
https://lib.uliege.be https://matheo.uliege.be

Master thesis : Observability and Visibility in the Cloud

Auteur : Sebati, Ilias

Promoteur(s) : Donnet, Benoît; 19444

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems security"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17656

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Observability and Visibility in the Cloud

Sebati Ilias
Academic Supervisor: Prof. Donnet Benoit
Industrial Supervisor: Christopher Paggen

University of Liege
A thesis presented for the degree of

M.Sc. in Computer Science

2022-2023

Copyright © 2023 by Sebati Ilias
All Rights Reserved

Acknowledgements

I am deeply grateful to Allah, the Most Merciful and All-Knowing, for granting
me the ability to complete this thesis and successfully conclude my studies. I am
forever thankful for His boundless mercy that has encompassed every aspect of
my accomplishments.

I would also like to express my heartfelt gratitude to my mother and father for
their unwavering support and for making my journey through studies much easier.
Their constant encouragement and guidance have been invaluable to me. I am also
grateful to my family for their continuous support and belief in my abilities.

I extend my thanks to my academic supervisor, Pr. Donnet Benoit, for his guid-
ance throughout this thesis. Additionally, I would like to express my gratitude to
all the professors and assistants at the University of Liege who have provided me
with the opportunity to receive this amazing education. Their guidance and ex-
pertise have been invaluable and have greatly contributed to the successful com-
pletion of this thesis.

Furthermore, I would like to extend my appreciation to my industrial supervisor,
Christopher Paggen, for his invaluable advice, unwavering support, and engaging
discussions. I am grateful for the opportunity to work under his guidance. I would
also like to express my gratitude to all the members of Cisco who have been part
of my brainstorming journey.

Lastly, I would like to thank my friends who have accompanied me on this jour-
ney or have provided unwavering support. Their presence, encouragement, and
camaraderie have made this experience all the more meaningful and memorable.

Abstract

This thesis focuses on the development of an application that aims to achieve visibility
and observability in the cloud. It delves into the selection process of various technolo-
gies, such as programming languages, libraries, and security systems. Furthermore,
the thesis emphasizes the utilization of a microservice architecture for the application.
Additionally, it provides an in-depth explanation of the algorithm implemented for per-
forming path reachability between services.

Keywords— Observability - Visibility - Cloud - Software Engineering

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Objectives . 3

2 Selecting Technologies 4
2.1 From Monolithic to Microservices Architecture 4

2.1.1 Traditional Monolithic Architecture 5
2.1.2 Microservices Architecture: Advantages and Adoption . . 5
2.1.3 Kubernetes and Microservices Deployment 5

2.2 Language Choices . 6
2.2.1 Web Application . 7

2.2.1.1 JavaScript Frameworks 7
2.2.2 Backend language . 9

2.2.2.1 Choosing a language 9
2.2.2.2 Language comparison 10
2.2.2.3 Speed comparison 11
2.2.2.4 Number of Lines Comparison 12
2.2.2.5 Conclusion . 13

2.3 Authentication . 13
2.3.1 Session Tokens . 14
2.3.2 JWT Tokens . 15

2.4 Infrastructure . 17
2.4.1 Our Test Infrastructure 18

2.5 Swagger Documentation . 19

3 An Exploration of the Methodology: Components and Infrastructure 21
3.1 An In-depth Look at the Frontend 22

3.1.1 Cisco UI Kits . 22
3.1.2 Material UI . 23
3.1.3 Navigating with React Router Dom 24
3.1.4 State management . 24
3.1.5 Using Object-Oriented Principles 26

3.1.5.1 Showing Detailed Information 26
3.1.5.2 Model . 27
3.1.5.3 Server Communications 32

3.2 Understanding the Login Service 33
3.2.1 Big Picture . 34
3.2.2 Database . 35

i

3.2.3 User Authentication . 36
3.2.4 Detailed Documentation 38
3.2.5 Tests . 41

3.3 Unravelling the Main Gateway 42
3.3.1 Authentication Via Cookie Verification 43
3.3.2 Extracting Relevant Information to Handle the Request . . 45
3.3.3 Fetching and Returning the Data 46
3.3.4 Testing Procedures . 48
3.3.5 Throttling of APIs by CSPs 49

3.4 Exploring the Reachability Server 49
3.4.1 Service Technology Considerations 50
3.4.2 High level view of the Algorithm 51
3.4.3 Determining the Next Hop 52
3.4.4 Retrieving the Service Using Its Identifier 56
3.4.5 Returned Values and Their Applications 59
3.4.6 Testing . 60

4 Conclusion and Future Prospects 61
4.0.1 Looking Forward . 61
4.0.2 Conclusion . 61

Bibliography 64

Appendix A Appendix 65
A.0.1 UI of the web app . 65

ii

List of Figures

1.1 Screenshot of the AWS management console displaying the de-
ployed subnets. The network topology is not easily discernible
from the subnet list alone, as each subnet is linked to its respec-
tive VPC by its ID (vpc-...). Consequently, it is challenging to
determine the exact structure of the topology, including the num-
ber of subnets associated with each VPC (in this case, 2 subnets
per VPC) . 2

1.2 Comparison of cloud service providers as evaluated by Gartner . . 2

2.1 Monolithic vs Microservices Architecture by Medium 4
2.2 Stack Overflow Survey 2022 . 8
2.3 Most popular JavaScript frameworks from here 8
2.4 Speed comparison of different languages 11
2.5 Three tier application . 14
2.6 Authentication Sequence . 14
2.7 JWT Token structure from Securitum 16
2.8 Illustration of Our Test Infrastructure 18
2.9 Example of Swagger API documentation from Swagger Hub . . . 20

3.1 Architecture of the Application 21
3.2 Service details . 25
3.3 Provider structure . 26
3.4 Adapting the Visitor design pattern with React hooks to display

component details . 27
3.5 UML of services used to store information that will then be dis-

played . 28
3.6 UML model of the classes used to represent the graph 31
3.7 UML of the frontend API for backend communication 32
3.8 Architecture with a focus on the authentication component 34
3.9 Sequence diagram outlining the authentication process 35
3.10 Database diagram of the Authentication microservice 36
3.11 The Swagger hostname with the base path visible. It starts with

localhost:2000/api, implying that any subsequent route
(e.g., user) should follow the /api prefix, resulting in a complete
path like /api/user. 39

iii

https://medium.com/javanlabs/micro-services-versus-monolithic-architecture-what-are-they-e17ddc8d3910
https://2019.stateofjs.com/front-end-frameworks/####front_end_frameworks_experience_ranking
https://research.securitum.com/jwt-json-web-token-security/

University of Liege Ilias Sebati

3.12 Sign-in route depiction: We can see that it utilizes a POST method.
The request’s body is expected to contain two key values (i.e.,
email and password). The response will be a code that varies de-
pending on the parameters received and processing. The format
returned is JSON, with either two or three fields. Upon a success-
ful sign-in, the ’data’ field contains the result (a string in this case).
Additionally, the response includes a ’message’ and a ’status’ to
provide comprehensive information about the response. 40

3.13 Flow diagram depicting request handling in the main gateway . . 44
3.14 Main Gateway database structure 47
3.15 This basic topology presents a Vpc, which encompasses two sub-

nets. Every subnet is linked with an ACL and a route table, and
each one houses an EC2 instance secured by a security group. The
red arrow illustrates the route from instance A (10.10.10.50)
to instance B (10.10.20.50). 50

3.16 A portion of the UML utilized by the reachability service to ex-
ecute the reachability algorithm. This primarily focuses on the
routing aspect, with any redundant information omitted, which is
why most classes don’t display any fields/methods. 53

3.17 Architecture focusing on the reachability interaction 57
3.18 Traffic between the main gateway and the reachability service.

The main gateway sends an id (actually it will be several id, e.g.
id_user...) that the reachability microservices will then use to
query subsequent services configurations. 57

3.19 Potential security breach when using IDs as context for the reach-
ability service to retrieve configurations 58

3.20 Token-based reachability query. The token carries context infor-
mation, and the hacker cannot fabricate a token. 59

4.1 Stack of languages and for each the number of lines coded for this
application . 63

A.1 User login interface. This interface initiates user login by for-
warding requests to the authentication microservice and retrieving
a token for further interactions. 66

A.2 Infrastructure selection interface displaying two saved infrastruc-
tures. Each infrastructure is identified by a name. The yellow
button enables viewing the deployed online topology. A user set-
tings option is available on the top right corner of the toolbar. . . . 66

iv

University of Liege Ilias Sebati

A.3 Main page showcasing your infrastructure on the right, with vis-
ible details of three VPCs, including their CIDR range and name
(if tagged). Subnets are shown along with their CIDR range and
last digits of their ID (with an option to display their name). The
left pane contains two tabs, for viewing clicked service details and
performing reachability testing. 67

A.4 Subnet detail view, displaying relevant service information upon
clicking on a subnet. Top of the interface presents details such as
the AZ, ID, etc., while the bottom segment lists tags and associ-
ated network ACL with inbound and outbound rules. 68

A.5 Detailed view of an EC2 instance, displaying network interfaces
and associated security groups along with their respective rules. . 68

A.6 Reachability test interface, where "source" and "destination" are
selected by clicking the hand icon next to them. User then chooses
the protocol and port, upon which a request is sent and the path
is displayed. In this instance, a successful path is shown, with
individual steps detailing why the traffic was forwarded. 69

A.7 Display of an unreachable path, showcasing the reason for un-
reachability and the final step without a check mark, indicating
that the packet was not forwarded. 70

A.8 Interface view in dark mode, activated by toggling the dark mode
button in the settings. This mode adjusts all primary and sec-
ondary colors. The same procedure is used to apply Cisco colors. . 70

A.9 Page 2 (showcasing the routes) 73
A.10 Page 2 (showcasing the models) 73
A.11 PDF format of the interactive Swagger documentation typically

viewed in the browser . 73

v

List of Tables

2.1 SDK language support for major CSPs 9
2.2 Number of lines of code for each language 13
2.3 Comparison between Session Tokens and JWT Tokens 16

4.1 Summary of work performed across Git repositories 62

vi

List of Abbreviations

CSP Cloud Service Provider

AWS Amazon Web Services

GCP Google Cloud Platform

JWT JSON Web Token

REST Representational state transfer

IaC Infrastructure as Code

VPC Virtual Private Cloud

API Application Programming Interface

NACL Network Access Control Lists

UI User interface

UX User Experience

SDK Software Development Kit

DSL Domain-Specific Language

CIDR Classless Inter-Domain Routing

vii

1 | Introduction

1.1 Motivation
With the increasing adoption of cloud computing, more and more individuals and
organizations are relying on cloud infrastructure to store, process, and analyse
their data.

Cloud computing Cloud computing refers to the delivery of on-demand com-
puting resources over the internet, including servers, storage, databases, and soft-
ware applications. This technology offers numerous advantages over traditional
on-premises infrastructure, including scalability, cost savings, and flexibility. By
leveraging cloud infrastructure, organizations can quickly and easily provision the
resources they need to support their business operations, without the need for ex-
pensive hardware and maintenance costs.

Visualizing the networking relations of services using the management console
provided by cloud service providers can be challenging. As shown in Figure 1.1,
the console typically presents information in a list format, which can make it dif-
ficult to see the relationships between different components of the infrastructure.
It is like trying to visualize a city’s streets by looking at a list of roads instead of
using a map. As a result, it can be challenging for administrators to get a compre-
hensive view of their infrastructure and to identify potential issues quickly.

Furthermore, there are several cloud service providers (CSPs) in the market, in-
cluding Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Plat-
form (GCP), among others. Each CSP offers a unique set of features and pricing
models, allowing organizations to choose the best fit for their needs. This diversity
is illustrated in Figure 1.2.

However, most organizations do not rely on a single CSP for all their infrastruc-
ture needs (Tarraf, Cesarini, & Hughes, 2021). Instead, they often adopt a hybrid
cloud approach, leveraging multiple CSPs to get the best of each platform. For
example, an organization may use AWS for their compute needs, Azure for their
data analytics, and GCP for their machine learning workloads. This hybrid ap-
proach allows organizations to optimize their cloud infrastructure based on cost,
performance, and other factors, leading to a more efficient and effective cloud
strategy.

