
https://lib.uliege.be https://matheo.uliege.be

Deep Learning for Content-Based Image Retrieval in Biomedical applications

Auteur : Schyns, Axelle

Promoteur(s) : Maree, Raphael; Geurts, Pierre

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17731

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Master Thesis

Deep Learning for Content-based Image
Retrieval in Biomedical Applications

Author:

Axelle Schyns

Supervisors:

Pierre Geurts

Raphaël Marée

Academic Year: 2022 - 2023

Place: University of Liège - School of
Engineering and Computer Science

Master in

Computer Science and Engineering,
Intelligent Systems

Master’s thesis completed in order to obtain the degree of Master of Science in Computer Engi-
neering by Axelle Schyns

Abstract

Due to advances in the digital field, the number of images being generated every day grows
exponentially. The field of histopathology is no exception and witnesses the emergence of an
increasing number of Whole Slide Images that need to be treated, analyzed and diagnosed. One
way to facilitate the diagnostic process is by comparing a particular case with other similar
cases. This implies, first, the accessibility to other cases, as well as the ability to retrieve the
most useful ones, i.e., the most similar cases. To achieve the latter goal, the technique of Content-
Based Image Retrieval (CBIR) was conceived. CBIR involves retrieving the most similar images
in a database to a given query image.

The goal of this thesis is to study the different elements that compose a CBIR framework
and the options available for them, with a specific focus on the feature extraction part of the
framework. It offers an open-source implementation that allows the combination of the researched
options to create a fully operational CBIR framework. It provides both supervised and self-
supervised models as a way to accommodate all situations and datasets.

All feature extraction models are trained on a single dataset containing over 600,000 histopatho-
logical images and evaluated on approximately 200,000 different images from the same dataset.
Extensive experiments are conducted to analyze the resilience of the frameworks in different
situations, such as when dealing with new data or handling class imbalance.

While the supervised models have displayed great results and the self-supervised methods
have demonstrated great potential, the scope of what could have been achieved is limited by the
lack of evaluation by trained pathologists and by the few remaining untested combinations.

I

Acknowledgements

This thesis represents the end of my five years of study at the University of Liège in Computer
engineering. This final work would not have been possible without the guidance and knowledge
obtained from my professors during those years. I would not have arrived where I am today
without the help and support of multiple persons.

I would like to first express my deepest gratitude to my supervisors, Pr. P. Geurts and
Dr. R. Marée, for their guidance, support, and valuable insights throughout the entire process. I
would not have been able to produce such a work without their help and advice. I am especially
grateful for the time they spent at reading and commenting my drafts as I know that they have
really busy schedules.

I would also like to thank M. Defraire for the access to his implementation as well as for his
help and answers to my many questions.

Finally, I would like to thank my family and friends for their unwavering support and un-
derstanding. A special mention to my mom for proofreading my drafts, despite the subject not
being in her main area of expertise, and to my dad for his help regarding the access to the
infrastructures needed for this work.

I hope that this work will turn out to be useful for future research on the subject and that
one day it will lead to a great tool in assisting pathologists in their diagnosis.

Axelle Schyns

II

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem statement . 2
1.3 Work organisation . 5

2 Theoretical Background 6
2.1 Learning fashion . 6
2.2 Computer vision . 7
2.3 Basis of Deep learning - Architectures . 8

2.3.1 Convolutional Neural Networks . 8
2.3.2 Transformers . 12
2.3.3 From CNN to Transformers . 15
2.3.4 Auto-encoders . 15

2.4 Methods of interest . 16
2.4.1 Deep Metric Learning . 17
2.4.2 Deep Ranking . 21
2.4.3 Contrastive Learning . 22

3 Theory linked to CBIR 27
3.1 Content-based Image Retrieval . 27

3.1.1 Introduction . 27
3.1.2 Evolution & frequent elements . 28

3.2 Search algorithms and indexing . 30
3.2.1 FAISS . 30

3.3 Data management . 31
3.3.1 Redis . 31

3.4 State of the art - Complete Frameworks . 32
3.4.1 Yottixel . 32
3.4.2 Smily . 32
3.4.3 DINO: Emerging Properties in Self-Supervised Vision Transformers 33
3.4.4 SimCLR: A simple Framework for Contrastive Learning of Visual Repre-

sentations . 35
3.4.5 BYOL: Bootstrap Your Own Latent. A new Approach to Self-Supervised

Learning . 36

4 Datasets 38
4.1 ImageNet . 38
4.2 The Cancer Genome Atlas (TCGA) - KimiaNet 39
4.3 Histopathology . 40

4.3.1 Acquisition and division . 40
4.3.2 Visualization and analysis . 41
4.3.3 Image preparation . 49

III

5 Methodology & Process 50
5.1 Features extraction - Design . 51

5.1.1 Supervised learning . 51
5.1.2 Self-supervised Learning . 53

5.2 Indexing . 59
5.3 Search and retrieval . 62
5.4 Training and Testing Protocols . 63
5.5 Evaluation protocols . 66
5.6 Implementation . 70

5.6.1 Material . 70
5.6.2 Libraries & external codes . 71

6 Results and Discussion 72
6.1 Results per Supervised model . 72
6.2 Results per self-supervised model . 80
6.3 Discussion on the difference between supervised and unsupervised models results 91
6.4 Impact of training data . 93
6.5 Impact of Batch size and parallelism . 95
6.6 Impact of class imbalance . 96
6.7 Search and Retrieval . 98
6.8 Overall conclusion . 99

7 Limitations and Conclusion 100

Bibliography 102

Appendix 106

IV

Abbreviations

AE AutoEncoders

AI Artificial Intelligence

AMDIM Augmented Multiscale Deep InfoMax

CBIR Content-based Image Retrieval

(A)(N)C(L) (Augmented) (Non) Contrastive (Learning)

CNN Convolutional Neural Network

CPC Contrastive Predictive Coding

CT Computed Tomography

CV Computer Vision

CvT Convolutional Vision Transformer

db DataBase

DeiT Data-Efficient Image Transformer

DL Deep Learning

DML Deep Metric Learning

DR Deep Ranking

FAISS Facebook AI Similarity Search

V

FC Fully Connected

ids indexes

ILSVRC Imagenet Large Scale Visual Recognition Challenge

ML Machine Learning

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

NCA Neighborhood Component Analysis

NLP Natural Language Processing

ResNet Residual Network

Std Standard deviation

TCGA The Cancer Genome Atlas

t-SNE t-distributed Stochastic Neighbor Embedding

VGG Visual Geometry Group

ViT Vision Transformer

WSI Whole Slide Image

VI

Chapter 1

Introduction

1.1 Context and Motivation

In recent years, the digital world has experienced tremendous progress, leading to the digi-
tization of various fields, including the medical field. This development has given rise to a new
sub-field called Digital Health, which is gaining increasing attention every day. Digital Health
comprises several elements, ranging from patient access to their data through various web appli-
cations to the synchronization and data sharing among practitioners, hospitals, and laboratories,
as well as the digitization of all medical information. Consequently, this digitization has resulted
in an enormous amount of data, particularly in medical imaging. Cutting-edge advancements in
medical technology, such as photon-counting CT scanners, multi-focus microscopes that generate
detailed 3D images of cells, and MRI gloves that capture intricate movements of hand tendons,
are providing unprecedented opportunities for the scientific and medical communities to acquire
a wealth of images. These images, in turn, enable researchers to gain novel insights into diseases
and injuries, paving the way for the development of effective remedies and solutions. As a result,
healthcare and quality of life have the potential to be greatly enhanced for all.

Histopathology, one of the fields of research that involves the analysis of such medical images,
focuses on the study of tissues (histo) to understand diseases (patho) and their impact. By
examining microscopic images of various tissues, histopathologists can identify the presence of
diseases and determine their severity. They can also identify common disease symptoms and
use this knowledge to identify them in future scans, or they can uncover new symptoms or
characteristics of a pathology. In this field, digitization plays a pivotal role as it enables the
acquisition of tissue images. Having a larger dataset enhances confidence in research findings, as
it allows for the identification of multiple occurrences of a phenomenon. Thus, digital pathology
on Whole Slide Images (WSIs) holds significant promise for advancing the understanding of
diseases and their effects on tissues, leading to more accurate diagnoses and improved patient
care.

However, before getting to such medical advances, there are two major obstacles that com-
plicate the analysis of the images.

First, these images, scans, videos,... need some work put into them. They need to be
processed and analyzed such that they can be easily interpreted and used for more advanced
purposes. To analyze them efficiently and in detail, tools must be designed. Those tools must
be able to handle large amounts of various data. Indeed, the images all come in various types
and aspects, different sizes and colors. They also represent different elements and organs. This
variety comes primarily from their objective. A scan of a liver is not taken for the same purpose
as a scan of a lung for example. It also comes from the way the images were obtained, from

1

the specificity of the machine or protocol used to take them. In this case, we usually refer to
the versions as modalities. This variety must be taken into account in the tools used to analyze
a specific case or disease. For such reasons, the focus has shifted towards Artificial intelligence
(AI) and Machine Learning (ML) powered tools as those two domains have shown great promise
in scenarios handling large, varied datasets.

Second, the accessibility and sharing of the images pose significant challenges. Laboratories
and research centers are often geographically dispersed and may not always collaborate or share
resources and data. While some reluctance to cooperate with other entities may be a factor, in
many cases, the lack of infrastructure for facilitating such cooperation is the main issue, due to
the large size, up to several GB, of the images, among other factors. Consequently, there is a
limited level of globalization in the field, which could impede the detection of abnormalities or
identification of specific diseases, particularly in the case of rare diseases or phenomena. As the
few instances of such conditions may not be regrouped or accessible through a single, well-known
place, it further complicates the process.

Hence, solutions to those obstacles must be designed. A first solution has been offered by
the Cytomine research team1 at the University of Liege with the deployment of a collaborative,
open-source web-platform in 2010. This project offers several functionalities (Figure 1.1 (a) -
Credits: Cytomine R&D website). It offers a workplace where WSIs can be uploaded, organized,
and stored. Those WSIs can be shared with other users and collaboratively analyzed through the
use of annotations (Figure 1.1 (b) - Credits: Cytomine R&D user guide). It also offers several
machine learning algorithms for vision processing, such as tissue and landmarks recognition. The
platform2 is of interest for practitioners but also for students and teachers for a more educational
purpose. Recently, the Cytomine R&D team entered the BigPicture EU IMI project. This
project has for goal to collect millions of WSIs in order to obtain the biggest histopathological
dataset existing. This dataset will then be used to develop AI and ML tools. In addition to the
existing tools, the Cytomine R&D team continues developing new software modules to increase
the possibilities of image analysis and further deepen the research on pathologies.

Concurrently with the advancement of digitization, another rapidly evolving domain is that
of artificial intelligence (AI) and machine learning (ML), particularly in the area of deep learning
(DL). Deep learning has gained significant momentum in recent years due to its remarkable
achievements across various fields. Its adaptability and ability to efficiently handle vast amounts
of data, while also learning directly from it, make it a favored technology for visual processing
and analysis. In fact, deep learning has already demonstrated remarkable accomplishments in
the field of computer vision (e.g. ImageNet classification tasks as in [Krizhevsky et al., 2017]
or [He et al., 2015]). As such, it is considered one of the most promising options for developing
tools and solutions in the medical imaging field, of interest here.

1.2 Problem statement

This master thesis’s aim is to develop a novel tool for medical image analysis using deep
learning, with the ultimate goal of assisting in future diagnostic processes. The tool under
investigation and design throughout the remainder of this work is referred to as a "Content-
Based Image Retrieval (CBIR) system".

CBIR consists in retrieving in a database of images the ones that are the most similar to a
given image, called the query. It is composed of several steps that can be independent or not,
depending on the elements chosen to compose it. The two main parts of the construction of a
CBIR framework are:

1Source: Cytomine R&D website
2Described on the Cytomine website

2

https://doc.uliege.cytomine.org
https://doc.cytomine.org/user-guide/annotations#annotation-layers
https://doc.uliege.cytomine.org
https://cytomine.com

Figure 1.1: (a) Structure of the Cytomine project. (b) WSI with annotation in Cytomine
Workplace

Figure 1.2: Functioning of a CBIR framework

• The extraction of a representation3 of the images.

• The computation of the similarity between two vectors and the search algorithm used to
find the most similar vectors. This also includes the indexing in the database, as the
indexing will play a role in the way the vectors are accessed during the search.

A schematic illustrating the functioning of a CBIR framework is depicted in Figure 1.2.

This work primarily focuses on the first part, as it is where using deep learning is the most
relevant. Nevertheless, it also provides a description of a solution for the second part.

