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Abstract

The increasing demand for natural resources and the environmental commitments towards
sustainable practices have led to a surge of interest in finding efficient solutions for the
two-dimensional problem of creating laminated wood panels with revalorized wood boards.
To address this challenge, sustainable and circular solutions are imperative. This thesis
presents an exact solution to the problem, establishing its NP-hardness and justifying the
need for an approximation method. This final solution method is developed in the form of
a construction heuristic inspired by the concept of strip creation and draws inspiration from
Best-Fit algorithms commonly used in Bin Packing.
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1 Introduction

This first introductory section describes the problem after explaining why this topic is important
in the current context. The section 1.3 explains why it is important to examine this topic at
both managerial and academic levels. Subsequently, the expected benefits and added value of
this thesis are exposed before describing how the dissertation is structured.

1.1 Context

High waste production has been a global problem for more than a century now. The increasing
population and waste generation has led to rising global temperatures, i.e. the major challenge
of environmental sustainability. Global warming, which has become the most important issue
worldwide, has triggered sustainability as a critical goal of human activity and of the develop-
ment of countries (Igarová, 2022). In order to limit the global warming increasing every year,
everyone must reduce their culture and consumption of natural resources. From this perspec-
tive, the United Nations Framework Convention on Climate Change (UNFCCC) adopted the
Paris Agreement, a new climate treaty in 2015 in Paris. This Agreement has been ratified by
at least 55 countries involved in the UNFCCC and accounting for at least 55 per cent of the
total greenhouse gas emissions. The main collective long-term goal of the Paris Agreement is to
limit the increase in global average temperature to below 2°C above the pre-industrial levels. It
also wants to continue to take action to limit the increase in temperature to 1.5°C. Moreover, all
the Parties have committed to showing their contributions, communicating their ambitions and
therefore being transparent and showing solidarity in order to limit global warming (Savaresi,
2016).

One of the phenomena that undeniably contributes to the depletion of natural resources and
global warming is the ever-increasing demand for materials and raw materials such as wood.
In addition, as explained by Braghiroli and Passarini (2020), Zbieć et al. (2022) and Pr. Tom
De Mil from the Faculty of Gembloux Agro-Bio Tech at the University of Liège, more than 50
per cent of the yearly total mass of raw wood material harvested are planer shaving and mill
residues such as sawdust, resulting from the first stage of manufacturing processes. These wastes
are not necessarily considered economically important as the ideal uniform thickness of a wood
element is difficult to obtain from these operation residues (Braghiroli and Passarini, 2020).
Moreover, the production of waste is not only influenced by human activity such as production,
but also by consumer behavior, maturity and lifestyle (Igarová, 2022). It means that, every year,
hundreds of thousands of tons of raw wood waste are not only generated in the form of planer
shaving and sawdust, but also in the form of beams, boards, pallets, cladding, doors, furniture,
Oriented Strand Board (OSB) or Medium-Density Fibreboard (MDF) panels. The OSB is a type
of engineered wood similar to particle board, formed by adding adhesives and then compressing
layers of wood flakes in specific orientations, and the MDF s a type of board made from very
small pieces of wood that have been pressed and stuck together. All these raw wood material
wastes most of the time come from construction purposes and can therefore be related to timber.
This type of wood is a natural buffer for carbon dioxide (CO2) as it stores this greenhouse gas.
Unfortunately, this interesting propriety is not at all consider by everyone as more than 60 per
cent of harvested timber is burned every year in Europe (Zbieć et al., 2022). Countries should
thus pay more attention to promoting sustainable consumption and recycling behavior than only
seeking to minimize waste generation (Igarová, 2022). Indeed, revalorizing this type of timber
wood waste, instead of incinerating it, would have a positive impact on waste reduction efforts
as well as keeping the carbon dioxide stored longer in these CO2 sinks. Moreover, this kind
of timber waste also represents an economic advantage as it can be used to create wood-based
panels, which have already been commercialized and are greatly demanded because of their
desirable characteristics and properties (Braghiroli and Passarini, 2020).

Finally, the revalorization of these raw wood wastes, which are in the form of beams, boards,
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Figure 1: Arrangement of timbers to create CLT (Retrieved May 2, 2023, from https://www.
thinkwood.com/mass-timber/cross-laminated-timber-clt).

pallets, cladding, doors, furniture, or even OSB or MDF panels; has several advantages both
ecological and economic. From a sustainable point of view, this solution answers the urgent and
critical need to reduce the consumption of raw materials and to limit the impact of humans
on the environment. Indeed, by recycling such wood wastes and giving them a second life
without burning them, this also allows for keeping the CO2 stored thanks to the wood properties.
Moreover, from an economical point of view, these different raw wood waste materials could be
considered as individual wood slats of different sizes that could be combined, assembled and
glued to form Glued Laminated Wood (Glulam) and Cross-Laminated Timber (CLT) panels.
A slat is a strip of wood or other thin material, while the Glulam is a structural material
manufactured through the union of individual wood segments; and CLT is a wood product made
of several layers of timber arranged crosswise and glued together as in Figure 1. These types
of panels are already valued and used in the construction industry to replace concrete and steel
for instance. Issa and Kmeid (2005) who studied the properties of Glulam, and Brandner et al.
(2016) who published an overview of CLT and its development can provide more information to
the readers about these types of wood panels. Dalimier (2022) also studied this topic last year
in the framework of his master thesis at the University of Liège.

1.2 Problem statement

The aim of this research thesis is therefore to optimize the recycling of the different raw wood
wastes that are in the form of beams, boards, pallets, cladding, doors, furniture, or even OSB
or MDF panels, by considering them as wood slats of different sizes which can be assembled,
combined and glued to create laminated wood based panels as Glulam and CLT panels. In other
words, the aim is to generate two-dimensional (length x width) layouts composed of the different
slats as shown in Figure 2, as we consider that all the slats have the same thickness. These
layouts depict the positions of the revalorized wood slats that would produce one or more target
panels. Thus, the layouts must logically correspond at least to the two dimensions, i.e. length
by width, of the laminated wood panels that are to be created. It is possible and likely that
the generated layouts will have dimensions in excess compare to the panels to be created. These
excesses will then be cut off and called the surplus. In addition, it is necessary to join and glue
the slats together to create the different panels, which involves making joints along the length
of the panel. The joints method used between each slat along the length of the layer of CLT
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Figure 2: Example of a layout solution that creates one panel for a certain dataset (Documen-
tation provided by Célia Paquay).

panels are "finger-joints". These joints are quite specific and are shown in Figure 3. Obviously,
the more joints there are in a laminated wood panel, the more fragile the panel will be. Thus,
as discussed with Pr. Tom De Mil, in the reality of the field, the panels with a lot of joints will
be used as internal layers of CLT panels, as these layers will not be in direct contact with the
external surrounding.

Knowing the different basic characteristics of the problem, several constraints can be taken
into account and several objectives can be considered. Firstly, the characteristics of the panels
to be created are important in determining the objective, and therefore the problem. Indeed,
there will be several cases depending on the amount (fixed or unrestricted) and dimensions
(homogeneous or heterogeneous) of panels to be created. If the dimensions of the panels are
heterogeneous, we can also consider that each type of panel has an associated value.

Subsequently, other factors need to be taken into account, such as the importance of the
wood surplus in the optimization of the solution and the number of joints for example. The
main constraints related to this problem are the fact that the generated layouts should be at
least as big as the dimensions of the panels to be created, and the fact that the slats cannot
overlap in the generated layouts. Hence, there are a multitude of different configurations and
objectives for this problem. Here is a non-exhaustive list of possible objectives:

• Maximize the number of created panels (with an unrestricted number of panels to be
created of homogeneous dimensions)

• Maximize the total value of the different types of created panels (with a fixed or unrestricted
number of panels to be created of heterogeneous dimensions and associated values)
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Figure 3: Glued joints between slats for the production of CLT panels : The individual panel
slats are glued together in the longitudinal direction by a finger joint in order to transmit the
forces. This way, a strip is created from the short individual slats. (VDMA woodworks, 2023)

• Minimize the total waste, i.e. sum of the surplus (in all cases)

It can be noted that minimizing the number of joints does not seem to be a relevant objective
function and will be taken into account as a constraint if needed. Nevertheless, these different
possibilities concerning the objective of the problem show the extent and richness of this op-
timization problem. Moreover, as mentioned, the dimensions of the panels and slats can vary
from one case to another. It is therefore important in this research work to develop a solution
method that can deal with different cases to make sure that this solution method is applicable
in a maximum of configurations, regardless of the characteristics of the dimensions.

At first sight, a solution method for this optimization problem seems simple to implement
with a mathematical model. However, identifying the layouts that make the best use of these
wooden slats is a real challenge. Indeed, it will soon become apparent that the number of
possible slats’ layouts to be explored grows exponentially with the number of slats. This problem
therefore falls into the category of NP-hard problems. This means, using the words of Garey
and Johnson (2009), that "I can’t find an efficient algorithm, but neither can all of these famous
people." In other words, there is no known efficient way to find the optimal solution of such a
problem. We then enter in a combinatorial optimization problem in which the set of feasible
solutions is discrete or can be reduced to discrete, and in which the goal is to find the best
solution (Žerovnik, 2015). The generation of these feasible solutions as well as the search for the
optimal solution can be done thanks to heuristics and metaheuristics respectively. A heuristic is
technique designed for solving a problem quicker when classic methods are too slow or fail to find
any exact solution, while a metaheuristic is an optimization algorithm aimed at solving difficult
optimization problems for which the most efficient classical method is unknown. For these types
of solution methods, it is necessary to determine a trade-off between optimality and efficiency
during their development and implementation. Indeed, if the optimal solution is unapproachable,
it might be a lucid decision to sacrifice optimality and settle for a good feasible solution that can
be computed efficiently (Hochbaum, 1997).

For our problem, it means that in a situation where there are a lot of slats, which will be
the input data for the mathematical models; these models cannot provide the optimal solution,
i.e. the best layouts, or event any solution in an acceptable and polynomial computing time.
Hence, it is necessary to develop and implement a heuristic or a metaheuristic in order to pro-
vide a solution method that finds a good feasible solution to the problem in an efficient way.
This solution method should be as flexible as possible as it should be able to deal with a maxi-
mum of configurations, including when there are a lot of slats and regardless of the dimensions’
characteristics.
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1.3 Research motivations

As already presented in Section 1.1, this topic presents both economic and ecological benefits
and therefore addresses the critical issues of global warming and natural resource depletion.
These issues affect everyone, including businesses. The solution method developed through
this research work can therefore help companies to optimize the production of laminated wood
panels by trying to find the best layouts, but also encourage them to recycle and be part of
a more circular economy by revalorizing these wood wastes initially intended for incineration.
This more sustainable vision of companies’ activity is also part of the efforts towards reducing
their carbon footprint, as well as of the Corporate Social Responsibility (CSR) of companies.
According to Hopkins (2004), "the wider aim of social responsibility is to create higher and higher
standards of living, while preserving the profitability of the corporation, for peoples both within
and outside the corporation". Beyond preserving the profitability, the general solution method
developed and provided through this research thesis could certainly have a positive impact on
the profitability of companies. Indeed, in addition to making its products and services more
attractive to consumers by being involved in some aspects of the CSR (Hopkins, 2004), the costs
related to the raw materials needed to manufacture laminated wood panels, i.e. the wood wastes
to be recycled, is lower compared to wood products made from virgin raw materials. These
costs may even equal zero if the company recycles its own surplus raw materials that would have
otherwise been junked or burned.