Given the complexity of managing a hybrid cloud infrastructure, having a visual-
ization platform that can provide a unified view of all cloud resources is essential.
Such a platform can help organizations monitor their cloud usage, identify ineffi-

1

University of Liege Ilias Sebati

Figure 1.1: Screenshot of the AWS management console displaying the deployed
subnets. The network topology is not easily discernible from the subnet list alone,
as each subnet is linked to its respective VPC by its ID (vpc-...). Consequently,
it is challenging to determine the exact structure of the topology, including the
number of subnets associated with each VPC (in this case, 2 subnets per VPC)

Figure 1.2: Comparison of cloud service providers as evaluated by Gartner

2

University of Liege Ilias Sebati

ciencies, and optimize their spending across all CSPs, leading to significant cost
savings and improved performance.

Network Reachability One important aspect of managing a cloud infrastructure
is ensuring that all servers and services can communicate with each other. From a
configuration perspective, this means verifying that the necessary security groups,
network access control lists (NACLs), and route tables are properly configured to
allow traffic between servers.

For example, an administrator may want to test if an EC2 instance in one subnet
can communicate with another EC2 instance in a different subnet, or if a server can
reach a database hosted on a separate instance. By testing reachability between
services, administrators can identify misconfigured security groups or NACLs that
may be blocking traffic, or route tables that may be directing traffic to the wrong
destination.

Having a visualization platform that can display the network topology of the cloud
infrastructure and highlight potential connectivity issues can be incredibly valu-
able for administrators. By visualizing the connectivity between services, admin-
istrators can quickly identify potential issues and take corrective action before
they impact users or cause downtime.

1.2 Aim and Objectives
The aim of our project is to address the challenges associated with visualizing
cloud topology by developing a user-friendly web application. Our application
will provide users with the ability to visualize their cloud infrastructure, regardless
of whether it is a single cloud provider or a hybrid cloud environment.

We recognize that cloud infrastructures can be complex, and users may have nu-
merous services that they need to manage. Therefore, we intend to develop a
visualization platform that is not only aesthetically pleasing but also allows for
easy navigation, filtering, and querying of the cloud services.

In addition to the above features, we plan to incorporate a simulation function
in our application, which would enable users to simulate network traffic between
their instances. With this feature, users will be able to verify the ability of their
instances to communicate with each other using a particular protocol (e.g. TCP)
and a designated port (e.g. port 22). This will help users identify potential con-
nectivity issues and make necessary adjustments to their cloud infrastructure.

3

2 | Selecting Technologies

Identifying the appropriate infrastructure and technology stack is crucial for es-
tablishing a solid foundation that ensures the success of the application.

Our application development should adhere to the following principles (inspired
by DevOps):

• Code-Centric Approach: We aim to have everything, from documentation
to infrastructure and tests, as code. This allows us to run tests, automate
processes, and maintain version control.

• Automation: By employing tools such as CI/CD or pre-commit hooks, we
strive to detect potential issues and minimize time spent on debugging or
redundant tasks.

• Modular and Comprehensible: We focus on designing separate modules so
that understanding a specific part of the system does not require in-depth
knowledge of the entire system.

2.1 From Monolithic to Microservices Architecture
The evolution of software architecture has seen a significant shift from monolithic
to microservices-based designs. This transformation has impacted the way orga-
nizations develop, deploy, and manage applications (Davis, 2022). The Figure 2.1
shows this difference.

Figure 2.1: Monolithic vs Microservices Architecture by Medium

4

https://medium.com/javanlabs/micro-services-versus-monolithic-architecture-what-are-they-e17ddc8d3910

University of Liege Ilias Sebati

2.1.1 Traditional Monolithic Architecture
Traditionally, applications were built using a monolithic architecture, where all
components and functionalities were tightly integrated into a single unit. This ap-
proach made it simpler to develop and deploy applications initially, as everything
was contained within one codebase. However, as applications grew in size and
complexity, this design had several drawbacks, such as:

• Difficulty in scaling specific components, as the entire application had to be
scaled

• Limited flexibility in adopting new technologies or making updates.

• Increased risk of failure, as a bug in one component could affect the entire
application

• Longer build and deployment times due to the size and complexity of the
codebase

2.1.2 Microservices Architecture: Advantages and Adoption
Microservices architecture addresses these challenges by decomposing an appli-
cation into a collection of loosely coupled, independently deployable services.
Each microservice is responsible for a specific functionality and can be devel-
oped, tested, and deployed independently. This approach offers several benefits,
such as:

• Improved scalability, as individual microservices can be scaled according
to their specific needs

• Enhanced flexibility, as each microservice can be developed using the most
suitable technology stack and programming language

• Increased resilience, as the failure of one microservice is less likely to im-
pact the entire application

• Better collaboration between teams, as each team can focus on developing
and maintaining a specific microservice

2.1.3 Kubernetes and Microservices Deployment
Kubernetes (Kubernetes, 2023) is a container orchestration platform that simpli-
fies the deployment, scaling, and management of containerized applications, mak-
ing it an ideal choice for deploying microservices. In a Kubernetes cluster, mi-
croservices can be run on "pods", which are groups of one or more containers

5

University of Liege Ilias Sebati

with shared storage and network resources. Kubernetes provides several features
that support microservices architecture, such as:

• Automatic scaling and load balancing of pods to accommodate changes in
traffic and resource demands

• Self-healing capabilities to restart failed containers or reschedule pods on
healthy nodes

• Rolling updates and rollbacks to minimize downtime during updates and
recover from failed deployments

• Service discovery and routing to enable communication between microser-
vices

By leveraging Kubernetes, organizations can streamline the deployment and man-
agement of microservices, ensuring optimal performance, resilience, and scalabil-
ity.

2.2 Language Choices
Choosing the "best" programming language can be a daunting task, as no single
language is universally applicable to all situations. Several factors must be con-
sidered when selecting a programming language for a specific task or project. In
this section, we will discuss these factors and then explore how to choose the best
language for various use cases in subsequent subsections.

Firstly, the maturity of a team with a particular language is an important consid-
eration. In a company setting, it is essential to assess the skill levels and experi-
ence of the team members with the language being considered. A language that
the team is familiar with will likely lead to a more efficient development process
and minimize the learning curve.

Another critical factor is the language’s ability to execute the intended task effec-
tively. This often depends on the availability of libraries, frameworks, and tools
that can simplify and streamline the development process. For instance, a lan-
guage with a rich ecosystem of libraries can greatly speed up the implementation
of complex tasks and reduce the amount of custom code needed.

The popularity of a language should also be considered, as it affects the amount
of support and resources available. A popular language is likely to have a larger
community of developers, which means more documentation, forums, and tu-
torials to help troubleshoot and learn from. This can be particularly helpful in
addressing any challenges that may arise during development.

6

University of Liege Ilias Sebati

Ease of use is another essential criterion when selecting a programming language.
If a language requires significantly more lines of code to achieve the same out-
come, it can impact the development timeline and overall productivity. A lan-
guage that is easy to read, write, and understand can reduce the likelihood of bugs
and make it easier for team members to collaborate.

Finally, the performance of the language should be taken into account, as it can
directly impact the end-user experience. A faster language can reduce the delay
users experience when interacting with the application, leading to better satisfac-
tion and overall usability.

In the following subsections, we will apply these criteria to various use cases to
help guide the selection of the best programming language for each component.

Note: here the team is both the one doing its thesis (Ilias Sebati) and the Cisco
Systems team that will reuse the code to extend and maintain it.

2.2.1 Web Application
The user interface (UI) will serve as the primary point of interaction for users,
making it crucial to develop an attractive and intuitive frontend (UX). Our objec-
tive is to create a visualization tool for network topologies, so the frontend must
be capable of handling graph manipulation. Therefore, selecting a programming
language with existing graph libraries is essential.

The 2022 Stack Overflow survey, as shown in Figure 2.2, reveals that JavaScript
is the most popular programming language with 67% of the votes. Dart (used by
Flutter) has a considerably smaller share at 6.67%.

JavaScript offers an extensive collection of libraries for creating diagrams, in-
cluding the open-source library mxGraph, which serves as the foundation for the
well-known draw.io web application. We will discuss this library in more detail
later.

Initially, Flutter was considered as the primary choice for frontend development,
given my experience with the language. However, JavaScript currently dominates
web development, and Flutter’s lack of graph libraries proved to be a significant
disadvantage.

Based on these factors, JavaScript was chosen as the preferred language for this
project. However, there are numerous JavaScript frameworks available:

2.2.1.1 JavaScript Frameworks

Figure 2.3 illustrates the most popular JavaScript frameworks.

7

https://jgraph.github.io/mxgraph/
https://app.diagrams.net/

University of Liege Ilias Sebati

Figure 2.2: Stack Overflow Survey 2022

Figure 2.3: Most popular JavaScript frameworks from here

8

https://2019.stateofjs.com/front-end-frameworks/##front_end_frameworks_experience_ranking

University of Liege Ilias Sebati

React has consistently been the most widely used framework since 2016 and re-
mains so today. Consequently, we have decided to use React for this project.

2.2.2 Backend language
As said in Section 2.1, we will be using a microservice architecture. Which means
that each microservice will be running independently. Hence, each microservice
will be developed with the most appropriate language for the task.

One microservice deployed will be the responsible to fetch the configurations of
the service using the CSPs’ APIs. Each CSP provide its own set of libraries to talk
with their APIs also called a Software Development Kit (SDK). It is mandatory
to choose a programming language that has an SDK for at least the three biggest
CSPs (AWS, Azure, GCP).

As the SDK can be used with a lot of programming languages, finding the most
efficient one is a key point to develop good applications.

2.2.2.1 Choosing a language

To decide on which language to use, we first have to select a language that is
proposed by the three CSPs’ SDK.

C++ Go Java JS/Node.js Kotlin .NET PHP Python Ruby Rust
AWS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Azure ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

GCP ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗

Table 2.1: SDK language support for major CSPs

As we can see, only Go, Java, Node.js, .NET, and Python can be used.

As a requirement from my manager, Java cannot be used. Knowing that .NET
uses C# which has been created by Microsoft to be "their" version of Java (it is
quite similar), we will avoid this one too.

This leaves the three following languages:

• Go

• Node.js

• Python

In this application, we would like the backend to be able to fetch the services
running on the cloud providers, clean those data (following some filtering required

9

University of Liege Ilias Sebati

by the caller of the route), and return those data to the frontend application that
will then have all the fun of making this data useful.

2.2.2.2 Language comparison

Python Python is really easy to use and has a lot of support online. However,
it is known to be a slow programming language. Using the boto3 package,
fetching the service can just be done in one line of code:

1 boto3.client(’ec2’, region_name="us-east-1").
describe_vpcs()

It is really convenient. The Documentation is also really clear.

A nice point of Python is also its Object-oriented part. Creating classes and inher-
itance is easy and powerful.

Go Go is a programming language released by Google in 2009. It is famous for
its go routines. It is a programming language used to handle a lot of simultaneous
requests. Those go routines can be used to "clean" the data received from the
CSPs really fast.

The code is a bit longer (essentially due to the error handling done in Go, i.e. not
using exceptions). To fetch the VPCs as above:

1 result, err := svc.DescribeVpcs(context.TODO(), &ec2.
DescribeVpcsInput{})

2 if err != nil {
3 fmt.Println("Got an error retrieving vpcs:")
4 fmt.Println(err)
5 return
6 }

The documentation is also quite clear (but a point is given to Python).

As opposed to Python, Go does not have classes. However, you can create meth-
ods to structures which can lead to a similar result.

Node.js Node.js is famous for its programming language. Indeed, you can cre-
ate a backend in JavaScript. Thus, one may do the frontend and backend using the
same programming language.

It seems like Node.js is not a popular option if you do not know JavaScript. It has,
however, the most support as it is one of the most used programming languages.

10

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://pkg.go.dev/github.com/aws/aws-sdk-go#section-documentation

University of Liege Ilias Sebati

To fetch the VPCs, it is also quite simple:

1 var ec2 = new AWS.EC2({apiVersion: ’2016-11-15’,
region: ’us-east-1’});

2

3 ec2.describeVpcs({}, function(err, data) {
4 if (err) {
5 reject(err);
6 } else {
7 resolve(data);
8 }
9 });

The JavaScript documentation is also quite nice. A lot of support is provided.

