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Abstract

The application of deep learning to airborne laser scanning data (ALS, lidar) is now very
useful for archaeological purposes. ALS data has already proven to be extremely relevant
in archaeology, as archaeological features are much more visible. Advances in artificial in-
telligence now also make it possible to expand areas of interest in an automated way. This
has a potential to lead to significant time savings in the labelling of archaeological features.

The state-of-the-art neural network architecture for this type of computer vision task
is a convolutional neural network. In this work, both object detection and semantic seg-
mentation were investigated, using a workflow in ArcGIS Pro. The area considered was
the ancient Maya urban center of Chactún, which contains many labelled archaeological
features for training the models. Several neural network architectures were trained on
this area, including the ResNet-18, ResNet-34 and ResNet-50 backbones. Furthermore,
two visualisations were used to train the deep learning models, namely the one-band and
three-band visualisations for archaeological topography (VAT), and the digital elevation
model. The models were tested on terrain similar and different from the training area.

The results show that the most suitable computer vision task for the available dataset
is semantic segmentation. Furthermore, the best performing backbone architecture de-
pends on the visualisation used for training. However, the model with the highest overall
performance proved to be the one using the one-band visualisation for archaeological to-
pography and ResNet-34 backbone. We also found that if there are overlapping objects in
the training set, they should be considered separately by training one model per feature
class. In this case, the best model differs depending on the feature class considered. Fi-
nally, the important parameter of patch size was investigated and a size of 256×256 pixels
(with a pixel size of 0.5 m) was found to be best for the scale of the considered objects.
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1 Introduction

Airborne laser scanning data (ALS, lidar) has become indispensable in archaeology. Be-
fore embarking on a field study, it is interesting to look at the area from a distance. ALS
data acquisition, which became possible with the advent of lasers in the 1960s, is a way
to do this. A notable achievement of ALS technology was the measurement of altitude
during the flight of the Ingenuity helicopter on Mars, which illustrates the importance of
this technology [1]. Mapping the Earth with ALS is of particular interest to archaeology.
ALS-derived imagery provides a high-resolution, detailed view of an area where archaeo-
logical structures can be seen clearly. Not to mention that vegetation cover is not an issue
with ALS, with the exception of very dense forests, whereas it is with photogrammetric
imagery. Structures that might be missed in a ground survey due to dense vegetation
can be visible in a ALS image. In this way, many unknown remains of the ancient Maya
civilisation buried under a dense forest are being uncovered. The implications for under-
standing the Maya civilisation are great [2]. The visualisations obtained from ALS allow
archaeological features to be identified either visually or using deep learning algorithms.

Improvements in computing power allow us to use deep learning in ways that were not
possible in the 1990s [3]. Artificial Intelligence is crucial today as we face the Big Data
tsunami. Indeed, current technological advances are resulting in an enormous amount of
data that continues to grow. Although this information is undoubtedly useful for people
around the world, analysing such a large amount of data is becoming a problem. Arti-
ficial intelligence is one solution to this issue. The more specific field of deep learning is
becoming increasingly popular for the analysis of remote sensing imagery. In particular,
convolutional neural networks are nowadays the most popular algorithm for image anal-
ysis. These neural networks narrow the gap between humans and computers, allowing
computers to ”see” as we do [4]. Deep learning is therefore an undeniable added value for
the field of archaeology. Large data sets can be processed and potential sites automatically
identified. With deep learning, manual visual inspection is no longer the only method for
recognising archaeological features.

This paper investigates the two computer vision tasks of object detection and semantic
segmentation. The corresponding deep learning models, RetinaNet for object detection
and U-Net for semantic segmentation, are trained on the Maya centre of Chactún. An
extensive dataset with labelled archaeological features is available for this region, which
makes deep learning possible. The workflow in ArcGIS Pro to train a deep learning model
is described in detail in this thesis. We also explain how the trained model can be applied
to a new area to detect new structures. The impact of the model’s architecture on its
performance and the influence of the chosen visualisation of the area are examined. Two
different visualisations of the ALS data were investigated. The models are also tested on
several new areas to investigate the transferability of the model to different terrain types
and different data quality. Finally, we test the influence of the size of the images being
fed to the convolutional neural network.
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2 The Chactún area

Chactún is an ancient urban centre of the Maya civilisation that has only recently been
discovered. It is located in Campeche, Mexico. More precisely in the Calakmul Biosphere
Reserve in the central lowlands of the Yucatán Peninsula. Very recently, a large number of
archaeological structures were discovered in this area thanks to ALS data. This discovery
sheds new light on the Maya civilisation, which has a population larger than assumed,
and makes it very interesting to study. Evidence suggests that this Maya centre flourished
during the Late Classic period, which corresponds to about 600 to 1000 AD. Remains
of structures can be found all over the site delineated in Figure 1. Professor Šprajc’s
team discovered three ancient cities within this region in 2013 : Chactún, Tamchén and
Lagunita. These three residential areas, which can be seen in Figure 1, form the Chactún
area considered in this study. They are located on the terrain with the highest elevation.
Smaller clusters of buildings are found all around these three urban centres. Chactún has
the largest architectural volume. The relief of the entire area is characterised by low hills
with surrounding bajos (seasonally flooded flat areas) [5].

Figure 1: The Chactún area where the three largest cities are indicated.

The urban core of Chactún can be seen in Figure 2. The area includes several com-
plexes, which are described in detail in the article by Šprajc et al. (2022) [5]. First of all,
platforms are found all over Chactún. These are artificial, flat surfaces that are elevated
with respect to the surroundings and on which remains of buildings are often found. It can
be noted that platforms that do not appear to support a building may have supported per-
ishable structures. The second and most numerous component of the region are buildings
of various sizes, either standing on platforms or not. Most of them were residential. They
can be found in groups or isolated. In some cases, only remains of walls are found, which
suggests thatched roofs. Most, however, indicate vaulted rooms with remnants of roofs.
An example of remains of a building can be found in Figure 3a. Finally, several aguadas
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(artificial water reservoirs) have been identified. They are characterised by a lower terrain
compared to the surrounding area, with slightly raised edges. Their existence stems from
the fact that there is no permanent water on the surface. A large aguada can also be seen
in Figure 3b. In figure 2, two ball courts are visible, as well as remains of buildings such
as that of the western complex. These building structures stand on a platform. At the top
left is the largest aguada in the Chactún region, labelled as ”reservoir”. Causeways, up to
30 m wide, connect the various complexes together. Other archaeological features found
in the Chactún region include temple pyramids, sculpted monuments (such as stelae and
altars), terraces, plazas, ridges and lime kilns. The elevation of the area ranges from 220
to 295 metres, rising by a few metres if the buildings are considered [6]. The terrain is
a mixture of flat and hilly areas. Based on recent discoveries, the Chactún area can be
classified as one of the largest Maya centres in the central Yucatán lowlands discovered
to date. For this reason, it is worth exploring in detail. However, Chactún is covered by
a dense tropical forest with trees up to 20 m high [5]. It is then necessary to penetrate
this semi-deciduous forest in order to see the archaeological features. ALS data offers a
solution to this problem. ALS data for the region was acquired in 2016 and supplemented
by pedestrian field surveys in 2017 and 2018. The data can provide information on water
management and agriculture through terrain changes. Insights can also be derived about
the socio-political organisation in which Chactún played an important role [5].

Figure 2: Annotated visualisation of Chactún core.
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(a)

(b)

Figure 3: Picture of (a) a building and (b) an aguada (photo by Žiga Kokalj).

3 Deep learning

3.1 A brief introduction to machine learning

Deep learning as a branch of machine learning, which is itself part of the broader field
of artificial intelligence. A few words deserve to be said about machine learning, as deep
learning is only one specific case of this field. The reason this field was developed in the
first place was to find a way to use computers to solve problems that were unsolvable for
humans. One example is the navigation of the Mars rover. The great distance to the red
planet makes it difficult for humans to navigate a vehicle from Earth. One can point out
the time delay between the transmission and reception of a signal between the rover and
Earth. As well as the limited amount of data that can be transmitted. Autonomous rovers
are a key to overcoming these issues. Machine learning is able to provide this necessary
autonomy [7]. Another classic example of machine learning is the recommendation algo-
rithms of music streaming services which suggest songs you might like based on previously
played songs [8]. A final example is the recognition of handwritten characters [4].

The discipline has continued to evolve and has become an essential tool for making
predictions and turning difficult and time-consuming tasks into automated ones. Machine
learning focuses on algorithms that allow computers to learn from a given set of data,
called a training set. During the learning process, the model will improve its performance.
Once the model is fully trained, it can be applied to new data and provide valid knowledge
using what it has learned.

There are two types of algorithms depending on the initial dataset provided to this
algorithm. The two types correspond to two different learning methods. The first is
supervised learning, where the training data contains a target. In other words, the output
that the algorithm should provide is known and the computer can adjust its parameters
to find the desired output. In contrast, one speaks of unsupervised learning when the
training data does not contain an expected output and the algorithm has to figure it out
on its own [8]. This paper focuses on supervised machine learning. The ultimate goal of
the algorithm is then to find a function of the inputs (X1, X2, X3) which provides the best
possible approximation of the given output: Ŷ = f(X1, X2, X3) [9]. This equation is the
machine learning model. The inputs are called learning or training samples. Finding the
best function parameters corresponds to achieving the highest performance of the model.
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This is accomplished by minimising a loss function. This function returns the error of the
model, i.e. the difference between the target output and the predicted output. This loss is
often calculated as the root mean square error for a regression problem (with a numerical
output):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1)

where N is the total number of learning samples, y is the target output (called ground
truth) and ŷ is the predicted output. In a classification problem, where the output is
a class associated with a probability, the loss function is often the binary cross-entropy
loss [10]:

CE = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) (2)

where pi is the probability of belonging to a class. A small loss value indicates a pre-
diction which is close to reality. The parameters that minimise the loss function are found
by computing the first derivative of the loss function with respect to that parameter. The
function with the smallest loss is kept by the model [8].

The dataset is divided into several parts. One part is the training set from which the
algorithm learns and minimises the loss function. A second part is the testing set which
consists of new data that the algorithm has never seen before and allows the performance
of the model to be evaluated. Therefore, one error is associated with the training set and
another with the testing set. These errors can be seen in Figure 4, which illustrates an
important concept in machine learning: overfitting and underfitting. Overfitting occurs
when the model ”sticks” too much to the training data and includes noise. The model is
then too complex and the error on the testing set increases. Underfitting happens when
the model is too simple to represent the phenomenon. In this case, the error is high for
both the training and testing sets. The ability of the model to make predictions on new
data is called the generalisation of the model. This generalisation is evaluated through
the testing set and the best model minimises the test error [8].

Figure 4: Error for the training and testing sets as a function of the model complexity [11].

A third part of the dataset is often used for training the model. It is called the
validation sample. Like the training sample, it is used during the learning phase. It
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allows to assess the performance of the model created with the training set. Even though
both assess the performance of the model, the validation sample and the test sample
are different. The validation sample allows the model to adapt in order to improve its
performance and avoid overfitting. To do so, the hyperparameters of the model can be
modified. These hyperparameters determine the structure of the model and control the
learning process [12]. In contrast, the test sample is used at the very end to evaluate the
generalisation performance of the final model and was never seen by the model during
training [13].

3.2 Basis of deep learning

Deep learning is a subfield of machine learning. The main difference between the two is
that machine learning requires some pre-treatment of the data. Namely, the features (also
called variables) have to be engineered manually. In other words, the raw data must be
modified to create the variables needed to train the model [14]. On the contrary, deep
learning doesn’t require such pre-treatment. Feature engineering is learned by the model
starting from the raw data. For example, if a machine learning model is presented with an
image of a car, the user must tell the model that this is a car. A deep learning model will
recognise the car on its own. This feature engineering aspect will be illustrated further.
Deep learning is also more performant than machine learning when the dataset is large.

Deep learning uses Artificial Neural Networks (ANN). The idea behind it is to replicate
the processes that take place in the biological neurons of our brain. Just like the biological
neurons, the artificial neurons take in information, process it and produce an output. An
individual artificial neuron, called a perceptron, is shown in Figure 5. The mathematical
equation of a neuron is as follows [15]:

ŷ = f(
∑
i

wixi + b) (3)

The neuron is provided with a set of input values xi. An input is an attribute and
can be anything from the surface of a flat to the value of a pixel of an image. One
requirement is that the input must be numeric, so an image is represented by its pixel
values. Each value is assigned a weight wi. The b corresponds to the bias. These weights
and the bias are the parameters that the model will change in order to learn and improve
its performance, by minimising the loss function. ŷ is the output of the neuron and f is
a non-linear function, called the activation function. This function decides whether the
neuron is activated or not. The non-linearity allows the model to learn more complex
processes and approximate almost anything.

Figure 5: Computational graph of a perceptron [15].
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These artificial neurons are connected to each other to form a layer. Several layers are
in turn connected to form what is called a neural network. The most common form of a
neural network, referred to as Multi-Layer Perceptron, is shown in Figure 6. In a neural
network, the output of one neuron becomes the input of another. The network can vary in
size, with varying numbers of layers and artificial neurons, depending on the application. If
there is more than one hidden layer, it is called a deep neural network. Each circle (green,
orange or blue) corresponds to a neuron (or perceptron) and can therefore be replaced by
the Figure 5. Like any machine learning algorithm, neural networks need to be trained.

Figure 6: Illustration of a usual neural network [16].

Minimising the loss function across the neural network is achieved through a process
called gradient descent or backpropagation. This is an optimisation algorithm where the
gradient of the loss function with respect to the weights (which must be minimised) is
calculated for the very last layer of the network and is then propagated back towards
the very first layer. During the process, the values of the weights are updated to reach
the minimum loss. The goal of the training process is to achieve generalisation, which is
basically defined as how well the model is able to make predictions for new data [3].

A word should be said about transfer learning since it will be used later on. It in-
volves using an already trained deep learning model as the basis for the structure of a new
model. It helps to improve the performance and speed of the training process of the new
model. The weights are in fact initialised with the values of the pre-trained model and
are therefore already closer to the optimal values (minimising the loss). They are then
updated through backpropagation. A simplified deep learning workflow can be found in
Appendix A.

3.3 Convolutional Neural Networks

Convolutional Neural Networks, abbreviated CNNs, belong to the field of computer vision.
This field is concerned with the processing of images and videos. CNNs thus try to
replicate the visual system of the human brain [4]. Since images will be used here in the
case of archaeology, these networks are suitable. A CNN is a particular neural network
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architecture, illustrated in Figure 7, whose individual elements are explained below. The
aim of the model is to determine what the object in the image is.

Figure 7: Illustration of a convolutional neural network [17].

The network uses filters (also called kernels) to identify specific features in an image.
They thus perform feature extraction (or feature engineering) themselves, as mentioned
above. These filters form the convolutional layers of the network. An example of a filter is
shown in Figure 8. The filter slides over the image and produces a numerical value for each
convolution, through linear matrix multiplications. When the filter has been applied to
the entire image, the result is a feature map. During the learning process, the parameters
(weights) of the filters are modified through the gradient descent method to improve the
performance of the network. One may notice that a boundary line of zeros has been added
to better analyse the edges of the input image. This addition is called padding.

Figure 8: Illustration of a convolutional layer with the input image on the left, the filter
in the middle and the output feature map on the right [18].

