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Abstract

This master thesis explores the application of compressive sensing in satellite Earth

observation instruments. Firstly, a general state of the art of compressive sensing is

made by introducing the mathematical concepts and describing some existing designs

that implement the method. The essence of compressive sensing consists in reconstructing

images with fewer measurements than in classical imaging. The method can bring drastic

reduction of data quantity requirements and detector sizes as well as an increase of spatial

resolution. These advantages are particularly interesting in Earth observation instruments

considering the vast amount of data that they generate and the size limitations of satellites.

This is even more considerable in the infrared spectrum where detectors are typically

large.

A deep learning compressive sensing reconstruction algorithm dubbed ISTA-Net+ is

tested an proved to work on satellite multispectral data during simulations. Finally, a

complete compressive sensing experimental chain has been implemented within laboratory

environment. For the reconstruction, the hardware-compressed data could not be passed to

the ISTA-Net+ algorithm, thus a simpler algorithm applying an inpainting using iterative

hard thresholding is applied. The experiment is satisfactory and the method is proven to

work. Nonetheless, the optical system has to be optimized and a more efficient algorithm

must be implemented. Therefore, this work opens the way to further improvements and

investigations.
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1 Introduction

Imaging systems consist in collecting light from a scene and, facilitated by appropriately

designed optics, focusing this light on a detector which will sense (ideally) all photons

collected. These detectors are composed of pixels grids, each of these pixels being a

semiconductor that generates an electric current upon interaction with photons of a

specific range of energy. The size of these pixels along with the distance separating

the scene from the detector determine the spatial resolution of the resulting image. In

traditional systems, an image is acquired by sensing the scene, and integrate the total

quantity of light detected per pixel. If only one wavelength range is detected, the outcome

is a grayscale image where the brighter pixels are those with the most light detected.

Practically, it means that one value is registered by pixel. However, if several spectral

ranges are discriminated, a greater quantity of data is acquired. For instance, a traditional

color image differentiates the visible spectrum into three bands: red, green, and blue.

Consequently, three values are recorded per pixel and, for a detector of the same size, the

quantity of data acquired is tripled with respect to a grayscale image. Thus, the quantity

of data to be acquired is directly proportional to both the number of pixels of the detector

and the number of spectral bands to be distinguished.

Many practical problems in scientific imaging require the acquisition of vast amounts

of data. This is especially true in Earth observation, where a lot of spectral bands are

discriminated, sometimes exceeding 200 for hyperspectral imagers. This leads to challenges

related to data acquisition, storage, transfer, visualization, and analysis, a phenomena

often referred to as ”Big Data”. While lots of methods are currently under investigation

to handle these large data quantities, Compressive Sensing (CS) offers a different per-

spective by aiming to reduce the quantity of data needed to acquire and display images.

The concept relies on the sparsity of natural signals, which allows to reconstruct the

complete signal by detecting only its significant components. This sparse characteristic

is well-known and used to compress acquired data. CS innovates by directly sensing the

compressed data. Essentially, it means that an image may be acquired by measuring less

data than in classical imaging systems. A simplified view of the technique is that some of

the pixels of the image can be hidden by a mask and the full scene can be reconstructed

with the measured ones. Nevertheless, in most cases, several acquisitions are made with

different masks, with the sole requirement that the total quantity of data acquired is

lower than in traditional imaging. In the most extreme case, a single-pixel is sufficient to

reconstruct the images. Consequently, a noteworthy advantage of CS is the reduction in

detector sizes. Each step of the CS acquisition method is extensively developed in this work.

In the modern context of satellite-based Earth observation, the demand for related data
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keeps on growing due to its significance in many sectors such as meteorology, climatology,

agriculture, natural disaster management, or ecosystem studies, among others. This

great need of data leads to problems mostly concerning data storage and transmission

from the space instrument to the ground segment. Furthermore, the development of

Earth observation instruments is limited by the size and mass of detectors. Indeed, larger

detectors are more difficult and expensive to manufacture. Therefore, the CS methodology

can be implemented to reduce both the data quantity and the size of detectors. Moreover,

the fact that the data is directly compressed results in removing the on-board compressors

present in many instruments, thus further reducing the weight and size of the payload.

These problems are particularly present in the domain of InfraRed (IR) imaging where

the detectors tend to be significantly large.

The CS technique is proven both theoretically and in laboratory setup. Nowadays,

many practical applications of the method are undergoing development including space

applications such as rover cameras, stellar spectroscopy, and Earth observation instru-

ments. This work concentrates on the application of CS in satellite Earth observation,

with a particular emphasis on the advantages it offers in the IR spectral range. This

thesis is structured into four main sections. First, a general state of the art of the CS

method is described with a complete mathematical description of the problem and of some

reconstruction algorithms. Additionally, standard CS architectures are also explained.

Second, the specific application of CS for Earth observation is covered with a strong

attention on the IR spectrum. Then, simulations are made with an existing CS algo-

rithm to prove its functionality with Earth observation data. Finally, a complete chain of

CS measurement and reconstruction is developed from scratch in a laboratory environment.

Overall, this thesis aims to contribute to the understanding and practical implementa-

tion of CS in the field of satellite Earth observation, particularly focusing on its advantages

in the IR domain.
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2 State of the art

This first section extensively develops the mathematical origins of the CS methodology in

order to understand the roots of the concept. Afterwards, standard CS architectures are

described to illustrate the technique. Then, the reconstruction algorithms that are used

in this work are described in details. Finally, the concept of super resolution, derived

from the CS method is explained. Overall, the objective of this section is to describe the

different steps of CS while providing examples of its several advantages.

2.1 Mathematical description

Complete mathematical descriptions of the CS method are shown in Ref. [1] and [2], from

which most information of this section come from.

In image and signal processing, the objective is to reconstruct a signal from the measured

data. In the case the information acquisition is a linear process, the problem can be seen

as solving a system of linear equations. In mathematical terms, the relation between

y ∈ Cm the measured data and x ∈ CN the original signal can be written

Φx = y, (1)

with Φ ∈ Cm×N the matrix representing the linear measurement process. Classical algebra

states that m must be at least as large as N , otherwise the system is undetermined and

there is an infinite number of solutions (provided that at least one exists). In other words,

the amount of measured data must be at least as large as the signal length for the signal

to be reconstructed. This can also be related to the Shannon-Nyquist sampling theorem

which states that a signal must be sampled at a frequency at least twice as high as the

highest frequency present in the signal to accurately acquire the entire information.

However, the problem is slightly different when sparsity is considered. A signal is called

sparse if most of its components are zero. In fact, it appears that most of real-world

signals are sparse, or at least can be well approximated by sparse signals. Actually, this

sparsity often appears only after an appropriate change of basis. This property is well

known and is used for file compression, notably for the JPEG, MPEG and MP3 formats.

CS is an innovative technique which tackles the problem the other way around and tries to

acquire directly the compressed data and to reconstruct the full signal from this reduced

information. Mathematically, it means that the signal of size N can be reconstructed

from m measurements with m < N , given that this signal is sparse in some domain. This

corresponds to an ill-posed inverse problem. The CS ratio is then defined by m
N
, the ratio

between the number of acquired data and the signal length. The CS method aims to find

balance between a CS ratio as low as possible and a maximum reconstruction accuracy.

Hence, the standard problem of CS consists in the reconstruction of a sparse vector x

3



from undetermined measurements y = Φx. This leads to two main questions:

1. What matrices Φ are suitable? In other words, how should be designed the linear

measurement process?

2. How can x be reconstructed from y? What are efficient algorithms?

As mentioned previously, the sparse nature of the signal in some basis is crucial to the

reconstruction process. In this context, it is important to introduce the notion of k-sparse

vector. A vector x is called k-sparse if it has at most k nonzero coefficients, or, using the

l0-norm, if ||x||0 ≤ k. To represent this sparsification, the signal vector x can be written

Ψs, with Ψ the N ×N basis matrix, and s the K-sparse coefficient vector (with at most

K ≪ N nonzero coefficients). Therefore, the initial problem may be rewritten

y = ΦΨs+ e, (2)

where the noise e is introduced, including the sensor noise and the model loss; or,

considering a noiseless model and defining Θ = ΦΨ,

y = Θs. (3)

This measurement process is represented in Fig. 1.

Figure 1: (a) CS measurement process with a random Gaussian measurement matrix Φ
and discrete cosine transform (DCT) matrix Ψ. The vector of coefficients s is sparse
with K = 4. (b) Measurement process with Θ = ΦΨ. There are four columns that
correspond to nonzero si coefficients; the measurement vector y is a linear combination of
these columns. From [3].

The main challenge of CS relies in finding the locations of the nonzero entries of x.

If they were known, reducing the matrix Φ to the columns indexed by these locations

would be sufficient. However, not knowing them introduces some non-linearity in the

reconstruction method. A first method to solve this problem would be to search for the

4



sparsest vector x that respects Eq. (1). If the noise is not taken into account, it is equal

to solving the l0 minimization problem

min ||z||0 subject to Φz = y, (4)

with z the best k-sparse approximation of x. Nevertheless, in practice there exists no

efficient algorithm that can solve this general problem for any Φ and any y. Consequently,

one turns to a l1 minimization approach which considers the solution of

min ||z||1 subject to Φz = y. (5)

Now, the question of which matrices Φ allow an efficient reconstruction using an appro-

priate algorithm must still be answered. One widely used property to determine these

matrices is the Restricted Isometry Property (RIP) which is defined as follows:

The restricted isometry constant δk of a matrix Φ ∈ Cm×N is the smallest number

such that

(1− δk)||z||22 ≤ ||Φz||22 ≤ (1 + δk)||z||22 (6)

for all sparse vectors z having no more than k nonzero entries. A matrix Φ is said to

satisfy the restricted isometry property of order k with constant δk if δk ∈ [0, 1].

A related condition called incoherence states that the rows of Φ cannot sparsely represent

the columns of Ψ. Hence, the matrices Φ must satisfy both of these conditions. Verifying

these conditions in practice seems complicated. However, it appears that both can be

achieved by simply selecting Φ as a random matrix [3].

2.2 Compressive sensing imaging devices

Several CS imaging devices have been built and tested in the laboratory. The development

of such systems that exploit CS theory is a considerable challenge since there are many

considerations such as size, cost, reconstruction accuracy, and reconstruction speed. The

imaging system characteristics also depend on the nature of the target signal, one can

easily understand that the measurement method for IR or ultraviolet (UV) light will not

be exactly identical, or at least will not have the same accuracy [4]. Besides the reduction

of the required data measurement quantity, another possible outcome of CS imaging

devices is to use the CS properties to minimize the number of optical pieces in the system.

In some cases, no lenses are used at all. This allows to build cameras of smaller size and

lower mass. In this section are presented the most popular proposed architectures for CS

imagers. But first, Spatial Light Modulators (SLM), used for masking the images in a CS

system, are introduced.
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2.2.1 Spatial light modulators

In any case, CS requires masking the image. In practice, the mask is implemented with

a SLM. By definition, it is an instrument that modulates the intensity of a light beam

according to a control signal. SLMs exist under two main forms: transmissive or reflective.

Transmissive SLMs are designed such that they either pass, block, or attenuate parts of

the incoming beam. The most used are based on Liquid Crystal Display (LCD) in which

the light modulation occurs through the different absorption and refraction properties

of liquid crystals arranged in matrix form. However, due to manufacturing constraints

and physical properties of the liquid crystals, the use of LCD is limited in the visible and

Near IR (NIR) spectral range [5]. On the other hand, reflective SLMs reflect part of the

light, instead of transmitting it. The most popular type of reflective SLM, and that will

also be used in the practical part of this work, is a Digital Micromirror Device (DMD),

sometimes also called digital micromirror arrays. The DMD is composed of an array of

micromirrors. Each micromirror is connected to an individual Static Random Access

Memory (SRAM) , is able to rotate, and can be set in one of two states depending on the

bit value of the SRAM. The two states are similar to simple ’on’ and ’off’ states. In the

’on’ state, the mirror is positioned so that it reflects the light towards the detector, and

in the ’off’ mode it reflects the light away from it, ideally towards an absorbing surface

to avoid stray light from back scattering. This way, different masks can be applied at a

relatively high rate with an appropriate coding, allowing a high-speed acquisition of the

required measurements.

2.2.2 Single-pixel camera

The single-pixel camera is probably the most well-known CS imaging system. It was

developed by Duarte et al.[6] at Rice University. The method consists in applying some

mask that will hide part of the signal produced by the target and then measure the

resulting signal in one single pixel. This means that after passing by the mask, the

resulting light will be entirely integrated and the measurement will represent the total

intensity received on the detector. In other words, random parts (pixels) of the scene

being imaged are hidden and the detector measures the total intensity of the non-masked

pixels. By applying random masks and taking m measurements (with m < N the signal

length), it is possible to use CS image reconstruction methods from these measurements.

In practice, the single-pixel camera is designed to apply masks with a DMD. A schematic

view of a single-pixel camera is shown in Fig. 2.
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Figure 2: Schematic representation of a single-pixel camera. From [1]

2.2.3 Coded aperture imagers

In Coded Aperture Imaging (CAI), wavefronts from a scene are encoded by a mask and

then propagate to a 2-D detector array. It has been shown that if the coded masks are

designed using a pseudorandom construction, then the resulting sensing matrix satisfies

the Restricted Isometry Property (RIP). Afterwards, the knowledge of the coded mask

allows to decode the detected 2-D intensity pattern using deconvolution to retrieve an

image. There also exists adaptive CAI methods which incorporate a reconfigurable mask

(a SLM), providing higher Signal to Noise Ratio (SNR) and spatial resolution, as well as

agile imaging modes. An example of applied CAI is the FlatCam: by placing the mask

extremely close to the detector, it is possible to design a thin, lensless imaging system

[7]. Nowadays, CAI is mostly used at X-ray and γ-ray wavelengths where classical optics

such as lenses and mirrors cannot be used. Indeed, these wavelength are so short and

the radiation so energetic, that the interaction occurs at the molecular level, preventing

an efficient use of lenses and mirrors. Working with CAI at longer wavelengths, such as

thermal IR is more challenging due to several reasons: the existence of a viable SLM

technology at these wavelengths, a poor SNR, and the lack of optical flux concentration.

