T
T

Periodicity error

Γi Extended observability matrix

ẍ Acceleration

ẋ Velocity

C∗ Generalised damping matrix

Fp Force imposed by the pedestrians

K∗ Generalised stiffness matrix

M∗ Generalised mass matrix

P∗
shaker Generalised force imposed by the

shaker

x Displacement

Γi Extended observability matrix with-
out the first l rows

ρ Residuals

Γi = Γi−1 Extended observability matrix
without the last l rows

A, B, C, D Dynamical system matrices

ccritic Critical damping ratio

F v
p Vertical pedestrian load

Famb Ambient forces

Fart Artificial forces

H Square root of the power spectral
density or amplitude spectral density

h Time step

l Number of rows of the output data y

lX Length of element X

m Number of rows of the input data u

np Number of pedestrians on the foot-
bridge

Oi Observability matrix

Pi Nodal forces

PX Random pressure applied on element
X

Pshaker(t) Force imposed by the shaker

Q Quality factor

Rf Matrix of future outputs

Rp Matrix of past inputs and outputs

Ru Matrix of future inputs

Rfp Matrix of perpendicular future out-
puts

Rpp Matrix of perpendicular past inputs
and outputs

Re Real part operator

S Matrix containing the singular values
on its diagonal

U Left singular vectors

V Right singular vectors

αi,v Dynamical load factor

δ Dirac delta

Φ Modal form/Mode shapes

C Damping matrix

K Stiffness matrix

M Mass matrix

ω Angular velocity

φ Phase angle of the ith harmonic rela-
tive to the first harmonic

ζ Damping ratio

f Frequency

fs Pacing rate of the pedestrian
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NOMENCLATURE NOMENCLATURE

i Number of block rows used in the
Hankel matrices

k Pedestrian number

n Order of the identified system

T Period

t0 Initial phase shift of the pedestrian

u Inputs of the system

vp Forward speed of the pedestrian

W Weight of the pedestrian

x0 Initial position of the pedestrian

xp Instant position of the pedestrian

xend Right extremity of the model of the
footbridge

xstart Left extremity of the model of the
footbridge

y Responses of the system

CSI Combined Subspace Identification

DOFs Degrees of freedom

DSI Deterministic Subspace Identifica-
tion

EMA Experimental Modal Analysis

FRF Frequency Response Function

LHS Left Hand Side

OMA Operational Modal Analysis

OMAX Operational Modal Analysis with
eXogenous forces

PSD Power Spectral Density

RHS Right Hand Side

rms Root mean square

SSI Stochastic Subspace Identification

svd Singular value decomposition
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Introduction
Recent improvements in design and manufacturing methods and a more efficient use of
structural materials allow engineers to design slender and lighter structures such as foot-
bridges. However, these are prone to higher levels of vibration due to ambient forces such
as wind or pedestrians. For example, footbridges can be used for marathons where a large
group of people would load the footbridge to higher levels causing possible structural dis-
orders. The comfort of pedestrians must also be guaranteed under more usual loading.
Therefore, it is as important to study the behaviour of the structure before its construc-
tion as to make verifications after construction. Indeed, reality is often different from
simulations, and this can be revealed by dynamic testing experiments on the structure
after it has been built.

The behaviour of the structure can be characterised by its modal properties or modal
parameters: 1) the eigenfrequencies corresponding to the frequencies at which the system
will oscillate, 2) the damping ratios showing how much the mode excited by a certain
eigenfrequency is damped out and 3) the mode shapes showing how the structure deforms
when excited at a certain eigenfrequency.

In order to identify these parameters, several approaches of dynamic testing exist. These
are called modal identification or modal analysis techniques. In this work the modal
analysis of a footbridge using the Operational Modal Analysis with eXogenous (OMAX)
forces method will be performed. The OMAX method is a combination between Exper-
imental Modal Analysis (EMA) and Operational Modal Analysis (OMA), so that both
unmeasured ambient forces and measured artificial forces are taken into account. All
these methods will be presented Section 1 as well as their advantages, disadvantages
and some applications.

The main goal of this thesis is to show what is the effect of adding an increasing level of
noise on the identified modal properties, thanks to an algorithm that will take both known
artificial forces and unknown ambient forces into account. To do so, the method will be
applied to a numerical model but also to a real footbridge: Tilff cable-stayed footbridge
in Liège, Belgium. This work is thus separated in two main sections:

Section 2 will start by the analysis of the results of a preliminary measurement cam-
paign that was held on the Tilff cable-stayed footbridge in order to roughly extract its
modal properties. These estimated properties will allow to build a simplified numerical
model of a footbridge. This model will be used to test the influence of an increasing noise
level on the identified modal properties. To do so, the influences of the type of measured
excitation and of type of unmeasured noise on the modal properties will be investigated.

Section 3 will present the detailed measurement campaign that was held on the Tilff
cable-stayed footbridge. First, the setup and protocol will be described, then the identifi-
cation algorithm will be applied on the signals recorded during the detailed measurement
campaign in order to obtain the identified modal parameters. The measurements will be
realised with and without pedestrians in order to assess their influence on the identified
modal properties for a real-life case.
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1 STATE OF THE ART

1 State of the art
In this section, the different methods of dynamic identification will be presented and
compared. The two main types of methods are the Experimental Modal Analysis and the
Operational Modal Analysis and are chosen depending whether the excitation is measured
or not, respectively. Indeed, in EMA, the forces applied on the system are known and
can be applied by a shaker, impact hammer, ... Whereas in OMA, the forces used for the
identification are not measured or known such as pedestrians walking on the footbridge,
wind, ...

Operational Modal Analysis with eXogenous forces consists in a combination of the two
previous methods, meaning that both measured and unmeasured forces are taken into
account in the system. These methods are illustrated in Figure 1 and will be explained
in more details in Section 1.1 for EMA, Section 1.2 for OMA and Section 1.3 for OMAX.

Figure 1: Illustration of the OMAX method being a combination of EMA (uses only
artificial forces) and OMA (uses only ambient forces). In this figure, those forces are

represented by a shaker and pedestrians respectively.

2



1.1 Experimental Modal Analysis 1 STATE OF THE ART

1.1 Experimental Modal Analysis
As explained previously, EMA determines the modal properties of structures by applying
a known force on it, with the use of a shaker for example. Figure 2 shows the main steps
of the dynamic identification methodology currently used by V2i [1].

Figure 2: General methodology used by V2i to extract the modal properties of a
footbridge using EMA approach [2]. The ratios ϕ2

j/mj represent the modal amplitude at
the location of the shaker over the generalised masses. A modal mass is the mass that is

activated in a certain vibration mode.

This is indeed EMA as the different excitations are applied thanks to a shaker developed
by V2i and University of Liège (this one will be presented in more details in Section 3.1.1
but its characteristics can also be found in [2]). This methodology has already been
tested and successfully worked in several applications where the access to the site could
be limited or restricted for pedestrians, as it is mentioned in [2]. However, a study on La
Belle Liégeoise footbridge (that can be found in the same article) questioned the validity
of the approach when the traffic could not be limited. In this measurement campaign, the
attention was drawn on the vertical modes situated between 1.6 and 2.7 Hz, in the central
part of the footbridge, which are the frequencies that are the most likely to be excited
by the pedestrians [3]. This campaign was quite challenging due to the high level of the
ambient forces (traffic). Indeed, only the modes outside the frequency range affected by
the traffic could be identified accurately. A solution could be to use higher levels of shaker,
so that the percentage of noise is reduced. However, this would result in a heavier and
unpractical device. Indeed, in order to obtain all the modes accurately, sometimes the
shaker needs to be moved to another position on the footbridge.

1.2 Operational Modal Analysis
OMA studies the structures under ambient vibrations or normal operating conditions.
Those types of vibration are generally not quantifiable. It could be pedestrians, wind,
water, ... So that only the response of the structure is measured. The excitation is thus
assumed to be a Gaussian white noise: a random excitation having equal intensity at dif-
ferent frequencies. The problem with this method is that all the modal properties of the
system cannot be identified. Indeed, since the excitation cannot be imposed, some modes
are more excited than others by the ambient forces. Moreover, the mode shapes cannot
be scaled in an absolute sense, for example to unity modal mass [4, 5], unless the measure-
ment is repeated with a significant added mass or by removing significantly some mass

3



1.3 Operational Modal Analysis with eXogenous forces 1 STATE OF THE ART

of the system [6]. This is particularly complicated for such heavy structures as footbridges.

OMA is mainly used for structural health monitoring of structures. Indeed, a change in
modal properties can be observed when the structure is damaged. If cracks appear in a
footbridge, they will affect the modal properties such as a change in damping ratio for
example, due to the friction [7]. It should be noted that the modal characteristics can
also change in function of the temperature [8]. More information can also be found in
[9] concerning vibration-based structural health monitoring. However, this is beyond the
scope of this work where only pedestrians loads will be considered, to keep it simple.

1.3 Operational Modal Analysis with eXogenous forces
In this work, the modal analysis of a footbridge using the OMAX method will be per-
formed. As already mentioned, it is a combination of experimental modal analysis and
operational modal analysis. So that both unmeasured ambient forces and measured ar-
tificial forces are taken into account. However, the ambient forces are considered a real
part of the excitation. In other words, it is a combined operational-experimental approach
used to identify the modal characteristics of the footbridges.

An algorithm called Combined Subspace Identification (CSI) has been implemented in
[10] in order to take both contributions (ambient and artificial forces) into account. It
consists in a generalisation of the Stochastic Subspace Identification (SSI) and Determin-
istic Subspace Identification (DSI). Indeed, those methods are a particular case of the
CSI. The details of those two methods and many applications of the CSI algorithm can
be found in [10].

The details of the CSI algorithm will be given in Section 1.3.1 but is briefly introduced here
after. The response of the structure can be computed using a time integration algorithm
by imposing some measured and unmeasured forces on it. Thanks to the imposed forces
and the response of the structure, the CSI algorithm can be used to determine the modal
properties of the structure. The process is illustrated in Figure 3.

Imposed forces

Measured

Unmeasured
Structure

Responses
CSI Modal

parameters

Figure 3: Methodology to determine the modal properties of a structure using the CSI
algorithm.

1.3.1 Combined Subspace Identification algorithm

The CSI algorithm has been implemented in a function called subid.m, given in the annex
files of [10]. It allows to solve the combined identification problem posed in [10]. The
problem can be stated as in Figure 4.

4



1.3 Operational Modal Analysis with eXogenous forces 1 STATE OF THE ART

Combined identification problem

Given s measurements of the input uk ∈ Rm and the output yk ∈ Rl generated by the
unknown combined system of order n:

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk,
(1)

with A, B, C, D the dynamical system matrices, xk the state vector of the system at
sample time instant and wk and vk zero mean, white vector sequences with covariance
matrix:

E[
Å

wp

vp

ã (
wT

p vT
p

)
] =
Å

Q S
ST R

ã
δpq, (2)

determine the unknowns matrices A, B, C, D, Q, S and R and the order of the identified
system n.

Figure 4: Combined identification problem adapted from [10].

This problem can be solved thanks to the robust combined algorithm presented in p. 131
of [10]. A summary of this algorithm is given in Figure 5.

Robust combined algorithm (summary)

Step 0

Inputs, outputs

Computation of Hankel matrices

Step 1 Computation of observability matrix

Singular value decomposition and
determination of the order of the system

Step 4 Computation of extended observability matrices

Step 5 Matrices A and C

Step 6 Matrices B and D

Step 7 Covariance matrices

Given

To be determined

Step 2 & 3

Figure 5: Summary of the main steps of the robust combined algorithm adapted from
[10].

The different steps will be described in order to give a general idea of the computation of
the modal properties with the CSI algorithm. Some details about the notation will not

5



1.3 Operational Modal Analysis with eXogenous forces 1 STATE OF THE ART

be given explicitly, if more theoretical information is needed, one should check the page
of [10] that is referenced in the text.

1.3.1.1 Step 0: Construction of the block Hankel matrices

• Block Hankel matrices are built from the outputs (or responses) y and inputs u
of the system. A block Hankel matrix is a matrix constructed thanks to the given
input-output data where each ascending skew-diagonal from left to right is constant.
For example, input block Hankel matrix is defined as:

Figure 6: Input block Hankel matrix as defined in [10].

More information about the notations and the assumptions of those matrices can
be found in [10]. However, what is important to mention for the following of this
thesis is that the number of blocks rows i is a user-defined index. It should be large
enough ”i.e. at least larger than the maximum order of the system one wants to
identify” [10]. Indeed, the maximum order of the system that can be estimated will
be equal to i times the number of outputs [10]. Theoretically, and for statistical
purposes, i → ∞. However, the computational time is proportional to i2 so that a
trade-off must be realised.

• A matrix composed of the input Hankel matrix followed by the output Hankel matrix
is created.

• The orthogonal-triangular decomposition of this matrix is performed thanks to the
qr.m matlab function and its triangular upper part is obtained by applying the
function triu.m. This matrix is called R in the code, for historical reasons, but
is different from the R matrix in Equation (2). Finally, one should remove the
unnecessary zeros from R, so that R is a square matrix of size 2(m + l)i because
when summing all the columns of p. 164 of [10] one has:

mi + m + m(i − 1) + li + l + l(i − 1) = 2(m + l)i. (3)

With m, the number of rows of the input data u and l, the number of rows of the
output data y.

1.3.1.2 Step 1: Computation of the observability matrix

• R matrix can be partitioned into several smaller matrices. Figure 7 shows the
structure of matrix R.

6



1.3 Operational Modal Analysis with eXogenous forces 1 STATE OF THE ART

Rp

Ru

Rp

Rf

past inputs and outputs

future
inputs

future outputs

1 mi m(i + 1) 2mi

2mi + 1
(2m + l)i (2m + l)i + l 2(m + l)i

1

mi
m(i + 1)

2mi
2mi + 1

(2m + l)i
(2m + l)i + 1

2(m + l)i

Figure 7: Structure of matrix R.

• The matrices of perpendicular future outputs Rfp and of perpendicular past inputs
and outputs Rpp can also be obtained from the previously defined matrices. These
matrices consist in projections of future or past outputs (Rf or Rp) onto the future
inputs (Ru), and will be used to compute the observability matrix. More information
about oblique projection can be found in [10].

• This observability matrix Oi is computed as defined in Equation (6.11), p. 166 of
[10] so that:

Oi = Rfp ∗ R†
pp ∗ Rp, (4)

where † denotes the Moore-Penrose pseudo-inverse (that can be computed with
function pinv of Matlab). The observability gives a measure of how well internal
states of a system can be inferred from knowledge of its external outputs.

1.3.1.3 Step 2: Singular value decomposition of the observability matrix

• Matrix WOiW is computed by projecting the observability matrix Oi onto the
future inputs Ru. The extra projection tends to give better numerical conditioning
according to [10].

• The singular value decomposition (svd) of WOiW is computed such that:

WOiW = USV T , (5)

where U are the left singular vectors, S is a rectangular matrix with non-negative
real numbers on its diagonal (the singular values), V are the right singular vectors
and T denotes the transposed vector. This decomposition can be realised by applying
the function svd.m and the singular values are obtained by taking the diagonal of
matrix S.

7
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1.3.1.4 Step 3: Determination of the order of the system

• The order of the system n can be given by the user or, if it is not, a plot is displayed
in order to select the right order by inspecting the singular values in S.

• Thanks to the order of the system the singular value decomposition is partitioned
in order to determine matrices U1 and S1.

1.3.1.5 Step 4: Computation of the extended observability matrices

• Γi and Γi−1 are determined such as:

Γi = U1S
1/2
1 (6)

Γi−1 = Γi, (7)

where Γi is the extended observability matrix and Γi is obtained by removing the
last l rows of Γi.

• Their Moore-Penrose pseudo-inverse is computed and will be useful for the next
step.

1.3.1.6 Step 5: Computation of matrices A and C

• The following set of linear equations can be solved to obtain A and C:Å
Xd

i+1
Yi/i

ã
︸ ︷︷ ︸

LHS

=
Å

A B
C D

ãÅ
Xd

i

Ui/i

ã
︸ ︷︷ ︸

RHS

. (8)

Xd
i and Xd

i+1 should be determined such as:

Xd
i = Γ†

iOi and Xd
i+1 = Γ†

i−1Oi−1. (9)

The explanation of the notation ·i/i can be found in p. 164 of [10]. The solution
of this equation is given by dividing the left hand side (LHS) by the right hand
side (RHS) in order to solve the system in a least square sense. The residuals of
that equation (ρv and ρw) can also be computed and will be useful to compute the
covariance matrix.

