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Abstract
Automatic demonstration of mathematical conjectures.

by Floriane Magera
Supervisor : Prof. Bernard Boigelot

Academic year 2015-2016

A particular logic has been introduced for reasoning about automatic se-
quences. An automatic sequence is roughly speaking an infinite word that
can be generated by a deterministic finite automaton. Properties of these
sequences defined with quantifiers, logical operators, integer variables, ad-
dition, indexing on the sequence, and comparison operators are decidable.
This work is focusing on a tool, Walnut, developed for automating decision
procedures for this logic.

This tool allows to use natural numbers encoded in various numeration
systems (binary, decimal, hexadecimal numeration systems are common in
computer science). One interesting feature of the tool is the allowance to
add new numeration systems if the addition automaton for this numeration
system is provided. The user must thus provide an automaton accepting the
language L = {(x, y, z)} with (x, y, z) being the encoding of three natural
numbers in the numeration system, and such that the values represented by
x and y added together give the value represented by z.

The aim of this master thesis is to automate the generation of the addition
automaton for the Fibonacci numeration systems. An original solution has
been developed for this problem using automata. This new method is in-
spired from existing work, ensuring some interesting efficiency properties. A
working implementation has been provided in order to generate the addition
automaton in a dot file.
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Chapter 1

Introduction

Mathematicians have always looked for automating proof techniques. This
project was popular at the end of the XIXth century, with the Hilbert pro-
gram. David Hilbert thought that every mathematical conjecture could be
decided mechanically, as the result of a computation that could be carried
out without using any intuition [Hil05].

That belief was found to be invalid in 1931 by Kurt Gödel with his theorems
of incompleteness [Göd31]. He showed that all sufficiently complex formal
systems can prove some formulae but there will always be some true formulae
that can not be proved. This means that there does not exist an algorithm
able to decide any arithmetic formula, if this arithmetic is expressive enough.
It is the case for the first order arithmetic, defined by Peano’s axioms. There
are thus formulae expressed in this arithmetic that can not be proved true
or false.

There still exists some decidable formal systems, but these are therefore
necessarily less expressive : Presburger arithmetic is one of them[Sta84].
Presburger arithmetic is the first order theory of the natural numbers with
addition. Theoretically, one can develop a system that is able to decide
automatically the truth of any formula in this arithmetic. For Presburger
arithmetic, automatic theorem provers have been developed : ACL2[Ray10],
E[Sch02], LASH[Boi], etc.. The formulae expressed in this arithmetic can be
translated in automata, but one could represent things with automata that
could not be expressed in this logic : automata are more expressive. So one
could imagine a more complex logic that would reach the level of expression
of automata. An example of such a logic is the monadic second order theory.
The monadic second order theory is the Presburger arithmetic extended with
the notion of tables : infinite words that can be indexed. The logic operates
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on natural types as Presburger arithmetic, yet there is a restriction on the
numbers acting as indexes : the addition operation is not allowed on them.
This system is decidable and the tool Mona is a theorem prover for this
logic[Hen+95].

A particular logic has been introduced for reasoning about automatic se-
quences. An automatic sequence x = (a(n))n≥0 can be generated by a deter-
ministic finite automaton that takes as input a natural number n and outputs
a(n) which is the nth term of the sequence. Properties of these sequences de-
fined with quantifiers, logical operators, integer variables, addition, indexing
on the sequence, and comparison operators are decidable. An example of a
formula in this logic is the following :

∃i∀j(j < n)⇒ (T [i+ j] = T [i+ n− 1− j])

This formula can be understood as : "For which n does the Thue-Morse
word have a palindrome of length n?". The Thue-Morse word is an automatic
sequence : the nth term of the sequence is defined by the parity of the number
of ones in the binary representation of n, if there is an even number of ’1’, then
T [n] = 0 otherwise there is an odd number of ’1’ and T [n] = 1. For example,
T [5] = 0 as the binary representation of 5 is 101, and thus the number of
’1’ is even. Some examples of the kind of properties proofs are shown in
the papers [Du+14], [HS12], [GSS12], [RNP13] and [DPR16]. This work is
focusing on a tool, Walnut, developed for automating decision procedures for
this logic. The output of Walnut for the formula given as an example above
is an automaton that accepts all the words n that are possible lengths.

In its current form, Walnut works with natural numbers, commonly repre-
sented in the binary numeration system. In a more general system, numbers
can also be represented differently. A definition of numeration system is given
in the user manual of Walnut [Mou16]:

“A number system S is a 3-tuple (ΣS, RS, valS) of alphabet ΣS ⊇ {0, 1},
language RS ⊂ Σ∗S of valid representations containing 0∗ and at least one of
0∗1 or 10∗ and decoding function valS : RS → N that assigns integers to every
word in RS. The decoding function has the following additional properties :

• valS(z) = 0 iff z ∈ 0∗

• valS(1) = 1
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• For all w ∈ RS, either zw ∈ RS and valS(zw) = valS(w) or wz ∈ RS

and valS(wz) = valS(w) for all z ∈ 0∗. The former is called an msd
(most significant digit first) number system and the latter is called an
lsd (least significant digit first) number system.

• For all natural numbers n, there is a representation w ∈ RS such that
valS(w) = n.

The addition relation +S ⊂ R3
S is defined such that (x, y, z) ∈ +S if and

only if x, y, z are of the same length and valS(z) = valS(x) + valS(y). The
equality relation =S ⊂ R2

S is defined such that (x, y) ∈ =S if and only if x
and y are of the same length and valS(x) = valS(y). The less than relation
is defined as <S ⊂ R2

S for which (x, y) ∈<S if and only if x and y are of the
same length and valS(x) < valS(y).

Number systems for which the automata for representations, addition,
equality, and less-than exist, and equality is the same as word equality, i.e.,
(x, y) ∈=S if and only if x = y, are exactly the type of number systems one
can define and use in Walnut. Note that the alphabet of a number system is
restricted to finite subsets of Z due to the same restriction on automata in
Walnut.”

All the natural numeration systems are built-in, for example one can decide
to express a formula in base 3 such that rep3(9) = 100, rep3(4) = 11, .... A
user can use a new numeration system if it satisfies the previous condition
and if the addition automaton is provided explicitly, i.e. if the user inputs
an automaton accepting the language +S. The contribution of this master
thesis is to automate fully this step, by creating a method to generate the
addition automaton of specific numeration systems, namely the Fibonacci
numeration systems.

1.1 Description of the master thesis
The reader not familiar with numeration systems is invited to read the Chap-
ter 2 first.

The goal of this work is to develop an algorithm for generating the addition
automaton for some Pisot numeration systems. Pisot numeration systems
are linear : there is a linear recurrence relation on the values of the sequence
of naturals constituting them. A subset of the Pisot numeration systems is
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composed of the Fibonacci numeration systems. This work will focus on these
numeration systems, as a starting point for further generalization. These
numeration systems are defined by a Fibonacci polynomial i.e. polynomials
of the following form :

Xm = Xm−1 + ...+X0

From this equation, a numeration system U can be created. It is defined by
a strictly increasing sequence of positive integers (Un) with U0 = 1, U1,...
Um−1 arbitrarily chosen. Then for every j ≥ 0, Um+j = Um+j−1 + ... + Uj.
Given the degree of the polynomial (which will be denoted by m along the
paper) and the first values of the basis {U0, ...Um−1}, the aim is to construct
the addition automaton in that base. The numeration system defined by the
Fibonacci polynomial of order m will be denoted by Fm along the work.

The work relies on the assumption that the alphabet is defined by A =
[0, 1]. The first values of the base must be chosen in a way such that every
integer is representable and thus that the numeration system is complete.

The generation of the addition automaton may be divided in several steps:

- Addition bit by bit which will be discussed in Section 3.1.

- Extended normalization : The result of the previous step is a num-
ber on the initial alphabet doubled. The number must be transformed
such that it falls back to the initial alphabet. This problem is studied
in Section 3.2 and in Chapter 4. In the solution proposed, there is a
supplementary sub problem, the post normalization : it is the prob-
lem of extended normalization restricted to the end of the words. This
problem is addressed in Section 5.1.

- Normalization : the latter number is transformed in normal form. A
solution is provided for this problem in Section 5.2.

The core problem of the work is the extended normalization, the trans-
formation of a word on [0, 2]∗ to [0, 1]∗ representing the same value. This
problem has already been studied by C. Frougny in earlier work [Fro99].
This approach will be presented, as it was partly followed. This work is pre-
sented in Section 3.2, then another solution to this problem is brought up in
Chapter 4.
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Another objective of the work was also to implement the solution. The
implementation of the extended normalization is discussed in Chapter 6,
some parts of Frougny’s approach were also implemented.

The illustrations provided will be mostly examples in the F2 numeration
system : the Fibonacci numeration system of order 2 with the characteristic
polynomial Xj+2 = Xj+1 + Xj. This choice is practical as it is the sim-
plest Fibonacci numeration system and the number of states in the different
automata stay low even in the final result.
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Chapter 2

Numeration systems

In this chapter, the definitions and concepts needed to understand the work
are presented. The properties of Fibonacci numeration systems are pre-
sented, some reminders about automata as well. Most of the properties and
definitions given are taken from the book [Rig14]. First some definitions
about numeration systems are given, then notions about the representation
of numbers are introduced.

2.1 Positional numeration system
A positional numeration system is defined by an increasing sequence of in-
tegers U = (Un)n≥0 such that every word cj...c0 is the representation of the
integer

j∑
i=0

ciUi

The weight of the coefficient ci depends on its position in the word. With
this definition, we also define the representation of an integer in a numeration
system as an encoding of its value in this system.

We will denote by the repU(n) the function which gives the normal repre-
sentation of the natural number n in the numeration system U. The normal
representation will be defined in Definition 2.5.2. Then we define also the
valU(w) function, which given a word w returns the integer value represented
by that word in the numeration system U.

Numeration systems are basically notations for representing numbers. In
this work, we focus on natural numbers.
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Numeration systems can be divided in several subsets which have inter-
esting properties. The Fibonacci numeration systems are part of the Pisot
numeration systems which are a subclass of linear numeration systems dis-
cussed in the next section.

2.2 Linear numeration system
A numeration system U is linear iff its sequence satisfies a linear recurrence
relation :

Un+k = ak−1Un+k−1 + ...+ a0Un

∀n ≥ 0, a0...ak−1 ∈ Z. From this definition, it is clear that Fibonacci numer-
ation systems are linear.

2.3 Pisot numeration system

2.3.1 Pisot number

Definition 2.3.1 A real number α > 1 is a Pisot number if it is an algebraic
integer (which means that it is the root of a polynomial) whose conjugates
have modulus less than one [Pis46].