For the design of the first part, both the architectures of the deep learning models and
the training approaches are aspects to consider and are thus thoroughly investigated. While
supervised models are presented, our study also investigates self-supervised and unsupervised
models. This choice is motivated by two factors related to the field and task at hand.
Firstly, the goal of the CBIR framework is to retrieve images with similar content to the query,
and thus it seems more relevant to train the model using only such images, rather than relying
on labels that may not accurately describe the content of the images. For instance, an image
labeled as "flower" does not provide sufficient information to accurately represent the content of
the image. A flower can be of multiple colors or shapes, be in different backgrounds, etc. Two
images labeled as "flower" may not have anything in common but this common designation.
Secondly, from a practical standpoint, data availability and cost are important considerations.
There are typically more unlabeled images available compared to labeled images, which allows for
more comprehensive training of unsupervised/self-supervised models as opposed to supervised
models, which are limited by the availability of labeled data. Additionally, labeling all images in
a large dataset is often impractical due to the time and cost associated with employing a trained

3In the rest of this work, it will also be called ‘feature extraction’ interchangeably.

3

pathologist for labeling. On top of it all, one future purpose of our investigation is to do region
annotations in WSIs. This means that the WSIs will be cut into several pieces, pieces that will
not have a label even if their WSI does.

Another aspect of this work is to make sure that the designed framework works well with
digital pathology images. While many frameworks have been designed for natural images, fewer
have been designed specifically for medical images. It is important to take it into account because
these two types of images have different dominant characteristics which impact the elements
composing the framework. The colors, shapes, and backgrounds of elements of medical images
usually differ from those of natural images, as can be seen in Figure 1.3. There is also the need
to take into account the different modalities under which a medical image has been taken, as
explained earlier. All those differences make it important to verify the generality of the designed
framework: if components working well for natural images are still proving effective with natural
images and, overall, that it’s able to produce good results when applied to medical images. It is
also worth investigating the impact of pretraining on natural images, even if the end task involves
a different type of image. Moreover, the kind of images of interest in this work, the WSIs, tend
to be gigantic, up to several GB, which changes the way the data must be handled and fed to
the networks. However, in the case of this thesis, the WSIs are actually patches (i.e. sub-images)
and are, as such, of usual dimensions for images (Figure 1.4). Eventually, it is hoped that such

Figure 1.3: Medical images vs natural images

Figure 1.4: Patches retrieval process

a tool will help with the making of diagnosis and will fasten the disease identification process.
A practitioner will only have to submit images of his case to receive similar images with their
associated diagnosis. He will then be able to analyze those images and decide if his case fits the
diagnosis assigned to the results. Similar pathologies, tissues would be available with one simple
click.

This work is a continuation of a previous master thesis on the same subject by Stephan
Defraire in 2021. This past thesis focused on supervised deep learning networks for the feature

4

extraction part, as well as on a method to prepare the dataset, specific to medical images. On
the other hand, this current work has for ambition to explore methods developed since the time
of publication of that past thesis and targets more specifically unsupervised methods.

1.3 Work organisation

This master thesis will follow the structure described right below.

• Chapter 2: Theoretical Background. This chapter presents the concepts used and
investigated within the framework of this work. It starts with the presentation of the field
of interest, namely Computer Vision (CV). Then, it discusses notions of deep learning,
from the basis to more complex models. It finally ends with the methods used to train said
models.

• Chapter 3: Theory linked to CBIR. This chapter introduces the notions of Content-
based Image retrieval (CBIR) by presenting its evolution and particular methods/elements
attached to it. Afterward, it continues on a more practical side with Data Management
and Similarity search before ending up with the presentation of complete frameworks of
CBIR and image representation systems.

• Chapter 4: Dataset. This chapter introduces and describes the datasets used in the
training of the feature extraction models, as well as for the testing of the indexing and
retrieval methods. It explains the division in classes of the main dataset and its character-
istics, as well as the techniques used to prepare the data.

• Chapter 5: Methodology & Process. This chapter is drifting apart from the theory to
focus on the more practical aspects of this work. It presents the different tested methods
and the processes followed to investigate the impact of the different parameters. It first
introduces the backbone architectures used for feature extraction. It then dives into the
practicalities of indexing, searching and retrieval. To wrap up the CBIR process, it presents
the protocols and measures that will be used to evaluate the results of the complete frame-
work. It concludes with a quick description of the implementation (publicly available on
the GitHub page of the author, https://github.com/AxelleSchyns/cbir-tfe).

• Chapter 6: Results and Discussion. This chapter presents the results obtained through
the use of the different techniques for feature extraction, both quantitatively and qualita-
tively. It also describes the impact of the choice of several parameters.

• Chapter 7: Limitations, extensions and conclusion. This section delves into the
limitations encountered in this study and proposes potential solutions for overcoming them
in order to enhance the results obtained. Furthermore, it outlines possible directions for
extending the model for other applications. It then wraps up this thesis by providing a
quick summary of the tested methods and their results.

• The appendix contains several additional figures of interest.

5

https://github.com/AxelleSchyns/cbir-tfe

Chapter 2

Theoretical Background

In this chapter, the theory behind the models and methods used in this work is presented in
detail. The way those models and methods are applied is however introduced in Chapter 5.

2.1 Learning fashion

Our work uses models that rely on labels as well as models that do not use them.

The first method is known as supervised learning. It uses the labels of the data to evaluate
how the model executes the task it is given.

The second way is known as unsupervised learning. Unsupervised learning is used to make
a model learn without having access to the labels of the data. In specific conditions, a model is
called self-supervised rather than unsupervised. Self-supervised learning is a subfield of unsuper-
vised learning in that it works on data that do not have labels. There are plenty of definitions of
self-supervised learning, making it more or less wide. In some sources1, self-supervised learning
is referred more as a predictive kind of learning or pretext learning, using the input data to
predict future data. In others2 , it relates to learning that first learns labels in an unsupervised
fashion before using those generated labels to train for the rest of the task. The first definition
is more related to NLP tasks, stating that vision tasks make it more complicated to define the
predictive aspect.

It is globally accepted nevertheless that augmented contrastive learning (explained later) is
considered as self-supervised learning. Indeed, contrastive learning relies on ‘pseudo labels’. It
learns by doing comparisons of the data, making the pseudo label ‘similar’ or ‘dissimilar’. And
those pseudo-labels are generated by the algorithm before the ‘true’ stage of learning, making it
the pretext task mentioned in the first definition.

For the second method used in this thesis, the autoencoders, the situation is less clear.
Some3 state that as autoencoders work on the raw data, without any pre-task, it is unsupervised
learning. Furthermore, most sources only consider as self-supervised learning two methods,
namely Augmented contrastive and non-contrastive learning. However, other sources4 state
that autoencoders work quite similarly to Contrastive learning, by comparing the reconstructed

1Source: Neptune AI - Self-Supervised Learning and Its Applications - Deval Shah, Abhishek Jha - 19th April
2023 and Facebook AI - Self-supervised learning: The dark matter of intelligence - 4th March 2021

2Papers with code - Self-Supervised Learning - 28th May 2023 and Analytics Steps - Self Supervised Learning
- Types, Examples, and Applications - Pragya Soni - 20th October 2021

3Sources: v7lab - Autoencoders in Deep Learning: Tutorial & Use Cases [2023] - Hmrishav Bandyopadhyay
4 Autoencoders and self-supervised learning - Jonathon Hare - University of Southampton

6

https://neptune.ai/blog/self-supervised-learning
https://neptune.ai/blog/self-supervised-learning
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://paperswithcode.com/task/self-supervised-learning
https://www.analyticssteps.com/blogs/self-supervised-learning-types-examples-and-applications
https://www.analyticssteps.com/blogs/self-supervised-learning-types-examples-and-applications
https://www.v7labs.com/blog/autoencoders-guide
http://comp6248.ecs.soton.ac.uk/handouts/autoencoders-handouts.pdf

image to the original, making it self-supervised. As it also works on comparisons, it will also be
considered as self-supervised learning in our work.

2.2 Computer vision

Before going to the architectures, let us start with a quick word on the field to which this
work is attached.

Computer vision comprises all the algorithms, methods, and computer science components
that deal with images or other visual elements. For IBM, Computer vision is defined as “a field of
artificial intelligence (AI) that enables computers and systems to derive meaningful information
from digital images, videos, and other visual inputs — and take actions or make recommendations
based on that information. If AI enables computers to think, computer vision enables them to
see, observe and understand.” 5.

It is a very important and large field. As such, it has been decomposed into several sub-fields
that are more focused on one particular task of vision like Classification, Segmentation, Repre-
sentation, Object recognition, Retrieval,... Those sub-fields frequently overlap, e.g. Generation
is frequently associated with Representation or Object detection with Segmentation. In
this work, the main sub-field of interest is Retrieval, but Representation is also of accrued
interest for the first part of the framework, feature extraction.

CV is a field in constant evolution and the techniques used in its different applications have
widely evolved and changed over the years, alongside its objectives. The first use of computer
vision, as per Deep North and others, was for classification. Classification has been the center of
CV for a long time before other applications stemming from it appeared6. Nowadays, each sub-
field has been shown interest and has seen models developed to cater to the problems it raises.
Similarly to the evolution of the applications, the methods have evolved too. The initial methods
would now be considered low-level as they consist of algorithms to detect specific features such as
edges, lines and other shapes using Hough Transforms or filtering7. Then neural networks were
introduced and quickly became the reference in vision. Their types also changed along the years,
starting with MLP, which quickly proved to be lacking for such structured data, to continue
with CNNs, built for such tasks and that are still today the reference in CV. Transformers
have also started recently to be used for vision tasks, derived from their original purpose which
was Natural Language Processing (NLP), challenging CNNs. In each type, several architectures
were also devised, each proposing solutions to problems noticed in the previous ones or suggesting
improvements to increase the results, such as more layers or different activation functions, adding
again to the evolution of the field.

Another area that shows the evolution in CV, but also in AI and DP in general, is the
way of training the models. Models were first trained from scratch for a specific end goal.
Then, fine-tuning was introduced and gained progressively in popularity, first in machine learn-
ing algorithms then for deep learning language models [Radford et al., 2018] and vision models
[Simonyan and Zisserman, 2014]. In the latter case, it became especially popular due to its asso-
ciation to transfer learning and the ImageNet dataset, which was, and still is, the biggest dataset
available for training vision models. Fine-tuning and transfer learning have proven useful given
the deep relations between the different sub-fields of vision that allow models designed for one
task to be used on another one relatively easily. This is also what is done in this thesis, with
models made for classification whose last layer was modified to make them usable for feature

5From IBM website - ‘What is computer vision’ - 19/05/23.
6As per Viso.ai
7TrendSkout

7

https://www.deepnorth.com/de/resource_posts/a-short-guide-on-computer-vision-and-its-various-applications/#:~:text=Experiments%20in%20computer%20vision%20started,between%20typed%20and%20handwritten%20text.
https://www.ibm.com/topics/computer-vision
https://viso.ai/computer-vision/image-classification/
https://trendskout.com/en/solutions/image-recognition-technology/

extraction.
Another evolution happened regarding the training, related to the data fed to the models. Data
were originally labeled and the methods were trained in a supervised way. It is closely related
to the primary goal at the time, Classification, which requires an indication of the categories
onto which to classify the images. Eventually, unsupervised and self-supervised learning started
to gain in popularity as a way of not having to rely on labels and focus only on the content,
which also lead to getting access to more data. This last evolution is also accounted for in this
work, with the first models explored being trained in a supervised fashion while the last are
self-supervised.

2.3 Basis of Deep learning - Architectures

This second section mainly focuses on the first part of the framework as described in Chapter
1, and more specifically on the architectures used for feature extraction. The basis behind the
architectures is based on the lecture notes from [Louppe, 2022] while the chosen architectures
are described based on their related paper. Those architectures are split into three categories:

• CNNs: selection of the most popular CNNs designed for classification but used for feature
extraction after modification.

• Transformers: use of basic transformer model for vision and of other improved and fre-
quently used models.

• Autoencoders: use of basic AE and of variational AE.

2.3.1 Convolutional Neural Networks

CNNs have been designed specifically for vision. Inspired by the human visual system, they
are conceived such that they cater to three important characteristics of visual data.

• Locality. This principle enforces the particularity of the pixels of an image being linked to
one another when close, and independent of pixels far from them.

• Invariance to translation. This principle forces the models to treat similarly the pixels,
regardless of their position in the image. In particular, the same element at two different
locations must be represented similarly.

• Hierarchical compositionality (Figure 2.1). This principle is related to the extraction from
the data of features of different importance depending on the layer of the model extracting
them.

In order for a model to have those characteristics, convolutions are used. Convolutions consist
in applying a kernel u to the input image or input feature map x such that the element-wise
multiplication between the elements of the kernels and the elements of the image that match it
is performed, and all the results summed up (Figure 2.2).