After the feature map is created, an activation function is applied to it. The aim is
to increase the non-linearity of the final output, to better fit the results. The activation
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function commonly used in CNNs is the ReLU function (Rectified Linear Unit), shown
in Figure 9. It indicates whether a neuron is activated or not, hence introducing a non-
linearity. The neuron is inactive if the input is negative [3]. However, a CNN doesn’t
only consist of an individual convolutional layer, as illustrated in Figure 7. A convolution
and a ReLU function are followed by a pooling layer. This layer reduces the dimension
of the feature map. A so-called maximum pooling layer, shown in Figure 9, takes the
maximum value of the part of the feature map it is examining. It keeps only the important
information and disregards the noise, leading to higher accuracy and speed. A succession of
convolutional layers and pooling layers are available in the network for feature extraction.
The first layers learn low-level features such as edges, lines or colours, while the last layers
extract high-level features such as a tire. The final feature map of the feature learning
process is then flattened into a vector and connected to a fully-connected layer. As the
name suggests, each neuron in the flattened layer is connected to each neuron of this fully-
connected layer. This layer performs the classification process. It makes a decision by
learning possible combinations of high-level features. The output of the fully-connected
layer is the probability that the feature belongs to a class. In our example of archaeology,
one neuron contains the probability that the object belongs to the class of buildings,
another to the class of platforms, and a third one to the class of aguadas. The last layer of
the model contains a Softmax activation function that normalises the probabilities between
0 and 1. The label corresponding to the highest probability is retained. This completes
the classification process [12]. One can note that in Figure 7, the layers are represented
as rectangles with a certain width. This comes from the fact that several filters are used
(one filter for one neuron), resulting in several feature maps. Each feature map contains
a different characteristic of the input image. In other words, the parameters (weights and
biases) of a filter are adjusted to search for and identify a particular aspect of the image.
For example, one filter may be searching for vertical edges and another for horizontal
edges. Once the learning process is complete, new images can be provided to the network
which will be able to identify what is on them.

Figure 9: ReLU activation function on the left [19] and example of a max pooling layer
on the right [20].
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3.4 RetinaNet model for object detection

In this work, two different computer vision tasks using CNNs were tested: Object Detec-
tion and Semantic Segmentation. An object detection deep learning model identifies and
localises objects in the image. Object detection is based on bounding boxes containing
the objects. The training data contains ground truth bounding boxes (also called annota-
tions) that encompass the known objects. The model is then trained to define a prediction
bounding box as close as possible to this ground truth box. The idea behind object de-
tection is the following: The model creates a set of anchor boxes within the image that
have a predefined shape and size, as shown in Figure 10. The various anchor boxes are
then examined to determine whether or not they contain an object. To do this, they are
compared with the ground truth bounding boxes. The network calculates a probability
that an object will be found and a IOU (Intersection Over Union). This IOU indicates
how much of the anchor box is overlapped by the ground truth box. The definition is pro-
vided in Figure 10 and shows that a high IOU means that the prediction box predicts the
inside of the ground truth box well (numerator), while not overflowing it (denominator).
The value of the IOU goes from 0 to 1. The anchor box closest to the ground truth box,
with the highest IOU and the highest probability, is retained. It is eventually adjusted
to better fit the object and thus becomes the final prediction bounding box. This is the
difference between bounding boxes and anchor boxes, because in the latter the size and
shape remain unchanged, while the former are adjusted to better fit the object. This is
illustrated in Figure 10, where the yellow boxes are the prediction boxes defined relative
to an anchor box. An anchor box with a low IOU relative to the ground truth box is
assigned as background [21].

Figure 10: Illustration of a set of anchor boxes on the left and illustration of the Intersection
Over Union on the right [21].

The deep learning model used in this thesis for object detection is the RetinaNet model.
It is a one-stage algorithm for object detection. One-stage means that the algorithm
directly uses a CNN to identify objects. In contrast, two-stage algorithms first identify
the regions where objects could be found, and then focus only on those regions by using a
CNN to detect objects [22]. The RetinaNet model is well suited for the detection of dense
and small-scale features. It consists of two main components: Feature Pyramid Network
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(FPN) and Focal Loss. The architecture of the model is shown in Figure 11. The figure
shows four different parts of the model: (a) a bottom-up and (b) a top-down pathway, (c)
a classification and (d) a regression subnetwork [23].

Figure 11: Architecture of the RetinaNet model [23].

A feature pyramid network, which here is the left part of Figure 11, combines low- and
high-resolution data. The bottom-up part of the architecture goes from high-resolution
maps to low-resolution ones. In other words, this part of the architecture computes feature
maps with varying scales, just like any CNN. Objects with different scales can then be
identified. The top-down part upsamples the low-resolution feature maps and combines
them with the bottom-up layers via lateral connections. This combines low-level features
(edges, lines, colours) and high-level features (object, scene). These come respectively
from the high-resolution layers and the low-resolution layers, as illustrated in Figure 12.
This creates a stronger representation that combines good spatial information and good
semantic information. Further in the network, the classification subnetwork then analyses
the anchor boxes associated with each point on the feature maps and determines the prob-
ability for an object to be found inside. The regression subnetwork reduces the difference
between the anchor box and the ground truth box, if there is one, and thus provides the
prediction box [23].

Figure 12: Illustration of feature maps at several layers of a CNN [21].
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An additional word should be said about the bottom-up part of the architecture. This
part is called the backbone model and is chosen here as the ResNet model. ResNet is a
neural network architecture that enables transfer learning, i.e. it has already been trained
before. In particular, it has been trained for a classification task on the ImageNet dataset,
which contains more than one million images [24]. The number following the name ResNet
indicates the number of layers in this backbone network. This already trained model is
used as the base architecture for the training process of the new model, improving its
performance.

Focal Loss is used in the RetinaNet model and makes it possible to deal with the
problem of class imbalance. This relates to the fact that a sample may contain many
more data samples in one class than in other classes. An algorithm will then assign more
weight to the majority. This class imbalance issue occurs in one-stage models because of
the sampling performed through the anchor boxes. In fact, each point in an input image
is assigned a certain number of anchor boxes (nine for RetinaNet). Each box is then in-
vestigated during the training process and either associated to an object or not. If there is
no object from the training data within the box, it is classified as background. Since the
training dataset contains only a small number of objects compared to the total number of
anchor boxes, many boxes are classified as background. The small losses associated with
these backgrounds will overwhelm the model [21]. Focal loss reduces the contribution of
these background boxes to the loss by slightly altering the cross-entropy loss function [23].
This is illustrated in Figure 13, which compares the formulas for cross-entropy (CE) and
focal loss (FL). Note that sum and indices have been omitted for simplicity. In RetinaNet,
a value of γ = 2 is used [25].

Figure 13: Illustration of the effect of focal loss [25].

The parameters of the RetinaNet model are listed in Table 1 with the default values.
The scale corresponds to the size of the anchor boxes. It is set depending on the expected
size of the objects. Aspect ratio is the ratio of height to width of an anchor box. It
indicates the shape of the object. The values are chosen depending on the expected
shape. Nine types of anchor boxes are available with RetinaNet, through the use of three
different scales and three aspect ratios. These nine anchor boxes are built at each point
of a feature map, as explained above. The chip size parameter is related to the fact that
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an input image is divided into a set of sub-images called image chips or patches. This is
explained in more detail in Section 6.1. The valid loss setting for the monitor parameter
indicates that the validation loss (difference between prediction and ground truth) is used
to monitor the model. Training will continue until this loss is minimised.

Scales 1, 0.79, 0.63

Ratios 0.5, 1, 2

Chip size 256

Monitor Valid loss

Table 1: Model arguments of the RetinaNet model with the default values.

3.5 U-Net model for semantic segmentation

An alternative to object detection is semantic segmentation. This technique doesn’t use
bounding boxes, but classifies each pixel of an image (see Figure 14). A pixel is then
assigned either to an object class or to the background. As opposed to simple image
classification, where the entire image is given a class label, here the output of the model is
a class label with information about its localisation. There are two names for this technique
that can be used interchangeably: Semantic Segmentation and Pixel Classification.

Figure 14: Illustration of semantic segmentation with the input image on the left and the
output of the segmentation on the right [26].

The U-Net model is the most used model in semantic segmentation. It was originally
developed for biomedical purposes [27]. The architecture is shown in Figure 15. It is
based on an encoder and a decoder. The encoder compresses the information into a
smaller dimension, reducing the resolution while providing high-level features. This part
of the model architecture is similar to the usual architecture of a CNN, with convolutional
layers, ReLU activation functions and pooling layers. It is usually a pre-trained ResNet
model. The decoder, on the other hand, decompresses the information by upsampling,
thus increasing the resolution back to the initial value. This part allows the projection
of the previously learned high-level features into the higher-resolution pixel space. For
better learning, connections are also made to the encoder part, as in the RetinaNet model
[26]. The main advantage of this technique is that it allows to detect high-level features
(contextual information) thanks to the encoder path, but also to localise features using
the higher resolution maps obtained by the upsampling path. The output is then more
spatially accurate [27].
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Figure 15: Architecture of the U-Net model. The blue rectangles are mutli-channel feature
maps with the number of channels written at the top. Their size is written at their lower
left [26].

The numbers above the layers (blue rectangles) on Figure 15 represent the number of
channels and is related to the number of kernels applied to the input image. A feature
map is then created for each kernel. The number 64 for the first set of feature maps means
that 64 kernels have been applied to the image. As the network progresses, more and more
feature maps are created by applying more kernels. This illustrates why it is impossible
for humans to understand what is happening in a neural network and why it makes a
particular decision. Neural networks are a black box of which we can only see the inputs
and the outputs.

The model arguments are listed in Table 2 along with the default values. The class
balancing and focal loss arguments are related to the class imbalance problem mentioned
earlier. It is related to the fact that one class can have more training samples than another.
Typically there are more background than target objects. Class Balancing and Focal Loss
can solve the issue by reducing the contribution of classes with higher frequency to the
loss. Class balancing focuses on smaller classes (with a smaller number of samples) and
ensures that they are considered as important as other larger classes. Focal loss focuses
on decreasing the number of misclassified examples by concentrating on pixels with a low
probability. Mixup can be set to True if the number of training samples is low and data
augmentation is needed. Chip size is the size of the sub-images that will be provided as
input to the network. Finally, monitor provides the loss that will be used to monitor the
performance of the model. These two last parameters are the same as those used with
RetinaNet.
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Class balancing False

Mixup False

Focal loss False

Chip size 256

Monitor Valid loss

Table 2: Model arguments of the U-Net model with the default values.

3.6 Performance metrics

Several performance metrics are used in object detection and semantic segmentation to
assess the performance of a deep learning model. The performance metric most commonly
used for object detection is the accuracy. The accuracy indicates the percentage of data
that was well predicted and is defined as follows:

Accuracy =
Number of correct predictions

Number of predictions

=
True Positive+ True Negative

True Positive+ True Negative+ False Positive+ False Negative
(4)

In the case of semantic segmentation, additional metrics are used to evaluate the
performance: precision, recall and F1. They are defined below [28].

Presicion =
True Positive

True Positive+ False Positive
(5)

Recall =
True Positive

True Positive+ False Negative
(6)

F1 score = 2× Precision × Recall

Precision+Recall
(7)

The precision metric is quite straightforward. A high value means that almost all pre-
dictions are ground truths. The recall metric measures the ratio of true positive predictions
to the total number of ground truths. False negative predictions are in fact objects that
have been incorrectly classified as background. A high recall score means that all ground
truths were predicted. Finally, the F1 score provides the weighted average of the precision
and recall metrics. Another metric of the model, mentioned above for object detection,
is the accuracy. It is defined by the ratio of accurate predictions to the total amount of
predictions (see Equation (4)). Thus, accuracy is the number of pixels that were correctly
classified. While the accuracy evaluates the model in general (including the background),
the precision and recall metrics focus only on the performance of the archaeological classes.

To assess how well the model performed on the test set, the IOU metric is commonly
used for semantic segmentation. This metric gives the overlap between the ground truth
and prediction regions in terms of pixels. Note that although this metric is also defined
for object detection (see Figure 10), it is more important in semantic segmentation for
performance evaluation. Namely, since each pixel is classified, it is no longer possible to
count the number of false positives and true positives in terms of objects. A true or false
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positive is now one pixel. However, an amount can be obtained for these pixels so that
the IOU can be calculated by the following formula:

IOU =
True Positive

True Positive+ False Positive+ False Negative
(8)

The values for the amount of TP, FP and FN are obtained using ArcGIS Pro’s ”Com-
bine” tool, which compares the values of multiple rasters. The output is an attribute table
with all possible combinations of raster values and the number of times they occur (see
Appendix B). A pixel that has a value of 1 in both the ground truth and prediction rasters
is a true positive. On the other hand, if a pixel has a value of 0 in the ground truth and
1 in the prediction, it is a false positive. The processing chain to obtain the values for
calculating the IOU is shown in Figure 16. The ”Test ...” vector files are the ground truths
for the test area, while the ”Classified pixels” raster is the result of the segmentation.

Figure 16: Processing chain for the IOU computation.

Another important metric is the dice coefficient. It is related to the previously men-
tioned IOU. To calculate the dice coefficient, we need to compute the number of pixels
associated with a class (object or background) in the ground truth image and in the
predicted image. The calculation to compute the dice coefficient is shown in Figure 17.
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Figure 17: Illustration of the dice coefficient with A the prediction and B the ground
truth [29].

The formula of the dice coefficient is the following:

Dice =
2× True Positive

(True Positive+ False Positive) + (True Positive+ False Negative)
(9)

As with the IOU, the value is between 0 and 1, and a good model has a high dice
value. One can note that the final dice value is the average of the dice calculated for both
the class and the background.

4 Lidar remote sensing

Lidar, or ALS, is a recent field of remote sensing, with an emergence in the 1960s. The
technology has continued to develop, especially in the last decade, and its applications
keep growing. Today, for example, it is often used to create Digital Elevation Models
(DEM) [30]. As radar, it is an active remote sensing method. This means that the sensor
sends its own electromagnetic energy and does not rely on solar illumination. Lidar stands
for ”Light Detection and Ranging” and is based on measurements of distances. A laser
pulse is sent to a target and part of its energy is scattered back to the sensor. The distance
measurement can be achieved through two different methods: Time-of-Flight and phase
shift.

This thesis uses data from airborne lidar surveys, but lidar data can also be acquired
from the ground (ground-based), from space (spaceborne) or from drones (UAV-based).
Lidar measurements from an airborne platform are also known as Airborne Laser Scanning
(ALS). An ALS system, represented in Figure 18, consists of two main elements: a laser
range finder (laser scanner and ranging unit) and a positioning system (GNSS and IMU)
to georeference the points. The laser range finder provides the distance between the
sensor and the target, called the range. The positioning system is necessary because
the coordinates of the target can only be determined if the location and orientation of
the ALS sensor are known. The location is provided by the Global Positioning System
(GNSS or Differential GNSS with ground-based stations), while the orientation (defined
by yaw, pitch and roll) is determined by the Inertial Measurement Unit (IMU). From the
information provided by the GNSS, IMU, ranging unit and the scan angles, coordinates
(x, y, z) can be assigned to a laser return point (in the WGS84 coordinate system). The
Figure 18 illustrates three types of laser scanning: zigzag, parallel and elliptical.
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Figure 18: Representation of an ALS system [31].

Two particularities of ALS are that data collection can take place both during the day
and during the night (since the system is active and thus independent of solar radiation)
and that the laser signal can ”see” through vegetation cover (thanks to gaps). The latter
feature is particularly useful for creating a DEM under a forest canopy. One pulse is
associated with several returns coming from different parts of a tree, for example. This
comes from the fact that the emitted laser beam has a certain width and is therefore char-
acterised by an instantaneous laser footprint, which is almost circular at nadir. Part of
the beam can reach the ground if it is not reflected by vegetation (i.e. if gaps are present).
Multiple returns from both vegetation and soil can then be recorded and distinguished
thanks to the time difference between the returns [31]. Note that if the vegetation is too
dense and no gaps are present, the beam cannot reach the ground. The soil will then not
be seen by the ALS system.

An ALS acquisition, illustrated in Figure 19, has several characteristics that must be
taken into account when planning the mission: the altitude and speed of the airborne
system, the scan angle, the pulse repetition frequency (PRF which is the number of pulses
per second), the swath width, the field of view and the overlap of the flight lines. All
these parameters are selected according to the application. Laser pulses can be emitted
at a very high cadence (1 million pulses per second for the state-of-the-art system). The
point density can be derived from the first four parameters (altitude, speed, scan angle
and PRF). A scanning mirror is used to orient the laser pulses across track (perpendicular
to the line of flight). Dense forests, like the one over Chactún, require an ALS acquisition
with a smaller field of view, so that the beam does not have to cross too much vegetation
to reach the ground, and a higher point density (between 10 and 50 points/m2) [30].
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Figure 19: Illustration of an ALS acquisition [32].