1.3.1 Managerial motivations

From a managerial point of view, this solution method for creating laminated wood panels
with revalorized wood boards can easily be transposed to other managerial issues. Indeed, the
general problem can be related to other topics than wood revalorization and the production of
laminated wood panels. As a concrete example, we can talk about synthetic and organic grass
football pitches, which are very expensive products in terms of acquisition and transport costs.
Indeed, local amateur football clubs may be interested in reusing and recycling grass strips from
wealthier professional football clubs, where the pitch has to be changed on a regular basis to
meet the high-quality standards required and expected by all stakeholders. This could be a
win-win situation, as professional clubs would be able to recover money from their used football
pitches instead of scrapping them. This would allow them to enter a more circular, sustainable
and environmentally friendly economy. On the other hand, local amateur clubs could benefit
from better quality grass pitches at a more affordable price, which could help them improve their
quality standards, optimize their spending and become part of a more circular economy.

This reuse and recycling of football pitches example can be enlarged to other sport disciplines
which play on grass pitches. In addition, there could be a multitude of different possible second
users. For example, outside playgrounds for kids, public parks and amusement parks; as well
as companies and private individuals who own green areas and gardens. It becomes therefore
quite complex to efficiently assign the different original grass strips to each customer. The
grass strips could then be cut into several smaller grass slats which allow greater flexibility in
optimizing layouts and minimizing the surplus for installations at the next users. Hence, the
solution method initially developed for the problem of wood boards revalorization can be applied
to other areas, which is very interesting from a managerial point of view.

It can also be mentioned in the managerial motivations that this research falls within the
framework of the United Nations Sustainable Development Goals (SDGs). Indeed, a solution
method for solving the studied problem will have a positive impact on the SDG No.12 related to
Responsible Consumption and Production, as well as on the SDG No.15 related to Life on Land
(United Nations, 2016).
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1.3.2 Academic motivations

The main academic motivation for this research topic concerning the production of laminated
wood panels with revalorized wood boards is that it is hardly addressed in the scientific literature
in this specific form. This research topic can be likened to cutting and packing problems. Indeed,
these problems can appear under various names in the literature, although they essentially follow
the same logical structure which is to combine small items geometrically and assign them to large
objects resulting in figures with possible residual pieces usually treated as trim loss (Dyckhoff,
1990). However, as stated earlier, the specific form of cutting and packing problems explored in
this research work has never really been studied yet. Hence, from an academic point of view, it
is very interesting to study something that represents a gap in the literature. Moreover, as this
problem is NP-hard, experimental methods are explored in this thesis to find a first appropriate
solution method for this complex optimization problem. Finally, as briefly mentioned before, it
is also stimulating and fulfilling to study and work on a topic which, in addition to being related
to purely theoretical subjects such as combinatorial analysis which have not yet been studied in
this specific form, provides a solution to current global problems such as environmental issues..

1.4 Contributions

Even if a master thesis is not a peer reviewed scientific paper, this research work can hopefully
contribute to the literature and try to fulfill the current gap as mentioned in Section 1.3.2. This
work can also serve as basis and motivation for future research on the topic. Indeed, as explained
throughout Section 1, this work could contribute to the implementation of a practical solution
method concerning the optimization of the recycling and revalorization of wood boards. Those
could serve as the basis to create laminated wood panels as well as cross-laminated timber panels
that can replace concrete and steel in the construction industry. This practical solution method
can also be applied to other similar issues and has economic and ecological benefits for those
who apply it.

In a nutshell, the added value of this master thesis research work contributes firstly at the
scientific level. It then adds value on an economic point of view, as the presented solution method
solves a concrete and complex combinatorial optimization problem, related to the optimization
of production and therefore the optimization of costs and surpluses. Lastly, this research thesis
aims to contribute, in its own way, to the environmental cause by bringing a positive impact on
both the issues of global warming and the over-exploitation of natural resources such as wood.

1.5 Approach

This dissertation is structured as follows: after this introduction Section 1, it consists of a
literature review of other cutting and packing problems that come as close as possible to the
specific form of the problem in Section 2. This literature review then ends with detailing the
research objectives and the methodology used in this work respectively in Section 2.2 and Section
3.1 before moving on to a chapter dedicated to the development of the different solution methods.
In this development Section 3, two mathematical models are first presented to solve a first
simplified version of the studied problem in Section 3.2 and 3.3. Subsequently, the broader
problem is considered without the assumption that all slats have the same width, and a third
mathematical model capable of solving small instances of this complex problem is presented
in Section 3.4. The limits of such a model found by testing justify a heuristic development
presented in Section 3.5. These different sections also present the respective analyses of the
different mathematical models and the heuristic one, all tested with real data. Thereafter, the
different results obtained are discussed in Section 3.6. Finally, Section 4 includes a conclusion
and the limitations and suggestions for future research. pagebreak
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2 Theoretical framework

This part of the thesis aims at exploring the literature before clearly stating the research objective
of this work.

2.1 Literature review

The specific problem of creating laminated wood panels with revalorized wood boards can be
likened to cutting and packing problems, for which the reader can refer to Dyckhoff (1990) and
Wäscher et al. (2007). This literature review section aims at identifying and exploring articles
that deal with relevant ways of solving variants of the cutting and packaging problems closest to
the problem studied in this research thesis.

The studied problem can be compared to the two-dimensional bin packing problem where
the goal is to fill the largest number of bins exactly or with overflow, which is the definition of
the "dual bin packing problem" given by Labbé et al. (1995). Ackermann and Diessel (2020)
also studied a hierarchical approach for solving a packing problem with exact guillotine cuts
in production of Glulam in sawmills. In addition to the link that can be made with our stud-
ied problem about the problem type, the general topic of this article is clearly related to this
research thesis problem. Indeed, as already mentioned, the revalorized wood boards could be
used to produce Glulam as well. However, the solution method provided in the article for the
optimization of the pressing process in Glulam production is not extendable to our problem.
Indeed, the objective of this article is to minimize the amount of waste required to complete the
entire press, while minimizing the number of height changes between consecutive pressing steps
as each change requires set up time. Here, the press has a minimal and maximal length as well
as a minimal and maximal height. The dimensions of the pressing step, i.e. the ordered pieces
plus the filling material, must be greater than or equal to the minimum length and height, but
they cannot be greater than the maximal length and height. Hence, the only similarity between
our problem and the one of Ackermann and Diessel (2020) is that no empty space is allowed in
the production processes studied. Indeed, filling material considered as waste has to be added if
the length and height of the ordered pieces do not reach the minimum size required. Similarly,
no empty space is allowed in the production of our laminated wood panels as the production
tries to avoid having any hole in the panels of our problem.

Cid-Garcia and Rios-Solis (2020) present a methodology to find optimal solutions to two-
dimensional bin packing problems called Positions and Covering. This methodology consists of
generating a set of valid positions that indicates all the possible ways of packing item into the
different bins. This could be transposed to our problem by considering all the valid positions
that the different slats can occupy into the different panels. In the same idea, Seizinger (2018)
defined a coordinate system, or grid points, indicating where an item is placed into the different
bins. This grid and coordinates system can again be transposed to our problem.

Blum and Schmid (2013) presented a hybrid evolutionary algorithm in order to solve two-
dimensional bin packing problems. This algorithm is strongly based on a one-phase approach
called the Improved Lowest Gap Fill proposed by Wong and Lee (2009). Very good results
have been obtained using this hybrid evolutionary algorithm compared to current state-of-art
approaches. Other hybrid algorithms consisting in a combination of metaheuristic algorithms
(Genetic Algorithm, Simulated Annealing and Naïve Evolution) and heuristic packing routine
or hill-climbing local search heuristic, have been compared by Hopper and Turton (2001). They
found out that the different metaheuristics outperform the heuristic packing routine and the local
search heuristic. More precisely, the Simulated Annealing showed the best results in achieving
the best layout. However, its execution time growths quickly with the increase of the problem
size. On the other hand, Genetic Algorithm and Naïve Evolution yield slightly worse results
than the Simulated Annealing, but they need less computational time. Nevertheless, they con-
clude their comparison by stating that all of these hybrid algorithms are relevant in the context
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of industrial demands, which is the framework of our research problem. The choice between
Simulated Annealing, Genetic Algorithm or Naïve Evolution mainly depends on the available
execution time for solving the problem.

These different heuristics have been reviewed by Oliveira et al. (2016) in a survey that focus
on the heuristic resolution methods for the two-dimensional rectangular strip packing problem.
This problem is a specific cutting and packing problem where all items are characterized by a
width and a height. Here a link with our research problem can be made again as the input data,
i.e. the different slats to be revalorized, are also characterized by two dimensions, i.e. a length
and a width. Through this review, they show that multiple search strategies, as constructive
and improvement heuristics, can be implemented in order to solve this variant of cutting and
packing problems. Among these constructive heuristics, the Best-Fit heuristic seems relevant to
consider as a potential source of inspiration for the solution method developed for the creation
of laminated wood panels with revalorized wood boards. An effective Best-Fit heuristic for the
two-dimensional regular stock-cutting problem has been presented by Burke et al. (2004), and an
efficient implementation of this heuristic for the rectangular strip packing problem is proposed
by Imahori and Yagiura (2010), who also showed that the quality of the solution improves as
the number of rectangles increases. Verstichel et al. (2013) improved the results of the original
Best-Fit heuristic by adding new item orderings and item placement strategies.

Coming back to the variant called dual bin packing problem by Labbé et al. (1995) and
mentioned at the beginning of this literature review, Peeters and Degraeve (2006) developed a
branch-and-price algorithm for this problem that outperforms the different algorithms of Labbé
et al. (1995, 2003). They also stated in their article that there is a counterpart of this kind of
problem in the literature called Skiving Stock Problems (SSP), indeed discussed by Zak (2003).
He defines it as a particular case of the set-packing problem. These SSPs, as well as different
solution methods for it, have been studied in the recent years by Martinovic and Scheithauer
(2016), Martinovic et al. (2020), Karaca and Samanlioglu (2022) and Korbacher et al. (2023). On
the other hand, still as stated by Zak (2003) in his article, there is another class of combinatorial
optimization problems called the cutting stock problems (CSP) which are similarly particular
cases of the set-covering problem. Solution methods for this variant have been studied by Haessler
and Sweeney (1991) for the one- and two-dimensional CSP, by Song et al. (2006) for the 1.5-
dimensional CSP and by Wuttke and Heese (2018) for the two-dimensional CSP with sequence
dependent setup times. Most recently, Fang et al. (2023) proposed an algorithm based on deep
reinforcement learning that solved efficiently the one-dimensional CSP with the help of a deep
neural network.