2.3.2 Pisot numeration systems and their properties

Pisot numeration systems are particular linear numeration systems : their
characteristic polynomial of recurrence is the minimal polynomial of a Pisot
number α > 1. They have interesting properties :

- The normal representation of the naturals repU(N) is a regular lan-
guage.

- The mapping between a representation of a natural number n and its
normal representation is also a regular language. Indeed a deterministic
finite automaton which accepts the language

{(w, repU(n)) | valU(w) = n}
exists for the defined alphabet. It is the automaton generated in the
Section 5.2.

- The addition in the numeration system is also a regular language. Thus
the goal of this work is to build an automaton which accepts the lan-
guage

{(x, y, z) ∈ N3 | x+ y = z}
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2.3.3 Fibonacci numeration systems

Fibonacci numeration systems are a subset of Pisot numeration systems. The
characteristic linear recurrence relation of the Fibonacci numeration system
of order k is of the form

Un+k = Un+k−1 + ...+ Un, ∀n ≥ 0

From the properties given for Pisot numeration systems, one knows that
there will be a way to build a deterministic finite automaton for addition.

2.4 Some useful definitions
Definition 2.4.1 Let w = w0..wn−1 be a finite word of length n. Let i, j be
such that 0 ≤ i ≤ j < n. The word wi..wj is a factor of w of length j− i+ 1

We define here the notion of ordering that we will need in the next defini-
tion.

Definition 2.4.2 For two words u, v belonging to the same alphabet and
without any prefix of the form 0n, u is said to be genealogically smaller than
v if either |u| < |v| or if |u| = |v|, u = paq and v = pbl with a < b.

Definition 2.4.3 The lexicographical order is also defined : given two words
u and v on the same alphabet, u is said to be lexicographically smaller than
v, u <lex v if u is a proper prefix of v or if u = paq and v = pbl with a < b.

2.5 Normal representation
Definition 2.5.1 A word dr...d0 is a U-representation of n i.e. a represen-
tation of n in the numeration system U if

n =
r∑

i=0

diUi

The representation of a number in a numeration system is not always unique.
That is why a normal representation is needed.

Definition 2.5.2 Let U = (Un)n≥0 be an increasing sequence of positive
integers. U0 is equal to 1 in order to be able to represent every integer. The
normal representation repU(n) of a natural number n is the genealogically
greatest U-representation of n.
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To give an example, the representation of an integer in the Fibonacci
numeration system F2 which is defined by the sequence {1, 2, 3, 5, 8, 13, ...} is
not always unique. Indeed,

valF2(11) = valF2(100) = 3

And repF2(3) = 100 as this representation is longer.

The following section presents a way to find the normal representation of
an integer expressed in a positional numeration system.

2.6 Greedy representation of an integer
Given a numeration system U = (Un)n≥0 defined by an increasing sequence of
positive integers and a positive integer `, the normal representation repU(`)
is computed with the following algorithm. First, a value k is searched such
that Uk ≤ ` < Uk+1, the result of the Euclidean division of ` by Uk is noted
ck thus ` = ckUk + rk where rk is the remainder. This procedure is repeated
with the remainder until a sum of the following form is obtained :

` =
k∑

j=0

cjUj

Note that the values of cj are not restricted here. In the context of this work,
cj should be restricted to a certain alphabet. It depends on the numeration
base used, as the first values of the base can be chosen, the user should
provide values that allow every integer to be representable on our chosen
alphabet A = [0, 1]. As it will be seen in Section 2.7, there is an interval in
which each value can be chosen.

As said before, the first values of a Fibonacci numeration system can be
chosen. However, as the alphabet allowed is [0, 1] and as every natural num-
ber should be representable, these values are to be chosen carefully. The
restrictions on these values are mentioned in the next section.

2.7 Completeness
A numeration system defined by Fm and an alphabet A = [0, 1] is said to be
complete if every positive integer is representable. According to C. Frougny
[Fro88], one way to check that a system is complete is to show that

U0 + ...+ Uk ≥ Uk+1 − 1

14



for every k ≥ 0. Thanks to this condition, we will find out in which interval
the first values of the base can be chosen.

- if k ≥ m, the condition is trivially satisfied by the linear recurrence
equation of Fibonacci numeration systems.

- if k < m, one shows that U1 = 2 : U1 > U0 and U0 ≥ U1 − 1 knowing
that U0 = 1,

1 < U1 ≤ 2

then if m > 2, the condition becomes U0 + U1 ≥ U2 − 1, which gives

2 < U2 ≤ 4

One can prove by induction that

Uk ≤ 2k

by the induction hypothesis, Ui ≤ 2i , 0 < i < k :

20 + ...+ 2k−1 ≥ Uk − 1∑k−1
i=0 2i is a geometric sequence of reason q = 2. The sum of the n+ 1

elements of a geometric sequence (cn) is given by

c0 + ...+ cn = c0
1− qn+1

1− q

k−1∑
i=0

2i =
1− 2k

1− 2
= 2k − 1

and trivially,
Uk ≤ 2k

The final condition is Ui−1 < Ui ≤ 2i with 1 < i < m, so the user has to
choose the first values of the base in this interval.

2.8 Automata and transducers
The notion of automaton and transducer are reminded here.
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2.8.1 Automaton

Definition 2.8.1 A deterministic finite automaton, or DFA for short, over
an alphabet B is given by a 5-tuple A = (Q, q0, B, δ, F ) where Q is a finite
set of states, q0 ∈ Q is the initial state, δ : Q × B → Q is the transition
function and F ⊆ Q is the set of final states.

The map δ can be extended to Q×B∗ by setting δ(q, ε) = q and δ(q, wa) =
δ(δ(q, w), a) for all q ∈ Q, a ∈ B and w ∈ B∗ . A transition of an automaton
(p, a, q) is figured

p
a−→ q

An automaton is said to be deterministic if the following property holds : if
(p, a, q) and (p, a, q′) are two transitions of A, then q = q′.

Automata can be used to represent set of words, one says that an automa-
ton A accepts a language L(A).

Definition 2.8.2 If the language L(A) is accepted by the automaton A, then

L(A) = {w ∈ B∗|δ(q0, w) ∈ F}

If w ∈ L(A) then the word w is accepted by the automaton A.

As an example, the automaton shown on Figure 2.1 is the automaton accept-
ing all the words that are the normal representation of the natural number
in the F2 numeration system.

Figure 2.1: Example of automaton

The aim of this work is thus to construct an automaton that will accept
the language

{(repFk
(x), repFk

(y), repFk
(z)) | x+ y = z, (x, y, z) ∈ N3}

for the Fibonacci numeration system of order k.
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Every DFA can be transformed in a minimal form : another DFA accepting
the same language with a minimal number of states. This minimal form is
unique: if there are two automata A and B accepting the same language,
their minimal form will be equal. This operation is called minimization.

The notion of transducer will also be used as a more natural way of think-
ing about the addition automaton. The addition can be formalized as a
transducer with two input tapes and one output for the result of the ad-
dition. Some kind of transducers can be converted in DFA and conversely.
These transducers are presented in the next section.

2.8.2 Transducer

A transducer is a 7-tuple T = {Q,A,B, δ, q0, λ, F} where Q is a finite set of
states, F is the set of terminal states, F ⊆ Q, A and B are finite alphabets,
usually called the input and the output alphabets respectively, q0 ∈ Q is the
initial state. The transition relation is δ ⊂ Q × A∗ × B∗ × Q. The output
function is λ : Q→ B∗.

Such a transducer T accepts a language :

L(T ) = {(f, g) ∈ A∗ ×B∗ | g = hw}

where (f, h) is the label of a path going from the initial state q0 to one of the
terminal states q ∈ F , and w = λ(q). A transducer that accepts a pair (f, g)
is said to transform the input word f in the output word g. A transition
τ = (p, u, v, q) with p, q ∈ Q, u ∈ A∗ and v ∈ B∗, is noted p u/v−−→ q.

A transducer is said to be length-preserving if the language accepted sat-
isfies

∀(f, g) ∈ L(T ), |f | = |g|

A subclass of length-preserving transducers are the synchronous tran-
duscers. A transducer is said to be synchronous if for all its transitions
p

u/v−−→ q, |u| = |v| = 1 [DN09]. This class of transducers can be translated
into a DFA, each transition of the automaton is labeled by a pair (u, v) over
the combined input and output alphabets. There is no need for an output
function λ for a synchronous transducer. This class of transducers is obvi-
ously less expressive than general transducers. But as it can be converted in
automata, it can also be determinized and minimized as a normal automaton.
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A transducer is said to be deterministic if for every state and every input,
the output and the next state are uniquely defined. Most of the transducers
handled in this work are not deterministic in that sense : there might be
several outgoing transitions from a state q and for a same input u, which are
not directed towards the same ending state, and which do not have the same
output. So once the starting state, the input and output labels are known,
the ending state is uniquely defined. Thus the automaton obtained from such
a transducer is deterministic as the labels of its transitions are composed of
the input and output labels of the transducer’s transitions.

2.8.3 Composition of two synchronous transducers

Here the theoretical composition is explained.

Given two transducers T1 and T2, the goal is to compose them such that
the output of T1 will be the input of T2. Formalized as automatons, the
alphabets of T1 and T2 are defined:

A1 = Σ1 × Σ2

A2 = Σ2 × Σ3

It is important to note that the alphabet of the output of T1 and the alphabet
of the input of T2 are equal. Otherwise the composition will fail. The second
transducer can not take as input something that is not in its alphabet.

The first step is to expand the alphabet of both transducers. The alphabets
are modified in the following way :

A′1 = Σ1 × Σ2 × Σ3

A′2 = Σ1 × Σ2 × Σ3

This can be obtained by modifying each transition of the transducers : each
transition is transformed in n new transitions with |Σ| = n, with the same
start and end, just the labels are expanded with the nth value of Σ. Another
way to do that is to make the Cartesian product of the automaton with a
new automaton that accepts all words on the desired alphabet.

The next step is to make the intersection of the two automata. A new
automaton I is obtained. Its alphabet is :

AI = Σ1 × Σ2 × Σ3
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The second component is useless, as it is temporary. The last step is thus a
projection on that second component, giving as result

I ′ : Σ1 × Σ3

That was the theoretical explanation of the composition. The implemen-
tation is not as simple, as a lot of different composition operations are per-
formed. Indeed all the automata solving each of the main sub-problems
explained: bit by bit addition, extended normalization, post normalization
and finally normalization will be composed to obtain the addition automa-
ton. Thus a more general composition is needed ; it should work also with
automata with 3 tapes for examples. The implementation is discussed in
Chapter 6.

2.8.4 Product of an automaton and a synchronous trans-
ducer

The product of an automaton with a transducer can be seen of a particular
case of composition. The automaton will be fed as an input to the transducer.
The operation consists in the following steps :

1. The automaton is extended, if the transducer has two tapes and the au-
tomaton has one, a Cartesian product is performed in order to expand
the alphabet of the automaton. The new alphabet of the automaton
is: A′ : Σa × ΣTo with Σa the alphabet of the automaton and ΣTo the
output alphabet of the transducer.

