
https://lib.uliege.be https://matheo.uliege.be

Master Thesis : Exploiting reinforcement learning to improve robotic throws

Auteur : Louette, Arthur

Promoteur(s) : Ernst, Damien

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17705

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Master’s thesis

in the degree program

MSc. in Data Science and Engineering

Reinforcement learning to improve

robotic throws

Submitted by

Arthur Louette

Matr. Nr.: 180981

Academic Year 2022-2023

at the University of Liège

School of Engineering and Computer Science

University supervisor: Pr. Damien Ernst

Company: GeMMe

Technical supervisor: Mr. Robert Baudinet

Arthur Louette

GeMMe

GeMMe is a distinctive research group located in Wallonia, dedicated to the innova-

tive development and management of mineral and metallic resources. The group’s

research draws from traditional disciplines like mining, metallurgy, and civil engi-

neering, but in recent years, it has shifted its focus towards unlocking the potential

value in industrial solid wastes, end-of-life consumer goods, and complex geore-

sources. The research activities of GeMMe are divided into three main units: the

Georesources-GeoImaging group, the Mineral Processing & Recycling group, and the

Construction Materials group. Each of these units possesses its own well-equipped

experimental lab, facilitating innovation through strategic approaches.

Liège, June 9, 2023

Arthur Louette

I

Arthur Louette

Acknowledgement

First and foremost, I would like to express my deepest gratitude to my thesis advisor,

Professor Damien Ernst, whose expertise, understanding, and patience, added con-

siderably to my graduate experience. I appreciate his ability to guide me throughout

this research.

I would also like to express my gratitude to my internship advisor, Robert Baudinet.

His macro supervision ensured the smooth progression of my internship and was in-

strumental to my professional development. The trust the lab placed in my abilities,

along with their strategic guidance, played an essential role in shaping this enriching

experience.

I would also like to thank Guillaume Drion and Pierre Sacré for serving on my thesis

committee. I am sincerely grateful for their time and effort in reviewing my work

and providing valuable feedback.

Special thanks go to my colleagues at the GeMMe lab for their assistance, insightful

conversations, and the stimulating environment they provided during my study.

I would also like to express my gratitude to my family for their unwavering support

and encouragement throughout my academic journey. Their constant belief in my

abilities continued to motivate me to strive for excellence.

Finally, I wish to extend my thanks to my friends, whose continued support, en-

couragement and good humor made this journey an unforgettable experience.

II

Arthur Louette

Abstract

This Master’s thesis explores the potential of using reinforcement learning-based

approaches to improve the efficiency of industrial sorting processes in the recycling

industry, specifically focusing on enhancing the operational capability of robots.

Current robotics have shown potential in handling and manipulating objects, how-

ever, the complexity of throwing tasks presents a significant challenge. The research

conducted as part of this internship at GeMMe, a laboratory specializing in sensor-

based sorting, aims to overcome this challenge by developing a control policy that

enables robots to accurately throw objects into buckets, thereby increasing the speed

of the sorting process.

To address this challenging task, reinforcement learning algorithms TD3, SAC, and

PPO, were trained and analyzed in a simulated environment developed using Py-

Bullet. This environment offered a simplified representation of the real-world task,

serving as a safe and efficient platform for the training of agents. Furthermore,

hyperparameter optimization was conducted using an Optuna study to enhance the

learning process. Domain randomization was also implemented to bridge the sim-to-

real gap and increase the robustness of the models to real-world variability. The final

stage involved integrating the model into a working system, optimizing a communi-

cation process for effective information transfer. The performance of the models was

assessed in both the simulation and real-world scenarios, offering valuable insights

into their transferability and robustness.

In simulation, the best model demonstrated 94.75% accuracy while beating the pick-

and-place baseline in terms of speed. However, when tested in real-world scenarios,

there was a decrease in performance, but the findings showed promising potential

for future improvements and the application of these methodologies in practical

settings.

III

Arthur Louette

Table of Contents

1. Introduction 1

1.1. Context . 1

1.2. GeMMe . 3

1.3. Research problem and questions . 5

1.4. Research goals and objectives . 6

1.5. Scope and limitations of the study . 7

1.6. Structure of the thesis . 8

2. Literature Review 9

2.1. Theoretical Background . 9

2.2. Problem formulation . 13

2.3. Overview of the field . 15

2.3.1. Contextual bandit . 15

2.3.2. Hyperparameter tuning . 17

2.3.3. Simulation . 18

2.3.4. Domain randomization . 20

2.4. Current state of the art . 22

2.5. Gaps in the research . 26

3. Methods 27

3.1. Simulation . 27

3.2. Domain randomization . 30

3.3. Hyperparameters tuning: Optuna . 31

3.4. Model training . 34

3.5. From simulation to reality . 36

3.6. Experiments . 38

IV

Arthur Louette

4. Results 40

4.1. Hyperparameter optimization . 40

4.2. Simulation results . 42

4.3. Transfer of the results in real-world 47

5. Conclusions 52

5.1. Summary of the findings . 52

5.2. Reflection . 54

5.3. Recommendations for future research 55

Bibliography 56

A. Appendix 59

A.1. Algorithms . 59

A.2. Hyperparameters . 62

A.3. Training complements . 64

V

Arthur Louette

1. Introduction

1.1. Context

Sorting has always been a critical step in the recycling process, as it allows the

separation of different materials for further processing and reuse. In recent decades,

a significant part of this task has been outsourced to developing countries due to

the availability of cheap labor. However, this practice has raised concerns about

the working conditions and environmental impact of these operations. The use of

robots in recycling represents an opportunity to address these issues by relocating the

sorting task to developed countries and improving the efficiency and sustainability

of the process.

Robots have already shown significant potential in industrial applications, partic-

ularly in the handling and manipulation of objects. However, throwing items is a

particularly challenging task for robots due to the need for precise control over the

throwing trajectory and the variability of object properties. Developing a reliable

and efficient throwing mechanism for robots would allow them to perform a wider

range of sorting tasks and increase the overall efficiency and productivity of the

recycling process.

I completed my internship at GeMMe, a lab that specialized in sensor-based sorting

for industrial applications. This company uses advanced sensor technologies such as

3D imaging, hyperspectral imaging, X-ray transmission, and laser-induced break-

down spectroscopy (LIBS) to acquire data that drives robot sorting processes. Cur-

rently, three ABB FlexPickers are being used to grasp objects and place them into

corresponding buckets, as determined by the sensor and classification algorithms.

1

1.1. Context Arthur Louette

Figure 1.1.: Picture of the Pick It project taken from the website of GeMMe1.

In the context of a previous project named PICK IT (Figure 1.1) carried out by the

GeMMe lab and in collaboration with the COMET Group and CITIUS Engineering,

the researchers have succeeded to sort non-ferrous scraps for the recycling industry.

This project has led to the birth of MULTIPICK a wider project where sensors are

used for the recognition of different metals (aluminium, copper, brass, zinc, etc.)

and are sorted with robots at very high speeds (more than 1 part per second). The

rate of the sorting process is a significant concern for the process to be profitable.

Currently, the robots use a pick-and-place routine once the object has been classified

in a category.

An ambitious idea of the lab is to develop a control policy for the robot that allows

them to throw directly the object into the bucket in order to save time. A first

proof of concept was developed by another engineering student, Norman Marlier, in

2019 [Marlier et al., 2019] with an ABB IRB 340 robot to throw objects to buckets

with an empirical success rate of 99% in simplified conditions using reinforcement

learning.

1Image from http://www.gemme.ulg.ac.be/ (last consulted 8th June 2023)

2

http://www.gemme.ulg.ac.be/

1.2. GeMMe Arthur Louette

1.2. GeMMe

As indicated on their website2, the GeMMe laboratory of the University of Liege,

known for its multifaceted specialization in Mineral Processing and Recycling, Con-

struction Materials, and Georesources-GeoImaging, served as the foundation of my

internship experience. Under the aegis of Robert Baudinet, I collaborated with the

data science and robotic teams to integrate innovative algorithms into the system.

In the Sensor-Based Sorting and Characterization lab, a key focus is the intersection

of sorting and characterization, manifesting in the development of machine vision

tools, robotic sorting systems, and pneumatic ejection systems. These real-time,

high-efficiency processes are facilitated by the integration of sensors, PLCs, and

grippers.

My experience was enriched through hands-on exposure to their state-of-the-art

multi-sensor bench for industrial sorting, comprising a fast-moving conveyor belt,

3D scanner, an assortment of hyperspectral VNIR and SWIR cameras, multi-energy

X-ray linear sensor, an analytical LIBS scanner, ABB robots, and pneumatic ejec-

tors. The intricate fusion of these components yields comprehensive data, processed

through machine learning algorithms for inference, and further utilized by a super-

visory program to control the robots.

Additionally, a key aspect of my internship experience was the integration of Agile

methodologies within our working processes. Regular Agile meetings fostered team

communication, coordination, and collaboration. We were encouraged to iterate

quickly, respond to changes, and continuously improve our workflows. Moreover, our

weekly intern meetings served as an excellent platform for us to share experiences,

discuss challenges, and collaboratively strategize solutions.

During my internship, I had the privilege of working alongside a highly skilled

team of professionals that have greatly enriched my learning experience. Charles

Baudinet, Benjamin Delvoye, and Dominik Zians, made up the formidable data sci-

ence team that I collaborated with. Their expertise in various facets of data science,

machine learning algorithms, and their practical application was instrumental in my

development as an intern.

2http://www.gemme.ulg.ac.be/ (last consulted 8th June 2023)

3

http://www.gemme.ulg.ac.be/

1.2. GeMMe Arthur Louette

Simultaneously, I also had the opportunity to work closely with the robotics team,

comprising Baptiste Dory and Robin Kloostermeyer. Their proficiency in develop-

ing robotic systems, managing industrial processes, and integrating complex com-

ponents into functional units added depth to my understanding of the field.

In summary, it can be said that the GeMMe laboratory has strategically positioned

itself as a leading player in the field of recycling automation. Its innovative work in

sensor-based sorting and characterization is not only shaping the future of recycling

practices in Belgium but also influencing the global landscape of waste management.