There are two types of recording of returns: discrete or full-waveform. They are
illustrated in Figure 20. With discrete recording, a few measurements are recorded per
pulse emitted. With full-waveform, on the other hand, many more recordings are taken,
typically at time intervals of 1 ns. Such a time interval corresponds roughly to a distance
of 15 cm between two points. This allows a detailed vertical profile of the surface to be
created with an almost continuous backscatter signal. ALS is therefore characterised by
fine spatial resolution. Common wavelengths for lidar (airborne and ground-based) are
between 500 and 1600 nm [31].

Figure 20: Illustration of discrete return on the left and full-waveform on the right [33].

The result of an ALS acquisition is a 3D point cloud (showing the geometry of the scene
with additional attributes). From there, two main steps of data processing are required.
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The first step is the classification of the points. Specifically, ground points need to be
identified and distinguished from return points from the vegetation and other above-ground
objects. This is called point filtering and can be achieved using algorithms. The next step
is interpolation, which makes it possible to go from a point cloud to a continuous raster
surface. A high-resolution digital elevation model raster can then be created from the
ground points. Other classes can be used, for example to characterise the vegetation [31]. A
lidar-derived image interpretable by archaeologists is an enhanced visualisation of the DEM
obtained from the ALS point cloud. By optimising the algorithms, the vegetation points
can be removed while the points associated with archaeological structures are preserved.
This creates a DEM of great interest to archaeologists.

5 Description of the data

5.1 Chactún dataset

ALS data of the Chactún area was acquired by the National Centre for Airborne Laser
Mapping (NCALM) at the University of Houston. The data was collected in May 2016
and covers an area of 230 km2 around Chactún. The airborne platform used for the ac-
quisition was a fixed-wing type. The sensor used is a multispectral airborne lidar sensor
(Optech Titan). Three wavelengths were used for the laser beam: 1550 nm, 1064 nm and
532 nm (infrared, near infrared and green). The platform flew at an altitude of between
800 and 900 m. The swath width was 600 m. An overlap of 50% between the flight lines
was chosen [34]. This overlap increases the point density and avoids data gaps that can
occur, for example, with steep surfaces. Full-waveform recording was achieved.

The NCALM also performed the first step of data processing and created a point cloud
from the full-waveform. The centre also performed ground classification and removed the
vegetation cover. The last part of processing was achived by ZRC SAZU prior to the
internship. It consisted of an additional ground classification and the visualisation of the
data. To obtain this final visualisation, the point cloud first had to be interpolated into a
raster digital elevation model, from which the visualisation is then calculated. It should
be noted that although the vegetation was removed, the remains of human activities were
not. The final point cloud then includes parts of the ruined buildings and water reser-
voirs. The mean density of the point cloud, with the three laser channels combined, is
12.8 ground points/m2. The spatial resolution of the resulting DEM is 0.5 m [34]. It has
been shown that these orders of magnitude for point density and resolution provide a large
amount of archaeological information [35]. When artificial and natural structures are part
of the model, it is referred to as a Digital Surface Model (DSM). A model of the bare
Earth’s surface, on the other hand, is called a Digital Terrain Model (DTM) [35]. In the
present case, only the vegetation was removed. Archaeological features such as walls and
roads are still present in the model. The interpolation is then neither a true DSM nor a
true DTM, and the more general term of digital elevation model is used. The name Digital
Feature Model (DFM) is sometimes also used for such an archaeology-specific model [35].

The visualisation of the DEM used comes from the work of Kokalj and Somrak (2019)
[34] (ZRC SAZU). In their paper, they offer a new type of visualisation for ALS data, which
is referred to as the Visualisation for Archaeological Topography (VAT), and which is a
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combination of several common visualisations. The idea behind this is to define what could
be a standardised visualisation for archaeological purposes. The common visualisations
are the following: hillshade, slope gradient, sky-view factor and positive openness. They
are shown in Figure 21, where the last two visualisations are the ones proposed by ZRC
SAZU and are explained below.

 

a) 

f) e) 

d) c) 

b) 

Figure 21: Visualisations of Chactún obtained from the Relief Visualisation Toolbox [34].
(a) Hillshading, (b) slope gradient, (c) positive openness, (d) sky viewing factor, (e) three-
band VAT and (f) one-band VAT.
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The most common visualisation technique for archaeological purposes has long been
the hillshade. It provides a view of the shadows and bright areas that are created when
the Sun is simulated in a particular direction. The slope gradient visualisation provides
information about the steepness of the terrain. It is obtained by calculating the first
derivative of the DEM. Sky-view factor provides the portion of the sky that is visible from
a given location. Positive openness is obtained by taking the mean of the zenith angles
of the lines tangent to the surface. This is illustrated in Figure 22. In other words, the
openness indicates how a location can be seen by an external observer. If nadir angles are
considered, the negative openness is obtained [36].

Figure 22: Illustration of positive openness with the α angles and negative openness with
the β angles [37].

The visualisation proposed by ZRC SAZU is called the Visualisation for Archaeological
Topography (VAT). It combines the different visualisations mentioned above through the
use of blending modes. These allow two images to be merged by applying an equation to
the two matching pixels when the images are superimposed. The blending modes used to
obtain the VAT are Multiply, Overlay and Luminosity. Multiply applies a multiplication
between the luminance values of the bottom and top pixels. This makes the image darker.
Overlay provides an enhanced contrast (better visibility of bright and dark areas). The
Luminosity mode keeps only the luminance of the top layer and the colours of the bottom
layer. For each mode, an opacity value must be set for the top image. Otherwise, the
bottom image will just disappear entirely [34].

The Table 3 contains information about the creation of the VAT, which was achieved
prior to this work. The blending was made starting from a hillshading layer, which was
blended with a slope visualisation using the luminosity method. The resulting layer was
then merged with the positive openness through overlay. Finally, the resulting layer was
blended with the sky-view factor through the multiply mode. The result of these steps is
the combined VAT image. Two VAT were actually created, one with one band (greyscale)
and one with three bands. The one-band VAT was created using the workflow of Table
3, which provides a greyscale image. The three-band VAT is created by combining slope
gradient, sky-view factor and positive openness, using each visualisation as one band. The
reason why hillshading was not used for this VAT is that hillshading depends on the ori-
entation, which makes it less usable for data augmentation. The VAT image shows all the
positive characteristics of the raster visualisations from which it was created. It improves
the recognition of objects and makes the interpretation of the image more straightforward.
One can conclude that the proposed VAT meets the criteria of a good visualisation. These
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criteria include discrimination of small features, ease of interpretation, invariance of ter-
rain type and object shape (which makes it possible to obtain information about the size
of features), absence of artefacts and so more [34].

Visualisations Blending type Opacity

Sky-view factor Multiply 25%

Positive openness Overlay 50%

Slope Luminosity 50%

Hillshading - 315° azimuth Base layer

Table 3: Visualisations combined to give the VAT along with the blending mode used and
opacity [34].

The visualisation for archaeological topography of the training area (Chactún) is the
first element needed for the training of the deep learning model for the automatic detection
of archaeological features. This VAT is referred to as the source image in ArcGIS Pro.
Note that the source image can also be any other visualisation. The DEM of Chactún will
also be used later on to investigate the impact of the visualisation. To train the model, a
second dataset is needed that contains a set of manually labelled objects (archaeological
features) that the model can train and learn with. These objects are stored as polygons
in a vector file and are called ground truths or annotations. The distribution of objects
over the Chactún area is shown in Figure 23. Three types of archaeological features have
been identified at Chactún area: buildings, platforms and aguadas. The labelled dataset
contains 8,658 buildings, 2,016 platforms and 52 aguadas. Hence a total of 10,726 Maya
archaeological features. Each class is stored in its own layer.

Figure 23: Map of the polygons of archaeological features of the Chactún area.
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A particularity of this vector data is that the annotations linked to the objects follow
their contours (see Figure 24). This enables semantic segmentation which is not possible
with centroids or bounding boxes. An enlargement of the different features, which are
not easily distinguishable on Figure 23, can be seen in Figure 24. It can be viewed that
buildings often stand on platforms, although it is not always so. The reverse is also true,
as not all platforms have a building on top. One should bear in mind that the building
polygons actually correspond to parts of a building, e.g. the walls. Pyramids and ball-
courts are also labelled as buildings. Hence one polygon corresponds to one structure, or
several structures if the boundaries were too difficult to determine [5].

Figure 24: VAT of Chactún core on the left and ground truth archaeological features
superimposed to the VAT on the right. Aguadas are in blue, buildings in yellow and
platforms in orange.

The raster visualisations for the Chactún area considered in this thesis have the prop-
erties shown in Table 4.

Raster name Bit depth Range Number of bands Pixel size

One band VAT 8-bit 0-255 1 0.5m

Three bands VAT 32bit 32-bit 0-1 3 0.5m

Three bands VAT 8bit 8-bit 0-255 3 0.5m

Table 4: Properties of the raster visualisations of the Chactún area.

5.2 G-LiHT dataset

Other datasets were used to test the deep learning models. It is important to consider an
area that the model has not seen during training to avoid bias in evaluating the model’s
performance. The first dataset used is referred to as G-LiHT, which stands for Goddard-
Lidar, Hyperspectral and Thermal imager [38]. Even though G-LiHT refers to the in-
strument used for the data acquisition (multi-sensor airborne imaging system of NASA’s
Goddard Space Flight Center), the name G-LiHT will be used here to refer to the test
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area. The dataset is also located in Campeche in the Yucatan Peninsula of southern Mex-
ico and was collected in 2013. As for Chactún, the area is covered by tropical forest. The
system’s lidar sensor includes a 1550 nm laser. The flying height was 335 m. Only a small
sample of the total acquired dataset is used in this thesis. The location of the sample area
is visible in Figure 25. The central stripe is the VAT of the investigated area. A zoom is
shown in Figure 26. The VAT resulting from the ALS point cloud has a resolution of 1 m.

Figure 25: G-LiHT dataset for the testing of the model. The central stripe is the VAT of
the area considered.

An important aspect of the data acquisition is that it was achieved by environmental
scientists. The consequence is that the ALS data was not collected with archaeological re-
search in mind. The main objective of the data collection was indeed to measure the forest
carbon stocks [38]. The scale and location of the sample, as well as the lidar acquisition
parameters (PRF, beam footprint, etc) are therefore not optimised for an archaeological
objective. For example, the data was acquired with a single pass of the lidar sensor. This
may have lead to a too small amount of ground points to resolve archaeological features the
most optimal way. This might impact the performance of the deep learning model when
applied to this data. One can already notice with Figure 26 that the terrain of G-LiHT
is quite different from that of the Chactún area. Due to the rugged terrain of G-LiHT,
the archaeological structures are less distinguishable. The question now is whether or not
this affects the performance of the deep learning model.

The G-LiHT dataset contains anthropogenic features, which were documented by
Witschey and Brown (2010) [39]. These ground truth objects, however, might not have
been verified and could lack reliability and precision [38]. The polygons of the known ar-
chaeological sites (ground truths) can be seen on the right side of Figure 26. The dataset
contains 60 platforms, 795 buildings and 3 aguadas. In total there are 858 objects.
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Figure 26: Three-band VAT on the left and ground truths superimposed to the VAT on
the right.

5.3 Holmul dataset

Another testing set was available to test the performance of the models and their gener-
alisation (also referred to as transferability). The data cover a 14 km2 area of the Holmul
Maya archaeological site in Petén, Guatemala. The area can be seen in Figure 27. This
data is a sample of the dataset acquired in 2016 during the Pacunam Lidar Initiative
(PLI). During this survey, 2, 144 km2 of the Maya Biosphere Reserve in Guatemala were
mapped. The data collection was achieved by scanning the terrain at six different view
angles. The flying height was 650 m. The resolution of the DEM obtained from the point
cloud is 1 m [40].

Figure 27: One-band VAT of Holmul testing area.
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The Holmul area contains remains of archaeological settlement. Agricultural features,
as well as defensive features and causeways are found on the site. Again, ground truth
polygons were available to compare the predictions with reality. These ground truths
were verified by pedestrian surveys during the year 2017 [40]. The test set over the Holmul
region contains only 472 buildings (no platforms and aguadas). However, the ground truth
objects for this test area were digitised in a different way. Indeed, the previous polygons
followed the boundaries of the buildings and platforms in a precise way. However, the
Holmul ground truth objects are polygons with a more rectangular shape, that define the
buildings with their original, unruined shape. This will be seen later in Section 11. The
data and ground truth polygons were kindly provided by Francisco Estrada-Belli of the
Middle America Research Institute at Tulane University.

6 Deep learning in ArcGIS Pro

The ArcGIS Pro software offers a range of tools to apply deep learning to images. Both
object detection and semantic segmentation can be performed. In order to detect archae-
ological remains in a new area, the deep learning model needs to be trained on a known
area where remains have already been identified, labelled and stored. A set of tools is
available to go from the data described in the previous section to automated predictions
for a new area. This is achieved in three steps:

• Creating the training data

• Training the model on that data

• Testing the trained model on a new dataset

The tools available for this are described in the following sections: ”Export Training
Data for Deep Learning”, ”Train Deep Learning Model”, ”Detect Objects Using Deep
Learning” and ”Classify Pixels Using Deep Learning”. Depending on whether the goal is
object detection or semantic segmentation, only one of the last two tools needs to be used.

6.1 Creation of the training data

First, the creation of the training data in the case of object detection is described. How-
ever, it is very similar to the case of semantic segmentation described later. The training
data is created from the two available datasets: the VAT and the vector file with the ar-
chaeological ground truth features. ArcGIS Pro provides a tool to create the training data
from these two datasets: ”Export Training Data For Deep Learning”. The tool is used
in batch mode when multiple layers are used as input. Here, one layer is assigned to one
archaeological class (buildings, platforms or aguadas). Therefore, the tool is used in batch
mode when all three feature classes are considered simultaneously. The tool provides as
output a set of patches, also called image chips or tiles, and the objects contained in these
sub-images (objects refer to archaeological features). A patch is shown in Figure 28 (darker
square). Each patch is assigned to one or several bounding boxes that contain the objects.
Hence, along with the patch there is a label file that contains metadata about that patch
and the object(s) it contains. This information about the object is provided by informa-
tion about the bounding box. The Figure 28 shows the information contained in the label
file. The position of the bounding box is calculated from the top left corner of the patch.
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Here only one bounding box has been defined in the patch (actually part of a bounding
box), but there can be multiple bounding boxes within an individual patch. Using the
values given in the label file, the bounding box was roughly drawn on the image (red
line). Only part of the bounding box is found within the patch and the object contained
within the bounding box is an aguada. The white square is an estimated representation
of the whole box for illustration. Note that the depth is equal to the number of channels
in the input data. The value is then 1 for the one-band VAT and 3 for the three-band VAT.

Size of chip Width 256
Height 256
Depth 1

Object xmin 231.65
bounding box ymin 194.85

xmax 256.00
ymax 256.00

Figure 28: Illustration of a patch (image chip) with the one-band VAT on the left. The
patch corresponds to the darker square and the white square is the bounding box of
the aguada. Table with information about the patch on the right. The bounding box
coordinates correspond to the red part of the square.