• The Γ’s can be recomputed from matrices A and C because the first ones were only
estimations (see p. 123, alteration 1 of [10]). As stated in p. 129 of [10], C is defined
as the first l rows of Γi and A = Γ†

iΓ0
i where:

Γ0
i =
Å

Γi

0

ã
, (10)

with Γi is the extended observability matrix without the first l rows and the zeros
are introduced to ensure stability.

• The pseudo-inverses of the Γ’s can then be recomputed, as well as the right and left
hand sides from the set of linear equations (8).
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1.3.1.7 Step 6: Computation of matrices B and D

• Matrices B and D can be determined by solving the following equation in a least
square sense (Equation (4.61) p. 127 of [10]):

vec
Å

D
B

ã
=
ñ

i∑
k=1

QT
k ⊗ Nk

ô†

vec P. (11)

With:

– ⊗ the Kronecker product.
– P and Q computed as in p. 125 of [10]:

P
△=
Ç

Γ†
i−1Zi+1

Yi/i

å
︸ ︷︷ ︸

≡LHS

−
Å

A

C

ã
Γ†

iZi︸︷︷︸
≡RHS

, (12)

Q
△= Uf ≡ Ru. (13)

– Ni matrices computed as in p. 126 of [10]:

Ni
△=
Å

Mi−1 − L1/i 0 . . . 0 0
−L2/i 0 . . . 0 0

ãÅ
Il 0
0 Γi−1

ã
, (14)

where Il is a identity matrix and L = (L1; L2)
and M are computed as in p. 119 of [10]:

L
△=
Å

A

C

ã
Γ†

i and M
△= Γ†

i−1. (15)

1.3.1.8 Step 7: Determination of the covariance matrix

• Q, S and R can be determined from the residuals of Equation 8: ρw and ρv. Indeed:Å
Q S
ST R

ã
= Ej

ïÅ
ρw

ρv

ã (
ρT

w ρT
v

)ò
. (16)

The covariance is then computed by multiplying the residuals vector computed in
step 5 by its transposed form. In order to obtain Q, R and S, the covariance matrix
have to be partitioned accordingly.

So that all the unknowns from Figure 4, have been determined.

1.3.2 Comparison with the previous methods

Compared to the two previous methods (EMA and OMA), the advantages of the OMAX
method are:

• Since noise is taken into account, the level of the shaker does not have to be way
higher than the artificial forces in order to cover the noise. Smaller shakers can
then be used, which is more convenient as the setup could need to be modified in
order to identify several modes [4, 11];

9
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• Since the modes are excited by the artificial forces, it is possible to obtain the
modal masses and thus mass-normalised mode shapes. This is not possible
with a classic method only relying on ambient excitation (OMA) [4, 12, 5];

• Ambient forces are usually confined to a narrow frequency band, so that only a
small number of modes can be identified [4, 11]. A larger frequency range can
then be covered using a shaker;

• OMAX method allows to determine the frequencies, damping ratios and
modes shapes all at once while the current method used by V2i requires to
perform three different steps as shown in Figure 2, allowing to obtain the same
results in less steps. This will be proven in Section 3.2.1 where, thanks to a detailed
measurement campaign realised on the Tilff cable-stayed footbridge, both method
will be compared;

• Finally, from a practical point of view, using OMAX for the identification of the
modal properties of a footbridge does not require to close the footbridge to
the pedestrian traffic, which is a significant advantage for the experimental testing
of existing in-use footbridges.

However, the main disadvantage of OMAX is that the noise is considered to be a white
noise [12], which may not be the case for ambient forces. Indeed, the forces induced
by pedestrians are a sum of sinusoidal component, for example [3]. So that, the main
goal of thesis is to show what is the effect of adding an increasing level of noise on the
identified modal properties, even when this noise is not a white noise sequence. To do
so, a numerical model will be developed in order to test the CSI algorithm with different
types of loading and different types of noise. The observations will then be checked thanks
to an experimental measurement campaign.

10
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2 Numerical part
In this section, the creation of a simplified model of Tilff cable-stayed footbridge and the
methodology used to identify its modal parameters thanks to the CSI algorithm will be
exposed. This was achieved by developing Matlab codes, which will be detailed in this
section and are available on MatheO [13]. A preliminary measurement campaign was held
in order to roughly determine the first modal properties of the real structure, which will
be helpful to create the model, and will also be presented.

The general outline of the Matlab codes is presented in Figure 8. The CSI algorithm
comes from [10] and the basis of the other functions come from the V2i staff. The codes
have obviously been adapted to the cases that will be studied in this paper.

Creation of a simplified model on BeamZStep 0

Step 1

Step 2 Step 3 Step 4

Computation of the reference modal characteristics
(eigenfrequencies, damping ratios, mode shapes)

Definition of the ambient
and artificial excitations

(and their relative level)

Computation of the
response of the structure
(time integration method)

Dynamic identification
using the CSI method

(eigenfrequencies, damping
ratios, mode shapes)

Figure 8: Steps developed in the Matlab codes.

Thanks to the information obtained with the preliminary measurement campaign, a sim-
plified model will be created and its modal matrices, characterising its behaviour, will be
extracted (Step 0, Section 2.2.1). This will allow to compute the reference modal char-
acteristics of the system (Step 1, Section 2.2.2). Then, the scheme illustrated in Figure 3
will be implemented by first defining the ambient and artificial excitations (Step 2, Sec-
tion 2.2.3). The response of the structure to these excitations can be computed thanks to
a time integration method (Step 3, Section 2.2.4). Finally, some parameters of the CSI
algorithm will be discussed (Step 4, Section 2.2.5).

The reference modal properties were computed in order to make sure that the identified
modal properties with 0% noise are consistent. However, the main goal of the analysis of
the results part will be to study the effect of an increasing noise level on the identified
modal properties. This will be studied in two cases: variation of the type of excitation
(Section 2.3) and variation of the type of noise (Section 2.4.2).
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2.1 Preliminary measurement campaign
In order to prove that the algorithm is robust, it will first be tested on a simplified model
of the Tilff cable-stayed footbridge. A preliminary measurement campaign was held on
the 2nd of September on the real site in order to roughly extract the modal properties of
the footbridge. This 74-m long footbridge built around 1970 allows pedestrians to cross
the river (L’Ourthe) and is situated near Liège, Belgium. It is a cable-stayed footbridge
composed of a concrete pylon. The deck consists in a concrete slab surrounded by a metal
casing, the whole only resting on the pylon (not built in). A picture of this footbridge
can be observed in Figure 9.

Figure 9: Tilff cable-stayed footbridge.

Since the traffic is considered to be insufficient, installing a tuned mass damper (a de-
vice allowing to damp out the vibrations, calibrated on one or several modes) on this
footbridge would be too expensive. So that it can easily be excited by knee-bending on
its first frequencies. This technique (that can be observed in [14]) consists in a group of
people bending the knees at a desired frequency thanks to a metronome and will be used
without the help of a shaker for this preliminary measurement campaign. The excitation
have been applied at several locations on the footbridge by trial and error, in order to
observe at best the tested modes. A more detailed measurement campaign will be realised
later and discussed in Section 3.

Three accelerometers were used in order to measure the vibrations. The first two were
placed at mid-span on both sides of the footbridge (next to the anchoring of the medium
stay cables) and the last was placed at quarter span (next to the anchoring of the longer
stay cable). A schematic top view of the footbridge can be observed in Figure 10 and a
close up of the cables is shown in Figure 11.

32

1

Figure 10: Schematic top view of the Tilff cable-stayed footbridge (about to scale). The
hexagons represent the locations of the anchoring of the cables on the deck, the dark

shape represents the pylon and the blue shape represents the river. The numbers
correspond to the position of the accelerometers.
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Figure 11: Illustration of the cables.

Several types of excitation were applied. These loadings are summarised in Table 1 and
were mainly applied between the medium and long cable anchorings and beyond those of
the longest cables for the deck excitation. Figure 12 shows the evolution of the acceleration
of the footbridge for the different loadings. The results are only shown for accelerometer
1, to avoid redundancy.

Label Start (s) End (s) Description
S 0 100 Synchronisation of the accelerometers
M 100 1370 Main tests (on the deck)
H1 1420 1560 Shortest stay cable excitation
H2 1589 1770 Medium stay cable excitation
H3 1796 1891 Longest stay cable excitation

Table 1: Loadings and time schedule.
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Figure 12: Time response of accelerometer 1 and zoom on the z-axis time plot.

13



2.1 Preliminary measurement campaign 2 NUMERICAL PART

As it can be seen in Table 1 and Figure 12, the first step was the synchronisation of the
accelerometers. This operation is repeated in between the different types of loading. Then
the main tests (on the deck) started. Some preliminary measurements allowed to roughly
determine the first eigenfrequencies of the footbridge so that, thanks to a metronome,
these ones could be excited by a group of five people doing the knee-bending technique.
The tested frequencies were 1.59, 2.25, 2.83 and 3.64 Hz. It was not possible to do knee-
bendings above these frequencies, the rate being too high for humans to be excited in
that way. Thanks to the recorded temporal signals, the plot of the power spectral density
(PSD) of the structure can be obtained and is observed in Figure 13. This type of graph
allows to show the frequency content of the signal.
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Figure 13: Power spectral density of the structure for the main tests of preliminary
measurement campaign.

The first three eigenfrequencies (corresponding to the first three peaks) can easily be
determined since the footbridge was excited at those frequencies. They respectively cor-
respond to the first frequency of the deck and the frequencies of the long and medium
stay cables. This was determined by looking at the response of the footbridge to the
knee-bending excitations and will be verified by computing the PSD of the periods H1,
H2 and H3. However, the frequencies above 3 Hz can hardly be identified since they are
only excited by the weak ambient forces. This justifies the need for the use of a shaker
hence a combined identification method. Indeed, it will be possible to obtain a clearer
spectrum, by imposing a random signal in a limited range of frequency. This will be
shown in Section 3.2.1.1.

After the main tests, accelerometers 2 and 3 were shut down. The first one was successively
moved from the left shortest stay cable to the left longest one in order to determine the
frequency content of the stay cables by shaking them by hand (the left is taken by looking
at the pylon from the longer span of the footbridge). This can be done by looking at
the power spectral densities computed for the periods H1, H2 and H3. Figure 14 shows
the power spectral densities for each cable, allowing to determine an estimation of their
fundamental frequencies and their harmonics.
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Figure 14: Power spectral densities of the different cables. They have been computed
respectively over periods H1, H2 and H3.

The fundamental frequencies of the long and medium stay cables indeed correspond to
the second and third peaks observed in Figure 13. Concerning the fourth peak of that
same figure, it cannot clearly be distinguished. Indeed, it should correspond to a mode of
the short stay cable or an interaction between the second mode of the deck and the short
stay cable. However, as previously mentioned, a more detailed test campaign will give a
clearer view of the frequency spectrum of the structure thanks to the shaker.

For the following of the thesis, it is planned to focus only on the deck modes. Indeed, the
considered ambient forces will be caused by pedestrians walking on the footbridge, but
this will be further explained in Section 2.2.3. It thus remains to determine the damping
ratios associated to the first two frequencies of the deck. To do so, the peak-picking or
half power point method can be applied to the square root of the power spectral density
of Figure 13. The method is illustrated in Figure 15.
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Figure 15: Peak-picking method on first vibration mode.
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As already mentioned, the method will be applied to the square root of the PSD which
will be called H (or it is in reality called Amplitude Spectral Density). In the figure above,
a zoom has been made on the first peak of H, but the same method can be applied to
the other peaks. First, the peak is located at (f1, Hmax

1 ), where f1 is the first frequency
of the deck and Hmax

1 is its corresponding value on the y-axis. The half power points are
computed so that their height is at Hmax

1 /
√

2. The distance between these two points on
the x-axis is ∆f , from which one can define the quality factor Q. Finally, the damping
ratio ζ1 can be estimated thanks to those two parameters, so that:

Q ∼=
f1

∆f
and ζ1 ∼=

1
2Q

= ∆f

2f1
. (17)

It should be noted that this method is only theoretically valid for a single degree of
freedom system so that the damping can be overestimated if the method is applied for
structures having close modes [15]. Furthermore, this method strongly depends on the
frequency resolution of the measurements, which have been shown to not be optimal for
a simple excitation doing knee-bendings (see Figure 13, above 3 Hz). Lastly, due to the
interpolations that had to be done to find the two half power points, this can lead to
some additional errors. However, the goal here is not to identify precisely the modal char-
acteristics of the footbridge but to obtain an estimation in order to create a simplified
numerical model.

Finally, the modal properties of the first two modes of the deck are summarised in Table
2. The frequencies are obtained by looking at the location of the peaks in Figure 13 on
the x-axis and the damping ratios are computed as previously explained.

Frequencies (Hz) Damping ratios (%)
1.57 0.83
3.61 0.57

Table 2: Rough estimation of the first two modal properties of the deck.

A more detailed measurement campaign will be held in Section 3 in order to determine
the first two modal properties more accurately. However, even if those parameters are
only an approximation, this preliminary campaign was only to define some parameters to
develop the model of Section 2.2, which is not a perfect representation of the real structure
as it will be explained.
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2.2 Development of a simplified model
In this section, the different steps of Figure 8 will be detailed. First, a simplified model
will be created on BeamZ software and its modal properties will be determined, which
will be taken as a reference. Then, both ambient and artificial excitations that will be
applied on the model will be defined. The response of the system to those excitations
will be computed thanks to a time integration method, that will also be presented in this
section. This is followed by a discussion about the parameters of the CSI algorithm.

2.2.1 Step 0: Creation of the BeamZ model

Now that the first modal properties of the real structure were estimated (see Table 2), a
simplified model of the Tilff cable-stayed footbridge can be created. The model is created
on the BeamZ software [16], which is a set of Matlab routines developed by Vincent Denoël
(ULiège). It allows to draw some beam models, to compute their behaviour to different
types of loads and to obtain the mass M and the stiffness K matrices of the system.
The simplified model is represented in Figure 16 and the characteristics of the different
geometries are summarised in Table 3.
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Figure 16: Simplified model of the Tilff cable-stayed footbridge. The different colors
represent the different geometries.

Geometry Material Cross-section (m2) Inertia (m4)
Deck Steel 0.25 0.013

Stay (cable) Steel 0.002 6 × 10−7

Pylon Concrete 0.6 0.035

Table 3: Characteristics of the different geometries adapted in order to obtain
frequencies close to those obtained with the preliminary measurement campaign.

An important comment to be done is that this is only a simplified numerical model that
does not represent exactly the reality. Indeed, the dimensions in distance were respected
to a certain extent, but the geometries were chosen so that the first two eigenfrequencies
of the model roughly correspond to those of the real structure. Moreover, the frequencies
of the cables will not be captured by the BeamZ model since they are represented by
a single element that is hinged on the deck. However, the aim of this model is only to
evaluate the method described in Figure 3 for the deck part, not to predict the behaviour
of the real structure.
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The model uses Hermite polynomials of degree three (X3 −3X) to represent the elements.
Moreover, it should be noted that this model is only 2D so that each node has three degrees
of freedom (DOFs). Figure 17 shows the degrees of freedom of a 2D node.

Node

y (or 2)

x (or 1)
z (or 3)

Figure 17: Degrees of freedom of a 2D node.

The model has 13 nodes, 16 elements, but only 35 DOFs since the vertical degree of
freedom is blocked on nodes 1, 7 and 9 as well as the horizontal one for node 9. Indeed:

13 nodes ∗ 3 DOFs = 39 (18)
39 − 4 blocked DOFs = 35 DOFs. (19)

The fact that the model is 2D is not a problem since torsion modes were not observed in
the frequency range of interest during the preliminary measurement campaign. Indeed,
due to the symmetry of the cables, they will block the torsion modes. Moreover, under-
neath the concrete slab, a closed metal casing is included so that it reduces the torsion
compared to if there were only two beams sustaining the concrete slab. Indeed, due to
the high torsional stiffness of the metal casing, the torsion modes will be found at higher
frequencies.