[4] [8]
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Figure 3: Illustration of the basic adaptive CAI approach. From [8].

2.2.4 Spectral imagers

A classical spectrometer uses diffractive optics such as prisms and gratings to measure

the global spectrum of one target, generally point-like (e.g. a star), in some given spectral

range. Detectors of such instruments are generally set so that each column of pixel

represents one wavelength and only the rows give some spatial indication. However, in

imaging spectroscopy each pixel contains information in the different spectral bands and

represents one corresponding scene element. As a result, data is stored and represented in

the form of a 3-D datacube. This involves a large amount of data to be sensed, especially

for hyperspectral imagers which can sense in sometimes more than 200 spectral bands.

Hence, the use of a CS method could provide a more efficient way to sense these images

by measuring less data. One major challenge in image spectroscopy is to perform a

trade-off between spatial resolution, spectral resolution, light collection, and acquisition

time. Gehm et al.[9] and Arce et al.[10] describe the principles and design for a CS spectral

imager. This system attempts to fully decouple the four operational quantities and is

represented on Fig.4.
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Figure 4: Schematic of the spectral imager. From [9].

The signal enters through the input aperture in the first arm. This first arm contains

a dispersive element and ends with the coded aperture which separates the two arms. Due

to the dispersive element, multiple images are formed in wavelength-dependent locations.

When arriving at the coded aperture, the spatial structure in the plane contains a mixture

of spatial and spectral information about the source. The coded aperture modulates

this information with the applied pattern. Then, in the second arm, the spatial-spectral

mixing of arm 1 is undone and the spatial modulation introduced by the coded aperture

is transformed into a spatial and spectral modulation. Finally, an image of the source is

formed on the detector.

2.3 Reconstruction algorithms

Obviously, having an efficient reconstruction method is extremely important when imaging

via CS. The investigation of different algorithms was the scope of a previous master thesis

done by S. Gramegna at CSL [11]. The different algorithms tested were based either on

total variation (TV) methods or on deep learning (DL) methods. The outcome was that

the DL methods were better in terms of quality and computation time. Therefore, this

work primary focus on a DL algorithm dubbed ISTA-Net+. Nevertheless, for reasons that

will be detailed later, this algorithm could not be used during the laboratory experiment.

Thus, an inpainting algorithm using Iterative Hard Thresholding (IHT) has been used.

Both methods are detailed in the following sections. As mentioned earlier, the sparsity of

the signal is a key element in CS. Hence, the images measured first have to be transformed

into a sparse domain to be reconstructed. This sparsification can be done by TV, wavelet

transform, or Fourier transform (FT). These methods are thus introduced before the

algorithms are detailed.

9



2.3.1 Total Variation

If a fixed tolerance ε for taking the noise of the forward model into account is introduced

in the original l1 minimization problem defined in Eq. (5), the expression becomes

min ||z||1 subject to ||Φz − y||2 ≤ ε. (7)

Whereas Eq. (4), (5), and (7) consist in reversing the problem with a regularization which

is the minimization of the l0-norm of z for Eq. (4) and of the l1-norm of z for Eq. (5)

and (7), the TV method uses the l1-norm of the discrete gradient of the images instead of

the signal itself. The reason being that it turns out that natural images often admit very

sparse approximations in the gradient domain [12]. Indeed, homogeneous zones in images,

which are often large, have a zero value in the gradient domain. A visual example is given

in Fig. 5.

Figure 5: The original Fabio image (left) and the absolute values after application of a
discrete gradient operator (right). From [12]

Stating that zm,n is the value of z in the pixel at position (m,n), the discrete gradients

D1zm,n and D2zm,n are defined as

D1zm,n = zm+1,n − zm,n, (8)

D2zm,n = zm,n+1 − zm,n. (9)

Then, the TV is defined by

||z||TV =
∑√

(D1z)2 + (D2z)2 =
∑

|(∇z)m,n| (10)

10



and the problem can be rewritten

min ||z||TV such that ||Φz − y||2 ≤ ε. (11)

There are two types of total variation algorithms to reconstruct compressive sensed

images: by nonlocal regularization and based on the augmented lagrangian. As mentioned

earlier, these algorithms are already tested and proven less efficient than the DL methods.

Therefore, they will not be developed in this work.

2.3.2 Wavelet transform

Wavelet transforms can be seen as be seen as a complement to classical Fourier decompo-

sition method. As a reminder, a FT is defined as

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt, (12)

where ω is the frequency, t the time, and f the signal. The FT is used to transform a signal

from the time domain to the frequency domain. This means the resulting function will

present information about which frequencies are present in the signal but no information

about the time at which these frequencies are present. In order to acquire both frequency

and time information, the short-time FT (STFT) is introduced as

STFT (τ, ω) =

∫ ∞

−∞
s(t)w(t− τ)e−iωtdt, (13)

which is the FT of the signal s(t) previously windowed by the function w(t) around

time τ . This may be viewed as applying FT on subsamples (or windows) of the signal,

providing frequency information for different time ranges in the signal. Thus, information

is acquired about both frequency and time. However, the resulting frequency resolution

will be reduced with respect to the classical FT. Indeed, taking a shorter time window

means a lesser number of samples used in the FT. With fewer discrete frequency intervals,

it is significantly more difficult for the transform to discriminate the different frequencies.

In other words, a shorter time window means higher time resolution but lower frequency

resolution, and inversely. The relationship between the time and frequency resolution is

described, as in many physical problems, by the uncertainty principle

∆t∆ω ≥ 1

4π
, (14)

with ∆t the time resolution and ∆ω the frequency resolution. This means that both

resolutions cannot be made arbitrarily small.

The STFT describes the decomposition of s(t) in the windowed basis function w(t−τ)e−iωt.
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However, these basis functions can vary and a general form of the STFT equation can be

written in terms of basis function kτ,ω and signal s(t) as an inner product

STFT (τ, ω) =

∫ ∞

−∞
s(t)kτ,ωdt. (15)

The Wavelet Transform (WT) is then defined in the same manner. Generally, the frequency

ω is replaced by the scale variable a = 1/ω, the time-shift τ is represented by b, and the

basis function for WTs is

kb,a(t) =
1√
a
γ

(
t− b

a

)
(16)

and the continuous wavelet transform (CWT) is defined by

CWT (b, a) =
1√
a

∫
γ

(
t− b

a

)
s(t)dt, (17)

where γ(t) is the wavelet. By definition a wavelet is a small wave, or more precisely an

oscillation that decays quickly. Typical transform basis functions are shown in Fig. 6. [13]

Figure 6: Real part of typical transform basis functions: (a) STFT, (b) WT. From [13].

Discrete Wavelet Transforms (DWT) can be computed by sampling the WT at discrete

values of a and b, it thus have the form

DWT (b, a) =
1

a

p−1∑
m=0

s(tm)γ

(
tm − b

a

)
. (18)

On one hand, high frequency values (low a) will have significant corresponding wavelet

coefficients, called detail coefficients. On the other hand, low frequency values (high a) will
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have smaller corresponding coefficients, called approximation coefficients. In the end, this

enables to discriminate the different frequencies present at different times in a signal. In

image processing, the time dimension is replaced by spatial dimensions and it is possible

to perform a 2-dimension WT. In this case, the WT will yield few significant coefficients

around discontinuities, whereas the FT would yield many significant coefficients, thus

achieving a better sparsity [14].

2.3.3 Inpainting using IHT

Inpaiting consists in filling holes in images, thus corresponding to a ill-posed inverse

problem. Considering the measurements y = Φx+ e with Φ the masking operator, x the

complete image, and e the noise. This algorithm uses sparsity in the form of a sparse basis

Ψ to reconstruct the images. In fact, here Ψ is the matrix of wavelet transform defined in

the previous section. Hence, the regularization computes a sparse set of coefficients (s∗m)m

in a frame Ψ = (ψm)m that solves

s∗ ∈ arg min
s

1

2
∥y −ΦΨs∥2 + λJ(s), (19)

where λ is the parameter that will be used as a the hard threshold and that should be

adapted to the noise level. Its value is decayed during the iteration process. During this

work, damaged observations will be considered but the original signal is not noisy. Hence,

in this case, the signal is considered noiseless, i.e. e = 0. J(s) is the l1 sparsity prior

J(s) = ∥sm∥1. (20)

Therefore, s∗ is the wavelet coefficient vector of the sparse signal to reconstruct (Ψs).

Thus, when this regularization is solved, the corresponding inverse DWT is applied on s∗

to retrieve the reconstructed image.

In practice, this algorithm combines a gradient descent and a hard thresholding using a

decaying threshold. The hard thresholding hT with threshold T is defined as

hT (x) =

x if x > T

0 if x < T
(21)

thus defining a thresholding operator HT (f) = hT (sf ), where sf is the wavelet coefficient

vector of the DWT of the imagef . The algorithm computes a series of images f (l) as

f (l+1) = Hλl
(f (l) − (Φf (l) − y)), (22)

where f (l) − (Φf (l) − y) is the gradient descent step. The initial image f (0) can be set

as the inverse DWT of the wavelet coefficients of y thresholded by λ0, i.e. the highest
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threshold value that will be used during the iterations. By using decaying threshold values

λl for a number iteration defined a priori, the algorithm can converge to a solution [15].

2.3.4 Iterative Shrinkage-Thresholding Algorithm-Net

A complete algorithm using a DL image reconstruction method, called Iterative Shrinkage-

Thresholding Algorithm-Net (ISTA-Net), has been developed and implemented in Python

by Zhang and Ghanem [16]. The architecture is based on the traditional ISTA which

optimizes a general l1 norm CS reconstruction model and introduces it into a deep neural

network. Particularly, the ISTA-Net algorithm is composed of a fixed number of ISTA-like

iterations.

The traditional ISTA algorithm aims to solve the following reconstruction problem

min
x

1

2
∥Φx− y∥22 + λ∥Ψx∥1 (23)

by implementing the following iterative steps. First the gradient-descent method

r(k) = x(k−1) − ρΦT (Φx(k−1) − y) (24)

and second, the regularization by l1-norm minimization, which is equal to a soft thresh-

olding with threshold λ

x(k) = arg min
x

1

2
||x− r(k)||22 + λ||Ψx||1, (25)

where k is the ISTA iteration index, ρ the step size, Φ the measurement matrix, Ψ

the matrix that transforms x to a sparse domain, and λ the regularization parameter

(generally pre-defined). While it is relatively easy to solve Eq. (25) when Ψ is orthogonal,

it becomes more complex for a non-orthogonal, or even nonlinear transform. Another

challenge is that the optimal transform Ψ, the step size ρ and the parameter λ are defined

a priori and are difficult to tune. Moreover, ISTA generally requires a lot of iterations to

yield a satisfying result, giving rise to a higher computation time. Nevertheless, ISTA is

very well suited for solving large-scale linear inverse problems such as the CS reconstruction.

ISTA-Net takes advantage of all ISTA merits while solving the problem of parameters

optimization. The idea is to build a deep network architecture composed of a fixed

number of phases, each phase corresponding to one ISTA iteration. A representation of

the algorithm is shown in Fig. 7.
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Figure 7: Illustration of the ISTA-Net framework. From [16].

Whereas ISTA uses a hand-crafted transform Ψ, ISTA-Net employs a general nonlinear

transform function F(·), whose parameters are learnable, to sparsify natural images. It

is composed of two linear convolutional operators separated by one rectified linear unit

(ReLU). Each convolutional operator corresponds to Nf filters. Thus, in matrix form:

F(x) = BReLU(Ax) with A and B the two convolutional operators mentioned above.

Replacing Ψ in Eq.(25) with F(·), it becomes

x(k) = arg min
x

1

2
||x− r(k)||22 + λ||F(x)||1. (26)

Now, admitting that in the k-th ISTA iteration, Eq.(24) and (26) both have efficient

solutions, one can cast them into two different modules.

1. The r(k) module used to generate the immediate reconstruction result r(k). A change

with respect to traditional ISTA is that the step size is variable to increase the

network flexibility. Therefore, the final output of this module is

r(k) = x(k−1) − ρ(k)ΦT (Φx(k−1) − y). (27)

2. The x(k) module which uses the first module as input in Eq. (26) to compute x(k).

Supposing that r(k) and F(r(k)) are the mean values of x and F(x) respectively,

one can write1

||F(x)−F(r(k))||22 ≈ α||x− r(k)||22, (28)

with α a scalar related to the parameters of F(·). Injecting this expression into Eq.

(26) yields

x(k) = arg min
x

1

2
||F(x)−F(r(k))||22 + θ||F(x)||1, (29)

1Please refer to [16] for a more complete mathematical description of this step which goes beyond the
scope of this work.
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where θ = λα.

In addition, the left inverse of F(·) is introduced with the notation F̃(·) such that

F̃ ◦ F = I, the identity operator. Since both functions are learnable, incorporating

this relation in the loss function during network training imposes a symmetry

constraint allowing x(k) to be computed more efficiently. More precisely, solvin Eq.