Do Nascimento et al. (2022) deals with the two-dimensional CSP where surpluses are called
leftovers and are optimized so that they can be used to satisfy a future demand. This powerful
idea seems promising and could be transposed to the problem studied through this research
thesis. Indeed, this solution would have a strong economic and ecological impact for companies,
which is totally in line with the motivations of this research work. Moreover, from a mathematical
point of view, Do Nascimento et al. (2022) propose to consider the concept of strips that divide
the plates in horizontal strips in which items can be assigned side by side. To address the topic
of this thesis, the plates could be compared to the panels in our problem whereas the items
could be the slats. In the same idea, Chen et al. (2019) studied the challenge faced in the paper
and plastic film industry involving surplus pieces from prior cutting or production errors. These
two-dimensional surpluses can potentially be reassembled by adhering them together, resulting
in potential in-processing orders. This double problem of successive gluing and cutting seems to
be a combination of SSPs and CSPs explored previously.

This double problem is called the Skiving and Cutting Stock Problem (SCSP) in the recent
literature and is well suited for industry production issues. Thus, SCSP seem to be the closest
variant to our studied problem, as my supervisor Célia Paquay said. Johnson et al. (1997) seem
to be among the first to have studied the way of solving this kind of problem. Indeed, they
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examined the Cutting and Skiving Stock Problem (CSSP) within the paper industry as well.
The CSSP involves a two-step process: first, large reels are cut into smaller finished rolls and
auxiliary rolls. Thereafter, the auxiliary rolls are glued together widthwise to create additional
finished rolls. Notably, the CSSP cutting step uses one reel, whereas the SCSP often utilizes
multiple reels that are glued together. Additionally, the finished rolls produced by CSSP have
glue joints running along the length direction, while those produced by SCSP have glue joints
along the width direction. Due to the significant difference in roll length versus roll width, the
total length of the glue joints in CSSP is much greater than the one in SCSP. As a result, the
finished rolls from SCSP are more desirable than the ones from CSSP (Chen et al., 2019). Later,
Arbib and Marinelli (2005) investigated a CSSP in a European plant that produced gear belts.
They developed an optimization model for the production process involving two steps again,
with reels initially cut into rectangular pieces and then stitched together as needed (Chen et al.,
2019).

For the problem in paper and plastic film industries recently studied by Chen et al. (2019),
several reels are glued together to form a "reels-pyramid", from which rolls are formed and cut.
In this case, the reels and the rolls could be related respectively to the slats and the panels
of our problem. However, the length of the reels is greater than the one of the rolls, which is
the complete opposite situation in our studied problem. Wang et al. (2020) studied the two-
dimensional SCSP with setup costs. This specificity is not interesting for our problem creating
laminated wood panels. Nevertheless, in the same vein than Seizinger (2018) with the grid
and coordinates system, Cid-Garcia and Rios-Solis (2020) with the set of valid positions and
Do Nascimento et al. (2022) with the strips; the way Wang et al. (2020) address the SCSP based
on column-and-row generation could be a source of inspiration in the development of the solution
method for the studied problem.

2.2 Research objectives

As stated before, this research aims at developing a solution method for creating a maximum
of glulam or CLT wood panels and thus reusing and revalorizing raw wood wastes. In the
framework of this master thesis and under the guidance of Célia Paquay, the supervisor of this
work, a simplified version of the problem has firstly been solved with mathematical models before
developing another mathematical model to solve the global issue. The limits of this last model
were then tested and determined before developing an efficient heuristic solution which can deal
with a lot of input data. Moreover, an online meeting with Pr. Tom De Mil has been organized
in December 2022. The goal was to clarify some aspects of the problem, as well as to obtain
some guidance from an expert on the definition of the problem in order to get as close as possible
to the reality of the field. Thus, hypothesises have been made jointly for the remaining of this
research work to find a balance between realism, challenge and feasibility.

Firstly, we decided that it is preferable to set the objective of the problem as the maximization
of the total number of produced panels in the framework of this research thesis. Thus, only on
type of panel is produced and the goal is to produce a maximum of panels. The dimensions of
the panels to be created are the following: 200 x 60 cm. These are existing panel sizes from real
material shops. Furthermore, these dimensions have been validated by Pr. Tom De Mil as being
standard and therefore suitable for this research work.

Secondly, the revalorized wood boards, i.e. slats, of less than 20 cm long are not considered.
Indeed, there is very few short boards, or they are simply not considered for the creation of
laminated wood panels. Thus, this hypothesis concerns mainly the creation of data sets for testing
the different models, as in the real data there is a marginal chance of having slats measuring less
than 20 cm. This hypothesis comes in the framework of my personal research thesis. Indeed, it
might be interesting to consider short slats in future research, which study a dynamic version
of the problem where the surplus can be reuse in the creation of future panels (Do Nascimento
et al., 2022).
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It has also been decided to apply a factor 5 to the data when the global problem is studied. It
means that both the length and the width of the different slats and the panels to be created are
divided by 5 and rounded to the nearest integer. As explained in details further in this research
thesis, this reduces the complexity of the mathematical model that aims at solving the general
problem. In addition, the data are more homogeneous, especially concerning the width of the
different slats, which helps the developed heuristic to find better layouts given its characteristics.

Ultimately, the mains research objectives of this thesis are to prove that an exact method
cannot find a solution in polynomial time and therefore to develop an approximation method
capable of quickly finding a solution that optimizes the number of 200 x 60 cm panels created
regardless of the number of input data.
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3 Developments and Results

The present chapter is divided in six main sections. Whereas Section 3.1 states the research
methodology, the four following parts present, detail and analyze respectively the three different
mathematical models and the heuristic. They also aim at presenting the results obtained with
these solution methods. Lastly, Section 3.6 discussed the lessons from the different tests that are
drawn and already starts to summarize my research before leading the reader to the conclusion.
As already stated in Section 2.2, the first two models deal with a simplified version of the problem
studied where all the input data, i.e. the slats, have the same width; while the third mathematical
model and the heuristic deal with the whole problem.

3.1 Research methodology

This study consists of creating two mathematical models with different objectives in order to
solve a simplified version of the studied problem before considering the whole problem. Thus,
the goal is to start exploring the problem and to find a solution method in the theoretical case
where all slats would have the same width. These two models are detailed and analyzed in
Section 3.2 and 3.3, where the associated results are also respectively presented. Subsequently,
the global problem is considered without the assumption that all slats have the same width. As
already mentioned, this combinatorial optimization problem becomes very complex at this point.
Thus, a third mathematical model capable of solving small instances of this complex problem is
developed and detailed in Section 3.4, where its associated results and limitations are also shown.
However, it will appear that it mainly helps to determine the limits of such a mathematical model
for the studied problem and to justify the development of a heuristic, which is presented and
described in Section 3.6 before displaying the associated results and tests. Finally, the different
results obtained are and discussed before drawing conclusions from it.

This "step by step" approach has been defined in agreement with my supervisor Célia Paquay
as a consequence of the literature gap already mentioned in this thesis. From a theoretical point
of view, an abductive approach is followed all over this research thesis since there is no existing
theory concerning this specific form of the problem. Indeed, the mathematical models and the
heuristic has been implemented based on my academic background and with the help of my
supervisor. Naturally, it is also necessary to mention that this background sometimes had to be
completed by some ideas from the existing literature. Therefore, this part of the thesis, including
the development and the implementation of the three mathematical models and the heuristic as
well as their respective analyses is both "from data to theory" and "from theory to data", which
corresponds to an abductive approach (Dufays, 2022).

The data used for the third mathematical model and the heuristic are based on the data
provided by Pr. Tom De Mil via Dalimier (2022) who measured a real sample of wood boards to
be revalorized in the framework of his master thesis. These raw data are attached in Appendix
1. It is worth noting that a typing mistake in the wood board with the identity number 53 has
been assumed to further test the research models. Indeed, the work mentions a width of 93 cm
and length of 67.7 cm. Given the width of the other boards and the assumed fact that width
should be smaller than the length, I considered the width of the wood board with the identity
number 53 as equal to 9.3 cm instead of 93 cm. Moreover, as mentioned in Section 2.2, a factor
5 is applied to the different dimensions in order to reduce the complexity of the problem. The
transformed data are attached in Appendix 2 and are called "Dataset 0". On the other hand, for
the first two mathematical models dealing with the simplified version of the problem, datasets
have been generated both randomly and arbitrarily. These datasets are presented in more details
in Section 3.2 and 3.3.

Lastly, all models presented in this thesis have been coded and implemented on Atom version
1.59.0, a free and open-source text and source code editor. The programming language used to
code is Julia version 1.8.3, and the solver used to solve the three different mathematical models

19



is Gurobi version 9.5.0, an optimization software using branch and bound method. Concerning
the hardware, all calculations have been run on an Asus brand laptop with an Intel® Core™
i3-7100U processor. Moreover, for the different mathematical models, a time limit of one hour
has been set, again in agreement with my supervisor. Ultimately, "Visual Paradigm Online" tool
has been used to create the Flowchart describing the developed constructive heuristic.

3.2 First mathematical model

This section describes the mathematical formulation of the first developed model before present-
ing the tests performed and the associated results. In addition to assuming that all the available
wood boards to revalorized have the same width (i.e. 15 cm), the objective function of this model
is to minimize the total surplus while producing five laminated wood panels. The dimensions
shown in Table 1 represent the dimensions of each panel to be created knowing that there are
enough slats to create all the panels.

Table 1: Panels to be created for the first mathematical
model.

Panel ID nb Length Width
1 150 100
2 250 100
3 250 100
4 300 150
5 300 200

3.2.1 Description of the model

In order to solve this first model, the different panels to be created are divided into several strips
of 15 cm as all the slats have the same width equal to 15 cm. This idea is inspired from Chen
et al. (2019), Wang et al. (2020) and Do Nascimento et al. (2022), and is illustrated in Figure 4.
In this illustrative example, the panel has a width of 70 cm while the strips have a width of 20
cm. It can be noticed that the fourth strip will have to be cut at least along the length of the
panel that will be created to respect its dimensions. Below is the first mathematical model which
solves the simplified problem and minimizes the total surplus obtained after the production of
the five panels.

Assumptions

- All the slats have the same width.
- All the panels are created (enough slats to create the panels).

Constant

w = width of the slats = 15 cm

Indices

p = 1, . . . , P
s = 1, . . . , S
st = 1, . . . , Np

for the panels
for the slats
for the strips (of panel p)
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Figure 4: Decomposition of a panel into strips of the same width (Personal drawing on Excel).