2. Then an intersection is performed between the transducer and the au-
tomaton modified. This is possible if as previously the input alphabet
of the transducer ΣTi

and the alphabet Σa of the automaton match and
moreover if the transducer is synchronous and thus expressible as an
automaton.

3. The resulting automaton is projected on its first component.

As a result, one obtains an automaton accepting all the possible outputs
of the transducer for the words belonging to the accepting language of the
initial automaton.

In this work, one will mostly deal with transducers. Note that transducers
can be considered as automata with tuples on their transitions, only if the
transducer is synchronous.
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Chapter 3

Generating the addition
automaton : Frougny’s algorithm

As explained in the introduction, the generation of the addition automaton
can be divided in three sub tasks.

1. Bit by bit addition,

2. Extended normalization : this step transforms a word on [0, 2]∗ into
another word on [0, 1]∗ encoding the same value,

3. Normalization : here it means to convert each word in a new word
encoding the same value, without having any 1m factors.

Before presenting Frougny’s method for extended normalization, the sub-
problem of bit by bit addition is solved for chronological consistency in the
solution.

3.1 Addition bit by bit
The first step of the addition process is the easiest. It is the bit by bit
addition, one simply adds two inputs, without wondering about the output
alphabet. As one can see on Figure 3.1, the created automaton A accepts
the language

{(x, y, z)|x+ y = z, x, y ∈ A}

The automaton is composed of only one state.
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Figure 3.1: Simplest transducer for addition bit by bit for F2

A way to go further is to require the inputs x and y to be in their normal
form. It is obtained by creating an automaton which only accepts words in
their normal form. The normal form of words in the Fibonacci numeration
system of degree m are the words which do not contain the factor 1m.

The automaton N accepting the normalized words is thus composed of m
states, all being accepting. Every ’1’ in the word leads to the next state, and
every ’0’ goes back to the initial state. The automaton N2 is represented in
Figure 3.2.

Figure 3.2: Automaton accepting normalized words in F2

In order to ensure that x and y are normalized, the Cartesian product of
the automaton N with itself is performed, and then it is composed with the
simple addition automaton A. The final result is shown on Figure 3.4. The
automaton takes as input two normalized words and outputs a word which
is on the doubled alphabet and which is not in its normal form.

The step following addition bit by bit is the extended normalization. It
is the main focus of this work. The extended normalization happens after
the raw bit by bit addition of two numbers in their normal representation
developed here. The problem is that the normal form has not been conserved
for the output. Indeed, the alphabet of the output is now doubled and
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Figure 3.3: Automaton reading two normalized words in F2

Figure 3.4: Final addition transducer for normalized input in F2

moreover, the addition of two numbers in their normal form can lead to a
representation that is no longer normal as one can see in the following simple
example in F2: 01 + 10 = 11.

For these reasons, first the output’s alphabet must be reduced, and then it
should be put in its normal form. Here, this chapter focus on the reduction
of the alphabet, which is called the extended normalization. We present a
method proposed by C. Frougny [Fro99] to solve this problem in this chap-
ter. Some mechanisms presented will be reused in the normalization part in
Section 5.2.

The problem of extended normalization consists in answering the question:
knowing the Fibonacci polynomial of the numeration system of interest, how
can a word on [0, 2]∗ be transformed to another word on [0, 1]∗ encoding
the same number? For example, in F2, it is easy to see that the following
transformation is correct, but the point is to develop an algorithm to perform
such a transformation automatically and efficiently.

020011→ 101001

22



The discovery of how to perform extended normalization in an efficient way
was the core concern of the work, and is still the part that could need further
improvement to obtain an efficient generation of the addition automaton for
Fibonacci polynomials of high degree.

3.2 Frougny’s algorithm
The main source of this work is an article of Christiane Frougny. It describes
the procedure to obtain a transducer that is capable of decreasing the alpha-
bet of an incoming word by one when applied m times. The method will
be explained for our specific case. The transducer reads words from left to
right, applying sequentially rules that will be explained here.

The whole approach relies on rules that are to be applied to transform a
word. These rules are essential and will be used further, whilst the rest of
the procedure is not used as such in the final implementation.

3.3 Rules
In order to transform a word into a word encoding the same value but con-
taining a smaller number of ’1’ or ’2’, the characteristic polynomial of the
numeration system can be used. Two types of rules can be derived from it :
reductions and unfoldings.

3.3.1 Reductions

These are performed by using the polynomial of the numeration system on
factors of size m + 1. The left-most letter is thus increased by one and all
the others are decreased by one. It could be interesting to apply it several
times. The set of possible reductions is described by :

{0(i1 + 1)...(im−1 + 1)l→ 1(i1)...(im−1)(l− 1) | 1 ≤ l ≤ 2, 0 ≤ i1, ..im−1 ≤ 2}
(3.1)

For example, the next set represents all the reduction rules for the F2 nu-
meration system.

R = {011→ 100, 012→ 101, 021→ 110, 022→ 111, 031→ 120, 032→ 121}
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In practice, the last rule of R is not applied. It is better to reduce the word
as much as possible, so the transformation used is 032→ 210. On one side,
this leads to a factor on the same alphabet and moreover it produces a zero,
which is necessary to apply more rules. For example, one could face a word
w = 03221 with the theoretical rule it could be transformed in that way :

03221→ 12121

And then no other rules are applicable. If it is transformed in the other way,
it becomes :

03221→ 21021

After that, the last factor “021” can be reduced too by a new rule application.

03211→ 21110

As the final result. The words are not normalized yet, but the second result
is closer to be, as there is only one ’2’ remaining.

Reductions are also used for the last step of normalization.

3.3.2 Unfoldings

These consist in developing a factor with the polynomial and then reducing
a factor to the left of the developed one. The unfoldings take the following
form :

{ 0(i1 + 1)...(ij−1 + 1)(ij + 1)νj+1...νj+m →
1(i1)...(ij−1)(ij − 1)νj+1...νm(νm+1 + 1)...(νm+j + 1) }

(3.2)

with the following conditions on the variables :

1 ≤ j ≤ m− 1

0 ≤ i1, ..im−1 ≤ 2

νj+1...νj+m ∈ [0, 2]

νj+1...νm <lex 1m−j−11

Where <lex denotes the lexicographic ordering. For example, here are the
sets of unfoldings of F2 :
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Un = {0200→ 1001, 0201→ 1002, 0202→ 1003, 0300→ 1101, 0301→ 1102,

0302→ 1103}

Unfoldings are needed specifically in the case of an extended alphabet,
where words of the type 02n can occur for F2 for example. These words can
not be reduced with a simple reduction. Note also that unfolding can extend
the alphabet further to [0, ..3].

Now the two sets of rules will be used to transform each factor matching
the left member of a rule. The next step is to create a transducer which
will read a word from left to right, and will transform the word using the
predefined rules.

3.4 Creating the transducer
The goal of the method is to construct a transducer which will apply the rules
on its input in order to perform extended normalization. The construction
of this transducer is described in this section.

3.4.1 Generate the state space

The state space of the transducer is directly extracted from the rules. The
states represent the current factor being considered at a certain point when
waiting for a matching with a rule. The set of states is then the set of strict
prefixes of the left member of the rules. The initial state is ε.

3.4.2 Generate transitions

From each state q, each possible input x is considered. Let w = qx. The
word w from which the factor y has been removed is denoted by w\y. There
are three cases :

- There is no rule matching w. There are then two possibilities :

– w matches another state q′ (w = q′): then nothing is written on
the output tape and the next state for input x is q′.

– a suffix of w matches another state q′. If there are several matching
suffixes, the longest one is chosen. The remaining part w\q′ is
written on the output tape and the next state for an input x is q′.

25



- There is a reduction rule matching w. If w → w′ and w′ can not be
reduced anymore (otherwise reduction rules are again applied), w′ is
considered. There are again two cases. The last letter of w is named `:

– ` belongs to the reduced alphabet, so ` = 1 (` can not be ’0’ to
allow a reduction) in this case. Then w′\(`− 1) is written on the
output tape and the next state is `−1. In this case, the next state
is always ’0’.

– ` does not belong to the reduced alphabet, as ` is the last digit,
it can only be equal to 2. From the structure of unfoldings, there
will always be at most (m− 1) digits ’3’ created, so the last digit
can not be a ’3’. Then the form of w′ must be considered :
(h + 1)i1...im−11, let k be the greatest integer such that ik = 0
and ik+1, ...im−1 ≥ 1. The output for this transition is everything
before ik : (h+ 1)i1..ik−1. Moreover the next state is 0ik+1..im−11.
If there does not exist such a k, then it means that one more
reduction can be applied. After applying it, this step can be re-
peated.

- An unfolding rule is applicable. If w → w′, w′ is considered. The
longest strict prefix of w′, n is searched such that n belongs to the
reduced alphabet and such that the suffix w′\n begins with ’0’. The
prefix n is written on the output tape. This decomposition exists be-
cause of the requirement νj+1...νm <lex 1m−j−11 in Equation 3.2 on
unfoldings. The next state is w′\n.

Find the output value for each state

Frougny’s article does not give the choice of the first base values. The values
of the m first values must necessarily be powers of two : U0 = 20, ...Um−1 =
2m−1. This part of her method is explained to be complete, even if it was ac-
tually never used as we wanted to allow other values for the m first values. A
new approach is developed in Section 5.1.1. This part defines the output func-
tion of the transducer. The transducer being constructed is length-preserving
: for an input word f , it will produce an output word g such that |f | = |g|.
This is why the value of the output function for a state q is as long as the
label of this state.

The output function ω(q) is defined for each type of state. There are
several cases :

- If the state q ∈ [0, 1]∗ then the output satisfies ω(q) = q.
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- Otherwise, q must be normalized, but by definition of the states there
are no rule that can be applied. Assume q = hq1...q` with 1 ≤ ` ≤
2m− 2.
The approach proposed is to continue the base with U−1 = 1, U−2 =
0, ...U−m = 0. The label of q is suffixed with m zeros : q = hq1...q`, 0

m

If ` ≤ m− 1, an unfolding rule can be applied.

q → (h+ 1)i1..ij−1(ij − 1)qj+1...q`, 0
m−`1j

By definition of the U−2, ...U−m and as ` ≤ m− 1, the output value is
equal to

(h+ 1)i1..ij−1(ij − 1)qj+1...q`

if m ≤ ` ≤ j + m− 1 The same method as previously is applied : q is
suffixed with zeroes and one unfolding is also applied, it is possible to
generate ’1’ at indexes greater than `. As U−2 = ... = U−m = 0, the
only problem is a ’1’ located at the index ` + 1. The work does not
specify exactly how to behave in this case, so an idea of resolution is
given. If q` < 2, q` is increased by 1. Otherwise a second unfolding can
be applied with q`+2...q`+m = 0. As a result, q` will be reduced, and if
q`+1 is still different from zero, it can be added to q`.