(29) allows to find F(x(k)) which corresponds to a soft thresholding of F(r(k)) with

threshold θ

F(x(k)) = soft(F(r(k)), θ), (30)

where soft(·, ·) is the soft thresholding operator. Then, x(k) can be efficiently

computed by applying the inverse operator

x(k) = F̃(soft(F(r(k)), θ)). (31)

Finally, it must be noted that F(·), F̃(·), and θ are not constraint to be the same

at each phase. Therefore the output of this module should be adapted as

x(k) = F̃ (k)(soft(F (k)(r(k)), θ(k))). (32)

To summarize, the learnable parameter set is composed of the step size ρ(k), the

parameters of the forward and backward transforms F (k)(·), F̃ (k)(·), and the shrinkage

threshold θ(k). They are learned as neural network parameters.

An enhanced version of ISTA-Net, dubbed ISTA-Net+ has been created to further

improve the reconstruction accuracy. Without going into details, it considers some missing

high-frequency component in r(k) and some noise in the expression of x(k). This leads to

the introduction of more learnable linear operators, increasing accuracy but also computa-

tion time. One phase of ISTA-Net+ is represented in Fig.8.

Figure 8: Illustration of the k-th phase of the proposed ISTA-Net+. D(k),G(k),H(k), H̃(k)

are learnable linear convolutional operators. From [16].

ISTA-Net+ is freely available on Github and is the algorithm that will be used in the

practical parts of this work to reconstruct the images. It is important to mention that
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the code is built to preprocess the data by simulating the CS acquisition technique. This

allows to assess the efficiency of the algorithm on different images without having to do

the CS hardware acquisition. It does that by applying sets of masks on the input images.

Each mask can modulate the signal by applying a matrix product between the image and

the mask. The resulting signal then goes through the pre-trained model to be reconstructed.

More recently, You, Xie, and Zhang [17] have developed and implemented an even

more improved version of the algorithm named ISTA-Net++, with superior performance

and flexibility. Another advantage is that it can handle CS problems with different ratios

(multi-ratio tasks) through a single model. Unfortunately, this version of the algorithm is

not completely available yet.

2.4 Super resolution

Most imaging applications aim to have the highest image resolution possible since a higher

resolution means more details and thus more information. The most evident manner to

increase resolution is to reduce the size of pixels, consequently increasing their number per

unit of length. This has limitations since the smaller the pixel, the less light it receives,

and the SNR decreases, which at some point may severely degrade the image quality. One

promising approach to resolve this is the so-called super resolution image reconstruction,

sometimes also referred to as resolution enhancement in the literature. This method

provides a cheap and efficient solution that can be applied to most existing imaging

systems. The basic idea of super resolution is to obtain a final image with a higher

resolution than the sensor resolution. This is done thanks to a SLM with a number of

elements N×N times greater than the number of elements of the detector. That way, each

pixel of the detector is associated with a different group of N ×N SLM elements. Then,

by taking several measurements where a different binary coding mask is applied on the

SLM and using appropriate reconstruction methods, it is possible to obtain a final image

of the same resolution as the SLM. Therefore, the amount of data acquired is inferior

to classical imaging methods (compressed) if the number of carried out modulations is

lower than N ×N . In this case, one can talk about CS imaging and the super resolution

factor is defined as the ratio between the number of SLM micropixels and the number of

detectors

SRfactor =
N ×N

# of detectors
. (33)

This can be seen as an extension of the single-pixel camera concept to a multi-pixel camera.

[18] [19]
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3 Compressive sensing in the context of Earth obser-

vation

3.1 Earth Observation

As a major part of this thesis investigates the application of the CS method to Earth ob-

servation satellites, it is necessary to understand the working principles of such instruments.

Earth observation from space began in 1959 when NASA’s probe Explorer 6 took the

first image of the Earth from space. Back then, a black and white imager was used since it

was the only available resource to make space observations. But since then, technologies

have evolved a lot with the development of color photography, multispectral imagers, and

more recently hyperspectral imagers. Sensors designed for Earth observation now exist in

spectral ranges from the blue to the microwave (radar). Over the years, Earth remote

sensing has proven to be an extremely valuable source of information in various domains

such as meteorology, climatology, agriculture, geology, geography, hydrology, study of the

atmosphere and of ecosystems, to cite a few.

3.1.1 Nature of the signal

To observe the Earth from space, it is crucial to have knowledge about the nature of the

observed signal if one wants to understand the data. There exists two ways of sensing the

Earth remotely: active and passive systems. Active systems send their own signal and

measure what is reflected by the Earth. The geometry and proportion of reflected light at

different wavelengths can be used to retrieve information about the target such as its size,

shape, and composition. These systems are mostly used in radar technology to observe in

the microwave domain. Passive systems, on the other hand, do not send any signal but

measure natural signals that can be either the reflection of the Sun emitted light or the

radiation directly produced by the Earth (in the thermal IR domain). Most instruments

working in the visible and IR domains are passive systems. To properly analyze their

data and compute the reflectance of the target, it is thus essential to know the spectrum

of the emitted light. Indeed, the quantity of radiation emitted by the Sun and by the

Earth are not equivalent at every wavelength. It is described by Planck’s law of black

body radiation

L(λ, T ) =
2hc2

λ5
1

e
hc

λkT − 1
, (34)

with L the spectral radiance, h Planck’s constant, c the speed of light, λ the wavelength,

T the temperature, and k Boltzmann’s constant. Therefore, the quantity of emitted light

is directly wavelength and temperature dependent. The radiation spectrum of the Sun
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and the Earth are represented in Fig.9.

Figure 9: Radiation spectrum of the Sun and the Earth following Planck’s law. The mean
surface temperatures used are 5778K and 288K respectively.

By looking at the differences of the two axes between the Sun’s and the Earth’s

spectrum, it is obvious that the peak occurs at a longer wavelength and a lower inten-

sity for the Earth, due to the temperature difference. This peak actually occurs in the

region of the thermal IR which allows to passively sense the Earth in this spectrum.

These spectra can be used to normalize the flux detected by the sensor and retrieve

the true reflectance of the target. However, it must still be corrected for atmospheric

effects beforehand. Indeed, the different components of the atmosphere will absorb or

scatter part of the light received from the Sun, thus degrading the original signal. For

example, the stratospheric ozone absorbs a large part of the UV light. While this is

of primary importance for life development and survival on the surface, it makes it

impossible to observe the Earth surface in the UV domain. This absorption occurs at

various wavelengths with different molecules such has water, carbon dioxide, or methane.

This leads to atmospheric windows in the optical spectrum where some wavelengths go

through, some are partially absorbed, and others totally absorbed. This is shown in Fig.10.
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Figure 10: Atmospheric absorption as a function of wavelength. From [20].

These atmospheric effects can be used to directly sense the atmosphere and its compo-

sition. However, if the target is on the ground, they must be corrected in the measured

signal. In the end, after correcting for these atmospheric effects and taking into account

the non-uniform spectrum of light arriving from the Sun, the actual reflectance at different

wavelengths can be computed.

3.1.2 Sensor requirements

A sensor can be characterized by three main parameters: the spatial resolution, the

spectral resolution, and the radiometric resolution. In Earth observation, the objective

is to have the best spatial resolution combined with a good spectral and radiometric

resolution, depending on the mission of the sensor.

First, the radiometric resolution relates to how much information is perceived by a

detector. More precisely, it is the minimal photon counting difference that an optical

system can measure. Thus, it is directly related to the total number of photons that

can be detected per pixel. For instance, in a grayscale image, the higher the radiometric

resolution, the more shades of gray will be displayed. Digitally, it is related to the number

of bits on which the information is recorded, i.e. a 16-bit image has a higher radiometric

resolution than a 4-bit image. [21]

The spatial resolution of a sensor is characterized by the Point Spread Function (PSF)

which represents how the light is spatially perceived from a point source by the detector.
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More specifically, it is the spatial domain version (i.e. the inverse FT of the Optical

Transfer Function (OTF) of an imaging system. The OTF is the function that specifies

how different spatial frequencies are captured or transmitted through an optical system.

A generic representation of a PSF is shown in Fig. 11

Figure 11: General representation of a PSF. From [22]

The quality of the PSF is characterized by the Full Width at Half Maximum (FWHM)

of the central peak. A smaller FWHM indicates a better PSF. The PSF depends on the

wavelength of the observed light and on the optical parameters of the instrument. The

PSF may also be used to define the spatial or angular resolution of an instrument. The

Rayleigh criterion states that two points are resolved if the peak of the first point’s PSF

is no closer than the first minimum of the other point’s PSF. This is shown visually in

Fig. 12.

Figure 12: Rayleigh criterion for the resolution. From [23].
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Mathematically, this angular resolution for a circular aperture is expressed

sinθ ≈ θ = 1.22
λ

D
(35)

using the small-angle approximation and where λ is the wavelength, and D the aperture.

[23]

Concerning the spectral resolution, one can distinguish different types of imaging

modalities. The most simple imagers are panchromatic which means that they collect light

over some spectral range, then integrate over this range to yield the total light collected

per pixel. This allows to display images in grayscale, the pixels with less light collected

being darker and inversely. The problem of these simple panchromatic systems is that

their spectral information content is very low. Therefore, multispectral sensors are very

often preferred. They operate in the same way as panchromatic sensors except that instead

of integrating all collected light over one large spectral range, the sensor collects and

integrates the light in several narrower spectral bands centered on different wavelengths.

The separation of the different wavelengths is done either with filters disposed on different

areas of the detector or with dispersive elements as in classical spectrometers. This

is the concept used for color photography: by collecting in one band centered one the

red wavelength, one on the green, and one on the blue, it is possible to create a RGB,

also called true color, image. This concept is not limited to visible light and modern

multispectral imagers often have around 10 spectral bands in wavelength ranges going

from the blue to the middle or far IR. Indeed, collecting light in the IR spectrum also

brings relevant scientific information. The most common example being the Normalized

Difference Vegetation Index (NDVI) which is an indicator of vegetation health [24]

NDV I =
NIR−RED

NIR +RED
. (36)

Here, NIR represents the measured reflectance in the Near IR (NIR) and RED the mea-

sured reflectance in the red. A healthy vegetation produces more chlorophyll which has a

very high reflectance in the NIR. Hence, if the vegetation is sick or dying it will produce

less chlorophyll, the reflectance in the NIR will decrease and so will the NDVI index.

To increase even further the spectral information content of images, hyperspectral

imagers were developed. This is still today a booming field of research and development

with more and more implementations on space probes. Hyperspectral instruments work

with the same principle that multispectral images except that the spectral bands are much

more numerous, narrower, and contiguous. Most of these sensors have more than 200

bands that allow to reconstitute a near continuous spectrum of the target. The difference
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between the panchromatic, multispectral, and hyperspectral sensors is illustrated and

summarized in Fig. 13.

Figure 13: Spectral resolution of different sensors. From [24].

It is important to note that as the number of spectral bands increases, each band

becomes narrower, resulting in a decrease in the number of photons collected by each

band. To maintain a sufficiently high SNR, the size of the pixels on the detector must

be increased to collect more light. Therefore, an increase in spectral resolution typically

results in a decrease in spatial resolution. [20]

3.1.3 Acquisition modes

When acquiring spectral images, both multi- and hyperspectral, one cannot measure the

signal in the whole scene and in all spectral bands at the same time since it implies to

measure three-dimensional data (two spatial and one spectral dimension) with a two-

dimensional detector. Two methods exists to acquire these spectral images. The first one

is the Push-Broom (PB) mode. In this mode, the sensor scan the scene along-track line

by line, i.e. a line of pixel is scanned and the spectral differentiation is done by dispersive

optics or filters. The satellite motion is then used to scan the whole scene. On the other

hand, the Whisk-Broom (WB) mode scans the scene pixel by pixel across-track using a

rotating scan mirror. Then, it also uses the motion of satellite to scan the entire scene.

While the mechanical systems of PB sensors are more simple than WB sensors, they have

more complex optical systems since more detectors are needed. This may also lead to

problems due to the varying sensitivity of the individual detectors. However, an advantage

of the PB mode is that it allows to gather more light because the sensor spends more

time on the same area.
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Figure 14: PB and whisk-broom acquisition modes. From [25].

3.2 Some considerations about compressive sensing in the in-

frared

The CS technique presents considerable advantages in IR imaging. Indeed, when observing

at long wavelengths, notably in the middle or thermal IR, the optical flux is reduced.

Hence, the number of photons collected per unit of area decreases with respect to shorter

wavelengths. Having a satisfying SNR at long wavelengths thus requires larger pixels

to collect more light. This results in the need for large focal plane arrays to reach

adequate imaging performances. As a consequence, the required detectors are expensive

and spatially extended, which is prohibitive in terms of manufacture and application,

especially for space implementation. Hence, CS could help to overcome this problem

since identical or better resolutions can be achieved with detectors containing less pixels.

However, some challenges arise when applying CS in the IR domain. The most important

is the development of a viable SLM technology for the Thermal IR (TIR). Another one

is the lack of optical flux concentration which results in a low SNR and unsatisfying

performances. A possibility to overcome this issue is to add light concentration optics in

the optical train, between the SLM and the detector. Even though this is relatively easy

to implement, it prevents the design of lensless cameras which is a possible outcome of

CS technology. [8] [26]

The rest of this section addresses the specific case of each IR spectrum sub-region, i.e.

their different advantages and challenges in the context of CS and Earth observation.