Parameters

Lp = length of panel p
Wp = width of panel p
ls = length of slat s
Np = number of strips needed to cover panel p with Np =

⌈
Wp

w

⌉
Variables

Xp,st,s =

{
1, if slat s is used in strip st of panel p.
0, otherwise.

Objective function

min
P∑

p=1

 Np∑
st=1

(
S∑

s=1

(Xp,st,s ∗ ls)− Lp

)
+ Lp ∗ (w ∗Np −Wp)


Constraints

1. A slat can only be used once:∑P
p=1

∑Np

st=1Xp,st,s ≤ 1 for all s

2. The length of each strip must be longer or equal to the length of the panel:∑S
s=1 (Xp,st,s ∗ ls) ≥ Lp for all p and st

3. Integrity constraint:

Xp,st,s ∈ {0, 1} for all p, s and st

This mathematical model is an Integer Linear Programming (ILP) model as the linear objec-
tive function is subjected to a set of linear constraints over integer variables. Indeed, the variable
Xp,st,s acts as a decision variable as it can only be equal to 1 if a certain slat s is used in a strip
st of a panel p; or equal to 0 otherwise. The objective function is the computation of the total
surplus that have has been cut throughout the production of the five panels. There can be a
surplus along the length of the panels as already mentioned above and illustrated in Figure 5 as

21



Figure 5: Potential surpluses to be cut throughout the production of the laminated wood panels
(Personal drawing on Excel).

the "orange surplus", but also along the width of the panels depending on the composition of
the different strips and thus the value of Xp,st,s. These potential surpluses along the width of the
panels are illustrated in Figure 5 as the "red surplus". It can be noticed that in this simplified
version of the problem, the "orange surplus" will remain constant as the width of the slats is
constant, and the widths of the five panels to be created are already known and fixed. Hence,
given the assumptions, this mathematical model can only minimize the "red surplus", while the
"orange surplus" will always be constant. Its value then depends on w and on the dimensions of
the panels to be created. Ultimately, it means that the total surplus to be minimized will always
be greater or at least equal to the "orange surplus".

3.2.2 Tests and results

To test this mathematical model, a dataset has been created. As all the slats have the same
width, a set of 150 slat ID numbers and associated lengths has been generated on Excel. The
lengths have been generated randomly to be equal to a random integer between 50 and 200 cm.
This dataset is attached in Appendix 3 and is called "Dataset 1". The result, i.e. the total
surplus, obtained when the mathematical model is run with Dataset 1 is equal to 6520 cm2,
which is the optimal solution and corresponds to the constant "orange surplus" in Figure 5.
The creation of the five panels implies that there is no surplus along the width of the panels.
This comes from the fact that the randomly generated Dataset 1 used to test this model is very
heterogeneous because of its generation method. In other words, the lengths of the slats have
such different values that the model can find combinations of strips that are perfectly equal to
the length of the panels to be created. Thus, to test the generation of "red surplus", another
150 slats more homogeneous dataset, called "Dataset 2", has been arbitrarily generated with
only for different slat sizes. After running the mathematical model with Dataset 2, the total
surplus is equal to 6904 cm2, which means that surpluses along the width of the panels have
been generated. Both tests and associated results are presented in Table 2.

This first mathematical model is a first step towards solving a very simplified version of the
problem mentioned in this thesis before studying the whole problem. There is thus no need for
other tests or further explorations for this model.
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Table 2: Tests and associated results for the first mathemat-
ical model.

Dataset 1 Dataset 2
Solution (cm2) 6250 6904

Optimal solution? Yes Yes
Computing time (sec) 10 17

3.3 Second mathematical model

The second mathematical model developed in the framework of this master thesis is based on
the first one with a different objective function. The goal here is to solve the simplified version
of the problem with the objective determined with Pr. Tom De Mil, which is to maximize the
total number of one type of panel to be created.

3.3.1 Description of the model

This second ILP model also assumes that all the slats have the same width. The same method
is applied as the panels are divided into several strips (Chen et al., 2019; Wang et al., 2020;
Do Nascimento et al., 2022). As a reminder, for this second model, all the panels to be created
have the following same dimensions: 200 x 60 cm. Another small difference with the first model
is that the width of the slats equals 18 cm in the description of the mathematical model. As the
target panels have now a width of 60 cm, which is a multiple of 15, it was considered relevant to
use a slat width that was not a multiple of the panel width, in order to directly test the creation
of surplus over the length of the panels. The mathematical formulation of this second model is
provided below.

Assumptions

- All the slats have the same width.
- There is only one type of panels to be created (200 x 60 cm).

Constant

w = width of the slats = 18 cm
Lp = length of a panel = 200 cm
Wp = width of a panel = 60 cm
Np = number of strips needed to cover a panel p = ⌈Wp

w ⌉ = 4

Indices

p = 1, . . . , P
s = 1, . . . , S
st = 1, . . . , Np

for the panels
for the slats
for the strips (of panel p)

with P = ⌊ S
Np

⌋

Parameters

ls = length of slat s
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Variables

Xp,st,s =

{
1, if slat s is used in strip st of panel p.
0, otherwise.

Yp =

{
1, if panel p is created.
0, otherwise.

Objective function

max
P∑

p=1

Yp

Constraints

1. A slat can only be used once:∑P
p=1

∑Np

st=1Xp,st,s ≤ 1 for all s

2. The length of each strip must be longer or equal to the length of the panel:∑S
s=1 (Xp,st,s ∗ ls) ≥ Lp ∗ Yp for all p and st

3. Integrity constraint:

Xp,st,s ∈ {0, 1} for all p, s and st = 1, . . . , Np

Yp ∈ {0, 1} for all p

It can be noted that P is defined as the maximum number of panels that can be created if
one slat per strip is sufficient. Indeed, a strip must be composed of at least one slat to be created.
Thus, a panel cannot be created if no slat is assigned to its different strips. This trick aims at
reducing the size of the model by fixing a maximum number of panels to be created respecting
the dimensions of the slats. This maximum number of panels can be considered as an upper
bound. Moreover, another binary decision variable Yp is added compared to the previous model.
This decision variable takes the value 1 if a panel p is created, or 0 otherwise. In this case, all
the panels have the same dimensions. This variable relates thus more to the number of panels
that could be created and is used in the second constraint in order to assign slats to strips of
panel p only if this panel p is created.

3.3.2 Tests and results

It was concluded in the first model that Dataset 1 was very heterogeneous and Dataset 2 very
homogeneous with only four different lengths for 150 slats. Thus, to make further analysis of
this second model, it was decided to create another arbitrary 150 slats dataset called "Dataset
3", which is more balanced between homogeneity and heterogeneity. This second model has thus
been tested with this Dataset 3 and the width of the slats equals 18 cm. The obtained solution
equals 21, which means that 21 panels are created. Figure 6 represents the layout of the first
panel created in this non-optimal solution obtained after three minutes of computation before
reaching the time limit of one hour without any improvement. It can be noticed that there are
surpluses both along the length and the width of the created panel. This second mathematical
model has also been tested with Dataset 1, Dataset 2 and the real data provided by Pr. Tom De
Mil. A slats’ width of 18 cm was thus considered in order to test the creation of surplus along
the length of the panels. The different results are displayed in Table 3.
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Figure 6: Layout of the first panel created in the solution obtained after running the second
model with Dataset 3 and a slats’ width of 18 cm (Personal drawing on Excel).

Table 3: Tests and associated results for the second mathe-
matical model with a slats’ width of 18 cm.

Dataset 1 Dataset 2 Dataset 3 Real Data
Number of slats 150 150 150 142

Type of data Heterogeneous Homogeneous Balanced Real
Solution 18 18 21 13

Best bound 18 18 23 13
Optimal solution? Yes Yes No Yes
Total waste (cm2) 128070 99900 113454 42990

Computing time (sec) 273 1370 3600 2

It can be noticed that there is a big difference between the computing times. The test with
the real data only takes 2 sec to find the optimal solution, which could be explained by the smaller
optimal number of panels created. As already mentioned, the test with Dataset 3 reaches the
time limit without finding the optimal solution. This could be explained by the solution and
upper bound that are greater than the ones for the other three tests. It seems logical that the
test with Dataset 1, which is heterogeneous, finds the optimal solution quicker than the second
test with Dataset 2, which is homogeneous. Indeed, with Dataset 2, the mathematical model has
to explore more configurations as it is not as apparent than with heterogeneous slats. However,
there is less waste generated with the homogeneous dataset than with the heterogeneous one,
which seems illogical. An explanation could be that as the model needs to explore more with the
homogeneous dataset to find the optimal solution, the optimal layout optimizes the surpluses
more than the solution yielded with Dataset 1. Indeed, with heterogeneous slats, the model needs
less time to find a solution equal to the optimal which could yield a solution with less optimized
surpluses. Even though these results seem a bit paradoxical, the objective of the model is to
maximize the number of panels created, not to minimize the surpluses. Ultimately, as for the
first model, it does not seem very interesting to make other tests or to explore further limits of
this second model as it only deals with a simplified version of the problem.

3.4 Third mathematical model

The next step of this research work was to consider the problem as a whole. This means that
the slats can have different width dimension. This mathematical model is therefore much more
constrained than the previous two because the arrangement of the slats becomes more complex
to explore.
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Figure 7: A panel (200 x 60 cm) gridded in squared zones of 5 cm sides (Personal drawing on
Excel).

3.4.1 Description of the model

This model has been developed mixing two ideas. The first one is to construct a matrix of all
valid positions of each slat. The objective is then to fill it in with "1" if a slat occupies certain
positions, and with "0" otherwise (Cid-Garcia and Rios-Solis, 2020). The second idea is to grid
the panels, where the coordinates represent the Bottom Left Corner (BLC) of each position
(Seizinger, 2018). Indeed, both ideas are used since the panels to be produced are gridded in 5
cm square zones, and a new binary variable Zs, p, i, j is equal to 1 if the position is occupied by
a slat, or 0 otherwise. The length of these 5 cm square zones was determined together with Pr.
Tom De Mil and my supervisor Célia Paquay in order to simplify the model while remaining as
realistic as possible. As it is easier to work with units, all dimensions of the slats and panels
were divided by five and rounded to the nearest integer, i.e. a factor 5 is applied to the different
dimensions. Concretely, it means that a slat that is 50 cm long and 20 cm wide now has a
length of 10 units and a width of 4 units. It also occupies a total of 40 square areas on a panel
to be created. This is shown in Figure 7 when the BLC of this example slat is placed on the
coordinates (0;0).

The mathematical model must now explore every potential combination of every possible
position for all slats unlike the previous two models using strips. Thus, a first usefulness of
applying a factor 5 to the dimensions can be seen here as it transforms the 12,000 possible
positions, keeping the centimeter as a unit (200 x 60 cm), to be explored on a panel for each slat
into 480 positions (40 x 12 zones of 5 cm sides). Despite this, the model includes a lot of integer
variables and constraints which are not linear anymore and is therefore an Integer Programming
(IP) model. The resulting size of the model makes it much more time consuming to solve. The
mathematical formulation of this third model is presented below.