Final result

The resulting transducer for F2 is shown on Figure 3.5.

Now the next step is to transform this transducer in an automaton as we
want to obtain the addition automaton eventually. However this transducer
can not be translated in a deterministic finite automaton because of the shape
of its transitions. The transitions generated vary in length which would not
be a problem if the length of the input and output were always equal. The
input length is always equal to one or zero, and the output’s length vary
between [0, 2]. In a DFA, there is no output nor input, the transition labels
would be translated in a tuple, it won’t be possible to know where the input
stops and where the output starts. The transducer could be translated in an
automaton if the output and input were of the same length. This would also
mean that the output function of the transducer would always output ε, so
it would not be needed to specify it.

In the next Chapter, a new approach is developed to construct a syn-
chronous transducer i.e a transducer with transitions (q, u, v, q′) with |u| =

27



Figure 3.5: Transducer obtained with Frougny’s method

|v| = 1. The aim is to keep as much similarities with Frougny’s method as
possible, to keep the same interesting properties : i.e. the guarantee of a
reduced alphabet in m passes through the transducer that will be developed.

In order to keep the same properties, we try to keep the same effect and
strategy : the transducer generated will apply rules, and another interesting
property to maintain is that after applying a rule on a factor of the word, if
there is a suffix of the transformed word that could match another rule, it
will be kept it in memory, allowing overlapping rule applications.

The method proposed by Frougny was partly implemented, some parts are
used in the final version. The implementation will be discussed in Chapter
6. First the theoretical explanations about the new method considered is
presented in the next chapter.
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Chapter 4

A synchronous transducer for
extended normalization

Our aim is to obtain a synchronous transducer having the same effect as the
one obtained in Section 3.2. It would be a transducer transforming a word
thanks to the rules described, in a sequential way and such that the nesting
of rules applications would be possible. In that way, the same efficiency
could be obtained: the extended normalization would be performed in m
applications of the transducer. If the alphabet was to be extended, it would
not be the case anymore as m applications reduce by one the alphabet.

One solution would have been to transform the transducer to make it
synchronous, but another one would be to try to make the algorithmic simpler
and to rely on simple operations on automaton. An approach relying on
simple automata and operations on them is chosen.

First the problem is defined and formalized, then some ideas are considered
and finally the idea implemented is explained.

4.1 Problem
The aim is to mimic with a synchronous transducer the behaviour of the
transducer obtained in Section 3.2. First, its effect can be formalized. The
transducer applies rules, in a sequential way on words, from left to right. The
application of one rule is considered as a basic action. This action can be
repeated an unbounded number of times, but it is not a simple loop: as rule
applications may be nested, the previous result of a transformation can be fed
as input to the next one. But there should be a possibility of not applying
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any rule for a while. Whatever the solution to mimic the asynchronous
transducer, the first step is to develop a basic automaton that applies one of
the rules.

4.2 Base automaton
As there are two types of rules reductions and unfoldings, an automaton for
each type will be generated. Each automaton will transform words matching
the left member of its rule.

4.2.1 Reduction automaton

The reduction automaton is the simplest. The aim is to generate a syn-
chronous transducer that reads the left member of a rule and outputs the
right one. The number of rules for a numeration system grows quite fast,
so an approach that reasons on the structure of the reduction rules is pre-
ferred. In order to build it in an efficient way, one can generalize the form of
reductions. The set of reductions for F2 modified for maximal reduction is
considered:

R = {011→ 100, 012→ 101, 021→ 110, 022→ 200, 031→ 120, 032→ 210}

This set can be partitioned in two subsets:

R1 = {011→ 100, 012→ 101, 021→ 110, 031→ 120}

and
R2 = {022→ 200, 032→ 210}

These subsets correspond to the number of times one can apply a reduction
on the factor. There will be one subset for each possible number of reductions,
here there will always be at most two sets, because it is not possible to create
factors 3m. The factors containing ’3’ are generated by unfoldings which can
produce at most 3m−1. A first idea is thus to divide the state space of the
transducer according to the subset of the rule which will applied: from the
initial state, there will be a transition “0/1” to a new state s1 and another
transition “0/2” to another state s2. The rules from R1 will be continued
from s1 and the ones from R2 will be continued from s2.

Then there is another observation to be made: for each rule member of
a set, there is always a digit that justifies the number of reductions. For
example: if one considers the rule 021 → 110, the ’1’ in the left member is
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the restricting digit. It is important to generate complete rules. Without
this observation, incomplete rules could generated, for example:

022→ 111, 022→ 200

The first rule is incomplete, it is not wrong: the transformation is correct,
but it would lead to a less compact automaton, and moreover, it would bring
non-determinism.

Starting from the states previously introduced si, there will be m tran-
sitions following (as reductions are always m + 1 digits long). Along these
transitions, the input will be decreased by the number of reductions i. The
last observation impacts the input values considered at each new transition.

Further details about the exact implementation of the automaton and
pseudo-code are presented in Chapter 6. The automaton resulting is shown
on Figure 4.1

Figure 4.1: Transducer applying one reduction rule

4.2.2 Unfolding automaton

Now the unfolding automaton should be generated. This time, the F3 nu-
meration system is used as an example. Indeed the unfolding rules do not
all have the same size, unlike reduction rules whose length is always equal to
m+ 1. The different lengths are not noticeable for the F2 base, because the
length interval of an unfolding is [m+ 2, 2m]. So for F2 the size of unfolding
rules is fixed to 4, whilst for F3 it is [5, 6].

31



The approach is similar to the one developed for reductions. The genera-
tion of the automaton is based on observations on the unfolding rules. Some
of the rules for F3 are recalled :

U3 = {033022→ 121033, 023011→ 111022, 03102→ 11103, 02010→ 10011}
While reductions could be divided according to the number of reductions
possible, here unfoldings can be partitioned according to their size:

U5
3 = {03102→ 11103, 02010→ 10011}

and
U6
3 = {033022→ 121033, 023011→ 111022}

Similarly to the reduction automaton, the state space will again be divided
according to the length of the rule: from the initial state, there will be
a transition “0/1” to a state s1 and s2, here this transition is the same,
introducing non-determinism. The number of second states depends on the
order of the Fibonacci numeration system considered.

Then the second observation is that there is a middle factor that remains
unchanged in every unfolding. The length of this factor is defined by the
rule’s length. In unfoldings, the jth term ≥ 2 is expanded, then the m terms
between the index [1,m] are reduced. So there will bem−j terms unchanged
between the indexes j+ 1 and m. After these, the j following digits read are
increased. All these observations are also easily noticeable in the definition
of unfoldings in Equation 3.2.

There is one last thing to remark: the unchanged factor should be strictly
smaller than the factor 1m−j in the lexicographical order. It should be re-
membered whether a zero has already been written in the middle factor when
generating it. This will be dealt with a similar approach as the restricting
digit in the reduction case.

Each second state si will correspond to a value for j, in the interval [1,m−
1], so the number of transitions generated after the second state depends on
it. The idea of the rest of the generation of the automaton is then to keep a
counter of the number of transitions generated while constructing the rules of
a certain length. The counter indicates the action to perform: decreasing by
one or two input values, generating the middle factor and finally increasing
by one the input. It follows quite naturally the definition of the unfolding
given in the previous chapter. In the implementation, the second states are
merged in order to avoid non-determinism, they were still used here for the
simplicity of the explanation.
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Further details about the exact implementation of the automaton will be
discussed in Chapter 6. The resulting automaton is shown on Figure 4.2.
For once, the example is from F3. Note that the initial values of the base
do not matter here, they are used in the step of post normalization, which is
described in Section 5.1.

Figure 4.2: Transducer applying one unfolding rule

4.2.3 Creation of the base automaton

Now that two transducers applying reductions and unfoldings have been cre-
ated, the last step to create the base automaton is to make the union of them
in order to obtain an automaton that will apply one rule. It is important to
notice that the final automaton will accept and transform words of length
` ∈ [m+ 1, 2m]. The result of the union is shown in Figure 4.3. Once again,
the result for the Tribonacci (F3) numeration system is presented.

Now the problem is to figure out how to use this simple automaton in
order to perform extended normalization. Some details that should also
be considered are the handling of factors that do not exactly match the left
member of a rule, the loop to add in order to allow the sequential application
of rules. The main concern is still how is it possible to obtain the nesting
of the rules ? The next section presents the first idea that was followed, but
which was proven unsuccessful.
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Figure 4.3: Transducer applying one rule in F3

4.3 Strategy one

4.3.1 Aim

In order to visualize the effect wanted, a schema is presented on Figure
4.4 The arrow in bold represents a word or a sub-word. The rectangles
represent a transformation of a factor by the application of one rule of the
base automaton. Rules are applied sequentially on the word, some part of
the previous word transformed can be reused. There might also be some
factors unchanged in the word.

The base automaton corresponds to the effect of a box. The aim is to find
out how to modify it in order to obtain the correct result. The nesting of the
rules implies that the ending of modified factors will be used as input to the
next transformation. An example of nesting is given for F2:

020200→ 100300→ 101101

One can see that the two last digits of the modified factor “03” are fed
as input for the next rule application. This operation can be seen as the
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Figure 4.4: Effect on a word

application of the base automaton delayed by two positions to the output of
the application of the initial base automaton. The operation consisting in
feeding a transducer with the output of a first one is called composition.

First this operation has been defined in the Chapter 2, basically composi-
tion can be written as

C = A(B())

The application of an automaton A to the language accepted by another
automaton B. Thus the operation of composition is used, its implementation
is defined in Chapter 6.

The composition operation is a mean to nest rules: if the base automaton
is composed with itself delayed of one position, the resulting automaton will
be able to nest the two rules. The following section focuses on the automation
of this nesting.

4.3.2 Composition with delayed versions

The principle of this strategy is to use composition of the base automaton
with itself delayed. Several approaches were tried to obtain a satisfying
result. In any case, a factor could stay unchanged and the rules could be
applied several times sequentially as well. The first step is thus to add an
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identity part to the automaton, and make it a loop. The loop is generated
by adding a transition labeled with ε from each accepting state to the initial
one. Then the automaton is determinized. The identity is then added by
adding transitions from the initial state to itself, labeled by “i/i”, for each
i ∈ [0, 3]. One can see the resulting automaton for F2 on Figure 4.5.

Figure 4.5: Base automaton with identity and loop for F2
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Approach 1

The first idea is thus to compose the previous automaton with itself delayed.
If the visualization of the effect aimed is presented in the same representation
as in Figure 4.4: On the figure 4.6, there are 3 delayed versions of the base

Figure 4.6: Effect of the first approach

automaton modified as in Figure 4.5. Each horizontal block of rectangles is
an application of the base automaton. It is composed with itself delayed by
one position, then with itself delayed with two positions, etc. The nesting of
the rules is generated artificially by these compositions.