The Export Training Data tool depends on several parameters which must be entered
by the user. They are listed in Table 5, together with the initial settings chosen for the
present work. The Input Raster is the VAT of Chactún. The Output Folder specifies the
location where the training data is stored after the operation. The Batch Input Feature
Class corresponds to the vector files containing the polygons. The Image Format is se-
lected as TIFF. The Tile Size is the size of the patches in pixels. The default value is
256× 256 pixels, or 128× 128 metres. The Stride corresponds to the overlap between two
adjacent tiles. It has been set to half the Tile Size to give a standard overlap of 50%.
This choice increases the number of patches, and thus the training data. The parameter
Output No Feature Tiles allows to export only those patches that contain a feature, thus
reducing the data volume. The Metadata Format depends on the deep learning model to
be used. For the RetinaNet model, the PASCAL Visual Object Classes must be selected
as the metadata format. The Class Value Field is specified when several object classes are
considered. We did not use data augmentation, but the Rotation Angle can be interesting
if the amount of data is insufficient. If one selects a value of 90◦ the data will be multiplied
by a factor of four. Reference System corresponds to the coordinate system, which can
be either the image space or the map space. Buffer Radius will add a buffer of a certain
width around the patches. Crop Mode specifies if the patches are cropped to a same size
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(Fixed size mode) or if they are cropped to match the bounding boxes (Bounding box
mode) [41].

Input Raster Path to file

Output Folder Path to folder

Batch Input Feature Class Aguadas;Buildings;Platforms

Image Format TIFF

Tile Size X 256

Tile Size Y 256

Stride X 128

Stride Y 128

Output No Feature Tiles ONLY TILES WITH FEATURES

Metadata Format PASCAL VOC rectangles

Class Value Field -

Rotation angle 0

Reference System MAP SPACE

Processing Mode PROCESS AS MOSAICKED IMAGE

Buffer Radius 0

Crop Mode FIXED SIZE

Table 5: Parameters of the Export Training Data tool [41].

During the creation of the training data, four other files are created in addition to the
patches and the label files. They contain some statistics about the data that are useful
for the training of the deep learning model. Some of this statistical information is listed
in Table 6. Note that the patch is called a tile in the table.

Number of tiles 24,634

Number of classes 1

Number of features 61,629

Number of features per tile Min 1
Max 26
Mean 2.5018

Feature area Min 6.1e-05
Max 16,384
Mean 389.3750
Sum 23,996,790.82

Table 6: Statistical information from the Export Training Data tool for object detection
for the object class archaeological features.

As mentioned earlier, the output training data is a set of patches. They can be seen
in the Appendix C. One might wonder why the image is divided in this way and not pro-
vided to the deep learning model as a whole. This has to do with computational efficiency,
but also with the definition of the training samples. For CNNs, a training sample is in
fact not one polygon but one patch. The more training samples available, the better the
performance of the model and the lower the overfitting. The kernels are applied to each of
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these patches, which are the input training images. The input is then not just one image,
but a set of thousands of smaller images.

The creation of the training data for semantic segmentation follows the same process as
for object detection. The difference with object detection resides in the metadata format,
which is set to ”classified tiles”. The output of the export training data tool also contains
an additional element. For each patch, a label mask (also called a segmentation mask)
is assigned instead of a text label file. If an object is located at a certain position in the
patch, the value of the mask pixel is equal to 1. If the pixel belongs to the background,
the value is 0. An example can be seen in Figure 29, where the white pixels correspond
to the aguada previously seen in Figure 28. The set of patches and their corresponding
masks are fed to the deep learning model.

Figure 29: Mask associated to one patch, obtained during the export of the training data.

6.2 Training of the deep learning model

Once the training data is ready, the deep learning model can be trained with another tool
available in ArcGIS Pro: ”Train Deep Learning Model”. The parameters are listed in
Table 7 for the case of object detection. The settings given in the table are the first ones
chosen to train a model. Input Training Data refers to the training sample data obtained
previously. Max Epochs corresponds to the maximum number of times the entire dataset
is processed. The model is in fact trained several times until it achieves good enough per-
formance. The entire dataset is used during one epoch. The batch size indicates how many
training samples, i.e. how many patches, are processed at once. The gradient descent is
then applied to each batch and we speak of mini-batch gradient descent. The model pa-
rameters are updated after each batch gradient descent. Model Arguments are parameters
that are required for RetinaNet to work. The four arguments have already been explained
in Section 3.4. If the chip size is smaller than the Tile Size, the images are cropped for
training. The Learning Rate defines the pace at which the weights are updated. No prior
value is assigned in order to let the model choose the optimal learning rate to achieve the
minimum loss. Validation % is the percentage of the input training data that is used for
validation. The usual value is 20%. The model has not been frozen, which means that the
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backbone parameters can be changed to better fit the new model. Finally, the Parallel
Processing Factor indicates that the operations are divided into several processes in the
graphics card.

Input Training Data Path to folder

Output Model Path to folder

Max Epochs 20

Model Type RetinaNet

Batch Size 64

Model Arguments scales ’1, 0.79, 0.63’;ratios ’0.5, 1, 2’;
chip size 256;monitor valid loss

Learning Rate -

Backbone Model ResNet34

Pre-trained Model -

Validation % 20

Stop when model stops improving STOP TRAINING

Freeze Model UNFREEZE MODEL

Parallel Processing Factor 100

Table 7: Parameters of the Train Deep Learning Model tool [42].

Another parameter worth mentioning, over which the user has no control in the Ar-
cGIS Pro Graphic User Interface, is the IOU threshold. This Intersection Over Union
threshold is automatically set to 0.1. It is used to compare a ground truth box with a
prediction box. The threshold defines when a prediction box is considered a true positive.
So a bounding box with an IOU of more than 0.1 is considered a true positive here, while
a smaller IOU indicates a false positive.

The Table 7 shows the parameters chosen for the first model investigated. Most of the
parameters remain the same for the different models. The only ones that change are the
backbone model and the batch size. The batch size has to be reduced for some models
because the GPU memory is too small (8 GB).

For semantic segmentation, only the model type and model arguments differ. The
model type is then U-Net and its arguments are those mentioned in Section 3.5 (class
balancing, mixup, focal loss, chip size and monitor).

6.3 Testing of the deep learning model

In the case of object detection, to test the previously created deep learning model, one
can use the tool ”Detect Objects Using Deep Learning”. The parameters are listed below
with the usual values.
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Input Raster Path to file

Output Detected Objects Path to file

Model Definition Path to file

Arguments padding 64; threshold 0.5; nms overlap 0.1; batch size 64;
exclude pad detections True

Non Maximum Suppression NMS

Confidence Score Field Confidence

Class Value Field -

Processing Mode PROCESS AS MOSAICKED IMAGE

Parallel Processing Factor 100

Table 8: Parameters of the Detect Objects tool [43].

Input Raster provides the image of the new area where one wants to detect objects.
Output Detected Objects is the path to the vector file with the detected objects, in par-
ticular their bounding boxes. Model Definition specifies the location of the deep learning
model (.dlpk file) to be used. Arguments are selected to improve the detection. Padding
specifies the area added to the edge of the image for better analysis. Threshold is the min-
imum level of confidence allowed in the detections. Nms overlap indicates the maximum
overlap at which the bounding boxes should be merged. Exclude pad detections removes
detections that come exclusively from the padding zone. The Non Maximum Suppression
parameter allows duplicate objects to be removed. That is, a feature described by two
bounding boxes. The box with the smallest IOU and the lower confidence is removed.
Confidence Score Field specifies the name of the field in which the confidence values are
to be stored. Class Value Field is again specified if there is more than one class of features.
The output of the object detection tool is a feature layer that contains the objects that
the model has detected. More specifically, it contains the bounding boxes associated with
the objects [43].

To test the deep learning model for semantic segmentation, another tool must be used.
The new tool to be run is ”Classify Pixels Using Deep Learning”. It classifies an input
raster by applying the U-Net deep learning model to it. Each pixel is assigned a class label.
The parameters are similar to the previous tool ”Detect Objects” and are summarised in
the following table with the usual values. The argument test time augmentation can be
set to True to increase the amount of data for testing. Several additional test patches will
then be created through rotation and cropping. The final prediction will be the average
of the predictions from the different versions of the patch image [44].

Input Raster Path to file

Output Classifier Raster Name of output raster

Model Definition Path to folder

Arguments padding 64; batch size 10; predict background True;
test time augmentation False; tile size 256

Processing Mode PROCESS AS MOSAICKED IMAGE

Parallel Processing Factor 100

Table 9: Parameters of the Classify Pixels tool [45].
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7 Object detection with the G-LiHT test set

We trained a series of deep learning models for object detection and semantic segmentation
using the data described in Section 5.1. Several parameters were modified to determine
their impact on the performance of the models. In addition, different visualisations were
used for training. Finally, different test sets were used to evaluate the final performances
and to investigate the generalisation of the models. The different experiments achieved
will be described in the following sections. The workflow diagram of each experiment is
provided. Note that the experiments are numbered in the order they were achieved. The
general workflow diagrams that summarise all the computations for object detection and
semantic segmentation are shown in Appendix D. The following sections of this thesis are
divided according to the dataset used to test the models. The test set is here the one
referred to as G-LiHT dataset.

7.1 One-band VAT

Deep learning models were initially created from the one-band VAT. The Figure 30 shows
the workflow of Experiment 1. As always, the first step is to create the training data using
the Export Training Data tool. This tool was first used in batch mode, considering that
all archaeological objects belong to the same class (thus the different labels of buildings,
platforms and aguadas are not taken into account). This decision was made because of
the overlap between the different objects. The Train Deep Learning Model tool was then
used to train the model. The RetinaNet model is used for object detection. This model
was trained with different backbones during Experiment 1: ResNet-18, ResNet-34 and
ResNet-50.
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Figure 30: Workflow of experiments 1, 3 and 7.

The first model used ResNet-34 and a batch size of 64. The results of the training are
detailed hereafter. The minimum and maximum learning rates were 4.79e-05 and 4.79e-04,
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respectively. The accuracy of the ResNet-34 model was 32.9%. This value is quite low and
other model architectures should therefore be investigated. The training and validation
losses can be seen in Figure 31. The decrease and stabilisation of the losses over time is
a requirement for a good model. Indeed, the decrease of the training curve denotes the
learning process and the decrease of the validation curve indicates the generalisation [46].
However, the gap between the validation and training losses seen here is too large for the
model to be optimal. In fact, an ideal model has no gap between the two losses. The
higher validation loss indicates overfitting. That is, the model ”sticks” too much to the
training examples and does not generalise well on unseen data.

Figure 31: Training and validation losses computed with the ResNet-34 backbone model.

A comparison between the ground truths and the predictions of the model for the val-
idation set is shown in Figure 32. Five different sample areas (randomly selected patches)
are considered. All ground truths were predicted by the model. In other words, each
bounding box on the left images is recovered on the right images. However, the sizes of
the bounding boxes differ slightly. On the third image, additional objects were predicted
that weren’t included in the ground truth data. Some of them could be new buildings
while the majority are false positives. One can notice that the boxes are labelled ”Un-
defined” because no class name was assigned to the training data. In other words, the
algorithm gave the data this default class name.
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Figure 32: Ground truth objects on the left and predictions on the right for ResNet-34.

The ResNet-50 backbone model has also been trained. It contains more convolutional
layers than ResNet-34 and is therefore more complex. The batch size for this model
had to be reduced to a value of 30 because the GPU memory was not sufficient. The
results were less satisfactory than with ResNet-34, with an accuracy of 30.8%. As can
be seen in Figure 33, the validation loss is higher and more variable, indicating a worse

35



overfitting than ResNet-34. Two sample of the results can also be seen in Figure 33. The
first sample shows that the model failed to detect an archaeological feature. The second
sample displays shapes of the predicted bounding boxes which are quite different from the
shapes of the ground truth boxes compared to ResNet-34. These results, together with
the training and validation losses, reveal that the model has fitted the training data too
well. The predictions for the validation data are then less accurate. A backbone with 50
layers is too complex and has too many parameters for the number of training data at
hand.

Figure 33: Training and validation losses for the ResNet-50 backbone model on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.

The model was also trained with the backbone ResNet-18. The results, which can be
seen in Figure 34, were better than ResNet-50, but slightly less good than ResNet-34, with
an accuracy value of 32.1%. A comparison of the three models can be found in Table 10.
From the values, it can be seen that the ResNet-34 model is the best for the one-band
VAT. One could argue that the training loss is lower for ResNet-50, however this is not
what we are looking for in a deep learning model. In fact, the most important loss is the
validation loss, as one wants to have a generalised model and detect objects in a new area.
A very low training loss only indicates overfitting. One can also notice that the values of
the losses obtained for the three models are quite high. This will be particularly evident
when examining the semantic segmentation later on.
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Figure 34: Training and validation losses for the ResNet-18 backbone model on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.

Backbone architecture Training loss Validation loss Accuracy

ResNet-18 0.6702 0.6819 32.1%

ResNet-34 0.5660 0.5626 32.9%

ResNet-50 0.5121 0.6322 30.8%

Table 10: Comparison of the results for the one-band VAT. The lowest losses and highest
accuracy are in bold.

During Experiment 2, for which the workflow can be seen in Figure 35, another set
of training data was created. This set is made for multiclass object detection with a
”classvalue” attribute (1 for aguadas, 2 for buildings and 3 for platforms), to account for
the three different classes in one model. The ”Class Value Field” parameter in the ArcGIS
Pro tools was therefore defined as ”classvalue”. In this way, the aguadas, buildings and
platforms would be treated as different objects. Since ResNet-34 turned out to be the best
backbone, we chose to train this model.
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Figure 35: Workflow of experiment 2.
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The results of the training, summarised in Table 11, were less satisfactory than with a
single class for all objects. The accuracies for buildings and platforms are indeed very low.
This is certainly because these two feature classes often overlap. The sample of the results
in Figure 36 shows a platform that was wrongly classified as a building. One can notice
that the main difference between the previous models and this model lies in the number
of neurons in the output layer. For only one class, there is only one output neuron. It
provides the probability that the object is an archaeological feature. For three classes, on
the other hand, there are three neurons in the output layer, which indicate the probability
that the feature belongs to one of the three classes. The highest probability gives the
output.

Aguadas Buildings Platforms

Accuracy 50.0% 18.1% 15.0%

Training loss 0.6889

Validation loss 0.6476

Table 11: Accuracies, training and validation losses for the ResNet-34 model with three
classes.

Figure 36: Training and validation losses for the ResNet-34 backbone model with three
classes on the left. Sample results of the model on the right, with ground truths on the
left and predictions on the right.

Even though the results of the training for the four models trained so far are not very
satisfactory, one can investigate how the best model generalises to a new dataset. To assess
the final performance of the best model (ResNet-34 with one class), it was applied to the
G-LiHT testing dataset. This is Experiment 3 in Figure 30. As a reminder, the G-LiHT
dataset has never been seen by the model. The geographical division of the training and
testing data avoids possible overlaps that could arise from a random division and that
would bias the results. Since the model was trained on the one-band VAT of Chactún,
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the visualisation of the testing area must of course also be a one-band VAT. It first had
to be resampled to a resolution of 0.5 m, to match the resolution of the raster used for
training. In fact, the original resolution was 1 m. To do so, the Resample tool of the Data
Management toolbox in ArcGIS Pro was used with the bilinear resampling technique. This
method performs an interpolation by considering the four nearest neighbours of a pixel.
The new pixel value is computed from the average of the four neighbouring pixels [47]. A
deep learning model performs better when the testing and training sets share the same
resolution. The Detect Objects tool, which applies the model to the G-LiHT area, detected
75 objects. These include 52 true positives (11 platforms and 41 buildings) and 18 false
positives, some of which could be newly identified buildings. The number of true positives
is very small compared to the total number of ground truths, which is 858. A large number
of objects have been overlooked, as can be seen in the sample of Figure 37. The reason for
this low detection value is threefold. First, the G-LiHT testing terrain is quite different
from the training terrain of Chactún. Second, the training set with the polygons that
precisely delineate the objects may be more suitable for semantic segmentation than for
object detection. Third, the ground truth objects of G-LiHT may not have been precisely
delineated in the first place. Hence the data quality is different between the training and
testing datasets. We can also note that the data density is different for G-LiHT compared
to Chactún.

Figure 37: Sample of the results of the object detection for the model with ResNet-34 and
one-band VAT.