3.2.1 NIR-SWIR

While no absolute definition exists, one may consider that the near IR (NIR) extends

from around 700 nm to 1.3 µm and the short-wavelength IR (SWIR) extends from around

1.3 µm to 3 µm. These wavelengths are still relatively close to the visible spectrum so
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there is usually no big differences in the signal’s treatment, except the need for slightly

larger detectors and a slightly lower spatial resolution. This sub-region of the IR spectrum

is often called the reflective IR since the Sun still emits photons at these wavelengths

and reflection from the Sun’s emission can thus be measured. Therefore, observing

in this region allows to acquire useful information in many contexts, including Earth

observation. As mentioned previously, acquiring a target’s reflectance in the IR domain

with multispectral or hyperspectral sensors provides data that can be used to compute

indexes such as the NDVI, but also the Normalized Difference Moisture Index (NDMI).

The latter compares the NIR and SWIR values to detect moisture contents in leaves

NDMI =
NIR− SWIR

NIR + SWIR
. (37)

Water has strong absorption lines in the SWIR region and a dry leaf has a lower reflectivity

in the NIR region. Therefore, vegetation with high water content will have a higher NDMI.

The NDVI and NDMI are just simple examples of the numerous applications resulting

from Earth observation in the NIR-SWIR. Applying the CS methodology in this spectrum

could drastically reduce the cost and size of the detectors.

3.2.2 TIR

TIR refers to the thermal IR range which is composed of two main windows: the Mid-

Wavelength IR (MIR) which typically refers to the region of the electromagnetic spectrum

between 3 and 5 µm, and the Long Wavelength IR (LWIR): which ranges from 8 to

approximately 14 µm. Between these two sub-regions is an atmospheric absorption

window, which is thus often not considered in Earth observation. Remote sensing of the

Earth in the TIR spectral range is useful to measure self-emission coming from sources on

the surface. These sources can be hotspots such as active fires or volcanic activities in

the MIR, or cooler bodies such as vegetation self-emission in the LWIR2. A few examples

of variables that can be measured in this spectral region are land surface temperature,

atmospheric composition, or ocean temperature and composition. It can also be used to

detect and monitor wildfires, in precision agriculture, and ecosystems monitoring. The

main challenge of TIR imaging is the difficulty to achieve high resolution, typical to these

long wavelengths. The lack of optical flux concentration results in a decrease in SNR of

∼ 1√
M

,with M the number of pixels of the detector, leading to inadequate performances.

Also, TIR detectors must often be cooled down to avoid detection of their own emission.

TIR imagers are an active field of research and development, mainly to achieve better

spatial resolutions. The CS methodology has great potential in this field considering its

upsides of smaller detector arrays and super resolution. However, developing an efficient

2NB: Sometimes the TIR denomination is used to characterized only the spectral region around the
Earth thermal emission, i.e. the LWIR region.
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SLM technology is complex at these wavelengths due to diffraction effects.

3.3 State of the art of compressive sensing in the infrared

In this section, several architecture developments aimed at applying CS in various bands

of the IR are presented. Except for the first one, all those presented are in view of

space applications, mostly for Earth Observation. The objective is to show the present

capabilities of CS imagers in the different IR regions.

3.3.1 InView single-pixel camera

McMackin et al. [27] managed to develop a high-resolution CS camera working in the

range from 900 nm to 1.7 µm. They used the InView single-pixel camera architecture

which is composed of an imaging system, a DMD to modulate the signal, and then

optics to condensate the resulting light on the single-pixel detector. This architecture is

represented in Fig. 15.

Figure 15: Schematic of the InView single-pixel camera architecture. From [27].

The DMD is composed of 1024 × 768 pixels, each of them being a micromirror that

can be switched to ’on’ and ’off’ modes individually. This is done by the DMD Pattern

Generation Board which carries a field-programmable gate array to generate patterns

according to the required CS ratio and deliver them to the DMD. They managed to

use the super resolution method with a SWIR single element detector and the DMD to
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reconstruct images of 1024 × 768 pixels. The experiment showed that SWIR images

could be reconstructed with good fidelity with a compression ratio up to 90% using a TV

reconstruction algorithm.

3.3.2 The SISSI instrument

The SISSI instrument is an on-going study of a super-resolved compressive multispectral

imager for Earth observation in the medium IR spectral region. The concept is described

by Raimondi et al. [19] and funded by the Italian Space Agency. The principle is inspired

by the single-pixel camera and uses the super resolution method. It is composed of

collection optics (the telescope), a DMD, focusing optics and a detector. The telescope

collects the light from the scene and send it on the DMD which acts as a SLM with

suitably coded binary masks, different for each frame. The light is focused on the detector

by the focusing optics. The detector is composed of M × M macro-pixels. Each of

those correspond to a group of N × N micro-mirrors on the DMD. Each micro-pixel

represents the super-resolved ground sampling distance (GSD). The acquisition of the

same scene in different spectral bands is obtained with spectral filters on the detector,

disposed along the across-track dimension, combined with the along-track apparent move-

ment of the scene (PB acquisition mode). The working principle of SISSI is shown in Fig.16.

Figure 16: Working principle of the super-resolution of SISSI optical instrument. From
[19].

The technical specifications of the SISSI payload, based on the analysis of end user

requirements and a market survey to identify elements available, is shown in Table 1.
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PARAMETER VALUE
Acquisition mode PB (slitless)
Operational working spectral range (µm) 3-4 (MIR)
Nr. of spectral bands 4
Spectral band central wavelengths (µm) 3.3, 3.5, 3.7, 3.9
FWHM (nm) 100 at 3.5, 3.7, and 3.9 µm, 200 at 3.3 µm
Nominal GSD (m) 15.0
Nominal altitude (km) 700
Nr. of micropixels (across track) 1024
Swath across track (km) 15.36
Super-resolution factor 4× 4
SNR 100 at 1000K
Integration time (ms) 2-4
Detector MARS by Sofradir/Lynred
SLM DMD by Texas Instruments Inc.

Table 1: Main technical specifications of the SISSI payload. From [19].

3.3.3 The SURPRISE demonstrator

The SURPRISE (SUper-Resolve comPRessive InStrument in the visible and medium IR for

Earth observation application) demonstrator aims to describe how to use SLM technology

and CS to improve the performance of Earth observation super-spectral payloads in the

visible, NIR and MIR. It is described by Raimondi et al. [28]. SURPRISE is based on

essentially the same working principle as SISSI with two major differences. First, the

detector is a single-pixel detector. Second, the instrument is conceived as a WB spectral

imager with ten channels in the VIS-NIR and two channels in the MIR. The instrument

relies on the super resolution concept and is designed to ensure a super resolution factor

of at least 4× 4 and that can rise up to 32× 32. At the beginning of the measurement

sequence, a portion of the scene (target) is seen by the instrument’s instantaneous Field

Of View (iFOV). Then, an appropriate modulation mask is applied on the SLM and a

new acquisition by the detectors is triggered. Once, the integration time of all detectors

has run, a new acquisition is made with a different modulation mask. This operation is

repeated until the required number of CS measurements is reached. After that, a new

portion of the scene is seen by the iFOV and the measurement process is repeated until

the full scene is scanned. The simplified optical layout of the SURPRISE demonstrator is

shown in Fig. 17.
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Figure 17: Optical layout of the SURPRISE demonstrator. From [29].

3.3.4 MIR camera for sky observation and real-time detection of NEOs

The proposed instrument is inspired by the NEOWISE project funded by NASA’s Planetary

Science Division that detects the presence of asteroid and comets from images acquired by

the WISE spacecraft. The instrument concepts aims at using CS properties to combine

the sky survey image acquisition and on-board detection of Near Earth Objects (NEOs),

instead of doing the processing and data-mining at ground. The idea behind it is that

this type of images is expected to be very sparse in the pixel domain, making the use of

CS relevant. The optical concept is rather simple and shown in Fig. 18.

Figure 18: Diagram of the camera operating in the TIR for sky observation and real-time
detection of NEOs. From [30].

The proposed payload has four principal elements: a telescope, a SLM, a condenser lens

and a single-element detector. The detector is a single-pixel CS-based panchromatic camera

working at 3-5µm. This working wavelength range makes it necessary to have a payload

cooled down to about 150◦K. Concerning the SLM, a DMD was initially investigated.

The main drawback was the minimum working temperature of 233◦K, incompatible with

the temperature requirement of the payload. For this reason, a transmissive coding mask

is used. The expected mass and volume reduction of the payload relative to traditional

instruments is rather limited (about 1-kg mass reduction). The major advantage of the
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CS approach is expected in terms of data transmission requirements.[30] [31]

3.4 The problem of satellite motion

One drawback of the CS method is the increase of acquisition time. Indeed, since several

images must be acquired with different masks to reconstruct the complete scene, it takes

more time than in classical imaging. This time is hardware dependent since it results

from the integration time of the detector and the SLM framerate. This limitation can

easily be overcome in laboratory systems, where the exposure time can be adapted to the

available hardware. However, in satellite Low Earth Orbit (LEO) conditions, the rapid

motion of the instrument restricts the exposure time. In fact, the dwell time, i.e. the

time a sensor element covers one sampling distance, is set by the platform characteristics,

which depend on ground velocity and GSD. In CS the spatial resolution increases with

the number of mask patterns applied. But, when the dwell time is limited, increasing the

number of masks results in decreasing the exposure time per pattern, with degradation

of image quality or even infeasibility. In this context, the effect of satellite motion on

the reconstruction quality of CS images has been studied in more details by Oggioni et

al.[32]. The research compared the reconstruction quality of static images and (simulated)

moving images. The authors used Landsat-8 data to compare spectral bands in the visible,

NIR and TIR. The simulation mimics a PB imager. In addition to comparing static and

moving scenes, the classic PB imaging has been compared with the PB CS technique.

The figure of merit used is the Reconstruction Error (RE)

RE(%) =
∥ũ− u0∥F
∥u0∥F

× 100, (38)

where ũ is the reconstructed image, u0 the original image, and ∥u∥F denotes the Frobenius

norm defined as

∥u∥F =

√√√√ q∑
i=1

p∑
j=1

|uij|2. (39)

To simulate the moving scene, a downsampling approach is applied, working as follows.

A macropixel composed by P pixels is considered as the sensing pixel (P is in the order

of a few tens). Hence, the field of view (FOV) is represented by N × 1 macropixels. The

movement of the scene is simulated by shifting the image one pixel along track at any

instant. It takes a time equal to the dwell time for the FOV to move to the following

macropixel. This approach is represented in Fig. 19.
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Figure 19: Schematic of the simulation in case of a moving scene. From [32].

After one dwell time, a set of frames is obtained. Two acquisition methods were

compared. First, the classical PB acquisition mode where all the frames are summed up

and the intensity inside the micropixel is integrated. Second, the PB method is combined

with the CS approach. A 1-D mask is applied to each macropixel column and then the

line of macropixels is reconstructed using a TV algorithm. The reconstruction errors were

evaluated for both methods and as a function of the parameter τ defined as the ratio

between the acquisition time and the dwell time. The results are presented in Fig. 20.

Figure 20: Reconstruction error in the green channel as a function of τ . From [32].

In case of the PB CS ,τ is equivalent to the CS ratio m/N , i.e. it takes the dwell time

to acquire N patterns. In any case, the classical PB yields better results than the CS
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one. The RE increases with τ in the PB mode because the scene is more stable when the

acquisition time is shorter. Generally, in classical PB acquisitions, the acquisition time

is shorter than the dwell time to avoid image degradation due to the satellite motion.

Nevertheless, in the CS mode the RE decreases when τ increases. Indeed, an increase of τ

means that more data is acquired, and when τ = 1 the measured signal as the same length

as the signal and the method is thus equivalent to classical imaging in terms of quantity

of data acquired. Hence, the reconstruction quality increases since the reconstruction

basis is more complete. In the end, if the RE is worse with the CS method it is because

since the scene is moving, the last masks are applied to a very different field of view than

the first ones, thus the reconstruction accuracy is worse. Therefore, care must be taken

when applying CS in Earth observation. The quantity of patterns to apply and/or the

framerate of the SLM used must be chosen adequately so that the acquisition time is

low enough and the satellite motion does not degrade the image. However, as explained

earlier, the lower the quantity of data acquired, the less precise is the reconstruction, thus

a trade-off must be performed. It must also be noted that this problem of satellite motion

disappears if it is placed in geostationary orbit. Nevertheless, in this orbit the satellite is

further away from the Earth than in LEO, resulting in a decrease of spatial resolution.

Moreover, the satellite can only cover one part of the globe and a constellation must be

formed if the objective is to cover the entire planet.

3.5 Compressive hyperspectral remote sensing

CS shows great potential in hyperspectral Earth observation. Hyperspectral imagers

collect information in three dimensions: two spatials and one spectral. They often have

more than 200 spectral bands, resulting in large datacubes containing the information.

Hence, the hyperspectral data files can reach sizes up to a few gigabytes for a single image.

A successful implementation of the CS method in hyperspectral imagers could therefore

drastically reduce the quantity of data to acquire. A few designs for such sensors have

already been proposed. Depending on the architecture, the compressive measurement can

be applied only in the spectral dimension, in the spectral and one spatial dimension, or in

the spectral and both spatial dimensions. Fowler [33] proposes architectures for PB and

WB CS hyperspectral imagers. In these designs, the measurements are compressive in the

spectral dimension only. However, the PB or WB scanning has the advantage to not need

access to the entire image at once. The PB design is shown in Fig. 21.
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Figure 21: A compressive PB hyperspectral sensor. From [33].