Assumptions

- The slats can have different widths.
- There is only one type of panels to be created (200 x 60 cm).
- Consider all possible positions that a slat can occupied within a panel.
- The coordinate (i, j) corresponds to the BLC of a panel squared zone.

Constant

Lp = length of a panel = 200 cm
Wp = width of a panel = 60 cm
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Indices

p = 1, . . . , P
s = 1, . . . , S
i = 0, . . . , I
j = 0, . . . , J

for the panels
for the slats
for the position along the length of a panel
for the position along the width of a panel

with P = ⌊
∑S

s=1(ws∗ls)
Lp∗Wp

⌋

with I = Lp − 1
with J = Wp − 1

Parameters

ls = length of slat s
ws = width of slats s

Variables

Xs,p,i,j =

{
1, if the BLC of slat s is positioned on coordinate (i, j) of panel p.
0, otherwise.

Zs,p,i,j =

{
1, if the position (i, j) of panel p is occupied by slat s.
0, otherwise.

Yp =

{
1, if panel p is created.
0, otherwise.

Objective function

max
P∑

p=1

Yp

Constraints

1. A slat can only be used once:∑P
p=1

∑I
i=0

∑J
j=0Xs,p,i,j ≤ 1 for all s

2. All positions of a panel must be occupied in order to create the panel:∑S
s=1

∑I
i=0

∑J
j=0 Zs,p,i,j ≥ (Lp ∗Wp) ∗ Yp for all p

3. A position can only be occupied by one slat (no overlap allowed):∑S
s=1 Zp,s,i,j ≤ 1 for all p, i and j

4. If a position (i, j) is occupied by the BLC of a slat s, the following "dimensions of the slat"
positions of the panel are also occupied by slat s:

Xs,p,i,j ∗min {ls;Lp − 1} ∗min {ws;Wp − j} ≤
∑min{Lp;i+ls}

k=i

∑min{Wp;j+ws}
l=j Zs,p,k,l

for all p, s, i and j

5. If the BLC of slat s occupies the position (i, j), the following "dimensions of the slat"
positions of the panel are also occupied:∑P

p=1

∑I
i=0

∑J
j=0 Zs,p,i,j ≤

∑P
p=1

∑I
i=0

∑J
j=0Xs,p,i,j ∗min {ls;Lp − i} ∗min {ws;Wp − j}

for all s

6. Integrity constraint:

Xp,s,i,j ∈ {0, 1} for all p, s, i and j
Zp,s,i,j ∈ {0, 1} for all p, s, i and j
Yp ∈ {0, 1} for all p
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As in the previous model, P is defined to reduce the size of the model by only exploring the
potential maximum number of panels that could be created given the total area covered by all
the slats. It can also be noticed that I and J are respectively defined as Lp−1 and Wp−1. This
is simply explained by the fact that the first coordinate of a panel is (0, 0) instead of (1, 1).

3.4.2 Tests and results

Firstly, all the dimensions from Dataset 0, based on the real data provided by Pr. Tom De
Mil, were divided by 5 and rounded to the nearest integer. The model was then run with this
Dataset 0 and gives the best objective of 0 and the best bound of 9 in a computing time of one
hour, which is the time limit. Hence, the model does not find any solution in one hour with this
dataset. It means that the size of the model is too big to find a solution in reasonable computing
time, which is quite limiting. Thus, the model cannot be used in real situation.

Therefore, it might be interesting to determine the limits of this third model to support
the relevance of developing a heuristic solution method. In order to do so, the model has been
tested with growing numbers of slats until it does not find any solution in one hour. In other
words, N slats are randomly selected from Dataset 0 to form a new smaller dataset. These
random selections following by their associated test are done three times with the same number
of random slats equal to N before repeating the process with N + 1 slats until no solution is
found in one hour. Initial N has been arbitrarily set to 15, because with less than 15 slats, it
is in most of the cases impossible to create at least one panel given the dimensions of the real
data. All the tests are compiled in Table 4.

Table 4: Tests and associated results for the third mathemat-
ical model with random sample of slats from Dataset 0.

Test Nb slats Best Solution Best Bound Time (sec)
1 15 0 0 0
2 15 0 0 0
3 15 1 1 140
4 16 1 1 209
5 16 0 0 0
6 16 0 0 0
7 17 0 0 98
8 17 1 1 1551
9 17 1 1 229
10 18 1 1 156
11 18 1 1 617
12 18 1 1 307
13 19 1 1 1487
14 19 1 1 265
15 19 1 1 343
16 20 1 1 1100
17 20 1 1 617
18 20 1 1 293
19 21 1 1 623
20 21 1 1 144
21 21 1 1 555
22 22 1 1 88
23 22 1 1 329

Continued on next page
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Table 4 – continued from previous page
Test Nb slats Best Solution Best Bound Time (sec)
24 22 1 1 277
25 23 1 1 115
26 23 1 1 852
27 23 1 1 466
28 24 1 1 297
29 24 1 1 132
30 24 1 1 106
31 25 1 1 400
32 25 1 1 189
33 25 1 1 1160
34 26 1 1 639
35 26 1 1 594
36 26 1 1 989
37 27 1 1 432
38 27 1 1 2829
39 27 1 1 1264
40 28 1 1 1273
41 28 1 1 158
42 28 1 1 165
43 29 1 1 825
44 29 1 1 191
45 29 1 2 3600
46 30 1 1 272
47 30 0 2 3600
48 30 1 1 747
49 31 1 2 3600
50 31 0 2 3600
51 31 0 2 3600
52 32 2 2 2657
53 32 0 2 3600
54 32 2 2 1639
55 33 2 2 1001
56 33 0 2 3600
57 33 2 2 1575
58 34 0 2 3600
59 34 0 2 3600
60 34 2 2 1255
61 35 0 2 3600
62 35 2 2 1041
63 35 0 2 3600
64 36 0 2 3600
65 36 2 2 3385
66 36 2 2 1925
67 37 0 2 3600
68 37 0 2 3600
69 37 0 2 3600
70 38 2 2 1431
71 38 0 2 3600

Continued on next page
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Table 4 – continued from previous page
Test Nb slats Best Solution Best Bound Time (sec)
72 38 0 2 3600
73 39 0 2 3600
74 39 0 2 3600
75 39 0 2 3600

Firstly, we can notice that with 15, 16 and 17 slats, the best solution is sometimes zero which
can be explained in two ways. The first one is illustrated with Tests 1, 2, 5 and 6. Here the
computing time is also equal to zero which may mean that before even starting to compute,
the total area of the slats forming the sample does not allow to create a panel. This is due to
the random generation of sample data for the test. Therefore, only slats with relatively small
dimensions could be selected from Dataset 0. On the other hand, with Test 7, it can be noticed
that the best solution equaling zero is obtained with a computing time of 98 sec. This may mean
that unlike the first case, before starting to compute, the total area of the slats composing the
sample for the test is greater than the area of a panel to be created, and therefore the upper
bound was equal to 1 at the beginning of the test. However, after 98 sec of branch and bound,
the solver finds that the best bound is equal to 0 and therefore the best solution is also equal
to 0. This means that the best possible layout does not allow to create a panel because of the
surpluses that must be cut and that reduce the total area of the slats when combined.

After a series of tests that all find the optimal solution in less than an hour, the first test to
reach the time limit is Test 45 with 29 slats. After that, it can be noticed that from 30 slats
onwards, the mathematical model does not manage to find the optimal solution before the set
limit in more than half of the tests. Moreover, from 37 to 39 slats, all the tests reached the
time limit with a best solution equal to 0 except Test 70. Therefore, it seems that the model
is able to find a solution within an hour with a number of slats equaling 37 or less. Hereafter,
the mathematical model needs more than an hour to find a solution greater than 0 with the
computer equipment used for the tests in this master thesis framework. Hence, 37 slats can be
defined as the limit for the third mathematical model in this research process.

All the tests and associated results have been represented in Figure 8, which presents the
computing time per number of slats in the form of a scatter chart. Despite an inconsistency
in the computation times for the same number of slats probably due to the random nature of
the generated data samples, we can observe that from 30 slats, most of the tests reach the time
limit of one hour. This strongly reflects the limit of this mathematical model which considers
the problem in its entirety. Although it allows to optimize the production process of laminated
wood panels, its combinatorial characteristic makes it unusable with more than 37 slats. This is
very few and therefore makes this mathematical model useless for planning large-scale laminated
wood panels production.

3.5 Heuristic

After having determined the limits of the previous mathematical model which considers the
problem as a whole, it seems relevant to develop a heuristic solution for a larger number of input
data. Furthermore, the aim of this heuristic solution is to propose the most agile method possible
for this research work.

First, a constructive heuristic method based on the BLC method was explored Chazelle
(1983); Burke et al. (2006). The main difficulty was not to avoid leaving any holes in the panel
construction, which differs from the Bin Packing problems for which this method is effective.
It was therefore quite difficult to build an initial solution considering all the slats. Under the
advice of my supervisor Célia Paquay, I am thus opting for a constructive heuristic based on the
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Figure 8: Computing time in seconds as a function of the number of slats from Dataset 0 for the
tests of the third mathematical model (Personal generation on Excel)

formation of strips with slats of the same width, which joins the idea implemented in the first two
mathematical models and inspired by Chen et al. (2019), Wang et al. (2020) and Do Nascimento
et al. (2022). There is here again a major interest in applying a factor of 5 to the real data. This
factor indeed makes the widths of the different slats more uniform since they are divided by 5
and rounded to the nearest integer. There will therefore be more slats with the same width and
it will be possible to create more strips that are at least the length of the panels.

3.5.1 Description of the heuristic

The developed heuristic is a constructive heuristic as it builds a solution following an arbitrarily
determined procedure. In general, the slats are assigned in a decreasing way with respect to
both their length and their width. This means that the algorithm will first try to create a strip
of the width corresponding to the maximum width of the slats. Then, in each strip, the slats
are assigned in decreasing order of their length. The goal of this method is to keep the shortest
and narrowest slats for the end to retain maximum flexibility. However, some subtleties are
implemented through the algorithm to make it agile. Indeed, to create a good initial solution
following the descending order assignment procedure, a "Best-Fit" approach is followed, inspired
by the works of Burke et al. (2004), Imahori and Yagiura (2010) and Verstichel et al. (2013).
The algorithm looks for the slat length or strip width that is most suitable at strategic points in
the procedure. Each time a strip is about to be completed, i.e. to reach the length of the panel
to be created, the algorithm looks for the slat to be assigned that will generate the least surplus.
In the same idea, each time the last strip of a panel is about to be generated to complete the
panel along its width, a strip with the most adequate width is chosen according to the remaining
availability. Finally, after having generated a solution, the algorithm will explore the different
surpluses again from the most important to the least important. The algorithm tries to swap
one of the slats composing the strip with a slat not yet assigned, i.e. being part of Rest, in
order to reduce the surplus generated by the strip in question. These steps are detailed with the
presentation of the algorithm hereunder.