Mathematically:

oj,i = bj,i +

C−1∑
c=0

h−1∑
n=0

w−1∑
m=0

xc,n+j,m+iuc,n,m

with b the offset and (h,w,C) the dimension of the kernel, C being also the capacity of the
image. It can be inferred from this description that the convolutions lead to the appearance of

8

Figure 2.1: Hierarchical Compositionality - Fish example. Credits: [Siddiqui et al., 2017]

Figure 2.2: Convolution operation. Credits:Analytics Vid-
hya

Figure 2.3: Pooling example. Credits:
Analytics Vidhya

the mentioned characteristics. They enforce the first principle by using the pixels around the
pixel of interest in the computation of the output. It respects the second by using the same
kernel on all pixels, and just sliding it from one to another. Finally, the hierarchy principle is
inherited from the multiple applications of the convolutions, leading to several different feature
maps.

In combination with the convolution layers, CNNs also use pooling layers as a means to
conserve the structure of the input while reducing its dimensions. The application of pooling
is quite similar to a convolution: a kernel is slid onto the input elements and element-wise
multiplications are performed, the results are then aggregated given a specific operation. The
difference is that the kernel is composed of 1s and the operation is a mean if average pooling is
used and consists of taking the maximum of the results if maximum pooling is used (Figure 2.3).

The usual structure of a CNN is obtained by combining a certain number of convolutional
and pooling layers, then followed by fully connected layers.

Such a structure was proposed in [Lecun et al., 1998] and then, years later, another model
was introduced by [Krizhevsky et al., 2017] that durably impacted the use of CNNS in CV. It is
that model that led to the CNN models used in this work, presented by chronological order.

VGG: Visual Geometry Group

Presented in [Simonyan and Zisserman, 2014], this network is known for its important depth,
greater than those of any previous CNNs. VGGs depend on a given number of layers. In this
work, VGG16 (with 16 layers) and VGG11 (with 11 layers) will be used for feature extraction.

Let us detail the architecture of VGG16. It is trained for image classification on the ImageNet
dataset, hence for a 1000 categories problem (Figure 2.4). 13 of those 16 layers are convolutional
layers with ReLUs as activation functions. They are positioned as two blocks of two convolutional
layers and one maximum pooling, followed by three blocks composed of three convolutional layers

9

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/

and one maximum pooling layer. Finally, two 4096 channels fully connected layers and one 1000
channels fully connected with ReLUs are placed, followed by a softmax.

Figure 2.4: VGG16 architecture.
Credit: DataScienceTttst

The particularities of VGG, besides its great
depth, are the small size of its kernels in the
convolution layers (3x3) and the use of ReLUs
as in [Krizhevsky et al., 2017].
VGG16 is a huge network with around 138 mil-
lion parameters, despite the use of such small
kernels and the absence of Local Response Nor-
malization, found to increase the memory re-
quirement in this case.

ResNet: Residual Network

The ResNet models were introduced in [He et al., 2015]. The innovation of this network, as
indicated by its name, resides in the residual blocks composing it. Those blocks allow building
higher depth networks while not increasing too much their complexity and obtaining good results.

They have been designed as a solution to an issue noticed on the previous CNNs, which
is called degradation. This phenomenon, attributed to the depth of the networks, causes the
accuracy to fall with the augmentation of the number of layers and is not due to the overfitting
of the network. This degradation phenomenon is due to the difficulty of the networks to fit
identity mappings, thus leading to poor results when such mappings happen to be the optimal
solution. The authors specified that while they know that identity mappings rarely happen to
be the optimal solution in real cases, they have shown to be close enough to real solutions such
that if a network can fit them, the network is more likely to be able to fit the optimal solution.

To enable the network to approximate such mappings, the authors introduced residual func-
tions F(x) := H(x)− x, which become the new optimization objective of the layers, with H the
original mapping.

Figure 2.5: ‘Residual learning: a
building block’. Credits: [He et al., 2015]

To compensate for this change, the building
blocks are defined as y = F(x, {Wi}) + x. The
first term is obtained through the usual layers
operations. It is the second term that makes the
particularity of the residual blocks. This term
is obtained through the use of shortcut connec-
tions. Those connections are identity mappings
such that its inputs are not fed to any layers but
simply added to what is output by those layers.
It skips one or more layers (Figure 2.5).

Note that the rest of the block is inspired by the VGG blocks, with mostly 3x3 convolu-
tional layers and ReLUs. It is however less complex/big, especially given the fact that the skip
connections do not add complexity or parameters.

Several ResNet architectures were developed, with a different number of layers. This work
uses the architecture ResNet-50 and the architecture ResNet-18.

10

https://datascientest.com/quest-ce-que-le-modele-vgg

DenseNet and KimiaNet

The DenseNet model was proposed in [Huang et al., 2018] to help with the vanishing of
gradients that has become a problem with the increasing depths of the new CNNs.

Figure 2.6: A 5-layer dense block with a growth
rate of k = 4. Each layer takes all preceding
feature maps as input.
Credit: [Huang et al., 2018]

The offered solution is to connect each layer to
all the other following layers, hence the term
‘dense’. Instead of having only the previous
layer’s feature map as input, the layers take as
inputs the output of each of the layers preceding
it. Those outputs are not summed or summa-
rized in any way but simply concatenated (Fig-
ure 2.6).
The complete network is composed of dense
blocks intertwined with convolution and pooling
layers, to finally end with a pooling layer and a
softmax. A dense block is a block using the pre-
viously described connections as well as batch
normalization, ReLU and a 3x3 convolution.

Density also leads to a decrease in the number of parameters. Indeed, the use of all the
previous layers’ outputs leads to feature reuse. Unlike in other CNNs where the weights change
completely from one layer to another and each output must contain information from the previous
one (i.e. state), the DenseNet uses smaller filters which make each layer output a smaller feature
map. This is possible because all the feature maps still arrive at the last layer, so they don’t
need to be contained in another layer’s feature map. In this work, the DenseNet-121 architecture
is used, in the same way as the previous CNNs models.

Regarding KimiaNet, it is based on a DenseNet and is described in [Riasatian et al., 2021].
The particularity of this network does not reside in its architecture, as it is basically a DenseNet
composed of 4 dense blocks. What sets it apart from a ‘regular’ DenseNet is the training method
and the training data.

Figure 2.7: Samples from the TCGA
dataset (1st and 2nd row) and endome-
trial cancer (3rd) and colorectal cancer
(4th). Credits: [Riasatian et al., 2021]

KimiaNet was trained for the specific purpose
of being used for histopathology and, as such,
has been finetuned on pathology images (TCGA
dataset - Figure 2.7).
7126 WSIs were used for training, split in
patches for a total number of 242 202 patches
of size 1000x1000 pixels, at magnification 20.
Those WSIs and patches were carefully selected
and obtained. For the WSIs, frozen sections
were discarded as they might have led to confu-
sion from the model. Furthermore, groups were
created to sort the WSIs and the smallest groups
(less than 20 WSIs) were removed from the train-
ing data. The patches are obtained from the
construction of a mosaic of the original WSI by
clustering and thresholding on their cellularity.

The authors report better accuracies/results, both in search and in classification, of their
model compared to a DenseNet pre-trained on ImageNet when the test data is composed of

11

histopathological images. The specialization of KimiaNet on histopathology is the reason why
it was chosen for this thesis. What’s more, unlike the previous CNNs, KimiaNet was designed
for representation learning rather than classification, which makes it even better suited for this
thesis goal.

EfficientNet

EfficientNet models were introduced in [Tan and Le, 2020] as a way to optimally and effi-
ciently scale up CNNs. This was proposed following the trend of CNNs to have several versions,
with more or fewer layers depending on the available resources. These versions usually only differ
on one parameter between three possibilities: width - depth - resolution. The authors looked into
scaling up a model using the three dimensions instead of only one to reach better performances
while keeping the model reasonably large (Figure 2.8). They arrived at a set of coefficients by
which those three parameters should be multiplied given the available power. On top of those

Figure 2.8: ‘Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scalings
that only increase one dimension of network width, depth, or resolution. (e) is our proposed
compound scaling method that uniformly scales all three dimensions with a fixed ratio.’ Credits:
[Tan and Le, 2020]

coefficients, which can be applied to any CNN, the authors created their own series of models, the
EfficientNets. Those models have an architecture based on a model called MnastNet, presented
in [Tan et al., 2019]. In this work, the EfficientNetB0 is used, in the same fashion as the previous
architectures.

2.3.2 Transformers

The transformer architecture relies on the attention mechanism, introduced in [Bahdanau et al., 2016].
The attention mechanism was first designed for NLP tasks, more specifically for machine trans-
lation. It was proposed in order to remove the bottleneck that resulted from using a single
fixed-length vector as representation for a sequence, like it was done in RNN, and then use that
sole vector to get the output. Instead, the input tokens are directly used to generate the output
in a more dynamic way.

A context vector is computed based on weights indicating how much each input token must
be taken into account for the current element of the output. Formally:

y =

m∑
i=1

softmaxi(a(q,Ki; θ))Vi

12

where q is the query or context, K the key tensor and V the value tensor. a is a score function
that can be defined in multiple ways, such as the additive attention or also the scaled dot-product.

Figure 2.9: Attention mechanism. Credits: Dive
into Deep Learning 11.3

The query, value, and keys, are usually ob-
tained linearly from the inputs and Weights
matrices with:

Q = XWT
q

K = X′W
T
k

V = X′W
T
v

In those formulas, different inputs are used
for the query and for the other two. If the
same input is used for all three elements,
then the mechanism becomes self-attention.

While attention was first simply added to existing models such as RNNs and CNNs, the inven-
tion of transformers changed the way it is used. Transformers were presented in [Vaswani et al., 2017].
The model is built following an encoder-decoder structure and is said to be autoregressive (it
uses at each step all previously computed symbols).

Figure 2.10: Transformer architecture.
Credits: [Vaswani et al., 2017]

Both the encoder and the decoder are made us-
ing 6 times the same layers (Figure 2.10, N =
6). The encoder’s layers are composed of a multi-
head attention sub-layer and a feed-forward sub-
layer, both with normalization afterward. Resid-
ual connections are also present around the two
sub-layers. For the decoder, its layers contain as
sub-layers two multi-head attention layers and
one fully connected feed-forward, each with nor-
malization and residual connections. The first
multi-head is made on the outputs after they
have been shifted and put through a positional
encoding mechanism. The second multi-head is
made both on the results of the previous one and
on the outputs of the encoder.
The model is ended by a linear FC layer and
a softmax. Positional encoding is also realized
after the embedding of the input. It adds infor-
mation about the order of the elements, as the
layers of the model can’t get it themselves.

Regarding the multi-head attention layers, it takes three inputs: the key, value and query.
Those inputs are linearly projected such that different versions are obtained and used to compute
a scaled Dot-Product Attention. The 8 results are concatenated to finally be linearly projected
once more. Mathematically, the multi-head attention process is defined as follows:

MultiHead(Q,K, V) = Concat(head1, head2, ..., head8) ·WO

headi = Attention(QWQ
i ,KWK

i , V W V
i)

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

13

https://d2l.ai/chapter_attention-mechanisms-and-transformers/attention-scoring-functions.html
https://d2l.ai/chapter_attention-mechanisms-and-transformers/attention-scoring-functions.html

Vision Transformer - ViT

The transformers were at first designed for machine translation tasks. They were further
developed for global NLP tasks before slowly being adapted to vision. However, most works kept
using a CNN architecture as backbone and simply added attention on top, until the paper by
[Dosovitskiy et al., 2020]. The authors of this work used a basic Transformer that they tried to
modify as little as possible while still making it work on images.

The most important modification concerns the way the images are fed to the Transformer.
For NLP tasks, inputs are split into tokens, then fed one by one to the network as a sequence. A
similar split is performed on the images, with patches of dimension P × P being extracted from
the original images. Those patches are then passed through a linear projection in order to make
them into vectors of constant size, as required by the Transformer architecture. Those vectors
form a sequence, to which is added at the end an indication about the class of the image from
which they were obtained. Finally, the final embeddings are obtained by adding to the current
sequence 1D position embeddings that inform of the order of the patch in the sequence of all
patches, similarly to the way information about the place of a token in the sentence would be
furnished in NLP tasks.

Unlike CNNs, built for vision, Transformers lack some of the characteristics specific to vision
tasks (called inductive bias) such as the locality principle or the translation invariance. Despite
this, the authors have also decided to use as little as possible the 2D structure of the input
images, and as such, to learn image characteristics from the input data only, during training.
Their model still shows great results, outperforming some state-of-the-art CNNs, when trained
on enough data. Indeed, as a consequence of this absence of inductive bias, ViTs need a lot of
data to be able to reach good results.

Figure 2.11: ViT model. Credits: [Dosovitskiy et al., 2020]

DeiT

DeiT was proposed in [Touvron et al., 2021] as a way to mitigate the issue noticed in ViT:
the need for a very large amount of data. DeiT models are designed such that their training is
efficient, they don’t require too much data (Data-Efficient) and they have a reasonable amount
of parameters.