4

1.3. Research problem and questions Arthur Louette

1.3. Research problem and questions

Following the proof of concept of Norman Marlier [Marlier et al., 2019], the objective

of this master thesis is to investigate reinforcement learning-based approaches in

more realistic conditions for the throws the GeMMe lab has to tackle. That means

using scraps with more chaotic shapes than stones used by Norman Marlier in its

proof of concept[Marlier et al., 2019]. Moreover, in the proof of concept used for

throwing stones, the robot has to move in front of the bucket before throwing the

stone which leads to poor results in terms of time. Indeed, it is even slower than the

pick-and-place routine currently implemented. These results raise several questions:

is it possible to throw the object directly from its pick position while remaining

accurate in the throw? Moreover, is it possible to speed up the process to gain cycle

time between the sorting of two objects?

Reinforcement learning is a promising approach for robotic throws as it enables the

robot to learn how to throw objects accurately in complex and dynamic environ-

ments without the need for explicit programming.

The goal of this master thesis is to develop reinforcement learning ap-

proaches for throwing items with an ABB IRB 360 robot (Figure 1.2).

Figure 1.2.: ABB IRB 360 FlexPicker3

3Image from https://new.abb.com/products/fr/3HAC020536-015/irb-360 (last consulted 8th
June 2023).

5

https://new.abb.com/products/fr/3HAC020536-015/irb-360

1.4. Research goals and objectives Arthur Louette

1.4. Research goals and objectives

The goal of this master thesis is to explore the performances of reinforcement learn-

ing in a multidimensional continuous action space contextual bandit problem which

consists in throwing items with an ABB IRB 360 robot. The ultimate objective of

this research is to beat by a significant margin the pick-and-place routine that is

currently working in the line while keeping a satisfactory success rate. To try to

achieve this performance, we have decided to follow a different approach than simply

running an RL algorithm that learns directly with the robot in order to boost the

performance.

Indeed, for reinforcement learning in the robotic field, it is common to use a simula-

tor. Regarding real-world robotic applications, the interactions of RL agents can be

time-consuming, expensive, and potentially hazardous. The use of simulators in RL

is a powerful tool for enabling agents to learn complex tasks in a safe, efficient, and

cost-effective manner. It allows for faster training and safer testing. For this reason,

we have decided to start my master’s thesis by building a simulator of a simplified

version of the environment where we can train agents.

Thereby we aim to develop for the company a whole pipeline from training agents

in a simulator to fine-tuning them in the real world while using transfer learning

techniques. Therefore, if the results are not plenty satisfactory and are possible to

be improved, it opens the door for future works to be carried out for the GeMMe

lab.

6

1.5. Scope and limitations of the study Arthur Louette

1.5. Scope and limitations of the study

The scope of this master thesis is to explore the performances of reinforcement

learning in a multidimensional continuous action space contextual bandit problem

using a simulator and transfer the knowledge to the real world. However, there are

several limitations to this work that must be acknowledged.

The simulator used in this study was developed in the context of this master thesis,

and although it is based on the real-world environment, it is a simplified schema that

may not fully capture the complexity and variability of the real environment. Addi-

tionally, the transfer learning techniques employed are relatively simple, and future

work should explore more advanced techniques that may yield better performance.

Furthermore, while the simulator was used to train the agents, fine-tuning the

learned policies by learning in the real-world environment was not possible within

the time frame of this master thesis. This step is crucial to achieving more efficient

object throws and should be a major focus of future work. As a consequence, only

policies learned with the simulator have been evaluated in real settings.

Despite these limitations, the results of this study can serve as a starting point for

further research in robotic throws. I encourage the GeMMe group to build upon

this work and continue to explore the use of reinforcement learning for solving this

task.

7

1.6. Structure of the thesis Arthur Louette

1.6. Structure of the thesis

To conclude this introduction(1), this section provides an overview of the structure

and content of the master thesis, outlining the key chapters and sections that will

be covered.

First, the field is introduced through a literature review chapter (2) starting with

the theoretical background needed and the formulation of the problem. Afterwards,

we will pass through an overview of the field ending with the state-of-the-art solution

to solve our problem and discuss the limitations and the gap in the research with

respect to our kind of problem.

Secondly, the methodology (3) used to throw scraps with the robots will be dis-

cussed. Starting with the simulator, passing through transfer learning techniques,

hyperparameter optimization, model training and ending with the integration of the

solution.

The fourth chapter will report the results (4) of the hyperparameter optimisation,

the training of the algorithms with these optimized hyperparameters and we will

finish with the performances of the algorithms with the real robots.

Finally, the Master’s thesis ends up with the conclusion (5). Further details can

be found in the appendix (A).

8

Arthur Louette

2. Literature Review

2.1. Theoretical Background

Reinforcement Learning (RL) is a machine learning method where an intelligent

agent interacts with an environment to learn a policy that maximizes the cumulative

reward (Equation 2.1). This framework is often used in robotics to construct an

autonomous intelligent agent to control a robot over an infinite time horizon (Figure

2.1).

maximize
π

E
at∼π(·|st)

st+1∼p(·|st,at)

[
∞∑
t=0

γtr(st, at)

]
(2.1)

The objective function is defined as the expected sum of discounted rewards obtained

by following the policy π in an environment with dynamics p, starting from the

initial state s0. At each time step t, the agent selects an action at from the policy

distribution π conditioned on the current state st, observes a reward r(st, at) and

the next state st+1 according to the environment dynamics p.

The discount factor γ (0 < γ < 1) is used to weigh down future rewards relative to

immediate rewards, and ensures that the sum of rewards converges to a finite value

even for infinite horizons.

However, the problem simplifies in our situation as we only act at one time step for

one throw. Therefore we have a time horizon of 1 and the objective function can be

simplified

maximize
π

E
a∼π(·|s)

[r(s, a)] (2.2)

9

2.1. Theoretical Background Arthur Louette

Figure 2.1.: Agent-environment interaction in RL framework1.

The problem becomes therefore a contextual bandit problem. Contextual bandit

problems are similar to traditional RL problems but differ in that the agent only

receives feedback about the reward for the action it selects in the current state,

rather than in all possible states (Figure 2.2). This makes the learning problem

more tractable in some cases but also limits the agent’s ability to learn about the

environment. Both problems, RL and CB, involve selecting an action based on

the current state or context (in CB we speak rather about context than state)

and receiving a reward based on that action. In the RL framework, the goal is

typically to maximize the cumulative reward over a long time horizon, whereas, in

the contextual bandit framework, the goal is to maximize the immediate reward at

each time step. However, when the time horizon is 1, the distinction between long-

term and immediate rewards disappears, and the problems become equivalent. The

benefits of contextual bandit algorithms include statistical qualities such as regret

guarantees that provide a way to balance exploration and exploitation. However, it

may still be relevant to examine the performance of RL algorithms as they are flexible

and can adapt to CB settings. Moreover, recent works [Duckworth et al., 2023] show

that RL algorithms can outperform handcrafted contextual bandit algorithms for

continuous actions.

1Image from https://www.researchgate.net/figure/Agent-environment-interaction-in-RL-
framework (last consulted 8th June 2023).

10

https://www.researchgate.net/figure/Agent-environment-interaction-in-RL-framework-3_fig1_331992084
https://www.researchgate.net/figure/Agent-environment-interaction-in-RL-framework-3_fig1_331992084

2.1. Theoretical Background Arthur Louette

Figure 2.2.: Reinforcement learning compared to contextual bandit2.

Consequently, the problem is reformulated as finding from a given position of an

object and a bucket position, plus some information about the nature of the object

such as its mass, for example, a place to throw the object with a direction and a given

speed. However, the speed, the direction and the release position are insufficient due

to physical and robotic constraints. Indeed, the ABB robot uses a trapezoidal speed

curve during its movements, therefore, with only one movement instruction, the

robot will stop at the end of the movement, and with the delay of the gripper to

open the object will just fall vertically. Consequently, to throw an object at a given

location with a given speed, we have to provide a release position where we open the

gripper, a final position for the movement and the speed will be the maximal speed

during the movement if it is reachable. As many positions in the space could be

irrelevant, we only focus on the positions in the plane between the post-pick position

and the bucket position and perpendicular to the conveyor in order to reduce the

dimension of the problem. Therefore, the direction of the gripper will always be

aligned with the movement and we avoid this additional parameter.

In summary, the process of throwing begins with the robot picking up the object

from the conveyor belt (Figure 2.3a), followed by its ascent to the post-pick position

(Figure 2.3b). The robot then transitions in a straight line to its release position,

aligning the gripper with its trajectory (Figure 2.3c). Upon reaching the release

position, the gripper begins to open as the robot continues moving towards its final

position (Figure 2.3d). Once it reaches this position, the robot can then proceed to

2Image from https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-
6bdfeaece72a (last consulted the 8th June 2023).

11

https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a
https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a

2.1. Theoretical Background Arthur Louette

pick up another piece of scrap.

(a) The robot picks the scrap. (b) The robot goes up to post-
pick position.

(c) The gripper starts to open
at the release position.

(d) The robot reaches its final
position.

12

2.2. Problem formulation Arthur Louette

2.2. Problem formulation

Formally, to define properly the contextual bandit problem we have to define a

context space (set of possible situations the agent can encounter), an action space

(set of possible actions the agent can use) and a reward function which represent

the feedback signal that the agent receives after taking an action in a given context.

Context space

Context Space C:

C = {((xo, yo, zo), (xb, yb),m) ∈ R6

where (xo, yo, zo) is the position of the object, (xc, yc) is the position of the bucket

and m is the weight of the object

Action space

Action space A:

A = {((xr, zr), v, xt) ∈ R4

where (xr, zr) is the position where we start to open the gripper, yr is determined

by the constraint that the point is in the plane between the object at the post-pick

position and the bucket position perpendicular to the conveyor, v is the maximal

speed during the movement if it is reachable, xt determines the target position for

the robot. Note that we only need xt as the target position for the robot is on the

line between the post-pick position and the release position. Only linear movements

for the robot are considered. While the ABB FlexPicker is capable of executing

more complex movements, we decided to begin with a simpler problem formulation.

Our approach was to gradually increase the complexity of the problem only if initial

results were promising. This strategy was preferred over starting with a complex

problem and potentially finding ourselves with no progress mid-internship, thereby

being forced to simplify the problem.