7.2 Three-band VAT

One might wonder what happens when the three-band VAT is considered for the deep
learning model. Are the detections on the G-LiHT dataset more accurate for such a
visualisation? Since the raster is made of three bands, the inputs of the deep learning
model consist of three arrays of pixels. Experiment 4, which follows the workflow of
Figure 38, investigates two backbones when using the three-band VAT of 32bit.
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Figure 38: Workflow of experiment 4.

The RetinaNet model with ResNet-34 was trained first with this three-band raster file.
The results of the training are displayed in Figure 39. Looking at the graph of the losses,
the first thing to notice is the very high factor of 1e33 on the vertical scale. Since this
result suggests overfitting (although even with overfitting this high value is unlikely), the
model was simplified by reducing the number of layers in the backbone. ResNet-18 was
chosen, which contains the smallest number of layers available. The disturbing factor 1e33
did not occur in this model. However, something strange still happened with the losses
defined as NaN for several epochs. The graphs of the losses and samples of the results can
be found in the Appendix E (Table 76).

Figure 39: Losses for the ResNet-34 backbone model on the left. Sample results of the
model on the right, with ground truths on the left and predictions on the right.

One possible explanation for these bad results was that the raster had a pixel depth of
32bit (float) and not 8bit (unsigned integer) as for the one-band VAT. This explanation
was investigated in Experiment 5, for which the workflow can be found in Figure 40.
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   Experiment 5                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3B VAT 8bit 

One class 

Patch size : 256x256 

Training data 

Annotation layers 

ResNet-18 

ResNet-34 

ResNet-50 Object detection 

 

Object detection 

 

No Non Maximum 

Suppression 

Non Maximum 

Suppression 
3B VAT G-LiHT 

3B VAT Chactún North 

No Non Maximum 

Suppression 

Object detection 

 Test data 

Test data 

Experiment 6 

Experiment 8 

Figure 40: Workflow of experiments 5, 6 and 8.

The three-band VAT was exported as 8bit. The training data was also recreated with
this new 8bit raster. The model with ResNet-34 was run with the new data and gave
the results shown in Figure 41, with an accuracy of 45.6%. The losses are more plausible
than those obtained with the 32bit raster. The accuracy is also higher than the one of
the previous models. The samples of the results on the right-hand side of Figure 41 show
prediction bounding boxes that differ quite significantly from the ground truths. The
model predicted smaller instances (buildings) that were not included in the training set.
Therefore, in the bottom right image one sees smaller bounding boxes within a larger one
(indicating a platform).

Figure 41: Losses for the ResNet-34 backbone model and three-band VAT 8bit on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.
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ResNet-18 was also examined, reducing the complexity of the model. As well as
ResNet-50. Loss graphs and samples of the results for these two backbones can be found
in Appendix E (Table 77 and 78). The results for the three backbones are summarised
in Table 12. The high accuracy and low validation loss for ResNet-34 suggest that this
backbone is more suitable for the case study.

Backbone architecture Training loss Validation loss Accuracy

ResNet-18 0.4947 0.5371 43.6%

ResNet-34 0.5123 0.5271 45.6%

ResNet-50 0.9372 0.8051 44.2%

Table 12: Comparison of the results for the three-band VAT. Smallest losses and highest
accuracy are in bold.

Experiment 6 (see Figure 40) allowed to test the ResNet-34 model on the G-LiHT data
while investigating the influence of the Non Maximum Suppression (NMS) parameter. The
raster of the G-LiHT area also had to be exported from 32bit to 8bit (this is called byte
scaling) and resampled to match the 0.5 m resolution of the training raster. However,
the object detection results, when using NMS, were not very good as only 77 objects
were detected. Among the detected objects there are 57 true positives, 20 false positives
and thus 801 false negatives (objects that were not detected). A sample of the results is
shown below in Figure 42. The upper platform, which the model failed to detect with the
one-band VAT, was predicted with the three-band VAT.

Figure 42: Sample of the results of the object detection for the model with ResNet-34 and
three-band VAT 8bit.

Another testing was made without using the NMS parameter. Since buildings and
platforms often overlap, using the NMS might remove bounding boxes that are thought
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to belong to the same object but actually belong to distinct ones. More objects were
detected when overlap was allowed (i.e. the NMS was not used), 86 in total. With the
same number of false positives (20), 62 true positives were detected. This is five more
than previously. As can be seen in Figure 43, buildings on platforms were detected, which
was not the case before. However, three cases of two bounding boxes for the same object
were registered (a platform), as shown in Figure 43. Thus, by removing the NMS, only
two more ground truth objects could be detected.

Figure 43: Prediction of buildings on a platform on the left and double detection on the
right. Buildings are in yellow and platforms in orange.

7.3 Comparison of the two VAT

The results for the two different VAT are summarised in Table 13. A comparison of the
three architectures shows that the ResNet-34 backbone model is best for both the one-band
VAT and the three-band VAT. However, the results obtained with the three-band VAT
indicate that this visualisation is better suited for the RetinaNet model. The accuracies
are indeed higher by more than 10% for all backbones. The table shows that the best
performing model is ResNet-34 with the three-band VAT.

Visualisation Backbone architecture Training loss Validation loss Accuracy

One-band ResNet-18 0.6702 0.6819 32.1%
VAT ResNet-34 0.5660 0.5626 32.9%

ResNet-50 0.5121 0.6322 30.8%

Three-band ResNet-18 0.4947 0.5371 43.6%
VAT 8bit ResNet-34 0.5123 0.5271 45.6%

ResNet-50 0.9372 0.8051 44.2%

Table 13: Comparison of the results for the one-band and three-band VAT. Lowest losses
and highest accuracy are in bold character.

Comparison of the visualisations on the G-LiHT test data shows that the one-band
VAT gave 52 true positives and 18 false positives, while the three-band VAT gave 57 true
positives and 20 false positives. Although the latter model lead to two more false de-
tections, five more ground truths were predicted. In general, we look for a model which
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detects a maximum of ground truths and a minimum of false positives. However, in ar-
chaeology, we can consider that if a choice needs to be made, it is more interesting to have
a model that detects a maximum of ground truths rather than a minimum of false pre-
dictions. Hence the testings would suggest that the three-band VAT is more appropriate.
However, using the three-band VAT instead of the one-band did not drastically improve
the performance of the models. The terrain difference, as well as data difference, thus
remains a problem for the transferability of the model in object detection.

8 Object detection with the Chactún test set

8.1 Data description

As mentioned in the previous section, the trained deep learning model did not perform
well on the G-LiHT dataset. To find out if this model transferability issue came from the
terrain and data of G-LiHT, the northern part of Chactún was also used for testing. How-
ever, one cannot take the previously trained model and apply it to the north of Chactún.
The reason for this is that the models were trained on the entire area of Chactún, including
the northern part. The testing must be achieved on an area that the model has never seen.
The training only has to be achieved on the south of Chactún before doing the testing on
the north.

Therefore, the area of Chactún has been divided into two parts (training in the south
and testing in the north) using ArcGIS Pro’s ”Clip” tool. The area selected for testing
makes up about 1/5th of the Chactún area. The division is shown in Figure 44. To avoid
overlap between training and testing, a band of 323 meters between the two areas was not
considered. The upper part was also omitted as no objects were labelled in this area.

Figure 44: Separation of the Chactún area for training and testing. The base map is the
three-band VAT.
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The process of exporting the training tiles had to be carried out once again on the
southern part. This part of Chactún counts 1,780 platforms, 7,443 buildings and 43
aguadas. For the export of the training data, both the VAT (one-band and three-band)
and the ground truth objects within the southern region were used. The statistics for this
new training data are summarised in the table below. One class of archaeological features
was again considered, which includes buildings, platforms and aguadas.

Number of tiles 21,441

Number of classes 1

Number of features 53,782

Number of features per tile Min 1
Max 27
Mean 2.5084

Feature area Min 1.3e-05
Max 16,384
Mean 390.6319
Sum 21,008,966.29

Table 14: Statistical information from the Export Training Data tool.

8.2 One-band and three-band VAT models

For object detection, the best model for both the one-band and three-band VAT was the
one with ResNet-34. Therefore, this backbone architecture was used to train the model
with the new Chactún data. The results of the two models can be seen in Table 15. The
accuracy is higher for the one-band VAT. However, the losses are lower for the three-band.
The loss graphs and samples of the results can be found in the Appendix E (Table 79 and
80).

Training loss Validation loss Accuracy

One-band ResNet-34 0.6755 0.6844 51.4%

Three-band ResNet-34 0.5238 0.5473 44.6%

Table 15: Results of the training of the models on Chactún South. Best values are in bold.

As each model has its own positive points (either accuracy or losses), both were tested
on the northern area of Chactún. This area includes 204 platforms, 1,045 buildings and
7 aguadas. Hence a total of 1,256 archaeological features. The details of the number of
objects for this area can be found in Table 16.

Buildings Platforms Aguadas

Total number 1,045 204 7

Individual 409 26 -

On platforms 636 - -

With buildings - 178 -

Table 16: Amounts of testing archaeological features. Individual buildings and platforms
are found alone and not in a building/platform pair.
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Experiment 7 (see Figure 30) investigated the impact of the NMS parameter for the
testing on Chactún North. The first object detection algorithm was then run with Non
Maximum Suppression (NMS) and with the one-band VAT. The model detected 911 fea-
tures. The false and true positives were manually examined. 634 true positives and 277
false positives were identified. This leaves about half of the objects that were missed by
the model (false negatives). Compared to the results obtained with the G-LiHT test set,
the number of true positives is much closer to the actual amount of ground truths. How-
ever, Non Maximum Suppression was used with this first object detection. The effect of
this parameter on the data is to remove duplicate detections, but also the detection of
buildings on platforms. As a consequence, when a platform was predicted the potential
buildings on it were not, and inversely. The vast majority of false negatives were due to
this trade-off. Another model was then trained without this parameter. The influence of
the NMS can be seen in the sample of the results shown in Figure 45.

Figure 45: Sample of the results of the object detection with NMS active on the left and
inactive on the right. Platforms are in orange, aguadas in blue, buildings in yellow and
the predicted objects are the black rectangles.

If predictions are to be obtained for building/platform pairs, the NMS must be in-
active (see for example number 1 in Figure 45). However, the predictions must then be
further investigated to discard any double detections that may occur. The result of this
object detection without NMS shows 1,373 predicted features. Among them are 933 true
positives and 353 false positives. We can therefore assume that 87 bounding boxes were
assigned twice to the same object (see numbers 2 and 6). In summary, by removing the
NMS, 311 more true objects could be detected. In this case study, it is therefore more
interesting not to use NMS. The high value of 933 out of 1,256 archaeological features was
predicted by the one-band VAT model. It can also be noted that only 1 aguada, 2 small
individual platforms and 24 individual buildings were not predicted (see number 5). No
specific pattern was identified in these missing detections (false negatives). The remain-
der and the majority of the false negatives were from building/platform pairs, where the
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boundaries of the structures are less easy to identify. The unpredicted aguada shows a
lower contrast compared to the predicted aguadas, with a more shallow and flat shape.
False positives arise mainly on rugged terrain or small, isolated hills on flat terrain. Ba-
sically, discontinuities in the ground are sometimes predicted as an archaeological feature
(see number 4). Clusters of buildings were often predicted to have a platform (see number
7).

The three-band VAT ResNet-34 model was also applied to the test area (the NMS was
not activated). This is Experiment 8 (see Figure 40) which investigates the transferability
of the model on Chactún North. The sample of the results of the three-band model can
be found in Figure 46. One can already see that the aguada was overlooked and fewer
buildings were predicted than with the previous model. In general, a lower number of
objects were predicted, with a value of 948. 683 true positives and 125 false positives were
registered. There are therefore 140 double detections. It can be noted that 40 individual
buildings were missed, as well as 1 individual platform and 3 aguadas. Note that individual
objects refer to buildings and platforms which are not found in a building/platform pair.
A comparison between the one-band and the three-band model is depicted in Table 17.
The table shows that for archaeological detections, the one-band model (without NMS) is
better. Indeed, for archaeological purposes, one looks for a model with the highest number
of true positives and the lowest number of false negatives. In summary, the best model for
object detection on a new dataset uses the one-band VAT and the backbone ResNet-34
without NMS. This also shows that higher accuracy is more important for a model (in the
sense that it leads to better results) than lower loss, as shown in Table 15.

Figure 46: Input VAT on the left and sample of the result of the object detection on the
right. Buildings are in yellow, platforms in orange, aguadas in blue and the predictions
are the black rectangles.
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Deep learning model One-band ResNet-34 One-band ResNet-34 Three-band ResNet-34
NMS No NMS No NMS

Total number of predictions 911 1,373 948

True positives 634 933 683

False positives 277 353 125

False negatives 622 323 573

Table 17: Results of the object detection for the one-band VAT and three-band VAT
models.

8.3 Separation of the three classes

Because of the overlap between buildings and platforms, it was not possible to consider
the three classes separately within a single model. Another possibility exists to take into
account the different types of archaeological features. It consists of training three different
models, one for each class. Experiment 9, for which the workflow is visible in Figure 47,
investigates this separation of the classes.
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Figure 47: Workflow of experiment 9.

To see if this improves the results, the three-band VAT was used for this class sepa-
ration. The patches were exported with the PASCAL metadata type for each class. The
RetinaNet model was then trained on each class separately, using the ResNet-34 architec-
ture. The results of the training are summarised in Table 18. The losses are higher for
aguadas because fewer training examples are available. The model then overfits the exam-
ples and cannot generalise well. The predictions are therefore further away from reality
in the case of aguadas. However, for the three features, the accuracy is much higher than
if a single class of combined archaeological objects was considered.

Feature class Training loss Validation loss Accuracy

Buildings 0.5393 0.6163 72.8%

Platforms 0.4867 0.4540 67.6%

Aguadas 1.7627 1.7621 62.2%

Table 18: Results of the training of the RetinaNet models with the three-band VAT and
ResNet-34 architecture for the three classes.
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The three resulting models were then tested on the northern part of Chactún. Non
Maximum Suppression was enabled as there were now no objects overlapping within one
model. A sample of the results can be found in Figure 48.

Figure 48: Sample of the results of the object detection for the RetinaNet models with
the three-band VAT. Predictions for each class were achieved with a different model.

The results of the visual inspection are summarised in Table 19. For the aguadas,
the model detected a very high number of false positives. These false positives occurred
at various locations in the area and did not show a clear pattern in the detections. It
can be concluded that the number of examples used for training was too small to obtain
a performant model. Indeed, the usual amount required to train a deep learning model
is of the order of at least several thousand. In contrast, only 43 aguadas were used for
training here. One way to increase the amount of training examples is to use a data
augmentation technique, such as sample rotation. Note that then only the three-band
VAT could be used, as it is independent of the direction. As for the buildings, most of
them (74%) were predicted. Those that were not detected are part of a cluster and hence
the boundaries of the individual buildings are harder to identify. Many false positives
were also predicted (though much fewer than for the aguadas), including 14 predictions
that were actually platforms. Other false positives include small, elevated hills. Finally,
90% of the platforms were predicted. However, some natural flattened surfaces were also
misclassified as such, as were some buildings. All clusters of buildings were predicted to
have a platform, even if none was recorded. This confirms that the model learned well
from the training data. It is indeed very plausible to find a platform under a building
cluster. Ultimately, more false positive than true positive predictions were made. In the
Table 19 one can find the number of missed ground truths (false negatives), which is quite
small compared to the total number. This is mainly what one looks for in the case of
archaeology (to minimise the number of false negatives). A maximum of known structures
should be detected. From the results, it can be concluded that the models predict the
archaeological features quite well, but add a lot of false positives. Increasing the minimum
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confidence value allowed could be a way to reduce the number of false positives, however
the confidence value varies a lot among those false predictions, going from 50% to 88%.
For object detection, considering one model for each class then leads to a high amount of
false positive predictions.

Feature class Buildings Platforms Aguadas

Number of ground truths 1,045 204 7

Number of predictions 1,227 480 498

True positives 774 184 7

False positives 453 296 491

False negatives 271 20 0

Table 19: Results of the object detection with the RetinaNet models for the three classes.