In order to cover all the nestings possible, the length of the rules is con-
sidered: |rules| ∈ [m+ 1, 2m]. The nesting of a rule is only possible if in the
previous transformation, a ’0’ was created as all rules begin with ’0’. But
since the length of every application vary, there is no point in defining which
delays are relevant except for the beginning of the word. The naive approach
is to compose the automaton with its 2m-1 delayed versions which cover all
possible nestings.

Problems The transducer that can be obtained with this strategy has not
exactly the same effect as the transducer obtained in Section 3.2. Indeed, the
order in which the transformations are made is different, it is not sequential
anymore. It is not certain that the properties showed by Frougny are still
holding here, namely the guarantee that any word is transformed in another
word representing the same value on [0, 1] inm applications of the transducer.
It is also difficult to assess the relevance of the composition with delayed
versions as the blocks vary in size from [0, 2m].

This approach might be very inefficient because if there is a word without
any zero in the middle like w = 0022222 the loop in the base automaton
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is useless. Indeed a “real” nesting is needed to be able to reduce the word,
as there is a composition with 2m automata, if there are more than (2m)m
factors strictly greater than 1m i.e. for F2 ’22’/’21’/’12’, the word won’t be
on the good alphabet. An example is shown in F2 :

00121212212212→ 01011212212212

01011212212212→ 01011212212212

01011212212212→ 01100212212212

01100212212212→ 01101102212212

The result obtained after the first pass through the transducer is thus 01101102212212.
Note that there is a composition that was useless, the automaton delayed once
could not work because it reads “101” as a first factor, which does not match
any rule. Then the second application of such a transducer would give:

01101102212212→ 10010020012212

10010020012212→ 10010100112212

10010100112212→ 10010101002212

10010101002212→ 10010101020012

As a result, the word is indeed not in the desired form. So the approach is
not valid, and a new method should be investigated.

This method was still implemented, and even if it had worked, it would
not have been usable due to a prohibitive computation time. Indeed, the
composition is a rather heavy operation. In the case of F2, three composi-
tions of the base automaton are performed. The result of the intersection of
two automata A1 = {Σ1, Q1, δ1, i1, F1} and A2 = {Σ2, Q2, δ2, i2, F2} is a new
automaton which has at most Q1 × Q2 states. So as a result of the compo-
sition, one might obtain an automaton with thousands of states, whilst the
final addition automaton in that case has only 15 states... One can certainly
hope for a better efficiency.

For these reasons, this approach is not relevant, since the program gen-
erating the transducer for extended normalization would not terminate in
reasonable time.
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Approach 2

One problem with the last procedure is that the nesting is not performed
as it should be. The order in which the rules are applied should be strictly
sequential. In the previous approach, if a nesting was possible, it would be
done at a following application of the delayed base automaton and there
might be some transformations further in the word performed first. This is
something that will be avoided in the following approaches. If a nesting is
possible, it should be used directly. The next idea is then to compose the
base automaton, but the version without the loop.

This approach consists in composing the basic automaton applying one
rule with itself delayed once then twice,etc in fact this would yield the effect
searched, but the number of compositions would be unbounded and would
only depend on the length of the input word. It would be ideal to find an
automation for this in order to have a fixed number of compositions. If one
considers a rule application, all the nestings involving this rule are covered
by composing it with its 2m− 1 delayed versions. A first transducer can be
obtained with this composition, then a loop is added to cover all the possible
lengths. The effect is represented in blue on Figure 4.7.

Figure 4.7: Effect of the second approach

One block composed of 2m sequential applications acts on factors of length
4m − 1. The problem is that there is no nesting between two blocks. With
the current approach, we consider only the nestings possible with the rule
application on the first line. The last rule applied in a block will not have
its possible nesting considered. As a result, there is a cut in the rule nesting.
Another idea is to compose this first automaton to a second one which is
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basically itself delayed 2m times. Now the nesting is guaranteed on factors
of length 8m − 1. But the problem remains, there is always a last rule
application composed from which no nesting is considered.

Results This version without loop has been developed, and it was tested
on words of limited length [0, 4m − 1] for the blue version and [0, 8m − 1]
for the red one. It resulted that the automaton resulting accepts a language
that includes the language of the addition on these limited words. But this
result is lost on longer words, because with the loop, there will always be a
cut in the sequence of overlappings as explained above. This solution does
not work either.

Even if it had worked, the number of compositions would still have been a
heavy problem. A block automaton might have about 60000 states, thus the
composition of the automaton which effect is in blue with the one in red is
really long, again for the simplest case which should result in an automaton
of 15 states.

Consequence

The idea of composition is unsuccessful to provide the same effect as the
asynchronous transducer with those two approaches. Moreover, a solution
that heavily relies on composing transducers can be computationally costly.
In the next section, a new way is developed to avoid these heavy compositions,
such that the final automaton performing extended normalization has as
much states as the base automaton seen on Figure 4.5.

4.4 Strategy two
The approach used here was already used in an intuitive way for normaliza-
tion, here it is generalized. The new method explained does not use compo-
sition, it modifies the base automaton in order to allow the overlapping of
the rules.

4.4.1 New method to nest rule applications

First, we observe that if there exists an overlapping, there will be an output
factor that will be used as an input later. So there is a path going to the
initial state and another path going out of the initial state such that the
output of the incoming path and the input of the outgoing path both match.
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The idea is then to bypass the initial state. A new transition is created from
the first state of the incoming path to the end state of the outgoing path,
labeled with the input of the incoming path and the output of the outgoing
path.

As an example, we can observe the following automaton on Figure 4.8.
There is a path from state 3 to the initial state 1, labeled with “0/1” and
there is another path from the initial state to the state 2, labeled with “1/0”.
The output of the first path is equal to the input of the second path, so a
merging of these transitions is possible. One creates thus a new transition
(in bold and red) going from state 3 to state 2, labeled with “0/0” as the ones
have been consumed.

Figure 4.8: Example of merging

From the form of the rules, it is certain that a zero is needed as the output
of the first transition of the incoming path. Thus one can also deduce that
there is no point in looking for a path longer than m transitions.

1. For reductions, the length of the factor which is decreased and thus
which may contain zeros is equal to m.

2. For unfoldings, the m last digits contain the middle factor which also
contains a zero.

So first, all the interesting paths should be found, then the next step is to
compare the output of incoming paths with the input of the outgoing ones,
and for those who match, create the transition bypassing the initial state.
Note that these transitions are just added, there is no deletion of the initial
paths. Thus non-determinism is brought again. But as there is one correct
way to bring the word to the initial alphabet, the non-determinism will be
discarded at the next step, when the output is normalized.

The implementation of this new operation is presented in Chapter 6.
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4.4.2 Results

The automaton obtained with the new operation on the base automaton
with a loop is shown on Figure 4.9. The result is really satisfying as the
computation time is significantly decreased. And the effect is the one aimed:
rule applications can now be nested and the transformation is sequential from
left to right. Thus the properties of the Frougny’s transducer will certainly
be holding in this case too.

The part to handle the case of a factor ending a word which do not match a
rule and that are still containing ’2’ or ’3’ is still missing. This problem, called
post normalization, will be studied in the next chapter. The full automaton
performing extended normalization is thus the composition of the automaton
created in this chapter and the next one. The resulting automaton will then
need to be composed (m − 1) times with itself as explained in the paper
[Fro99].
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Figure 4.9: Nested rules
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Chapter 5

Post normalization operations

The core problem of this work has been solved in the previous chapter. This
chapter develops the final steps needed to create the addition automaton.

• First the extended normalization is not complete, as said earlier, some
transformation may still need to be applied to the last digits of number
encodings. The first section of this chapter focuses on the solution to
this problem, the post normalization.

• Finally the automaton performing normalization is created.

Eventually, the composition of all the automata generated is explained, the
result of this last step is the addition automaton.

5.1 Post normalization
Post normalization is needed because the input alphabet might be increased
during the extended normalization. The extended normalization takes as
input words on the doubled alphabet [0, 2]. But the extended normalization
uses unfoldings rules which can produce words on [0, 3]. For example the
rule in F2: 0202 → 1003. The aim is to obtain a reduced alphabet, so if
a word finishes by a factor matching the left member of the previous rule,
a further transformation must be applied in order to transform the last ’3’.
The output of the extended normalization is on [0, 2], as the transducer is
applied m times, some factors containing ’2’ could remain. The number of
’2’ is of course reduced after the first transformation, but it is possible to
have still a few remaining occurrences left.
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This part differs from Frougny’s approach by not forcing U0...Um−1 to be
powers of 2. This method was developed when trying to adapt the transducer
described in Section 3.2. The first method starts from the states defined
there, keep in mind that these states are the remainder of the factor being
treated. If one reach the end of the word in a certain state, the label of the
state is the current remainder. If the label is two digits long, the output
should be two digits long too as the transducer created is length-preserving.
In the best case, the output is on the final output alphabet A = [0, 1].

First the initial approach developed for Frougny’s transducer is explained
and then its adaptation to its final use is presented.

5.1.1 Initial output fonction

For each state q, the output value is defined. If q belongs to the reduced
alphabet, then the output value is q.

Otherwise, q has to be normalized knowing the m− 1 first numbers of the
numeration system Um−1..U0.

The goal is to normalize q or if it is not possible, to ease the use of a
rule after. For example: if the final state is labelled with “004” in F2, it
is preferred to transform it to “012” than “020”, in that way, the use of a
reduction rule is allowed directly at the next step. So a little twist to the
greedy algorithm shown in the Chapter 2 is applied. Knowing the first values
of the base, these are only used to normalize the sub-word qm−1..q0.

Expansion The value i = qm−1..q0 of the sub-word is computed and the
greatest value representable on m − 1 digits whilst respecting the alphabet
aimed is denoted by s: s =

∑m−1
k=0 Uk. If i > s, the Euclidean division is

used: i = ns+r. Each value qj of the sub-word will be initialized to n. Then
r will be normalized using the common greedy algorithm, and the resulting
word will be added.

Then the full word q is considered, with its ending sub-word transformed.
If a rule can now be applied, it is applied. If the ending sub-word is still
not normalized, the expansion step can be performed again and so on until
either no rule is applicable, or until the word is on the final alphabet.
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5.1.2 Why is this also working?

First the form of the states that are normalized is considered. States are
basically suffixes of left members of rules. States that are to be normalized
computed from reductions are in the form:

S = {0(i1 + 1)...(ik + 1) | 0 ≤ i1, ..im−1 ≤ 2, k ≤ m− 1}

with at least one of the ik ≥ 2 As ∀s ∈ S, |s| ≤ m there is no rule applicable
for this case. The assumption of a complete system on the chosen alphabet
is used here. If the first values are correctly chosen, then there will be a way
to normalize s or at least to transform the first zero, which would lead to a
decrease of the output alphabet, or to the possibility to apply a rule later.