The diagrammatic method of Flowcharts has been used to represent the algorithm. The
flowchart has been designed on "Visual Paradigm Online" and is presented in Figure 9. This
flowchart is also provided as a .png file with this research thesis to enable the reader to zoom
in and thus read and examine the algorithm in a more pleasant way. The first part of the
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algorithm is in fact a kind of giant loop that builds a panel before starting the same construction
process for the next panel and so on until there are not enough slats to finish the panel under
construction. Once a solution is obtained, highlighted in blue on the flowchart, the algorithm
moves on the second part where it tries to improve the solution by reducing the surplus generated
by exchanging slats of the obtained solution with remaining slats still available.

To begin with, the first part of the algorithm starts by creating a subgroup called "Sgroup"
with all the slats that have the highest width called "max". If the total length covered by the
slats forming this subgroup is greater than or equal to the length of the panel, the strip creation
starts. If not, all the slats in Sgroup are assigned to the "Rest" and will not be used anymore in
this first part of the algorithm. Sgroup then takes all the available slats with a width equal to
"max - 1" until Sgroup allows the creation of strips to begin. The slats are assigned in descending
order of their length. That is, the longest slat belonging to Sgroup will be assigned first in the
strip under construction until the longest slat to be assigned allows the strip to be completed. In
this case, the algorithm does not directly assign this slat but looks for the slat that will generate
the smallest surplus. This is therefore the first strategic place in the algorithm where the idea
of "Best-Fit" is applied.

Then, the strip creation process is repeated in order to build the panel and create the last
strip fitting the completion of the panel. Here, the algorithm first looks if the current strip width
completes the panel without creating any surplus along the length of the panel. If it does, the
strip is then created and the loop starts again from the beginning to create the next panel. If
there is a surplus with the current width of the strip, the algorithm first looks if it is possible to
create a strip with the exact missing width with the available slats. If not, it looks to create a
strip with a width of 1, then, if not, it will look if it is possible to create a strip with a width
of 2 and so on in increasing order. If a smaller width strip than the one needed is created, the
search process starts again. The goal is to be as flexible as possible in the creation of the last
strips to complete a panel that generates as little surplus as possible. This is the second time
the algorithm follows the "Best-Fit" logic. This completes the loop that makes up the first part
of the algorithm that is designed to build the panels.

Once there are not enough slats of the same width to create strips of the length of the
panels, or the maximum possible number of panels created is reached, this first loop stops, and
a solution is obtained. It is worth noting that this second condition will rarely be reached since
this maximum number of panels is based on the dimensions of the slats and therefore the total
area that could theoretically be covered in case no surplus is created which would be exceptional.

The second part of the algorithm, which comes after the solution highlighted in blue on the
flowchart, aims to adjust this solution. The first step serves to group all the slats that could have
been assigned to the construction of a last unfinished panel in the subgroup called "Rest". Then,
all the surplus of each strip of the created panels are considered from the biggest to the smallest to
try to reduce them. Indeed, the algorithm first looks if the shortest slat from the Rest subgroup
that has the same width as the strip to be improved also has a length smaller than the longest
slat currently assigned to the analyzed strip. However, the length of this potential new slat must
still be sufficient to complete the strip. In other words, no matter which slats compose the strip,
its total length must be greater or equal to the length of the panel. If these two conditions are
met, the longest slat of the strip is replaced by this new slat. After examining each surplus and
possibly interchanging slats to reduce it, the algorithm stops. The possibly modified solution
obtained after this second part is the final solution provided by this constructive heuristic method.
Although the first objective of the method is to create a maximum of panels, this second part
of the process still adds value to the solution firstly obtained as it serves to improve the quality
of the solution. Indeed, as mentioned in the context and motivations of this research work, it is
also important to waste and generate as little surplus as possible. Moreover, seeking to reduce
the surplus allows to keep a maximum of material in the Rest which can be used thereafter in
future production processes, or in possible future research concerning the problem in a dynamic
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Figure 9: Flowchart description of the developed algorithm (Personal drawing on Visual
Paradigm Online).
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Figure 10: Layout of the first panel created with the constructive heuristic with Dataset 0
(Personal drawing on Excel).

form where the rests are taken into account in the optimization process.

3.5.2 Tests and results

The first test performed with this algorithm uses Dataset 0 mentioned earlier in this work. This
test is called "Test 0" in Table 5 presenting all the tests and associated results performed with
this heuristic solution. It can be noticed that this method finds a solution in 0.004 sec with
Dataset 0 composed of 142 slats. Unlike the third mathematical model which is not able to
deal with datasets of more than 37 slats in less than one hour, this solution method differs in
performance. The development of such a heuristic solution method makes thus perfect sense.
Figure 10 is an illustration of the first panel built with Test 0 this heuristic method. It is worth
noting that only strips with a width of 3 are created to form this panel. This indeed does not
generate any surplus along the length of the panel. However, a surplus needs to be cut along the
width.

Then, the other tests follow the same idea as the tests performed on the third mathematical
model. It means that the goal is to explore the computation time and the quality of the associated
solution obtained for an increasing number of input data still based on Dataset 0. The procedure
is therefore similar when testing three datasets of a certain number of slats by randomly selecting
them from Dataset 0 until the desired number of slats is obtained for testing. I arbitrarily chose
to start at 5000 slats and to increase by 5000 slats every three tests. It can be noticed that, in
Dataset 0, the widths of the slats are all between 1 and 4 included. The width of the panels which
is 12 is thus a multiple of all the slats. This results in no surplus along the length of the panels
in all the tests performed. This is why only the total waste appears in Table 5. In fact, this
equals the waste along the width of the panels generated by the creation of the strips. Moreover,
the last column of this table entitled "Waste ratio" expresses the waste rate of the material used
to produce the panels. It is calculated on the basis of the theoretical total surface that the slats
assigned to the panels produced could cover in relation to the total surface of these panels. This
ratio notably hovers around 9% with this solution method, which seems quite appropriate given
the industry’s waste rate mentioned in Section 1.

Regarding the analysis of the computation time as a function to the number of slats repre-
sented in Figure 11, it is worth noting that it does not increase in an exponential way as it is
the case with the third mathematical model. Indeed, the curve drawn on this graph is a power
trend-line, i.e. a curved line which is used to show an increase at a specific rate. It can be noted
that the R-squared value is 0.998, which indicates a nearly perfect fit of the line to the data.
Elsewhere, the maximum number of slats tested in this test series is 100,000 slats. The corre-
sponding computation time is a little more than 330 sec, which is quite reasonable considering
the number of input data. Moreover, having more than 100,000 slats in reality seems unlikely.
Hence, I did not test beyond this number of slats to reach the hour of computation for example.
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Table 5: Tests and associated results for the constructive
heuristic with random sample of slats from Dataset 0.

Test Nb of slats Solution Time (sec) Total waste (cm2) Waste ratio
0 142 8 0.004 8100 0.0778
1 5000 302 0.877 358350 0.09
2 5000 305 0.945 359000 0.0893
3 5000 303 0.9 370600 0.0925
4 10000 603 3.037 721650 0.0907
5 10000 604 2.996 736725 0.0923
6 10000 607 2.922 730975 0.0912
7 15000 910 6.131 1067650 0.0891
8 15000 913 6.363 1080375 0.0898
9 15000 909 6.011 1092475 0.091
10 20000 1215 14.892 1431925 0.0894
11 20000 1220 12.634 1453200 0.0903
12 20000 1216 12.634 1428225 0.0892
13 25000 1523 20.263 1789700 0.0892
14 25000 1523 17.647 1832350 0.0911
15 25000 1516 17.911 1812075 0.0906
16 30000 1824 26.044 2121450 0.0884
17 30000 1821 26.452 2179375 0.0907
18 30000 1824 24.675 2143700 0.0892
19 35000 2127 33.939 2520000 0.0899
20 35000 2126 35.375 2499525 0.0892
21 35000 2121 33.875 2537225 0.0907
22 40000 2433 44.757 2880575 0.0898
23 40000 2437 46.024 2899275 0.0902
24 40000 2438 45.906 2904850 0.0903
25 45000 2736 57.799 3285075 0.091
26 45000 2736 58.473 3251300 0.0901
27 45000 2740 58.845 3272975 0.0905
28 50000 3043 72.931 3584150 0.0894
29 50000 3037 72.725 3621700 0.0904
30 50000 3033 74.398 3613125 0.0903
31 55000 3341 92.762 3971950 0.0901
32 55000 3341 92.172 3978925 0.0903
33 55000 3342 93.217 3947975 0.0896
34 60000 3649 110.573 4345475 0.0903
35 60000 3651 113.42 4339175 0.0901
36 60000 3644 101.733 4345075 0.0904
37 65000 3965 120.356 4706925 0.09
38 65000 3956 122.935 4699475 0.0901
39 65000 3953 125.066 4695525 0.0901
40 70000 4252 148.281 5034550 0.0898
41 70000 4253 147.022 5044175 0.0899
42 70000 4258 149.216 5001250 0.0892
43 75000 4575 174.795 5384800 0.0893
44 75000 4559 161.985 5416225 0.0901
45 75000 4562 164.652 5424125 0.0901

Continued on next page
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Table 5 – continued from previous page
Test Nb of slats Solution Time (sec) Total waste (cm2) Waste ratio
46 80000 4870 189.868 5764625 0.0898
47 80000 4870 194.322 5839375 0.0908
48 80000 4869 195.252 5781325 0.09
49 85000 5168 227.198 6087900 0.0894
50 85000 5169 228.689 6107225 0.0896
51 85000 5167 230.663 6137250 0.0901
52 90000 5466 250.109 6480150 0.0899
53 90000 5476 245.81 6459125 0.0895
54 90000 5484 249.02 6441300 0.0892
55 95000 5775 282.087 6869375 0.0902
56 95000 5786 289.001 6837125 0.0896
57 95000 5784 293.531 6874575 0.0901
58 100000 6088 325.723 7214300 0.0899
59 100000 6076 327.72 7268425 0.0907
60 100000 6079 332.767 7196050 0.0898

3.6 Discussion

As explained, the first mathematical model has a different objective from the other solutions
developed, since it minimizes surplus while creating a fixed number of panels. This first step in
the research was intended to be a first approach to the problem and a first implementation before
making things more complex by getting closer to the target problem. The results are therefore
not very comparable with what follows, although it is worth noting that this model deals easily
with datasets of 150 slats, taking 10 and 17 sec respectively to find the optimal solution in the
two tests carried out.