9 Semantic segmentation with the G-LiHT test set

The training data available for the Chactún area enable the semantic segmentation method.

9.1 One-band VAT

The first visualisation considered was the one-band VAT. Again, the export (using the
Export Training Data tool) only worked for buildings, platforms and aguadas considered
as a single class, as objects from different classes overlapped in the image. Therefore,
we initially assumed that the aguadas, buildings and platforms belonged to one class,
namely the archaeological features. For the export, the option ”classified tiles” has to be
selected. For the training of the model, we used the U-Net model which belongs to the
”pixel classification” group. It is most commonly used for semantic segmentation. Two
backbones were investigated during Experiment 10, for which the workflow can be seen in
Figure 49. This experiment also investigates the impact of the focal loss.
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The model was first trained with the ResNet-34 backbone and without using the focal
loss option. In general, for semantic segmentation, the batch size had to be reduced
compared to object detection. For ResNet-34, a batch size of 8 was used. Note that the
processing time for segmentation is much longer, taking about 12 hours. For comparison,
the processing time for object detection was 6 hours on average. The results of the model
are shown in Figure 50.

Min Max

Learning
rate

4.36e-06 4.36e-05

Background Class

Precision 98.2% 74.5%
Recall 98.5% 71.8%
F1 score 98.4% 73.2%

Figure 50: Training and validation losses for the U-Net model with ResNet-34 on the left
and model metrics on the right.

The large fluctuations in the training loss are due to the small batch size. Despite these
fluctuations, however, the loss is much lower than with object detection using bounding
boxes. The table on the right of Figure 50 contains the performance metrics of the model.
One can see that the values of the performance metrics for the background are very high.
The background was correctly classified as such in 98% of the cases. The values for the
archaeological features (referred to as ”class” in the table) are more meaningful and are
of the order of 70%, which is slightly lower but still very good, especially when compared
to the accuracies achieved for object detection, which were of the order of 40%.

Samples of the results can be found in Figure 51. It clearly shows the difference between
object detection (bounding boxes) and semantic segmentation (pixel classification). The
predictions follow quite well the shape defined by the ground truths. Only the platform
in the third sample was not predicted. From the results it can be concluded that the way
the training dataset was prepared - with polygons following the contours of the objects - is
well suited for semantic segmentation. Object detection works less well with this dataset.
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Figure 51: Result samples for the U-Net model trained with ResNet-34. Ground truths
on the left and predictions on the right.

Another model was trained in the Experiment 10 by setting the arguments class balanc-
ing and focal loss to True. Previously, they had in fact been left at the default value of
False. In this way it was possible to check whether or not the dataset contained a class
imbalance problem. Here the negative data (background) is the majority group. The idea
was to see if this class had a strong impact on the accuracy of the model. The accuracy of
the two models was very similar: 96.9% when the class imbalance was not corrected versus
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96.5% when it was corrected. This indicates that the dataset does not depict a strong
class imbalance. To remain cautious, the following models were nevertheless trained with
the class balancing and focal loss parameters. These parameters were not available in the
object detection model, because the RetinaNet model inherently corrects the class imbal-
ance problem through the focal loss function.

The ResNet-50 backbone was not implemented because the increased number of layers
and thus complexity, required a reduction of the batch size to a value of 2. However, such
a small value would lead to an erratic and long training, with a loss function that might
not reach the minimum [48]. Consequently, the model would be less performant. As a
result, the ResNet-18 backbone architecture was trained. The results are shown below in
Figure 52. Note that the loss fluctuations are less pronounced as the batch size could be
increased to a value of 20. The training is faster than for ResNet-34, which is evident
from the rapid decrease of the training loss. The higher the number of layers in the model,
the longer the training takes. As can be seen in Table 20, the losses are higher than for
ResNet-34, suggesting that the latter is a better fit. However, one could argue that the
performance metrics for ResNet-18 are slightly higher. To verify this, both models were
tested on the G-LiHT dataset in Experiment 11 (see Figure 49).

Figure 52: Training and validation losses for the ResNet-18 backbone model on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.

Backbone Training loss Validation loss Accuracy Precision Recall F1 Dice

ResNet-18 0.0317 0.0726 96.8% 73.9% 70.7% 72.3% 61.7%

ResNet-34 2.530e-05 0.0006 96.5% 71.6% 69.4% 70.5% 63.5%

Table 20: Comparison of the results for the one-band VAT. The best values are in bold.

53



In Experiment 11 the two models for the one-band VAT were tested on G-LiHT using
the Classify Pixels tool. A sample of the results for ResNet-34 is provided in Figure 53.

Figure 53: Results of the classify pixels tool with the U-Net model ResNet-34 for the
one-band VAT.

As mentioned previously, the IOU metric is often used to evaluate the model perfor-
mance. The pixel quantities determined through the IOU computation (see Figure 16)
for ResNet-18 and ResNet-34 are provided in the Appendix F (Table 31). Equation (8)
gives a IOU of 14.2% for ResNet-18 and 17.7% for ResNet-34. Thus the latter is slightly
better and will be examined in more detail. Note, however, that such a low IOU is not
satisfactory and is most likely due to the difference in terrain and data quality between
the training and testing sets. Due to the rugged terrain, many false positives occur, as
can be seen in Figure 54. Some of these false positives could be new buildings that were
not spotted when the ground truths were defined. An example of this can also be seen
in the figure. However, the model failed to detect most of the known buildings. The vi-
sual inspection actually revealed that 167 buildings were correctly predicted and 628 were
missed. This gives a total of 21% of predicted buildings. Note that an object is considered
missed if less than 30% of its pixels are classified correctly. Of the three aguadas, only
one was correctly predicted. Platforms are a special case. If a building is found on a
platform, the pixels of the building can be predicted. However, the rest of the platform is
not detected. This is illustrated in Figure 55, where the centre of the platforms is never
classified. One can conclude that the overlap between buildings and platforms prevents
the detection of both objects when only one class is considered.
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Figure 54: False positives on rugged terrain on the left images and possible new building
on the right images.

(a) Input VAT (b) Ground truths (c) Predictions

Figure 55: Detection of buildings on platforms with (a) the input VAT, (b) ground truths
and (c) classified pixels. Buildings are in yellow, platforms in orange and classified pixels
in red.

The dice coefficient can also be computed, although it is similar to the IOU. Equation
(9) gives a value of 30.1%.

9.2 Three-band VAT

The training data was also exported as classified tiles using the three-band raster visualisa-
tion. This is Experiment 12 (see Figure 56) during which two backbones were investigated.
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Figure 56: Workflow of experiments 12 and 13.
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For the training of the model, the batch size was set to 15, as the algorithm ran out of
GPU memory at a higher value. The ResNet-18 and ResNet-34 backbones were trained
and provided accuracies of 97.0% and 95.7% respectively. The ResNet-18 backbone is
therefore better suited for archaeological detections. The training and validation losses of
this model, shown in Figure 57, are very close to each other, indicating that overfitting
is not occurring. The sample of the results on the right side of the figure shows that the
pixels in the validation set were overall well classified.

Figure 57: Losses for the ResNet-18 backbone model on the left. Sample results of the
model on the right, with ground truths on the left and predictions on the right.

This ResNet-18 model has been tested on G-LiHT in Experiment 13 (see Figure 56).
A sample of the results can be found in Figure 58. The IOU computation (see processing
chain Figure 16) shows a value of 2,775 pixels corresponding to false positives, 12,003 true
positives and 83,467 false negatives. From the IOU formula, the value for the IOU is
12.2%, for the archaeological pixel class. The dice coefficient itself has a value of 24.9%.
This result is again not satisfactory for the testing set. Note that the 3 aguadas were
missed. Only 50 archaeological features were well classified as such. These included 6
platforms and 44 buildings (out of 60 and 795 respectively). False positives again result
from the fact that the test area has a very rugged and variable terrain. The tops of hills
or mounds were sometimes mistaken for buildings and more extensive valleys for platforms.
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Figure 58: Classified pixels with the U-Net model ResNet-18 for the three-band VAT.

9.3 Comparison of the two VAT

For a comparison of the different models, see Table 21. The lowest losses and the highest
values of the metrics are in bold. From these, one can conclude that the best model, with
the highest performance, is the ResNet-18 model obtained from the three-band VAT. The
loss values are lower for the ResNet-34 and one-band VAT model. Looking at the results of
the testing on the G-LiHT data, the IOU for the one-band model is 17.7%, while it drops
to 12.2% for the three-band model. Thus both models have positive and negative aspects.
However, from the low IOUs, one can conclude that the models do not perform very well
on this testing raster, regardless of the visualisation for archaeological topography.

Visualisation Backbone Training Validation Accuracy Precision Recall F1 Dice
loss loss

One-band ResNet-18 0.0317 0.0726 96.8% 73.9% 70.7% 72.3% 61.7%
VAT ResNet-34 2.530e-05 0.0006 96.5% 71.6% 69.4% 70.5% 63.5%

Three-band ResNet-18 0.0775 0.0695 97.0% 78.2% 70.7% 74.2% 65.1%
VAT ResNet-34 0.0042 0.0022 95.7% 69.4% 53.2% 60.2% 47.6%

Table 21: Comparison of one-band VAT and three-band VAT U-Net models. Best values
are in bold.

10 Semantic segmentation with the Chactún test set

10.1 One-band and three-band VAT models

Semantic segmentation was also applied on the northern Chactún data for testing. The
training samples from the southern region were exported as classified tiles for the one-band
and three-band VAT. The best model previously identified for the entire Chactún region
was ResNet-34 for the one-band VAT and ResNet-18 for the three-band VAT. These two
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backbones were then used to train the new models. The training and testing of the three-
band VAT model compose Experiment 13 (see Figure 56) which investigates the difference
between G-LiHT and Chactún North. While the training and testing of the one-band
VAT model constitute Experiment 14 (see Figure 49), which again compares the two test
sets. The results of the training are summarised in Table 22. Loss graphs and samples of
the results can be found in Appendix E (Figure 81 and 82). The performance metrics, as
well as the losses, are very close for the two models. However, the one-band VAT model
generally shows more performant values. For example, the dice value is higher for the
one-band VAT model. This suggests that a greater proportion of the total ground truth
and prediction areas overlap. Since in archaeology it can be considered more important to
detect a maximum number of ground truths (minimising false negatives) than to minimise
the number of false positives, the recall metric can be considered the most important. A
high recall value is therefore preferable. Note however that the number of false positives
should still not reach a too high value which would make the results unpractical. The
recall metric value in Table 22 also indicates that the best model is the one-band VAT
ResNet-34.

Deep learning model Training Validation Accuracy Precision Recall F1 Dice
loss loss

One-band VAT ResNet-34 0.0012 0.0007 96.6% 71.4% 69.5% 70.4% 62.0%

Three-band VAT ResNet-18 0.0014 0.0007 96.5% 72.4% 66.5% 69.3% 59.4%

Table 22: Results of the training of the one-band VAT and three-band VAT models for
semantic segmentation. Best values are in bold.

The models were tested on the northern region of Chactún. A sample of the results can
be found in Figure 59. Visual inspection already shows that the three-band VAT model
seems to have predicted fewer ground truths than the one-band VAT model.

Figure 59: Sample of the results of the semantic segmentation for one-band VAT on the
left and three-band VAT on the right. Platforms are in orange, aguadas in blue, buildings
in yellow and classified pixels in red.
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To evaluate the performance of the models, we count the number of true and false
positives pixels by pixels, as each pixel has been classified as either a background or an
archaeological object. We did this using the method described in Figure 16. For the
one-band VAT model, the IOU was calculated using the following values:

IOU =
TP

TP + FP + FN
=

1, 038, 073

1, 038, 073 + 127, 357 + 563, 390
= 60.0%, (10)

IOU shows that the model performs better on data with the same properties compared
to the previous G-LiHT test data. During visual inspection, the first thing that stands
out is that one aguada was completely classified as background by the model (see Figure
59). In contrast to the object detection, this aguada is deeper than the other ones.

A clear advantage of the one-band VAT model trained with ResNet-34 is that the pixels
corresponding to the buildings on platforms were all well classified. Only four insignificant
exceptions were spotted for very small buildings. However, these perfect classifications for
buildings on platforms came at the expense of detecting the platforms underneath. In
fact, all platforms supporting buildings were classified as background, except for small
platforms that are almost completely hidden by buildings. This aspect can be seen in
Figure 59. 55 individual buildings on bare ground were missed (with classified pixels on
less than 30% of the building). Four individual platforms were also not predicted. Two of
these failures stemmed from a building being misidentified on them. Finally, background
pixels were sometimes misclassified as archaeological features. This occurs on hills and
bulges of a few metres high that are interpreted as buildings. However, these areas could
actually be areas of interest as they potentially represent true buildings. In summary,
for 1,018 objects, more than 30% of the pixels were correctly classified as archaeological
features. With a total number of 1,256 features, this figure is very satisfactory. By com-
parison, the best object detection model delivered 933 true positives.

The IOU for the three-band VAT model trained with ResNet-18 is:

IOU =
846, 789

846, 789 + 128, 707 + 754, 674
= 48.9%, (11)

The IOU shows that the performance is less good than for the one-band VAT model.
Again, the buildings that were on a platform were detected well, while the platform was
missed. However, more pixels were classified towards the centre of the platform when it
is surrounded by buildings. This can be seen in Figure 59. Unlike the previous model,
not all buildings on the platforms were well classified. Visual inspection revealed 40
overlooked buildings. 197 individual buildings and 14 platforms were also missed. All
aguadas contained well classified pixels, but only a small amount (less than 10%). This
is especially true for the shallowest aguada, where the raised edges are less pronounced.
Finally, 17 building/platform ensembles were misclassified as background, which never
occurred for the one-band model. These ensembles consisted of a small platform with a
small building. To sum up, the best semantic segmentation model uses the one-band VAT
and the ResNet-34 backbone.
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10.2 Separation of the three classes

Experiment 15 investigates the separation of the three classes. The workflow is visible in
Figure 60. The best model for semantic segmentation just defined (one-band VAT with
ResNet-34) was used in the case of three separate classes, as was done earlier for object
detection. Three models are then trained, one for each class.
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Figure 60: Workflow of experiments 15 and 16.

The results of the training for the three models can be found in Table 23. The results
are particularly good for buildings and platforms, with a high accuracy, recall and dice
coefficient. The dice value is lower for aguadas, again due to the small number of training
examples. The recall values are higher when considering each class separately. Indeed,
the previous model gave a value of 69.5%.

Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 4.1054e-06 8.1507e-05 98.3% 77.7% 65.1%

Platforms 0.0005 0.0009 96.7% 77.9% 67.3%

Aguadas 0.0020 0.0104 91.6% 75.5% 42.1%

Table 23: Results of the training of the U-Net models with the one-band VAT and ResNet-
34 architecture for the three classes.

The Classify Pixels tool was run to test the models on the northern part of Chactún
(see Experiment 16 in Figure 60). The results are shown in Figure 61. Concerning the
model to detect aguadas, as with object detection, many false positives were predicted. A
sample of these false positives can be seen in Figure 62, where no ground truth aguada is
present. This is again due to the small number of training examples available. However,
visual inspection shows that the results are still better for semantic segmentation, with
fewer false positives compared to object detection. This could be due to the architecture of
the U-Net model, which is better adapted to cases where only a small number of training
examples are available [27]. Of the seven aguadas that were present in the testing area,
only one was missed. This is again the deepest aguada, which was also missed when using
the one-band VAT. False positives occur mainly on small flat areas that show a lower
elevation compared to the surrounding area. However, pixels in rough terrain were also
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frequently classified as aguadas. So the model does not detect any new possible aguadas,
but mainly false positives.

Figure 61: Ground truths on the left and results of the semantic segmentation on the
right. Buildings are in yellow, platforms in orange and aguadas in blue. Each feature
segmentation layer was obtained from a separate model.

Figure 62: Sample of the false predictions of the aguada model with the input VAT on
the left and the classified pixels on the right. No true aguada exists in the area chosen.