13

2.2. Problem formulation Arthur Louette

Reward function

The reward function is really crucial for the problem as it will guide the agent toward

its final policy. In this problem, we aim to train the robot to throw objects with

high accuracy and consistency while being fast. Therefore we need a fair trade-off

between being fast and accurate. The two quantities we will collect are the success

of a throw and the time between the robot starting its movement and reaching its

target position. It is possible to weigh these two with a parameter however setting

the value of the parameter is challenging and this score will not have much physical

meaning. Moreover, the success of a toss where the object is far from the bucket

should be more rewarded than one close to the bucket. That is the reason why the

current pick-and-place policy was chosen as a baseline.

The idea is to reward the success of a toss based on the time the pick-and-place

policy takes to go to the bucket. This is, therefore, a measure of the difficulty of

a toss and additionally, it is expressed in seconds which is interesting in order to

combine with the travel time of the robot. Moreover, as we want to be able to be

faster than the pick-and-place routine the score will allow us to directly observe if

the agent performs better or not than the baseline.

However, the time the pick-and-place policy would take for a given context is not

straightforward and directly available. As a consequence, the idea is to build an es-

timator of the baseline that will be used at training time. In our case, this estimator

will be a neural network.

Reward function R:

R =

PickAndP lace(c)− t if the toss is successful

−t if the toss is missed
(2.3)

where PickAndP lace(c) is the time the pick-and-place policy takes for a context c

and t is the time the robot takes from the post-pick position to the target position.

The reward is expressed in seconds and if the reward is positive, that means that

we achieve a better performance than the baseline.

14

2.3. Overview of the field Arthur Louette

2.3. Overview of the field

2.3.1. Contextual bandit

In this work, we consider a contextual bandit problem with continuous and multi-

dimensional action space. Contextual bandit is a subfield of machine learning that

involves making decisions based on contextual information under uncertainty, while

simultaneously learning from the outcomes of those decisions. They differ from clas-

sical RL problems as the agent does not interact with the environment over a series

of episodes, with the goal of maximizing the expected sum of future rewards. In

contrast, contextual bandits problems typically involve a single interaction between

the agent and the environment per episode, the interactions are independent and

identically distributed. In addition, the agent must make a decision based on the

available context, receives a reward or penalty for that decision, and then moves on

to the next interaction with a potentially different context, there is no transition

function (Figure 2.2).

As a consequence, CB algorithms focus more on the exploration-exploitation trade-

off and are often more sample efficient. A common measure in contextual bandit

problems is regret which is the difference between the reward obtained at iteration

t by selecting the best action possible and the reward obtained by using the current

policy. Whereas, RL algorithms focus more on finding the best policy that will

return the best expected reward from interacting with the environment.

regret(T) =
T∑
t=1

rt(ct, a
∗
t)− rt(ct, π(ct)) (2.4)

where a∗t is the optimal action at iteration t in the context ct, π is the policy of the

agent and T is the number of interactions.

It is worth noting that in large continuous action space, the optimal action for a

given context is often unknown and we use an estimate of this one.

Contextual bandit problems with small and distinct action spaces, also known as

15

2.3. Overview of the field Arthur Louette

multi-armed bandits with side information, have established techniques [Li et al., 2010]

[Garivier and Moulines, 2011]. The trade-off between exploration and exploitation

in this scenario is well-studied, and there are formal bounds on regret. However, lit-

tle research has been conducted on continuous action spaces furthermore discretising

continuous action space to fall back in the discrete framework is often a bad idea due

to the curse of dimensionality: the number of actions increases exponentially with

the number of degrees of freedom [Lillicrap et al., 2019]. Recent studies have fo-

cused on extreme classification and have used tree-based methods to select actions

from a discretised action space with smoothing [Majzoubi et al., 2020]. However,

these tree methods only work for unidimensional actions.

Moreover, recent works in the field have shown that RL algorithms can outperform

CB algorithms when they are trained enough [Duckworth et al., 2023]. As in our

situation, we freely generate data from a simulator, it makes sense to use state-of-

the-art methods in RL to tackle a contextual bandit problem with continuous and

multidimensional action space. In addition, recent RL algorithms have incorporated

advanced techniques to avoid exploiting too much their current policy at the expense

of exploration. Proximal Policy Optimization (PPO) [Schulman et al., 2017] and

Soft-Actor critic (SAC) [Haarnoja et al., 2018] algorithms for instance introduce an

entropy term in the loss function to encourage exploration. Furthermore, ensuring

decision-making performance in vast, continuous action spaces has been difficult to

achieve, resulting in a substantial disparity between theoretical approaches and prac-

tical implementation even if recent work try to make it practical [Zhu et al., 2022].

Therefore in this work, we have decided to discard contextual bandits algorithms

such as Gaussian processes [Krause and Ong, 2011] and only use algorithms that

are known to perform well on high-dimensional action space such as SAC, PPO and

TD3.

Contextual bandits and RL problems raise several challenges compared to super-

vised machined learning. Indeed, in classical supervised learning the ideal action to

associate with a particular context is learned from ground truth labels whereas in the

RL settings, we only have access to the reward produced by the agent’s interaction

with the environment. As a consequence, the data generated are biased with the pol-

icy of the agent and might lead to local minima when trying to optimize the policy

16

2.3. Overview of the field Arthur Louette

[Sutton et al., 1999]. Modern RL algorithms have therefore implemented techniques

to avoid this problem such as gradient clipping used in PPO [Schulman et al., 2017]

in order to limit the update of the policy at each gradient descent optimization step.

2.3.2. Hyperparameter tuning

Hyperparameter optimization is a critical and challenging task in the field of Rein-

forcement Learning (RL), as it directly affects the performance of RL models. The

goal of hyperparameter optimization is to find the best set of hyperparameters that

can optimize the performance of a model on a specific task. In the past, researchers

mainly used brute-force methods to optimize hyperparameters, such as grid search,

which is a time-consuming and computationally expensive method.

Grid search is one of the earliest and most straightforward hyperparameter optimiza-

tion techniques. It involves specifying a grid of hyperparameters and evaluating the

model’s performance on each combination of hyperparameters. Although grid search

is simple and intuitive, it suffers from the curse of dimensionality. As the number of

hyperparameters increases, the search space grows exponentially, making the grid

search infeasible for complex models.

To overcome the limitations of grid search, researchers have proposed various ap-

proaches to hyperparameter optimization, such as random search. Random search is

a simple yet effective approach that randomly samples hyperparameters from a pre-

defined range. Unlike grid search, which exhaustively searches the entire space,

random search focuses on a smaller subset of the search space. This makes it

a more efficient approach for hyperparameter optimization in a high-dimensional

space [Bergstra et al., 2011]. However, [Bergstra and Bengio, 2012] shows that ran-

dom search is unreliable for training some complex models.

In recent years, Bayesian optimization has emerged as a popular approach to hy-

perparameter optimization. Bayesian optimization employs probabilistic models to

construct a surrogate function that approximates the performance of the model as

a function of hyperparameters. The surrogate function is iteratively optimized to

find the optimal hyperparameters. One of the most popular libraries for Bayesian

optimization is Optuna [Akiba et al., 2019].

17

2.3. Overview of the field Arthur Louette

Figure 2.4.: Overview of hyperparameter optimization techniques reprinted from
[Passos and Mishra, 2022].

Optuna is an open-source library for hyperparameter optimization that implements

several state-of-the-art algorithms, such as Tree-structured Parzen Estimator (TPE)

and Successive Halving (SH). Optuna is built on top of Python and is easy to use,

making it a popular choice for many researchers in the field of RL.

In conclusion, hyperparameter optimization is a crucial task in RL, and various

approaches have been proposed over the years to address it. Grid search, random

search, and Optuna are some of the most commonly used methods in the field. While

grid search and random search are simple and intuitive, they can be inefficient for

complex models. Optuna, on the other hand, is a powerful library that provides

efficient and effective methods for hyperparameter optimization which is the reason

why it was selected to tune the hyperparameters of the different models in this

thesis.

2.3.3. Simulation

In the robotic field when it comes to reinforcement learning, it is common to use a

simulator. Indeed, when it comes to real-world robotic applications, the interactions

of RL agents can be time-consuming, expensive, and potentially hazardous. The

use of simulators in RL is a powerful tool for enabling agents to learn complex

tasks in a safe, efficient, and cost-effective manner. It allows for faster training and

safer testing. For this reason, we have built a simulator of a simplified version of

the environment where we can train agents. It also encourages the usage of RL

18

2.3. Overview of the field Arthur Louette

Figure 2.5.: Overview of a PyBullet environment.

algorithms at the expense of CB algorithms as with the simulator we are able to

train on thousands of episodes and dismiss the sample efficiency problem of RL

algorithms.

The selection of a suitable physics simulator is crucial in achieving high efficiency and

accuracy in robotic applications. After reviewing the paper [Collins et al., 2021] to

acquire a broad view of the field, PyBullet appeared as the ideal choice for simulating

scrap throws.

PyBullet[Coumans and Bai, 2021] is an open-source 3D physics simulator that pro-

vides accurate and efficient simulations of physical interactions. It has gained pop-

ularity among researchers and practitioners in the field of robotics due to its ro-

bustness, versatility, and high-performance computing capabilities. PyBullet offers

a wide range of features that make it an excellent choice for simulating throwing

objects at high speeds.

Firstly, PyBullet is equipped with a Bullet Physics Engine that can simulate rigid

bodies, soft bodies, and deformable bodies. This engine is optimized for multi-core

processors and GPUs, making it capable of handling complex physics simulations

with high accuracy and speed. Therefore, PyBullet can simulate the physical prop-

erties of objects such as weight, size, and shape accurately, allowing for efficient

19

2.3. Overview of the field Arthur Louette

throw simulations.

Secondly, PyBullet provides a python API that makes it easy to integrate with

other libraries such as Gym, a toolkit for developing and comparing reinforcement

learning algorithms, and PyTorch. This feature allows researchers to use PyBullet as

a building block for developing custom gym environments for reinforcement learning.

The flexibility of the API also makes it easy to customize the environment to suit

specific needs, such as adjusting the velocity and trajectory of the robot.