As it can be seen, this design allow the acquisition of the spatial and the spectral

dimension of the line being scanned with a single linear array of photosensors. The spectral

differentiation is done with a dispersive element which projects each spectral band in a

different line of the DMD. Each column of the DMD thus corresponds to the different

spectral bands of one pixel of the line being scanned. The reflection of the DMD is then

focused on the linear detector by a cylindrical lens. Mathematically, it means that the line

being imaged contains M pixels xm, and each pixel is made of N spectral bands such that

xm ∈ CN . The compressive measurement of xm yields the measurement ym = ΦT
mxm.

With Φm of size N ×K, K ≪ N , and thus ym ∈ CK . Hence, each column of the DMD

performs the inner product of one hyperspectral pixel xm with a particular column of Φm.

Note that Φm could be identical for all pixels. In the end, by sequentially applying the K

columns of Φm to the corresponding column of the DMD, the measurement vector ym

of pixel xm can be obtained. The main drawback of the PB architecture is the need to

perform K measurements successively on the same pixel line. Indeed this could lead to

a decrease of quality in the reconstructed image due to the problem of satellite motion

detailed in the previous section.

The WB design is shown in the next figure.
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Figure 22: A compressive WB hyperspectral sensor. From [33].

Since it is a WB instrument, one pixel is scanned at a time instead of a line of pixels

as in a PB sensor. The light passes through a pinhole aperture, then a dispersive element

to discriminate the spectral bands, and a lens focuses each band on one specific row of the

DMD. Here, since only one pixel is imaged at a time, the same information is projected

on each column of the DMD. Therefore, by applying different patterns on each column,

all the measurements can be done at once. Note that, if the same pattern is used to

sense every pixel in the image, a DMD is not even required and a fixed coded aperture is

sufficient. The advantage of the WB design is that all measurements are taken at once

and thus the dwell time is increased with respect to the PB design which needs to take K

measurements successively. Nevertheless, the dwell time of any WB sensors stays way

below the dwell time of a classical PB sensor.
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4 Simulation on multispectral data

This section has for objective to test the CS method for Earth observation applications.

For this purpose, the ISTA-Net+ algorithm is used to perform CS simulations on real

satellite data. It must be noted that the ISTA-Net+ source code has been slightly

adapted to handle multispectral data. The source code from [16] takes RGB images as

entries, converts them to grayscale, applies appropriate masking depending on the CS

ratio requested, execute the ISTA-Net+ algorithm, and returns the reconstructed images.

Here, it has been modified to execute a CS reconstruction on each spectral band as a

grayscale image, and then combine the reconstructed images in one single HDF5 file.

The Hierarchical Data Format (HDF) is a data format specifically designed by NASA to

handle Earth observation data. It is especially adapted to handle large datacubes typical

of multispectral and hyperspectral images. To test the efficiency of the algorithm on real

data, multispectral images from SENTINEL-2 have been retrieved from the Copernicus

Earth observation data browser. This section first presents the SENTINEL-2 mission

and its data acquisition strategy. After that, the selected database is presented, then

estimators for the quality of the reconstruction are described, and finally the results of

the simulation are presented and discussed. It is important to note that the problem of

satellite motion described earlier is not considered in these simulations.

4.1 SENTINEL-2

SENTINEL-2 is a space mission from ESA composed of two satellites: SENTINEL-2A

and SENTINEL-2B. The former was launched on 23 June 2015 followed by the latter on

7 March 2017. Both satellites are identical multispectral Earth observation instruments

on the same sun-synchronous orbit at a mean altitude of 786 km but phased at 180◦ to

divide the revisit time by two. The mission’s orbit has an inclination of 98.62◦ which

makes observations possible in latitude bands extending from 56◦ South (South America)

to 82.8◦ North (above Greenland), with a revisit time of 5 days at the equator. With its

systematic global acquisition of high-resolution multispectral data over land and coastal

areas, SENTINEL-2 takes part to the european Copernicus program with contributions

in various themes such as climate change, land monitoring, emergency management, and

security. The instrument is a passive detector working in 13 spectral bands from the

visible to the SWIR. The light is collected by a three-mirror telescope and focused onto

two focal plane assemblies, one for the visible and NIR bands (VNIR) and one for the

SWIR bands, via a beam-splitter. It has a field of view of 290km and works in a PB

mode. The different resolutions for each band as well as the band center wavelength and

bandwidth are specified in Table 2.
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Spatial

Reso-
lution
(m)

Band
Number

S2A S2B

Central wavelength (nm) Bandwidth
(nm)

Central wavelength (nm) Bandwidth
(nm)

2 492.4 66 492.1 66

10 3 559.8 36 559.0 36

4 664.6 31 664.9 31

8 832.8 106 832.9 106

5 704.1 15 703.8 16

6 740.5 15 739.1 15

20 7 782.8 20 779.7 20

8a 864.7 21 864.0 22

11 1613.7 91 1610.4 94

12 2202.4 175 2185.7 185

1 442.7 21 442.2 21

60 9 945.1 20 943.2 21

10 1373.5 31 1376.9 30

Table 2: Wavelengths and bandwidths of the three spatial resolutions of the MSI instrument.
From [34].

4.2 Database

The data is obtained in the form of 12 TIFF files, one for each band3, pre-processed so

that all bands are combined in one single HDF5 file, and then injected into the algorithm.

Ten images arbitrarily selected to represent various landscapes are used as a test set to

evaluate the accuracy of the reconstruction. They are shown in Fig. 23 and detailed in

Table 3.

3Band number 10 is not retrievable on the browser.
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(a) Liege (b) Vielsalm (c) Fields (d) Lake

(e) Temperate for-
est (f) Tropical forest (g) Coast (h) Glacier

(i) Mountains (j) Desert

Figure 23: SENTINEL-2 image database.

Landscape Location Date Resolution (pixels)
(a) Urban area Liège, Belgium 13/08/22 604 × 585
(b) Rural town Vielsalm, Luxembourg, Belgium 10/08/22 614 × 585
(c) Agricultural fields Haute-Marne, Grand Est, France 21/05/22 519 × 328
(d) Lake Bracciano Lake, Italy 14/02/23 808 × 734
(e) Temperate forest Dark Forest, Germany 12/08/22 504 × 491
(f) Tropical forest Amazon Forest, Brazil 24/12/22 887 × 879
(g) Coastal area Senegal 26/02/23 534 × 507
(h) Glacier Perito Moreno Glacier, Argentina 10/01/23 718 × 714
(i) Mountains Himalaya, Nepal 11/02/23 641 × 639

Table 3: SENTINEL-2 image database details.

They were taken in different sizes to analyse a potential impact of the image size on

the reconstruction quality. These images are injected into the pre-trained ISTA-Net+

algorithm to apply masks and mimic the CS acquisition process, and then reconstruct

the images with various CS ratios. It is important to note that the algorithm used was

pre-trained by the authors of the original code, but only on classical images, not Earth

observation data. The accuracy of the reconstruction would most probably increase if the

algorithm is retrained with Earth observation images. However, training a DL algorithm
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is a computationally intensive and resource-consuming task. The purpose of this research

is to implement a complete CS experimental chain from measurement to reconstruction

and to explore possibilities for space applications, not to obtain the maximum possible

accuracy. Therefore, the results shown later in this section are considered satisfactory for

using the algorithm without retraining it.

4.3 Reconstruction quality estimators

4.3.1 Peak signal to noise ratio

The Peak Signal to Noise Ratio (PSNR) is the ratio between the maximum value of a

signal and the noise distorting this signal. In this case, the noise is the one between the

original and reconstructed signals and is represented by the Mean Squared Error (MSE)

over all the pixels defined as

MSE =
1

Nx

1

Ny

Nx∑
i=1

Ny∑
j=1

(ŝi,j − si,j)
2, (40)

with Nx and Ny the number of pixels on the x and y axis, ŝi,j the reconstructed signal in

pixel (i, j) and si,j the real value of the signal in pixel (i, j). PSNR is usually expressed

using the decibel scale. Hence, the PSNR is expressed as

PSNR = 10log10

(
(peak val)2

MSE

)
, (41)

where peak val is the maximum signal value. If the signal is normalized, its values are

floats between 0 and 1, thus the maximum value is 1. A higher PSNR generally indicates

a lower MSE and thus a better reconstruction.

4.3.2 Structural Similarity Index Method

The PSNR is an indicator of reconstruction quality which works well but is a bit rough

in the sense that it does not take human visualization into account. Indeed, the PSNR

measures the difference between the reconstructed and the original signal pixel by pixel.

While this method evaluates quantitatively the quality of the reconstructed signal with

precision, it does not consider the representation of structures and contrasts that are

more easily perceived by the human eye. In this context, Wang et al.[35] developed a new

method called the Structural Similarity Index Method (SSIM). The SSIM compares the

original and the reconstructed signals using three independent parameters: the luminance,

the contrast and the structure.
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First, the luminance of each signal is estimated as the mean intensity

µx =
1

N

N∑
i=1

xi. (42)

Stating that x and y are the two signals to compare, the luminance comparison function

is given by

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (43)

with C1 a small constant. An estimation of the constrast is then introduced using the

standard deviation

σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

(44)

and the contrast comparison function takes the form

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (45)

with C2 a small constant. Finally, the structure comparison function is defined using the

correlation coefficient (covariance) between the two signals

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy). (46)

Hence, the function is written

s(x, y) =
σxy + C3

σx + σy + C3

(47)

with C3 a small constant. In the end, the three components are combined to form the

final similarity measure

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ], (48)

with α > 0, β > 0, γ > 0 parameters that can be adjusted to the relative importance

of each parameter. Setting all of them to 1, C3 = C2/2, and injecting in the above

expressions:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
xµ

2
y + C1)(σ2

x + σ2
y + C2)

. (49)

This produces a value between -1 and 1, where a value of 1 indicates that the images are

similar, and a value of -1 indicates that the images are completely dissimilar. Generally, it

is more convenient to use the SSIM locally rather than globally to assess an image quality.

In other words, the SSIM is evaluated in sub-blocks of the image and a mean SSIM is
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computed to estimate the global SSIM.

The PSNR and the SSIM are both relevant quantities to estimate the reconstruction

quality. While the PSNR is based on the absolute difference between the two signals,

the SSIM focuses more on structure representation and distorsion. They can be seen as

complementary to each other and will both be used in this research.

4.4 Results and discussion

Results of the reconstruction of the images specified in the database with ISTA-Net+

depending on the CS ratio are shown in the following tables. Each result presented is the

mean over the 12 bands for one image and one CS ratio. In addition of the two parameters

explained in the previous section, the computation time is represented. As mentioned

earlier in this work, the algorithm used is pre-trained by its authors on traditional images

and better reconstructions could be achieved by training it with Earth observation data.

However, the training process of such algorithm is extremely time and resource consuming.

Hence, the simulation is executed with the pre-trained algorithm to estimate if it is

accurate enough to be used in the context of testing a first full chain implementation of

the CS technique, without aiming for maximum accuracy.

CS Ratio (%) 1 4 10 25 40 50

Liège 78.99 80.91 84.96 89.38 92.69 93.72
Vielsalm 75.78 78.72 83.1 88.53 92.34 94.98
Fields 72.11 76.28 81.03 87.33 91.62 94.28
Lake 75.16 78 81.59 86.55 90.26 92.77

Temperate forest 72.08 75.14 78.71 83.9 87.57 89.84
Tropical forest 75.44 79.88 84.94 90.49 94.12 96.79

Coast 69.59 73.97 77.34 81.91 85.25 87.32
Glacier 74.91 78.98 83.29 88.73 92.48 95.03

Mountains 70.41 73.67 77.55 83.18 87.24 89.87
Desert 71.05 74.43 78.1 83.11 86.79 88.99

Table 4: PSNR (dB).
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CS Ratio (%) 1 4 10 25 40 50

Liège 0.8697 0.8957 0.9469 0.9756 0.9877 0.9924
Vielsalm 0.8138 0.8675 0.9338 0.9757 0.9886 0.9931
Fields 0.7502 0.8484 0.927 0.9767 0.9897 0.9938
Lake 0.814 0.8667 0.9261 0.9714 0.9862 0.9913

Temperate forest 0.7015 0.7764 0.8578 0.9372 0.9671 0.9779
Tropical forest 0.832 0.9017 0.9511 0.9799 0.9899 0.9937

Coast 0.7427 0.8091 0.8767 0.9413 0.967 0.9768
Glacier 0.8533 0.9036 0.9465 0.9773 0.9879 0.992

Mountains 0.7095 0.795 0.8868 0.9567 0.98 0.9875
Desert 0.6781 0.7632 0.8555 0.9354 0.9652 0.9764

Table 5: SSIM.

At first sight of Table 4 and 5, one can observe that for each image, both the PSNR

and the SSIM increase with the CS ratio. It is what is instinctively expected since a higher

CS ratio means that more data is acquired, thus the reconstruction basis is more complete

and the reconstruction should be more accurate. This relationship can be seen more

properly in Fig. 24 and Fig. 25. There, it can be seen that the relationships with the CS

ratio are more logarithmic than linear, especially for the SSIM. Keeping in mind that the

objective is to have a minimum CS ratio with a maximum reconstruction quality, fixing

the CS ratio to 25% appears to achieve the best balance between these two considerations.

Indeed, these results show that even without further training, the algorithm achieves a

good reconstruction of these images, e.g. reaching a SSIM of at least 0.93 for each image

with a CS ratio of 25%.
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Figure 24: Mean PSNR along with the standard deviation of the 10 images as a function
of the CS ratio.