2.2.2.3 Speed comparison

Figure 2.4: Speed comparison of different languages

To compare the speed, we have created a Terraform file that can create an infras-
tructure at will. The test file measurements.py is going to make 5 requests
simultaneously to the server Python (then Node, and Go). Upon receiving those
requests, the servers will fetch the services of AWS. Then, it will search in those
services for tags matching a pattern (the process part).

The time displayed is the time needed for each server to complete those 5 requests.

The services fetched:

11

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/

University of Liege Ilias Sebati

• VPC

• Subnet

• Network interface

• NACL

• Security Group

• EC2 instance

• Internet Gateway

• Route table

We can see in the Figure 2.4 that Python and Node.js are taking a lot of time to
process the requests when they have a lot of EC2 instances. Their computation
time is growing linearly with the number of resources. While the computation
time for Go is pretty much constant.

Why is Go so much faster? Go is much faster than Python and Node.js for
several reasons (Cheney, 2020):

• Concurrency: Go has goroutines, which are lightweight threads managed
by the Go runtime. They enable efficient concurrent execution, allowing
Go to handle multiple tasks simultaneously with a small memory overhead
compared to traditional threads.

• Compiled language: Go is a compiled language, which means it is con-
verted directly into machine code before execution. This allows for faster
execution and better optimization by the compiler. In contrast, Python and
Node.js are interpreted languages, which can lead to slower execution times.

• Static typing: Go uses static typing, which enables the compiler to catch
errors and optimize the code at compile-time. This results in better per-
formance at runtime compared to dynamically-typed languages like Python
and JavaScript.

These factors contribute to Go’s superior performance, particularly in handling
concurrent tasks and processing large amounts of data.

2.2.2.4 Number of Lines Comparison

The number of lines of code has been computed using the cloc program. One may
find a way of writting the code with much less lines of code. It is good to keep in
mind that the documents have been written with this level of expertise:

12

https://cloc.sourceforge.net/#:~:text=cloc%20counts%20blank%20lines%2C%20comment,standard%20distribution%20of%20Perl%20v5.

University of Liege Ilias Sebati

• Python: Senior

• Node.js: Entry

• Go: Middle

Language Number of Lines
Python 109
Node.js 183
Go 244

Table 2.2: Number of lines of code for each language

As we can see, Go requires more lines of code to accomplish the same tasks as
Python and Node.js. Python is an expressive language, allowing more functional-
ity to be written with fewer words. However, its threading system and speed are
drawbacks.

Node.js’s asynchronous system is not ideal, with the system of Promises being a
significant constraint compared to Go’s goroutines and waiting groups.

2.2.2.5 Conclusion

Considering its speed and ease of use, Go has been chosen as the preferred pro-
gramming language for this project. Its superior performance in handling concur-
rent tasks and processing large amounts of data outweigh the additional lines of
code required to be compared to Python and Node.js.

2.3 Authentication
When dealing with a three-tier application (frontend, backend, and database), this
is important to consider the way that the services will communicate between them-
selves. Or saying it the other way, the security used by the different services APIs
to answer requests.

The basic scheme of a three-tier application is the following:

As we see, a lot of communication between the frontend and the server will occur.
We need to make sure that those communications are secure (by using https) and
also to make sure that person who receive the ressources are indeed the person
who have access to those ressources.

To do that, we will need to use tokens.

13

University of Liege Ilias Sebati

Figure 2.5: Three tier application

The server will be using tokens to authenticate the requests and thus know who is
asking what. The token will be shared when the frontend will try to authenticate
the user with their password and username. From there on, the next requests from
the frontend to the server will be using the tokens. As illustrated in Figure 3.9.

Figure 2.6: Authentication Sequence

Several types of tokens exists, let’s review two of the most common ones:

2.3.1 Session Tokens
Session tokens are considered stateful. This means they are stored on the server
side and change whenever the user makes new requests. When the user authenti-
cates, a session token is created server-side, and an ID is returned. All upcoming
requests contain the ID so that the server can recognize the user. Upon receiving
a request from a user, the server increases the lifetime period of the token.

Pros:

14

University of Liege Ilias Sebati

• Ability to know who is connected. As we store all the IDs, we know who is
connected and who is not.

• Ability to kick out everyone from the session and ask for new authentica-
tion.

• Less vulnerable to token theft, as tokens are not self-contained and require
server-side validation.

• Easier revocation of access, as the server can immediately invalidate a ses-
sion token.

Cons:

• Has to store the tokens, which can result in higher server overhead and
storage requirements.

• May require more complex infrastructure for distributed systems or load
balancing scenarios, due to the need for shared session state.

• Vulnerable to Cross-Site Request Forgery (CSRF) attacks if proper security
measures are not implemented.

2.3.2 JWT Tokens
JWT tokens or JSON Web Tokens are stateless tokens, which means the server
does not have to store any kind of information (Ahmed & Mahmood, 2019).

How do JWT tokens work
As we can see in Figure 2.7, JWT tokens are composed of three parts:

• The header: This part contains metadata and specifies important infor-
mation, such as the algorithm used for signing the token (e.g., HS256 or
RS256) and the token type (typically "JWT").

• The payload: Base64Url encoded, this section stores the actual data or
claims you want to include in the token. It can contain user-related infor-
mation such as the user ID, associated roles, and custom data. It’s essential
to include the token’s expiration date, usually using the "exp" claim, to pre-
vent indefinite token validity.

• The signature: This part is generated by signing the concatenation of the
encoded header and payload, separated by a period (.), using the algorithm
specified in the header. The signature helps ensure the token’s integrity and
verifies that the data has not been tampered with.

15

University of Liege Ilias Sebati

Figure 2.7: JWT Token structure from Securitum

Known attack of the no signing algorithm One known attack on JWT tokens is
when an attacker forges a token and claims that the signing algorithm is "None".
This can potentially bypass the signature verification process, allowing the at-
tacker to impersonate a user or gain unauthorized access.

To protect against this attack, it’s important to always specify a list of allowed
signing algorithms when validating JWT tokens and to never include the "None"
algorithm in that list.

Session Tokens JWT Tokens
Can know who is connected ✓ ✗

Need storage ✓ ✗

Need key rotation ✗ ✓

Self-contained ✗ ✓

Vulnerable to CSRF ✓ ✗

Table 2.3: Comparison between Session Tokens and JWT Tokens

Session Tokens vs JWT Tokens We chose to use JWT tokens for our applica-
tion because they provide lower overhead compared to session tokens. Addition-
ally, our application did not require the ability to track connected users or forcibly
disconnect them, making JWT tokens a more suitable option.

16

https://research.securitum.com/jwt-json-web-token-security/

University of Liege Ilias Sebati

2.4 Infrastructure
As our application aims to visualize an infrastructure, we need to deploy one.
CSPs offer various methods for deploying services, with the two most prominent
approaches being the use of the management console and Infrastructure as Code
(IaC).

The management console The management console is a web-based interface
that allows users to manually create, configure, and manage cloud services. How-
ever, the main drawback of using the management console is the lack of automa-
tion in the process. Each time a service needs to be created, deleted, or modified,
manual intervention is required, making it less efficient and prone to human error.

Infrastructure as Code (IaC) In line with DevOps principles, we aim to adopt
a code-centric approach for every aspect of our project, including infrastructure
management. IaC (Artac, Borovssak, Di Nitto, Guerriero, & Tamburri, 2017)
allows us to define, provision, and manage cloud resources using code, which
brings several advantages, such as:

• Automation: Processes can be streamlined by creating scripts or pipelines
that execute the IaC code, significantly reducing manual effort and mini-
mizing errors.

• Versioning: IaC code can be stored in a version control system like Git, al-
lowing for tracking changes and reverting to previous versions if necessary.

• Collaboration: Version control systems like Git facilitate code sharing and
collaboration among team members, improving the overall development
process.

Given these benefits, the next step is to choose an appropriate IaC language. Most
CSPs provide their own domain-specific language (DSL) to deploy and manage
their services. However, since our infrastructure is designed to be hybrid cloud
(utilizing multiple CSPs), it makes sense to select a language that is independent
of any specific CSP. HashiCorp’s Terraform is a leading IaC tool that supports
multiple CSPs and offers a consistent way to define and manage cloud resources
across different platforms. By using Terraform, we can ensure flexibility and
adaptability in our hybrid cloud infrastructure.

17

University of Liege Ilias Sebati

2.4.1 Our Test Infrastructure
To thoroughly test our application, we implemented a comprehensive test infras-
tructure, the details of which can be found in our GitLab repository at this link.

The test infrastructure we deployed is visualized in Figure 2.8.

Figure 2.8: Illustration of Our Test Infrastructure

As shown in the figure, the infrastructure design takes a parameter, n, which de-
notes the number of Virtual Private Clouds (VPCs). It will create n VPCs, with
each VPC comprising the following components:

• A VPC named vpc-i, where i represents the VPC number, with a CIDR
range of 10.i.0.0/16.

• Two subnets within each VPC, named vpc-i-subnet-1 and vpc-i-subnet-2.

• An EC2 instance within each subnet, named vpc-i-instance-subnetNumber.

• A network interface associated with each EC2 instance, which equips the
instances with networking capabilities.

• A NACL and a route table for each subnet to manage access and routing
policies.

18

https://gitlab.com/observability-cloud/ressources/infrastructure-terraform

University of Liege Ilias Sebati

• An internet gateway connected to each VPC, facilitating communication
with the internet.

This test infrastructure design enables us to create multiple VPCs with the required
subnets, instances, and networking resources, allowing for thorough testing and
evaluation of our application under various scenarios and conditions.

2.5 Swagger Documentation
In our microservices-based application, it is essential to provide comprehensive
and easily accessible documentation for each microservice’s routes. This docu-
mentation serves as a reference guide, allowing developers and users to under-
stand the available endpoints and their functionalities without needing to examine
the underlying code, which may not always be readily accessible.

One widely adopted framework for documenting REST APIs is Swagger API.
Swagger provides a powerful set of tools for designing, building, and documenting
APIs. One of its key features is the generation of interactive and user-friendly API
documentation.

An example of Swagger API documentation (Musib, 2019) is depicted in Figure
2.9. The Swagger UI provides a visually appealing and intuitive interface where
users can explore the available endpoints, view request and response schemas, and
even test the API directly from the documentation page.

To make the documentation easily accessible, it is typically hosted on a dedicated
route within the microservice. For instance, if the microservice is deployed at
http://localhost:8080/, the Swagger documentation can be accessed at
http://localhost:8080/api/index.html. This centralized location
ensures that developers and users can quickly find the relevant documentation
without having to search extensively.

One of the significant advantages of Swagger API is its ability to generate docu-
mentation automatically from code annotations. By annotating structures, func-
tions, and API endpoints with Swagger-specific tags and descriptions, the docu-
mentation can be automatically generated. This process may involve running a
command (e.g., make doc) to trigger the generation of the documentation file.
With this approach, the documentation remains up to date as it reflects the current
state of the codebase. Additionally, Swagger provides powerful features beyond
documentation, including request/response validation, parameter exploration, and
even client SDK generation.

In our specific case, we will rely on Postman for route testing, as it offers a robust

19

University of Liege Ilias Sebati

environment for sending requests and inspecting responses. Postman comple-
ments Swagger’s documentation capabilities by allowing developers to execute
HTTP requests against the microservice’s endpoints and verify their behavior.

By leveraging Swagger API documentation and tools like Postman, we aim to
streamline the development and usage of our microservices, providing clear and
accessible information to developers and users alike.

Figure 2.9: Example of Swagger API documentation from Swagger Hub

20

3 | An Exploration of the Methodology: Com-
ponents and Infrastructure

As we embark on the journey to develop this application, the initial step involves
unraveling and understanding the different components that come together to form
the structure of the application. As outlined in Section 2.1, the infrastructure
we are utilizing is based on a microservice model. This model deviates from
traditional backend designs, as it isn’t just a single server but comprises multiple
servers, each responsible for a specific service.