The particularity of DeiT, that differentiates it from ViT, is the way it is trained. It uses a
technique that the authors have called distillation through attention. Distillation consists in using
a network as a teacher to train another network, the student. This allows the student model
to get insights about a task from the teacher while keeping a smaller dimension/complexity
than the teacher. In this paper, two settings are proposed, with two choices each. The first

14

setting is the ‘strength’ of the distillation, with soft or hard distillation. Soft distillation uses the
probability distribution of the teacher output and compares it with the probability distribution
of the student using the KL divergence. Hard distillation takes the final prediction of the teacher
as the input true label and uses the Cross-entropy loss on it. Both still use the ‘real’ true label
with Cross-entropy and combine their own computation with it.

Figure 2.12: Distillation token process.
Credits: [Touvron et al., 2021]

The second setting is the application of the dis-
tillation with the choice between a classical dis-
tillation and a new one, called Distillation token.
It consists in appending to the class token and
patches that are to be fed to the model an ad-
ditional element, the distillation token. The dis-
tillation token will interact with all the patches
during the passage through the network. It
could be think that it would lead to the same
result as the class token as they both represent
the label but the class token’s objective is to
match to the true label while the distillation to-
ken objective’s is to match to the output of the
teacher network. A classical distillation would
only use one token that it would match to the
teacher output.

DeiT is also used as a feature extractor in this thesis, with its last layer removed and replaced
by one fitting the number of features wanted.

2.3.3 From CNN to Transformers

Both CNNs and transformers have proven good at vision tasks. It is based on that principle
that the authors of this paper [Wu et al., 2021] have created CvT. CvT is based on ViT but with
convolutional elements added. Those convolutional elements are added at two positions, after
breaking the original Transformer architecture into several parts to form a hierarchy.

The first position is at the very beginning, when splitting the images into tokens. The images
are split into tokens which are shaped into a 2D structure such that a 2D convolution can be
applied to them. Besides giving information on the spatial disposition of the tokens as well
as taking into account the locality component, this operation reduces the size of the input by
reducing the number of tokens.

The second position is inside the Transformer block, before the tokens are sent to the Multi-
Head Attention layer. In the original transformer, linear projections are used to obtain the Query,
Keys and Values from the input. In CvT, those linear projections are replaced by depth-wise
separable convolutional projections. These new projections allow once again to ‘encode’ local
spatial information into the model.

2.3.4 Auto-encoders

The last type of architecture used for feature extraction is the auto-encoder. The auto-
encoder is a useful technique to generate new data or learn how to best represent the data fed to
it. It does so by following the principle contained in the citation “What I do not create, I do not
understand” by Richard Feynman. It tries to recreate the original input from an intermediate

15

Figure 2.13: (a) CvT architecture (b) Convolutional Transformer Block.
Credits: [Wu et al., 2021]

representation and learns by comparing its creation to the original. It may be used for plenty
of different tasks, from dimensionality reduction to data generation. As such, several different
types of AE were designed: variational, denoising, contractive,...

The basic AE is composed of two components. The first one is the encoder that maps the
input to the intermediate representation in another space. The second is the decoder that makes
the opposite, it re-maps the intermediate representation to the original space. For deep AE, those
two elements consist of neural networks, with usually the decoder being built as the inverse of the
encoder. The AE is trained using a reconstruction loss. Such a loss has for objective to minimize
the difference between the reconstructed image and the original. For example, denoting by ||.||
the Euclidean norm throughout this thesis, the following loss

Ex∼p(x)[||x− g ◦ f(x)||2]

relies on the squared Euclidean distance between the reconstructed image and the original one.

The variational AE was proposed in [Kingma and Welling, 2022]. It tries to approximate
the posterior distribution of the input data which is often intractable. It does so by turning
the original inference formula into an optimization problem, and thus by trying to find the best
parameter to fit the real distribution using the KL divergence (variational inference). Formally,

ν∗ = arg maxνEq(z|x;ν)[log p(x, z)− log q(z|x; ν)]

For the architecture of the VAE, it translates to the use of two distinct networks. One
network, called inference network NNϕ, is used as an encoder to approximate the parameters of
the posterior q(z|x;ϕ) given the input data x. The second network, called generative network
NNθ, approximates the parameters of the likelihood p(x|z; θ) given the input z, sampled from
the approximated posterior.

Three different implementations of an AE are used as feature extractors and are described
in more details in Chapter 5.

2.4 Methods of interest

Feature extraction/image representation is a really specific task in DL and has led to the
establishment of concepts centered around finding the best vectors to represent an image. Unlike
in classification where probability distributions are used to compare the true labels to the pre-
dicted ones, those concepts rely on distance measures and rankings to evaluate the quality of a

16

representation. Therefore, those concepts were selected for the training of the feature extractor
component of the framework, instead of a more classic way of supervised training. The first
three following sections describe complete methods to train one of the architectures presented
in Sections 2.3.1, 2.3.2 and 2.3.3. All three sections are supervised training methods, except for
the the subsection Augmentive Contrastive Learning of the last section.

2.4.1 Deep Metric Learning

Basis

Deep metric learning (DML) is a method to train deep neural models to represent the input
data such that similar data have similar representations while dissimilar data have different
representations. As indicated by the name, it learns embeddings of the input images by using a
distance metric to quantify the (dis)similarity between two representations. It is directly based
on the pixels of the input images and aims to attribute big distances (in a general sense) to the
embeddings of dissimilar points and small distances to the embeddings of similar points.

It is a method that works with all types of training: supervised using the labels to determine
the similarity, semi-supervised where only the similarity between the data points is specified,
and unsupervised where nothing is known about the data. It has several applications8: data
visualization (t-SNE [van der Maaten and Hinton, 2008]), classification (k-nearest neighbor or
[Lu et al., 2015]), clustering ([Nguyen et al., 2020]), face verification ([An et al., 2021]), retrieval
([Zhong et al., 2021],... and has been the subject of countless publications ([Kaya and Bilge, 2019]).
It is the ‘default’ concept used to train the feature extractors for a retrieval framework as CBIR’s
whole concept is based on image similarity and how to display images the closest to a query image.

DML is characterized by three elements9:

• A feature extraction neural network

• A sampling strategy

• A similarity function or distance-based loss

Multiple components have been designed for each of those categories, with countless papers
fitting DML to their specific application or situation by adding a new element to the long list of
already existing possibilities. On top of that, DML has led to the establishment of ‘sub concepts’
which restrict the choices in each category to a certain type of elements. The two next sections,
2.4.2 and 2.4.3, present two of them: Deep Ranking (DR) and Contrastive learning (CL). While
they are part of DML, they will be discussed separately. Consequently, in the following, when
the term DML is used, it will not refer to those two specific sub-concepts or their elements but,
instead, to what is covered in this section. The rest of this section describes the selected elements
used as part of this work for the DML concept.

Feature extractor

The feature extraction network can be any neural network that leads to embeddings of the
wanted size. For this work, it consists of the architectures described in 2.3.1 (ResNet - DenseNet
- EfficientNet - KimiaNet), 2.3.2 (ViT - DeiT) and 2.3.3 (CvT).

8Credits: ‘Similarity and Distance Metric Learning with applications to computer vision’by Aurélien Bellet
and Matthieu Cord at the ECML/PKDD 2015 and [Lu et al., 2017]

9Source: ‘A Beginners Guide to Deep Metric Learning’ - Vijaysinh Lendave - November 6th, 2021

17

http://researchers.lille.inria.fr/abellet/talks/metric_learning_tutorial_ECML_PKDD.pdf
https://analyticsindiamag.com/a-beginners-guide-to-deep-metric-learning/

Sampling strategy

The sampling strategy consists in creating batches of input data that will be processed to-
gether by the model. Those batches are created such that the chosen distance metric/loss has
all the information and elements it needs, such as which inputs are considered similar or not.
Several strategies have been devised in order to create the most informative batches possible.
The sampling strategy is directly linked with the loss as different losses need different types of
batches. Hence, they will be presented alongside the losses right after.

Losses

DML uses what is called ranking losses10. Ranking losses have for purpose to rank the
inputs given a specific task/target. With DML, they use a distance metric to make that ranking
combined with information about how to compare those distances (which inputs are similar and
which are not). They quantify the similarity of the input either to another input (margin-based
losses, triplet, or pair losses) or to a proxy (proxy-based/classification loss)11. Margin-based
losses are losses that basically subtract the embeddings of two inputs and compare the result to
a defined margin. If the inputs are considered similar, then the result must be below the margin,
else, it must be above. Proxy-based losses build representative vectors (= proxies) for each class.
They will then try to get each input vector close to the proxy of the same class and far from
the others. Proxies are randomly initiated and then updated during training. Triplet/pair-based
losses will be discussed with DR and CL. One Margin loss and three Proxy-based losses are
described in this Section.

Margin Loss

A basic Margin loss was proposed in [Wu et al., 2017] alongside a sampling strategy best
suited to it. The loss is a mix of the Contrastive loss for efficiency and the triplet loss for
flexibility. It tries to get positive samples close to one another with a tolerance (less strict than
the contrastive loss) and separated from negative samples. Formally:
The distance measure is given by Di,j = ||f(xi) − f(xj)||. The relationship between inputs is
represented by yi,j = 1 if xi and xj are similar and −1 otherwise.

The margin loss is thus defined as lmargin(i, j) := (α + yi,j(Di,j − β))+, with α a param-
eter controlling the value of the margin separating similar and dissimilar inputs and β a pa-
rameter setting the value of the boundary between the two. β is learned using the gradient
∂βl

margin(i, j) = −yi,j1{α > yi,j(β −Di,j)}

The margin loss needs the yi,j to be specified. As such, the sampling strategy must furnish the
inputs as a list of triplets: one input (anchor), a similar sample from the same batch (positive),
and a dissimilar one (negative). The sampling strategy discussed in the article is called Distance
Weighted Sampling. It only focuses on the sampling of the negative elements as it has been shown
that the selection of the negative part of the triplet has the most impact. The positive sample
is simply a randomly selected sample from the batch, of the same class as the anchor.

To select the negative sample n to form a pair with a given anchor a, the strategy relies
on probability-based drawing. The vectors embeddings are constrained to a k-dimensional unit
sphere, which makes the distribution of the distances between two samples be q(d) ∝ dk−2[1 −
0.25d2]

k−3
2 . This distribution gives the weights used when sampling, with Pr(n∗ = n|a) ∝

min(λ, q−1(Da,n)), with a the anchor, n a sample of the batch and n∗ the sample considered to
10Source: ‘Understanding Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, Hinge Loss and all those

confusing names’ by Raul Gomez and ‘Deep learning - loss functions’ by Bernhard Kainz
11Source: [Kobs et al., 2021]

18

https://gombru.github.io/2019/04/03/ranking_loss/
https://gombru.github.io/2019/04/03/ranking_loss/
https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/losses.pdf

form the negative element of the pair. The parameter λ is used as a regularization term to avoid
‘noisy samples’.

Basically, the furthest two samples are, the smallest q−1(Da,n) is and the least probable it is
that those two samples form a pair. Distance Weighted Sampling makes it likelier to sample the
hardest pairs (i.e. samples not that far from each other) while not constraining it.

ProxyNCA++

Introduced in [Teh et al., 2020], it improves the original ProxyNCA loss using six enhance-
ments.

ProxyNCA is based on Neighborhood Component Analysis (NCA) whose objective is to
minimize the probability that two data points of different classes be neighbors. Defining pij =

−||xi−xj ||2∑
k ̸=i −||xi−xk||2

as the probability of xi and xj being neighbors, NCA’s objective is given by

LNCA = − log

(∑
j∈Ci

exp(−||xi − xk||2)∑
k/∈Ci

exp(−||xi − xk||2)

)

ProxyNCA adds proxies to that process in order to reduce the computation time. Instead of
comparing each sample with all the others of the batch, it compares it to the proxy representing
the class of the sample under consideration. The loss becomes

LproxyNCA = − log

 exp

(
−
∥∥∥ xi
||xi|| −

f(xi)
||f(xi)||

∥∥∥2)
∑

f(z)∈Z exp

(
−
∥∥∥ xi
||xi|| −

f(z)
||f(z)||

∥∥∥2)

with f(a) the function returning the proxy of the same class as a and Z the set of proxies of
different classes than the sample. To optimize that loss, ProxyNCA is built using three blocks:
a backbone architecture (any neural network, taken pre-trained), an embedding layer (randomly
initialized), and proxies (randomly initialized).

ProxyNCA++ adds to the blocks of ProxyNCA:

• a global Max Pooling layer attached to the backbone model

• Layer normalization after the backbone model

• Balanced sampling in the creation of the batches of input data. NC classes are selected
and an equal number of samples from each of those classes is taken to make the batch.

• Fast-moving proxies. The learning rate used in the learning of the proxies is set higher
than the learning rate of the rest of the model.