Figure 18 summarises the purpose, inputs and outputs of step 0.

Model creation

M and K matricesStep 0

Figure 18: Inputs and outputs of step 0.

2.2.2 Step 1: Computation of the modal properties of the model

The system at rest is defined by the governing equation of motion, which is given by:

Mẍ + Kx = 0. (20)

So that solving this eigenvalue problem (thanks to the eig function of Matlab) leads to
the modes shapes Φ and eigenfrequencies f of the system. The first two frequencies of
the system are summarised in Table 4.

Mode 1 2
Frequencies (Hz) 1.59 3.23

Table 4: First two eigenfrequencies of the simplified numerical model.
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As a reminder, the parameters of the model (see Table 3) were set up so that the first
two frequencies of the model would roughly correspond to those of Table 2, so that it is
not surprising to find values close to those ones. Concerning the modes shapes associated
to that frequencies, they can be observed in Figure 19.
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Figure 19: First two modes of the simplified numerical model. The gray lines represent
the non-deformed structure and the black ones represent the deformed structure.

Those reference modes will only be used to be compared with the estimated ones and
to justify the position of the shaker that will be chosen for the simulations (see Section
2.2.3). Indeed, they cannot be compared with those of the real structure since the inertia
and cross-sections of the different parts are not respected (see Table 3).

Damping can also be introduced in the system thanks to the term Cẋ where C is the
damping matrix. The system becomes:

Mẍ + Cẋ + Kx = 0. (21)
Damping can be modelled thanks to the Rayleigh damping method or proportional damp-
ing assumption that states that the damping is given by the weighted sum of mass and
stiffness matrices. So that:

C = a ∗ M + b ∗ K. (22)
The first two damping ratios (ζ1 and ζ2) are chosen to be equal to those of Table 2. By
definition:

ω1 = 2πf1 =
 

k1

m1
(23)

ζ1 = c

ccritic

= c

2m1ω1
= 1

2m1ω1
(am1 + bk1) = 1

2

Å
a

ω1
+ bω1

ã
, (24)
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where ω is the angular velocity and ccritic is the critical damping ratio. The same can be
expressed for the second modal characteristics (f2, ζ2) so that one has two equations with
two unknowns, a and b. By solving this system, one has:

a = 2ω1ω2

(ω2
1 − ω2

2)(ω1 ∗ ζ2 − ω2 ∗ ζ1) and b = 2ω1ω2

(ω2
1 − ω2

2)(ζ1/ω2 − ζ2/ω1). (25)

So that matrix C can now be computed with Equation (22). Thanks to the modes shapes
obtained when solving the eigenvalue problem, one can find the generalised version of the
matrices such as:

M∗ = ΦT MΦ, K∗ = ΦT KΦ and C∗ = ΦT CΦ. (26)
Finally, the following damping ratios are computed as:

ζi =
1
2C∗

2πfiM∗ , (27)

which is derived from Equation (24).

Figure 20 summarises the purpose, inputs and outputs of step 1.

Reference modal
characteristics

f , ζ, Φ

M and K
matrices

Step 1

Figure 20: Inputs and outputs of step 1.

2.2.3 Step 2: Definition of the ambient and artificial excitations

The step 2 of the methodology consists in defining the inputs u of the system: the ambient
Famb and artificial Fart excitations. The ambient forces aim to represent the unmeasured
forces such as wind or pedestrians crossing the footbridge. The artificial forces represent
the specified excitation that can be exerted by the shaker, for example. First, the results
will be analysed when the noise is a limited band Gaussian white noise (Section 2.3).
Then, the noise will be generated by pedestrians, which will be developed in Section 2.4.1.

Since the analysis will be made on the first two frequencies of the system and since OMAX
method makes the assumption that the noise is a Gaussian white sequence, the noise will
be defined as in Table 5 for the first part of the tests.

Case Ambient forces
Type Frequency range

Low (L) Random signal 1 to 3 Hz
High (H) 2 to 4 Hz

Table 5: Definition of the cases that will be tested for a white noise.
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Due to the random nature of the signals, the simulations must be repeated several times
for the same case in order to limit the dependency to the sampling. A number of 100
iterations is chosen arbitrarily. An illustration of the shape of power spectral density of
the noises defined in Table 5 can also be observed in Figure 21.
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(a) Simulated.
(b) Frequency range excited by the pedestrians

for vertical vibrations [3].

Figure 21: Illustration of the shape of the (white) noises.

The PSD of low noise has a rounded shape compared to the one of the high noise because
the goal was to simulate the frequency range excited by the pedestrians. Indeed, as it
can be seen in Figure 21b, the loading that needs to be taken into account is described
by a reduction coefficient. This one translates the fact that the closer in frequency to the
range [1.6 - 2.4] Hz, the higher the risk to put the footbridge into resonance [3]. That is
why this shape is only used for this frequency range and not the other ones that will be
tested.

The noise should be applied as if there were uncorrelated distributed forces on all the
elements. In order to make the results independent of the mesh, a random pressure on
the elements will be applied instead of a random nodal force. Doing so, the results will
have less sensitivity to the length of the elements. However, the fact the loading is not
necessarily coherent is not taken into account, but this is beyond the scope of this thesis.
If needed, more information about those effects can be found in [17]. An illustration of
this method can be observed in Figure 22 and is explained here after.
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Figure 22: Illustration of the method used in order to make the results independent of
the length of the elements.
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For example, the force that will be applied at node 5 is given by:

P5 = PD
lD
2 + PE

lE
2 . (28)

Where Pi (i = 2, ..., 6) are the nodal forces, lX are the length of the elements and PX

are the random pressures applied on element X. This ones are limited band randomly
generated signals (one for each element) as defined in Table 5. For all the nodes, one has:à

P2
P3
P4
P5
P6

í
= 1

2

à
lA lB 0 0 0 0
0 lB lC 0 0 0
0 0 lC lD 0 0
0 0 0 lD lE 0
0 0 0 0 lE lF

í
PA

PB

PC

PD

PE

PF

 . (29)

The level of the ambient forces will progressively be increased to see its effect on the
modal parameters. Indeed, in the first part of the analyses the noise will be defined as
the ratio between the root mean square (rms) value of the ambient forces Famb and the
one of the artificial forces Fart such as:

% of noise = rms(Famb)
rms(Fart)

. (30)

The value of rms(Fart) is set to 1 so that the level of noise correspond to rms(Famb).
The levels of noise that will be tested are: [0, 0.5, 1, 2, 4, 6, 8] %, which values are
chosen arbitrarily. In order to illustrate this definition, Figure 23 shows the difference in
amplitude of the artificial force (in blue) compared to the amplitude of the ambient forces
(in orange and yellow). They respectively correspond to ambient forces with a rms of 1%
and 8%.
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Figure 23: Illustration of the artificial and ambient forces for 1 and 8% noise level.

As the noise is considered to be applied by pedestrians and as only the modes of the
deck are of interest, the ambient forces will only be applied on the deck. Indeed, they
will be applied on nodes 2 to 6 of Figure 16 on the vertical degree of freedom, because
nodes 1 and 7 cannot move due to the configuration. This configuration of the applied
ambient forces is only valid for the model that will be analysed in Section 2.3. Indeed,
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the noise will be defined in another way (see Section 2.4.1) for the analysis of Section 2.4.2.

The artificial excitation is considered to be provided by a shaker, it is then chosen to
apply it at node 5 on the vertical degree of freedom. Indeed, the shaker should not be
located on the node of one of the mode one wants to identify. In theory, the shaker should
be located where the amplitude of the mode is maximum in order to excite it optimally.
However, in order to excite several modes, a compromising location should be chosen. So
that, by looking at Figure 19, node 5 seems to be a good position for the two modes.
It is easy to change the location of the shaker for the simulations but in real life, this
device can be quite heavy so that if this manipulation can be avoided, it is more conve-
nient. Concerning the type of artificial force that will be applied by the shaker, this will
be discussed in Section 2.3. Finally, the vertical responses of the footbridge to the ex-
citations will be measured at nodes 2 to 6. All these positions are summarised in Figure 24.
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Figure 24: Position of the artificial force (shaker), of the ambient forces (noise) and of
the measured responses (accelerometers).

Figure 25 summarises the purpose, inputs and outputs of step 2.

Definition of the ambient
and artificial excitations

inputs of the system
u: Famb and Fart

Step 2

Figure 25: Inputs and outputs of step 2.

2.2.4 Step 3: Computation of the response of the structure

To compute the response of the structure to the imposed excitation at the desired loca-
tions, Newmark implicit time integration method will be used. It is a prediction-correction
scheme. In contrast, explicit methods only use the current state to compute the following
one. They are easier to implement in practice and are quicker but the time step should
be small enough in order to obtain good results. However, even if it is a little more costly
to implement, the implicit method have a higher stability when the right parameters are
set [18]. The algorithm of Newmark method is presented in Figure 26.
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Figure 26: Newmark time integration [19].

The matrices M, C and K are known
as well as the initial conditions on
displacement (q0 = 0) and veloc-
ity (q̇0 = 0). The acceleration
at initial time q̈0 can then be com-
puted.

Then, the time is incremented by a time
step h. The prediction of the displacement
qn+1 and the velocity q̇n+1 at time tn+1 are
computed.

Thanks to the iteration matrix S, the ac-
celeration q̈n+1 at time tn+1 can also be
computed.

Finally, a correction for displacement and
velocity at time n + 1 is made before re-
iterating.

An important comment has to be done regarding the parameters used in this method. In
fact, to ensure the stability of the scheme, β, γ and the time step h have to be chosen
carefully. The condition of stability of this scheme are summarised in the (β, γ) plane in
Figure 27.

Figure 27: Stability of the Newmark method in function of its parameters [19].

The first remark is that γ must be greater or equal to 0.5 otherwise the algorithm would
not be stable at all. The algorithm can also be conditionally stable only if the time step h
respects the equation presented in the blue part of Figure 27. In this work, γ = 1/2 and
β = 1/4 are chosen in order to make the time step independent of γ and β and to offer the
maximum accuracy while being stable. This is known as the average constant acceleration
Newmark method. In this case, the periodicity error obtained by the comparison between
the exact dynamic response of a one degree of freedom oscillator under initial conditions
and the numerical solution is given by [19]:

∆T

T
= ω2h2

12 . (31)
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The periodicity error translates the frequency offset of the peak in the PSD graph due to
the choice of a finite time step. This is illustrated in Figure 28.
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Figure 28: Illustration of periodicity error.

Indeed, the time step has to be chosen in order to minimise the periodicity error as well
as the computation time. IT is not possible to realise both at the same time so that a
trade off between accuracy and speed should be done. Generally, a rule of thumb is that:

h <
Tn

20 , (32)

where Tn = 1/fn is the period of the highest frequency one wants to identify. In this
case, the highest frequency is 4 Hz (for the case when the noise is in the high range, see
Table 5). So that the time step should be less than 0.0125 seconds. A time step of 0.01
seconds has then been chosen for the simulations. This leads to less than 1% of periodicity
error for both first frequencies (1.59 and 3.23 Hz), which is acceptable.

Figure 29 summarises the purpose, inputs and outputs of step 3.

Newmark time
integration scheme

inputs of the system
u

responses of the system
y

Step 3

Figure 29: Inputs and outputs of step 3.

2.2.5 Step 4: Identification of the modal properties thanks to the CSI

This step is the one that will apply the combined subspace identification algorithm ex-
plained in Section 1.3.1. The subid.m function takes as inputs:

• The excitation u defined in step 2 (Section 2.2.3) composed of the ambient and
artificial forces;

• The responses of the system y computed in the previous step (Section 2.2.4). These
responses are computed at fives locations as it was illustrated in Figure 24;

• The system model order n;
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• A parameter i, which is the number of block rows used in the Hankel matrices. As
it was already mentioned in Section 1.3.1.1, parameter i should at least be larger
than the maximum order of the identified system one wants to identify. However,
it should not be chosen too large because the computational time is proportional to
i2 [10]. It is advised in [10] to choose i as follows,

i = 2 · Maximal order
Number of responses = 2 · 35

5 = 14. (33)

The outputs of this function are the different matrices described in Figure 4, from which
the modal properties of the system can be extracted thanks to the following equations [9]:

fi = λi

2π
and ζi = −Re(λi)

|λi|
with λi = ln(Di)

h
. (34)

Where Di are the values of the diagonal of the matrix obtained with the eig.m function
applied on matrix A, | · | denotes the complex modulus and Re is the real part operator.

The identification process is repeated for several system orders and a stabilisation diagram
can be built in order to choose the adequate one. By convention, the frequency at order
n is considered to be stabilised if it has less than 1% error with the value of the frequency
computed at order n − 1. The same is done for the damping but the limit is at 5% error,
still by convention [20]. This diagram helps separate the real poles from the numerical
ones. Indeed, a real pole will stabilise as the order increases, while this is not the case
for the spurious ones. Figure 30 shows an example of this type of diagram for a random
excitation between 1 and 4 Hz without noise.
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Figure 30: Example of a stabilisation diagram. The green circles represent a pole that
stabilised in both frequency and damping ratio while the blue stars mean that the pole
only stabilised in frequency. A black dot means that the detected pole neither stabilised

in frequency nor in damping ratio.

This stabilisation diagram shows that in the range 1-4 Hz, the system has 3 eigenfre-
quencies at 1.59, 3.23 and 4.16 Hz. Indeed, to be considered stable a pole should remain
green (stable in frequency and damping) for several consecutive orders. In this work, this
value is set to 4 consecutive green circles because due to the high number of data to be
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checked, it had to be performed automatically. So that when 4 consecutive green dots are
found, the code performs a mean with the 4 values found for the frequency and damping.
However in reality, when it is possible to check the results manually, the frequency and
the damping ratio evolutions can be plotted in function of the order separately and one
should choose the order where both quantities stabilised. Finally, thanks to the order
chosen, one can obtain the frequencies, damping ratios and modes shapes at that order.

Figure 31 summarises the purpose, inputs and outputs of step 4.

OMAX
(subid.m function)

Excitation, u
Responses, y
System order, n
Number of block
Hankel matrices, i

Identified modal
characteristics

f , ζ, Φ

Step 4

Figure 31: Inputs and outputs of step 4.

2.2.6 Summary

In this section, the methodology implemented on the Matlab codes was presented. First,
a simplified model of Tilff cable-stayed footbridge was created in BeamZ and its reference
modal characteristics were computed. Then, the definitions of the excitation and noise
were given. The response of the structure to those loads could be computed thanks to
a Newmark time integration method. Finally, by using the knowledge of the excitation
and the response of the system, the CSI algorithm can be applied to obtain the identified
modal characteristics of the model.

However, the definition of the artificial excitation was not explicitly given in step 2 (Sec-
tion 2.2.3). Indeed, several parameters such as the excitation signal, bandwidth or simu-
lation time must be varied in order to assess their influence on the modal parameters, as
the level of noise increases. That is the aim of Section 2.3.
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2.3 Influence of the type of excitation
In this section, the influence of the type of excitation on the modal properties of the
system will be studied when the level of noise is increased. Figure 32 summarises the
content of this section with the different variations that will be studied.

outside frequency range of interest

Should obtain consistent results with
the identification method of Section 1.1

inside frequency range of interest

Study the effect of increasing noise
level on modal properties

Type of noise: random between 1-3 Hz or 2-4 Hz depending on the studied frequency,
as defined in Table 5.

Type of signal: random
Simulation time: 15 min
Bandwidth: 0.2 Hz centered
on frequency of interest

Section 2.3.2.3

a) Variation of the bandwidth of excitation: i) 0.02 and ii) 0.6 Hz

b) Variation of the type of signal: sweep

Variation of the speed of sweep (simulation time): 7 min

→ Only for f1, the results for f2 can be found in Appendix A.2.

Section 2.3.1

Noise

Section 2.3.2

Noise

Figure 32: Structure of the analysis of the results section when noise is a random signal.
This will allow to determine what is the influence of the varying parameters on the

modal properties when the level of noise is increased.

The first tests will be done using a random excitation of 0.2 Hz bandwidth centered on
the frequency of interest, i.e. one of the first two frequencies of the deck (1.59 Hz or 3.23
Hz), for a 15 min simulation. These choices have been done knowing that:

• The random excitation is generated a single time and is filtered accordingly, in
order to always have the same excitation profile, no matter the test performed.