Finally, PyBullet is actively maintained by a large community of developers and

researchers, ensuring that it is up-to-date with the latest advancements in physics

simulations. This means that any issues or bugs are quickly resolved, and new

features and improvements are regularly added.

2.3.4. Domain randomization

A drawback of using a simulator to train robotic policies is the reality gap as men-

tioned in [Ibarz et al., 2021]. Indeed the simulated environment does not represent

exactly the reality and the policies learned in such environments can lead to poor

results in real conditions. This step of transferring policies learned in simulation to

real-world settings is called the sim-to-real transfer. Several methods exist to bridge

this reality gap and achieve better sim-to-real transfer [Weng, 2019]. Such methods

can be a better simulation but also domain randomization and domain adaptation

(Figure 2.6). The purpose of domain randomization is to provide enough simulated

variability at training time such that at test time the model is able to generalize

to real-world data. While domain adaptation refers to a group of techniques used

in transfer learning to adjust the data distribution in a simulated environment so

that it more closely matches the real environment. This is achieved by applying a

mapping or regularization method to the task model. In image-based reinforcement

learning tasks, such techniques often involve adversarial loss or the use of generative

adversarial networks (GANs). The goal of domain adaptation is to improve the

agent’s ability to perform well in the real environment, even if it was trained on a

different simulated environment.

20

2.3. Overview of the field Arthur Louette

Figure 2.6.: Sim2Real approaches reprinted from [Weng, 2019]

In this work, we use deep RL algorithms to learn the policies in simulation. As it was

shown that domain randomization improves the performance of deep neural networks

when transferring to reality [Tobin et al., 2017], we use domain randomization with

various dynamics parameters of the robot and the environment. The randomized

parameters can be found in the next chapter.

21

2.4. Current state of the art Arthur Louette

2.4. Current state of the art

RL algorithms have made significant progress in recent years, allowing them to

handle continuous and high-dimensional action spaces. More precisely, deep rein-

forcement learning (RL) algorithms have emerged as a powerful tool for solving

complex decision-making problems in a wide range of domains, from robotics over

game playing to finance. The emergence of deep RL can be attributed to several fac-

tors, including the availability of large amounts of data, the development of powerful

computing resources, and the advances in deep learning techniques. Deep RL algo-

rithms combine the principles of RL, which involves learning from trial and error,

with deep neural networks, which are capable of learning complex representations

of data. This combination allows deep RL algorithms to learn directly from raw

sensory inputs, such as images or sounds, and to make decisions based on high-

dimensional state spaces. Among the state-of-the-art algorithms, Proximal Policy

Optimization (PPO), Soft Actor-Critic (SAC), and Twin Delayed Deep Determin-

istic Policy Gradients (TD3) have shown impressive results in solving RL problems

with continuous action spaces.

PPO

PPO [Schulman et al., 2017] is an off-policy algorithm that uses a clipped objective

function to ensure that the policy updates are not too large, improving stability.

PPO also uses a value function as a baseline to reduce the variance of the gradient

estimates. The proximal policy optimization algorithm updates its policy as follows:

θk+1 = argmax
θ

E
s,a∼πθk

[LPPO (s, a, θk, θ)] (2.5)

The goal is to maximize the objective given by:

LPPO (s, a, θk, θ) = min

(
πθ(a | s)
πθk(a | s)

Aπθk (s, a), clip

(
πθ(a | s)
πθk(a | s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
(2.6)

where ϵ is a hyperparameter limiting the update of the policy and A is the advantage

function being positive if the action a needs to be chosen more frequently in the given

22

2.4. Current state of the art Arthur Louette

state s by the policy π and vice-versa.

SAC

SAC is another off-policy algorithm that uses an entropy regularizer to encourage

exploration and avoid premature convergence to suboptimal policies. The entropy

of a policy π parametrized with parameters θ is defined as:

H(πθ(·|s)) = E
a∼πθ(·|s)

[− log πθ(a|s)] (2.7)

In entropy-regularized reinforcement learning, the agent gets a bonus reward at each

time step proportional to the entropy of the policy. This changes the reinforcement

learning problem, with the objective function now including the entropy bonus. The

new objective function is:

π∗ = argmax
π

E
τ∼π

[
∞∑
t=0

γt

(
R(st, at, st+1) + αH (π(·|st))

)]
(2.8)

where α > 0 is the trade-off coefficient. The value functions are also slightly different

in this setting. V π now includes the entropy bonuses from every timestep, while Qπ

includes the entropy bonuses from every timestep except the first. The connection

between V π and Qπ is given by:

V π(s) = E
a∼π

[Qπ(s, a) + αH (π(·|s))] (2.9)

and the Bellman equation for Qπ is:

Qπ(s, a) = E
s′∼P a′∼π

[R(s, a, s′) + γ (Qπ(s′, a′) + αH (π(·|s′)))] = E
s′∼P

[R(s, a, s′) + γV π(s′)]

(2.10)

SAC’s objective function in one step RL is therefore defined as:

V π(s) = E
a∼π

[r(a) + αH(π(·|s))] (2.11)

where H is the entropy function, and α is a hyperparameter that controls the trade-

23

2.4. Current state of the art Arthur Louette

off between exploration and exploitation.

TD3

Twin Delayed Deep Deterministic Policy Gradient (TD3)[Fujimoto et al., 2018] is

an off-policy, model-free reinforcement learning algorithm designed for continuous

control tasks. TD3 builds upon the Deep Deterministic Policy Gradient (DDPG)

algorithm [Silver et al., 2014] by addressing its overestimation bias and instability

issues. TD3 introduces several improvements, such as using twin critics, delayed

policy updates, and target policy smoothing, which lead to better performance and

stability.

TD3 trains two Q-functions, Qϕ1 and Qϕ2 , concurrently using mean square Bellman

error minimization. This is similar to DDPG but with some differences. One dif-

ference is target policy smoothing, which adds clipped noise to actions used to form

the Q-learning target based on the target policy. The target actions are clipped

to lie in the valid action range. This serves as a regularizer for the algorithm and

helps avoid incorrect sharp peaks in the Q-function. The target actions smoothing

equation is:

a′(s′) = clip
(
µθtarg(s

′) + clip(ϵ,−c, c), aLow, aHigh

)
, ϵ ∼ N (0, σ) (2.12)

Another difference is clipped double-Q learning, which uses the smaller Q-value for

the target and helps fend off overestimation in the Q-function. Both Q-functions

use a single target, calculated using whichever of the two Q-functions gives a smaller

target value. The clipped double-Q learning equation is:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕi,targ
(s′, a′(s′)) (2.13)

and both Q-functions are learned by regressing to this target. The Q-function loss

equations are:

L(ϕ1,D) = E
(s,a,r,s′,d)∼D

(
Qϕ1(s, a)− y(r, s′, d)

)2

(2.14)

24

2.4. Current state of the art Arthur Louette

L(ϕ2,D) = E
(s,a,r,s′,d)∼D

(
Qϕ2(s, a)− y(r, s′, d)

)2

(2.15)

The policy is learned by maximizing Qϕ1 , but updated less frequently than the

Q-functions to dampen volatility. The policy update equation is:

max
θ

E
s∼D

[Qϕ1(s, µθ(s))] (2.16)

which is similar to DDPG. To facilitate exploration, noise is added to actions at train-

ing time, typically uncorrelated mean-zero Gaussian noise. To get higher-quality

training data, you may reduce the scale of the noise over the course of training.

However, noise is not added to actions at test time.

In our settings, the Q-functions only depend on the current context or state and the

action in this context which simplifies the problem.

Implementation details

The pseudo-code for each algorithm can be found in the appendix A and the imple-

mentation of each algorithm can be found on the GitHub page of Stable Baseline

33.

3https://github.com/DLR-RM/stable-baselines3

25

https://github.com/DLR-RM/stable-baselines3

2.5. Gaps in the research Arthur Louette

2.5. Gaps in the research

Despite the recent progress, there are still several gaps in the research. One of the

main gaps is the lack of theoretical analysis and formal bounds on the performance

of RL algorithms in CB problems with continuous action spaces. Another gap is

the need for more empirical studies to compare the performance of different RL

algorithms and CB algorithms in handling continuous action spaces. Finally, there

is a need for more research on the scalability and efficiency of RL algorithms in

handling large-scale CB problems with continuous action spaces.

26

Arthur Louette

3. Methods

3.1. Simulation

In order to learn efficient control policies, we developed a PyBullet simulator of the

sorting line. The simulator is based on the OpenAI Gym API [Brockman et al., 2016].

The OpenAI Gym API has become a de facto standard in the reinforcement learn-

ing community. The OpenAI Gym’s simple and uniform interface allows for testing

diverse reinforcement learning algorithms in a standardized manner, enabling easy

comparison and benchmarking. Crucially, PyBullet’s compatibility with the Gym

API allows us to leverage the powerful algorithms implemented in Stable Baselines

3, a set of high-quality implementations of reinforcement learning algorithms. These

state-of-the-art algorithms enable more efficient training, better performance, and a

faster path to results. Thereby it is used to enhance the overall quality of this work.

Running an episode with the OpenAI Gym API generally follows a pattern of ini-

tializing the environment, iterating over a set number of steps, taking an action at

each step, observing the result, and finally recording the outcome of the episode.

However, in our settings, we only have one action to take therefore an episode is

decomposed as follows:

Initialization

The environment is made of 4 principal components all in urdf format (Figure 3.1).

A conveyor, 5 buckets, the object to throw and the gripper. At initialization, a

bucket is randomly chosen as the target bucket and an object spawns in a random

location on the conveyor. In order to handle the grasping of the objects easily, we

only use cubes as objects but the center of mass and the mass is randomized. The

27

3.1. Simulation Arthur Louette

Figure 3.1.: Illustration of a bucket in URDF format in PyBullet.

pick of the cube can be therefore hard coded. Once the cube is picked, the episode

starts with an initial observation (context) of the environment. The context contains

the object position after the pick, the target position which is the position of the

bucket, and the mass of the object.

Select Action

The agent selects an action based on the context. The action is composed of

the release position, the target position and the maximal speed of the gripper.