The IOU for the aguada model is again calculated using the number of TP, FP and
FN pixels.

IOU =
148, 647

148, 647 + 738, 844 + 15, 850
= 16.4%, (12)
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One might wonder how this rather poor result comes about, considering that the accu-
racy for the aguada model was 91.6%. This comes from the definition of accuracy, which
also takes into account the true negatives, i.e. the background. More representative of the
performance of the model is then the IOU coefficient, which was calculated here for the
class objects only, without taking the true negatives into account. The dice coefficient of
the model, provided in Table 23, is also more representative. However, the value provided
by ArcGIS Pro is an average value between the dice coefficient of the feature class and the
background class. This explains the higher value compared to the dice calculated for the
aguada class, which is 28.3%.

As for the building class model, the results were very good. This is confirmed by the
IOU:

IOU =
760, 923

760, 923 + 235, 804 + 167, 889
= 65.3%, (13)

The few missed buildings are small remains with little height discontinuity with re-
spect to the surrounding area. The few false positives are small bulge formations that
could be interpreted as buildings. Buildings standing on platforms were all correctly clas-
sified. They are the most visible and show a large discontinuity in the ground.

Finally, the model for platform detection turns out to also work well. All platforms
are correctly predicted. Some false positives arise mainly for clusters of buildings or
naturally flat terrain with a slightly higher elevation. The two shallowest aguadas were
also misclassified as platforms.

IOU =
1, 272, 823

1, 272, 823 + 516, 163 + 190, 060
= 64.3%, (14)

Since the performance metrics for the three-band VAT were of the same order of mag-
nitude as for the one-band (see Table 22), this visualisation was also trained by separating
the three classes. This is Experiment 17 which can be seen in Figure 63.
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Figure 63: Workflow of experiment 17.

The tiles were exported again for this visualisation using the Export Training Data
tool, with one training set for each class. Then the U-Net model was trained on these tiles
using ResNet-18, resulting in one model per class. The performance metrics are provided
in the table below. The metrics are slightly lower than for the one-band VAT.
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Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 2.3211e-05 0.0001 98.2% 71.5% 62.4%

Platforms 0.0002 0.0005 97.1% 72.5% 66.3%

Aguadas 0.0054 0.0101 91.6% 66.8% 38.1%

Table 24: Results of the training of the U-Net model with the ResNet-18 architecture for
the three classes with the three-band VAT.

The three models were then tested on the north of Chactún using the Classify Pixels
tool. A sample of the results, which is the same sample area as previously, can be seen in
Figure 64.

Figure 64: Ground truths on the left and sample of the results of the semantic segmentation
on the right. Aguadas are in blue, buildings in yellow and platforms in orange.

The model for the aguadas gave better results than the one using the one-band VAT.
Indeed, the IOU has a value of 28.3% (see Appendix F Table 32 for the values used in
the calculation). Visual inspection showed that fewer false positives occurred, and those
that did occur could actually be unidentified aguadas, except on rough terrain. As for
the platforms, the vast majority were well predicted, with a IOU of 64.7%. As with the
one-band VAT, a platform was always predicted for the clusters of buildings, even if it
was not included in the ground truth dataset. Finally, the IOU value for buildings is
63.7%. These buildings were always well classified if they were on a platform. Overall,
the results are quite similar to the results of the one-band VAT. However, the IOU values
will determine the best model. A comparison table is provided below.

Buildings Platforms Aguadas

One-band VAT ResNet-34 65.3% 64.3% 16.4%

Three-band VAT ResNet-18 63.7% 64.7% 28.3%

Table 25: IOU values of the U-Net model for the one-band and three-band VAT.
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For the platforms, the values are similar for the two models. The building predictions
are slightly better for the one-band VAT model. The main difference, however, concerns
the aguadas, whose IOU has almost doubled for the three-band VAT model compared to
the one-band VAT model. In conclusion, the most appropriate visualisation for a deep
learning model depends on the feature class. If one wants to use the same model for the
three classes, the three-band VAT with ResNet-18 can be considered the most suitable
model.

11 Semantic segmentation with the Holmul test set

This section covers Experiment 16 (see Figure 60) in which we achieved the testing of the
best deep learning model with the Holmul test set described earlier in Section 5.3. This
allows to investigate further the transferability of the model. The Holmul data contains
472 ground truths, digitised following the borders of the original buildings and not the
borders of the ruined buildings as was the case for Chactún and G-LiHT. This is visible
in Figure 65, where the central image shows the ground truths. Because of this different
digitisation, the IOU may no longer be a good performance metric.

The one-band VAT of the area was used. The model tested therefore had to be one that
had been trained on the one-band VAT of Chactún. The model with the best performance
metrics previously identified for semantic segmentation was the model using ResNet-34.
This model was then tested on the area. Since this area contains only buildings, the model
trained on buildings was used. A sample of the result can be found in Figure 65.

(a) Input VAT (b) Ground truths (c) Predictions

Figure 65: (a) Input VAT of Holmul, (b) ground truths and (c) predictions.

Visual inspection of the result of the Classify Pixels tool was achieved by searching
for ground truths predicted with at least 30% of their pixels. Using this criterion, 253
buildings were predicted, while 219 were missed. Considering that 21% of the buildings
in the G-LiHT dataset were well predicted, the Holmul dataset gives better results with
a value of 53.6%. This higher value comes from the fact that Holmul’s terrain is closer
to that of Chactún. However, part of the terrain consists of steep slopes, which leads to
a large number of false positives. This is visible in Figure 66. As with the other testing
areas, false positives also arise on bulges which could be buildings.
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Figure 66: Sample of the results of the semantic segmentation for the U-Net model.
Predictions on the right are false positive buildings.

The IOU was calculated for this dataset, keeping in mind that ground truth objects
are less precise than they were for training. The number of pixels obtained during the
IOU computation can be seen in the Appendix F (Table 33). From the IOU formula, we
get a value of 22.2% for the IOU. Thus, even with miss-shaped polygons for the ground
truths, the results are better than for the G-LiHT test set, which had an IOU of 17.7%.
One can conclude that the most important aspect to achieve a good performance for a
model is the similarity between the training and testing terrains.

12 DEM as source layer

An attempt was made to use the DEM instead of the VAT for both training and testing
of the deep learning model. The main goal was to see if the G-LiHT area gave better
results than previously. Experiment 18, for which the workflow can be seen in Figure 67,
investigated two backbones. The training data was exported using the DEM of Chactún
South as the source layer. The patches created with this export were normalised to have
values ranging from 0 to 255. They were also converted from 32bit to 8bit, since deep
learning works better in this case. Semantic segmentation was performed on the DEM,
as this computer vision task gave better accuracy than object detection. Again, the three
classes were investigated in three different models.
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Figure 67: Workflow of experiment 18 and 19.

For semantic segmentation, the backbone architecture which performed the best varied
with the visualisation. Both ResNet-18 and ResNet-34 were therefore tested with the DEM
model for the building class. The results, which can be seen in Table 26, show that ResNet-
18 performs better in the present case. Although the accuracies of the two architectures
are very similar with a value of 98%, the recall metric and dice coefficient are higher for
ResNet-18. The platform and aguada models were then trained with this backbone. One
can already see lower dice coefficients for platforms and aguadas.

Feature class Backbone Training loss Validation loss Accuracy Recall Dice

Buildings ResNet-18 0.0037 0.0001 98.3% 76.4% 64.8%
ResNet-34 0.0068 0.0002 98.2% 71.6% 56.8%

Platforms ResNet-18 2.3739e-05 0.0013 95.8% 69.3% 44.9%

Aguadas ResNet-18 0.0037 0.0073 93.5% 77.9% 46.3%

Table 26: Results of the training of the U-Net model with the DEM for the three classes.

Experiment 19 (see Figure 67) investigates the impact of the choice of the testing
set. The models were first tested on the northern part of Chactún by running the pixel
classification tool. A sample of the results is provided in Figure 68. The results are
generally less good when using the DEM than when using the VAT. This is especially
true for aguadas, of which only one aguada was partially classified as such. However, only
one area was incorrectly classified as an aguada. Therefore, the number of false positive
predictions is much lower than with the VAT. The IOU has a value of only 1.6% (see
Appendix F Table 34 for the details). Concerning the predictions for the buildings, they
agree quite well with the ground truths, especially for the buildings on the platforms,
which are the most visible. The only missed buildings are individual buildings without
a platform. The IOU then has a good value of 57.5%. Finally, more platforms were
overlooked compared to buildings, as can be seen in Figure 68. The IOU is then slightly
lower at 50.3%. Using the VAT for archaeological detection is therefore a better choice
than using the DEM, resulting in higher IOU values. The DEM raster only allows the
detection of visible objects with a high elevation discontinuity. The only argument that
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could be held against the VAT is the detection of more false positives. However, these
may be new discoveries and areas of interest.

Figure 68: Ground truths on the left and results of the pixel classification on the right.
Aguadas are in blue, buildings in yellow and platforms in orange.

The Classify Pixels tool was also applied to the G-LiHT area in Experiment 19 to
determine if the cause of the previously poor results was the VAT. Showing a sample of
the results is not very useful, as only a few pixels were classified over the entire area.
Nevertheless, the interested reader can still refer to the Appendix G for a sample of
the results. The aguadas were not detected at all, while the borders of the DEM were
misclassified as such. Since no aguadas were detected, no true positives exist - the IOU
has a value of 0. As for buildings, the model resulted in very few detections. With
only 3 known buildings that were well classified. The number of false positives was lower
than when using the VAT, with about 10 false positives for the DEM. The IOU value for
buildings is 0.73% (see Appendix F Table 34 for the details). Finally, only 3 platforms had
some of their pixels well classified. The IOU for platforms gave a value of 1.7%. Hence,
using the DEM does not solve the transferability issue of the model. The results are even
worse than with the VAT. It can be concluded that the origin of the bad results when
applying the trained model to this test area is the different terrain and data. This is a
rather limiting constraint on the transferability of the deep learning model.

13 Influence of the patch size

The patch size has been referred to by various names. In fact, a patch also corresponds to
a tile and an image chip. When using ArcGIS Pro, the Export Training Data tool divides
an input image into a series of patches, and each patch is an input image to the CNN.
The larger the patches, the more contextual information can be derived, while smaller
patches better define smaller features. One can also point out that smaller patches are
more numerous and therefore require less initial data. With a higher number of patches,
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overfitting can also be avoided. However, too small a patch size can lead to a low accu-
racy, as the model is not submitted to broader contextual information. In contrast, more
performant models can be achieved with larger patches, which lead to a reduction of the
noise. However, a larger size also requires more computing power [49]. The localisation
accuracy also decreases with the patch size [27].

Note that the U-Net network has a predefined size for the input image. This can be
seen in the architecture of Figure 15 where the input patch size is 572 × 572. As a con-
sequence, each patch will be resampled to that size when being fed to the deep learning
model.

Patch size is an interesting parameter to play with. Experiment 20, visible in Figure
69, compares six models created with different patch sizes. Note that for simplicity the
three feature layers are injected into the training data following the same arrow. However,
in reality, one set of training data (and hence one model) was created for each feature
layer. One can refer to the workflow of Experiment 17 (Figure 63) where the layers were
well separated.
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Figure 69: Workflow of experiment 20.

The model and visualisation that previously gave the best results were considered.
The computer vision task that gave the best performance metrics was semantic segmen-
tation. Better recall and IOU values were obtained by considering one model for one
class of objects, which also allowed both buildings and platforms to be detected when
they overlapped. However, the model for the aguadas gave poor results with many false
positives. Changing the patch size could have an impact on these false detections. As for
the best model architecture, it varied with the visualisation. However, the best results
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were obtained with the three-band VAT and ResNet-18 backbone when three classes were
considered (see Section 10.2). This model was then trained on each class. The patch size
was initially reduced to a value of 150 pixels (the previous value was 256 pixels). Changing
the patch size requires to re-export the patches using the Export Training Data tool. The
tile size has been set to 150 × 150 pixels, while the stride size has been set to 75 × 75
pixels, in order to keep it as half of the tile. The batch size was set to 15. The results of
the training of the three models are summarised in Table 27. The performance metrics
are again less good for aguadas.

Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 0.0007 0.0004 97.4% 75.3% 69.2%

Platforms 0.0026 0.0025 95.2% 86.6% 71.1%

Aguadas 0.0937 0.0371 85.0% 69.8% 47.5%

Table 27: Results of the training of the U-Net models with the 150× 150 patch size.

Pixel classification was then carried out using these models to test them on the north
of Chactún. Due to the smaller tile size, the processing time is much shorter. The aguada
model leads to many more false positives compared to the previous patch size of 256. This
can be seen in Figure 70. These false positives do not seem to correspond to any area of
interest. In fact, most of the misclassified areas seem to follow the square shape of the
tile. Ground truth aguadas were detected except for the deepest one. The IOU amounts
to 13.4% (see Appendix F Table 35). The building model is quite good, as can be seen in
Figure 71. The IOU value is actually 64.4%. Again, the best predictions are for buildings
on platforms. The classified pixels do not follow the boundaries of the tiles, as was the
case previously with the aguadas. As for platforms, visual inspection showed that most
were detected. Only 14 platforms showed less than 30% of classified pixels.

The patch size was then increased to 350× 350. The tiles were then re-exported with
the new size and a stride of 175 × 175. To train the models, the batch size had to be
decreased to a value of 10. The result of the training is summarised in the table below.
The aguada model has a better accuracy compared to the 150 patch size. However, the
dice and recall values are lower. This counterintuitive variation is related to the fact that
fewer false positives occur, which leads to a better classification of the background. This
increases the overall accuracy. For buildings and platforms, the performance metrics were
generally higher with the smaller patch size.

Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 1.6194e-05 0.0002 97.9% 64.7% 61.0%

Platforms 5.0723e-05 0.0005 97.2% 64.8% 58.4%

Aguadas 0.0719 0.0088 92.7% 59.7% 37.2%

Table 28: Results of the training of the U-Net models with the 350× 350 patch size.

Testing the models on Chactún North resulted in IOUs of 16.8% for aguadas, 62.2% for
buildings and 64.3% for platforms. The results can be seen in Figure 71. Visual inspection
of the classified pixels shows a lower number of false positive aguadas compared to the
patch size of 150. All ground truth aguadas were predicted.
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Other patch sizes were investigated: 64 × 64 pixels, 128 × 128 pixels and 512 × 512
pixels. These are more common patch sizes as they are of the order of 2x pixels. The
different training results (losses and performance metrics) are provided in Appendix H. A
comparison of the results of the different patch sizes for the aguadas detection is provided
in Figure 70. The three smallest sizes lead to classified pixels which follow the patches.
The smaller the patch size, the higher the amount of false positives. These three sizes are
then too small for the aguada model. As for the larger patch sizes, the one leading to the
smallest number of false positives on the sample of Figure 70 is 512×512. However, further
visual investigation of the classified pixels reveal that this patch size leads to predictions
at the edges and outside of the VAT. For that reason, visual inspection suggests that the
optimal patch size for detecting aguadas is 256 × 256. This can be further verified with
the IOU values which are summarized in Table 29. The 256 × 256 patch indeed gives
the highest IOU for aguadas. As for buildings and platforms, the classified pixels for the
different patches can be seen in Figure 71. This figure, as well as the IOU values, show that
buildings are better predicted with the smaller patch size of 128× 128. As for platforms,
the best IOU is obtained for 150× 150. However, the platform detections are very similar
for many patch sizes (with very close IOUs for 150, 256, 350 and 512). Only 64 × 64 is
too small for the model to detect well platforms. If one wants to use the same patch size
for the three objects (buildings, platforms and aguadas), the best patch size is 256× 256
pixels, which gives a good model performance for the three objects.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

c) Patch 150 x 150 

d) Patch 256 x 256 e) Patch 350 x 350 f) Patch 512 x 512 

b) Patch 128 x 128  a) Patch 64 x 64 

Figure 70: Aguada predictions for a patch size of (a) 64× 64, (b) 128× 128, (c) 150× 150,
(d) 256× 256, (e) 350× 350 and (f) 512× 512. All predictions are false positives.
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f) Patch 512 x 512 e) Patch 350 x 350 

c) Patch 150 x 150 b) Patch 128 x 128 a) Patch 64 x 64 

d) Patch 256 x 256 

Figure 71: Sample of the results of the semantic segmentation for the U-Net model with
a patch size of (a) 64× 64, (b) 128× 128, (c) 150× 150, (d) 256× 256, (e) 350× 350 and
(f) 512× 512. Aguadas are in blue, buildings in yellow and platforms in orange.