• The simulation time should be large enough to remove the transient effects
and the tests realised by V2i on footbridges generally last 15 min by excitation type.

• The bandwidth of the excitation could have been chosen larger since the first two
frequencies are far from each other. However, for a real structure as on La Belle
Liégeoise footbridge in Liège, the number of modes in a very narrow range can be
high. In order to ease the identification (less or no filtering of the data), one should
excite the lower number of mode possible so that the bandwidth should be
chosen small enough. This will be proven in Section 3.2.1.4 where the signals will
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need to be filtered. However, the bandwidth should be large enough to capture
the resonance peak and thus the right damping ratio (this will also be proven, in
Section 2.3.2.3 a) i)).

In addition to the excitation previously defined, noise will be added outside and inside
the frequency range of interest to see its effect on the identified modal parameters.
For this part of the analyses, the noise is defined as a limited band random signal (see
Table 5 and Section 2.2.3) regenerated at each iteration. The influence of the noise type
will be studied in Section 2.4. Since the noise is regenerated at each iteration, the simu-
lations must be repeated several times in order to limit dependency to the sampling.
The simulations were then repeated 100 times for each case and a boxplot of the stabilised
data can be obtained for each level of noise. ”A boxplot allows to represent easily a set of
data where the central mark is the median and the edges of the box are the 25th and 75th
percentiles. The whiskers extend to the most extreme data points the algorithm considers
to not be outliers, and the outliers are plotted individually as red crosses” [21].

The following analyses will only be done for a noise in the frequency range of interest, since
the case when noise is outside the frequency range of interest should give consistent results
with the identification method currently used by V2i (Section 1.1 and [2]): the modal
parameters should be close to the reference value when the noise is outside the frequency
range of interest. A study on the bandwidth of the excitation will be performed in order
to determine its influence (Section 2.3.2.3 a)). Finally, a sine sweep will be simulated
instead of a random for the measured excitation and a parametric study on the speed of
the sweep will also be realised (Section 2.3.2.3 b)).

2.3.1 Noise is outside the frequency range of interest

In this section, the effect of noise on the modal properties of the system will be studied,
when this noise is outside the frequency range of the interest. In this case, the excitation
will always be a random signal of 0.2 Hz bandwidth centered on the frequency of interest,
applied for 15 min.

2.3.1.1 Frequencies and damping ratios

Before analysing the results, some comments about the graphs have to be done:

• The median values for the frequency at 0% noise (which correspond to the identi-
fied value without noise) are slightly offset from their reference value (computed in
Section 2.2.2, Table 4) due to the choice of the time step. That is why two types
of limits are defined: those for reference value (in blue) and those for the identified
value at 0% noise (in grey). Indeed, the periodicity error was less than 1% (as
discussed in Section 2.2.4) but the distance between the grey and blue lines should
decrease to zero as the time step decreases. However, this would result in a quite
long simulation time so that a trade-off between accuracy and speed had to be done.
The reference lines are not shown for the damping graphs since the periodicity error
only applies for the frequency (the peak is only offset, not deformed, see Figure 28).

• For the following figures, only the lines for the identified values will be shown, for
sake of readability. Indeed, the goal will be to study the effect of the noise on the
identified value, compared to the one identified at 0% noise.
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• The lines showing the limits for 1% error on frequency and 5% on the damping are
also represented just to make the comparison easier between the different cases.

Figures 33 and 34 (shown at the beginning of next page) respectively show the behaviour
of the first and second modal properties of the system when the noise is outside the fre-
quency range of the excitation.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(c) Damping ratio.

Figure 33: Results for the identified modal parameters of the system computed with the
CSI algorithm for a high unmeasured noise outside the frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 1 (1.59 Hz).

In either cases (Figures 33b and 34b), the identified value at 0% level of noise is close to
the reference value (less than 1% error) showing that the CSI algorithm allows to cor-
rectly identify the modal properties of a given system when there is no noise. Concerning
the evolution of the identified value with an increasing level of noise, the variation in
frequency is negligible no matter the level of noise for both cases.

Concerning the evolution of the identified value for damping ratios, the same conclusion
can be drawn, at least for mode 2 (Figure 34c). The observations are also verified for
mode 3, which is shown in Appendix A.1. Indeed, for the damping of mode 2, the whiskers
of the boxplots are close to the median value. However, the variability is higher in the
case of mode 1 (Figure 33c), even if the median values follow the same tendency (close to
the identified value).
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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Figure 34: Results for the identified modal parameters of the system computed with the
CSI algorithm for a low unmeasured noise outside the frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 2 (3.23 Hz).

The difference between the two cases is that the noise is not defined in the same way.
Indeed, the PSD of the noise from 1 to 3 Hz has a rounded shape while the one from 2
to 4 Hz has a more rectangular shape, as it was explained in Section 2.2.3 (see Figure
21). The rounded shape allows the noise to progressively increase/decrease whereas the
rectangle shape cause a more sudden rise/drop of noise. So that the rectangular shape as
a stronger influence on the frequencies close to its edges compared to the rounded one.
Moreover, the noise is not on the same side for the two frequencies. In order to compare
the two cases, noise should be at the left of the first frequency. So that by defining the
outside noise from 0.49 to 1.49 Hz instead of 2 to 4 Hz for mode 1, one should obtain
clearer results, with less variability. These values have been computed in order to roughly
have the same configuration than for mode 2. Indeed:

1
3.23 ∗ 1.59 = 0.49 and 3

3.23 ∗ 1.59 ≃ 1.49. (35)

The results obtained with this new definition for the outside noise of mode 1 are shown
in Figure 35.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(c) Damping ratio.

Figure 35: Results for the identified modal parameters of the system computed with the
CSI algorithm for a low unmeasured noise outside the frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 1 (1.59 Hz).

Comparing Figures 33c and 35c, one can see that the whiskers converged to the median
value by putting the noise at the left of the excitation. The remaining variability is
certainly due to the shape of the noise (that is still rectangular, as it was explained in
Section 2.2.3). So that, what can be retained from the first part of this section is that
when the noise is outside the frequency range of interest, the frequencies and damping
ratios are close to their identified values at 0% noise, no matter the level of noise. This is
even more correct if the noise is in a lower frequency range than the excitation.

2.3.1.2 Mode shapes

The mode shapes obtained with the function subid.m are in complex form. In order to
determine if they are real or complex, one should measure their modal complexity thanks
to Argand diagrams. This diagram plots the imaginary part of the mode shape in function
of its real part. A real mode is represented on the Argand diagram by coefficients having
a very close phase shift. Indeed, a mode is real only if it represents an in-phase vibration
(standing wave), so that the node of vibration stays at the same location. However, a
complex mode shape represents an out-of-phase vibration (travelling wave) so that the
node of vibration does not stay at the same location [22]. After checking if the modes
were indeed real ones, they can be normalised before being plotted. Figure 36 shows an
example of Argand diagram for one estimation of the first mode as well as its normalised
version.
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Figure 36: Argand diagrams for one estimation of mode shape 1, raw (blue) and
normalised (red) versions. This type of diagram plots the imaginary part of the mode

shape in function of its real part.

The arrows being all aligned show that the computed mode is indeed a real one. Since
the tests were performed 100 times for each level of noise, one can obtain the median
value of the vertical displacement for each measured node. The fact that only the vertical
displacement is measured comes from the configuration shown in Figure 24. Finally, the
median values of the first two mode shapes for an increasing level of noise can be observed
in Figure 37 and compared with the reference ones obtained in Section 2.2.2, Figure 19.
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Figure 37: Comparison between the reference and the identified mode shapes of the
system computed with the CSI algorithm for an increasing noise level outside the

frequency range of interest.

It should be noted that due to the configuration shown in Figure 24, the modes are only
accurate for the points in which the acceleration is measured, only on the vertical degree
of freedom. That is why this type of representation has been chosen to present the re-
sults for the mode shapes. One can see that, as the frequency and the damping ratio,
the median values of the identified vertical displacement at each node are consistent with
the reference values. The different lines for the identified mode shapes with noise cannot
be distinguished, that is why a single caption is present for all the curves (0 to 8% of
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noise). The lines showing the 25th and 75th percentiles are not shown because they are
indistinguishable for the median lines.

For both modes, the displacement of accelerometer 3 is equal to 0. This is due to the
fact that the response was measured at the location of the pylon (see Figure 24) so that
the displacement at this location is minimal. The location of highest displacement is not
at the location of shaker (position 5), so that a better position for the shaker could have
been chosen to optimally excite those modes. However, as it was already mentioned in
Section 2.2.3, a compromise on the location of the shaker had to be done in order to excite
both modes at the same time.

As it can be seen, when noise is outside the frequency range of interest, the identified
modal properties are close to the identified value at 0%, no matter the level of noise. This
was also the case for the identification method currently used by V2i (see Section 1.1 and
[2]) so that, the most interesting case to study is to apply the CSI algorithm when noise
is inside the frequency range of interest.

2.3.2 Noise is inside the frequency range of interest

In this section, the effect of noise on the modal properties of the system will be studied
when this noise is inside the frequency range of the interest. As explained before, this
case will be investigated more deeply than the previous one. This can be done by varying
the bandwidth of the excitation or the type of signal to check if they have an influence
on the identification of the modal properties.

2.3.2.1 Frequencies and damping ratios

Figures 38 and 39 (shown in the next page) show the results for the modal properties of
the system when the noise is inside the range of the excitation. This one is still a random
signal of 0.2 Hz bandwidth centered on the frequency of interest and is still applied for
15 min.

On those figures, it can be observed that when the noise is in the range of the frequency of
interest, it has an higher influence on the damping ratio while it still has a poor influence
on the frequency, compared to the case when noise is outside (Section 2.3.1). The higher
the level of noise in the system, the more the median of the damping moves away from
its identified value (computed at 0% level of noise) and the higher the variability in the
results. Indeed, the minimum and maximum values starts to diverge more and more from
the median value as the level of noise increases. The observations are also verified for
mode 3, which is shown in Appendix A.1. This behaviour can be explained by looking at
the power spectral density of the response of the footbridge in function of the percentage
of noise. This is shown in Figure 40 (shown at the beginning of the next page) for mode
2 but the same applies for mode 1.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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Figure 38: Results for the identified modal parameters of the system computed with the
CSI algorithm for a low unmeasured noise inside frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 1 (1.59 Hz).
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.

0 0.5 1 2 4 6 8

3.19

3.2

3.21

3.22

3.23

3.24

3.25

(b) Frequency.

0 0.5 1 2 4 6 8

0.54

0.55

0.56

0.57

0.58

0.59

(c) Damping ratio.

Figure 39: Results for identified the modal parameters of the system computed with the
CSI algorithm for a high unmeasured noise inside frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 2 (3.23 Hz).
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Figure 40: Power spectral density of the response of the footbridge in function of the
level of noise for mode 2.

The horizontal axis of Figure 40 shows the same than Figure 39a excepted that now the
amplitude component is also represented, on the vertical axis. One can see that as soon
as noise is added in the system, the basis of the rise and drop of the peak is no longer
distinguishable. As the level of noise increases, more and more portion of the rise and
drop is covered. This could be why the damping ratio is more and more affected. Indeed,
as it was seen in Equation (17), the damping ratio can be defined as the width of the peak
over the resonance frequency, so that a larger peak for the same frequency translates into
a higher damping ratio. As the level of noise increases, the width of the peak that can
be identified becomes smaller so that this results into a smaller damping ratio, explaining
the progressive degradation of the damping ratios towards lower values. However, the
peak apex is well represented no matter the level of noise, so that the frequency can be
correctly identified.

2.3.2.2 Mode shapes

Concerning the mode shapes obtained with the CSI algorithm when the noise is inside the
frequency range of interest, they are not shown as they are the same than those obtained
in Figure 37. This proves that frequencies and modes shapes of this model are
not really sensitive to noise compared to the damping ratios, for the levels of
noise tested. That is why the frequencies and modes shapes will not be represented in
the following cases, because the conclusion does not change from the others cases: the
frequency remains close to the identified value at 0% no matter the level of noise, as well
as the shape of the mode.

2.3.2.3 Variation of the bandwidth and the type of the excitation

Now that the effect of the noise on the modal properties have been determined, some
other parameters can be varied, as it was stated in Figure 32:

a) Variation of the bandwidth of the excitation
In this section, the effect of taking a decreased (0.02 Hz) or an increased (0.6 Hz)
bandwidth will be investigated.
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i) Decreased bandwidth: 0.02 Hz
Figure 41b shows the effect of taking a decreased bandwidth on the stabilisation
diagram.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(b) Stabilisation diagram for a 8% level of noise.

Figure 41: Effect of taking a decreased bandwidth (0.02 Hz) on the stabilisation
diagram of frequency 1 for a known random signal.

Taking a narrower interval is not a good solution as the stabilisation diagram
does not stabilise in damping for several consecutive orders as it was
defined in Section 2.2.5. Indeed, by exciting in a confined range like this one,
there would not be enough points all around the rise and drop of the peak
in the PSD graph, so that it will be difficult to compute the damping ratio.
Indeed, the damping ratio can be associated to the width of the peak, as it was
already explained. The illustration of taking a too narrow excitation band is
presented in Figure 42.

Frequency (Hz)

}

0.02 Hz

Figure 42: Illustration of taking a too narrow bandwidth on the estimation of the
damping ratio. The red dots are the locations of the identified values with the random

excitation.
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So that the width of the peak cannot be correctly represented and so is the
damping ratio. That is why a sine excitation would not be useful either to de-
termine the damping ratio since it only excites at a given frequency. Anyway,
a narrow band like this one is never used in practice. If two modes are really
close in frequency and are in the range of the excitation chosen, the method is
to put the shaker on the node of the undesired mode so that it is not measured.

ii) Increased bandwidth: 0.6 Hz
Both frequencies have different damping ratios with ζ1 = 0.83% > ζ2 = 0.55%.
As it was already mentioned several times, the higher the damping ratio is, the
wider the peak will be in frequency spectrum. So that a larger bandwidth of
excitation should be taken for mode 1 than mode 2, in order to estimate the
damping correctly. Figure 43b shows the results obtained for the damping ratio
of frequency number one for a random excitation with an increased bandwidth
(0.6 Hz).
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(a) Illustration of the cases tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(b) Results for the damping for an increased bandwidth.

Figure 43: Effect of taking an increased bandwidth (0.6 Hz) on the damping ratio of
frequency 1 for a known random signal.

One can see that taking a larger interval poorly influences the results (by
comparing with Figure 38c), in this case. Indeed, the variability represented
by the whiskers and percentile lines is smaller than the case with a 0.2 Hz
bandwidth excitation but only for a very small percentage of noise (< 1%).
Indeed, as the level of noise increases,this difference is less and less pronounced.
So that the interval was already large enough to determine the damping ratio
with the 0.2 Hz bandwidth excitation. A small difference in the median values
can be observed. Indeed, by looking at the 8% noise boxplot for Figure 38c
and 43b for example, the median for the increased bandwidth is lower than
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the case for the 0.2 Hz bandwidth. However, this difference is of the order of
1%. This difference could be due to the random nature of the noise signals so
that the two cases are not exactly the same (the results depend on the noise
signal that have been generated randomly). However, the most important
thing to remember from this test is that the bandwidth was already large
enough to evaluate the damping ratio. The tests were also performed
for the second frequency of the system and the results (leading to the same
conclusions) can be found in Appendix A.2.

b) Variation of the type of the excitation
One can also change the type of excitation to see if it has an influence on the
results. Instead of using a random signal for the excitation, a sine sweep signal is
now simulated for 15 minutes. A sine sweep consists in imposing a single frequency
at any given time. However, the frequency varies in time from low frequency to
high frequency, in this case. So that for mode 1 (1.59 Hz), the starting frequency is
chosen to be 1.49 and will progressively be increased up to 1.69 Hz until the end of
the simulation.
The simulation time can also be adapted in order to study the influence of speed
of the sweep. The same test is thus realised, but for a 7 min simulation time. The
results for the damping ratios are presented in Figure 44.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(b) For a 15 min simulation.
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(c) For a 7 min simulation.

Figure 44: Change in type of excitation signal - sine sweep between 1.49 and 1.69 Hz.