Figure 25: Mean SSIM along with the standard deviation of the 10 images as a function
of the CS ratio.
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CS Ratio (%) 1 4 10 25 40 50

Liège 127.88 129.91 131.34 129.31 134.07 138.63
Vielsalm 181.01 150.74 174.26 122.76 127.93 153.65
Fields 65.9 63.32 61.29 66.39 67.42 70.82
Lake 244.72 202.98 268.29 221.2 240.18 267.09

Temperate forest 127.98 133.39 131.6 112.48 98 141.29
Tropical forest 390.27 275.3 264.85 271.48 275.31 294.35

Coast 109.94 107.57 119.52 106.93 108.97 121.85
Glacier 175.2 193.91 186.05 186.68 209.31 222.23

Mountains 159.12 190.51 164.72 172.85 165.57 181.2
Desert 125.71 166.97 167.58 148.8 160.06 146.23

Table 6: Computation time (seconds).

Regarding the computation time, no direct relationship with the CS ratio is observed

in Table 6 and it seems somewhat random. It is important to note that this computation

time might have varied depending on other activities on the computer which could have

slow it down. Thus, these results should be treated with caution. Nonetheless, significant

differences seems to appear between the different images. This is probably connected to

the various sizes of the images. To illustrate that, Fig. 26 shows the mean computation

time for each image displayed as a function of the image size. It is clear on this graph

that the computation time increases linearly with the image size. Applying a linear

regression yields an increase rate of 3.624× 10−4 seconds per pixel. While it may appear

insignificant in this testing context, this increase of computation time with the file size

could be important for some implementations. Indeed, scientific or industrial needs often

imply larger observation fields and/or higher resolutions which could significantly increase

the number of pixels in the images. Thus, the computation time would consequently

largely increase which might become compelling.
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Figure 26: Mean computation time as a function of image size. The linear regression of
the data points is also represented.

Now that a global assessment of the method efficiency on SENTINEL-2 multispectral

images has been made, it is interesting to focus on the differences between the recon-

struction accuracy in the different spectral bands. It is known that the wavelength of

the incident light has an impact during the measurement on several parameters such as

the spatial resolution and the bandwidth of the detector as specified in Table 2. Now,

the impact of these parameters during the reconstruction process may be evaluated. In

Fig. 27 and Fig. 28 are represented the mean PSNR and the mean SSIM, respectively,

of all images in the database, and for each spectral channel of SENTINEL-2. To reduce

the reconstruction estimators dependencies to the spectral bands exclusively, only the

reconstructions with a CS ratio of 25% were used. In any case, the other CS ratios showed

a similar tendency.
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Figure 27: Mean PSNR along with the standard deviation in each spectral band.

Figure 28: Mean SSIM along with the standard deviation in each spectral band.

Both estimators follow similar trends and will be treated as one in the rest of this

discussion. As a reminder from Table 2, the bands are numbered in ascending wavelength

order from the blue (band 1) to the MWIR (band 12). The spatial resolution is 10m for

bands 2, 3, 4, and 8, 20m for bands 5, 6, 7, 8A, 11, and 12, and 60m for bands 1 and

9. Three bands stand out from the others: band 8 has a lower reconstruction accuracy

while bands 1 and 8A have a higher reconstruction accuracy. The reasons are uneasy to

identify. A link to the spatial resolution is most probably present. Indeed, a lower spatial
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resolution means that less details are present in the image and it should then be easier for

the algorithm to reconstruct an image with fewer details. It can be justified here by the

fact that bands 1 and 8A have spatial resolutions of 60 and 20m, respectively, while band

8 has a spatial resolution of 10m. To properly understand this argument and the method

applied, it is important to know that the images used here have the same number of pixels

and cover the exact same area in all channels. The differentiation between the different

spatial resolutions appears by giving blocks of pixels the same value for lower resolution

bands. Nonetheless, this factor alone does not explain the results obtained here since some

bands with 20m resolution show better performances than some bands with 60m resolution.

In conclusion, the pre-trained ISTA-Net+ algorithm returns satisfying results and can

be used without further training in the context of a first approach of an CS experimental

chain. The reason for this relatively high accuracy of the algorithm is most probably that,

even though it was not specifically trained on Earth observation images, the masks used

are the same that those on which it was trained. Indeed, during the ISTA-Net+ training,

one of the learnable parameter is the initialization matrix. It is applied at the beginning

of the reconstruction to avoid the system to converge towards a local minimum and it

depends directly on the masks used during signal acquisition. Hence, since the masks

used in this application are the same that were used during pre-training, the value of the

initialization matrix is still accurate. Nevertheless, if one wants to achieve the maximum

possible accuracy with this algorithm, retraining it on Earth observation images is strongly

recommended. The simulation indicates that the best balance between a low CS ratio and

a high reconstruction accuracy occurs at a CS ratio around 25%. Further compressing the

data without retraining the algorithm would significantly degrade the reconstructed images.

Finally, to give a visual representation of the reconstruction quality, the reconstructed

images of the agricultural fields image depending on the CS ratio are shown in Fig. 29.

The other reconstructed images can be found in Appendix A. It is important to mention

that these are RGB representations, thus only 3 out of the 12 bands are used (band 2,3,

and 4) and they only partially represent the results presented above.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 29: Results of the reconstructions of the agricultural fields image.

On the lower resolution images, some blocks of pixels appear. This is a sign of how

the algorithm is working. Actually, the algorithm divides the image in blocks of 33× 33

pixels, then masks and reconstructs them individually, giving rise to the observed shapes.
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5 Implementation with a DMD

A CS experimental setup has been developed in a laboratory environment and is described

in this section. The objective of the experiment is to create from scratch a simple but

complete chain of the CS method. A complete chain means collecting light from a scene,

performing the spatial modulation of the signal with a SLM, measuring the resulting

signal and reconstructing the image with an algorithm. Thus, the objective is not to

optimize the system but to prove the feasibility of the method with relatively simple

means and create foundations for future works to improve the system. The section begins

with the description of the DMD used as SLM in the setup. Then, a small digression is

made about the diffraction effects that occur on a DMD and that limit the spectral range

of the signal, but could also be used to turn the DMD into an efficient dispersive element.

Finally, the experiment itself is extensively described.

5.1 DMD Description

A DMD is a reflective type SLM. It is a product of micromechanics and is composed of

millions of micromirrors with a typical size of 10 microns. Each of them is connected to

a Static Random Access Memory (SRAM) which can set the mirror in the ’on’ or ’off’

state, depending on the bit value. In the ’on’ state the mirror is tilted at an angle of +12◦

with respect to the flat state, and in the ’off’ state it is tilted at −12◦. Hence, by placing

properly the source, detector, and optical components, this can be used to apply masks

hiding precise parts of an image. In the past few decades, DMDs have been widely used

in digital light processing technologies such as projectors. It has been demonstrated that

DMDs have better performances than more traditional liquid crystal transimissive SLM

in most applications. [36]

The SLM used in this laboratory implementation of the CS method is a DMD, and

more specifically the DLP6500FLQ by Texas Instruments. It is a high resolution (1080p)

DMD featuring more than two million micromirrors designed for use in the broadband

visible light (300 to 700nm). It comes in two distinct parts: the DMD itself and the

electronic board controller linked to it (DLPC900). The DMD is also equipped with a

passive heat dissipator to cool the mirrors down. The full characteristics of the DLP6500

are provided in Table 7. [37]
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Micromirror array size 1920 × 1080
Micromirror pitch (µm) 7.6

Maximum pattern rate, binary (Hz) 11574
Operating Temperature range (◦C) 0 to 65

Thermal dissipation (◦C/W ) 0.7
Micromirror tilt angle ±12◦

Table 7: DLP6500FLQ main parameters.

Reliable operation of the instrument requires the use of the DLP Advanced Light

Control (ALC) Software Development Kit (SDK) software available on Texas Instruments’

website. When connected to the DMD, the software allows to send one or several patterns

to the DMD. These patterns can be set to stay a certain period of time on the DMD and

they can be put in chain. Some pre-coded patterns are available with the software. They

are mostly point-like or line masked, two examples are shown in Fig. 30.

Figure 30: Examples of pre-coded masks. White pixels correspond to on state mirror and
black pixels to off state mirrors.

Nevertheless, it is possible to code new masks and inject them in the software. The

only requirements are that they must be binary and saved in the bitmap format. Other

than that, the masks may be completely random or structured, depending on the needs.

As an example, a mask coded such that blocks of 10 by 10 pixels are randomly set to on

and off states with 50% distribution is shown in Fig. 31.
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Figure 31: Random mask with 50% of on state mirrors and a binning of 10 by 10.

5.1.1 Diffraction effects

In a DMD the micromirrors size is generally of the order of a few micrometers. If the

light projected onto the DMD has a wavelength of the same order, i.e. in the IR domain,

diffraction will start to occur and can degrade the resulting signal. Generally the resolving

power of an optical system is defined by Abbe’s diffraction limit which states that the

minimum distance at which two objects can be resolved is d = λ
2NA

with NA the numerical

aperture. The minimum distance to be resolved is the micromirror pitch so that each

micromirror can be distinguished. As a general rule, the Rayleigh criterion states that one

should work at a wavelength not longer than around one tenth of the minimum distance

to be resolved. Hence, considering the 7.6µm micromirror size of the DLP6500FLQ, the

incident wavelength should not be larger than 700 nm to avoid image degradation by

diffraction effects. Thus, the light source is roughly limited to the visible spectrum.

Another diffraction effect to consider is due the global shape of the DMD. As a matter

of fact, a DMD can be seen as a blazed grating if all the micromirrors are in the same

state [38]. As a reminder, a blazed grating is a grating designed such that its grooves

have a specific angular orientation. This way, the diffracted light intensity is optimized

in a specific direction. When a light ray is reflected in this specific direction, the blaze

condition is said to be respected. A model of DMD seen as a grating is represented in Fig.

32. Following this model, the lines of the grating are parallel to the micromirror hinges,

which are at 45◦ to the DMD edges. The micromirrors act as blazed facets of the grating,

at angle ϕ to the DMD normal, i.e. the tilt angle of the mirror about the hinge axis.
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Figure 32: Description of the DMD modeled as a blazed diffraction grating. The top
part of the figure depicts a section of the DMD as viewed normal to the DMD with the
micromirrors in the flat state. The bottom part depicts an edge view of the same DMD
section along the micromirror hinge direction (dashed lines) with all micromirrors in the
on state. From [38].

As a reminder, the equation for a one-dimensional grating is

mλ = d(sinα + sinβ), (50)

with m the diffraction order, λ the wavelength, d the grating pitch, α the incidence angle

to the DMD normal, and β the diffraction angle to the DMD normal. Considering an

angle of incidence α = 0 the equation reduces to

mλ = dsinβ. (51)

Moreover, the blaze condition occurs when the facet normal bissects the angle between

the incident and reflected rays, i.e. when the incident and diffracted rays follow the law of

reflection from the facet point of view. The blaze condition defines the angle at which the

diffraction is the most efficient in a blazed grating [39]. Hence, for a grating under normal

incidence illumination, the blaze condition is satisfied when ϕ = β/2. Therefore, the blaze

wavelength λB which defines the wavelength at which the diffraction grating efficiency is

maximum (under the blaze condition) is given by

λB =
d

m
sin2ϕ. (52)

One can see from Fig. 32 that d = dDMD/
√
2, where dDMD is the DMD micromirror

pitch.
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Adapting the procedure described in [38] with the characteristics of the DMD used in this

work and specified in Table 7, it is possible to estimate the spectral region of efficient

diffraction for each diffraction order. The region of efficient diffraction for a blazed grating

typically extends from about 2/3 to 3/2 of λB, as a rule of thumb. Hence, using this rule

of thumb and Eq. (52), the spectral ranges of efficient diffraction have been computed for

each order and are presented in Table 8.

Diffraction
order

Lower blaze
wavelength (nm)

Blaze wave-
length (nm)

Upper blaze
wavelength (nm)

Spectral range

1 1457 2185 3278 SWIR
2 728 1092 1639 NIR/SWIR
3 485 728 1092 VNIR
4 364 546 819 VNIR
5 291 437 655 VIS
6 242 364 546 UV/VIS
7 208 312 468 UV/VIS
8 182 273 409 UV/VIS

Table 8: Spectral ranges of good efficiency up to the 8th diffraction order as predicted
from the blazed grating model.

The angles at which the lower blaze wavelength and the higher blaze wavelength

diffraction occurs, βL and βU respectively, can be computed using Eq. (52). They are

identical for each order of diffraction: βL = 15.73◦ and βU = 37.6◦. As a reminder the

blaze angle is β = 2ϕ = 2× 12◦ = 24◦

These diffraction effects must be taken into account as they can degrade the image quality.

In their experiment, Rice et al. [38] used a DMD with a micromirror pitch of 13.68 µm

leading to blaze diffraction wavelengths ranging from the MWIR region at the first order

to the shorter parts of the visible spectrum at order 13.

Although this diffraction effect can degrade the image, it can also be extremely interesting

in the case of multispectral or hyperspectral imaging. Indeed, the diffraction properties

of the DMD enable it to be used simultaneously as a SLM and as a dispersive element,

providing both spatial and spectral differentiation. The idea has been exploited by

Ebner et al. [40] to demonstrate the functionality of a hyperspectral MWIR single-pixel

microscope. The results showed that the sample throughput drastically improved and

the acquisition time for hyperspectral cubes was around 50s, outperforming conventional

microscopes by orders of magnitude. The method has proven to be a fast and cost-effective

improvement for hyperspectral MIR microscopy and shows great potential for transfer

into other disciplines including Earth observation. However, it is important to note that

the 50s acquisition time reached in this case could be too large for LEO remote sensing

due to the satellite motion mentioned previously. This time may vary considerably when

working at other wavelengths, with other detectors, and at various spatial resolutions.
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The method should thus be investigated by tuning these parameters in the case of Earth

observation.