• Proxy assignment probability. ProxyNCA++ maximizes the probability of a data point
being assigned to its class proxy. The difference with ProxyNCA is that ProxyNCA was
trying to maximize the ratio of the distance of a sample and its proxy and the distance of a
sample and the other proxies, while ProxyNCA++ maximizes the assignment probability
directly.

• Temperature scaling. Temperature scaling, qi =
exp(yi/T)∑
j exp(yj/T) , is added to the loss function

with the distance in order to refine the boundary.

19

The loss is then given by (with A the set of all proxies):

LproxyNCA++ = − log

 exp
(
−
∥∥∥ xi
||xi|| −

f(xi)
||f(xi)||

∥∥∥ · 1T)∑
f(a)∈A exp

(
−
∥∥∥ xi
||xi|| −

f(z)
||f(z)||

∥∥∥ · 1T)

Normalized Softmax

The Normalized Softmax loss, presented in [Zhai and Wu, 2019] is similar to the Prox-
yNCA++ loss, the difference being the distance metric used. Normalized Softmax uses Cosine
distance instead of Euclidean. The loss is expressed by

LNormalizedSoftmax = − log

(
exp(xTi f(xi) · 1T)∑

f(a)∈A exp(xTi f(a) ·
1
T))

)
using the same notation as in ProxyNCA++. The sampling strategy is also kept identical to the
one of PRoxyNCA++ (balanced sampling).

SoftTriple

This loss is described in [Qian et al., 2019]. It is inspired by both the SoftMax loss and the
triplet loss.

The softmax loss is a classification loss. It maximises the conditional probability of the output
label given the embedding of the input:

lsoftmax = − log
exp(wT

yixi)∑
j exp(w

T
j xi)

with [w1, ..., wC] representing the last FC layer (C is the number of classes) and yi corresponding
to the label of xi.

The triplet loss is a loss that pushes embeddings of similar samples closer and embeddings
of dissimilar samples further. It is expressed as

ltriplet(xi, xj , xk) = [ρ+ xTi xk − xTi xj]+

with xi and xj considered similar, xi and xk dissimilar and ρ is the margin.

SoftTriple comes from adding K centers per class. Those centers define new similarity
measures and constraints. The similarity between the sample xi and the class c is given by
Si,c = maxk x

T
i w

k
c , with wj

c (j = 1, . . . ,K) the centers. The constraint is defined by

Si,yi − Si,j ≥ ρ ∀j with j ̸= yi

From those formulas, a relaxed similarity is designed with S ′i,c =
∑

k

exp(1
γ
xT
i wk

c)∑
k exp(1

γ
xT
i wk

c)
xTi w

k
c which

is in turn used in the definition of the SoftTriple loss:

lSoftTriple(xi) = − log
exp(λ(S ′i,yi − ρ))

exp(λ(S ′i,yi − ρ)) +
∑

j ̸=yi
exp(λS ′i,j)

The final form is obtained by introducing a Regularizer after making the number of clusters
adaptive. The regularizer is given by R(w1

j , ..., w
K
j) =

∑K
t=1

∑K
s=t+1

√
2− 2wsT

j wt
j leading to the

final form:

min
1

N

∑
i

lSoftTriple(xi) +
τ
∑C

j R(w1
j , ..., w

K
j)

CK(K − 1)

It is also combined with the same sampling as the two previous proxy losses.

20

2.4.2 Deep Ranking

Deep ranking was introduced in [Wang et al., 2014]. The authors were concerned about
finding a method to rank images based on their similarity to a given query. They wanted the
images to be ranked based on what they really contain rather than simply on their label, making
the distinction between fine-grained similarity and category-level similarity. As a result, they
could not rely on classification models as they would not be able to look past the labels of the
images. Instead, they designed the Deep ranking method. It is a DML method but with a fixed
loss, and fixed backbone structure.

The paper uses the squared Euclidean distance between the embeddings as the similarity
measure. The input images are processed as triplets, with a triplet ti = (xi, x

+
i , x

−
i) being

formed with the anchor image or query xi, a positive image x+i and a negative one x−i . The goal
of the model is to find an embedding f(.) such that

∥f(xi)− f(x+i)∥
2 < ∥f(xi)− f(x−i)∥

2,

∀xi, x+i , x
−
i such that r(xi, x

+
i) > r(xi, x

−
i)

with r(xi, xj) the so-called pairwise relevance score. This score measures how much two images
are similar and requires an expert knowledge to evaluate these values.

The objective here is to find an embedding that minimizes the distance between similar pairs
compared to dissimilar pairs.
This leads to the definition of the objective function,

min
∑
i

ξi + λ||W||2

s.t. : max{0, g + ∥f(xi)− f(x+i)∥2 − ∥f(xi)− f(x−i)∥2} ≤ ξi

∀xi, x+i , x
−
i such that r(xi, x

+
i) > r(xi, x

−
i)

with λ a regularization parameter, W the parameters of the feature extraction model and g a
gap parameter (which impacts the distance between the negative and positive pairs). Note that
the left part of the first constraint is the Hinge Loss for a triplet.

To process the input data by triplets, the backbone model consists in repeating three times
the same network, in parallel (Figure 2.14). It computes the embeddings of each image composing
the triplet before giving them as input to the ranking part. That part simply computes the loss
and back-propagates the resulting gradient to the model. The network is composed of a CNN to
which two shallow networks have been attached (Figure 2.15). The shallow networks are made
by a subsampling layer followed by a convolutional and a max pooling layer, and finished by a l2
normalization layer. The outputs of the three parts are embedded together before going through
one last normalization.

The last element presented in that paper is the sampling strategy used to make the triplets
of images. It is not feasible to consider every possible combination due to the number of input
images. Instead, they establish a process that selects the most important triplets. The first step
is the selection of the anchor image. It is based on what they call the relevance score

ri =
∑

j:cj=ci,j ̸=i

ri,j

where ri,j = r(xi, xj). The relevance score is a value attached to an image in order to characterize
how it relates to the other images of the same label. The highest this value is, the likelier it is

21

Figure 2.14: Structure of the deep
ranking model.
Credits: [Wang et al., 2014]

Figure 2.15: Structure of the backbone model. Credits:
[Wang et al., 2014]

that the image will be chosen as the query. Then, the positive image x+i is selected from the
same category as the anchor such that the images with the highest pairwise relevance to the
anchor are more likely to be selected. For the negative image x−i , it is also selected from the
same class as the anchor (in-class sample). Like for the positive sample, the highest the pairwise
relevance score between the negative image and the anchor, the likelier this image is selected.
However, there is a need to have enough difference between the score of the positive/anchor
pair and the score of the negative/anchor pair, which is enforced using a threshold value. This
sampling is possible because the images have been hand-annotated and ranked which makes the
values r(xi, xj) known. In our work, such scores are not available. As such, the sampling had
to be adapted and a simple random sampling is used. With this sampling, the positive image is
selected at random from the same class as the anchor and the negative is randomly taken from
the images of all the other classes.

2.4.3 Contrastive Learning

Contrastive learning 12 is another branch of DML that consists in using pairs or triplets of
inputs to learn embeddings that discriminate well between similar and dissimilar samples. It
relies on comparisons between a query image and a positive or/and a negative image to learn
the embeddings, based on how ‘humans’ process images: when seeing two images of cats and
one of a dog, we intuitively know that the cats are similar and different from the dogs, and are
capable of distinguishing which features differentiate them. As triplet comparisons were already
explored in the previous section, only pairs will be considered for this technique. This restricts
the possibilities for the elements characteristic of a DML system to the following categories:

• A siamese Network

• A pair sampling strategy

• A pair-based loss

This does not however prevent the existence of multiple options in those smaller categories, de-
pending again on the specific task the concept is applied to. For example, in [Wiggers et al., 2019],
a Siamese Network constituted of two AlexNet is used with a sigmoid cross entropy loss to do

12Source: Towards Data Science - Understanding Contrastive Learning - by Ekin Tiu and [Le-Khac et al., 2020]

22

https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607

image retrieval and pattern spotting. In [Wang et al., 2023], custom encoders are combined with
InfoNCE loss for WSI image retrieval. Contrastive learning can also be used in a supervised or
unsupervised fashion. Indeed, as the methods work with pair of images, the only information
they need is those pairs and how their elements relate to one another (which is positive or neg-
ative). This is done through the pair sampling strategy that either uses labels to form the pairs
(‘basic’ contrastive learning) or dot not require them (Augmented Contrastive Learning).

Feature extractor

As the method is based on pairs of images, a specific structure is used, called Siamese Network.
To build a Siamese Network, a selected network is repeated twice, usually identically the two
times (same parameters and architectures, weights shared). This selected network can be any
deep neural network. For this work, it has been restricted to any of the architectures presented
in Sections 2.3.1, 2.3.2, and 2.3.3.

Losses

A wide range of losses exists to be used with CL. Four of them were selected based on a quick
review of the literature.

Contrastive Loss

This first loss is the most classic loss of contrastive learning, as indicated by the name. There
exist different definitions of it but one of the most recent was proposed in [Hadsell et al., 2006].
This article uses the contrastive loss with the objective of dimensionality reduction. They de-
veloped such a loss because they were in need of a way to make similar elements map to close
points in the new dimensional space while dissimilar elements would map to more distant points.

The loss is based on the Euclidean distance of the embeddings/feature vectors.

DW (xi, xj) = ||f(xi)− f(xj)|| := DW

with W the weights of the feature extractor, xi, xj the inputs and f(.) the embedding function.

Setting y = 0 if xi and xj are similar, y = 1 otherwise, the contrastive loss final expression is
given by

L(W, y, xi, xj) = (1− y)
1

2
(DW)2 + y

1

2
{max(0,m−DW)}2

with m a margin.
The first term of the right-hand side corresponds to the loss attributed to similar pairs (y = 0 so
1− y = 1), LS , while the second term corresponds to the loss attributed to dissimilar pairs, LD.
The margin limits the dissimilar pairs that can contribute to the loss. If the distance between
the two inputs of a dissimilar pair is too big, then the term m−DW will be negative and 0 will
be picked, making the total loss null. This is the wanted behavior because if the distance for a
dissimilar pair is big it means that the model does well in separating dissimilar inputs and it does
not need to be further corrected. Note that LD is required in order for the model not to collapse.
Without it, a trivial solution for minimizing the loss would be to get the same embedding for all
input (f(.) constant) which would lead to a dimensional collapse.

Cosine Embedding loss

While the Euclidean distance stays one of the most common distances used in similarity
computation, another renowned one is cosine similarity:

similarity = cos(xi, xj) =
xi · xj
∥xi∥∥xj∥

23

The cosine loss has been designed based on that distance and used in several papers such as
in [Nguyen and Bai, 2010]. There exist again several definitions of this loss. In this work, the
definition used is quite similar to the formula of the contrastive loss but adapted to the cosine
distance, and based on PyTorch implementation13.

Setting y = 1 if xi and xj are similar and y = −1 otherwise, the loss is given by

lCEL =
1 + y

2
(1− cos(f(xi), f(xj))) +

1− y

2
max(0, cos(f(xi), f(xj))−m)

with m a margin and f(.) the embedding function. The first term of the right hand-side is
again the loss corresponding to similar pairs while the second term is the loss corresponding to
dissimilar pairs. It can be seen that the same type of clipping of the distance to 0 is observed
when the distance of the dissimilar pair is too big (the highest the distance, the smallest the
cosine). The advantage of that loss compared to the previous one is the limitation of the value
that can take the loss, as the cosine is limited between −1 and 1.

Binary Cross Entropy Loss

Cross entropy is a commonly used loss in deep learning, especially in classification tasks.
Binary cross entropy is a specification of that loss when only two classes are present in the
dataset. It can be easily adapted to similarity computation by setting the ‘binary category’ to
similar-dissimilar and feeding to the sigmoid function the distance values. Basically, the loss is
obtained following the definition of the Binary cross entropy:

lBCE =
1

N

N∑
k=1

(1− yk) log(1− p(yk)) + yk log(p(yk))

where the yk are defined as yk = 1 if the kth pair (xi, xj) is dissimilar, 0 otherwise and the p(yk)
are defined as p(yk) = sigmoid(D) with D the Euclidean distance.

Similarly to the two previous losses, the first term represents the loss associated with a
similar pair while the second term represents the loss associated with a dissimilar pair. Indeed,
if a dissimilar pair has a big distance, then the sigmoid will output a value close to 1 which, once
put into the log, will give zero and cancel the loss.

InfoNCE loss

The infoNCE loss14, or Noise Contrastive Estimation of mutual information, uses the principle
of mutual information. Mutual information is interesting for similarity tasks as its value directly
relates to the similarity of two inputs. Indeed, mutual information is defined as the amount
of information that two variables share or the degree of dependency between two variables15.
Hence, two variables that are similar will be more dependent than two variables that are not and
will have a higher mutual information value.

Several works in CL have been using mutual information-based losses to train their models.
In those, InfoNCE is quite a popular implementation, being used notably in [Chen et al., 2020]
and [van den Oord et al., 2019].