Using a sweep signal for the same simulation time (Figure 44b) shows the same
effect than extending the bandwidth: the variability represented by the whiskers
and percentile lines is smaller than the case with a random excitation of 0.2 Hz
bandwidth (Figure 38c) but only for a small percentage of noise. Moreover, a
difference in the median values can be observed but this one is of less than 1%. So

39



2.3 Influence of the type of excitation 2 NUMERICAL PART

that imposing a sweep signal leads to approximately the same results than
imposing a random excitation. Decreasing the simulation time leads to an
increased variability on the values when comparing the results in Figures 44b
and 44c. This is due to the fact that if the speed of the sweep is too high, the
system has less time to stabilise, even if it will not reach steady state with this type
of excitation. The tests were also performed for the second frequency of the system
and the results (leading to the same conclusions) can be found in Appendix A.2.

2.3.3 Summary

In this section, the influence of the noise on the identified modal properties as well as the
influence of the type of excitation was investigated. The simulations were repeated 100
times so that boxplots have been used to represent the results obtained for a defined level
of noise. The first tests were performed with a random excitation of 0.2 Hz bandwidth
centered on the frequency of interest for a 15 min simulation:

• When the noise was outside the frequency range of interest, all modal parameters
(frequencies, damping ratios and modes) were close the identified value at 0% noise.
So that they were independent of the level of noise in the system and the variability
of the results was very low. This was even more true when the noise was in lower
frequency range than the frequency range of the excitation.

• When the noise was inside the frequency range of interest, the same conclusion
could be drawn concerning the frequencies and mode shapes. However, concerning
the damping ratios, a progressive degradation of the results towards lower values
(compared to the identified value at 0% noise) was observed as the level of noise
increased up to 8%. So that the most sensitive values to the noise are the damping
ratios, in this case.
Then the bandwidth of the excitation, the type of signal and the simulation time
were modified in order to asses their respective influence:

– Taking a too narrow interval leads to no results as the stabilisation diagram did
not show stable poles for several consecutive orders. Indeed, if the bandwidth
is not large enough, it is not possible to correctly represent the rise and drop of
the resonance peak in the PSD and thus the damping ratio cannot be estimated
correctly.

– Taking a larger interval, in this case, did not have a big influence on the results
for the damping ratio meaning that the frequency range of the excitation was
already large enough in order to estimate it.

– Applying a sweep signal as excitation led to the same conclusion: it does
not have a big influence on the results compared to the random excitation.
However, decreasing the simulation time for the sweep shows a larger variation
in the results (the min and max values move away from the median values),
showing that the simulation should be realised for a long enough time in order
to obtain more precise results.

Now that the influence of the type of excitation have been assessed, one can investigate
what is the influence of the type of noise on the system. Indeed, the noise will now be
represented by several pedestrians walking back and forth on the footbridge. This case
will be investigated in Section 2.4
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2.4 Influence of the type of noise
As said before, it could be interesting to simulate some pedestrians as they can be the
source of noise going from about 1 to 3 Hz [3]. The aim of this section is thus to model
the noise as several pedestrians crossing the footbridge back and forth, each at their own
pacing rate, instead of limited band random signals (as it was realised in Section 2.2.3).
This will be realised in Section 2.4.1. However, the loading contribution of a pedestrian
can be described by a sinusoidal force [3]. As a recall, the OMAX method makes the
assumption that the noise is a Gaussian white noise. So that the effect of not having
a white noise anymore will be studied in Section 2.4.2. The tests will be performed for
an increasing number of pedestrians crossing the footbridge so that the level of noise is
progressively increased.

2.4.1 Force induced by the pedestrians

The force induced by a pedestrian on a footbridge can be vertical, normal or tangential.
In this case since the model is only 2D and since only the vertical modes of the deck are
of interest, only the vertical load will be taken into account. Since modal forces will be
used, the system should now be written in modal form, so that:

M∗q̈ + C∗q̇ + K∗q = Fp + P∗
shaker. (36)

Where the generalised force imposed by the shaker is computed as P∗
shaker = ΦT Pshaker(t)

and Fp is the vertical force imposed by the pedestrians. Its definition is given by Equa-
tion 37 [3] and thanks to the properties of the Dirac delta one has:

Fp =
∫ L

0
F v

p (t)δ(xp − vpt)Φ(xp)dx = F v
p (t)Φ(vpt), (37)

with vp being the forward speed of the pedestrian assumed to be constant and xp its
position on the footbridge. The vertical pedestrian load can be described by the following
Fourier Series [3]:

F v
p (t) = W + α1,vW sin(2πfst) + W

n∑
i=2

αi,v sin(2πifst − φi). (38)

In [3], it is advised to only keep the first two terms because the coefficients αi,v for
i > 1 become too small to be considered. The parameters and their common values are
summarised in Table 6.

Parameter Name Value
W Weight of pedestrian Between 500-900 N

αi,v Dynamical load factor

α1 = 0.34 − 0.09 ∗ log(np) (if np < 10)
α1 = 0.25 (if np > 10)
np = number of pedestrians
on the footbridge

φ
Phase angle of ith harmonic
relative to the first harmonic φ2 = φ3 = π/2

Table 6: Values and names of the different parameters appearing in the pedestrian
vertical load equation (38) [3].
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Concerning the pacing rate fs and the forward speed vp, they are related. Table 7 shows
their typical values for different types of walks.

Pacing rate fs (Hz) Forward speed vp (m/s)
Slow 1.7 1.1
Normal 2.0 1.5
Fast 2.3 2.2
Jog 2.5 3.3
Sprint > 3.2 5.5

Table 7: Typical values for pacing rate fs and forward speed vp of a pedestrian [23].

Usually, slow to fast walks are the most observed ways to walk on footbridges, so that the
values of vp will be randomly generated in the interval [1.1 - 2.2] (m/s) and the value of
fs will be interpolated in the interval [1.7 - 2.3] (Hz), for each pedestrian. The weight of
the pedestrian will also be randomly generated in the interval cited in Table 6. This will
allow to obtain a random vertical force for each pedestrian.

Now that the vertical force of the pedestrian F v
p (t) have been determined one should

compute the modal form Φ(vpt) of Equation 37. To do so, the modes of the footbridge
should be interpolated at the position of the pedestrian. Its instant position xp can be
computed as follows:

xp(i, k) = x0(k) + vp(k) ∗ (t(i) − t0(k)), (39)

where t(i) is the time instant, k is the kth pedestrian, x0 is the initial position of the
pedestrian and t0 is the phase shift of the pedestrian. Since the goal is to simulate the
pedestrian walking back and forth on the footbridge, the initial position is randomly
chosen between the beginning (xstart) and the end (xend) of the footbridge. t0 is equal to 0
at the beginning of the walk and will be useful to simulate the back and forth movement
of the pedestrian. The speed of the pedestrian is positive if going towards the right and
negative if going towards the left. This is illustrated in Figure 45.
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Figure 45: Illustration of the parameters in the position equation of the pedestrians
(Equation 39).
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Once the pedestrian reaches one of the ends of the footbridge (xstart or xend), its speed vp

changes sign, its new initial position is equal to xstart or xend and t0 is equal to the time
instant t(i) at which it reached the extremity. So that during all the simulation time,
the pedestrian is walking back and forth on the footbridge. The content of this section is
coded in the function loading model test.m and is also available on MatheO [13].

Figure 46 shows one estimation of the imposed dynamic charge obtained for mode 1 for
1, 5 and 10 pedestrians and their respective power spectral densities.
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Figure 46: Imposed dynamic charges applied to the footbridge along time for different
numbers of pedestrians and their associated power spectral densities. This example is

shown for mode 1.

One can see that, the more pedestrians are walking on the footbridge at the same time, the
higher the imposed dynamic charge is and the higher the response of the footbridge will
be. Indeed, the imposed dynamic charge is computed by summing the Fp for the different
pedestrians. Moreover, the more pedestrians are added, the wider the frequency content
becomes. However, some dominant frequencies can be spotted, this is known as coloured
noise. So that the white noise assumption is not met anymore. This means that the
”frequency components cannot be separated from the eigenfrequencies of the system and
they will appear as poles of the state matrix A [20]”. This will be shown in the analysis of
the results (Section 2.4.2). The case with one pedestrian is very particular as its random
characteristics (speed, weight...) can differ consequently from one pedestrian to another.
Moreover, its frequency content is very narrow as it will only have a peak at the pacing
rate of the single pedestrian.

2.4.2 Analysis of the results

In order to see what is the influence of using a noise induced by pedestrians, a random
signal will be applied by the shaker. The level of the shaker will be set to the highest
value the shaker designed by V2i can provide (4500 N, see Table 9) and the number of
pedestrians will progressively be increased. Table 8 shows the different steps that were
performed in order to obtain the results for this case.
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Step Number of
pedestrians

Force imposed by
the shaker (N) Objective

1 0 4500 Compute the rms value of the
response for the shaker alone

2 1, 3, 5, 8, 10 0 Compute the rms value of the
response for the pedestrians alone

3 0, 1, 3, 5, 8, 10 4500 Compute the modal properties

Table 8: Steps performed in order to obtain the results in the case where the noise is
induced by pedestrians: the value of the force imposed by the shaker is settled and the

number of pedestrians is increased.

The steps 1 and 2 of Table 8 allow to define the percentage of noise. Thanks to step 1,
one can compute the root mean square value of the response of the footbridge (the one
obtained after the Newmark computation) for the shaker alone rms(y)shaker, with a force
of 4500 N. The same is done for the pedestrians alone rms(y)pedestrians, but is repeated
100 times in order to build boxplots since several parameters in the computation of the
vertical force of the pedestrians (Equation (37)) are randomly generated. For this case,
the noise is then defined as:

% of noise = rms(y)pedestrians

rms(y)shaker

. (40)

For each number of pedestrians, a percentage of noise can then be defined. Once the
percentage of noise has been defined, one can run the algorithm for both parameters at
the same time (step 3 of Table 8) and the results (identified modal properties of the
system) can be analysed. The results will be analysed for two systems:

a) MODEL 1 : System with fundamental frequency at 1.59 Hz (that is the model that
have been used up to now);

b) MODEL 2 : System with fundamental frequency at 2 Hz.

Indeed, as it was shown in Figure 21b and Table 7, 1.59 Hz is very close to the starting
value of the interval defining the pacing rate of pedestrians ([1.6 or 1.7 - 2.3] Hz). So that
the system having a fundamental frequency at 1.59 Hz is a limiting case. That is why the
study will also be done for a system having a fundamental frequency of 2 Hz. This model
was obtained by modifying the inertia and cross sections of the different geometries as it
was done in Section 2.2.1 in order to obtain its fundamental frequency at the desired value.

For each system, the effect of having the noise inside or outside the frequency range
of interest will be studied. So that the simulations have the same goal of Section 2.3
but now the noise is caused by the pedestrians and is thus no more white. The results
will once again be compared to limits showing 1% error on the frequency and 5% error on
the damping ratio with their respective values identified at 0% noise, in order to compare
the different cases.

a) MODEL 1: System with fundamental frequency at 1.59 Hz

Noise is inside the frequency range of interest
First, thanks to the steps 1 and 2 of Table 8, one can define the percentage of noise
for a random excitation around frequency one and a noise inside the frequency range
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of the excitation. The results for the definition of the noise level are presented in
Figure 47. The results for the modal properties obtained with the step 3 of Table 8
can be observed in Figure 48.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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8 12.48
10 13.31

(c) Median values.

Figure 47: Percentage of the noise in function of the number of pedestrians for a system
with a fundamental frequency at 1.59 Hz for its first eigenfrequency.
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(b) Damping ratio.

Figure 48: Results obtained with the CSI algorithm for frequency number one (1.59 Hz)
for a known random excitation of 0.2 Hz bandwidth and an unmeasured excitation

caused by pedestrians walking back and forth on the footbridge.
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One can see that increasing the number of pedestrians leads to an increasing level
of noise (Figure 47). The first thing that can be observed concerning the modal
properties is that the damping ratio (Figure 48b) roughly has the same behaviour
than in Section 2.3.2. Indeed, the higher the noise, the more the median values are
moving away from the identified value at 0% noise. However, the difference now is
that it seems that the median value converges to an asymptote as the level of noise
increases, there is a saturation effect. Indeed, adding more and more pedestrians
will not necessarily mean that the damping ratio will decrease proportionally. In
other words, as the number of pedestrians is increased, the influence of the added
pedestrian is decreasing. Indeed, as it can be seen in Figure 46, the effect of adding
more and more pedestrians is only translated in a wider frequency content, not in
a consequently higher power spectral density. Concerning the limits, it can be con-
cluded that beyond a certain number of pedestrians, one should be careful with the
results obtained (more than 5% error on the damping). Here this value is 5 pedes-
trians, however this value depends on the system and on the studied frequency as
it will be seen in the other cases. It also depends on the criterion that is chosen to
tell if the results are acceptable or not. Here a 5% error was chosen in order to com-
pare the different cases but one could chose to put the limit at 1% error for example.

Concerning the frequency (Figure 48a), the conclusion differs from the one that was
drawn in Section 2.3.2. Indeed, the frequency now varies with the percentage of
noise, which was not the case when the noise was a random white one. As explained
in Section 2.4.1, this could be due to the fact that as the noise is not white anymore,
the system considers noise as poles of the state matrix A so that the noise appears
on the stabilisation diagram as a real pole. So that, as the level of noise increases,
the value of the frequency converges towards the value of the noise. That is why in
this case the frequency converges towards higher values (from 1.59 Hz to 1.6/1.7 Hz
which is the beginning value of the noise range).

However, as it was already mentioned, this case is a limiting one as it can be seen in
Figure 47a so that, before drawing conclusions about the system poles, one should
observe what happens with a more general case as the one with a fundamental fre-
quency at 2 Hz.

Noise is outside the frequency range of interest
Once again, the noise is first defined thanks to the first two steps of Table 8 and is
presented in Figure 49. The results of step 3 of the same table (modal properties of
the system) can be observed in Figure 50.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(c) Median values.

Figure 49: Percentage of the noise in function of the number of pedestrians for a system
with a fundamental frequency at 1.59 Hz for its second eigenfrequency.
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(b) Damping ratio.

Figure 50: Results obtained with the CSI algorithm for frequency number two (3.23 Hz)
for a known random excitation of 0.2 Hz bandwidth and an unmeasured excitation

caused by pedestrians walking back and forth on the footbridge.

Once again, increasing the number of pedestrians leads to an increasing level of noise
(Figure 49). By comparing the tables of Figure 47c and 49c, one can see that the
percentage of noise is slightly higher in the case of the second eigenfrequency. This
is due to the fact that the damping of this frequency is lower than the damping of
the first one. So that, for the same level of shaker, the amplitude of the vibrations
caused by the pedestrians will be higher and by definition (Equation 40) the per-
centage of noise will be higher. However, the rms(y)shaker will also slightly change
so that the cases are not totally comparable.
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The results obtained for the damping in this case (Figure 50b) are in agreement with
the conclusions drawn in Section 2.3.1.1. Indeed, the percentage of noise barely has
an influence on the results, the medians are close to the identified value at 0% noise.
However, a small influence on the frequency seems to appear (Figure 50a), but as
the level of noise increases, this median value seems to stabilise. As the converging
value has less than 1% error with the identified value at 0% noise, this effect can be
considered to be negligible. So that, no matter the level of noise, when it is outside
the frequency range of interest, both modal properties are close to the identified
value at 0% noise.

b) MODEL 2: System with fundamental frequency at 2 Hz

As it was mentioned, the previous case (with a fundamental frequency of 1.59 Hz)
was a particular one as the first frequency of the model was close to the beginning
value of the noise induced by pedestrians. So that, the behaviour of another model
with a fundamental frequency at 2 Hz can be also be studied.

Noise is inside frequency range of interest
Once again, the noise is first defined thanks to the first two steps of Table 8 and is
presented in Figure 51. The results of step 3 of the same table can be observed in
Figure 52.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(c) Median values.

Figure 51: Percentage of the noise in function of the number of pedestrians for a system
with a fundamental frequency at 2 Hz for its first eigenfrequency.
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(b) Damping ratio.

Figure 52: Results obtained with the CSI algorithm for frequency number one (2 Hz) for
a known random excitation of 0.2 Hz bandwidth and an unmeasured excitation caused

by pedestrians walking back and forth on the footbridge.