Now the set of states derived from unfoldings are considered:

S ′ = { 0(i1 + 1)...(ij−1 + 1)(ij + 1)νj+1...νj+m−1 } (5.1)

with 1 ≤ j ≤ m − 1, 0 ≤ i1, ..im−1 ≤ 2 ,νj+1...νj+m−1 ∈ [0, 2] and
νj+1...νm <lex 1m−j−11 . The structure of the states guarantees that there is
at least one zero in the ending of the state, and also ij + 1 ≥ 2 belongs to
the ending of the word, preceding the zero mentioned. If one considers the
number represented on the m last letters of the label of the state :

Either it is greater than
∑m−1

k=0 Uk, then the twisted version of the greedy
algorithm can be used to ensure that there is no more zero in that part of
the word, thus allowing a reduction to be used later.

Or if that number is smaller than
∑m−1

k=0 Uk, from the assumption of the
completeness of the numeration system on the chosen alphabet, it is certain
that the number will be normalizable with the greedy algorithm.

It is also sufficient to say that a normalization rule can be applied later.
This is the case when there is a factor w ≥ 1m. So when it will go through
the next pass of in the transducer, if there is an ending factor 0w, a rule is
applied directly, or if there is an ending factor 0vw with v ≥ 1`, ` ≥ 1,

- If ` ≥ m, then as the strategy is to reduce as much possible, at least
one zero will be created in the factor v: one will then consider the sub-
word starting from the right-most zero created in the factor v: 0v′w
if |v′| ≥ m the same operation is repeated until a zero is created such
that the new remainder |v′| < m and then w will indeed be reduced at
the next rule application.
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- If ` < m then w is directly reduced. There may be several sequential
application of rules.

The rules applications mentioned here are handled by an application of the
transducer defined in Chapter 4.

5.1.3 Adaptation to the new approach

As explained at the end of the Chapter 3.2, the transducer can not be trans-
lated in a DFA because it is not synchronous. The method created for this
step is still used in the final version. As states represent all possible remain-
ders left to treat, they are used to treat the ending of the word. Every ending
of a word which can not be reduced corresponds thus to one of the states
defined by Frougny. The approach chosen is then to create a synchronous
transducer, which reads the state label and output its output value.

The concept behind this transducer is really simple: for each state q not
in [0, 1], its label “`” and its output value “o” are read synchronously digit by
digit. Then for each i < |q| a new transition is created with labels “`i, oi” and
this new transition is directed towards a freshly created state, from which the
next transition i + 1 will be generated if i < |q| − 1, if it is not the case,the
last state is only made accepting. The automaton should be able to read
words longer than 2m, so the initial state should be accepting and there is a
self-loop reading and outputting “j, j” with j ∈ [0, 2].

The resulting automaton is then minimized to obtain a more compact
automaton. The result is an automaton performing extended normalization
in the special case of words or factors smaller than 2m. It must be composed
with the extended normalization automaton presented earlier to form the
complete extended normalization automaton.
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Figure 5.1: F2’s transducer for post normalization

5.2 Normalization
Normalization converts words on the correct initial alphabet [0, 1] into their
normal representation. In the Fibonacci numeration system of order m, the
normal representation of a number does not contain any “1m” factor. This
follows from the polynomial of the numeration system as

valFm(10m) = valFm(1m)

from the definition of the normal representation and of the genealogical or-
dering, the normal representation will be the longest one, so without “1m”
factors.

As explained in [Fro99], normalization can be obtained through one pass
in two transducers. These transducers just apply the transformation

ρ = {01m → 10m}

repeated as many times as possible on a word. The transformation is applied
in a sequential way, from right to left and from left to right, which gives the
two transducers. The right to left transducer is noted R and the left to right
transducer is noted L.

Note that normalization is applied to words on the final alphabet and
should produce words on that alphabet. So if there is a word in F2 w = 1111,
one should add one ’0’ to allow the normalization 01111→ 10100
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For each of these transducers, there is a worst case that would need a
number y of applications of the transducer alone, y depending only on the
input word.

Worst case for a transducer R

The worst case is a word of the form 01mn. There are n reductions possible,
but the transducer can only apply the last one, some example of execution
of the transducer would give on a word w = 0111111 represented in F2:

0111111→ 1001111

1001111→ 1010011

1010011→ 1010100

Three passes in the transducer give the final result. Note that here n = 3,
so there will be n passes to obtain the word properly normalized. This result
shows that this transducer is not fitted for normalization.

Worst case for a transducer L

Similarly, the worst case for the left to right transducer is a word in the form:
0(1m−10)n1m. At each application, the transducer can only transform again
the last part of the read word. An example of some executions on the word
w = 0101011 :

0101011→ 0101100

0101100→ 0110000

0110000→ 1000000

Once again, one can observe that the transducer should be applied to the
word n+1 times. There is again no limit on the number of passes needed to
normalize the word.

It is also worth noticing that the worst case of each transducer is perfectly
handled by the other one. Which gives an insight on why they should be
applied both on a word to obtain the best result.
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The theoretical statements claim that the transducers have thus to be
composed in any order. In the development, a limitation was found: the
transducer which is applied last must be slightly transformed. This is caused
by the fact that the final transducer should prevent the acceptation of 1m

factors in the result. So as a result, the last transducer should be modified
to prevent that, but the first one should not.

5.2.1 Construction of the transducers

As stated before, the aim is to achieve: two transducers applying sequentially
the reduction rule {011 → 100}. A start is thus a transducer applying the
rule. The two transducers are shown on Figures 5.2 and 5.3 for F2.

Figure 5.2: Simplest transducer normalizing once from right to left

Figure 5.3: Simplest transducer normalizing once from left to right

Then it should be possible to repeat this transformation. A first step is to
merge states 4 and 1 on Figures 5.2 and 5.3, i.e to make the initial state the
accepting one. That way the transformation can be applied several times.
Now cases like

011011→ 100100

are correctly handled. But it would also be interesting to allow nested trans-
formations:

01011→ 1000

01111→ 10100

the first transformation is nested for the transducer R and the second one is
for the transducer L.
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In the case of the transducer R, the ’1’ created can be consumed in a
further transformation. Similarly, for the transducer L, the last ’0’ created
can become a ’1’ in the next transformation. The incoming and the outgoing
transitions from the initial and final state are merged such that a new tran-
sition going from the penultimate state to the second one is created. The
labels must also be merged: for the transducer R the labels “0/1” and “1/0”
give the fresh label “0/0” and for the L one: “1/0” and “0/1” give “1/1”. The
merging is possible only because the output of the incoming transition and
the input of the outgoing one are equal. The result can be seen in the F2

case on Figures 5.4 and 5.5. The transitions resulting of the merging are in
red and in bold.

Figure 5.4: Transducer normalizing from right to left

Figure 5.5: Transducer normalizing from left to right

The next step is to reverse the transducer R, as the addition transducer
will then be left sequential, it will read words from left to right. Then it
would be interesting to accept factors that are on the proper alphabet, but
that do not need to be normalized. The result of these operations is shown
on Figures 5.6 and 5.7.

For the right transducer, it is important to reverse it first, then to add the
possibility to accept factors that do not need normalization. There are two
reasons for that:

- The states added for that part should be accepting, which would turn
into m initial states after reversion.

- The transitions are returned after reversion, so as the idea was to lead
to an identity state on ’1’, and to return to the initial state on ’0’,
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there would always be a “0/0” transition to make the transition “1/1”
reachable.

Note that on the transducer L2, the generation of “11” factors was al-
lowed. The transducer L is composed with the R one, so these factors will
be eliminated further.

Finally the resulting transducer is shown on Figure 5.8.

Figure 5.6: Transducer normalizing from right to left

Figure 5.7: Transducer normalizing from left to right

Figure 5.8: Transducer performing normalization in F2
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5.3 Addition automaton
All the building blocks needed to generate the addition automaton have been
detailed. In this section, the final assembling is explained in order to generate
the final addition automaton.

First as explained earlier, the complete extended normalization automa-
ton is obtained by computing the composition of the automaton defined in
Chapter 4 and the automaton defined in Section 5.1. As Frougny states,
the resulting automaton should be then composed with itself m− 1 times to
perform the extended normalization.

The final step is to compose the automaton of addition bit by bit with the
automaton resulting from the previous manipulation, and after the result of
this composition is composed with the normalization automaton.

53



Chapter 6

Implementation

In this chapter, some implementation details are discussed. The results of
the Chapters 4 and 5 were implemented using some parts of the Frougny’s
method. First we present the implementation of these parts of Frougny’s
method, then the rest of the implementation is discussed.

The implementation was made in C, useful for its low level efficiency which
was really needed for the heavy computations on automata, and also it al-
lowed to use the LASH library [Boi]. We used the core package of the library
in order to create automata and to operate on them with operations such as
intersection, product, union, minimization etc.

6.1 Frougny’s algorithm
All the data needed to create the transducer has been generated: the rules,
the states and the transitions. Only the transitions are not needed in the
final implementation of the work. The code generated follows closely the
algorithm explained in the Chapter 3.2 so the implementation is explained
with a high level idea, to present generally the structure of the code created
for this part.

Pattern

In order to represent labels, states, rules, etc.. One simple way to represent
arrays was needed. It is the purpose of the structure pattern, which is an
array of integers dynamically allocated, stored with its size.

A lot of different operations should be provided to operate on them:
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- All operations related to prefixes and suffixes, to retrieve all the prefixes
of a pattern in order to create the state space for example, all the
suffixes, or to retrieve one suffix or one prefix.

- Operations to get the minimum and the maximum of a pattern, useful
for post normalization.

- An operation to increment the pattern, which is used for generating
the rules.

Rules

A rule is a new type which contains two patterns, a pattern for the left
member and one for the right member. Rules are stored in a hashtable,
the hashing function takes as input the left member of the rule, in order to
retrieve easily the possible transformations for a certain pattern. In that way,
when there is a factor that needs to be transformed, feeding it to the hashing
function gives the index in the table containing all possible transformations.

States

A state is characterized by its label and its output value. Both are represented
by pattern instances. States are also saved in a hashtable, ordered by label.
States are reused in the post normalization part.

Transitions

A transition is represented by a starting state and a destination state, an
input which is always only one digit, and an output which could be longer
than one digit. The states and the output are thus represented by patterns,
for the states the pattern represents the label of the state, as it is their key.

HashTable

A simple hashtable was implemented, its hashing function operates on pat-
terns which is useful as patterns are used in every data structure. The
hashtable is implemented with separate chaining, so each element of a ta-
ble is a linked list.