The implementation of the SAC, PPO and TD3 algorithms of Stable Baselines 3

[Raffin et al., 2021] are used as agents.

Apply Action

The selected action is applied to the environment using the “step()” function. This

returns the new observation, the reward for the action, a boolean indicating if the

28

3.1. Simulation Arthur Louette

episode has finished (which is always the case in our setting), and additional info

such as the travel time and the success of the throw:

observation, reward, done, info = env.step(action)

The dynamic of the system works through the PyBullet API to control the robot

and the displacement is computed through an external library1 provided by Tom

Ewbank, researcher for the IntegrIA team. Indeed the velocity of the robot follows

a trapezoidal curve governed by physical constraints such as its acceleration. There-

fore, thanks to this library, a function computes the forces that are applied to the

robot to match reality. The technical information about the robot was provided by

the ABB documentation.

Figure 3.2.: Velocity curve of the robot (Image from [Yoon et al., 2019].

The step ends when the object hits the ground or falls into the bucket.

Record Outcome:

Record the outcome of the step, which includes the reward, the success of a throw

and the travel time. This information is stored for later analysis or for training the

agent.

1https://gitlab.uliege.be/integria/orocos kinematics dynamics/

29

https://gitlab.uliege.be/integria/orocos_kinematics_dynamics/-/tree/master

3.2. Domain randomization Arthur Louette

3.2. Domain randomization

As mentioned in the literature review section 2, domain randomization can be used

to improve the sim-to-real transfer. As a consequence, the following environment

parameters have been randomized:

1. Position of the buckets: At each episode, the x position of the conveyor and

the buckets is randomized. In a similar manner, the position of the buckets

among the y-axis is randomized along the conveyor.

x ∼ U(0.6, 1.1), y ∼ U(−1, 1)

2. Opening delay of the gripper: The gripper in reality has a delay when we

want to open it. The gripper used on the ABB Flexpicker is a Festo HGPL-

14-40-A-B. According to the technical documentation, the opening delay is

171ms. Therefore, the opening delay is randomized around this value:

d ∼ U(150, 190),

where d is the delay.

3. Object: The size and the mass of the object which is always a cube is ran-

domized. The mass m is uniformly distributed between 0.01 and 2 kg. The

side length a of the cube is uniformly distributed between 3 and 6 cm. More-

over, for the center of mass c, since it’s a two-dimensional variable it can be

shifted vertically and horizontally. The shift follows a uniform distribution in

a square region of±a
4
. We can represent this as two separate variables, cx and

cy, which represent the horizontal and vertical displacement of the center of

mass respectively

m ∼ U(0.01, 1), a ∼ U(3, 6),

cx ∼ U
(
−a

4
,
a

4

)
, cy ∼ U

(
−a

4
,
a

4

)
.

30

3.3. Hyperparameters tuning: Optuna Arthur Louette

3.3. Hyperparameters tuning: Optuna

Optimizing the hyperparameters of RL models is a crucial step in order to avoid

local minima and instability in the results. It tends to improve the results. Even if

the default parameters of the stable baseline 3 models are already tuned, we have

decided to tune the hyperparameters of the different models for this specific task.

This practice is really common in reinforcement learning. RL Zoo, a Python library

for training and optimizing models with Gym environments, [Raffin, 2020] also used

Optuna to optimize hyperparameters on a given set of environments. Therefore, we

implemented a simplified version to tune the hyperparameters of the SAC, PPO and

TD3 algorithms.

Optuna uses two main principal components: an optimizer and a pruner. First,

given a search space of hyperparameters, some sets are first randomly sampled. Each

set is used to train the agent on a given budget of episodes which is called a trial. At

the end of the training, the score is computed in an evaluation environment with a

predefined number of episodes. Afterwards, the optimizer determines the next set to

explore given the previous scores obtained by the previous set of hyperparameters.

In this study, a Tree-structured Parzen Estimator (TPE) is used as an optimiser.

TPE is a sequential model-based optimization (SMBO) algorithm. It utilizes Bayes’

rule to update the probability model based on the observed data. It seeks to find

the optimal hyperparameters x to maximize the objective function y.To suggest a

new set of hyperparameters, TPE defines two distributions, l(x) and g(x), based on

previous trial results. l(x) represents a Gaussian Mixture Model associated with the

hyperparameters that provided good results, where y (the objective value) is greater

than y∗ (the best observed value), and g(x) is for the hyperparameters where y is

less than or equal to y∗[Bergstra et al., 2011].

The median pruner is used as the second component for the optimization. Median

pruning is a strategy where if the best intermediate result of a trial is below the

median of intermediate results of previous trials at the same step, that trial is

pruned. This is based on the assumption that if a trial’s performance is poor in the

early stages, it will likely remain poor until the end.

The parameters considered for each algorithm are detailed in the respective tables

31

3.3. Hyperparameters tuning: Optuna Arthur Louette

below. For the SAC and PPO algorithms, we use the generalized state-dependant-

exploration (gSDE) [Tobin et al., 2017] which facilitates the exploration in contin-

uous action space. It is not used for TD3 as it was not implemented in the stable

baseline 3 library.

TD3 Parameter Search Space
Learning Rate γ [1e-5, 1e-2]
Batch Size {16, 32, 64, 100, 128, 256, 512}
Target smoothing coefficient τ {0.001, 0.005, 0.01, 0.02}
Training frequency {1, 4, 8, 16, 32, 64}
Noise type {ornstein-uhlenbeck, normal, None}
Noise standard deviation [0,1]
Number of hidden units per layer {[256, 256], [400, 300]}

Table 3.1.: Search Space for TD3 Parameters

SAC Parameter Search Space
Learning Rate γ [1e-5, 1e-2]
Batch Size {16, 32, 64, 100, 128, 256, 512}
Target smoothing coefficient τ {0.001, 0.005, 0.01, 0.02}
Training frequency {1, 4, 8, 16, 32, 64}
Learning start {0, 100, 500, 1000}
Initial log σ [-4, 1]
SDE sample frequency {-1, 8, 16, 32, 64}
Number of hidden units per layer {[256, 256], [400, 300]}

Table 3.2.: Search Space for SAC Parameters

32

3.3. Hyperparameters tuning: Optuna Arthur Louette

PPO Parameter Search Space
Learning Rate γ [1e-5, 1e-2]
Batch Size {16, 32, 64, 100, 128, 256, 512}
Entropy coefficient [1e-9, 0.05]
Clip range {0.1, 0.2, 0.3, 0.4}
Number of steps per rollout {8, 16, 32, 64, 128, 256, 512, 1024, 2048}
Number of epochs {1, 5, 10, 20}
GAE coefficient λ {1, 5, 10, 20}
Max gradient norm {0.3, 0.5, 0.6, 0.7, 0.8}
Value function coefficient [0.25, 0.75]
Initial log σ [-4, 1]
SDE sample frequency {End of the rollout, 8, 16, 32, 64}
Number of hidden units per layer {[256, 256], [400, 300]}
Activation function [Relu, Tanh]

Table 3.3.: Search Space for PPO Parameters

The budget of trials is set to 100 for each algorithm. The model ceased random

sampling after the initial 5 startup trials and performed 2 evaluations during train-

ing. The training process was budgeted for 40,000 episodes. The hyperparameters

that were not tuned during the study get the default value of the Stable Baseline 3

implementation2.

2https://github.com/DLR-RM/stable-baselines3

33

https://github.com/DLR-RM/stable-baselines3

3.4. Model training Arthur Louette

3.4. Model training

The Stable Baseline 3 library includes a simple way to train agents. Once the

environment and the agent with the desired hyperparameters are initialized it is

straightforward to train the agent thanks to the high-level API of SB3. Moreover,

as training machine learning models is often computationally heavy, we use the GPU

cluster of the University of Liege to perform the training.

In order to ensure effective and insightful supervision during the training process,

we employ WeightsAndBiases. This framework plays a big role by collecting and

organizing a wealth of valuable information regarding the training dynamics. By

continuously monitoring key performance indicators, WeightsAndBiases gives us

with a comprehensive understanding of the learning progress, enabling us to make

informed decisions and optimize the training procedure. WeightsAndBiases tracks

the reward to measure the training’s efficacy, while monitoring the success rate

provides insights into the model’s proficiency and ability to adapt, enhancing the

overall training process.

To train the agent, we first need to have the reward function. As mentioned in

equation 2.3, the reward function is made of an estimator which is a neural network

in this case. The reward function encapsulates the tradeoff between the success of

a throw and the time. The neural network in the reward function aims to estimate

the time of the pick-and-place routine. The more time the pick-and-place reward

takes the more a successful throw is supposed to be valuable.

The neural network of the reward function is a PyTorch implementation of a mul-

tilayer perception (MLP). It takes the context as input and outputs the estimated

time of the pick-and-place (PaP) routine in simulation. The MLP is made of two

hidden layers with 100 neurons each and can be visualize in figure 3.3. It is im-

portant to note that even if the PaP routine represents the current policy used in

reality, it still differs. Moreover, the peak speed of the PaP in simulation is fixed at

3m/s for stability reasons and keeping and success of 100% which is slower than the

10m/s in reality. The reward function was trained over 300,000 episodes on GPU

and more information can be found in the appendix A.

34

3.4. Model training Arthur Louette

Figure 3.3.: Neural network architecture used for the reward function in order to
infer the time taken by the pick-and-place baseline.

Once the reward function was trained, we trained 3 different algorithms (TD3, PPO

and SAC) with 2 sets of hyperparameters. On one hand, we used the default pa-

rameters of the Stable Baselines 3 algorithms using when available the generalized

state-dependant-exploration as we are in a continuous action space setting. On the

other hand, we used the algorithms with the tuned hyperparameters obtained by

the Optuna study described before. It also allows to visualize if the tuned hyperpa-

rameters bring superior performances even if the training is stochastic.

35

3.5. From simulation to reality Arthur Louette

3.5. From simulation to reality

Once the agents were trained, we needed a way to integrate the models into the

sorting line. First, the information gathered by the robots might not be in the right

format: units, offsets in the coordinates compared to simulation... Therefore, we

first implemented a preprocessing module that allows us to convert the information

for the context gathered by the robot to understandable data for the RL model. Af-

terwards, a postprocessing module converts the action of the model to an executable

action by the robot.