One can see that increasing the number of pedestrians leads to an increasing level of
noise (Figure 51), just as in the other cases. However, in this case the level of noise
is more consequent when comparing Table 47c and Table 51c). This is due to the
fact that the frequency of the model is now in the middle of the noise range as it can
be seen in Figure 51a, resulting in a higher noise level. As the percentage of noise is
higher for a given number of pedestrian when comparing both models (e.g. 9.58%
noise for 5 people, model 1 and 44.27% noise for 5 people, model 2), it means that
the limit for 5% error on the damping ratio will be crossed for less pedestrians than
the previous system. This is indeed, what is observed here. The limit is crossed
between 1 and 3 pedestrians (Figure 52b) while it was between 5 and 8 pedestrians
for the previous model (see Figure 48b). So that an universal number of pedestrian
for which the identified modal properties will overcome the limit cannot be defined,
as it was explained. A solution to improve the results (obtain medians closer to
the identified value) for a larger number of pedestrians would be to increase the
force imposed by the shaker. Nevertheless, the same saturation behaviour for the
damping ratio as in the system with a fundamental frequency at 1.59 Hz is observed.

Concerning the frequency (Figure 52a), the variability in the results is higher than
in Figure 48a due to the fact that the excitation is now surrounded by the noise
(see Figure 51a). However, the median value is quite stable considering the high
percentage of noise, compared to Figure 48a. This could be explained by the fact
that now the noise is approximately symmetric around the first frequency. However,
compared with Section 2.3.2.1, the frequency should not be dependent of the noise
level. That proves that using a coloured noise indeed has an influence on the poles
of the state matrix A as it was stated in Section 2.4.1.

Noise is outside the frequency range of interest
Once again, the noise is first defined thanks to the first two steps of Table 8 and is
presented in Figure 53. The results of step 3 of the same table can be observed in
Figure 54.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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(c) Median values.

Figure 53: Percentage of the noise in function of the number of pedestrians for a system
with a fundamental frequency at 2 Hz for its second eigenfrequency.
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Figure 54: Results obtained with the CSI algorithm for frequency number two (4.41 Hz)
for a known random excitation of 0.2 Hz bandwidth and an unmeasured excitation

caused by pedestrians walking back and forth on the footbridge.

One can see that for a number of pedestrians equal to or higher than 8, the per-
centage of error becomes higher than 100%. This means that, by definition (see
Equation 40), the rms value of the displacement is higher in the case where the
pedestrians are walking alone than in the case where the shaker is operating alone.
However, as the noise is outside the frequency range interest, the same conclusion
than in Section 2.3.1.1 can be drawn: no matter the level of noise, it barely influ-
ences the results. The difference with Figure 50 is that the frequency is further than
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the noise range as it can be seen when comparing Figures 49a and 53a so that the
influence of the noise is more present for model 1 than model 2.

2.4.3 Summary

In this section, the noise was modeled as several pedestrians crossing the footbridge walk-
ing back and forth. Increasing the number of pedestrians leads to an increased imposed
dynamic charge but also to a wider frequency spectrum, as each pedestrian walks at its
own pacing rate. However, some dominant frequency components stand out due to this
pacing rate, which is supposed to be constant. The white noise assumption is thus not
met anymore. The fact of not having a white noise anymore was then investigated.

Two systems were analysed:

• Model 1 with a fundamental frequency at 1.59 Hz which was a limiting case as the
first frequency was close to the starting value for the noise caused by pedestrians
(1.6/1.7 Hz);

• Model 2 with a fundamental frequency at 2 Hz.

What can be retained is that:

• When the noise was outside the frequency range of interest, the noise had little to
no influence on the modal properties of the system. This was clearer for model 2
than model 1 because the noise was further from the frequency of interest in the
case of model 2.

• When the noise was inside the frequency range of interest:

– Concerning the damping ratios, the same behaviour was observed for both
models: as the level of noise increased, a progressive degradation of the results
towards lower values was observed, just as in Section 2.3.2.1. Excepted that
instead of decreasing with an increasing level of noise, the results seemed to
converge to an asymptote. This can be called a saturation effect, meaning that
as more pedestrians are added, the effect of the added pedestrian decreases.
However, a limit value beyond which the results overcome an acceptable per-
centage of error could not be determined as it depends on the system, the
frequency and the limit value that one wants to set.

– Concerning the frequencies, the conclusions differed from the one drawn in
Section 2.3: Indeed, the frequency was now dependent of the level of noise.
This was due to the fact that as the noise was not white anymore and showed
dominant frequency components, the system considered the noise as poles of
the state matrix A. Concerning the limiting case (model 1), the variability
in the results was constant but the median values converged towards higher
values (those of the noise). Concerning the other case (model 2), the variability
was higher than model 1 but the median values remained quite constant, as
the noise was centered on the frequency.

In order to validate the observations realised in the numerical part, the CSI algorithm
can be tested with real life data, which will be investigated in Section 3.
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3 Experimental part
In order to apply the CSI algorithm to a real life example, a more detailed measurement
campaign has been realised on the Tilff cable-stayed footbridge. The first part of this
section consists in describing the equipment as well as the setup. Then, the experimental
protocol will be presented before analysing the results. The campaign was realised for two
types of signals: with and without pedestrians. The CSI algorithm will be applied to the
signals without pedestrians in order to compare the obtained modal properties with those
obtained with the identification method currently used by V2i (see [2] and Section 1.1).
Then, it will be applied to the signals with pedestrians in order to assess their influence
on the modal parameters.

3.1 Equipment and setup
In this section, the excitation and acquisition devices will be presented. The excitation is
imposed thanks to a shaker and the acquisition is made through accelerometers. Figure 55
shows the disposition of the different devices.

32 4 1 and 5 6X X
X

X

Accelerometers

X

X

Shaker

Figure 55: Schematic top view of the Tilff cable-stayed footbridge (about to scale) and
setup of the 6 wireless accelerometers for the detailed measurement campaign. The

hexagons represent the anchoring of the cables, the dark shape represents the pylon and
the blue shape represents the river.

3.1.1 Excitation device

For this campaign, a portable shaker was used. This device has been developed by Uni-
versity of Liège and V2i and allows to impose different types of loading to the structure
such as random or sine signals. It consists in a moving mass attached to a linear actu-
ator. For this test, the shaker only excites the footbridge in its vertical axis. Only one
set up was installed because the interest was to capture the vertical modes only. Indeed,
as explained in Section 2.2.1, the torsion modes are in higher frequency ranges due to
the metallic casing. Location 5 for the shaker is chosen because it seemed to be a good
position to sufficiently excite the first two modes of the deck during the preliminary mea-
surement campaign. As it was already mentioned, the shaker should be located where
the displacement is maximal for the modes one wants to identify. However, as the mode
shapes of this footbridge were not available beforehand, the optimal position could not
be found.

Figure 56 shows a picture of this shaker and Table 9 shows its main characteristics.
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Figure 56: Picture of the shaker. The moving mass consists in the dark gray plates and
the yellow cylinders attached to the linear actuators.

Shaker characteristics Values

Moving mass 50 kg for one
pair of steel plates

Number of pairs of steel plates 3
Cylinders mass (yellow parts) 80 kg
Total (moving) mass 230 kg
Amplitude of motion (peak to peak) 20 cm (at 1 Hz) to 2 mm (at 10 Hz)
Maximal force it can provide when
the moving mass is at maximum value
(3 pairs of steel plates + 2 additional of 40 kg)

4500 N

Table 9: Characteristics of the shaker [2].

3.1.2 Acquisition devices

The acquisition was made thanks to two wired and six wireless accelerometers. This type
of device allows to measure the acceleration of the structure.

Concerning the wired accelerometers, one was placed on the moving mass of the shaker
to exactly measure the imposed force, and the other one at the location of the shaker on
the deck to measure its response to the excitation. They are mainly used for monitoring
purposes in this case. The wireless accelerometers were spread all along the footbridge to
measure its response to the excitation, excepted accelerometer 1 that was placed on the
moving mass of the shaker to measure the force imposed by the shaker. This configuration
of the wireless accelerometers was chosen in order to cover at best all the length of the
footbridge, to obtain an estimation of its mode shapes. The model that was used was
the G-Link-200 8G whose technical sheet can be found on [24]. Thanks to the signals
measured by the wireless accelerometers, the CSI algorithm can be applied as it uses the
input loading (accelerometer 1) and the response of the structure (accelerometers 2 to 6).
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3.2 Experimental protocol and analysis of the results
The principal objective of a dynamic identification campaign is to identify the modal
properties of the structure (natural frequencies, the damping ratios, the modal masses
and mode shapes). To do so, the protocol was divided into two parts: one without
pedestrians and another one with pedestrians, in order to take their influence into account.
The footbridge was not closed during the campaign, so that other pedestrians not involved
in the campaign also contributed to the measurements. Figure 57 shows the main steps
of the two parts as well as their respective objectives.

Part 1
Tests without pedestrians

Part 2
Tests with pedestrians

in the frequency range of interest

around the natural frequencies of interest

around the natural frequencies of interest

Test of the

Determine number of modes and roughly the natural frequencies

Determine precisely the natural frequencies
and damping coefficients

Determine if it gives consistent results

Determine the mode shapes

Random Sine sweep excitation around the natural frequencies of interestand

For 10, 8, 5 and 1 pedestrians to assess their influence
on the modal parameters

Method currently used by V2i

Apply the CSI algorithm to obtain the modal
properties and compare with the other method

Random excitation

Stepped-sined excitation

Sine excitation

sine sweep excitation around the natural frequency of interest

Figure 57: Main steps of the measurement campaign.

3.2.1 Part 1: tests without pedestrians

In this section, the modal properties of the footbridge obtained thanks to the identification
process currently used by V2i will be compared to those obtained with the CSI algorithm.
A sweep signal will also be tested in order to determine if it gives consistent results, as it

54



3.2 Experimental protocol and analysis of the results 3 EXPERIMENTAL PART

was seen in Section 2.3.2.3 that applying a random or sweep signal did not consequently
changed the results.

3.2.1.1 Random excitation

The first part of the tests consisted in imposing a limited band random excitation (1 to
7 Hz) to the structure thanks to the shaker, for 15 minutes. The number of modes of
the structure can be determined by computing the PSD of the signal measured on the
footbridge. This will also allow to obtain a first estimate of their natural frequencies.
Figure 58 shows the PSD of the signal for the different accelerometers.
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Figure 58: PSD of the signal captured by the accelerometers for a random excitation
between 1 and 7 Hz.

Thanks to this figure several things can be observed:

• The random excitation in the range [1 - 7] Hz can be observed thanks to the light
blue curve. Indeed, sensor 1 was placed on the moving mass of the shaker in order
to measure the imposed force, as explained earlier.

• The orange curve does not show the peaks at the eigenfrequencies because sensor 3
was placed at the location of the pylon, which is attached to the foundation of the
footbridge so that the displacement is minimal at that location.

• Sensor 2 recorded a lesser amplitude of displacement compared to the others sensors
for mode 1. This means that mode 1 shows a small displacement at location 2
compared to the other locations. This will be observed in the plots of the mode
shapes (see Figure 60a). So that, thanks to the amplitude of the power spectral
density, one can already have an idea of the relative displacement in absolute value
of the sensors.

• One can clearly see that the main frequencies are around 1.59, 3.68 and 6.18 Hz.
Some less consequent peaks can be observed around 3.49 and 3.57 Hz. They cor-
respond to the fundamental frequency of the short stay cables, by analysing the

55



3.2 Experimental protocol and analysis of the results 3 EXPERIMENTAL PART

frequency content of the cables in Figure 14. This will be validated in the next
section were more refined tests will be performed around the natural frequencies.
Two other less consequent peaks can be observed at 5.64 and 5.68 Hz. These could
be the second harmonic of the medium stay cable as 2*2.85 = 5.7 Hz.

• Contrary to Figure 13, the peaks around 2 Hz corresponding to the fundamental
frequencies of the long and medium stay cables are not observed anymore. This
may be due to the fact that the location of the shaker was not optimally chosen to
capture them. Indeed, for the preliminary measurement campaign, the excitation
by knee-bending was made at several locations on the footbridge. However, as said
earlier, the goal is to focus on the frequencies of the deck only, so that this is not a
problem.

In conclusion, three modes of the deck can be observed the range [1 - 7] Hz, but only
the first two will be studied in the following analyses. One can also apply the peak-
picking method to the square root of the PSD to have a more precise estimation of the
first two damping ratios compared to the preliminary measurement campaign. Table 10
summarises the first two modal characteristics of the Tilff cable-stayed footbridge.

Frequencies (Hz) Damping ratios (%)
1.59 0.64
3.68 0.29

Table 10: Estimation of the first two modal properties of the deck.

Compared to the results of the preliminary measurement campaign (see Table 2), the
frequencies are quite close. However, a consequent difference in the damping ratios can
be observed. This could be due to the fact that:

1) The preliminary measurement campaign was not realised in the best conditions
(knee-bending was the only excitation) so that the quality of signals was not optimal;

2) The peak-picking method strongly depends on the frequency resolution of the mea-
surements. So that, if it is not optimal, the estimations of the damping ratios will
not be optimal either (added to the numerous limitations of this method listed in
Section 2.1);

3) In the preliminary measurement campaign, the modes were excited one by one,
whereas in the detailed measurement campaign a wide band random signal excited
the first three modes at the same time.

However, the random signal was mainly applied to have an idea of the values for the
frequencies of the footbridge. The stepped-sine excitation will allow to determine the
frequencies and the damping ratios more precisely.

3.2.1.2 Stepped-sine excitation

Now that the frequencies have been roughly estimated, a stepped-sine signal centered on
the first two frequencies will allow to determine their exact values, their damping ratios as
well as which mode they correspond to. A stepped-sine signal consists in imposing a sine
signal by steps of frequency chosen small enough. The duration of the tests should also
be long enough to remove the transient effects. Figures 59a and 59b show the frequency
response function of the signal centered on 1.59 and 3.68 Hz, respectively.
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Figure 59: Fitting of the data for the stepped-sine signals.

One can clearly see the peaks appearing. More data have been recorded for mode 2
than mode 1 because a more refined time step has been chosen for the second one, in
order to be sure to capture the modes of the cables situated between 3.4 and 3.6 Hz.
Finally, a fitting of the data is realised thanks to the method cited in Section 1 and
explained in [2]. Table11 shows the natural frequencies of the structure as well as the
corresponding damping ratios. These ones were also determined thanks to the method
previously mentioned.

Frequency (Hz) Damping ratio (%) Mode
1.59 0.33 Deck
3.49 / Right short cable
3.56 / Left short cable
3.67 0.33 Deck

Table 11: Modal properties of the structure obtained thanks to the stepped-sined
excitation with the method described in [2]. The right and left sides are determined by

looking at the pylon from the longer span of the deck.

Compared with the estimations done in the previous section (see Table 10), the results
for the frequencies are close (close to 0% error). However, a higher percentage of error
is observed for the damping ratios (more than 1% error). As already mentioned, the
peak-picking method is not the most precise one and the parameters will be estimated
with the CSI algorithm to have a more precise approximation.

The nature of the modes have been determined by looking at the response of the footbridge
on site, to the different excitations. Indeed, as the stepped-sine imposes one frequency
at a time, it is easy to look at the response of the footbridge when the desired value is
reached. One can see that the two short cables have different natural frequencies. This
is due to the fact that their tensions are not equal due to their manufacturing process.
Indeed, the cables are made of steel surrounded by a sheath, itself filled with concrete. It
is then possible that the amount of concrete is not equal in both cables or that cracks are
present in the concrete, resulting in two different natural frequencies. However, as in the
model, it is chosen to not study those frequencies.
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3.2.1.3 Sined excitation

In this step, a sine signal at the frequencies of interest will be applied in order to determine
the mode shapes of the real structure. The first two are presented in Figure 60.
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2 3 4 5 6
-1

-0.5

0

0.5

1

(b) Mode 2 obtained with
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Figure 60: First two mode shapes of the Tilff cable-stayed footbridge obtained thanks to
the sine excitation with the method described in [2].