Generation of the transducer

1. First the rules are implemented by following strictly their definition
given by equation 3.2 and 3.1, except that as explained earlier for re-
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ductions, if there is a possibility to reduce more a factor than by one,
it is done.

2. While the rules are being generated, the state space is also build: from
each left member of a rule, all the possible prefixes are extracted and
if there is one that is not already the label of an existing state, then a
new state with that label is added. The output value of each state is
computed later.

3. Then for each state, each possible input is considered and the correct
transition for that input is created according to the method described.

4. Finally, the output value for each state is computed with the method
described in Section 5.1.

All the code for these steps is located in pattern.c, genData.c and hashtable_r.c
.

6.2 Implementation of the new approach
The implementation of the main steps of the final method described in Chap-
ter 4 is discussed here.

• First the implementation of the base automaton is explained.

• After that, the implementation of composition is discussed,

• Finally the implementation of the new operation allowing the nesting
of the rules is explained.

6.2.1 Base automaton

As explained in its theoretical description, the base automaton is actually
the union of two automata. The construction of those is worth explaining.
First the implementation of the reduction automaton is explained, and then
the unfolding is discussed.

Reduction automaton

The implemented algorithm is recursive, following from observations made
earlier.
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In the gen_red function, the algorithm creates the initial states and its
outgoing transitions going to new states corresponding to the R1 and R2

sets. Then the rest of the automaton is build by calls to the recursive function
red_rec. Note that the algorithm would also work in the case of a larger
alphabet.

automaton get_red(int alph_max, int m)
{

automaton a = new_automaton();
int init = auto_add_new_i_state(a);
for(int i = 1; i < 2*alph_max, i++)
{

int new_state = auto_add_state(a);
auto_add_transition(a, init, new_state, "i/0");
red_rec(a, new_state, i , false, 2*alph_max, m);

}
return a;

}

Listing 1: Algorithm to generate the reduction automaton

The red_rec function takes as arguments :

- a: the automaton

- curr_state :the current state from which the automaton is currently
being build,

- to_red: the number of reductions that are to be apply, here it is 1 or
2, but it could be more with an alphabet expansion

- is_restricted: a boolean to remind whether a restricting digit has
been created earlier

- alph_max: the upper bound of the doubled alphabet

- tr_left: the number of transition still needing to be build

The algorithm is not too complicated: if there is no more transitions to
create, nothing is done. Otherwise there are two cases:

- Either a transition with a restricting digit has already been created,
then transitions reading number from to_red to alph_max+1 and out-
putting the read value minus to_red are created.

57



- Either there is no restricting digit yet, so it can be created now or later
if this is not the last transition that must be created.

– If the restricting transition is created, just one transition is added,
it is labeled with to_red as input and zero as output, and it is
directed to the new state created. Then the recursive call takes
place with true as the new value of is_restricted.

– Otherwise it can be left for later and the behaviour is the same as
previously in the first case considered, creating many transitions
to another new state.
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void red_rec(automaton a, int curr_state, int to_red, bool is_restricted,
int alph_max, int tr_left)

{
if(tr_left == 0)

return;

int new_state = auto_add_state(a);
if(!is_restricted)
{

auto_add_transition(a, curr_state, new_state, "to_red /0");
red_rec(a,new_state, to_red, true, alph_max, tr_left -1);

if(tr_left != 1 )
{

int new_state2 = auto_add_state}(a);
for(int i = to_red+1; i <= alph_max + 1; i++)

auto_add_transition(a, curr_state, new_state2,
"i/i-to_red");

red_rec(a, new_state2, to_red, false, alph_max, tr_left-1);
}
else
{

for(int i = to_red; i <= alph_max + 1; i++)
auto_add_transition(a, curr_state, new_state,"i/i-to_red");

red_rec(a, new_state, to_red, is_restricted, alph_max, tr_left-1);
}
if(tr_left == 1)

auto_mark_accepting(a, new_state);

}

Listing 2: Recursive algorithm to construct the reduction automaton

The theoretical definition of the rules that was implemented in the first
version was not used. Note that if one wanted to expand the alphabet, the
algorithms would not have to change. The aim was to find an algorithm to
generate this automaton in an efficient way. Another way to do it could be
to generate all the reduction rules and then add each of them as a sequence
of transitions and states to the automaton, and then to trust the minimizing
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algorithm provided by LASH to obtain the same result. This solution was not
implemented, as the number of rules grows fast, the option to save memory
and computing time was preferred.

Unfolding automaton

The algorithm used to generate the unfolding automaton is again a recursive
one.

The first function is simple: the two first states (the initial one and the
second states merged in one) are created, the first transition is always the
same, then for each length possible, there is a recursive call to construct
the rest of the automaton. Again, there is a fixed number of transitions to
generate in the recursive function. A rule application just being a path from
the initial state to an accepting one. In our case, alph_max is always equal
to 1.

automaton get_un(int alph_max, int m)
{

automaton a = new_automaton();
int init = auto_add_new_i_state(a);
int second = auto_add_new_state(a);
auto_add_transition(a, init, second, "0/1");
for (int j = 1; j < m ; j++)

un_rec(a, second, j,1, 2*alph_max, m,false);

return a;
}

Listing 3: Algorithm to generate unfolding automaton

The second function is quite longer. The arguments are quickly described:

- a: the automaton

- state: the index of the state the function is working on

- j: the value j, the index of the digit which will be reduced by 2.

- curr_tr: the number of transitions already created

- alph_max: the upper bound of the doubled alphabet
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- m: the degree of the Fibonacci polynomial characterizing the numera-
tion system

- restr: a Boolean to know whether the middle factor w (which is left
unchanged ) has been limited, it already satisfies the condition w <lex

1m−j

The next action depends on the number of transitions already created,
knowing that there are a total of m + j + 1 transitions to be generated.
If they are all generated, the recursive call is ended, otherwise, if the last
transition is being generated and thus the last state as well, it is marked as
accepting. Then from the current position in this path, there are four parts
to be distinguished in every rule application :

1. If curr_tr < j, then all the different transitions possible are created
such that each of them reads an input number between [1, 3] and out-
puts this number decremented. All transitions go from the current
state to the new one.

2. If curr_tr = j, then the input number will be decreased by 2. A new
state is created, and new transitions are created with labels reading as
inputs numbers ∈ [2, 3] and outputting the value minus 2.

3. If j < curr_tr ≤ m, then the current path is in the middle factor that
will stay unchanged. There is a condition to fulfill. Either it is already
done, and then restr is true, and the transitions’ label reads any input
in [0, 2] and outputs the same value.

Otherwise, the condition can be satisfied now by adding a transition
labelled by “0/0”.If it is not the last term of the middle factor, the
choice to satisfy the condition later can be made. Then a second new
state is created and a transition towards it is added with label “1/1”.

4. Ifm < curr_tr ≤ j+m, then any input is read in the doubled alphabet
and the output value is the input value incremented.
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void un_rec(automaton a, int state, int j,int curr_tr,int alph_max,
int m, bool restr)

{
if(curr_tr == m+j+1)

return;

int new_state = auto_add_state(a);

if(curr_tr == order + j)
auto_mark_accepting(a, new_state);

if(curr_tr == j)
{

for( int i = 2; i <= alph_max+1; i++)
auto_add_transition(a, state, new_state, "i/i-2");

un_rec(a, new_state, j, curr_tr+1, alph_max, m, false);
}
else if(curr_tr < j)
{

for(int i = 1; i <= alph_max+1; i++)
auto_add_transition(a, state, new_state, "i/i-1");

un_rec(a, new_state, j, curr_tr+1, alph_max, m, false);
}
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else if(curr_tr > j && curr_tr <= m)
{

if(restr)
{

for(int i = 0; i <= alph_max; i++)
auto_add_transition(a, state, new_state, "i/i");

un_rec(a, new_state, j, curr_tr+1, alph_max, m, restr);
}
else
{

auto_add_transition(a, state, new_state, "0/0");
un_rec(a, new_state, j, curr_tr+1, alph_max, m, true);
if(curr_tr != m}
{

int new_state2 = auto_add_state(a);
auto_add_transition(a, state, new_state2, "1/1");
un_rec(a, new_state2, j, curr_tr+1, alph_max, m, restr);

}
}

}
else
{

for(int i = 0 ; i <= alph_max; i++)
auto_add_transition(a, state, new_state, "i/i+1");

un_rec(a, new_state, j, curr_tr+1, alph_max, m, restr);
}

}

Listing 4: Recursive algorithm to generate unfolding automaton

This implementation relied heavily on the definition of the unfolding rules.

6.2.2 Composition

The implementation of the composition is performed in composition.c.
First the algorithm to expand the alphabet of an automaton is presented.
The arguments are explained:

- a: the automaton to modify.
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- position: the position at which the new component should be, either
at the beginning or at the end.

- ln: the number of components per transition of the automaton a.

- alph: the upper bound of the alphabet of the new component.

void add_composant(automaton a, int position, int ln, int alph)
{

automaton uni = auto_new_uni(alph);
if(position == 0)

a = auto_product(a, uni, ln, 1);
else

a = auto_product(uni, a, 1, ln);
}

Listing 5: Algorithm to expand one automaton’s alphabet

The algorithm proceeds by building an automaton accepting anything on
the aimed alphabet [0, alph]. This step is summarized in the pseudo-code.
Then if there should be a new component at the beginning of each transition,
the following product is made: U ×A otherwise it is A× U

The composition algorithm follows the theoretical explanation given be-
fore, except that it allows to compose automata of different forms. One
example of usage is the composition of the bit by bit addition and the ex-
tended normalization. The addition automaton has two input tapes and one
output, while the extended normalization automaton has one tape for input
and one for output. So the aim is to keep just the input tapes of the addition
and the output tape of the extended normalization. There thus some extra
parameters to allow such changes.

There are the following arguments :

- Each automaton a, b and the length of its transitions labels ln_a and
ln_b respectively.

- The upper bound alph of the alphabet of the new components, here it
is always the same, but it could be different.

- The length ln of the intermediary automaton (before projection), such
that the number of components to be added to each automaton is
known.
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automaton compose(automaton a, int ln_a,automaton b,int ln_b,
int alph, int ln)

{
while(ln_a < ln)

add_composant(a,ln_a, ln_a, alph);

while(ln_b < ln)
add_composant(b,0, ln_b alph);

automaton c = auto_intersection(a, b);
int to_project = (ln_a+ ln_b)-ln;

if(ln == ln_a || ln == ln_b)
to_project = 0;

for(int i = 0, l = ln ; i < to_project, l > 0; i ++, l--)
result = auto_projection(result, l, ln_a -1 -i);

return c;

}

Listing 6: Composition algorithm

The core algorithm is as simple as this: first the addition of new compo-
nents to each automaton is performed, then the intersection is computed.
The number of projections to perform is then computed and the projection
starts from the length of the first automaton to the left.