In this chapter, we will delve into the details of each component, providing a
dedicated section for each to gain a comprehensive understanding of their unique
roles and functionalities.

To begin with, let’s illustrate the architecture of our application for a better under-
standing of how these components interacts:

Figure 3.1: Architecture of the Application

21

University of Liege Ilias Sebati

From the above representation, it can be observed that the infrastructure of this
application is composed of four main components:

• The Frontend: Developed using React, this component is the user-facing
part of the application. It is designed to facilitate direct interaction with the
customer, providing an intuitive and responsive user interface.

• The Main Gateway: This component serves dual purposes. It interacts
with the CSPs’ APIs to fetch and store the infrastructure data, and it also
functions as a gateway for the frontend to query the multiple servers that
make up our backend.

• The Authentication Service: This component is tasked with user authenti-
cation. It manages the process of logging users in and out of the application,
ensuring secure access to the application features.

• The Reachability Server: This component is responsible for performing
reachability tests between services. Its job is to simulate the traffic between
services and return the full path as well as some feedback regarding the
reachability.

The sections that follow will provide an in-depth analysis of each of these com-
ponents, shedding light on their roles, functionalities, and the algorithms chosen
to develop those components.

3.1 An In-depth Look at the Frontend
For all the reasons mentioned in Section 2.2.1.1, we will be using React to develop
our client-side interface. React presents a robust foundation for our application,
thanks to its support of highly interactive web interfaces.

React is based on the notion of components. Each component acts as an inde-
pendent entity that can be visually represented with minor variations, based on
the parameters used during its instantiation. There is flexibility in the creation of
these components; we can custom-build them as per our requirements or utilize
pre-existing component libraries.

To align our frontend design with the aesthetic of other Cisco products, it would
make sense to explore the possibility of employing a Cisco component library.

3.1.1 Cisco UI Kits
Cisco provides an extensive array of UI kits that are instrumental in constructing
web applications in line with their existing design language.

22

University of Liege Ilias Sebati

Among these, one particular UI kit named React Cisco UI initially caught
our attention. However, our journey with this library was fraught with challenges.
Despite persistent efforts, we faced numerous issues, some of which led to sig-
nificant problems. Upon reaching an impasse, we reached out to the community
for support via an internal channel. To our surprise, we discovered that the library
was no longer actively maintained, a fact that was unfortunately not mentioned in
the documentation (since it’s no longer maintained!!).

We asked about alternative Cisco libraries suitable for React. The most common
response was:
Cisco suffers from too many competing UI libraries.

They advice us to use Material UI for our project.

3.1.2 Material UI
Material UI is a widely embraced library within the React ecosystem, designed
to facilitate the development of interfaces following Google’s Material Design
principles. Its popularity among the developer community is a testament to its
robustness, versatility, and ease of use, especially when it comes to creating a
library of React components.

One of the standout features of Material UI is its built-in support for various
themes, including a dark mode. This feature makes it simple to tailor the aes-
thetics of an application while preserving the underlying functionality. For our
purposes, this means we can create a unique theme that aligns with Cisco’s de-
sign language without having to modify the existing codebase extensively. It’s a
perfect blend of customization and preservation of the original design elements,
allowing us to maintain a consistent user experience.

The library’s popularity comes with another significant advantage: a substantial
and active support community. A widely-used library like Material UI is contin-
ually being tested, updated, and expanded by developers worldwide. This means
any issues or challenges we might face are likely to have been encountered and ad-
dressed by someone else in the community. Therefore, troubleshooting becomes
more streamlined, and the availability of community-created resources like tuto-
rials, guides, and forums further eases the development process.

In summary, Material UI provides a comprehensive, user-friendly solution for
creating dynamic, aesthetically pleasing web applications in line with Google’s
Material Design. Its support for custom themes, coupled with a strong and active
community, make it an excellent choice for our frontend development.

23

https://mui.com/

University of Liege Ilias Sebati

3.1.3 Navigating with React Router Dom
In React, we use a router for smooth page transitions without needing a new re-
quest each time. There are several router libraries in React, and we’ve chosen
React Router Dom for its lightness compared to others solution.

To start, we need to define our application’s routes. We have four pages:

• The Login page: Handles user authentication and fetches the token.

• The Profile selection page: Here, you choose the infrastructure to view.

• The Settings page: Add your API keys here, which will be used for fetch-
ing services in the CSPs.

• The main page: This page displays your infrastructure diagram.

Setting up these pages involves using the Routes and Route hooks. Here’s how
it looks:

1 <Routes>
2 <Route path="/login" element={<SignIn />} />
3 <Route path="/" element={<ProfileSelection />} />
4 <Route path="/settings" element={<

AccountSettingsScreen />} />
5 <Route path="/main" element={<MainScreen />} />
6 </Routes>

As you can see, we simply map the path to the component.

To navigate to a different page within the application, we use the navigate
hook and specify the destination path:

1 const navigate = useNavigate();
2 navigate("/")

3.1.4 State management
State management refers to the sharing of state across multiple components. While
there are numerous techniques for this, including the well-known Redux, it can
sometimes be overkill. For many applications, React’s built-in useState hook is
sufficient and easier to use (Patil & Javagal, 2022).

For its utilization, we constructed components that acted as wrappers around other
components. Through the "children" props of React components, state was prop-
agated down the tree.

24

University of Liege Ilias Sebati

Figure 3.2: Service details

In our application, a feature exists that allows us to get comprehensive details
about a service upon its selection, as shown in Figure 3.2.

There are two components, the graph and the detailed view, which require inter-
action. To utilize this provider, we simply place the main page component (which
contains both the graph and the detail view) within the ClickedServiceProvider
component as follows:

1 <ClickedServiceProvider >
2 <Content />
3 </ClickedServiceProvider>

Consequently, all the elements contained within my content will have access to
the data within this provider.

The structure of the component is illustrated below:

The main page functions as a parent to two components: DetailedView and
GraphView. Both of these act as "notifiers" for the ClickedProvider.
When the user interacts with the graph, the GraphView notifies the provider
and passes along the service information. This triggers the DetailedView to
rerender and show the details of the clicked service.

This is just one example of how we use state management in our application. We
employ this paradigm in many other places throughout the app.

25

University of Liege Ilias Sebati

Figure 3.3: Provider structure

3.1.5 Using Object-Oriented Principles
Thanks to TypeScript, which allows the use of classes in React, we’ve employed
object-oriented principles to make our code cleaner and more efficient.

We’ll now explore some fascinating uses of object-oriented programming in our
application. We’ll showcase these with the help of UML diagrams for each class.

3.1.5.1 Showing Detailed Information

As mentioned earlier, our app presents detailed information of the clicked ser-
vice. Each service comes with its own set of data. For example, an EC2 instance
might need to display associated network interfaces to reveal the corresponding
IP addresses. However, if we’re showing details of a subnet, we’d need to show
different information, like the route table or associated Nacl.

We took inspiration from the well-known visitor design pattern to achieve this.
However, we only drew inspiration from it as we’re using React hooks for our
components instead of React class components.

As shown in Figure 3.4, the DetailsView component uses its function (React
hook) drawDetailService to display a component with the service details.
This drawDetailService function is our take on the "visit" class from the
conventional visitor design pattern.

26

https://refactoring.guru/design-patterns/visitor
https://legacy.reactjs.org/docs/components-and-props.html

University of Liege Ilias Sebati

Figure 3.4: Adapting the Visitor design pattern with React hooks to display com-
ponent details

3.1.5.2 Model

In order to display various services, we first need to store them. We do this using
classes, which the components then utilize to display relevant information.

Refer to the service model in Figure 3.5.

The model caters to all possible services from different CSPs. In our project, we
focused only on AWS due to time constraints. However, our Service abstract
class makes it easy to add services from other CSPs.

Let’s delve into the more intriguing classes.

27

University of Liege Ilias Sebati

Figure 3.5: UML of services used to store information that will then be displayed

28

University of Liege Ilias Sebati

Service The Service abstract class is at the top of the hierarchy and outlines
the minimal features a service should possess. We use the methods system because
the location of these pieces of information may vary depending on the CSP. In our
case, a service must include:

• A Name: Typically represented by the Name tag.

• An ID: Crucial for fetching subservices of a service (e.g., firewalls of a
virtual machine).

• A FetchContent method: This method is vital as it helps limit the memory
consumption of our application. Each service is initially fetched with basic,
high-level information. When we want to see more detailed information
about a service, we call this method to fetch advanced information, like the
firewall associated with a virtual machine.

• Some Tags: Regardless of the cloud service provider, each service can have
tags associated with it. These tags provide additional information about the
service, such as the name of the application it is part of or the name of the
environment (e.g., dev).

Every service extends this class to maintain a consistent interface, enabling us to
display common information (e.g. id) across all services.

VPC The VPC class stores the CIDR block and the region name of the current
VPC. Initially, only these pieces of information are stored. When we need to fetch
the content of the VPC, we retrieve data about the Internet Gateway and the
subnets within this VPC.

Subnet The Subnet class represents a subnet with a specific CIDR block and
availability zone. When fetching its advanced content, we retrieve the associated
route table and NACL, as well as all the EC2 instances within it.

Route Table The Route Table class holds information about the possible
routes a packet can take. Therefore, it contains a list of Route objects. Each
Route is defined by a destination CIDR block and a gateway ID. When running
the Longest Prefix Match algorithm on all the route table entries, the gateway ID
of the matching route signifies the next hop of the packet. In our application, the
gateway ID could represent several things:

• Local: If the traffic is intended to go to another subnet within the same VPC.

• Internet Gateway: If the traffic is to be sent to the internet.

29

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

University of Liege Ilias Sebati

• A Service: If the traffic is meant to go to another service like a Transit
Gateway or a NAT Gateway.

Note: On the frontend, we only display information. The routing algorithm, in-
cluding Longest Prefix Match, etc., is handled by the microservice responsible for
that.

NetworkAcl The Network Access Control List (Network ACL)
class represents the firewall of the subnet. To fulfill its function, it needs a set of
NetworkAclEntry rules to manage the traffic.

Each NetworkAclEntry holds:

• A rule number: This is essential as the order of the rules matters â the system
will match the first rule and then apply the action.

• The protocol: The match can be based on the protocol.

• The rule action: Should the system allow or block the traffic? (Visual rep-
resentation: allow in green and block in red)

• A flag indicating if the rule is for egress or ingress traffic.

• The CIDR block to match.

• The ICMP type, in case of ICMP traffic.

• The ICMP code, in case of ICMP traffic.

• The port range to match.

EC2 The EC2 class stores fundamental EC2 information, as well as more de-
tailed data like the list of network interfaces associated with the instance.
It also keeps track of the list of security groups (e.g., firewalls) linked to the net-
work interface.

SecurityGroup The SecurityGroup class represents an instance-level fire-
wall. Hence, it needs to store rules. It maintains two sets of rules:

• Ingress rules for traffic going into the instance.

• Egress rules for traffic leaving the instance.

Both these rules are instances of the IpPermission class, which stores the IP
protocol, the range, and the CIDR IP for matching packets.

30

University of Liege Ilias Sebati

Figure 3.6: UML model of the classes used to represent the graph

Graph As previously mentioned, we’re using the mxGraph library to render our
graphs. Since mxGraph is a JavaScript library, we need to create our own graph
components. We chose to use class-based components for this, as they provide
more clarity when managing states.

The UML of our graph classes is shown at Figure 3.6.

31

https://jgraph.github.io/mxgraph/javascript/index.html

University of Liege Ilias Sebati

Figure 3.7: UML of the frontend API for backend communication

We have two types of components:

1. The DrawableElement class is the main, top class and the parent class
of all others. Each DrawableElement is an element that can be drawn using
mxGraph, which is why the graph is one of the fields of the class. Each
DrawableElement has a draw method used for rendering the current ser-
vice on the graph, with the parent node as an argument. It also has an
addStyle method for adding the service’s style to the mxGraph style set.
The fetchContent method, similar to the one in the previous section,
fetches detailed information about a service.

2. Service-specific classes extend the DrawableElement class. These ser-
vices implement the methods defined in the DrawableElement class. Addi-
tionally, each service has its own model as defined in the previous section
(e.g., a SubnetView has a Subnet instance associated with it).