Just as in the simulations, due to the configuration shown in Figure 55, the modes are
only accurate for the points in which the acceleration is measured, only on the vertical
degree of freedom. That is why this type of representation has been chosen to present
the results for the mode shapes. One should be careful that the distance between the
accelerometers has not be taken into account in these types of plots. However, as it can
be seen in Figure 55, the configuration was chosen to roughly have the same distance
between the accelerometers. As it was already mentioned, the modes computed for the
simulations cannot be compared with the experimental ones due to the fact that the
inertia and cross-section of the model have not been respected (see Section 2.2.1).

One can see that for both modes, the displacement at accelerometer 3 is close to 0, due
to the fact that accelerometer 3 was placed at the location of the pylon. The amplitude
of the movement is the highest at accelerometer 5 for mode 1 and accelerometer 4 for
mode 2. Indeed, the first one corresponds to the location of the shaker while the second
one corresponds to the location of the anchoring of the short cable. This means that, the
location of the shaker was not optimally chosen to identify mode 2 but the reason was
explained in Section 3.1.1: the modes of the footbridge were not available beforehand so
that the position had to be chosen at best by analysing the behaviour of the structure
during the preliminary measurement campaign.

3.2.1.4 CSI on signal recorded with the wide band random excitation

What can be interesting is to apply the CSI algorithm to the random signal without pedes-
trians. Indeed, in the current method used by V2i, it is possible to accurately determine
the properties of the system when no pedestrians disturb the measurements. However, in
order to obtain all the modal properties, three steps should be realised (see Figure 57).
One of the advantages of the CSI algorithm is that based on only one type of signal, all
these results can be found in one step.

58



3.2 Experimental protocol and analysis of the results 3 EXPERIMENTAL PART

In order to apply the CSI algorithm to the signal recorded for a random excitation, the
transient parts of the signal are removed. Then, the cropped signal is filtered around the
desired frequency and the CSI algorithm is applied. In order to compare the results, the
signal will be filtered from 1.5 Hz to 1.65 Hz for the first frequency to be consistent with
the tests realised in the stepped-sine part. However, for the second mode, the signal will
be filtered from 3.6 Hz to 3.8 Hz in order to filter out the frequencies of the cables. In the
case of a random excitation, the method can be applied to the whole signal or to portions
of the signal to realise a moving average and the median value of all the estimations can
be computed. Figure 61 illustrates the process.
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1) Apply CSI algorithm on this portion of signal
→ Obtain frequencies, damping ratios and mode shapes
→ Store in a variable;

2) Repeat the process with the following portion of signal
→ the box is moved from 3 seconds to the right at each
iteration. This value is chosen in order to obtain enough
estimations (around 100) on the whole signal;

3) Once the right limit of the box arrives to the end of the
signal, the median of all the modal parameters obtained
with the several estimations can be computed.
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Figure 61: Illustration of the process performing a moving average.

Table 12 shows the modal properties of the structure obtained with the CSI algorithm
thanks to the random signal without pedestrians for the whole signal and for the moving
average technique.
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Whole signal Moving average
Mode f (Hz) ζ(%) f (Hz) ζ(%)

1 1.59 0.28 1.59 0.33
2 3.68 0.2 3.67 0.21

Table 12: Modal properties of the structure obtained with the CSI algorithm thanks to
the random signal without pedestrians.

One can see that applying the CSI algorithm to the whole signal or by doing a moving
average, the results are close but not exactly equal. The moving average values should
be more accurate since the identification was applied to several portions of the signal
allowing to obtain several estimations. It is indeed what is observed for mode number
one when comparing with the results obtained in Table 11. However, the estimation of
damping ratio of mode two is lower than its corresponding value in the same table. This
could be explained by the fact that:

• The shaker was not optimally located to capture mode 2 as it was shown in Fig-
ure 60b. Indeed, the highest displacement for mode 2 is at the location of the
anchoring of the shortest cable (location 4 in Figure 55);

• The possible interaction between the short stay cables and the deck makes it difficult
to correctly identify the modal properties of the deck;

• The frequency range of the excitation is too wide so that it excites too much modes
at the same time, making the analysis of the results complicated. Indeed, the
signals must be filtered before applying the CSI algorithm, in order to obtain a
stabilisation at low orders in the stabilisation diagram. Figure 62 shows an example
of stabilisation diagram for the filtered and unfiltered signals for frequency number
one.
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Figure 62: Example of stabilisation diagram for the experimental data, obtained with a
random signal from [1 - 7] Hz. In the second figure, the signal is filtered between

[1.5 - 1.6] Hz in order to obtain stabilisation at lower orders for mode 1.

What should have been done to improve the results would have been to:

• Find the optimal position to capture mode 2 without the influence of the modes of
the cables (however this was not possible to determine before the campaign as the
mode shapes of the structure were not available).
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• Perform a narrower random excitation around the frequencies of interest, one by
one.

Comparing the results obtained in Table 12 with those in Table 10, it can be seen that
the frequencies are close but the damping ratios are overestimated with the half-power
point method, at least for mode 1 that is correctly evaluated.

Thanks to the CSI algorithm, one can also obtain the mode shapes of the structure. These
ones can be observed in Figure 63.
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Figure 63: Comparison of the first two mode shapes of the Tilff cable-stayed footbridge
obtained thanks to the CSI algorithm applied to the random excitation and those

obtained for the sine signal applying the method described in [2].

One can see that the results for the modes shape obtained with the CSI algorithm are a
bit offset compared with those obtained with the sine signal. However, the difference is
small and the shape of conserved so that the results are considered to be consistent.

In conclusion, this part showed that the CSI algorithm allowed to obtain consistent results
with less steps than the current identification method used by V2i, when there was no
noise (induced by the pedestrians) in the system. This is quite convenient because doing
a stepped-sine is costly in time since at each time step, the signal should be hold long
enough to remove the transient effects. However, to obtain the most accurate results,
one should determine the optimal position of the shaker for each mode to be determined
and/or excite only one mode at a time.

3.2.1.5 Sine sweep excitation

Since the analysis of Section 2.3.2.3 showed that the sine sweep signal provided consistent
results with the random signal, it will be tested in this real-life case since it was not used
in the software before. Figure 64a and 64b show the power spectral densities of the signals
applying a sine sweep around 1.59 and 3.68 Hz. Only the curves obtained with sensor 5
are shown for sake of readability. It should be noted that here the CSI algorithm has been
applied to the whole signal. Indeed, there is no point in doing an average on portions
of the signal as the frequency of the signal progressively increases until the end of the
excitation.
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Figure 64: PSD of the signals captured by accelerometer 5 for the sine sweep excitations.

It can be seen that the width of the peak is larger than with the random signal (com-
pared to Figure 58). The problem when doing a sine sweep is that if the rate of change of
frequency is too high, the system does not have the time to go into resonance. This will
result into a different damping ratio than what is expected. Methods exist in order to
simulate a slower sweep based on those data, but this is beyond the scope of this thesis.
More information about those methods can be found in [25]. What is important to point
out is that the speed of the sweep can affect the damping ratio. This is indeed what was
observed with the simplified model in Figure 44.

Table 13 shows the modal properties of the footbridge obtained with the peak-picking
method and CSI algorithm for the sine sweep signal. It should be noted that the signal
did not have to be filtered as the excitation was already centered arount the frequency of
interest.

Peak picking CSI
Mode f (Hz) ζ(%) f (Hz) ζ(%)

1 1.57 0.82 1.58 0.63
2 3.67 0.36 3.66 0.32

Table 13: Modal properties of the structure obtained with the peak-picking method and
CSI algorithm thanks to the sweep signals without pedestrians.

As expected, the wider peak leads to a larger damping ratio when comparing with Table 10
for the pick-picking method applied to the random signal and Table 12 for the CSI applied
to the random signal. One can also have a look at the modes obtained with the CSI
algorithm applied on the sweep signal in Figure 65.
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Figure 65: Comparison of the first two mode shapes of the Tilff cable-stayed footbridge
obtained thanks to the CSI algorithm applied to the sweep excitation and those

obtained for the sine signal applying the method described in [2].

Despite the overestimation of the damping ratio, the mode shapes are consistent with
those obtained with the sined excitation.

What can be concluded is that the sweep could allow to have a close estimation of the
frequencies and mode shapes. However, it should not be used to determine the damping
ratios. In Section 3.2.2, it will be proven that it is better to avoid using a sweep signal.

3.2.2 Part 2: tests with pedestrians

In this section, a group of pedestrians was invited to walk back and forth on the footbridge
in order to assess their influence on the modal properties of the footbridge. Figure 66
shows the characteristics of the group of pedestrians used for the tests.

Min Max
Mean

7 females 4 males

45 100

13 65
67.3
28.9

Weight (kg)

Age (years)

Figure 66: Characteristics of the pedestrians used to perform the tests.

As it can be seen, the range of the pedestrians is wide (from young to elder people and
from light to heavier people). As their weights and ages, their pacing rates will also be
different. The pedestrians also had different types of shoes which can further modify their
pacing rate and interaction with the structure. However, no device was used in order to
measure the pacing rate of the pedestrians.

The tests consisted in applying different types of loading with the help of the shaker while
a group of pedestrians crossed the footbridge from one side to the other. The group tried
to stay as randomly distributed as possible. Figure 67 shows the scheme realised for the
measurements and Table 14 shows the excitation range for each mode.
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Sine sweep

around 1.59 Hz

Sine sweep
around 3.68 Hz

No excitation

Random
around 1.59 Hz

Random
around 3.68 Hz

Figure 67: Timeline of the excitation applied with the shaker for the test with
pedestrians. One graduation line represents one minute.

Mode Excitation range
1 From 1.5 to 1.65 Hz
2 From 3.2 to 3.9 Hz

Table 14: Excitation range used for the signals.
The excitation range was chosen in order to be consistent with the tests made for the
stepped-sine. However, as it was shown, the modes of the cables should not have been
excited. These measurements were realised for 10 and 8 pedestrians while only the red
and violet parts were realised for 5 and 1 pedestrians, due to a lack of time during the
measurement campaign.

3.2.2.1 No artificial excitation

The first thing that can be analysed is the effect of the pedestrians without artificial
excitation. This will allow to roughly determine the frequency content of the pedestrians.
Figure 68 shows the acceleration profile and the PSD of the signals for different numbers
of pedestrians.
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Figure 68: Acceleration profile of the signals and frequency content of the pedestrians
for the detailed measurement campaign.
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Several observations can be done concerning this figure:

• One can see that as the number of pedestrians is increased, the acceleration of
the structure becomes higher and the frequency content of the signal widens and
contains more and more frequencies (just as in Figure 46) in the range [1.3 - 2.2]
Hz. However, in real-life, the PSD becomes higher as the number of pedestrians
is increased (contrary to Figure 46). Nevertheless, as the number of pedestrians
increases, the increase in PSD is less and less perceptible. The other difference
with Figure 46 is that the PSD is not as smooth because other sources of noise
may be present such as the wind, the water flowing underneath the footbridge...
In conclusion, the frequency content of the pedestrians can be estimated to range
about between 1.3 and 2.2 Hz in this case.

• It should also be noted that, contrary to the model, a real pedestrian never has a
totally constant speed and thus pacing rate. This can be observed with the curve for
one pedestrian showing several peaks between 1.7 and 2 Hz (2 Hz being the mean
pacing rate for pedestrians [3]).

• The fundamental frequency of the footbridge can also be observed at 1.59 Hz, show-
ing that even with the weak ambient forces, the frequencies of the footbridge can be
detected. However, its amplitude is quite small and as more pedestrians are added,
the less it is distinguishable. That is why a shaker is used, in order to emphasise
the eigenfrequencies.

• One can also observe more consequent variations of the amplitude of the signal,
especially for the purple curve at around 90 seconds and at the end of the signal.
Indeed, as it was already mentioned, the pedestrians chosen for the study were not
alone during the campaign. Sometimes, some cyclists, motorbikes and other pedes-
trians crossed the footbridge during the measurements which can cause variations
in the results. The history of the perturbations is summarised in Appendix A.3.

Now that the frequency content of the pedestrians have been determined, one can have a
look a the identified modal properties thanks to the CSI algorithm when noise (pedestri-
ans) is present.

3.2.2.2 Artificial excitation around frequency 1

In order to identify the modal properties of the system, the CSI algorithm can be applied
to the different signals of Figure 67. In this section, the results for the excitations (random
and sine sweep) of mode 1 will be presented. Once again, the moving average technique
explained in Figure 61 was realised for the random signal and the whole signal was taken
for the sweep signal. However, the results are not filtered as the excitation is already
around the frequency of interest.

The results for the modal properties obtained with the random excitation around fre-
quency 1 thanks to the CSI algorithm are presented in Figure 69. As the moving average
technique was performed, it is possible to obtain boxplots of all the estimations (obtained
with the different portions of signal, see Figure 61) for each number of pedestrian.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the orange one, the range of the unknown noise.
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Figure 69: Results for the experimental identified modal parameters of the system
computed with the CSI algorithm for a random signal ranging from 1.5 to 1.65 Hz.

By looking at Figure 69b, one can conclude that the frequency is quite close to the identi-
fied value with stepped-sine (exactly 1.5869 Hz). However, concerning the damping ratio
(Figure 69c), it seems to increase as the number of pedestrians increases. However, the
percentage of increase seems to be less and less consequent as more pedestrians are added,
translating the saturation effect that was observed in Section 2.4.2 when noise was in the
frequency range of interest. However, instead of evolving towards lower values as in Fig-
ure 48b for example, the median values of the damping now evolve towards higher values.
This could be due to the fact that, as it is an old footbridge, damages such as cracks
on the deck could be present. The pedestrians walking on the footbridge then allow the
cracks to open and close so that friction between the sides of the cracks occur and the
damping is increased. Other causes of friction can also be found. This is indeed, what
is stated in [26]: ”In general, the amount of damping depends on the vibration level, as
higher amplitudes of vibration cause more friction between structural and non-structural
elements and bearings”.
Another possibility could be that the pedestrians damp out the vibrations by walking in
opposition of phase with the vibrations leading to an increase in damping ratio. However,
if the pedestrians start to walk in phase with the vibrations, the damping can decrease
and the vibrations are amplified. This is called synchronisation. An example of synchro-
nisation is the one that occurred on the Broughton Suspension Bridge in 1831 due to a
military troop marching in phase with the vibrations of the bridge [27].

Unfortunately, these damping ratios cannot be compared with a reference value as no tests
with a random excitation from 1.5 to 1.6 Hz without pedestrians was performed. The
filtered random signal cannot be used either as the imposed level of shaker was not the
same for the tests with and without pedestrians. However, the behaviour of the damping
ratio is in accordance with the results in Figure 11c of [28].
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Still in Figure 69c some outliers can observed for the boxplots of one and ten pedestrians.
It can thus be interesting to look at the evolution of the frequency and damping ratio
during the whole signal (thanks to the estimations obtained with the moving average
technique). This can be seen in Figure 70.
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(b) Damping ratio.

Figure 70: Evolution of the modal parameters of the first mode along the whole signal,
obtained thanks to the estimations computed with moving average technique.

One can see that the parameters for one and ten pedestrians show consequent variations
in some portions of the signal. Some hypotheses concerning those variations are given
here after:

• As is was already mentioned, the pedestrians chosen for the study were not alone
during the campaign. Sometimes, some cyclists, motorbikes and other pedestrians
crossed the footbridge. This hypothesis can be confirmed by looking at the yellow
curve for 8 pedestrians. Indeed, as it can be seen in Appendix A.3, in the history
of the perturbations, no perturbations were recorded for 8 pedestrians. One can see
that the corresponding curve for frequency and damping ratio does not show major
peaks, which could confirm this hypothesis.

• The pedestrians of study tried to stay as randomly distributed as possible but
sometimes groups would form so that 2 or 3 people walked together, at the same
pacing rate. If a group starts to form and if they walk at the same pacing rate, as
the vibration increases they can eventually start to walk at the eigenfrequency of the
footbridge and enter into resonance with the footbridge. This is the synchronisation
behaviour that was discussed here before. However, the peaks in damping ratio
are always towards higher values so that the vibrations are more damped out than
amplified.

• Other sources of noise other than the pedestrians can play a role as the wind, the
flow of water underneath the footbridge, the temperature...

The modes shapes obtained are not shown as they do not differ from Figure 63a. Con-
cerning the sweep signal around the first frequency, boxplots cannot be build as the CSI
algorithm should be applied to the whole signal. The results can be observed in Figure 71.
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Figure 71: Results for the experimental identified modal parameters of the system
computed with the CSI algorithm for a sweep signal ranging from 1.5 to 1.65 Hz.