Multiple variations of this loss have been proposed. The one used in this work, called NT-
XentLoss, is obtained through the following formula:

Lq = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

13Cosine embedding loss - pytorch
14Info NCE - Papers with code
15Sources: Medium - A deep conceptual guide to mutual information and Information and coding theory lecture

- 2022

24

https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
https://paperswithcode.com/method/infonce
https://medium.com/swlh/a-deep-conceptual-guide-to-mutual-information-a5021031fad0
https://people.montefiore.uliege.be/lwh/Info/
https://people.montefiore.uliege.be/lwh/Info/

where q represents the parameters of the models, k+ is the cosine similarity of the positive pair,
and ki is the cosine similarity of a pair. τ is an additional parameter called the Temperature.
Note that the cosine similarity is not only computed between the different views of a single image
but also between all views of all images (two views of different images will create a negative pair).

In order to work, the NT-Xent loss requires the presence of at least one positive sample per
anchor image. As pair-based contrastive learning leads to half the pairs being only composed of
the anchor and a negative sample, it will not be possible to combine it with the NT-Xent loss.
As a result, for this loss, it will be used with a triplet network (like in Deep ranking but without
the two shallow networks).

Sampling strategy

As in deep ranking, several strategies exist to form pairs of inputs. For feasibility reasons,
due to the lack of pairwise ‘similarity score’ in the dataset, the creation of the pairs relies on
random draws. However, two situations must still be distinguished. The first one corresponds
to a classic application of contrastive learning while the second is the Augmented contrastive
learning mentioned earlier. On top of that distinction, there is also a second one that must be
taken into consideration. Contrastive learning is based on pairs of inputs, both negative and
positive pairs. One of the parameters to set in the sampling strategy is the proportion of each
type to make. In one specific case, called Non-Contrastive Learning, the proportion is set to 0-1,
with only positive pairs being made.

Non-Contrastive learning is explained in [Tian et al., 2021]. It has been introduced following
the realization that the selection of the negative pairs could have a tremendous impact on the
results. If the mining of the pairs fails to take into account some characteristics or links between
the inputs, and wrongly put dissimilar inputs into similar pairs, then the model will learn to put
together the dissimilar pairs which is the opposite of what is hoped for. As a result, it was decided
to learn a representation based only on positive pairs. However, negative pairs are required to
avoid what is called dimensional collapse which is what happens when the solution is so trivial
that only a very small subset of the embedding space is taken. To avoid that and still only use
positive pairs, two elements are added to the architecture: a stop gradient and a predictor. The
method uses two networks, one of them being the predictor and the other the target. Those
networks are then trained such that their outputs would be identical. The stop-gradient element
intervenes in the training of the target network. The target network cannot be trained using
gradient descent as it has been shown that it was the gradient propagation through the target
network that was leading to dimensional collapse. The stop gradient is thus placed such that
the gradients are not propagated to it and its weights are updated based on the weights of the
predictor network, through different techniques depending of the model (Exponential moving
average for example).

With those distinctions explained, the end of this section is presenting the sampling strategies
of interest.

‘Supervised’ Contrastive Learning

To create the pairs, each image of the batch is used as an anchor once. The positive image
is randomly selected from all the images of the dataset of the same class as the anchor. The
negative image is randomly selected from all the images of the dataset with a different class
than the anchor. If the anchor has an even index in the batch, then the returned pair is positive,
otherwise, the returned pair is negative. This leads to a proportion of 50-50 between the negative
and positive pairs.
In addition to that sampling, for two experiments on the dimensional collapse effect, the propor-
tion is changed to 0-100 with only positive pairs being returned.

25

Augmented Contrastive Learning

To create the pairs, ACL does not rely on the labels of the images. Instead, it applies
different transformations to the anchor image in order to create different views that are then
used as positive sample and/or as anchor. When negative pairs are created, the negative sample
is randomly drawn from the rest of the images of the dataset, regardless of their class.

Several transformations as well as ways to apply the transformations (= pipeline) have been
devised over the years16. Three different ways are presented in the following.

1. Unique. This way is the simplest way of creating a pair. The transform is applied to the
anchor in order to generate a positive sample. The positive pair is then formed with the
original anchor.

2. AMDIM (Augmented Multiscale Deep InfoMax). This pipeline is introduced in [Bachman et al., 2019],
alongside a complete framework for representation learning, of same name. As indicated by
the name, this framework uses the principle of mutual information to learn representations
of the input data. The mutual information is computed on the representations of two views
extracted from the same input image. The creation of those views is done by the AMDIM
pipeline. The idea behind this pipeline was actually introduced in [Dosovitskiy et al., 2016].
In this paper, a set of transforms are defined and a vector containing the values of each of
their parameters is randomly initialized a certain number of times. One set of transforms
per parameter vector is applied to the initial image to give a new view of the image and
lead to a set of transformed patches. In AMDIM, the parameters of the transforms are
fixed and they are applied only two times, to make the anchor and the positive sample.

3. CPC (Contrastive predictive coding). This pipeline is used in a representation learning
framework of same name, presented in [van den Oord et al., 2019]. It is also based on
mutual information combined with a prediction model. The CPC pipeline is used to process
the input image such that it can be used by the model in the correct format. The input
image is split into overlapping patches and the patches are then fed one by one to the
model and then used to predict future image patches. This pipeline was slightly adapted
to form pairs of data to be used in contrastive learning with the anchor and the positive
sample being one of the patches of a given image and the negative sample being a patch
from another image.

Several works have been based on the AMDIM pipeline and offer slight variations of it. Two of
them are presented in Section 3.4 of Chapter 3, one for ACL and one for ANCL.

16Sources: A Framework For Contrastive Self-Supervised Learning And Designing A New Approach - William
Falcon, Medium, 2020 (based on [Falcon and Cho, 2020]) and Self-Supervised Learning - Part 3: The idea of
Amdim and comparison with two other contrastive learning approaches, 2021.

26

https://towardsdatascience.com/a-framework-for-contrastive-self-supervised-learning-and-designing-a-new-approach-3caab5d29619
https://towardsdatascience.com/a-framework-for-contrastive-self-supervised-learning-and-designing-a-new-approach-3caab5d29619
https://insights.willogy.io/self-supervised-learning-part-3-the-idea-of-amdim-and-comparison-with-two-other-contrastive-learning-approaches/
https://insights.willogy.io/self-supervised-learning-part-3-the-idea-of-amdim-and-comparison-with-two-other-contrastive-learning-approaches/

Chapter 3

Theory linked to CBIR

3.1 Content-based Image Retrieval

3.1.1 Introduction

Content-based image retrieval (CBIR) is a task that consists in retrieving from an image
database the images the closest given their content to a given image, called the query. CBIR is
a really global task in the sense that it involves a lot of aspects of the computer science field.
The algorithms for the search and representation of the images are part of the AI, ML, and DP
branches of computer science. The indexing of those representations calls to notions of database
and data management. In order for the system to be operational and usable, it must be effective
which requires basics in optimization, infrastructures, and distributed systems. In our work, it
is the first aspect that is under investigation. The efficiency of the system is also taken into
account but more for the efficiency of the different algorithms and models used.

As stated in Chapter 1, a CBIR framework is composed of two big sections. The feature
extraction or representation learning part composes the first section while the indexing and
search operations compose the second section. The architectures and methods used to realize
the first section have been introduced in 2. They have for purpose to lead to a model that
returns a vector of features as a representation for an image. It is the section on which our
work experiments the most as it is also the section that requires the most use of AI/DP/ML.
The second section is built upon those feature vectors. They are the elements indexed in the
database as well as the elements onto which the similarity computation is executed. The methods
and infrastructures used for it are described in the following sections, Section 3.3 and 3.2.

For the use of the CBIR framework, i.e. the CBIR process, it can be split into three ‘opera-
tions’, strongly linked to the two sections composing the framework, and represented in Figure
3.1. Each of those operations can be again subdivided into smaller time steps/operations.
The first operation makes the CBIR framework operational. It is the training of the feature
extractor. The training can be separated into 5 actions (Figure 3.2). Two are related to the
preparation of the data to be fed to the model: Dataset creation and Data processing. Two
are related to the building of the model: Model acquisition and Model alterations & parameters
setting. The final step is the training itself.
The second operation is the indexing of the data in the database. It can be split into 5 actions
(Figure 3.3). The first two actions consist in obtaining the elements to be indexed in the database,
Data processing and Feature extraction. In parallel, the database is initialized and activated (3rd

action). Then, the vectors are indexed into the database and the related structures. The fifth
and last action is optional. The index of the database can be trained to make the search more

27

Figure 3.1: Scheme of the CBIR process

efficient, at a small cost of accuracy.
The third operation is the retrieval itself. It is composed of 3 to 4 actions (Figure 3.4). The first
two are the same as for the indexing, with the acquisition of the feature vector of the query. This
vector is then given to the database where similarity computations based on the selected search
algorithm are executed. An additional step, when the purpose of the retrieval is the evaluation
of the CBIR framework, is the assessment of the results through quantitative measures and/or
qualitative tests.

Figure 3.2: Training process Figure 3.3: Indexing process Figure 3.4: Retrieval process

3.1.2 Evolution & frequent elements

CBIR is a concept that has been researched for a very long time due to its many uses,
especially for commercial purposes (e.g. recommendation systems). During this time, CBIR has
reflected the evolution seen in the technologies and the concepts, with different approaches being
used at different times. On top of the diversity brought by the evolution of the technique, CBIR
has also shown a wide variety in the options/elements of the systems conceived for that purpose.
It is neither feasible nor in the scope of this project to track and list all the different architectures
and techniques used for CBIR. Instead, a brief description of the general state of the field, with
its evolution and its most popular elements is proposed in the following.

The biggest shift that has been observed in CBIR frameworks is the way the features are
retrieved from the images ([Kumar et al., 2013]).

28

The earliest works were more focused on what is called local or low-level features ([Dewan and Thepade, 2020]).
Those features were in a way manually extracted from the images. It was specified to the
model which type of features it had to extract such as color [Jain and Vailaya, 1996], shape
[Jain and Vailaya, 1996], texture [Manjunath and Ma, 1996], edge,... Some works ([Singh and Srivastava, 2017])
also use slightly more intricate features through derivation and manipulation (color moments,
skewness, fusion,...) of the lowest-level features. The techniques used to retrieve such features
vary too. In [Jain and Vailaya, 1996], it uses histograms of color and of edge directions. They
build the histograms for each image and the similarity is obtained by computing the Euclidean
distance of the intersection of the histograms of the query with the histograms of the images.
In [Manjunath and Ma, 1996], a filter based on the Gabor wavelet transform is used to retrieve
coefficients at different scales. The mean and standard deviation of the magnitude of the coeffi-
cients are then used as features. The vector of the query and an image are then compared using
the sum of the absolute values of the differences between each of their elements, normalized. In
[Bay et al., 2006], a new model called SURF is introduced. It is used to extract local features
such that they are invariant to scale and image rotation. Two aspects are mainly considered, the
detector (where in the image to extract features) and the descriptor (the feature vector to build).
The descriptor is based on the Hessian matrix while the descriptor is obtained through the use
of wavelets and Gaussian filters. Other techniques include the use of Zernik/Chebyshev/... mo-
ments, Fourier transforms, different thresholds or filters for pattern recognition, bag-of-words,
quantizations, SIFT features extractor, etc.
For local features, the most renowned techniques found in CBIR frameworks are the SIFT and
SURF extractors, sometimes combined with a bag-of-words technique. Histograms and moments
are also widely used but in even earlier works. The search and retrieval method associated is
frequently a brute-force search algorithm followed by a ranking based on the computed distances.

With the advances in deep learning, this tendency shifted to the extraction of global or abstract
features, which are of a higher level than the features obtained through the previous methods.
Those features are obtained through the use of a deep neural network as the feature extractor.
In [Minarno et al., 2021], an autoencoder using a CNN as backbone learns how to represent the
input images. The latent representation is then used as the feature vector. The similarity is
then computed by taking the Euclidean distance between the vector of the query and the vector
of another image. In [Chen et al., 2022], a self-supervised model, SISH, is introduced. It works
on WSI and uses K-Means clustering to split them into patches. The patches then go through
two models. The first one is a Vector quantized-Variational AutoEncoder (VQ-VAE) that is
used to produce an integer representing the index of the patch. The second is a DenseNet121
that produces feature vectors, later binarized. Those values are put into a Van Emde Boas tree
that is used during the search (a variation of nearest neighbor based on the Hamming distance).
In [Zheng et al., 2021], a new deep metric learning model is proposed, using a relational mod-
ule. First, a CNN extracts a feature vector from an image. This feature vector is then passed
through K fully connected layers that extract a specific individual feature. Those individual
features represent both intra and inter-class variations. The CNN is trained using classic deep
metric learning methods. To train the layers, an autoencoder-like training is put in place, with
the inverse architecture built to reconstruct the original feature vector and a reconstruction loss
comparing them. Three such networks are placed in parallel, with weights shared. The first one
gets the individual features while the others are used to retrieve relations between the features
using the relational module. All the information is put together in a graph, with the individual
features being the nodes and the relations the edges. Based on that graph, an embedding is
conceived for each image. Euclidean distance is used as metric during the retrieval process.
Globally, CNNs and transformers are popular architectures for feature extraction and are gen-
erally trained using deep metric learning and its sub-fields (CL and DR). Autoencoders are also
a popular choice when labels are not available. For the search method, tree-based methods are
used in the big majority of the cases, with k-nearest neighbors being the favorite.