Together, they form the main components of the graph. The DrawableElement
abstract class allows us to easily expand the set of supported services without wor-
rying about their specific implementations.

3.1.5.3 Server Communications

The frontend interacts with the backend services for various purposes such as
user authentication, fetching services, saving infrastructures, and more. In this
section, we’ll explore how these requests are managed in our web application. As
illustrated in Figure 3.7

32

University of Liege Ilias Sebati

The cornerstone of our architecture is the abstract class HTTPRequest. This
class, alongside its descendants, follows the Utility design pattern, with all fields
and methods being static. The class holds a baseUrl, which represents the back-
end gateway’s URL. It also incorporates basic HTTP methods such as GET, POST,
and DELETE.

The AwsApi class caters to AWS-specific requests to the backend. It encapsulates
all the specific routes used in the frontend, like a route to fetch the security groups
linked to an instance. This architecture provides an abstraction layer for interact-
ing with the API, wherein each function just accepts the parameters and knows
the structure of the route. In scenarios where multiple cloud service providers
are in use, adding a new provider like Azure would only necessitate an additional
AzureApi class with the corresponding routes.

The InfrastructureApi class is employed to fetch and save infrastructure
data. As the infrastructures span multiple CSPs, these routes can’t be contained
within the AWSApi or AzureApi classes, hence the need for a separate class.

Lastly, we have the routes for user management, encapsulated in the UserApi
class. The base path for this class is set to "profile", as all user-related routes in
the backend start with /profile. This includes routes for user sign-in, user cre-
ation, and addition of API keys for communication with cloud service providers.

3.2 Understanding the Login Service
In the course of utilizing our application, a user will need to input specific keys
in order to establish communication with the Cloud Service Providers’ (CSPs)
API. This allows the user to interact with and manipulate the state of various
infrastructures within the application. Additionally, the application offers the user
the capability to store the state of certain infrastructures for later use. Despite
any modifications made to the online infrastructure, these saved states will remain
unaffected, providing a level of consistency for the user’s interaction with the
platform.

However, a critical limitation in the current system is the impermanence of user
data. Once a user exits the project, all their associated data is lost, as there is no
mechanism to track and associate that data with the user. The crux of the issue
lies in the lack of user identification, making it impossible to attribute saved states
or modifications to a specific user. A potential workaround for this might involve
the use of cookies to maintain user sessions. However, this solution presents its
own challenges. For instance, should a user’s computer crash, or should they lose
access to their browser, they would consequently lose access to their account and

33

University of Liege Ilias Sebati

all associated data.

This predicament underscores the necessity for a robust user authentication sys-
tem. User authentication forms a crucial part of any application, providing it with
the means to assign an identity to a client. Once this identity is established, the
application can retrieve and display the user’s saved data, thereby enhancing their
experience with the platform.

As discussed in Section 2.1, our proposed solution is the implementation of a mi-
croservice architecture, with a specific microservice dedicated to user authentica-
tion. This decision is primarily driven by its potential benefits to the development
team, in this case, the Cisco team. Delegating the user authentication responsibil-
ities to a microservice enables the team to manage this aspect of the application
independently. For instance, they may wish to integrate Single Sign-On (SSO)
with existing Cisco accounts. This architectural flexibility offered by microser-
vices allows them to do so without risking the stability or integrity of the overall
application.

3.2.1 Big Picture
As we delve into the intricacies of the authentication service, it is beneficial to first
illustrate its position within the broader application infrastructure. The following
image provides a visual representation of the architecture with a focus on the
authentication component:

Figure 3.8: Architecture with a focus on the authentication component

Having established the structural context, it’s now crucial to understand the flow
of interactions between different services during the authentication process. The
sequence diagram below outlines the high-level interaction pattern:

Initially, the user is presented with the login page on their browser, where they
are prompted to input their credentials, i.e., the email and password. Upon sub-
mission, a request containing these credentials is dispatched from the client-side
application (frontend) to the main gateway.

34

University of Liege Ilias Sebati

Figure 3.9: Sequence diagram outlining the authentication process

The main gateway, acting as an intermediary, relays this request to the authentica-
tion service. This service then processes the request, verifies the credentials, and
sends a response back to the main gateway. This response, in turn, is relayed back
to the frontend.

Incorporated within the response is a cookie, which becomes crucial for the sub-
sequent interactions between the user and the application. Each ensuing request
from the user to the main server (main gateway) must include this cookie.

The main gateway, acting as the gatekeeper, scrutinizes every incoming request for
a valid cookie. If a valid cookie is detected, it extracts pertinent information such
as the user ID and allows the request to proceed. However, if a valid cookie is not
found, it responds with an appropriate error code, as outlined in the application’s
documentation. This process ensures that only authenticated users gain access to
the resources and functionalities of the application.

3.2.2 Database
For storing essential information, the service utilizes a PostgreSQL database run-
ning on a Docker instance. The database diagram, depicted in Figure 3.10, show-
cases the following:

The database consists of a single table called the users table. This table is
responsible for storing user data and includes the following fields:

• Email: Represents the user’s email address, which serves as the username
for authentication purposes.

• Password: Indicates the hashed version of the user’s password. The pass-
word and salt are combined to generate the hash.

35

University of Liege Ilias Sebati

Figure 3.10: Database diagram of the Authentication microservice

• Salt: Refers to a random value employed in the computation of the pass-
word’s hash. Each user possesses a unique salt.

• ID: The unique identifier assigned to the user. (data type: UUID)

3.2.3 User Authentication
When a user needs to log in, they send a request to the server following the format
specified in the documentation (refer to Section 3.2.4 for details).

This request includes two elements:

• Email address

• Password (with no restrictions)

Upon receiving these elements, the server’s route performs the following steps:

Check if the email address exists. If it doesn’t, the server sends the response: Ei-
ther your password or email is incorrect. This generic message is used instead
of revealing whether the email address exists to mitigate potential brute-force at-
tacks.

If the email address exists, the server concatenates the received password with the
associated salt value (Sriramya & Karthika, 2015). Then, it applies the SHA256
hash function to generate a hash. (Note: SHA256 is considered a strong hash
function at the time of writing, though stronger alternatives like SHA512 exist,
but a tradeoff between speed and security has to be made (Rahmatulloh, Gunawan,
& Nursuwars, n.d.).) The resulting hash is compared with the stored hash in the
database. If they match, the server proceeds to create the authentication token, as
described in the following paragraph. If the hashes don’t match, the server returns
the previously mentioned error message along with the user’s information.

36

University of Liege Ilias Sebati

Token Creation As mentioned in Section 2.3.2, we will employ JWT tokens for
authentication. The token payload contains the following information:

{
"exp": 1760640510,
"id_user": "8ed44e42-8537-4c3b-80bb-e465055da34e"

}

The token payload includes the expiration date of the cookie (e.g., 2 hours) and
the user ID, which allows us to identify the owner of the cookie. This enables us
to retrieve only the user’s services when interacting with other services.

Once the token is created, it needs to be signed using our private key. We utilize
the HMAC-SHA256 cryptographic algorithm for generating the signature with the
private key. After signing, we return the token. Other microservices only require
the public key to validate tokens and authorize requests.

Public Key Sharing When it comes to sharing the public key so that other mi-
croservices can use it, several techniques come to mind:

1. Certification Authority (CA): This approach ensures that the certificate is
owned by the microservice, providing a level of trust. However, frequent
key rotation can be cumbersome due to the associated overhead. CAs are
typically used for SSL certificates used in establishing HTTPS connections
between services.

2. Manual Certificate Sharing: This involves manually copying the public key
certificate to the codebase of other microservices. However, this approach
presents several challenges:

• Key Rotation: It becomes difficult to rotate keys, as the code always
references the key file. If rotation is possible, it may require server
downtime.

• Access Security: Securing access to the key is essential. While anyone
can view the key, preventing unauthorized individuals from replacing
it with another key is crucial to avoid key forgery.

• Scalability: Copying and pasting keys into multiple repositories can
be time-consuming, especially with a large number of microservices.

However, for small repositories or non-production versions, this manual ap-
proach may be acceptable.

3. Public Key Retrieval Route: Another approach is to store the public keys in

37

University of Liege Ilias Sebati

a dedicated API route, such as /keys, which returns the public keys. Mi-
croservices can include a ’key’ tag in the token header to indicate which key
to use for signature verification. This approach offers several advantages:

• Key Rotation: Rotating keys becomes seamless by discontinuing the
use of a specific key (e.g., Key A) for signing new tokens and switch-
ing to other keys. Once the expiration period for the last token signed
with Key A has passed, Key A can be discarded without downtime.
Microservices do not need to be aware of specific keys during startup.

• Traffic and Scalability: Although this approach introduces additional
traffic due to periodic requests for updated keys, it eliminates the need
for microservices to individually store and manage keys. Microser-
vices can request the latest keys as needed, ensuring access to the most
up-to-date keys.

By adopting the public key retrieval route approach, key management becomes
more flexible, allowing key rotation without disruption. However, it is impor-
tant to consider potential network traffic increase and ensure that microservices
periodically update their key caches to maintain current key information. In our
application, we have chosen the Manual Certificate approach as we only have one
microservice utilizing the tokens.

3.2.4 Detailed Documentation
Effective documentation serves as the foundation of any RESTful API. It delin-
eates essential details such as the format, type, and the names of routes, thereby
facilitating a smoother usage experience.

As discussed in Section 2.5, we utilize Swagger, a renowned software tool, to
document our REST APIs. Swagger simplifies the API design process by enabling
developers to build, design, document and consume RESTful web services.

In our microservice, we employ the swaggo/http-swagger package in Go, a
statically typed, compiled programming language designed at Google. This pack-
age simplifies the documentation of our APIs, making the process more stream-
lined and efficient. To generate the routes, we create them on a specific path with
the following line of code:

router.PathPrefix("/doc").Handler(httpSwagger.WrapHandler)

This code leads to the creation of API documentation accessible through the
/doc/index.html page.

Figure A.11 gives a snapshot of what our Swagger documentation looks like.

38

University of Liege Ilias Sebati

Figure 3.11: The Swagger hostname with the base path visible. It starts with
localhost:2000/api, implying that any subsequent route (e.g., user) should
follow the /api prefix, resulting in a complete path like /api/user.

The API we’re working with is rather simple, consisting of just two routes. Before
diving into a detailed explanation, it’s imperative to note that all the API routes
commence with the prefix /api/, as explicitly displayed in this portion of the
Swagger documentation.

39

University of Liege Ilias Sebati

Now, let’s delve into the specific routes:

1. sign-in: This route is designed to authenticate a user by signing them in.
The documentation provides the following description:

Figure 3.12: Sign-in route depiction: We can see that it utilizes a POST method.
The request’s body is expected to contain two key values (i.e., email and pass-
word). The response will be a code that varies depending on the parameters re-
ceived and processing. The format returned is JSON, with either two or three
fields. Upon a successful sign-in, the ’data’ field contains the result (a string in
this case). Additionally, the response includes a ’message’ and a ’status’ to pro-
vide comprehensive information about the response.

2. The sign-up route is designed to facilitate user registration using their
email and password.

40

University of Liege Ilias Sebati

3.2.5 Tests
Testing our service is a crucial task, although it is not complex as we only have
two routes. The tests for these routes include:

Sign-in

• When valid credentials are provided, we expect a valid code and token with
the correct expiration data.

• If an incorrect email is provided, we expect a non-200 response code.

• If an incorrect password is provided, we expect a non-200 response code.

• If the request format is incorrect, we expect a non-200 response code.

• ...

Sign-up

• When valid credentials are provided, we expect the user to be created suc-
cessfully.

• If a non-email address is provided, we expect a non-200 response code.

• If no password is provided, we expect a non-200 response code.

• ...

Please note that these lists are not exhaustive, and determining the number and
depth of tests can be a complex task, especially when considering aspects like
testing against SQL injections.

In Go, tests are performed using the testing package, which allows us to define
tests that break if specific conditions are not met.

Here is an example test:

1 type SignInRequest struct {
2 Email string ‘json:"email"‘
3 Password string ‘json:"password"‘
4 }
5

6 func TestSignInRightPassword(t *testing.T) {
7 // Creating the structure of the sign-in request as

specified in the Swagger documentation
8 // enables us to easily forge requests.