Currently, the model is running on a remote PC that communicates with the line’s

computer (Pick it computer). The connection is a TCP/IP connection where the

Pick It computer acts as the client and the PC with the model as the server. The

link is established through the classical 3-way handshake by the client and the PC

runs the model when it receives a context, sends back the corresponding action and

waits until the next object. The process is shown in Figure 3.4.

Moreover, two new scripts in RAPID, the programming language of the ABB robots,

were implemented in order to handle the TCP/IP connection and another one to

control the robot and execute the action computed by the model.

36

3.5. From simulation to reality Arthur Louette

Figure 3.4.: Schema of the communication process to exchange information about
actions and contexts between the Pick it computer and the remote PC
with the RL model.

37

3.6. Experiments Arthur Louette

3.6. Experiments

Experiment 1

In the simulation, we perform a first experiment with 10,000 episodes where we

report the success rate, the distance ratio in order to evaluate if the agent is able to

throw objects and the reward.

Experiment 2

To evaluate if the models transfer well in reality and compare them to the pick-

and-place baseline, we carry out an experiment with 5 samples of scraps and 2

agents. The 2 agents are the default pick and place routine, and our best model

in simulation. The 5 samples are represented in Figure 3.6. For each sample, we

run each agent and throw it in each of the 5 buckets. We test for each scenario 3

different positions on the conveyor: close, middle, and far from the buckets (Figure

3.5). Therefore, for each agent, we have 75 test throws.

Figure 3.5.: Conveyor zones used for Experiment 2.

38

3.6. Experiments Arthur Louette

(a) Scrap 1: 15g (b) Scrap 2: 30g (c) Scrap 3: 223g

(d) Scrap 4: 51g (e) Scrap 5: 37g

Figure 3.6.: Samples of Experiment 2.

39

Arthur Louette

4. Results

4.1. Hyperparameter optimization

For each algorithm, the study outcomes are reported based on 100 trials. The

resultant parameters obtained from these trials are employed in Experiment 1, i.e.

for complete training in simulation, and compared with the default parameters of

Stable Baseline 3. Subsequently, the most favorable hyperparameters obtained after

completing training are retained for the best algorithm in simulation to assess its

behavior with the robot. The hyperparameters resulting from the Optuna study are

presented in tabular format for reference 4.1, 4.2 and 4.3.

Table 4.1.: PPO optimized hyperparameters.

Params Value

Learning rate 0.0067
Batch size 32

Entropy coefficient 6.92e-08
Clip range 0.4

Number of steps per rollout 256
Number of epochs 5
GAE coefficient λ 0.95
Max gradient norm 0.8

Value function coefficient 0.49
SDE sample frequency 16

number of hidden units per layer [400, 300]
Initial log σ -0.52

Activation function Tanh

40

4.1. Hyperparameter optimization Arthur Louette

Table 4.2.: TD3 optimized hyperparameters.

Params Value

Learning rate 0.0066

Batch size 512

Target smoothing coefficient τ 0.02

Training frequency 8

Noise type ornstein-uhlenbeck

Noise standard deviation 0.673

Number of hidden units per layer [256,256]

Table 4.3.: SAC optimized hyperparameters.

Params Value

Learning rate 0.0016

Batch size 16

Learning starts 100

Training frequency 4

Target smoothing coefficient τ 0.005

Initial log σ -0.075

SDE sample frequency 8

Number of hidden units per layer [256,256]

Since these results were derived from trials comprising 40,000 episodes, it is possi-

ble that they may not surpass the performance of the default parameters but are

anticipated to yield improvements. It is conceivable that optimizing over trials with

a higher number of episodes may be more suitable. Consequently, the prospect of

parallelizing computations becomes an enticing option for this specific task. Lever-

aging a database and the Optuna interface allows for effortless parallelization and

implementation. However, due to time limitations within the scope of this study,

this aspect was not pursued. More information about the study can be found in the

appendix A.

41

4.2. Simulation results Arthur Louette

4.2. Simulation results

In this section, we outline the findings from our first experiment, in which we trained

each algorithm through one million episodes utilizing two sets of hyperparameters.

These hyperparameters were derived from the default parameters of Stable Baseline

3 and from the Optuna study previously described.

The training was facilitated by the Stable Baseline 3 library and the correspond-

ing ’learn’ function associated with each algorithm. Post-training, we evaluated the

performance of each algorithm on a test set comprising 10,000 episodes. The key

data points collected for each trial include the mean reward with its standard devi-

ation, the success rate, the average action time, and the distance ratio. The latter

is a metric designed to measure the portion of the robot’s maximum displacement

completed prior to tossing the object in the bucket. Therefore, a distance ratio close

to 0 consists in tossing the object whereas values close to 1 correspond to pick and

place.

The accumulated results for all six agents can be found in Table 4.4.

Table 4.4.: Results of Experiment 1.

Algorithm Reward(s) Success Time(s) Distance ratio

TD3
Default 0.239 ± 0.154 94.75% 0.390 ± 0.124 0.74 ± 0.24
Optuna 0.233 ± 0.163 94.90% 0.387 ± 0.110 0.72 ± 0.25

SAC
Default 0.234 ± 0.140 96.98% 0.399 ± 0.108 0.74 ± 0.23
Optuna 0.231 ± 0.156 95.31% 0.391 ± 0.111 0.73 ± 0.25

PPO
Default -0.08 ± 0.131 43.84% 0.391 ± 0.086 0.72 ± 0.27
Optuna -0.015 ± 0.282 46.13% 0.273 ± 0.176 0.46 ± 0.34

Interestingly, we find that the highest performance is achieved using the default

parameters of TD3. It is also observed that the default parameters of SAC yield

better performance than the optimized ones, even though the results are very closely

matched. More generally, the performance of TD3 and SAC, using both sets of pa-

rameters, show similar results. However, SAC leans towards more accurate tosses,

being 2% more precise than TD3, albeit slightly slower by an average of 10 millisec-

onds. These four agents manage to cover an average of three-quarters of the total

42

4.2. Simulation results Arthur Louette

distance between the object and the bucket.

It’s important to highlight that in our simulations, we model a wider variety of

scenarios in which the object can be further away from the bucket than what is

usually encountered in real-world situations. This is outlined in detail in the domain

randomization section. These simulated situations pose increased risks for the robot

when attempting to throw the object if it’s not directly in front of the bucket. This

behaviour is clearly depicted in the final policy adopted by the agents. For instance,

in situation 1 (Figure 4.1a), the robot learns to quickly throw the object, while

in situation 2 (Figure 4.1b), it adopts a safer strategy, nearly placing the object

directly into the bucket. Consequently, the evaluation of the distance ratio tends to

be skewed towards higher values than what would typically be observed in reality.

(a) Throw with distance ratio 0.54 (b) Throw with distance ratio 0.90

We also observe that PPO struggles to develop efficient policies, even though the

algorithm with the optimized parameters shows improved performance. This is

illustrated in Figure 4.2, which captures the evolution of the reward throughout the

training, where PPO appears to flounder without being able to enhance its policy.

Furthermore, both SAC and TD3 agents attain comparable performances after one

million episodes. However, it is noteworthy that the algorithms with the optimized

parameters learn significantly faster. In contrast, those with the default parameters

from Stable Baseline 3 take longer to catch up, and surprisingly, even slightly sur-

pass the others eventually. This particular trend of faster training with optimized

hyperparameters can be more clearly viewed in Figure 4.3, which provides a closer

look at the success rate of the algorithms during the initial 10,000 episodes.

43

4.2. Simulation results Arthur Louette

Figure 4.2.: Reward evolution during training.

Figure 4.3.: Success rate evolution during training.

To quantify an agent’s propensity to toss the object as opposed to merely placing it

into the bucket, we examine the histogram depicting the distribution of the distance

ratio for each algorithm, as illustrated in Figure 4.4. The data for this analysis was

gathered during the evaluation phase of 10,000 episodes.

44

4.2. Simulation results Arthur Louette

Figure 4.4.: Distance ratio distribution for each agent.

Upon analysis, we find that a significant number of tosses by the proficient agents

closely resemble a pick-and-place operation. However, while maintaining a high

success rate, these superior agents also manage to ensure a good proportion of tosses

with a distance ratio between 0.4 and 0.8. The best performance in this regard is

demonstrated by the TD3 agent with default parameters, as corroborated by the

reward scores. A short demo can be found on Youtube1.

1https://youtu.be/g3ExOPykxhU

45

https://youtu.be/g3ExOPykxhU

4.2. Simulation results Arthur Louette

In conclusion, we have successfully trained policies in a simulated environment ca-

pable of effectively tossing objects. In the forthcoming section, we will assess the

practical efficacy of these policies under real-world conditions.

46

4.3. Transfer of the results in real-world Arthur Louette

4.3. Transfer of the results in real-world

This section aims to delve into the outcomes of Experiment 2, which assesses the

transferability of the policies learned in the simulation to real-world robots. We

will hence evaluate the success rate of the best algorithm (TD3 with the default

hyperparameters of Stable Baseline 3) and the time taken to throw the object,

comparing these metrics with those of the current pick-and-place program.

For the existing program tasked with placing the object in the corresponding bucket,

we attain a success rate of 100%, provided the scrap has been successfully picked

up.

Table 4.5 provided below displays the time taken by the pick-and-place program for

each scrap, at each position, and for every bucket.

Table 4.5.: Pick and Place times.

Bucket Position
Time (ms)

Scrap 1 Scrap 2 Scrap 3 Scrap 4 Scrap 5

Bucket 1
Close 436 463 468 502 444
Middle 480 477 437 429 439
Far 475 484 542 476 502

Bucket 2
Close 454 460 466 427 466
Middle 430 451 435 446 481
Far 445 454 478 482 476

Bucket 3
Close 422 384 403 419 397
Middle 418 415 409 441 433
Far 435 431 442 432 432

Bucket 4
Close 336 357 341 376 372
Middle 377 395 376 416 373
Far 431 434 450 453 408

Bucket 5
Close 383 282 291 284 365
Middle 331 399 335 402 391
Far 454 372 454 356 364

The average time taken to place an item is approximately 421 ms. Under the current

policy, there’s no discernible difference between the times taken to place individual

pieces. The average placement times for each piece are 420, 417, 422, 423, and 423

milliseconds respectively, just as we would expect.