29

Some works also add a dimensionality reduction step after the feature extraction, through
the use of PCA, hashing, or other coding techniques.

3.2 Search algorithms and indexing

An important consideration in CBIR is how to search in the database of images for the most
similar ones.

Similarity search is different than a traditional search operation. In the first instance, the
complexity of the search operation is linked to the indexing of the data in a chosen structure. In
the second instance, the search algorithm is the key to the success of the operation. Indeed, in
the second case, the goal of the search is to find a specific element, that is known. In our case,
the goal is to retrieve the most similar element to a given query, but the searched element is not
known before checking all available ones. By default, the most accurate search in such a case
is the brute-force search, which consists in browsing through the entirety of the content of the
database and computing the similarity to the query for each element. However, at the cost of
some accuracy, the data may be placed in the database in a way such that the search operation
would only need to access some elements and not all. Hence, the time efficiency of the whole
operation is improved.

A similarity search method must compromise between accuracy and efficiency. It must pro-
vide three essential elements: the indexing method, the similarity distance, and the search algo-
rithm. Given the problem it addresses, these elements must satisfy different requirements such
as efficiency, accuracy, memory footprint, scalability,...

The similarity search field is quite active, with many publications proposing indexing systems
for efficient search. For example, in [Maliki et al., 2019], they define a method named GNAT -
Geometric Near-neighbor Access Tree. This method consists in building a tree that partitions
the embedding space. Images whose embeddings are similar are close in the tree. The retrieval
is then done by executing the k-nearest neighbors algorithm on the tree. Diverse libraries1 have
been established in different programming languages to offer such services. In our work, the
FAISS library was selected based on the work in [Defraire, 2021] as well as further research after
which the other possibilities did not appear to bring further advantages.

3.2.1 FAISS

FAISS is a library designed for similarity search through the implementation of several in-
dexing methods and associated search algorithms based on nearest neighbors search2. It was
introduced in [Johnson et al., 2017]. It was conceived as a response to the need for a system
that is based on vector representations and capable of handling very large datasets. As such,
it provides a speed and memory-optimized, vector-based indexing structure. It is capable of
handling a large number of vectors, vectors that can be high-dimensional without disturbing the
process. The structure can be used alone (in-memory database) or combined with compatible
databases. Finally, it is highly customizable, with several indexing methods proposed, different
search algorithms, and similarity measures.

Four backbone indexing techniques are proposed3, leading to 30+ indexing structures by
varying the combinations, similarity measures, and search algorithms.

1These two websites: github - Awesome vector search and Libhunt - Faiss alternatives offer a selection of such
libraries

2Sources: Engineering at Meta - ‘Faiss: A library for efficient similarity search’, March 2017 and Medium - ‘I
used FAISS, so you don’t have to’, July 2022, Kacper Lukawski

3Source: FAISS documentation

30

https://github.com/currentslab/awesome-vector-search
https://www.libhunt.com/r/faiss
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://lukawskikacper.medium.com/i-used-faiss-so-you-dont-have-to-ebfd9b3fd7e8
https://lukawskikacper.medium.com/i-used-faiss-so-you-dont-have-to-ebfd9b3fd7e8
https://faiss.ai

• Flat: The vectors are indexed in the database sequentially.

• Inverted index ([Sivic and Zisserman, 2003]): one vector represents a group of vectors. The
index is trained to form clusters of vectors through K-means clustering. One vector per
cluster is computed based on the vectors composing the cluster and acts as a representative.

• Product quantization ([Jégou et al., 2011]): the vectors are encoded using product quanti-
zation in order to reduce the memory needed for storage as well as the similarity compu-
tational time.

• Hierarchical Navigable Small World Graph ([Malkov and Yashunin, 2018]): a graph is built
based on the similarity between vectors. The search is optimized by simply passing through
the graph.

As part of this thesis, two indexing structures are used. The first indexing structure is
known as IndexFlatL2. It implements the first backbone technique and uses as the similarity
measure the Euclidean or L2 distance. The search algorithm is brute force, where all vectors
of the database are accessed in order to retrieve the k most similar. It is the basic index of
FAISS and also the most accurate as it does not approximate the search. Formally, with x a
query vector and yi, i ∈ [0, l] the vectors indexed in the database, the pairwise distance matrix
D = [||xj − yi||2]j=0:n,i=0:l is computed using the practical formula ||xj ||2 + ||yi||2− 2 < xj , yi >.
The second index is IndexIVFFlat. It combines the two first backbone techniques and also
uses the Euclidean distance as the similarity measure. The vectors are split into C clusters using
K-means clustering. The τ closest clusters are retrieved by comparing the query to the centroids:

LIV F = τ -argminc∈C ||x− c||2

The vectors of the retrieved clusters are then compared through brute search like in a flat index.

3.3 Data management

While FAISS offers an in-memory database to store the vectors, the CBIR framework still
requires a database to conserve the mapping between the indexes used in FAISS and the file
names they correspond to. The selected database must have similar characteristics to the search
infrastructure. It must be able to scale well to a high number of inputs and it must be efficient
such that the access to the data is fast.

Several structures have been developed to serve as databases, in multiple languages such as
MongoDb4, DragonFly5, Apache Cassandra6, etc. For this work, the selected database is Redis,
based on [Defraire, 2021] and because further research did not bring the need to replace it with
another alternative.

3.3.1 Redis

Redis7 is a database that can be either in-memory or cached. It can also be used as a
message broker. It is persistent and handles load distribution through clustering methods. The
more important in our case is that Redis is fast (used in-memory) and scalable as it can deal with
huge loads of data. It can handle several data types including basic strings and integers, which

4mongoDb website
5Dragonfly website
6Apache Cassandra website
7Official website

31

https://www.mongodb.com/cloud/atlas/lp/try4?utm_source=google&utm_campaign=search_gs_pl_evergreen_atlas_core_prosp-brand_gic-null_emea-be_ps-all_desktop_eng_lead&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=12212624380&adgroup=115749707263&cq_cmp=12212624380&gad=1&gclid=CjwKCAjwvdajBhBEEiwAeMh1U6i2_aFXTHRXTIKqhfUpahZfVKswhsLH89ICHqhktBuNM4Yj1M8w-hoCGbUQAvD_BwE
https://www.dragonflydb.io/?gclid=CjwKCAjwvdajBhBEEiwAeMh1U7YDRVyf0wpD8WP4xcgj54ZL_Fcr37jQDOizFQFL46nXVGvMW28I4RoC0P4QAvD_BwE
https://cassandra.apache.org/_/index.html
https://redis.io

are what is used for the mappings in this work. It also offers several structures for the database
such as lists, hashes, and dictionaries. The structure we are concerned about is the key-value
structure. One element is registered as the key in the database and a value is associated with it.
When searching for a pair, the database only needs to be given the key to retrieve the correct
pair, leading to an efficient search. Redis also supports json, allowing to set several values for
one single key by registering them in a json file.

Many libraries8 were implemented to be able to use Redis with a specific programming
language, allowing to easily integrate it in a framework. The library used as part of this work is
redis-py. It furnishes an API allowing to use Redis functionalities directly from python code. It
implements all of Redis functionalities and structures.

3.4 State of the art - Complete Frameworks

This section introduces both full CBIR frameworks and image representation models. The
first two models, Yottixel and Smily are just briefly described. A more complete description can
be found in [Defraire, 2021].

3.4.1 Yottixel

Yottixel, [Kalra et al., 2020] is a search engine specifically designed to deal with WSIs. It was
built as a response to a lack of WSI-based search frameworks that work with unlabelled data. It
is also designed as an alternative approach that does not rely on real-valued features or hashing
that would alter the capacity of a framework to both scale and generalize well.

The paper offers two contributions. The first one is a method that splits a WSI into a mosaic
of patches, that will serve as inputs for the network combined with an original representation
of the patches, called Bunch of Barcodes. The mosaic of patches is created through the use
of a K-means algorithm based on colors. Another K-means clustering is again applied to each
obtained cluster, this time based on the spatial localization of the patches in the WSI. Random
elements of each resulting cluster are selected to form the mosaic. The patches are then fed to a
Densenet that extracts a 1024-features vector for each. Those vectors are then binarized using a
discrete differentiation algorithm, leading to the barcodes (Figure 3.5). The second contribution

Figure 3.5: Yottixel’s mosaic method and feature encoding

is the framework itself. Yottixel proposes two types of search. In the vertical search, the images
to which the query is compared have the same primary site. In the horizontal search, all images
are considered. To carry out the search operation, the query’s barcode is computed. Hamming
distance and nearest neighbors search are then combined to retrieve the most similar images.

3.4.2 Smily

SMILY (Similar Medical Images Like Yours), [Hegde et al., 2019], is another search engine for
histopathology images. Smily was developed following the emergence of new imaging techniques

8Redis client libraries

32

https://redis.io/docs/stack/bloom/clients/

leading to an increasing amount of histopathology images. Its purpose is to serve as a search
engine for generic tasks, in opposition to architectures that specialized in a certain type of
diseases or tissues. Smily has been tested by comparing retrieved results to the query and also
by conducting a prospective study where pathologists had to evaluate the results of SMILY.

Smily first separates the input images into patches through overlapping splitting. Those
patches go through some augmentations that lead to eight versions of each (rotations and mir-
rors). All the versions of all patches are then fed to a pre-trained CNN. This network is a
DR network, with a CNN backbone that was pre-trained on non-histopathological images. It is
trained by using triplet sampling and the loss is obtained by contrasting the distance of a similar
pair to the distance of a dissimilar pair. This network returns 128-features vectors which are
then indexed in a database.

For the search process, the feature vector of the query is first retrieved. It is compared to the
vectors indexed in the database using the L2 distance. The retrieved patches are filtered in order
to not return several times the same patch with only a different orientation. They also filter
the retrieved patches such that the selected patches are all slightly different from one another (if
several results are too close to one another, only one of them is returned).

3.4.3 DINO: Emerging Properties in Self-Supervised Vision Transformers

DINO (self-DIstillation with NO labels), [Caron et al., 2021], is a self-supervised training
method combined with a transformer-based architecture. The reason behind the conception of
DINO is the lack of success of transformers in vision, which the authors attribute to the supervised
way of learning that is frequently adopted. They argue that on the opposite, transformers
encounter great success in NLP thanks to self-supervised learning, as has been seen in Bert
and GPT models. Thus, they designed a self-supervised training method, based on other self-
supervised training methods used in vision, that is used to train a ViT model.

Method

The method is inspired from BYOL (3.4.5), but uses a different loss and a slightly differ-
ent architecture. For the techniques used, it extends knowledge distillation by applying it to
unlabeled data and co-distillation by updating the teacher using the student.

The principle of knowledge distillation is to use two networks. The first one is the teacher
network gθt while the second is the student network gθs . The student network is trained to match
the output of the teacher network by minimizing the Cross entropy loss computed on the output
probabilities of the two networks.

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

with τs the temperature setting the sharpness of the probability distribution.

objective = min
θs

H(Pt(x), Ps(x))

with H(a, b) = −a log b.

Dino uses a slightly different objective in order to make the method self-supervised:

min
θs

∑
x∈{xg

1,x
g
2}

∑
x′∈V ;x′ ̸=x

H(Pt(x), Ps(x
′)

33

This new objective is due to the acquisition of V different views of a given input image. Two
of those views, xg1 and xg2, are global views, i.e. they are of resolution (224,224) and contain at
least 50% of the original image. The other views, x′, are local views. They are of resolution (96,
96) and contain smaller areas of the original image. All crops are fed to the student network but
only the global ones are given to the teacher, as a way to force the network to match local areas
to global ones.

Both networks have the same architecture and weights. Those weights are obtained by
applying stochastic gradient descent to the objective function. However, the teacher weights are
obtained from the student weights in a way such that they are frozen during an epoch (stop
gradient present in the teacher to stop the gradient propagation). They are then updating using
Exponential Moving average: θt = λθt + (1− λ)θs.

The network is composed of a backbone architecture f , which is chosen in the paper to
be either ViT or ResNet. To that backbone architecture are added a 3-layer MLP with L2

normalization and a FC layer. Those three elements compose the projection head h, such that
the student and teacher networks are obtained by g = h ◦ f .