Concerning the sweep signal, it is not an optimal signal of excitation to apply in order
to obtain the modal properties of the structure with the CSI method. Indeed, as the
algorithm should be applied to the whole signal, only one estimation of the parameters
can be obtained. However, as it can be seen in Appendix A.3, the sweep tests contained
a lot of perturbations so that the evolution of the results for an increasing number of
pedestrians cannot be properly analysed. In conclusion, if one wants to apply the CSI
algorithm in a real life case, it should avoid using a sine sweep signal.

3.2.2.3 Artificial excitation around frequency 2

In this section, the results for the modal properties obtained with the CSI algorithm for
excitations around mode 2 will be presented. The results for the random signal around
frequency 2 are presented in Figure 72 (shown at the beginning of next page).

Once again, by looking at Figure 72b, the frequency is quite close to the one obtained
with the stepped-sine (less than 1% error) and the modes shapes obtained are not shown
as they do not differ from Figure 63b. However, no conclusion about the evolution of the
damping ratio in function of the number of pedestrians can be can be drawn from the
damping ratio curve (Figure 72c) as there is not enough data. However, it can be seen
that the damping ratio shows a small variation between 8 and 10 pedestrians even if the
noise is not in the frequency range of the excitation. Indeed, the pedestrians contribute
to the damping of the structure by walking on it as previously explained, in addition to
the other possible sources of noise.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the orange one, the range of the unknown noise.
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Figure 72: Results for the experimental identified modal parameters of the system
computed with the CSI algorithm for a random signal ranging from 3.2 to 3.9 Hz.

One can also have a look at the evolution of the estimation of the modal parameters
obtained with the moving average technique. This is shown in Figure 73.
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Figure 73: Evolution of the modal parameters of the second mode along the whole
signal, obtained thanks to the estimations computed with moving average technique.

The hypothesis that the perturbations cause a change in the modal properties can also
be confirmed here. Indeed, no perturbations were recorded when doing the random on
the second frequency (see Appendix A.3). Moreover, it can be observed in Figure 73b
that the variation in damping ratio is small (0.44 to 0.52 %) compared to the case in
Figure 70b (variation from 0.6 to 1.1 %).
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The results for the sweep for this case are not shown as it was determined that due to
the lack of estimations and to the numerous perturbations it could not give analysable
results. Moreover, as only the measurements for 8 and 10 pedestrians were performed,
the analysis would be even more complicated.

3.2.3 Summary

In this section, the CSI algorithm was applied to experimental data. The first part
without pedestrians allowed to compare the results obtained with the CSI algorithm
and those obtained with the identification method currently used by V2i. It was shown
that the results were consistent for all the modal properties (frequencies, damping ratios
and modes) of the first two modes, excepted the damping ratio of mode 2. This can be
explained by the fact that:

• The location of the shaker was not optimally chosen to capture this mode;
• There is a possible interaction between the cables and the deck;
• The signal was a wide band one so that it excited too much modes at a time.

Concerning the sine sweep excitation, it gave consistent results for the frequencies and
mode shapes but the damping ratios were overestimated due to the fact that this type of
signal does not allow to have steady-state configuration if the speed of the sweep is too
high.

The second part of the tests were realised as several pedestrians (1, 5, 8 and 10) crossed
the footbridge back and forth. The test only implying the pedestrians (no shaker)
allowed to determined the frequency content of the pedestrians. As the number of
pedestrians increased, the acceleration of the structure was higher and the frequency con-
tent of the signal widened. However, contrary to the numerical model, the signal looked
more like a white noise sequence, as the speed of the pedestrians is not constant in reality
and other sources of noise can be present as the wind, the water flowing underneath the
footbridge, ...

By applying a random signal around the first frequency of the footbridge, as the pedes-
trians walked back and forth, one could see that the conclusions joined those made in
Section 2.4.2: The frequency remained quite stable and the damping ratio showed an
evolution leading to less and less variation as the number of pedestrians increased, trans-
lating the saturation effect observed in that same section. However, instead of evolving
towards lower values, it evolved towards higher ones showing that the vibrations were
damped out by the pedestrians. Concerning the second frequency, it was complicated to
analyse the results as there were not enough data to analyse. However, a small variation
between the damping measured with 8 and 10 pedestrians could be observed: this was
due to the fact that in real-life, pedestrians contribute to the damping, even if they are
not in the frequency range of interest. Concerning the mode shapes of both modes, they
provided consistent results with those obtained thanks to the CSI algorithm applied to
the random signal without pedestrians.

Finally, concerning the sine sweep excitations with pedestrians, they should be avoided
as only one estimation can be done on the whole signal and the results are really sensitive
to the perturbations.
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Conclusion
The main goal of this thesis was to study the effect of an increasing noise level on the
modal properties of a system identified thanks to the combined subspace identification
algorithm. To do so, the CSI algorithm developed in [10] was applied to a numerical
model and to experimental data.

In order to develop the simplified numerical model, a preliminary measurement campaign
was held on the Tilff cable-stayed footbridge in order to roughly determine its first modal
properties. The results obtained were only approximations as no shaker was used for
this campaign and simple graphical methods were used in order to determine the modal
properties. However, the goal was only to obtain estimations of the parameters in order
to build a simplified model to test the CSI algorithm, not to represent the real structure.
The model was designed on the BeamZ software, allowing to represent the structure as
2D beam elements. The stays were represented by a single element while the deck was
composed of multiple elements. These assumptions were not a problem in this work as
there was no interest in obtaining the mode shapes of the cables or the torsion ones of
the deck. Thanks to the model, the reference modal characteristics (frequencies, damping
ratios and mode shapes) were obtained.

In order to apply the CSI algorithm to the model, some artificial and ambient excitations
were defined and imposed on the structure. The response of the structure to those exci-
tations was computed thanks to a time integration method. In this work, the Newmark
method was chosen for its high stability. Before applying the CSI algorithm some param-
eters had to be defined: the number of blocks rows used in the Hankel matrices i and the
system model order n. The first one should be at least larger than the maximum order
one wants to identify but not too large as the computational time is proportional to i2

[10]. Concerning the model order, the eigenvalues were plotted in a stabilisation diagram
in order to separate the real poles from the spurious ones and to chose the adequate order.

Two types of influence on the identified modal properties were investigated: 1) the influ-
ence of the type of excitation when the noise was a random white sequence and 2) the
influence of the type of noise, when the noise was represented by pedestrians walking on
the footbridge. Concerning the type of excitation, it was observed that when the noise
was outside the frequency range of interest, all modal parameters (frequencies, damping
ratios and modes shapes) were independent of the level of noise in the system and the
variability of the results was very low. Indeed, as random signals were used, the simula-
tions had to be repeated several times in order to build boxplots for each level of noise.
The observation was even more true if the noise was in lower frequency range than the
frequency range of the excitation. When the noise was inside the frequency range of
interest, the same conclusion could be drawn concerning the frequencies. However, con-
cerning the damping ratios, a progressive degradation of the results towards lower values
(compared to the identified value at 0% noise) was observed as the level of noise increased
up to 8%. Concerning the bandwidth of the excitation, it should be chosen large enough
to cover all the resonance peak in order to correctly identify the damping ratio. However,
taking a too large bandwidth is also not recommended as it is better to only excite one
mode at a time in order to correctly identify its modal properties.
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The OMAX method makes the assumption that the noise is a Gaussian white sequence.
However, the force induced by the pedestrians on the footbridge can be described by a
sum of sinusoidal forces. In order to determine what was the effect of not having a white
noise, some pedestrians walking back and forth on the footbridge were simulated. The
results showed that as the number of pedestrians increased, the imposed dynamic charge
also increased and the frequency content of the signal widened. However, some dominant
frequency components remained, so that the noise was coloured. When the noise was out-
side the frequency range of interest, the modal properties were close to the identified value
at 0% noise, no matter the level of noise. However, when the noise was in the frequency
range of interest, the damping also showed a progressive degradation towards lower values
but as more pedestrians were added, the effect of the added pedestrian decreased. This
can be called a saturation effect. A limit value of pedestrians beyond which the results
overcome an acceptable percentage of error cannot be determined as it depends on the
system, the frequency studied and the limit value that one wants to set. Concerning the
frequencies, they depended on the level of noise contrary to the first case. This was the
effect of having a coloured noise: when the white noise assumption is violated, the system
considers the noise as poles of the state matrix A.

In order to validate the observations made with the numerical model, the CSI algorithm
was applied to experimental data. They were obtained by performing a more detailed
measurement campaign on the Tilff cable-stayed footbridge, with the help of a shaker.
The first part of the measurements was realised without pedestrians in order to compare
the results obtained with the CSI algorithm with those obtained with the method cur-
rently used by V2i [2]. The results (frequencies, damping ratios and modes shapes) were
in agreement for both first modes excepted the damping of the second one. This can be
explained by the fact that: 1) the shaker was not optimally located to capture mode 2;
2) there is a possible interaction between the cables and the deck for mode 2, making the
identification more complicated; 3) the excitation was a wide band random signal (from 1
to 7 Hz) so that it excited several modes at the same time and the results must be filtered
in order to obtain stabilisation at low orders. A sine sweep excitation was also realised. It
gave consistent results for the frequencies and mode shapes but the damping ratios were
overestimated due to the too high speed of the sweep.

The second part of the measurements was done by adding several (1 - 5 - 8 - 10) pedes-
trians walking back and forth on the footbridge in order to assess their influence on the
modal parameters. Contrary to the numerical model, the recorded frequency spectrum
for the pedestrians did not show major frequency components as a background noise was
also recorded. This one could be due to the wind or the flow of water flowing underneath
the footbridge. The same saturation behaviour for the damping ratio as in the simulations
was observed. However, the evolution of the median values was towards higher values in
this case. Indeed, the pedestrians can increase the damping ratio by walking in opposition
of phase with the vibrations. However, they could also decrease it if they start to walk
in phase with the vibrations. This behaviour is called synchronisation. Concerning the
sweep signals, it is advised to not use them for experimental testing as several estimations
cannot be obtained contrary to a random signal where several portions of the signal can
be taken in order to realise a moving average.

Finally, the content of this thesis might be used as a basis for an article that will be
written in the scope of the Eurodyn conference (Delft, 2023) [29].
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Improvements and Perspectives
Here are some improvements and perspectives about what could be done in a future work:

• It could be interesting to study a footbridge whose finite element model is available.
So that tests could be done numerically on an accurate model and be compared with
the tests on the real structure. Moreover, if the mode shapes are known beforehand,
it will be easier to define the setup for the measurement campaign.

• The accuracy of the modes could be assessed by computing the modal assurance
criterion.

• To generate the pedestrians’ weight, a normal distribution could be used and the
pacing rate of the pedestrians could be changed along time to take into account
the fact that a normal people does not always walk at the same speed. Moreover,
concerning the dynamical load factors, many values exist. A summary of all the
possible coefficient can be found in Table 11 of [30]. A more detailed description of
the pedestrian loads can also be found in this thesis if needed.

• The simulations with the pedestrians could be redone but by adding an additional
background white noise to take into account the other sources of noise such as the
wind, the traffic or water under the footbridge, ...

• When the assumption of white noise is violated, the CSI algorithm can be modified
in order to take the noise correlation into account by introducing some weights.
However, in practical cases, this correlation is not known which makes the extent
of the use of the method consequently reduced. More information can be found in
[10].

• The experimental tests could be realised with the shaker only, then the pedestrians
only and finally both excitations at the same time. Those measurements should all
be realised with the same configuration and with the same imposed force by the
shaker to be comparable. Only one mode at a time should be excited to obtain ac-
curate results. This will allow to define the percentage of noise as in the simulations
and to compare the three methods (EMA, OMA and OMAX).

• In the measurement campaign more accelerometers or more setups could be defined
in order to obtain more accurate modes (higher density of measurement points on
the footbridge).

• The experimental tests could also be realised with smartwatches to measure the
average pacing rate of the pedestrians or by imposing a pacing rate thanks to a
metronome, to assess its effect.
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A Appendices
A.1 Results for the modal properties of the third frequency

when noise is a white random sequence
In order to validate the observations made in Sections 2.3.1.1 and 2.3.2.1, the tests were
also performed for the third frequency of the system which was at 4.16 Hz with a damping
ratio of 0.55%. Of course, the definition of noise and the time step had to be adapted
to that case. Table 15 shows the parameters used for these tests and Figures 74 and 75
show the obtained results for the modal properties.

Parameters Values
Low noise 2 to 3 Hz
High noise 4 to 5 Hz
Time step 0.008 s

Table 15: Parameters used for the identification of the third frequency of the system
(f3 = 4.16 Hz, ζ3 = 0.55%).
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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Figure 74: Results for the identified modal parameters of the system computed with the
CSI algorithm for a low unmeasured noise outside the frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 3 (4.16 Hz).
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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Figure 75: Results for the identified modal parameters of the system computed with the
CSI algorithm for a high unmeasured noise inside the frequency range of interest and a

known random signal of 0.2 Hz bandwidth around frequency 3 (4.16 Hz).

So that the hypotheses that:

• The frequency is stable no matter whether the noise is in the frequency range of
interest or not;

• The damping is stable when the noise is outside the frequency range of interest;

• As the level of noise is increased, the damping ratio shows higher variability in the
results and the medians converge towards lower values compared to the identified
value, when noise is inside the frequency range of interest,

are confirmed.
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A.2 Variation of the bandwidth and type of signal for the second
frequency of the system

In order to validate the observations made for mode 1 concerning the change in band-
width and in excitation type when the noise was inside the frequency range of interest
(Section 2.3.2.3), the simulations were also performed for mode 2. Instead of a 0.2 Hz
frequency band, the results will now be presented for an increased bandwidth (0.6 Hz) in
Figure 76b. The signal can also be changed for a sweep and the results for the damping
ratio can be observed in Figure 76c. Once again, the graph for the frequencies and mode
shapes will not be shown as the conclusion does not change from the other graphs: they
remain constant no matter the level of noise.
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(a) Illustration of the case tested. The green box shows the range of the known excitation and
the red one, the range of the unknown noise.
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Figure 76: Results for mode 2 when noise is in the frequency range of interest

The variability in the results decreases only for small percentage of noise but the difference
is less and less perceptible as noise increases. Indeed, it can be seen that for a noise
< 2%, the median is more centered on the identified value but the difference is not really
noticeable for a higher percentage of noise. Moreover, the difference between the medians
for the case with a 0.2 Hz or a 0.6 Hz bandwidth are very small (of the order of 1% or
less). The same is observed for the sweep signal.
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A.3 History of the perturbations (for the tests with pedestrians)
Table 16 shows the history of the perturbations recorded for the tests with pedestrians.

Number of
pedestrians

Starting
hour Tested signal Perturbations

10 people

13:45 Sweep around 1.59 Hz /

13:55 Sweep around 3.68 Hz
Cyclists at 13:55 (1) and 13:59 (1)
Pedestrians at 14:00 (1), 14:03 (1),
14:04 (1) and 14:07 (1)

14:11 Random around 1.59 Hz Cyclist at 14:17 (1)
14:22 Random around 3.68 Hz /

8 people

14:37 Sweep around 1.59 Hz Pedestrian at 14:39 (1)

14:48 Sweep around 3.68 Hz
Pedestrians at 14:48 (1), 14:56 (1)
and 14:59 (1)
Motorbikes at 14:58 (3)

15:05 Random around 1.59 Hz /
15:15 Random around 3.68 Hz /

5 people 15:30 Sweep around 1.59 Hz
Pedestrians at 15:30 (3), 15:32 (3),
15:36 (1), 15:37 (2) and 15:39 (2)
Cyclist at 15:33 (1)

15:45 Random around 1.59 Hz Cyclist at 15:48 (1)
Pedestrians at 15:48 (6)

1 person 16:02 Sweep around 1.59 Hz Cyclist at 16:04 (1)

16:18 Random around 1.59 Hz Pedestrians at 16:19 (1), 16:23 (1)
and 16:17 (2)

Table 16: History of the perturbations recorded for the tests with pedestrians. The
numbers between parenthesis are the numbers of pedestrians/cyclists that perturbed the

measurement at the given time.
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