It’s important to note that the pieces first pass by bucket 5 before reaching bucket

47

4.3. Transfer of the results in real-world Arthur Louette

1. As each piece is conveyed one after another, the robot swiftly picks up each one

as soon as it enters its operational zone. This setup leads us to anticipate shorter

placement durations for bucket 5 in comparison to bucket 1, for instance.

The results for the TD3 algorithm are presented in Table 4.6. It yields an average

processing time of 494 ms, which is 73 ms slower compared to the standard pick-

and-place procedure. Although unexpected, this is primarily attributable to one

particular problem.

Figure 4.5.: Throw with the Flexpicker using TD3 algorithm.

The inference of the robot’s action requires transmitting the piece’s position at the

pick point, as depicted in Figure 3.4. However, this position only becomes known

once we transition to the robot’s reference system, that is, after the piece has been

grasped. Consequently, the communication process necessary for inferring the action

and retrieving it back introduces a delay in the movement.

To mitigate this delay, we employed a strategy that involves sending the necessary

information during the object’s grasping process. Specifically, after successful grasp-

ing at the conveyor level, the robot ascends to a post-pick position. We then dispatch

the information immediately after the grasping is completed, leveraging this upward

48

4.3. Transfer of the results in real-world Arthur Louette

movement to calculate the action and relay it back to the robot, minimizing any

potential waiting time.

Despite our best efforts, this workaround was not entirely adequate. A potential

solution could be to exploit the conveyor tracking program to infer the object’s

position before picking it up, thereby eliminating the delay entirely. However, this

hasn’t been implemented in this study due to the need for expert assistance with

ABB robots, which was unavailable within the timeframe of the master’s thesis.

Table 4.6.: TD3 times.

Bucket Position
Time (ms)

Scrap 1 Scrap 2 Scrap 3 Scrap 4 Scrap 5

Bucket 1
Close 536 532 545 511 538
Middle 534 551 540 547 541
Far 544 553 569 552 574

Bucket 2
Close 491 423 487 400 493
Middle 524 524 512 543 410
Far 491 528 539 538 569

Bucket 3
Close 453 462 451 468 470
Middle 471 424 405 486 475
Far 542 528 525 541 523

Bucket 4
Close 351 432 464 442 459
Middle 482 442 505 474 473
Far 447 547 521 545 511

Bucket 5
Close 440 454 421 428 432
Middle 451 460 452 473 476
Far 503 511 502 537 543

Once again, we note a negligible variance in the time taken for handling different

pieces, regardless of their diverse masses that should, in theory, influence the actions

undertaken. The average processing times for pieces 1 through 5 are 484, 491, 496,

499, and 499 milliseconds, respectively.

When compared to the pick-and-place routine, the standard deviation between the

varying positions—close, middle, and far—ranges from 23 ms to 35 ms. This range

suggests a slight increase in variability for the algorithm as opposed to the pick-and-

place process, albeit the difference is not significant.

A similar assessment for the various buckets indicates a range from 44 ms to 30 ms.

This observation reveals that the algorithm’s performance is less impacted by the

49

4.3. Transfer of the results in real-world Arthur Louette

bucket’s positioning. However, interpreting these results is challenging given the

close proximity of the variances. Thus, a definitive conclusion cannot be confidently

drawn from this data.

Table 4.7.: TD3 success.

Bucket Position
success 1, fail 0

Scrap 1 Scrap 2 Scrap 3 Scrap 4 Scrap 5

Bucket 1

Close 1 0 1 1 1

Middle 1 0 1 1 1

Far 1 1 1 1 1

Bucket 2

Close 0 0 1 1 1

Middle 1 0 1 1 1

Far 1 1 1 1 1

Bucket 3

Close 1 1 1 1 1

Middle 1 0 1 1 1

Far 1 1 1 1 1

Bucket 4

Close 1 0 1 0 0

Middle 0 0 1 1 1

Far 0 0 0 1 1

Bucket 5

Close 0 0 0 0 1

Middle 1 1 0 1 1

Far 0 0 0 1 0

When it comes to the success rate of the tosses (Table 4.7), the TD3 algorithm

accomplishes a success rate of 69.33%. Depending on the positioning—close, middle,

and far—the algorithm attains success rates of 60%, 72%, and 76% respectively. This

suggests that the algorithm encounters difficulties with tosses that are too close to

the bucket, primarily due to the reduced angle which often results in the scraps

hitting the side of the bucket. Pieces located in the middle of the conveyor, on the

other hand, demonstrate the highest success rate, likely due to an optimal balance

between alignment with the bucket and a suitable distance. However, pieces further

along the conveyor exhibit lower success rates; additional data would be required to

corroborate this observation.

50

4.3. Transfer of the results in real-world Arthur Louette

In terms of the success rate relative to the buckets, the respective success rates are

40%, 46.67%, 93.33%, 80%, and 86.67%. Given that bucket 5 is the closest to the

incoming stream of pieces and bucket 1 is the farthest, it appears that the farther

the bucket, the greater the difficulty due to increased throwing distance and a more

constrained throwing angle.

Lastly, when examining the success rate conditioned on the type of scrap, we see

respective success rates of 66.67%, 33.33%, 66.67%, 93.33%, and 86.67% for each

scrap type, based on 15 throws per type. It’s evident that scrap 2, with its more

irregular shape, presents greater challenges for accurate tossing as compared to the

more compact scraps 4 and 5, for instance. Scrap 1 and 3 act as intermediate pieces

and already shows less efficiency than scrap 4 and 5 which achieve quite promising

scores.

In addition, a video of a throw performed during the experiment can be viewed

on YouTube2. Furthermore, a video showcasing the TD3 algorithm applied to a

classical sorting procedure was recorded and can be accessed through this link3.

The video provides visual evidence of the robot’s performance, demonstrating that

it achieves a commendable level of efficiency, although it still encounters challenges

when handling certain scraps.

When contrasting the performance of the algorithm in real-world settings with its

simulation results, there’s a noticeable decline in both the success rate and speed.

This gap between simulation and reality was anticipated; however, even without fine-

tuning for real-world conditions, the results are already encouraging. Furthermore,

a comparison of the average processing time of TD3 in simulation, which is 390ms,

reveals it outperforms the standard pick-and-place routine’s average time of 421ms.

This is particularly noteworthy given that the simulation posed greater challenges

due to increased distances and complexity.

2https://youtube.com/shorts/JSFymAOig4Y
3https://youtube.com/shorts/ONAUlJNZ6AA

51

https://youtube.com/shorts/JSFymAOig4Y
https://youtube.com/shorts/ONAUlJNZ6AA

Arthur Louette

5. Conclusions

5.1. Summary of the findings

This master’s thesis has focused on the development of a simulated environment

using PyBullet, during which policies for three key deep reinforcement learning al-

gorithms, namely TD3, SAC, and PPO, implemented by stable baseline 3, were

learned and analyzed. The understanding of these algorithms was enhanced, con-

tributing to a broader comprehension of their operations and unique characteristics.

A reward function was engineered utilizing both employee knowledges and deep

learning methodologies. This combination facilitated the creation of a capable func-

tion that was instrumental in directing the algorithms towards beneficial policy

learning with a fair tradeoff between the success of a throw and its speed. This

complex process required a detailed understanding of the domain but the outcome

was a meaningful enhancement in the comprehension and overall performances of

the models.

The study also delved into hyperparameter optimization, a critical aspect of improv-

ing policy learning. By adjusting the parameters influencing the learning process

thanks to an Optuna study, we expected an observed increase in the models’ ability

to learn superior policies but finally observed an increase in the speed to learn these

policies but similar performance for the two best algorithms which were TD3 and

SAC. This exploration substantiated the role of hyperparameter tuning in improv-

ing learning algorithm performance in simulation but also for further research in

learning efficient policies in real-world settings where the episode budget is smaller.

This thesis explored domain randomization to address the sim-to-real gap. The

technique enabled the introduction of diverse simulated environments where the

52

5.1. Summary of the findings Arthur Louette

positions of the scraps and the buckets but also the physical properties of the scraps

changed. It is expected to promote a robustness in the models that could potentially

increase their resilience to real-world unpredictability.

The process of integrating the model into the Pick It program involved implementing

and optimizing a communication process. This stage was critical for ensuring an

efficient information transfer that would allow the full utilization of the learning

algorithms in a functional context.

Performance assessments were conducted in both simulation and real-world scenar-

ios. These evaluations provided important insights into the transferability of the

algorithms and the robustness of the model in a real-world context. Despite a slight

decrease in performance when moving from simulation to reality, the findings demon-

strated potential for further refinement and application in real-world scenarios.

To summarize, this master’s thesis represents a notable contribution to the GeMMe

lab by delivering valuable insights and methodologies that can be used to train

agents, thereby enhancing the speed of the sorting process. While the current results

may not surpass the pick-and-place routine—given a lower success rate and slower

operation due to the existing communication process—the potential for significant

improvements remains apparent. These could be realized through fine-tuning the

algorithms in real-world conditions, incorporating sensors, and advancing the com-

munication process.

In particular, the integration of sensors could enable us to determine whether the

scraps have been accurately deposited in the correct bucket, and if the toss timing

can be measured effectively. Such enhancements would allow us to implement the

reward function used in simulation in a real-world context, potentially facilitating

direct learning without reliance on the simulator, except as an initial step or ’warm

start’. This approach could offer a pathway to substantial gains in the effectiveness

of the sorting process.

53

5.2. Reflection Arthur Louette

5.2. Reflection

In the process of developing a pipeline to train agents and subsequently deploy them

in a real-world scenario, there were potential areas for further enhancement.

Indeed, the first semester was dedicated to building the simulator, leveraging data

and the robotics engineering expertise available at the GeMMe lab. This collabo-

ration facilitated a detailed understanding of the robot’s operations, leading to the

creation of an effective formulation. However, a more accurate alignment with re-

ality could have been achieved after I fully understood the robot’s code during the

internship in the second semester.