The second mathematical model, deals with a simplified version of the problem where all
slats have the same width. Given the tests carried out, the calculation time is highly dependent
on the input data. However, generally speaking, this model is efficient in finding the optimal
solution or a very good solution, in one hour’s time for a number of slats less than or equal to
150. Although the problem is not treated in its full complexity, this model could possibly be
used in reality if the slats are very homogeneous and the user pre-sorts them by width. Indeed,
once enough slats of the same width are collected, this model could find an optimal solution,
rather than using the construction heuristic, whose yielded solution is not necessarily optimal.

The third model deals with the problem as a whole, taking into account the slats’ two
dimensions. In practice, the wood boards to be revalorized do not necessarily come from the
same source and therefore have no standardized dimensions. However, the complexity of the
mathematical model and its resulting size do not allow it to provide an optimal solution in a
reasonable time for a quantity of slats greater than 37. Further, given the combinatorial nature
of the problem and the fact that it is NP-hard; for a high number of slats, it is impossible to solve
this model in polynomial time. Above all, this model justifies the hypothesis that the problem
under study is NP-hard and therefore cannot be solved by an exact solution method. This also
justifies the development of an approximate solution method.

The construction heuristic developed within the framework of this research thesis provides a
solution to the problem studied yielding an average of 9% waste, regardless of the number of slats
and panels created. This waste rate for the production of laminated wood panels seems very good
compared to conventional industry rates when working with pure raw materials, where sawmills
can generate up to 50% waste in the form of sawdust, wood shavings and heat. In addition, this
solution method is capable of finding a solution in 330 sec for 100,000 slats. This even exceeds
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Figure 11: Computing time in seconds as a function of the number of slats from Dataset 0 for
the tests of the constructive heuristic (Personal generation on Excel).

reality, given that most laminated wood panel producers do not wait to accumulate more than
100,000 slats before starting producing. Moreover, it is not in their interest to wait, given that
the waste ratio remains constant regardless of the number of slats as well as the number of panels
to be produced. Thus, it is not possible to achieve economies of scale in terms of waste generated.
Hence, it seems unlikely that anyone would actually need to solve the problem with 100,000 slats
or more. On the other hand, it might be interesting to test this heuristic with even more slats
as part of future research to determine its real limits.
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4 Conclusion

The major thrust of this thesis is to examine the development of a solution method for creating
laminated wood panels with revalorized wood boards. More concretely, the aim is to find an
efficient way of generating two-dimensional layouts of slats that form the target panels. A step
by step approach is adopted to firstly tackle a simplified version of the problem before considering
the whole parameters. The testing of the mathematical model developed to deal with the global
problem proves the problem to be NP-hard as an exact method cannot yield the optimal solution
in polynomial time. On the other hand, the development of an approximation method through a
constructive heuristic proves, by testing with transformed real data, to be a very suitable solution
method for the studied problem.

In conclusion, this research work answers the research question of my master thesis by finding
an efficient solution method for creating laminated wood panels with revalorized wood boards,
after proving through the testing of the third mathematical model that it was impossible to solve
this problem with an exact method. This solution method is an approximation method in the
form of a constructive heuristic based on the idea of strips creation and inspired by Best-Fit
algorithms used in Bin Packing. This constructive heuristic is able to deal with a lot of input
data and yield a very good solution in a relatively very short computing time.

4.1 Limitations and suggestions for future research

This sub-section summarizes the limitations encountered during the course of this research work,
as well as suggestions for future research on the topic. Indeed, the problem is very complex from
a combinatorial analysis point of view and represents a gap in the current literature. There are
many different ways of approaching the problem. It is therefore very interesting to give initial
indications of the various possibilities for further study.

4.1.1 Limitations

During the progress of this research work, several limitations became apparent. The first one
inevitably concerns the study of the two-dimensional problem. Indeed, the thicknesses of the
wood boards to be revalorized as well as the thicknesses of the panels to be created are not
considered.

Another limitation is that some of the layouts provided by the third mathematical model may
have special and messy joint configurations as illustrated in Figure 12. As discussed with Prof.
De Mil, this kind of joint configuration is not suitable for an outer layer of a CLT panel. However,
it is potentially suitable for an inner layer not in direct contact with the external environment.

Several limitations are notable regarding the development of the heuristic. The first one
concerns the difficulty to create an initial solution. Indeed, as described in this research work,
I had to make a choice of method, i.e. the creation of strips, to build a solution efficiently.
However, this choice limits the optimization of the solution. Slats are only used for strips of the
same width, which limits potential layouts and ignores combinations of slats of different widths.
In addition, as part of the development and implementation of a metaheuristic, it seems difficult
to find a first initial solution, and secondly, to determine the exploration neighborhood.

The second limitation is simply due to the development of the heuristic itself. Indeed, in its
second part, the algorithm explores all the surpluses with the aim of reducing them by exchanging
slats. However, only the longest slat belonging to the analyzed strip is considered. Similarly, for
the potential new slat, the algorithm only looks at the shortest one still available. Even though
this method can be effective, it is clearly possible to miss slat combinations that could create
less surplus than simply swapping the longest slat in the strip with the shortest still available.
In addition, the strips’ length must greater or equal to the panels’ length. This condition implies
that the shortest slat available may not be suitable as it could not be long enough to reach the
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Figure 12: Layout of the second panel created with the third mathematical model with a sandbox
dataset used for testing while implementing (Personal drawing on Excel).

length of the panel, whereas the second-shortest slat, for example, could be suitable. At the
moment, the algorithm does not explore the different possible combinations of slats to reduce
the surplus as much as possible.

The final limitation of the heuristic concerns the transformation performed on the real base
data provided by Prof. Tom De Mil. Applying a factor of 5 and rounding the various dimensions
to the nearest integer results in more homogeneous slat widths. Therefore, more strips of the same
width that measure at least the length of a panel can be created. This also means more panels can
be created, all other things being equal. The proposed solution method is therefore less efficient
if the actual dimensions of the slats are unchanged. However, it is also unrealistic to work with
slats of totally different widths when creating CLT or Glulam panels. In reality, the slats are
adjusted and potentially pre-cut to standardize dimensions. This limitation therefore remains
purely theoretical in terms of performance of the construction heuristic developed through this
research work.

4.1.2 Suggestions for future research

Firstly, the three-dimensional problem could be explored by considering the thicknesses of the
wood boards to be revalorized as well as the thicknesses the panels to be created. This would
study the problem as realistically as possible.

Secondly, a more in-depth study of the granularity of widths could be of interest, as it seems
to play a major role in the complexity of the problem and therefore in the development of a
suitable solution. Different slat widths may also influence the physical quality of the proposed
solution, with possibly too many joints in the same area of the panel, making it less robust.

It might also be interesting to test the heuristic more extensively to find out its real limits after
an hour’s computation for example. This would enable us to compare this solution method with
other future methods being studied and developed. In addition, this construction heuristic could
also be improved by modifying the second part to explore more combinations of slats in order to
reduce surplus. The constructive procedure could also be changed to improve performance.

The problem could also be studied in a more dynamic version where the surpluses are used
directly to create the target panels. Indeed, a future solution method could choose to voluntarily
create a surplus when creating a panel, to reuse it in the creation of the next panels. This
way, the production process is more optimized as it tries to do the best usage of every available
material. Hence, with a large number of slats, an efficient method that reuses the surplus in the
creation of the solution will automatically generate a better solution than with the construction
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heuristic proposed in this research work.
Ultimately, it might be worth exploring variants of the problem to better suit the actual

situation in the field. One variant is to create panels with holes to fit a window, for example,
rather than creating a solid panel and then cutting it to fit the window. Finally, sensitivity
analysis of joints is also an interesting option. Indeed, limiting the number of joints, i.e. the
number of boards to cover a panel, allows to create stronger panels which can be a major
requirement depending on the use for which the panels are produced.
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Appendices

Appendix 1 : Raw Real Data provided by Pr. Tom De Mil via Dalimier
(2022).

Salt ID Length (cm) Width (cm) Thickness (mm)
1 82 8.8 18
2 82 8.8 18
3 82 8.8 18
4 82 8.8 18
5 82 8.8 18
6 82 8.8 18
7 82 8.8 18
8 69.9 9.6 18
9 78.6 8.5 19
10 61.5 13.3 19
11 60.6 13.3 19
12 61 12.9 18
13 65.5 13.3 19
14 59 13.2 18
15 64 13.3 18
16 64.6 13.2 18
17 59 13.3 19
18 67.3 13.3 18
19 61.2 13.3 19
20 60.1 13.4 18
21 63 11.4 19
22 50.5 10.2 20
23 69.4 9.6 18
24 48 10.3 19
25 50.6 10.3 20
26 50.6 10.3 20
27 50.6 10.2 19
28 63.5 13.2 18
29 64 13.3 18
30 59.5 13.2 18
31 59 13.2 18
32 65.5 13.4 18
33 59 13.3 18
34 69.7 9.6 18
35 68 9.7 18
36 64.8 13.2 17
37 90 9.3 20
38 86 8.7 19
39 51.8 12.9 18
40 58.8 13.2 17
41 69 9 16
42 68.5 8.9 16
43 69.8 9.6 18
44 59.2 13.5 18

Continued on next page
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Real data – continued from previous page
Salt ID Length (cm) Width (cm) Thickness (mm)

45 81 7.9 18
46 50.5 10.3 19
47 66 13.1 18
48 66 13.2 18
49 50.5 10.3 20
50 72.8 13.8 18
51 72 13.9 18
52 88.5 13.3 19
53 67.7 9.3 20
54 47.8 10.3 19
55 72 14 18
56 50.5 10.2 20
57 69.6 9.6 18
58 48 10.5 19
59 74.5 13.8 18
60 88.4 10.4 19
61 69.4 9.6 18
62 73.3 13.9 18
63 72.2 13.9 18
64 47.9 13.9 18
65 69 9 15
66 88.5 10.2 20
67 69.7 9.7 18
68 69.6 9.7 18
69 69 9 16
70 50.4 10.3 20
71 50.5 10.2 20
72 69.4 9.6 18
73 51.4 8.5 19
74 46.3 10.3 19
75 50.5 10.2 20
76 73.4 14 18
77 69 8.9 15
78 50.5 10.3 19
79 70.5 9.7 20
80 50 10.2 19
81 74.3 9.4 23
82 69 9 16
83 69 9 16
84 69 9 16
85 69.2 9.6 18
86 69.4 9.6 18
87 69.8 9.6 18
88 70.8 9.6 20
89 50.5 10.3 19
90 48.9 10.3 19
91 71.8 13.9 18
92 72.2 13.9 18

Continued on next page
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Real data – continued from previous page
Salt ID Length (cm) Width (cm) Thickness (mm)

93 73.5 13.9 18
94 92.3 10.3 20
95 88.6 10.3 20
96 50.7 10.1 19
97 50.7 10.1 19
98 50.7 10.1 19
99 68.9 9 15
100 69.2 9.6 17
101 69.5 9.6 18
102 88.3 10.3 20
103 48 10.2 19
104 59.8 10 19
105 48.8 10.2 19
106 46.5 10.2 20
107 66.4 15.1 22
108 65.3 13.2 17
109 120 11.4 20
110 93.5 18.2 22
111 79.9 13.1 22
112 80 13.5 22
113 79.8 13.5 23
114 166 8.6 19
115 120 9.7 20
116 120 9.5 19
117 57.5 13.3 18
118 60.6 13.3 18
119 128.5 6.5 16
120 128.3 6.5 16
121 128.2 6.5 16
122 132.4 6.5 16
123 130 6.5 16
124 130 6.5 16
125 125.6 6.5 16
126 127.6 6.5 16
127 128 6.5 16
128 126.5 6.5 16
129 130.3 6.5 16
130 129.6 6.5 16
131 128.5 6.5 16
132 129.8 6.5 16
133 130.3 6.5 16
134 133.2 6.5 16
135 128.6 6.5 16
136 130.8 6.5 16
137 128.1 6.5 16
138 73.1 6.5 16
139 87 10.3 27
140 126.1 10.3 27

Continued on next page
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Real data – continued from previous page
Salt ID Length (cm) Width (cm) Thickness (mm)

141 119.7 13.5 21
142 120.3 13.5 21
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Appendix 2 : " Dataset 0 " composed of the real data transformed by applying
a factor of 5 to the dimensions and rounding them off to the nearest integer.