41

University of Liege Ilias Sebati

9 _, err := models.CreateUser(test_email,
test_password)

10 assert.NoError(t, err)
11

12 // Marshal the request
13 req := SignInRequest{
14 Email: test_email,
15 Password: test_password,
16 }
17 body, err := json.Marshal(req)
18 assert.NoError(t, err)
19

20 // Send the request
21 resp, err := http.Post(url+"/sign-in", "application/

json", bytes.NewBuffer(body))
22 assert.NoError(t, err)
23

24 // Verify that the response code is 200
25 assert.Equal(t, 200, resp.StatusCode)
26 }

This test code is explained as follows:

Starting from lines 1-4, we create the structure of the sign-in request as specified
in the Swagger documentation, which allows us to forge requests easily. In the
test function, we first create a user with the specified credentials on line 9, and we
check if the user creation succeeded on line 10. Then, we forge the request using
the json package until line 18. After that, we send the request and verify that the
response code is indeed 200 on line 25.

3.3 Unravelling the Main Gateway
The Main Gateway stands as an integral service, primarily tasked with mediating
interactions between the system and the APIs of CSPs. It is designed to fetch
and store the services available from these CSPs, ensuring their configurations are
readily accessible for the frontend components of the system.

To understand the role of the Main Gateway more clearly, let’s dissect the way it
processes an incoming request. Its handling methodology is broken down into six
distinct steps:

42

University of Liege Ilias Sebati

1. Verification of the validity of the included cookie via a middleware ap-
proach.

2. Extraction of relevant user details, such as the user’s ID, from the validated
cookie.

3. Parsing the request for essential information, often encapsulated in the form
of query parameters.

4. Depending on the route, a determination is made: if the route’s function in-
volves fetching services from a CSP, the user-associated keys are retrieved
to facilitate the requests. In contrast, if the function involves returning cer-
tain structures from the database, no key is necessary and the request is
passed directly to the controller.

5. The model is then solicited to procure the relevant information.

6. Finally, the gathered data is formatted as per the specifications outlined in
the documentation and returned.

Each of these steps plays a vital part in fulfilling the duties of the Main Gateway.
For a more comprehensive understanding, let’s delve deeper into these steps in the
following sections.

3.3.1 Authentication Via Cookie Verification
As outlined in Section 3.2, our system employs JSON Web Tokens (JWT) to han-
dle user authentication. For the sake of bolstering security and mitigating the risk
of Cross-Site Scripting (XSS) attacks, we store these JWT tokens within cook-
ies. Each time a request is received, it undergoes a validation check to ensure the
accompanying cookie is legitimate.

Middleware in Go The Go mux router is equipped with middleware function-
ality. This feature allows for a piece of code to be executed between the initial
request and the specific code tasked with handling that request. In our setup, ev-
ery request we receive is evaluated for the presence of valid tokens. If validation
is successful, control is passed to the next handler for processing the route (usu-
ally this is the route’s controller, but it could also be a logger middleware, for
instance).

The middleware process is visually represented in the flow diagram shown in Fig-
ure 3.13.

It’s important to note that some routes may bypass the cookie verification step.
This typically includes routes that are frequently accessed and not associated with

43

University of Liege Ilias Sebati

Figure 3.13: Flow diagram depicting request handling in the main gateway

user data, such as documentation routes (although we utilize a separate router for
this, if we weren’t, the same principle would apply). Another example would be
OPTIONS routes which are commonly sent and do not carry a cookie.

Validating the Cookie As mentioned earlier, we employ the Manual Approach
for key sharing, meaning the key file is securely stored in the repository. For effi-
ciency, this key is loaded into a variable at the start of the service, which expedites
subsequent key verifications. When a request is received, the included cookie
undergoes a rigorous validation process consisting of two primary steps:

1. Firstly, we ascertain that the signing method isn’t "None". This is a vital
security measure as if it were set to "None", malicious parties could poten-
tially forge cookies at will (as discussed in Paragraph 2.3.2).

2. Secondly, we leverage a library function to confirm the validity of the token.
This function calculates the signature of both the header and body using the
key and specified algorithm, then returns the claims, which contain the body
of the token.

If the validation process identifies the cookie as invalid, a 401 status code (Unau-
thorized) is returned, in accordance with the HTTP status code specifications
found here. If, however, the cookie is validated successfully, the system proceeds
to serve the next layer by executing:

44

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#:~:text=See%20Basic%20access%20authentication%20and,credentials%20for%20the%20target%20resource.

University of Liege Ilias Sebati

next.ServeHTTP(w, r)

In our context, this ’next layer’ refers to the controller.

3.3.2 Extracting Relevant Information to Handle the Request
Four types of information can be needed:

1. Token information: These are the information stored in the JWT token,
such as the user ID. As the body is just base64 encoded of the actual set of
information, we just have to decode it and we can use its content.

2. Path parameters: These are parameters in the path, essentially used to get
some specific thing of a specific thing. For instance, if we want to get the
route table of a VPC, the route is going to be: /vpc/{vpc-id}/route-table
and it will return the route table of the VPC. To get the VPC ID here, we
are using the mux router. In the route, we specify the parameter using the
curly brace notation and then in the controller, we can just do:

vpcId := mux.Vars(r)["vpc-id"]

3. Query parameters: As the RFC specifies that the body of a GET request
should not influence the content returned, we have to use query parameters.
For instance, if we want to get the VPCs of a specific region, we have to use
the route with the region parameter: /vpcs?region=us-west-2. To
fetch the element, it is as easy as doing this:

region := r.URL.Query().Get("region")

4. Body parameters: In a POST request, the body is important. For instance,
to perform reachability testing as will be explained later, we pass a body to
the route. To use this body, we have to "unmarshal" it. First, we create a
structure representing the body and then unmarshal it. This has the benefit
of also checking the syntax and ensuring that all the required parameters are
present. In this service, we do not have a POST request, but we do create
POST requests toward the reachability service. Here’s an example when
having a body for the reachability testing:

type HopStatus struct {
Id string ‘json:"id"‘
CanTransmit bool ‘json:"canTransmit"‘
Reason string ‘json:"reason"‘

}

45

University of Liege Ilias Sebati

type Response struct {
Reachable bool ‘json:"reachable"‘
Reason string ‘json:"reason"‘
Path []HopStatus ‘json:"path"‘

}

var response Response
err = json.NewDecoder(resp.Body).Decode(&response)
if err != nil {

u.Respond(http.StatusInternalServerError, w,
u.Message(false, "Error decoding response"))
return

}

The reachability service returns a list of HopStatus (we will see it later).
The "Decode" operation, which is the equivalent of the Unmarshal oper-
ation, decodes the response body and stores it in the previously created
response object. After extracting the relevant information, we can pro-
ceed to process it using the obtained objects or values.

3.3.3 Fetching and Returning the Data
Having verified the legitimacy of the request and obtained all the necessary infor-
mation for processing, we can proceed to fetch the services.

There are two types of routes: routes that directly fetch services from the CSP’s
API, used to retrieve the currently deployed topology, and routes to fetch services
stored from a previous topology.

Online Topology By default, all paths use the online infrastructure unless an
infrastructureId is specified. For example, to retrieve the paths of the VPCs cur-
rently online, the route path would be: /vpcs.

We utilize the AWS Go SDK v2 to communicate with the API. In order to establish
communication, we need to fetch the services and create an AWS configuration.
This config stores information such as API keys and the region for the query.

The data is then returned in the format specified in our API documentation, which
may differ from the format used by AWS as we may not require all the fields stored
by AWS. To address this, we have created multiple methods to convert AWS-like

46

University of Liege Ilias Sebati

Figure 3.14: Main Gateway database structure

structures to our own structures. For example, CreateTagsFromAwsTags
takes a list of AwsTags as input and returns our Tags structure.

Once the data has been fetched, we simply return it to the user.

Offline Topology Offline routes can be identified by the saved suffix in their
path, followed by the infrastructureId. For instance, the following route is respon-
sible for returning the VPCs saved in the infrastructure with the given infrastruc-
tureId: /vpcs/saved/{infrastructureId}.

To retrieve this data, we must be able to save the infrastructures. Another route is
responsible for this task, it will populate the tables shown at Figure 3.14

Infrastructures This table maps the infrastructure ID to a profile. The profile
table is used to store information such as the name and description of the saved

47

University of Liege Ilias Sebati

infrastructure. We utilize this infrastructure ID in all subsequent requests. Addi-
tionally, the infrastructure ID is stored in all other tables to indicate from which
infrastructure the service has been saved.

Apart from that, the tables are fairly straightforward.

Sample Data To facilitate the development process, fake (sample) data is uti-
lized. This data is stored in an SQL file, which, upon startup, inserts all the sample
data into the database. This allows us to easily reset the state of the database in
case of any bugs or issues.

3.3.4 Testing Procedures
We conduct various tests to verify the acceptance of valid tokens, rejection of
non-valid tokens, and evaluate the behavior of our services when integrated with
a valid infrastructure.

Token Validation Tests To validate the handling of tokens, we perform GET
requests on test routes that require authentication. Our middleware is invoked
during these tests to verify the authenticity of the token provided. The following
scenarios are tested:

• No Token: We send a GET request without including a token in the request
header. The middleware should reject the request and return an authentica-
tion error.

• Invalid Token: We send a GET request with an incorrect or expired token.
The middleware should detect the invalid token and reject the request, re-
turning an authentication error.

• Valid Token: We send a GET request with a valid token. The middleware
should successfully authenticate the token and allow access to the requested
route.

By conducting these tests, we ensure that our token verification mechanism func-
tions correctly, allowing authorized access and denying unauthorized access to our
services.

Testing Infrastructure In our sample file, we’ve incorporated an infrastructure
that is initiated during the database startup. This infrastructure is leveraged to
verify if the routes intended to fetch the Virtual Private Clouds (VPCs) associated
with a given infrastructureId indeed retrieve all of them. This typically

48

University of Liege Ilias Sebati

involves reviewing the number of services obtained, a process we apply across all
service types.

Testing live infrastructure, on the other hand, using CSP’s API, presents a more
complex challenge since the number of current VPCs in the cloud is not really
known. A potential workaround could involve using a Terraform script that de-
ploys an infrastructure and subsequently verifies whether the routes are correctly
returning the intended services. Nevertheless, I propose this task should be inte-
grated into a Continuous Integration (CI) pipeline due to its larger-scale testing
requirements.

Continuous Testing with Pre-commit Hooks To maintain a high level of code
quality, we employ pre-commit hooks that automatically execute tests on each
code commit. This ensures that any changes or additions to the codebase undergo
thorough validation before being merged into the main branch. By incorporating
continuous testing practices, we mitigate the risk of introducing potential bugs or
vulnerabilities into our services.

3.3.5 Throttling of APIs by CSPs
When fetching services from CSPs, there are limits on the number of requests that
can be made concurrently. This limitation limits our ability to parallelize requests,
resulting in noticeable consequences when visualizing the online infrastructure.
Loading the infrastructure takes longer due to the inability to parallelize requests.
However, when working with saved infrastructures, no delays are observed.

3.4 Exploring the Reachability Server
The Reachability Server is a key component of our application, serving as the
mechanism for conducting reachability testing. Our goal is designing an algorithm
that can theoretically gauge the reachability between different services.

The algorithm should be capable of traversing from one hop to the next, querying
the service at each stage to determine if, from a configuration standpoint, the
subsequent hop is accessible. The algorithm will be explained using the basic
topology depicted in Figure 3.15.

Our initial focus will be on understanding the workings of the service. Following
this, we will delve into the specifics of the algorithm.

49

University of Liege Ilias Sebati

Figure 3.15: This basic topology presents a Vpc, which encompasses two subnets.
Every subnet is linked with an ACL and a route table, and each one houses an
EC2 instance secured by a security group. The red arrow illustrates the route from
instance A (10.10.10.50) to instance B (10.10.20.50).