5.2 Laboratory experiment

5.2.1 Setup

The objective of this laboratory implementation is to achieve a complete CS chain, from

signal acquisition to image reconstruction. The point is not to obtain the maximum image

quality or compression but to put in place a first experiment to show the feasibility and

limitations of the technique. This could then be used as starting point in a future work

with the objective to tune the method and extend it to a more space-specific context.

The general scheme of the experiment is based on most standard CS laboratory

implementations and is shown in Fig. 33.

Figure 33: Global scheme of the experiment.

The system may be divided in two subsystems: the collecting part which images a

scene on the DMD and the detecting part which focuses the light reflected by the on

state mirrors of the DMD on a detector. The first part starts with a scene which is here a

digital screen. In continuation of this work, an Earth observation image is chosen to be

the scene. Therefore, a self-illuminated digital screen is the best choice to display these

kind of images, provided that it is bright enough. The size of the screen has to be chosen

adequately so that it can be imaged on the DMD with the available material. To do so, it

is interesting to review some basic optics and define some notations. The following figure

represents the case of a thin lens in an optical system.
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Figure 34: Thin-lens system. [41]

Using these notations, the thin lens equation can be written

1

o
+

1

i
=

1

f
. (53)

The objective is to determine the lens and the size of the object needed to form a sharp

image on the DMD. Two limiting factors must be taken into account. First, the total size of

the system is limited by the size of the laboratory table which is approximately 1.7 meters

long. Second, as it will be explained in details later, the collection and detection arms of

the system are at an angle of 24◦ to each other. Therefore, the collecting lens should not

be too close to the DMD so that it is not in the detector’s field of view. To determine the

object and image distance to place the object and the DMD, the magnification needs to

be considered. It is defined as the ratio between the image size and the object size, but is

also equivalent to the ratio of the image and object distance4:

M =
hi
ho

=
i

o
. (54)

By knowing the magnification value, one can determine the relation between i and o, and

compute these distances depending on the focal length of the lens considered using Eq.

(53). The DMD dimensions are 14.51mm × 8.16mm. At first, a computer screen was

considered to be used as an object, its dimensions are 475mm × 270mm. This yields

a magnification of 0.03 regardless of the dimension considered. Hence, i = 0.03o, and

injecting this into Eq. (53) gives o = 34.33f . The next table shows values of the different

distances for several focal lengths available.

4NB: Considering prior knowledge that both object and image are real, absolute values of the sizes are
considered to not bother with sign conventions.
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f (mm) o (mm) i (mm) o + i (mm)
25 858.33 25.75 884.08
50 1716.67 51.5 1768.17
100 3433.33 103 3536.33
150 5150 154.5 5304.5
300 10300 309 10609

Table 9: Values of the image and object distances for several focal lengths for a computer
screen.

It can be seen that the total length of the system is larger than the length of the table

for focal lengths of 50mm and higher. As for lower focal lengths the image distance is too

short. Indeed, it has been decided to put the lens at at least 10cm of the DMD to avoid

being in the camera’s FOV. Thus, a smaller screen is needed. In the end, a phone screen

was chosen due to its relevant size and brightness. The dimensions of the image displayed

on the phone screen is 102mm×64mm. Using this and the DMD dimensions to compute

the magnification and injecting it in Eq. (53) as before, one can compute the different

distances for several focal lengths:

f (mm) o (mm) i (mm) o+ i (mm)
25 248.46 27.8 276.26
50 496.93 55.59 552.52
100 993.85 111.19 1105.04
150 1490.78 166.78 1657.56
300 2981.56 333.56 3315.13

Table 10: Values of the image and object distances for several focal lengths for a phone
screen.

Based on the criteria described earlier, both the 100 and 150mm focal length lenses

are suitable given their large enough image distance and not too large total distance. In

the end, the 150mm lens was chosen because it has a larger aperture, thus collects more

light and increase the radiometric resolution of the system.

Now that the image is formed on the DMD, it is necessary to properly design the

detection arm of the system. It is composed of the DMD, a detector, and between them a

condensing lens, or more precisely a camera lens. The detector is a UI-3240CP Rev. 2

camera [42]. It is a CMOS monochrome detector with sensitivity in the visible and NIR

spectra. It has a resolution of 1280 × 1024 pixels for dimensions of 6.784mm × 5.427mm.

To determine which camera lens is best in this case, the lens and magnification equations

can once again be used, this time with the DMD as the object and the camera as the

image. A few values for available focal lengths are presented in the following table.
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f (mm) o (mm) i (mm) o+ i (mm)
16 50.22 23.48 73.7
35 109.86 51.36 161.22
50 156.94 73.38 230.32
75 235.41 110.07 345.48

Table 11: Values of the image and object distances for several focal lengths to image the
DMD on the camera.

Here, there are two main restrictions. The first is that the the object distance must be

large enough to not obstruct the optical path of the collecting arm. The second is that

the image distance must not be too large since the camera lens is attached to the camera

and the distance lens-detector can only be slightly adjusted by adapting the focus of the

objective or by adding adaptor rings. Therefore, a 75mm lens is chosen since it fits best

these two characteristics. Furthermore, it must be noted that the camera lens is actually

a system composed of two groups of lenses and the announced focal length is the effective

focal length. However, to determine precisely where to place the camera lens, one has to

determine the principal planes of the lens for the object and image sides. The principal

plane for the object side is the principal object plane, corresponding to the focal plane

of the front lens group. In the same way, the principal plane for the image distance is

the principal image plane, corresponding to the focal plane of the rear lens group. These

principal planes locations can be roughly estimated by passing a collimated beam through

each side of the camera lens, observing where the beam is best focused, and reporting the

focal length from this point towards the camera lens. A representation of the camera lens

and the estimated principal planes is shown in the next figure.

Figure 35: Representation of the camera lens with the estimation of the principal planes.

It is important to note that the distances indicated here are estimations and slight

adjustments are made during the camera lens placement to optimize the focus.

Finally, it is necessary to know in which direction to place the camera with respect to the
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collecting arm. The goal is to place the camera so that it detects the light reflected by

the on state mirrors of the DMD. If the object is placed in the normal direction of the

flat state of the DMD, the angle at which to place the camera can be determined using

Fig. 36

Figure 36: Optical scheme of the reflection occurring at one DMD micromirror.

Indeed, as indicated in Table 7, the tilt angle of the on state mirror is 12◦. Therefore,

the incident light arriving perpendicularly to the flat state forms a 12◦ angle with the

normal of the on state mirror. Then, the reflection law states that the reflected ray forms

an angle equal to the incident angle with the normal. Hence, the total angle between

the collecting and detecting arm is 24◦. An important note is that the rotation axis of

the mirrors is diagonal to the DMD. This means that this 24◦ should be measured with

respect to the plane diagonal to the DMD. As a consequence, the detector will be shifted

and elevated with respect to the collecting system. To do so and still having the DMD in

the camera’s FOV, the camera lies on a ball joint allowing a flexible adjustment of the

detector’s direction. The final experimental setup is shown in Fig. 37.
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Figure 37: Final experimental setup. The screen used as a scene is not shown here and is
further away towards the bottom-left corner.

5.2.2 Calibration

Before starting to take masked measurements, it is interesting to see what the camera

detects when a scene is imaged with all the mirrors on the on state. In continuity of this

work, an Earth observation image is used as a scene. More precisely, the agricultural fields

image (Fig. 23c) is used. As a reminder, the camera is monochromatic thus the resulting

image is in grayscale. The result is shown in Fig. 38.
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Figure 38: Rendering of the agricultural fields image by the optical system.

It can be seen that the image is relatively dark and it is difficult to distinguish the

details. All of the SENTINEL-2 images being dark, the brighter laboratory picture shown

in Fig. 37 is used as a scene to have a better view of the system capabilities. The result

is shown in Fig. 39.

Figure 39: Rendering of the laboratory picture by the optical system.

Since this image is clearer, it will be used in the rest of the experiment. Several things

can be noted. First, the image is inclined in the camera frame. This is one consequence

of the inclination of the camera due the rotation axis of the mirrors being in the diagonal
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plane of the DMD as explained before. The camera has been rotated to correct this effect

as best as possible but it is not sufficient to completely correct it. In addition, this leads

to edges containing empty pixels (where no light is detected). Note that the frame of the

camera has been slightly cropped to remove as much empty pixels as possible, thus not

every pixel of the camera is represented. It is interesting to assign a zero-value to these

empty pixels on each observation to be sure that they do not degrade the image quality

by introducing some noise in the reconstruction due to potential stray light. To do so a

flat field image is taken by imaging an uniformly white scene.

Figure 40: Flat field

It can be seen that some points appear darker most probably due to dust on the lens

or the DMD. Nevertheless, it does not have any impact here. To remove the edges, a

binary threshold is applied such that for each pixel value p(x, y)

p(x, y) =

1 if p(x, y) > threshold

0 if p(x, y) < threshold
(55)

After applying this with a proper threshold value, the edge mask is formed.

60



Figure 41: Edge mask

In the end, this is what the image looks like after applying this edge mask.

Figure 42: Measurement of the laboratory image after applying the edge mask.

Some pixels appear slightly brighter than the edges on the right and left side of the

picture. This is because the image formed by the collecting arm does not cover the whole

surface of the DMD. Thus, the slightly brighter pixels correspond to the mirrors of the

DMD non illuminated by the image but still sending a low amount of stray light towards

the camera.

Last but not least, only a part of the image seems to be properly focused on the

camera. Indeed, while the bottom half of the image is relatively clear, the top half is
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blurry. This is a direct consequence of the inclination of the camera with respect to the

DMD. In close-range imaging, a limiting factor is often the Depth Of Field (DOF) of the

system, i.e. the range of distances in a scene that appear acceptably sharp in an image.

According to Ray (2002) [43], it can be computed according to equation

DOF =
2 · f 2 · u2 · F# · COC
f 4 − F 2

# · COC2 · u2
, (56)

where f is the focal length, u the focusing distance (object distance), F# = f/D the

f-number, and COC is the Circle Of Confusion. The COC is a term often used in

photography which is originally defined as the finest detail visible by the human eye. It

can be viewed as an alternative definition of the resolution. In the case of digital cameras,

the COC is usually taken around 1-3 pixels [44]. Hence in this case, the camera pixels

having a size of 5.3 µm, a COC of 10 µm is considered as a fine approximation. The focal

length is 75mm, the object distance is 235mm, and the f-number is 3.9. This yields a DOF

of 0.7mm. This value is very small and explains why the small inclination of the object

plane (the DMD) with respect to the camera and the lens induces a partial blurring of the

image. Indeed, given the inclination, the top and bottom of the object are at a different

distance from the lens. The difference between these distances is very likely to be larger

than the DOF of 0.7mm, giving rise to the partial blur.

Generally, one can increase the DOF by reducing the aperture of the lens. That way,

the rays that pass through the lens are more parallel and objects focus over a wider

distance. Nevertheless, it comes with a decrease of the amount of light collected and thus

of radiometric resolution. In this case, reducing the aperture reduces the radiometric

resolution too much and does not improve the DOF enough to be a viable solution.

Another solution can be found using the Scheimpflug principle which states that by

shifting the lens so that its optical axis is no longer perpendicular to the sensor, the DOF

can be optimized.

Figure 43: With an ordinary camera lens the plane of focus is parallel to the image plane
(a). Scheimpflug principle: plane of focus of an optical system tilts when the lens plane is
not parallel to the image plane (b). From [44].

The DOF is said to be optimized when the image plane, the lens plane, and the sharp

focus plane meet in the same point [44]. Therefore, having a sharp focus on the whole

62



image requires to tilt the lens at the right angle so that the object plane corresponds to

the sharp focus plane. Practically, it means using a tilt-shift lens, some can be found on

the market, but none was available in the laboratory and they are expensive. Another

possibility is to do this shifted lens by hand, by decoupling the lens from the camera and

tilting it. However, this requires high precision and a complex structure to maintain all

the optics at the suitable position and angle. This structure is even more complex due to

the fact that the system is already placed at a peculiar angle and position. Therefore, it

has been decided that this system is satisfactory for a first implementation of CS in the

laboratory since the blurred image can still be masked and reconstructed. Nonetheless,

future works will have to solve this focusing problem on the camera. It must be noted

that during a private discussion with prof. Laurent Jacques (UCLouvain) he mentioned

the possibility to account for the distortion effects in the forward model of the system.

5.2.3 Masking

Now that the rendering of the optical system when all the mirrors are in the on state is

known, masks have to be applied to spatially modulate the signal. To apply them properly

and be able to inject them in a reconstruction algorithm, an important parameter needs

to be considered first. The mask applied on the DMD does not exactly correspond to

the resulting mask on the camera. Indeed, the DMD modulates the signal with a certain

number N of micromirrors, i.e. N pixels. However, the camera contains a number N̄

of pixels, with N̄ ̸= N . Thus, the mask will not hide the same number of pixels on the

camera as it does on the DMD. To determine the size and shape of the resulting mask on

the camera, the same technique that was used for edge calibration is applied. A flat field

measurement is done with the difference that this time a mask is applied on the DMD.

But before that, an appropriate mask must be coded and implemented on the DMD. As

explained in section 2.1, a random mask should satisfy the Restricted Isometry Property

(RIP) as well as the incoherence property. Hence, a binary mask was coded by randomly

setting each micromirror state on on or off with a probability of 50%, yielding a mask

with a CS ratio of 50%. The result of the flat field measurement with this pattern is

shown in Fig. 44.
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Figure 44: Flat field measurement with a random binary mask with a CS ratio of 50%.