For instance, the implementation of a module was required to transition between

the reference system of the simulator and that of the robot, and vice versa. This

step might have been unnecessary if there had been an initial comprehensive under-

standing of the robot’s reference system and its particular working area. A more

accurate depiction of these aspects in the simulator might have resulted in a closer

match to reality, potentially improving the performance of the trained agents when

deployed.

Moreover, the exploration of hyperparameter optimization using Optuna was initi-

ated later in the thesis process. Given the computational intensity of this step, the

delay resulted in less time for setting up a study with a greater number and longer

duration of trials. Such an approach might have improved the performance of the

algorithms, rather than merely hastening the rate at which the algorithm plateaus.

Furthermore, the implementation of parallelization could have significantly increased

our capacity to run an expansive study, with numerous workers simultaneously ex-

ploring the hyperparameter space. However, establishing parallelization required a

database that could interface with the Alan cluster, a requirement that couldn’t be

met within the given timeframe.

54

5.3. Recommendations for future research Arthur Louette

5.3. Recommendations for future research

In order to achieve competitive performances, future research should explore the

opportunity to fine-tune policies learned in simulation in real conditions. Algorithms

such as TD3 and SAC can be used to learn online or data could be collected to train

offline algorithms such as PPO even if the latter struggled to learn efficient policies

with the hyperparameters of this study.

Further improvements could be realized through problem reformulation, enabling

the agent to select multiple points during its displacement. This could broaden

the scope of potential actions and accommodate a multi-step reinforcement learning

setting. Such a reformulation could also incorporate the real-world constraints of the

robot, as well as a more precise depiction of the bucket’s position and characteristics.

A well-known result of machine learning algorithms is that the more data is available

the better. Therefore, giving a better description of the scraps to the algorithm

could help instead of just giving its mass. Data such as a 3D description obtained

by the 3D camera could help the algorithm to understand the shape of the scrap and

anticipate its physics during the throw. Even better a description of the way the

gripper has picked the object can help the algorithm as different picking angles will

result in different behavior. However, the difficulty with this approach is to obtain

the same data in simulation for example as it would require a dataset of objects

close to scraps and images similar to images collected in reality but it still remains

possible with more time and investment.

Finally, exploring sim2real techniques could also help to close the reality gap when

learning in simulation. Exploring techniques such as domain adaptation, improving

the domain randomization technique used and calibrating better the simulation

could be interesting tracks. It would also be relevant to perform an ablation study

in our case to quantify the added value of these techniques.

55

Arthur Louette

Bibliography

[Akiba et al., 2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

(2019). Optuna: A next-generation hyperparameter optimization framework. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

[Bergstra et al., 2011] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).

Algorithms for hyper-parameter optimization. In Shawe-Taylor, J., Zemel, R.,

Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural Infor-

mation Processing Systems, volume 24. Curran Associates, Inc.

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search for

hyper-parameter optimization. Journal of machine learning research, 13(2).

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym.

[Collins et al., 2021] Collins, J., Chand, S., Vanderkop, A., and Howard, D. (2021).

A review of physics simulators for robotic applications. IEEE Access, 9:51416–

51431.

[Coumans and Bai, 2021] Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python

module for physics simulation for games, robotics and machine learning. http:

//pybullet.org.

[Duckworth et al., 2023] Duckworth, P., Lacerda, B., Vallis, K., and Hawes, N.

(2023). Reinforcement learning for bandits with continuous actions and large

context spaces.

[Fujimoto et al., 2018] Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing

function approximation error in actor-critic methods. CoRR, abs/1802.09477.

56

http://pybullet.org
http://pybullet.org

Bibliography Arthur Louette

[Garivier and Moulines, 2011] Garivier, A. and Moulines, E. (2011). On upper-

confidence bound policies for switching bandit problems. In Kivinen, J.,

Szepesvári, C., Ukkonen, E., and Zeugmann, T., editors, Algorithmic Learning

Theory, pages 174–188, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,

Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S. (2018). Soft

actor-critic algorithms and applications. CoRR, abs/1812.05905.

[Ibarz et al., 2021] Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and

Levine, S. (2021). How to train your robot with deep reinforcement learning:

lessons we have learned. The International Journal of Robotics Research, 40(4-

5):698–721.

[Krause and Ong, 2011] Krause, A. and Ong, C. (2011). Contextual gaussian pro-

cess bandit optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,

and Weinberger, K., editors, Advances in Neural Information Processing Systems,

volume 24. Curran Associates, Inc.

[Li et al., 2010] Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A

contextual-bandit approach to personalized news article recommendation. In Pro-

ceedings of the 19th international conference on World wide web. ACM.

[Lillicrap et al., 2019] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D., and Wierstra, D. (2019). Continuous control with deep

reinforcement learning.

[Majzoubi et al., 2020] Majzoubi, M., Zhang, C., Chari, R., Krishnamurthy, A.,

Langford, J., and Slivkins, A. (2020). Efficient contextual bandits with continuous

actions. CoRR, abs/2006.06040.

[Marlier et al., 2019] Marlier, N., Louppe, G., Bruls, O., and Dislaire, G. (2019).

Robotic throwing controller for accelerating a recycling line. In Proceedings of the

Robotix Academy Conference for Industrial Robotics (RACIR) 2019. F.R.S.-FNRS

- Fonds de la Recherche Scientifique, Robotix Academy.

[Passos and Mishra, 2022] Passos, D. and Mishra, P. (2022). A tutorial on auto-

matic hyperparameter tuning of deep spectral modelling for regression and clas-

sification tasks. Chemometrics and Intelligent Laboratory Systems, 223:104520.

57

Bibliography Arthur Louette

[Raffin, 2020] Raffin, A. (2020). Rl baselines3 zoo. https://github.com/DLR-RM/

rl-baselines3-zoo.

[Raffin et al., 2021] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M.,

and Dormann, N. (2021). Stable-baselines3: Reliable reinforcement learning im-

plementations. Journal of Machine Learning Research, 22(268):1–8.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

and Klimov, O. (2017). Proximal policy optimization algorithms. CoRR,

abs/1707.06347.

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and

Riedmiller, M. (2014). Deterministic policy gradient algorithms. In Xing, E. P.

and Jebara, T., editors, Proceedings of the 31st International Conference on Ma-

chine Learning, volume 32 of Proceedings of Machine Learning Research, pages

387–395, Bejing, China. PMLR.

[Sutton et al., 1999] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.

(1999). Policy gradient methods for reinforcement learning with function ap-

proximation. In Solla, S., Leen, T., and Müller, K., editors, Advances in Neural

Information Processing Systems, volume 12. MIT Press.

[Tobin et al., 2017] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and

Abbeel, P. (2017). Domain randomization for transferring deep neural networks

from simulation to the real world. CoRR, abs/1703.06907.

[Weng, 2019] Weng, L. (2019). Domain randomization for sim2real transfer. lilian-

weng.github.io.

[Yoon et al., 2019] Yoon, H. J., Chung, S. Y., Kang, H. S., and Hwang, M. J. (2019).

Trapezoidal motion profile to suppress residual vibration of flexible object moved

by robot. Electronics, 8(1).

[Zhu et al., 2022] Zhu, Y., Foster, D. J., Langford, J., and Mineiro, P. (2022). Con-

textual bandits with large action spaces: Made practical.

58

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

Arthur Louette

A. Appendix

A.1. Algorithms

Proximal Policy Optimization (PPO)

Figure A.1.: PPO algorithm reprinted from OpenAI Spinning Up1

1https://spinningup.openai.com/en/latest/algorithms/ppo.html (last consulted 9 June 2023)

59

https://spinningup.openai.com/en/latest/algorithms/ppo.html

A.1. Algorithms Arthur Louette

Soft Actor-Critic (SAC)

Figure A.2.: SAC algorithm reprinted from OpenAI Spinning Up2

2https://spinningup.openai.com/en/latest/algorithms/sac.html (last consulted 9th June 2023)

60

https://spinningup.openai.com/en/latest/algorithms/sac.html

A.1. Algorithms Arthur Louette

Twin Delayed Deep Deterministic Policy Gradient (TD3)

Figure A.3.: TD3 algorithm reprinted from OpenAI Spinning Up3

3https://spinningup.openai.com/en/latest/algorithms/td3.html (last consulted 9th June 2023)

61

https://spinningup.openai.com/en/latest/algorithms/td3.html

A.2. Hyperparameters Arthur Louette

A.2. Hyperparameters

At the end of the Optuna study, several pieces of information can be retrieved

in order to analyze the results and provide guidance for better fine-tuning. The

parameter importance plot4 for each study is reported below to guide a new study

with better parameter value ranges and better sets of hyperparameters to optimize.

Figure A.4.: Parameter importance for PPO

Figure A.5.: Parameter importance for SAC

4For more information: https://optuna.readthedocs.io/

62

https://optuna.readthedocs.io/en/stable/reference/generated/optuna.importance.get_param_importances.html

A.2. Hyperparameters Arthur Louette

Figure A.6.: Parameter importance for TD3

As we can observe, the learning rate plays a big role, especially as the number

of episodes for each study is quite limited (40k episodes). This might lead to an

overestimation of the set of parameters with a large learning rate as they might lead

more rapidly to decent policies, but these policies will be stuck in local minima. A

solution to avoid this problem is to provide a larger episode budget for each trial.

63

A.3. Training complements Arthur Louette

A.3. Training complements

The reward neural network used was trained using the mean squared error loss over

300,000 episodes and was evaluated over 10,000 episodes with a mean error of 28

ms. The histogram of the error is represented below:

Figure A.7.: Histogram of the errors made by the reward neural network over 10,000
episodes, with the absolute error on the x-axis (in seconds) and the
count on the y-axis.

Although the mean error of 28 ms obtained during the evaluation is not negligible,

it was deemed sufficient for the intended purpose of the reward function. The

error, represented in the histogram (Figure A.7), demonstrates that the majority

of errors fall within an acceptable range for the task at hand. The evaluation

results indicated that the reward function adequately captures the desired criteria

and provides meaningful feedback to guide the learning process of the reinforcement

learning algorithms employed in the sorting process. Therefore, despite the presence

64

A.3. Training complements Arthur Louette

of some errors, the performance of the reward function was considered satisfactory

and suitable for the purposes of this study.

65