3.4.1 Service Technology Considerations
Contrary to our earlier services, this particular service necessitates a focus on
algorithmic design. A sophisticated way to implement these algorithms is by em-
ploying the Object-Oriented programming paradigm, such as polymorphism (for
example, polymorphism allows objects of different types to be treated as objects
of a parent type, offering a way to simplify complex problems). Unfortunately,
the Go programming language lacks full-fledged object-oriented structures. It
only supports structures and methods within these structures and permits a degree
of hierarchy extension, but this is not straightforward or comprehensive.

Fortunately, our decision to employ a microservices architecture offers us flexibil-
ity. One of the significant advantages of this architecture is that each microservice
can utilize its own language and follow its own operational methods as long as it
presents an accessible API.

In this context, we have chosen to use the Python programming language for the
reachability testing. Python was selected for its expressiveness, extensive range
of available libraries, and its robust support for the object-oriented approach.

Python’s Web Framework Utilizing a web framework to process the incoming
requests to our Python service is a necessity. There is a multitude of such requests,
with perhaps the most widely known being Flask. However, for the purpose of this
project, the selection of FastAPI has been made. This is due to its status as one of

50

University of Liege Ilias Sebati

the quickest web frameworks in Python, and the similarity it bears to the workings
of Flask.

In FastAPI, we employ uvicorn to activate the web server. Subsequently, a
route can be established in the following manner:

1 app = FastAPI()
2

3

4 class ReachabilityQuery(BaseModel):
5 source: dict
6 destination: dict
7 sgSource: list
8 sgDestination: list
9 protocol: str

10 port: int
11 ttl: int
12

13

14 @app.get(’/reachability’)
15 def reachability(rawReachability : ReachabilityQuery,

authorization: str = Header(None)):

As can be observed in line 14, the path for the route from the app object (origi-
nally created in line 1) is being defined. We instruct that upon encountering the
path /reachability, the function reachability should be invoked. This
function has arguments, which are "typed" because FastAPI generates automatic
documentation at launch. This ensures that the documentation correctly specifies
the type. In our scenario, there are two arguments: the reachability structure and
the authorization token.

Both of these elements will be clarified in due course.

Automated format verification is carried out, and any requests lacking the autho-
rization header (or the reachability for that matter) are halted and a status indicat-
ing a malformed request is returned.

3.4.2 High level view of the Algorithm
Consider the provided pseudocode, which effectively illustrates the core idea of
our algorithm (Backes & et al., 2019):

While this captures the overall workings of the algorithm, it’s essential to consider
potential edge cases.

51

University of Liege Ilias Sebati

Algorithm 1 Reachability Algorithm
Require: sourceService, destinationService, token, reachabilityInformation, ttl

1: currentPath← []
2: currentService← sourceService
3: while currentService ̸= destinationService and ttl > 0 do
4: idNextHop ← currentService.NextHop(destination =

destinationService, currentPath, reachabilityInformation)
5: currentService← fetchService(idNextHop, token)
6: currentPath.append(currentService)
7: ttl← ttl − 1
8: end while

Broadly, the algorithm is straightforward:

1. We initiate with a source and a destination service, setting the source service
as the current service. Every routing service is equipped with a ’NextHop’
method; therefore, we call this method for the service, which subsequently
returns the ID of the next hop.

2. We then fetch the service using this ID.

Each of these steps will be elaborated on in the subsequent subsections.

3.4.3 Determining the Next Hop
The determination of the next hop is an important task within our algorithm. De-
signing the appropriate model is crucial to facilitate the subsequent expansion for
new services. The UML employed in this microservice is presented in Figure
3.16.

Before delving into the operations of each service concerning the next hop proce-
dure, it’s worthwhile to acquaint ourselves with the structure of the UML. There
exists a general, abstract class known as Service, which encapsulates an ID.
Indeed, each service is associated with a unique identifier. We then bifurcate ser-
vices into two main types: the RoutingService and the BlockingService.
Below are their descriptions:

• A RoutingService features a ’nextHop’ method, tasked with determin-
ing the next hop. ’RoutingService’ does not refer to a physical entity, but
rather symbolizes the idea of routing. These services essentially steer the
packet towards its next stop. For instance, a Subnet qualifies as a routing ser-

52

University of Liege Ilias Sebati

Figure 3.16: A portion of the UML utilized by the reachability service to execute
the reachability algorithm. This primarily focuses on the routing aspect, with
any redundant information omitted, which is why most classes don’t display any
fields/methods.

53

University of Liege Ilias Sebati

vice. While a subnet is purely an abstract concept and there isn’t a physical
’subnet’ that manages a packet, exiting a subnet necessitates going through
certain services. Thus, we classify Subnet as a routing service. Moreover,
Routing services are entrusted with the duty to inspect their blocking ser-
vices to confirm if the traffic is authorized, thereafter furnishing the ID of
the next hop.

• The BlockingService embeds a ’canTransit’ method. This method
scrutinizes the packet along with some other information and yields a BlockingStatus
(though not depicted in the figure, it records whether it’s been blocked and
the reason behind it). Services that inherit from this abstract class comprise
firewalls, access control lists, policies, among others.

Next, let’s dive deeper into each service and discern how they implement the
nextHop or canTransit methods uniquely. Note that the pseudo code for
each service’s algorithm is provided either in the text if it is relevant or in Section
A.

EC2 Instance and Network Interface A crucial point to understand is that
EC2 instances, and generally virtual machines in the cloud, don’t possess network
connectivity until they’re connected to a network interface.

Consequently, the concept of an EC2 instance (i.e., VM) here is irrelevant, and we
will focus exclusively on the network interface.

The Network Interface serves as a routing service, implying it needs to determine
the next hop. Each network interface is tied to one or more instance-level firewalls
(for example, security groups).

The algorithm to determine if the security group permits the packet to transit will
be discussed in the next paragraph. If it does, we examine whether the packet is
directed towards our network interface (essentially, we verify if the traffic is in-
bound). If it is, we return our ID to indicate that we’ve arrived. On the other hand,
if the packet is not destined for our interface, we return the subnet ID because it
signifies that we’re exiting the subnet.

Security Group A security group functions as the firewall for EC2 instances,
thereby classifying it as a blocking service. Security Groups are stateful entities.
They utilize the list of services already encountered along the path. If our own ID
appears in the list of services, we understand that the security group has already
approved the traffic for entry or exit, so we can authorize the traffic to enter or
leave. However, the actual process isn’t quite as simple.

54

University of Liege Ilias Sebati

Algorithm 2 Network Interface Next Hop
Require: securityGroup, packet
Ensure: blockStatus or subnet_id

1: blockStatus← securityGroup.canTransit(packet)
2: if blockStatus = blocked then
3: return blockStatus
4: else if packet.get_destination_ip() ̸= self.ip then
5: return subnet_id
6: else
7: return self.id
8: end if

Consider the topology depicted in Figure 3.15 for instance. In AWS, both instance
A and instance B might be protected by the same security group, perhaps a secu-
rity group that allows outbound SSH but no inbound traffic. When A attempts to
SSH into B, the security group permits outbound traffic as per its rules, and adds
its ID to the witnessed services list. But when the packet reaches B, the security
group sees its own ID in the list of visited services and assumes that it has already
accepted the packet, thus allowing SSH inbound traffic, even though it should
have blocked it as no rules permit it. Addressing this issue equates to solving the
uniqueness problem of the ID added to the list of services. As a workaround, we
include a tuple of values in the list of services. This tuple comprises both the ID
of the security group and the ID of the associated network interface. As one net-
work interface is linked to only one instance, it is a unique value and thus ensures
uniqueness (note that it’s the network interface that calls the security group, so it’s
straightforward to verify it before calling).

Having addressed the statefulness problem, the remainder of the process is rela-
tively straightforward. We just need to sift through the inbound or outbound rules
of the security group and whenever we find a match for a rule, we accept the
packet. If no rule matches, we "block" it. Keep in mind that security groups only
have allow rules, with a deny default at the end.

Subnet The Subnet is a routing service associated with a NACL. Similar to the
EC2 instance, it checks whether the NACL allows the traffic to transit. If the
traffic is allowed, it returns the ID of the route table.

NACL The NACL is a blocking service known as the Subnet layer firewall and
operates in a stateless manner, making it simpler compared to security groups.
Unlike security groups, NACLs have both allow and deny rules. The algorithm

55

University of Liege Ilias Sebati

is straightforward: it iterates over the rules ordered by their number, and the first
rule that matches the packet determines its action (Allow/Block).

Route Table Routing plays a vital role in achieving reachability. The route table
serves as a routing service responsible for specifying the next service that will
handle the packet. In cloud service providers (CSPs), routing is more complex
than traditional IP routers, as the output can be various services or identifiers such
as the word "local" for traffic meant to remain within the VPC.

The algorithm for the route table is relatively simple: it performs a longest prefix
match on the routes and returns the next hop associated with the winning rule.
Throughout this process, we extensively utilize the ipaddress library, which pro-
vides convenient utilities for determining if an IP falls within a CIDR range.

3.4.4 Retrieving the Service Using Its Identifier
Once we’ve ascertained the identifier of the next hop, our next task is to retrieve
its configuration. During the initial request, it isn’t feasible to include the config-
urations for all existing services due to scalability issues in larger infrastructures,
and the fact that many of these services might not even be employed.

Referring to Figure 3.17, the reachability service is accessible only through the
Main Gateway. The Main Gateway, in turn, is the sole entity capable of access-
ing the configuration of services, either via the CSPs APIs or its own database.
Hence, the reachability service must contact the Main Gateway to retrieve the ser-
vice configuration using the identifier supplied by the nextHop method. However,
the Reachability service lacks context regarding the infrastructure on which it is
performing the reachability test (e.g., online, offline, infrastructure ID, etc.).

Incorporating the Infrastructure ID in the Request Naively One possible so-
lution involves the Main Gateway passing an identifier to the reachability service
during the initial request. This identifier is then included in all subsequent requests
made to the Main Gateway by the reachability service. This process is depicted in
Figure 3.18.

While this solution does work, it’s important to remember that the reachability
microservice operates as a REST API. It operates under a contract, whereby it
receives certain inputs and provides a specific output. The output in this scenario
is a list of services the packet has traversed. However, if a malicious actor were to
interfere, problems might arise, as shown in Figure 3.19.

There are two primary issues with this approach:

56

University of Liege Ilias Sebati

Figure 3.17: Architecture focusing on the reachability interaction

Figure 3.18: Traffic between the main gateway and the reachability service. The
main gateway sends an id (actually it will be several id, e.g. id_user...) that the
reachability microservices will then use to query subsequent services configura-
tions.

57

University of Liege Ilias Sebati

Figure 3.19: Potential security breach when using IDs as context for the reacha-
bility service to retrieve configurations

1. The Main Gateway sends configurations even when it is not the one per-
forming the reachability testing.

2. The infrastructure ID can be changed freely.

3. Optional: The lack of encrypted traffic can be problematic. Even if the traf-
fic was encrypted, thus preventing the hacker from intercepting requests, the
hacker could still gain service IDs via other vulnerabilities (for instance, a
frontend vulnerability) and write the most simplified configuration (firewall
allowing everything). Then use the online infrastructure to avoid having to
guess the ID.

These issues can be addressed by implementing JWT tokens. Here’s how the new
algorithm would work:

The Main Gateway generates a token containing the context information of the
infrastructure used for the reachability test (e.g., infrastructure ID). This token is
then signed using a symmetric algorithm, ensuring that the Main Gateway is the
only entity capable of verifying the token’s signature and creating tokens.

When the reachability service receives a request, the token is included, and the
microservice utilizes this token when requesting a service configuration. This ab-
straction enables the reachability service to perform the test without knowing the
infrastructure’s context. Before returning the configurations, the Main Gateway
verifies the token’s signature and, if valid, sends it.

This approach effectively solves the two problems in the following ways:

• The token creation process ensures that a hacker cannot represent a user

58

University of Liege Ilias Sebati

Figure 3.20: Token-based reachability query. The token carries context informa-
tion, and the hacker cannot fabricate a token.

to obtain a configuration, as the Main Gateway will not send a configura-
tion without a valid token. Also, tokens carry an expiration date, rendering
stolen tokens useless after a certain period.

• Modifying the ID of the user or infrastructure is no longer feasible, as it
would invalidate the signature.

The ultimate solution is illustrated in Figure 3.20.