Salt ID Length (cm) Width (cm)
1 16 2
2 16 2
3 16 2
4 16 2
5 16 2
6 16 2
7 16 2
8 14 2
9 16 2
10 12 3
11 12 3
12 12 3
13 13 3
14 12 3
15 13 3
16 13 3
17 12 3
18 13 3
19 12 3
20 12 3
21 13 2
22 10 2
23 14 2
24 10 2
25 10 2
26 10 2
27 10 2
28 13 3
29 13 3
30 12 3
31 12 3
32 13 3
33 12 3
34 14 2
35 14 2
36 13 3
37 18 2
38 17 2
39 10 3
40 12 3
41 14 2
42 14 2
43 14 2
44 12 3
45 16 2
46 10 2

Continued on next page
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Dataset 0 – continued from previous page
Salt ID Length (cm) Width (cm)

47 13 3
48 13 3
49 10 2
50 15 3
51 14 3
52 18 3
53 14 2
54 10 2
55 14 3
56 10 2
57 14 2
58 10 2
59 15 3
60 18 2
61 14 2
62 15 3
63 14 3
64 10 3
65 14 2
66 18 2
67 14 2
68 14 2
69 14 2
70 10 2
71 10 2
72 14 2
73 10 2
74 9 2
75 10 2
76 15 3
77 14 2
78 10 2
79 14 2
80 10 2
81 15 2
82 14 2
83 14 2
84 14 2
85 14 2
86 14 2
87 14 2
88 14 2
89 10 2
90 10 2
91 14 3
92 14 3
93 15 3
94 18 2

Continued on next page
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Dataset 0 – continued from previous page
Salt ID Length (cm) Width (cm)

95 18 2
96 10 2
97 10 2
98 10 2
99 14 2
100 14 2
101 14 2
102 18 2
103 10 2
104 12 2
105 10 2
106 9 2
107 13 3
108 13 3
109 24 2
110 19 4
111 16 3
112 16 3
113 16 3
114 33 2
115 24 2
116 24 2
117 12 3
118 12 3
119 26 1
120 26 1
121 26 1
122 26 1
123 26 1
124 26 1
125 25 1
126 26 1
127 26 1
128 25 1
129 26 1
130 26 1
131 26 1
132 26 1
133 26 1
134 27 1
135 26 1
136 26 1
137 26 1
138 15 1
139 17 2
140 25 2
141 24 3
142 24 3
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Appendix 3 : " Dataset 1 " composed of slats that have the same width, and
a length randomly generated to be equal to a random integer between 50 and
200 cm.

Salt ID Length (cm)
1 76
2 106
3 183
4 117
5 94
6 150
7 130
8 67
9 179
10 178
11 132
12 106
13 165
14 60
15 110
16 197
17 163
18 138
19 177
20 134
21 169
22 105
23 87
24 99
25 54
26 158
27 129
28 157
29 125
30 146
31 122
32 107
33 179
34 94
35 169
36 166
37 117
38 81
39 189
40 183
41 175
42 190
43 146
44 54
45 173

Continued on next page
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Dataset 1 – continued from previous page
Salt ID Length (cm)

46 149
47 163
48 70
49 135
50 180
51 162
52 196
53 182
54 60
55 64
56 109
57 113
58 185
59 112
60 184
61 162
62 177
63 179
64 162
65 196
66 191
67 135
68 200
69 97
70 80
71 78
72 79
73 143
74 80
75 186
76 64
77 103
78 177
79 135
80 68
81 157
82 154
83 76
84 50
85 188
86 177
87 67
88 178
89 154
90 129
91 157
92 162
93 86

Continued on next page
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Dataset 1 – continued from previous page
Salt ID Length (cm)

94 183
95 59
96 186
97 190
98 79
99 96
100 138
101 70
102 172
103 189
104 148
105 179
106 111
107 111
108 86
109 185
110 83
111 119
112 162
113 113
114 73
115 182
116 76
117 69
118 74
119 99
120 135
121 106
122 108
123 56
124 189
125 166
126 101
127 161
128 171
129 117
130 130
131 50
132 114
133 75
134 183
135 150
136 68
137 73
138 113
139 54
140 144
141 183

Continued on next page
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Dataset 1 – continued from previous page
Salt ID Length (cm)

142 193
143 71
144 79
145 185
146 76
147 121
148 74
149 148
150 131
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Appendix 4 : " Dataset 2 " arbitrarily generated manually.

Salt ID Length (cm)
1 70
2 70
3 70
4 70
5 70
6 70
7 70
8 70
9 70
10 70
11 70
12 70
13 70
14 70
15 70
16 70
17 70
18 70
19 70
20 70
21 70
22 70
23 70
24 70
25 70
26 70
27 70
28 70
29 70
30 70
31 110
32 110
33 110
34 110
35 110
36 110
37 110
38 110
39 110
40 110
41 110
42 110
43 110
44 110
45 110
46 110
47 110

Continued on next page
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Dataset 2 – continued from previous page
Salt ID Length (cm)

48 110
49 110
50 110
51 110
52 110
53 110
54 110
55 110
56 110
57 110
58 110
59 110
60 110
61 110
62 110
63 110
64 110
65 110
66 110
67 110
68 110
69 110
70 110
71 110
72 110
73 110
74 110
75 110
76 110
77 110
78 110
79 110
80 110
81 135
82 135
83 135
84 135
85 135
86 135
87 135
88 135
89 135
90 135
91 135
92 135
93 135
94 135
95 135

Continued on next page
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Dataset 2 – continued from previous page
Salt ID Length (cm)

96 135
97 135
98 135
99 135
100 135
101 135
102 135
103 135
104 135
105 135
106 135
107 135
108 135
109 135
110 135
111 135
112 135
113 135
114 135
115 135
116 135
117 135
118 135
119 135
120 135
121 163
122 163
123 163
124 163
125 163
126 163
127 163
128 163
129 163
130 163
131 163
132 163
133 163
134 163
135 163
136 163
137 163
138 163
139 163
140 163
141 163
142 163
143 163

Continued on next page
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Dataset 2 – continued from previous page
Salt ID Length (cm)

144 163
145 163
146 163
147 163
148 163
149 163
150 163
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Appendix 5 : " Dataset 3 " arbitrarily generated manually.

Salt ID Length (cm)
1 70
2 70
3 70
4 70
5 70
6 70
7 70
8 70
9 70
10 70
11 75
12 75
13 75
14 75
15 75
16 92
17 92
18 100
19 100
20 100
21 100
22 100
23 100
24 100
25 100
26 100
27 100
28 100
29 100
30 100
31 100
32 100
33 100
34 100
35 100
36 100
37 100
38 100
39 100
40 110
41 110
42 110
43 110
44 110
45 110
46 110
47 110

Continued on next page
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Dataset 3 – continued from previous page
Salt ID Length (cm)

48 110
49 110
50 110
51 110
52 110
53 110
54 110
55 110
56 110
57 110
58 110
59 110
60 110
61 110
62 110
63 110
64 110
65 110
66 110
67 110
68 110
69 110
70 110
71 150
72 150
73 150
74 150
75 150
76 150
77 150
78 150
79 150
80 150
81 150
82 150
83 150
84 150
85 150
86 150
87 150
88 150
89 150
90 150
91 150
92 150
93 150
94 150
95 150

Continued on next page
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Dataset 3 – continued from previous page
Salt ID Length (cm)

96 150
97 150
98 150
99 150
100 150
101 150
102 150
103 150
104 150
105 150
106 150
107 150
108 164
109 170
110 170
111 170
112 170
113 170
114 170
115 170
116 170
117 170
118 170
119 170
120 170
121 170
122 170
123 170
124 170
125 170
126 210
127 210
128 210
129 210
130 210
131 210
132 210
133 210
134 210
135 210
136 210
137 210
138 210
139 210
140 210
141 210
142 210
143 210

Continued on next page
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Dataset 3 – continued from previous page
Salt ID Length (cm)

144 210
145 210
146 210
147 210
148 210
149 210
150 210
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Executive summary

The two-dimensional problem of creating laminated wood panels with revalorized wood boards
can be likened to Cutting and Packing problems. This problem falls into the domain of combi-
natorial analysis and proves to be NP-hard. The problem has received increase interest in recent
years as the demand for natural resources continues to grow and will continue to do the same over
the coming decades. Moreover, the revalorization of materials such as wood is a solution in line
with the different environmental commitments. It is therefore necessary to provide sustainable
and more circular solutions. Good optimization tools are therefore needed to solve the problem
studied.

In this thesis, I create and test an exact solution to solve the two-dimensional problem of
creating laminated wood panels with revalorized wood boards, thanks to which I prove this
problem to be NP-hard. Therefore, it justifies the development of an approximation method.
The final solution method proposed takes the form of a construction heuristic based on the idea
of strips creation and inspired by Best-Fit algorithms used in Bin Packing. Through extensive
testing, the efficiency and effectiveness of this solution method are demonstrated, particularly
when dealing with a large volume of data. In comparison to exact methods, which may struggle
with scalability, the construction heuristic proves to be a valuable optimization tool for solving
the studied problem.

By providing a sustainable and circular approach to the creation of laminated wood panels
with revalorized wood boards, this research thesis contributes to addressing the resource scarcity
and environmental challenges of the future. The findings of this thesis offer practical insights
for the development of optimized processes in the wood industry and underline the importance
of employing efficient approximation methods to tackle complex combinatorial problems in the
pursuit of sustainable solutions.

Keyword: Optimization, CLT, Glulam, Revalorization, Cutting and Packing Problem, NP-
hard, Combinatorial analysis, Mathematical model, Constructive algorithm, Best-fit
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