Then, the idea is to apply a binary threshold, in the same way that for the edge mask,

to identify which pixels of the camera are attenuated enough to be considered on the off

mode. The results of this threshold are presented in Fig. 45. Note that the edge mask

has also been applied.

Figure 45: Corresponding mask on the camera with a CS ratio of 50%.

It can be seen that most of the illuminated pixels are located around the bottom and

center parts of the image, whereas they are suppose to be uniformly distributed. Thus,

it does not accurately represent the shape of the original mask. That is because the

micromirrors are small which lead to diffraction effects attenuating the effect of the mask.

In addition, the blurring of the image that is observed in Fig. 42 disturbs part of the
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signal. These facts combined make it difficult to discriminate between the masked and

unmasked region of the image. To counter this effect, a binning of the pixels can be added

when coding the pattern. Therefore, a new mask was coded using a binning of 10× 10

and a CS ratio of 50%. The same processing that for the previous pattern was applied

and the result is shown in Fig. 46.

Figure 46: Corresponding mask on the camera with a CS ratio of 50% and a 10 × 10
binning.

There, the masked pixels are more clearly defined, thus the mask is better represented.

However, some distortion effects are still visible in the bottom left and top right corners.

Now that the corresponding mask on the camera is known, one can image a real scene with

this mask. Once again, the laboratory image is used and the mask described above with

a CS ratio of 50% and a binning of 10× 10 is implemented on the DMD. The resulting

image on the camera is shown in Fig. 47.
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Figure 47: Rendering on the camera of the laboratory image when a mask with a CS
ratio of 50% and a 10× 10 binning is applied on the DMD.

In order to avoid noise on the pixels supposed to be in the off state, the mask defined

in Fig. 46 is applied on the measurement. The resulting image is shown in Fig. 48.

Figure 48: Result of the element-wise product of Fig. 46 and Fig. 47

To summarize, the masked measurement that will be used to build the measurement

vector y, as well as the mask itself that will be used to construct the measurement matrix

Φ have both been defined. This pre-processing step is necessary to properly know the

mask, and the resulting measurement on the camera. It can be repeated with any other

mask or scene.
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5.2.4 Reconstruction

The first idea for this experiment was to inject the measurements in the ISTA-Net+ recon-

struction algorithm, considering the satisfactory results obtained during the simulations

on Earth observation data. However, some complications occurred. To understand them,

it is necessary to get back to the initial inverse problem. As a reminder, in a CS system

the inverse problem to solve is

y︸︷︷︸
∈Cm

= Φ︸︷︷︸
∈Cm×N

x︸︷︷︸
∈CN

, (57)

with y the measurements, Φ the measurement matrix, x the original signal, and m < N .

Considering this, it must be highlighted that Φ does not necessarily exactly correspond to

the mask applied on the image. Indeed, in the case of multiple measurements, each line of

Φ corresponds to the mask used to take the measurement. If the mask is two-dimensional,

it must thus be reshaped into a one-dimension vector. The same reshaping must be

applied to the measurement and signal vector if necessary. For example, in the case of

a single-pixel camera, each element yi of the measurement vector corresponds to one

measurement made with a different mask. Hence, each line ϕi of Φ represents the mask

used to measure yi. However, the present application is not a single-pixel camera and

several pixels are measured with the same mask. Therefore, the construction of y and Φ

is not straightforward. As a first illustration, one may consider the simple of case of trying

to reconstruct the image with measurements made with the same pattern, e.g. with the

mask defined in the previous section. A certain number m of pixels are illuminated on the

camera, yieldingm measurements. Following the same logic, thesem measurements should

be placed in a one-dimensional vector to form the measurement vector y. And, since

all these pixels have been measured with the same mask, each line of the measurement

matrix Φ will be identical. The problem is that, during the reconstruction, the ISTA-Net+

algorithm needs to compute the inverse of Φ at some point. But, if all the lines of Φ

are identical, the matrix is singular and thus not invertible, leading to a mathematical

error. The problem still occurs when multiple measurements are made since multiple

pixels will still be measured with the same masks, thus some lines will be identical, and

Φ will be singular. Some potential solutions can be investigated: a single-pixel camera

could be artificially made by two different ways. First, by applying masks so that only

one pixel on the camera is illuminated. This way, only one measurement would be taken

by mask and each line of Φ would be different. However, it is difficult to code such

masks since the relation between the pixels on the DMD and the pixels on the camera

is not straightforward. Second, by keeping the same kind of masks but integrate all the

illuminated pixels. This would yield a single measurement for each masks. Nevertheless,

the read-out noise of each pixel being slightly different, it would introduce some additional
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noise in the measurement. Moreover, both of these possibilities require taking a lot of

measurements. Indeed, given that a binning of 10 by 10 is applied on the DMD, it results

in a resolution of 108 × 192 = 20736 pixels. For a single-pixel camera architecture to

reconstruct the image with this resolution and a CS ratio of 50% would require taking

10368 measurement with different masks. While this is no strange process in CS, it would

require to optimize the measurement process and data pre-processing to take so much

measurements in an acceptable time.

In addition to these difficulties, it is important to remember that ISTA-Net+ is a DL

algorithm. Therefore, several parameters such as the sparsification operator are optimized

during the learning process. This optimization depends directly on the masks implemented

and on the training data. The algorithm as it is delivered works on sub-blocks of 33× 33

pixels. More precisely, it simulates the CS acquisition process by separating the image in

blocks of 33× 33 = 1089 pixels. Then, for each block, it reshapes it in a one-dimensional

vector and apply one-dimensional masks on it. Therefore, the algorithm is trained with

masks and data of this same specific size, which can introduce some errors when new

masks of different sizes are used. Moreover, the patterns that have been used to train

the algorithm are gaussian masks, which are more representative of transmissive SLMs

such as LCDs where each pixel can absorb or transmit a different proportion of the light.

Therefore, it is not representative of this experimental case which uses binary patterns.

For all the reasons stated above, the use of the ISTA-Net+ algorithm for this experiment

was put aside at the profit of a more simple one called inpainting using IHT and described

in section 2.3.3. The laboratory image masked as described in the previous section was

injected into this algorithm. The result of the inpainting after 500 iterations and a

decaying threshold value form 1 to 0 by steps of 1/500 is shown in Fig. 49. As a reminder,

the full image is displayed in Fig. 50 and the masked image injected into the algorithm in

Fig. 51.
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Figure 49: Inpainting using IHT of the laboratory image masked with a CS ratio of 50%
and a binning of 10 by 10.

Figure 50: Original image rendering in the optical system.
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Figure 51: Masked image.

It must be noted that when the mask was passed into the algorithm the edges of

the mask were switched in the on state. This way the algorithm would not try to re-

construct an image in this region. It can be seen that the reconstruction is far from

perfect. Nonetheless, the image is better than the masked one. This can be quantified

with the PSNR and SSIM as described in section 4.3. Comparing the original image and

the reconstructed one yields a PSNR of 20.801 dB and a SSIM of 0.615. To have an idea

of the improvement with respect to the masked images, the same estimators are used to

compare the original image and the masked image. This yields a PSNR of 12.305 dB

and a SSIM of 0.369. Hence, the SSIM increases significantly with the reconstruction

but the increase is less significant in the PSNR. A possible explanation is that the mask

reduces the global signal intensity on the camera, thus even the unmasked pixels can

be darker than in the original image. This can add some difficulty for the algorithm to

properly reconstruct the original intensity and would explain this relatively low PSNR.

Nonetheless, even if the global intensity is reduced, structures and contrasts can still be

correctly represented, explaining the stronger increase of SSIM. An additional note is that

the algorithm is already optimized to converge towards the best solution, thus changing

the number of iterations or the threshold values either leaves the results unchanged or

decrease the quality of the reconstruction.

Finally, to test the limit of the inpainting algorithm, one can mask the image with

more and wider holes. Practically, this has been done by coding a mask on the DMD with

a CS ratio of 25% and a binning of 20 by 20 mirrors. The resulting mask on the camera

following the process described earlier is shown in the following figure.
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Figure 52: Mask with a CS ratio of 25% and a 20× 20 binning on the DMD.

Applying this mask on the laboratory image yields:

Figure 53: Laboratory image masked with a CS ratio of 25% and a binning of 20 by 20
on the DMD.

And finally, the reconstructed image after the inpainting is:
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Figure 54: Inpainting using IHT of Fig. 53.

It is obvious that the reconstruction is not good at all because there are too many

holes ans thus the reconstruction basis is not complete enough. The PSNR is 21.516 dB

and the SSIM is 0.471. In comparison with the reconstruction of the image masked with

a CS ratio of 50% the SSIM decreases as expected. However, the PSNR slightly increases.

A possible reason is that the larger binning produces less diffraction, thus the intensity of

the illuminated pixels is more similar to the corresponding pixels on the complete image.

Nevertheless, the increase is too small to be significant.

This shows the limitation of this algorithm to reconstruct images with a low CS ratio.

Hence, it can be concluded that while the inpainting using IHT algorithm was sufficient

for a first demonstration of the CS technique in the laboratory, a more efficient algorithm

must be used to obtain good performances.
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6 Conclusion

This master thesis aims to achieve two primary objectives: firstly, to investigate the

relevance of CS for an application on Earth observation instruments with an emphasis

on the IR spectrum; and secondly, implementing from scratch a first CS experimental

chain in a laboratory environment. This work is a continuity of a previous master thesis

that studied the efficiency of different algorithms for CS reconstruction. The outcome

indicated that DL-based algorithms showed better results than TV-based methods.

The essence of the CS methodology is to reconstruct images from fewer measurements

than in classical imaging. Mathematically, this is an ill-posed inverse problem which

can only be solved by considering the sparsity of natural signals. This sparsity allows to

reconstruct the complete image by solely measuring its significant components in a sparse

domain. Practically, this is done by applying random masks on the image via SLMs that

hide or attenuate parts of the signal. Subsequently, the masked measurements and the

patterns used to obtain them are fed into an appropriate reconstruction algorithm. Such

algorithms are generally based on a regularization by minimization of the l1-norm of the

inverse problem. Ultimately, CS offers several advantages, including reduced data storage,

transmission, and analysis requirements for images, as well as a decrease in detector sizes

due to the reduced number of pixels needed. In addition, CS can be implemented to

increase the spatial resolution of imagers, a method called super resolution.

It has been found that CS shows great promise in the area of Earth observation, considering

the large quantity of data that is generated by modern multispectral and hyperspectral

sensors. Furthermore, the specific case of the IR spectrum is particularly interesting, due

to the drastic reduction of detector size that CS could be bring in this spectral range.

To do so, some problems must still be solved such as the development of efficient SLM

technologies operating at these wavelengths, especially in the TIR range. It has also been

found that the application of CS in LEO satellites is limited by the rapid satellite motion.

This limitation arises from the need to take several measurements with different masks,

which increases the acquisition time. Thus, the motion of satellite can degrade the data

quality if the acquisition is too long and the last masks are applied to a different FOV as

the first ones.

The ISTA-Net+ DL-based algorithm that was already proven as a fast and effective

CS reconstruction algorithm in the previous work has been tested on multispectral Earth

observation data. Despite not being specifically trained on Earth observation data, the

results obtained are highly satisfactory. Therefore, it can be stated that ISTA-Net+ is

suitable to reconstruct compressively sensed Earth observation multispectral images since

even better results are expected if the algorithm is retrained with a suitable training set.
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An experimental CS setup has been developed within a laboratory environment. It

consists in a complete chain starting with the light collection from a scene, the spatial

modulation of the signal with a DMD, and the focus of the resulting signal on a cam-

era. The optical system has been successfully implemented, and the reconstruction of

images from the measured data has been demonstrated as feasible. Nonetheless, both

the optical system and the image reconstruction show several limitations. Firstly, the

image on the camera is inclined and partially blurry due to the extremely short DOF

of the system. Then, the reconstructed image could not be done with the ISTA-Net+

algorithm and another one dubbed inpainting using IHT has been used. In the end, the

reconstructed image, while improving the similarity with the original one compared to

the masked image, is far from being a perfect reconstruction. Hence the performance is

sufficient for a very first demonstration of the method, but not yet for concrete applications.

This thesis provides a foundation for future works to dig deeper into the subject and

improve the experimental setup. More specifically, the optical system must be optimized

to have a sharp and clear image on the detector. Several possibilities have been proposed

throughout the work such has the use of tilt-shift lens or a more complex optical compo-

nents arrangement. Additionally, It would be interesting to adapt the setup for IR imaging.

This would require using an IR camera, as well as a DMD with wider micromirrors so

that diffraction would not degrade the signal. An adapted IR source would also be needed

to illuminate a scene to be imaged.

On the reconstruction side, it is of primary importance to be able to inject the measure-

ments in an efficient, ideally DL-based, algorithm. Either by adapting and retraining

ISTA-Net+ to enable direct injection of hardware-compressed measurements into it, or by

finding another suitable algorithm.
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Appendices

A Reconstruction results

(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 55: Results of the reconstructions of the coastal area image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 56: Results of the reconstructions of the desert image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 57: Results of the reconstructions of the glacier image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 58: Results of the reconstructions of the lake image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 59: Results of the reconstructions of the Liège image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 60: Results of the reconstructions of the temperate forest image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 61: Results of the reconstructions of the tropical forest image.
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(a) Original (b) Ratio 1 (c) Ratio 4

(d) Ratio 10 (e) Ratio 25 (f) Ratio 40

(g) Ratio 50

Figure 62: Results of the reconstructions of the Vielsalm image.
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