3.4.5 Returned Values and Their Applications
The API endpoint delivers three distinct values as its response:

• Reachability Status: The first output indicates whether the two services in
question are reachable. This binary status acts as a swift gauge of connec-
tivity.

• Reason for Unreachability: If the services are not reachable, the API fur-
ther elaborates on the cause of this unreachability. For instance, this could
be due to the Time-To-Live (TTL) reaching zero, suggesting that the packet
has traversed too many hops without reaching its destination, or due to a
firewall blocking the traffic, indicating a network security measure at play.

• Packet’s Path: Finally, the API illustrates the path taken by the packet,
regardless of its success in reaching the destination. This information, de-
picted for each hop, includes the service’s ID, whether or not the service
forwarded the packet, and the reason behind its decision. For example, a
specific rule might permit the packet’s forwarding (e.g., "Rule 31 allows

59

University of Liege Ilias Sebati

it") or conversely, the packet might be blocked due to a lack of any rules
permitting its passage (e.g., "No rule allowing it").

The frontend application could use this information to visually map out the packet’s
path on a network graph, enabling users to understand the packet’s journey better.
The returned values provide valuable insights, offering diverse possibilities for
handling and interpreting the data according to the specific needs of the applica-
tion.

3.4.6 Testing
The testing process involved initially setting up infrastructures using Terraform,
followed by querying the reachability between two services. The infrastructure
specifically delineates the ground truth, enabling us to evaluate various scenarios
to see whether the service accurately returns the correct conclusion and path. It’s
crucial to note that since the service cannot be independently tested, those are
conducted within the Main Gateway.

It’s also important to mention that the algorithm doesn’t cater to all scenarios
and services. As of the release of this report, it functions only for internal VPC
communications across subnets and for EC2 instances (i.e., network interfaces).

60

4 | Conclusion and Future Prospects

4.0.1 Looking Forward
As we move forward, the Cisco team is committed to enhancing this application
by integrating more mainstream CSPs and adding additional AWS services. A
minor refinement required is the adaptation of the frontend theme to mirror Cisco’s
service color scheme. Furthermore, when dealing with very large infrastructures,
they will add filters to enable users to selectively view the relevant parts of the
infrastructure.

Potential Future Developments The potential for further development of this
application is vast and exciting. Here are a couple of prospective ideas:

• Introduce a feature that allows users to compare saved infrastructures and
identify differences in configurations. This could help detect changes such
as deleted routes in a route table.

• Implement a functionality that accepts Terraform projects as input to create
an infrastructure. This could provide companies with a visual representation
of what their deployment would look like before incurring costs associated
with actual deployment.

The horizon for this application is expansive, considering its foundational depen-
dence on rapidly evolving cloud technologies.

4.0.2 Conclusion
This project has successfully laid the foundation for an application capable of dis-
playing and testing reachability across CSPs. Although currently only operational
with AWS, the design philosophy has always been centered on ensuring seamless
integration with other CSPs in the future.

The choice of technology, such as the microservices architecture, ensures efficient
maintenance and further enhances the expandability of the application. This ar-
chitecture also allows future projects to make use of the services without delving
into their internal workings, and rely solely on their APIs.

The features deployed during this academic year have been thoroughly demon-
strated with the help of screenshots provided in Appendix A. These illustrations
offer a comprehensive view of the user interface and the various functionalities
that have been integrated into the application.

61

University of Liege Ilias Sebati

This extensive development process, spanning across six separate Git repositories,
was housed within the GitLab group. The following table (Table 4.1) and figure
(Figure 4.1) summarize the effort invested across these repositories, reflecting the
diverse technology stack employed and the substantial amount of work undertaken
to realize this project.

Git Repository Lines of
Code

Lines of
Documen-

tation

Number of
Files

Commits

Infrastructure code in
Terraform

99 14 8 6

Study of the different
CSP’s SDK

748 203 6 32

Frontend web app 3369 176 75 65
Login Service 1108 151 21 11
Main Gateway 5473 1026 54 60
Reachability Service 606 232 26 9
Total 11403 1802 190 183

Table 4.1: Summary of work performed across Git repositories

Despite the significant progress made thus far, this project’s vision extends be-
yond the current capabilities. The choices and decisions made throughout the
development process were backed by a forward-thinking strategy, ensuring the
application’s compatibility with the integration of additional CSPs and services.

Ultimately, while the application is currently operational and boasts some key
features, significant work still remains before it can be deployed publicly. Never-
theless, the robust foundation established in this project will undeniably facilitate
its future expansions and success.

62

https://gitlab.com/observability-cloud

University of Liege Ilias Sebati

Figure 4.1: Stack of languages and for each the number of lines coded for this
application

63

Bibliography

Ahmed, S., & Mahmood, Q. (2019). An authentication based scheme for appli-
cations using json web token. In 2019 22nd international multitopic con-
ference (inmic) (p. 1-6). doi: 10.1109/INMIC48123.2019.9022766

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A. (2017).
Devops: Introducing infrastructure-as-code. In 2017 ieee/acm 39th interna-
tional conference on software engineering companion (icse-c) (p. 497-498).
doi: 10.1109/ICSE-C.2017.162

Backes, J., & et al. (2019). Reachability analysis for aws-based networks. In
Computer aided verification. cav 2019 (Vol. 11562). Springer. Retrieved
from https://doi.org/10.1007/978-3-030-25543-5_14

Cheney, D. (2020, February). The zen of go. Retrieved 2023-06-09, from
https://dave.cheney.net/2020/02/23/the-zen-of-go

Davis, A. (2022, October 5). The pros and cons of a monolithic application vs. mi-
croservices. Retrieved 2023-06-09, from https://www.openlegacy
.com/blog/monolithic-application

Kubernetes. (2023). Kubernetes concepts - overview. Retrieved 2023-06-09, from
https://kubernetes.io/docs/concepts/overview/

Musib, S. (2019, November 17). Restful api documentation made easy
with swagger and openapi. Medium. Retrieved 2023-06-09, from
https://medium.com/swlh/restful-api-documentation
-made-easy-with-swagger-and-openapi-6df7f26dcad

Patil, K., & Javagal, S. D. (2022). React state management and side-effects â a re-
view of hooks. Yearbook of the Association for Computational Linguistics.

Rahmatulloh, A., Gunawan, R., & Nursuwars, F. M. S. (n.d.). Performance
comparison of signed algorithms on json web token. In Iop conference
series: Materials science and engineering (Vol. 550). IOP Publishing Ltd.
doi: 10.1088/1757-899X/550/1/012031

Sriramya, P., & Karthika, R. A. (2015, July). Providing password security by
salted password hashing using bcrypt algorithm. ARPN Journal of Engi-
neering and Applied Sciences, 10(13).

Tarraf, S., Cesarini, A., & Hughes, D. (2021). To the multi-cloud
and beyond. Accenture Oracle, Business Group. Retrieved from
https://www.accenture.com/_acnmedia/PDF-157/
Accenture-Multi-Cloud-and-Beyond.pdf

64

https://doi.org/10.1007/978-3-030-25543-5_14
https://dave.cheney.net/2020/02/23/the-zen-of-go
https://www.openlegacy.com/blog/monolithic-application
https://www.openlegacy.com/blog/monolithic-application
https://kubernetes.io/docs/concepts/overview/
https://medium.com/swlh/restful-api-documentation-made-easy-with-swagger-and-openapi-6df7f26dcad
https://medium.com/swlh/restful-api-documentation-made-easy-with-swagger-and-openapi-6df7f26dcad
https://www.accenture.com/_acnmedia/PDF-157/Accenture-Multi-Cloud-and-Beyond.pdf
https://www.accenture.com/_acnmedia/PDF-157/Accenture-Multi-Cloud-and-Beyond.pdf

A | Appendix

A.0.1 UI of the web app

65

University of Liege Ilias Sebati

Figure A.1: User login interface. This interface initiates user login by forwarding
requests to the authentication microservice and retrieving a token for further in-
teractions.

Figure A.2: Infrastructure selection interface displaying two saved infrastructures.
Each infrastructure is identified by a name. The yellow button enables viewing
the deployed online topology. A user settings option is available on the top right
corner of the toolbar.

66

University of Liege Ilias Sebati

Figure A.3: Main page showcasing your infrastructure on the right, with visible
details of three VPCs, including their CIDR range and name (if tagged). Subnets
are shown along with their CIDR range and last digits of their ID (with an option
to display their name). The left pane contains two tabs, for viewing clicked service
details and performing reachability testing.

67

University of Liege Ilias Sebati

Figure A.4: Subnet detail view, displaying relevant service information upon
clicking on a subnet. Top of the interface presents details such as the AZ, ID,
etc., while the bottom segment lists tags and associated network ACL with in-
bound and outbound rules.

Figure A.5: Detailed view of an EC2 instance, displaying network interfaces and
associated security groups along with their respective rules.

68

University of Liege Ilias Sebati

Figure A.6: Reachability test interface, where "source" and "destination" are se-
lected by clicking the hand icon next to them. User then chooses the protocol and
port, upon which a request is sent and the path is displayed. In this instance, a
successful path is shown, with individual steps detailing why the traffic was for-
warded.

69

University of Liege Ilias Sebati

Figure A.7: Display of an unreachable path, showcasing the reason for unreacha-
bility and the final step without a check mark, indicating that the packet was not
forwarded.

Figure A.8: Interface view in dark mode, activated by toggling the dark mode
button in the settings. This mode adjusts all primary and secondary colors. The
same procedure is used to apply Cisco colors.

70

University of Liege Ilias Sebati

Algorithm 3 Security Group Transit Permission
Require: securityGroup, packet, inbound
Ensure: blockStatus

1: if inbound = True then
2: permissionArray ← securityGroup.inboundPermission
3: else
4: permissionArray ← securityGroup.outboundPermission
5: end if
6: blocked← True
7: for all element in permissionArray do
8: if element.match(packet) = True then
9: blocked← False

10: break
11: end if
12: end for
13: blockStatus← BlockStatus(blocked)
14: return blockStatus

71

University of Liege Ilias Sebati

Algorithm 4 Nacl Can Transit Algorithm
Require: nacl, packet, egress
Ensure: blockStatus

1: if egress = True then
2: ruleArray ← nacl.egressRules
3: else
4: ruleArray ← nacl.ingressRules
5: end if
6: blocked← False
7: Sort ruleArray by their number
8: for all rule in ruleArray do
9: if rule.match(packet) = True then

10: blocked← rule.Action = ”Block”
11: break
12: end if
13: end for
14: blockStatus← BlockStatus(blocked)
15: return blockStatus

Algorithm 5 Route Table Algorithm
Require: packet, routeTable
Ensure: nextHop

1: nextHop← null
2: routes← routeTable.routes
3: Sort routes by their prefix length in descending order
4: for all route in routes do
5: if route.prefix.contains(packet.destinationIP) = True then
6: nextHop← route.nextHop
7: break
8: end if
9: end for

10: return nextHop

72

University of Liege Ilias Sebati

22/05/2023, 19:48 Swagger UI

localhost:2000/doc/index.html#/ 1/2

doc.json Explore

Go server API
[Base URL: localhost:2000/api]
doc.json

Swagger API for Golang Project Login Service.

Contact SEBATI Ilias
cisco

Schemes

HTTP Authorize

Authentication

POSTPOST /sign-in Sign in user

POSTPOST /sign-up Sign up user

Models

 2.0

{
email string
password string

}

models.Credential

{
message string

example: Bad request
status boolean

example: false
}

swagger.JSONResultKOBadRequest

Figure A.9: Page 2 (showcasing the routes)
22/05/2023, 19:48 Swagger UI

localhost:2000/doc/index.html#/ 2/2

{
message string

example: Database error
status boolean

example: false
}

swagger.JSONResultKOInternal

{
message string

example: Data is not found (empty)
status boolean

example: false
}

swagger.JSONResultKONotFound

{
message string

example: Unauthorized
status boolean

example: false
}

swagger.JSONResultKOUnauthorized

{
data

{...}
message string

example: success
status boolean

example: true
}

swagger.JSONResultOK

Figure A.10: Page 2 (showcasing the models)

Figure A.11: PDF format of the interactive Swagger documentation typically
viewed in the browser

73