64× 64 128× 128 150× 150 256× 256 350× 350 512× 512

Buildings 52.5% 68.0% 64.4% 63.7% 62.2% 66.9%

Platforms 41.2% 63.0% 64.8% 64.7% 64.3% 64.2%

Aguadas 0.53% 2.6% 13.4% 28.3% 16.8% 13.9%

Table 29: Comparison of the IOU values for the six patch sizes. Best values are in bold.

We can then conclude that for larger objects such as aguadas, a larger patch size is
more appropriate. However, when the patch size becomes too large, the IOU metric de-
creases. This could be due to the fact that more false detections occur when the patch
size is too large. On the other hand, for smaller features, such as buildings, a smaller
patch provides better performance. Platforms have a range of sizes that allows them to
be detected well in most patch sizes.
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14 ArcGIS StoryMap

The primary aim of this thesis was to create a StoryMap for archaeologists. The idea
was to show archaeologists how to implement a deep learning model in ArcGIS Pro that
would help them to detect new archaeological features in an automated manner. A nice
way to write about the ArcGIS Pro workflow is to use a StoryMap. The ArcGIS Sto-
ryMaps platform offers the possibility to create a story and make it interactive for the
reader, e.g. through the use of personalised maps. The StoryMap created can be found at
https://arcg.is/1aqK0v0. The different steps required in ArcGIS Pro to use deep learning
are described in detail, from creating the training data, training the model, to testing this
model on a new area. For the StoryMap, the case of semantic segmentation was chosen
because of the suitability of the dataset for this type of computer vision task.
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15 Conclusion

Areas of interest for archaeologists can nowadays be investigated by more than just a field
survey. Remote sensing enables archaeologists to look at an area from a distance. In par-
ticular, airborne laser scanning (ALS, lidar) can provide visualisations of the area which
serve archaeological needs. Such a visualisation is the visualisation for archaeological to-
pography (VAT), which provides a clear view of archaeological remains. A second field can
be used to help archaeologists in their work, which is artificial intelligence. Deep learning,
especially semantic segmentation, was shown to be efficient in annotating archaeological
features over a new area acquired by ALS. This automatic prediction of objects can facil-
itate the work of archaeologists. The inspection of an area of interest, which is necessary
before a field expedition, could be greatly accelerated by the use of deep learning. The
goal of this study was to investigate several deep learning models and their performance
in finding new archaeological features when applied to lidar-derived images. Both object
detection and semantic segmentation were investigated, as well as several backbone archi-
tectures and patch sizes. Two visualisations for archaeological topography were studied,
as well as the digital elevation model. Three testing datasets were used to assess the
performance of the models.

The trained deep learning models show recall values generally above 70%. The major
result that emerges from all the processing of these models is that their transferability is
limited. Indeed, a model trained on a particular dataset does not generalise well to other
datasets if the terrain or data are too different. One solution that could be investigated,
is to use transfer learning to fine-tune the given model on the new data. However, this
would here require some data augmentation to increase the number of training samples of
the G-LiHT dataset.

The best deep learning model depends on the nature of the object annotations. In-
deed, objects annotated for the training set by following the edges are better suited for
semantic segmentation, i.e. for the U-Net deep learning model. Object detection can also
be used, although the accuracy is lower for this task. This comes also from the overlapping
between different types of features, such as buildings and platforms. This requires to train
one model for each class of objects. When all classes are considered in the same model,
the Non Maximum Suppression parameter should not be used to detect building/platform
pairs.

The separation of the three classes is also necessary for semantic segmentation. Other-
wise, platforms under a set of buildings cannot be predicted. Better accuracies are achieved
with feature class separation. However, the amount of training examples of aguadas is too
small to obtain a good model performance for this feature class. Using data augmenta-
tion techniques to increase this number of examples is a possibility that could be further
explored.

The best backbone architecture differs for different types of visualisations. For seman-
tic segmentation, the best performing backbone was ResNet-18 for the three-band VAT
and ResNet-34 for the one-band VAT. Another interesting result is that deep learning in
ArcGIS Pro only works for visualisations with a pixel depth of 8bit. No single visuali-
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sation was identified as the best one in any case. In fact, it depends on both the task
performed and the feature class. When considering one class of archaeological features and
a similar terrain for testing and training, the one-band VAT (using ResNet-34) gave the
best results in both object detection and semantic segmentation. While when considering
one deep learning model per class, the best visualisation varied depending on the objects.
The comparison between the VAT and the DEM showed that the VAT leads to a more
performant deep learning model.

Natural formations and other man-made structures that resemble considered classes,
e.g. rock piles, outcrops etc, are often misclassified by the models. One should bear in
mind that a false positive prediction on the testing set could be an unidentified object that
was overlooked in the definition of ground truths. However, rugged terrain that does not
seem to show any possible objects is sometimes misclassified. Another important result
is that the models predict a platform for each cluster of buildings. This shows that the
models learned well since it makes sense to find a platform under a group of buildings,
even though it was not identified during annotation of the ground truths.

The results show that the patch size of 256 × 256 is appropriate for the studied ob-
jects, especially for aguadas. This is mainly due to the size of the archaeological features
available. A smaller patch size of 128 × 128 also leads to a good intersection over union
(IOU) value for buildings, as these objects have a smaller size.

We can conclude that manual image inspection could be enhanced by the application
of a deep learning model. Improvements can still be made by fine-tuning the parameters
to find the model with the very best performance. However, this will always depend on
the type of data used and the application. The models studied here have already made
it possible to identify archaeological features on a new area in a promising way. It could
be argued that the time saved by using a deep learning model to detect structures is
compensated by the need for manual verification. However, this verification would take
much less time if the structures have already been delineated automatically. Finally, the
ArcGIS StoryMap created in this study demonstrates the use of deep learning with ALS
data for archaeological detections. An ArcGIS Pro workflow is provided for archaeologists.
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A Appendix : Deep learning workflow
Deep learning workflow 

 

Split into train, validation and test sets 
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Set hyperparameters 

Training of the model 

1. Forward pass 

2. Loss calculation 

3. Backpropagation 
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Figure 72: Simplified deep learning workflow. Inspired from a diagram of Maya Somrak
(ZRC SAZU).
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B Appendix : Combine tool attribute table

OBJECTID Count Classified Test buildings Test platforms Test aguadas
pixels new new new

1 61,400,195 0 0 0 0

2 19,500 0 0 1 0

3 52,407 0 1 0 0

4 2,775 1 0 0 0

5 1,382 1 1 0 0

6 7,675 0 0 0 1

7 5,810 1 0 0 1

8 4,811 1 1 0 1

9 3,885 0 1 0 1

Table 30: Attribute table of the result of the Combine tool of ArcGIS Pro.

C Appendix : Feature tiles

Figure 73: Tiles containing archaeological features above the three-band VAT. One can see
the 50% overlap between two tiles and the meaning of exporting only tiles with features.

D Appendix : Workflow diagrams

In the workflow diagrams, when ”annotation layers” are injected into the training data, all
three feature classes are considered as one (the archaeological feature class) and injected
into a single model. In contrast, in the rightmost part of the workflows, each layer is con-
sidered separately and a separate model is trained for each class. Note that, for semantic
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segmentation, part of the experiment where different patch sizes were investigated could
not be added on the diagram because of a lack of space. The three patch sizes of 64× 64,
128× 128 and 512× 512 are missing.

O
b

je
ct

 d
e

te
ct

io
n

 

  

  

  

R
es

N
et

-1
8

 
R

es
N

et
-3

4
 

R
es

N
et

-5
0

 
R

es
N

et
-3

4 
R

es
N

et
-1

8 
R

es
N

et
-3

4
 

R
es

N
et

-5
0 

1
B

 V
A

T 

Tr
ai

n
in

g 
d

at
a 

O
b

je
ct

 d
et

ec
ti

o
n

 

 

O
b

je
ct

 d
et

ec
ti

o
n

 

 

A
n

n
o

ta
ti

o
n

 la
ye

rs
 

Tr
ai

n
in

g 
d

at
a 

3
B

 V
A

T 
3

2
b

it
 

3
B

 V
A

T 
8

b
it

 

Tr
ai

n
in

g 
d

at
a 

 

Tr
ai

n
in

g 
d

at
a 

 

O
b

je
ct

 d
et

ec
ti

o
n

 

 

O
b

je
ct

 d
et

ec
ti

o
n

 

 

A
gu

ad
a 

la
ye

r 

P
la

tf
o

rm
 la

ye
r 

B
u

ild
in

g 
la

ye
r 

O
n

e 
cl

as
s 

P
at

ch
 s

iz
e

 : 
2

5
6x

2
5

6
 

Th
re

e 
cl

as
se

s 

(m
u

lt
ic

la
ss

 d
et

ec
ti

o
n

s)
 

P
at

ch
 s

iz
e

 : 
2

5
6x

2
5

6
 

O
n

e 
cl

as
s 

P
at

ch
 s

iz
e

 : 
2

5
6

x2
5

6
 

O
n

e 
cl

as
s 

P
at

ch
 s

iz
e

 : 
2

5
6

x2
5

6
 

R
es

N
et

-3
4

 
O

n
e 

cl
as

s 

P
at

ch
 s

iz
e

 : 
2

5
6

x2
5

6
 

Tr
ai

n
in

g 
d

at
a 

 O
b

je
ct

 d
et

ec
ti

o
n

 

 

R
es

N
et

-3
4

 
N

o
 N

o
n

 M
ax

im
u

m
 

Su
p

p
re

ss
io

n
 

N
o

n
 M

ax
im

u
m

 

Su
p

p
re

ss
io

n
 

N
o

 N
M

S 

N
M

S 

N
M

S 

1
B

 V
A

T 
G

-L
iH

T 

1
B

 V
A

T 
C

h
ac

tú
n

 N
o

rt
h

 
3

B
 V

A
T 

C
h

ac
tú

n
 N

o
rt

h
 

3
B

 V
A

T 
G

-L
iH

T 

Te
st

 d
at

a 

Te
st

 d
at

a 
Te

st
 d

at
a 

Te
st

 d
at

a 

R
es

N
et

-1
8

 

Figure 74: Workflow diagram of the object detection experiments. The order of experi-
ments is as they are described in the text.
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Figure 75: Workflow diagram of the semantic segmentation experiments.
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E Appendix : Loss graphs and sample of the results

Figure 76: Loss graph for the ResNet-18 model with the three-band VAT 32bit on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.

Figure 77: Loss graphs of RetinaNet ResNet-18 with three-band VAT 8bit on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.
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Figure 78: Loss graphs of RetinaNet ResNet-50 with three-band VAT 8bit on the left.
Sample results of the model on the right, with ground truths on the left and predictions
on the right.

Figure 79: Loss graphs of RetinaNet ResNet-34 with the one-band VAT trained on
Chactún South on the left. Sample results of the model on the right, with ground truths
on the left and predictions on the right.
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Figure 80: Loss graphs of RetinaNet ResNet-34 with the three-band VAT trained on
Chactún South on the left. Sample results of the model on the right, with ground truths
on the left and predictions on the right.

Figure 81: Loss graphs of U-Net ResNet-34 with one-band VAT trained on Chactún South
on the left. Sample results of the model on the right, with ground truths on the left and
predictions on the right.
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Figure 82: Loss graphs of U-Net ResNet-18 with three-band VAT trained on Chactún
South on the left. Sample results of the model on the right, with ground truths on the
left and predictions on the right.

F Appendix : Results of Combine tool

Model Amount of true Amount of false Amount of false
positives positives negatives

U-Net ResNet-18 14,648 8,179 80,111

U-Net ResNet-34 22,395 31,807 72,364

Table 31: Amounts of pixels obtained from the Combine tool for G-LiHT.

Model Feature class Amount of true Amount of false Amount of false
positives positives negatives

Three-band U-Net Buildings 688,270 150,860 240,542
ResNet-18 Platforms 1,198,736 388,471 264,147

Aguadas 140,880 333,506 23,617

Table 32: Amounts of pixels obtained from the Combine tool for Chactún North.

Model Feature class Amount of true Amount of false Amount of false
positives positives negatives

U-Net ResNet-34 Buildings 144,407 332,261 174,218

Table 33: Amounts of pixels obtained from the Combine tool for Holmul.
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Model Testing area Feature class Amount of true Amount of false Amount of false
positives positives negatives

DEM U-Net Chactún North Buildings 583,119 85,923 345,693
ResNet-18 Platforms 876,815 278,845 586,068

Aguadas 2,856 11,058 161,641
G-LiHT Buildings 2,514 21,104 320,518

Platforms 4,496 62,942 190,658

Table 34: Amounts of pixels obtained from the Combine tool for the DEM.

Model Patch size Feature class Amount of true Amount of false Amount of false
positives positives negatives

U-Net 64× 64 Buildings 790,064 576,857 138,748
ResNet-18 Platforms 1,319,009 1,741,677 143,874

Aguadas 157,565 29,627,752 6,932
128× 128 Buildings 751,185 175,718 177,627

Platforms 1,337,325 660,599 125,558
Aguadas 155,832 5,841,095 8,665

150× 150 Buildings 688,133 139,488 240,679
Platforms 1,190,034 373,557 272,849
Aguadas 143,755 904,309 20,742

350× 350 Buildings 713,907 219,225 214,905
Platforms 1,077,272 212,431 385,611
Aguadas 147,073 709,042 17,424

512× 512 Buildings 738,218 174,789 190,594
Platforms 1,331,195 609,914 131,688
Aguadas 126,970 749,203 37,527

Table 35: Amounts of pixels obtained from the Combine tool for the different patch sizes.
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G Appendix : Classified pixels on G-LiHT with the DEM

Figure 83: Sample of the results of the pixel classification for the U-Net models of the
three classes with the DEM as source layer. Ground truths are on the left and predictions
on the right.

H Appendix : Training results for the patch sizes 64 × 64,
128× 128 and 512× 512

Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 0.0021 0.0032 94.9% 81.6% 73.8%

Platforms 0.0144 0.0120 91.8% 86.1% 74.7%

Aguadas 0.1153 0.0874 74.7% 74.2% 48.5%

Table 36: Results of the training of the U-Net models with the 64× 64 patch size.

Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 0.0002 0.0003 97.3% 78.1% 72.7%

Platforms 6.3618e-05 0.0018 95.7% 87.7% 73.8%

Aguadas 0.0384 0.0514 81.4% 69.4% 42.9%

Table 37: Results of the training of the U-Net models with the 128× 128 patch size.
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Feature class Training loss Validation loss Accuracy Recall Dice

Buildings 0.0001 3.58e-05 98.9% 72.8% 65.4%

Platforms 0.0118 0.0034 95.7% 7.2% 10.2%

Aguadas 0.0101 0.0367 89.3% 2.9% 4.0%

Table 38: Results of the training of the U-Net models with the 512× 512 patch size.

85



References

[1] GARMIN. Garmin on Mars. https://www.garmin.com/en-US/blog/general/

garmin-on-mars/. [Online; accessed 29-03-2023].

[2] Steve Snow. Lidar Images Show Mayan Civilization in a New Light. https://www.

esri.com/about/newsroom/blog/lidar-images-reveal-mayan-civilization/.
[Online; accessed 06-04-2023].

[3] Maja Somrak. Deep Learning. ZRC SAZU, 2023.

[4] Gilles Louppe. Deep Learning. Deep Learning course INFO8010. University of Liège,
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