6.2.3 Nested rules

For the nesting of the rules, an approach was developed in Chapter 4. This
approach consisted in merging the incoming paths to the initial state with
its outgoing paths, if their labels match, i.e. if the output of the incoming
path is identical to the input of the outgoing path. The merging results in
a new transition going from the initial state from the incoming path to the
end state of the outgoing path. This transition is labeled with the input of
the incoming path and the output of the outgoing path.

The implementation consists in three functions located in composition.c.
The two first functions collect all the incoming and outgoing paths, and the
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last one creates the transitions depending on the paths collected. A new data
structure was introduced to represent paths.

typedef struct
{

int nb_trans;
uint1* tran_in;
uint1* tran_out;
int state;
int index;

} path;

Listing 7: Path data structure

This data structure maintains as information the length of the path
nb_trans, two tables of bytes to store what is read on input and what is
output on the path, the state defining the path (the other state always being
the initial state), and its index in the hashtable.

Then the pseudo-code of the function which retrieve incoming paths is
presented. It is the most complicated as it finds paths in backward order. It
starts from the initial state, and it looks for states that have an outgoing edge
to it. After saving the identifiers of the edge, it starts back from that state
which has such an outgoing transition. The same procedure is repeated until
it generates a path of sufficient length. Then a path instance is created and
stored in a hashtable. For incoming paths, the key in the hashtable depends
on what is output on the tape.

First the arguments are explained :

• a: the automaton in which the paths are searched.

• state_end: The current state i.e the current starting state of the path
which is being build: it starts from the initial state, then it finds a
state which has an outgoing transition to the initial state, and this
state becomes the new current state in the next call.

• left: the number of transitions to find.

• path: a table with the identifiers of the states belonging to the path.
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• trans: a table to remember the index of the outgoing transition taken
along the path. So the path can be retrieved by first looking at path[j]
for the state, then it identifies the transition from the state stored and
the number in tran[j]. Transitions are identified in LASH by their
starting state and one index.

• ini_st: The length of the path to be constructed

• path_in: a hashtable in which the paths found are found

• visited: a table to avoid cycles
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void get_path_in(automaton a, int state_end, int left, int* path,
int* trans,int ini_st,hash_tab* path_in, int* visited)

{
visited[ini_st - left] = state_end;
if(left == 0)
{

uint1* tab_in = malloc(ini_st/2);
uint1* tab_out = malloc(ini_st/2);
int rev = ini_st/2 -1;
for(int i = 0 ; i < ini_st; i++)
{

transition t = auto_transition(a, path[i], trans[i]);

if(i%2)
tab_in[rev-i/2] = auto_transition_label_ptr(t,1);

else
tab_out[rev-i/2] = auto_transition_label_ptr(t,1);

}
int key = hash(tab_out);
path p = create_path(ini_st,tab_in, tab_out, state_end, key);
insert_entry(path_in,p, key);
return;

}
for(each state s in a )
{

if(s in visited)
continue;

int nb_out = auto_nb_out_transition(a, s);
for(int i = 0; i < nb_out; i++)
{

transition t = auto_transition(a, s, i);
if(auto_transition_dest(t) == state_end)

{
path[ini_st-left] = s;
trans[ini_st-left] = i;
get_path_in(a, s, left-1, path, trans, ini_st,

path_in, visited );
}

}
}

}

Listing 8: Algorithm to find the incoming paths
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The algorithm to retrieve the outgoing paths is of the same kind, except
that the direction is more convenient: one only has to follow the outgoing
transitions from the initial state. So reversing the path and trans is not
neeeded to create the path’s read values. It is not needed to check every
state of the automaton to look for the next state in the path neither, one
just checks the outgoing transitions of the current state. The arguments are
totally similar.

void get_path_out(automaton a, int state_end, int left, int* path,
int* trans, int ini_st, hash_tab* path_out, int visited)

{
visited[ini_st - left] = state_end;
if(left == 0)
{

uint1* tab_in = malloc(ini_st/2);
uint1* tab_out = malloc(ini_st/2);
for(int i = 0 ; i < ini_st; i++)
{

transition t = auto_transition(a, path[i], trans[i]);
if(i%2)

tab_in[i/2] = auto_transition_label_ptr(t,1);
else

tab_out[i/2] = auto_transition_label_ptr(t,1);
}
int key = hash(tab_in);
path p = create_path(ini_st,tab_in, tab_out, state_end, key);
insert_entry(path_out,p, key);
return ;

}
for(each transition t in outgoing_transition(state_end))
{

state s = auto_transition_dest(t);
if(s in visited)

continue;
path[ini_st-left] = s;
trans[ini_st-left] = index(t);
get_path_out(a, s, left-1, path, trans, ini_st, path_out,

visited );
}

}

Listing 9: Algorithm to find the outgoing paths
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Now the focus is on the merging of the outgoing and incoming paths in
transitions.
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void new_comp(automaton a, int order)
{

hash_tab* path_in = createhash_tab();
hash_tab* path_out = createhash_tab();
for(int j = 1; j <= order; j++)
{

for(int i = 0; i < auto_nb_states(a); i++)
{

if(auto_accepting_state(a, i))
{

get_path_in(a, i, 2*j, [], [], 2*j, path_in, []);
get_path_out(a, i, 2*j, [], [], 2*j, path_out, [] );

}
}

}
for(each path* p in path_out)
{

if(hasKey(path_in,p->key))
{

for(each path* q in path_in[key])
{

if(p->tran_in == q->tran_out)
{

uint1* label = malloc(p->nb_trans);
for(int k = 0; k < p->nb_trans; k++)
{

if(k%2 == 0)
label[k] = q->tran_in[k/2];

else
label[k] = p->tran_out[k/2];

}
auto_add_new_transition(a, q->state, p->state,

p->nb_trans, label);
}

}
}

}
}

Listing 10: New operation algorithm
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As one may have seen, the interesting lengths to nest rules are contained
in the interval [1,m]: a path should start from a zero generated in the first
rule application.

• For reduction rules, the factor transformed is of size m+ 1, the m last
digits being decreased.

• For unfolding rules, we know that there is a zero in the m last digits of
the factor.

So the algorithm starts by generating the paths of these lengths. Note that
the lengths are doubled in the algorithm because the transitions are serialized,
which means that a transition with a label “x/y” will be transformed in two
sequential transition “x”, then “y”, and an intermediary state is added. So
if a path of length n is desired, one will look for one path of length 2n in
the implementation. The input read on the path will be represented by the
transitions with index k, with k mod 2 = 0 and the output with indexes k;
k mod 2 = 1.

Then the algorithm looks for matches between paths. The paths are stored
in two hashtables, the incoming path’s keys are defined by their output values,
and the outgoing path’s key by their input values. Of course the same hashing
function was used, thus it looks for paths matching at the same index in both
tables. The match is not guaranteed by the fact that two paths have the same
index in the hashtable, as there are collisions. So if there is a real match,
the sequential label of the new transition is build, and the new transition is
added.

This concludes the section about implementation details. The remain-
ing details are quite simple and do not deserve to be explained here. The
implementation can be found at the following url : https://github.com/
flomage2612/TFE.
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Chapter 7

Conclusion

The contribution of this work is a new way to generate the addition au-
tomaton for Fibonacci numeration systems. The procedure developed can
be implemented using only finite automata as all the transducers described
in the work are synchronous. The results obtained are discussed here, as well
as remaining problems and possible improvements.

7.1 Testing
In this section, the tests performed to test the efficiency of the method are
explained. As the final result follows the same mechanism as Frougny, one
could expect to obtain the same results, i.e. the exact addition automaton
with them compositions of the extended normalization automaton as it is the
only point of divergence with Frougny’s work. The method has been proved
equal in the case of the traditional Fibonacci and Tribonacci numeration
systems as the exact addition automaton was obtained.

Walnut comes with the addition automata for Fibonacci and Tribonacci.
These automata were used to first prove that the final automata obtained are
included in these automata and the equality between them was also proved.

From these results, one can assume that the method will also produce the
correct addition automata for higher orders. Sadly, there were no other exam-
ples of other addition automata for higher orders to support this statement
further.

In order to observe the efficiency of each step on words, some methods
were created to watch the output values of the transducers on certain input
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words. This method was mostly useful to debug the extended normalization
part. This testing method used again composition to make the product
of an automaton with a transducer. The result yields an automaton whose
accepting paths represent all possible transformations for the input word. For
some steps there is more than one path as some steps are not deterministic.
The final result is deterministic as only normalized words are accepted and
that representation is unique.

The goal of the master thesis is thus completed, as the correctness of the
method has been shown consistent in all known cases. The final addition
automaton is represented in Figure 7.1.

There are always some points that could be improved and further work.

7.2 Potential improvements
In this section, we discussed the results obtained in the implementation. The

Fibonacci F2 Tribonacci F3

number of states number of states
Final addition automaton 47 461

extended normalization automaton 207 33 999
Initial extended normalization automaton 47 175

Table 7.1: Size of the biggest automata

computation time is quite long, for Tribonacci one waits about 2 minutes be-
fore getting a result. The source of this slowness is composition. Composition
of big automata is really time consuming. For Tribonacci, the automaton of
nested rules has about 175 states. It is then composed twice with itself. The
first composition results in an automaton of about 2000 states, the second
one in 35000 states. Some relevant numbers about the size of the generated
automata are given in the Table 7.1 and the total execution time is given too
in Table 7.2.

The growth of the state space in the extended normalization step is quite
spectacular but it is explained by the intersection operation. Hopefully the
size of the final automaton is reduced thanks to the composition with the
addition and mostly with the normalization automaton.
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Fibonacci F2 Tribonacci F3

Computation time 67 ms 1min49

Table 7.2: Execution time

If there is something that should be improved, it is the creation of the
extended normalization automaton. Even if the number of composition is
already decreased in comparison with the first strategy of composition with
delayed automata.

7.3 Further work
One interesting point would be to extend the work to other Pisot numeration
system, which are also defined by a linear recurrence relation. The reduction
rules would still be convenient, but the unfoldings might be very different. To
adapt the approach developed in this work, the modifications to be performed
would be:

1. The generation of the reduction automaton, which is not expected to
be complicated, it would also impact the normalization automaton.

2. The generation of the unfolding automaton: this step will certainly
be more complex according to the polynomial of the new numeration
system.

3. The post normalization step: the current method relies on the fact that
there should be m non zero sequential digits to perform a reduction
after. This step should be adapted according to the new recurrence
relation in order to still favour the application of a reduction rule.

Moreover, we are not sure that the extended normalization could be as effi-
cient as in this work.

Then one might want or might be forced to expand the alphabet if one
wants to use other Pisot numeration systems. All these ideas could be ex-
plored in further work, in order to broaden the application field of this master
thesis.
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Figure 7.1: Addition automaton for F2
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