Finally, the last important element of the method is the addition of sharpening and centering
of the teacher output gθt to prevent the collapse of the solution. The centering is applied by
adding a bias term c to the teacher, with c← mc+ (1−m) 1

B

∑B
i=1 gθt(xi) where B is the batch

size and m a rate parameter. The sharpening is done through the τt parameter previously cited.

DINO is pre-trained on Imagenet (without using the labels and using BYOL data augmen-
tations). It is then evaluated on different tasks (Image retrieval, Copy detection, segmentation,
classification) with frozen features and with fine-tuning.

Results

Their diverse evaluations (3.6 and 3.7) show that their method leads to great results in all
tasks. It manages to frequently outperform the current SOTA models or at least perform in a
similar range. Specifically in retrieval, DINO outperforms all other methods shown on three out
of four metrics and is only slightly behind for the fourth. In classification, DINO scored 80.1%
in top-1 accuracy on Imagenet using linear classification.

Figure 3.6: DINO results and results of
the SOTA models for (a) retrieval (b)
copy detection, [Caron et al., 2021]

Figure 3.7: DINO results and results of the SOTA mod-
els for video segmentation, [Caron et al., 2021]

From those experiences, they also noticed the emergence of two particularities, particularities
that do not seem to appear when the training is supervised or when the backbone architecture

34

is a CNN. The first particularity is the apparition of segmentation masks in the extracted fea-
tures. The features seem to capture the different boundaries contained in the images, allowing to
differentiate between the different objects and making the method particularly adapted to seg-
mentation tasks. The second particularity is how well the retrieved features fit with a k-nearest
neighbor classifier or search, making it this time particularly adapted to image retrieval tasks.

3.4.4 SimCLR: A simple Framework for Contrastive Learning of Visual Rep-
resentations

SimCLR, [Chen et al., 2020], is a network that learns how to represent images through the
use of contrastive learning. It is self-supervised as it uses different views of the same image as the
base for the comparisons. The authors focus on showing how four elements: data augmentation
composition, a learnable nonlinear transformation between the loss and the representations,
normalized embeddings, and large batch size, lead to improved results.

Method

To learn image representations, SimCLR uses an augmented contrastive approach. Basically,
it takes as input an image and starts by generating two views of it through stochastic data
transformations. These two views are then fed to the same neural network (a ResNet) that
extracts feature vectors. The feature vectors are then given to a projection head that maps them
to a different embedding space. After which, the pairwise similarities between all views9 are
computed. This pairwise similarity matrix is then used to compute the value of the contrastive
loss function, itself used to upgrade the network parameters.

The first important element is the sampling strategy. N sample images are randomly se-
lected and submitted to the augmentation process, leading to 2N images, and N positive pairs.
Contrary to the ‘usual’ sampling strategy for contrastive learning, no samples are further drawn
to create negative pairs. Instead, for each positive pair, all other views will be considered as a
negative sample. This leads to 1 positive pair and 2(N − 1) negative pairs for each of the N
input images. They experimented with various values for N, from 256 to 8192.

The composition of the data augmentation used to get the two views is of great impor-
tance, as shown by the authors of the paper. They tried different combinations, containing
elements of two families of transforms: transforms for spatial transformation such as rotation or
cropping/resizing, and transforms for visual aspects such as color distortions or Gaussian blur.
The final choice of augmentations comprises transformations from both families, as the authors
determined that it was essential. It sequentially applies: cropping and resizing, random color
distortions, and random Gaussian blur.

The ResNet network is used for extracting the feature vectors corresponding to the final,
wanted, representation. However, for training, a non-linear projection head g is added to the
network to project the representations h into another embedding space corresponding to the
space of the loss: zi = g(hi) = W (2)σ(W (1)hi). The head makes it easier to apply the loss but
the representations before applying it are better quality, hence the removal of the head after the
training.

Finally, the loss function is the NT-Xent loss (a variation of the InfoNCE loss) which is a
normalized, temperature-scaled cross entropy loss.

li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

9‘All views’ means that views of two different input images are compared together, and not only the two views
of a single input image

35

with sim(u,v) = uTv
||u||||v|| and τ the temperature parameter. The normalization and τ parameter

have shown to bring greater results than other losses without.

Results

SimCLR achieves 76.5% top-1 accuracy on ImageNet ILSVRC-2012 when combined with a
linear evaluation protocol (weights frozen). When fine-tuned on 1% of the ImageNet labels, it
reaches 85.8% of top-5 accuracy. On other classification datasets, it performed in a similar or
better accuracy range than the selected SOTA model (Figure 3.8).

Figure 3.8: Results for the SimCLR model and ResNet50 model on different classification
datasets.

3.4.5 BYOL: Bootstrap Your Own Latent. A new Approach to Self-Supervised
Learning

BYOL, [Grill et al., 2020], is another representation learning model based on non-contrastive
learning. The network was developed due to two ‘issues’ that were noticed in previous self-
supervised representation learning models such as SimCLR. The first issue is the difficulty to
sample negative images to form negative pairs such that those pairs help the model instead of
sabotaging the learning process. The second issue is the impact that the image augmentations
have, with a few changes in them leading to completely different results.

Method

To learn a representation, BYOL uses a technique similar to knowledge distillation. It is
composed of two networks placed in parallel, the online network and the target network. The
online network is trained to output a representation that matches the representation output by
the target network.

The online network has three parts: an encoder fθ, a projector gθ, and a predictor qθ. Its
weights are denoted by θ and are different from the weights ξ of the target network, otherwise
disposing of the same architecture minus the predictor (Figure 3.9). The two sets of weights
are related through an exponential moving average: ξ ← τξ + (1 − τ)θ with τ the decay rate.
The encoders f are ResNet-50 models while the projectors g are an MLP combined with batch
normalization, ReLUs, and a fully connected layer (output dimension equal to 256), following
the projection head architecture of SimCLR. The predictor qθ is the same as the projectors.

Before going to the network, the input image must go through a data augmentation pipeline
to generate two different views of the same image. The augmentations chosen are the same as
in SimCLR (random cropping and resizing followed by color distortions and Gaussian blur).

The first view v is fed to the online network and the second v′ to the target network. It leads
to the output of two representations, yθ ≜ fθ(v) and y′ξ ≜ fξ(v

′) by the respective encoder, then

36

Figure 3.9: BYOL’s architecture

followed by the output of two projections, zθ ≜ gθ(y) and z′ξ ≜ gξ(y
′). The θ projection is fed to

the predictor to try and match the ξ projection. Both elements are l2 normalized and used to
compute the loss.

Lθ,ξ ≜ ||q̄θ(zθ)− z̄′ξ||
2 = 2− 2

< qθ, z
′
ξ >

||qθ(zθ)||||z′ξ||

The loss is made symmetric by inverting the views and refeeding them to the network, leading
to L̃θ,ξ. The final loss is LBY OL

θ,ξ = Lθ,ξ + L̃θ,ξ which is minimized with respect to θ only (ξ being
updated based on the exponential moving average).

Results

Several experiments were conducted to assess BYOL performance. They first tested it on
ImageNet by training a linear classifier and keeping BYOL’s weights frozen, which lead to 74.3%
top-1 accuracy using ResNet-50 as encoder, surpassing the several other models tested (SimCLR,
MoCo v2,...). They then tested it on Imagenet but after fine-tuning it on a part of it using the
labels (semi-supervised) which this time gave a top-1 accuracy of 53.2%, 68.8%, and 77.7% when
trained respectively on 1%, 10%, and 100% of the ImageNet train set. The next experiment
was to train it on other classification datasets which lead to the results shown in Figure 3.10.
They finally tested it on two different vision tasks, segmentation and depth estimation, where it
surpassed SimCLR, MoCo, and Supervised-IN in each configuration/metrics.

Figure 3.10: Results of BYOL and other SOTA models on different classification datasets.,
[Grill et al., 2020]

37

Chapter 4

Datasets

This chapter introduces the datasets used in the context of this work. The first two are only
used as part of the training of the representation models while the third one is used for both
training the representation model and testing the full framework.

4.1 ImageNet

Description

The ImageNet dataset1 is a dataset of natural images obtained from the web and labeled by
hand, with each image being given a single label. Those images belong to around 22 000 classes
and are around 14 million making the full dataset take up to 1.3 TB of space. It is the biggest
labeled dataset of natural images that exists and it has opened up new horizons for deep learning
when it was created by allowing to train much deeper networks.

Due to that size as well as other disadvantages of the full dataset (class imbalance, non-
exclusive labels, and lack of official splitting), a narrowed-down subset of images of this dataset
has been officially established and is the one used as the reference by everyone. This smaller
dataset, called Imagenet_1K, is ‘only’ composed of 1.2 million images, belonging to a total of
1000 classes, for a total size of 150GB. It is that dataset that is used in this work.

Figure 4.1: Samples from the ImageNet dataset

1https://www.image-net.org/index.php

38

Use

Ever since their creation, ImageNet_21K (complete) and ImageNet_1K have been used as
references in the field of computer vision for the training of large neural networks. They frequently
serve as benchmarks in image classification papers, with even a classification competition, the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where the best classification
models are competing against one another.

Given its importance, it is also the dataset (ImageNet_1K) that is the most widely used
when pre-training a network, for transfer learning, and thus the one that has been used to obtain
the weights of the pre-trained models readily available on PyTorch, Huggingface or Tensorflow
(major python libraries for deep learning models). This is also its use in this work. ImageNet_1K
is the dataset that is used when one of the backbone architectures used for feature extraction
needs to be pre-trained. It has not been directly downloaded as the weights of the models trained
with it are directly available using one of the libraries aforementioned.

4.2 The Cancer Genome Atlas (TCGA) - KimiaNet

Description

TCGA2 has been created in 2006 and is a publicly available dataset of WSI representing
healthy and cancerous tissues, the largest dataset of this type. The data is of several types:
genomic, proteomic,... and has several subdivisions: primary sites ("=the anatomic location in
a cancer patient that identifies the site of origin of a tumor"3), cancer types, genes, ...

In this work, the dataset used is a subset of that bigger dataset. It is composed of 7 126 WSI
that have then been reworked into 240 000+ patches of size 1000x1000 and magnification x20.
The original selected images are images that have all been obtained using the same preparation
protocol, known as ‘formalin-fixed paraffin-embedded’.

Figure 4.2: Samples from the KimiaNet dataset

2https://www.cancer.gov/ccg/research/genome-sequencing/tcga
3https://www.lawinsider.com/dictionary/primary-site

39

Use

Similarly to ImageNet, this dataset has only been used to pre-train a backbone architecture
used for feature extraction. The difference between the two (besides the type of images) is
that in its case, only one single architecture has been trained using it, with the objective to
investigate the impact of the nature of the images in the pretraining step. This architecture
is the Densenet neural network, though it takes the name KimiaNet 4 once trained with this
dataset, as explained earlier. It has again not been downloaded directly but used through the
downloading of the weights of the pre-trained network, immediately accessible through the Kimia
lab website.

4.3 Histopathology

This dataset is the most important dataset of the three used for this thesis. It is used to
train every feature extraction model used in the framework as well as for testing the indexing
and search functionalities of it.

4.3.1 Acquisition and division

The images composing this dataset have been obtained through various sources and gathered
by Romain Mormont as part of his Ph.D. thesis [Mormont et al., 2021]. Those sources include
public datasets that were available for download as well as images from projects created on the
Cytomine platform (patches extracted from WSI at different magnifications and positions).

Several organs are represented such as the lungs or kidneys as well as several pathologies such
as breast or thyroid cancer. This variety is explained by the fact that this dataset is a regrouping
of several other datasets that were each built for their own specific purpose. Those purposes differ
in their objectives, both in types: classification - object detection - segmentation and in their
specific end purpose: detection of diseased elements in a specific tissue type, detection of mitosis,
cancer type classification, and so on. Another variability present in the dataset comes from the
modality used to obtain the images (i.e. stains). The images were obtained through several
different processes: H&E, IHC,... which impact the visualization of their content.

In total, this dataset is composed of 825 914 images for a size of around 107 GB. They
are divided into 3 parts: the training set containing 633 499 images, used to train the feature
extraction models, the test set containing 106 281 images, indexed in the database for the search
part and the validation set of 96 066 images used as queries during the retrieval part. In the
following, the test set will be referred to as the indexing set and the validation set as the query
set. The images belong to 19 distinct datasets/Cytomine projects (later referenced as projects).
Each of these projects contains two to nine classes. The class name is obtained by taking the
project name + _ + ‘class number in the project’. There is one more level, later referenced as
‘similar’, which is caused by some existing links between some of the projects. All projects are
not completely independent, with some belonging to the same Cytomine project for example.
This is important to take into account as images of projects which are ‘similar’ tend to be closer
in content as opposed to images belonging to projects completely unrelated (though other factors
are at play as explained in the next section) because they represent the same organ and have
been taken following the same methodology.

All projects are presented in Table 4.1 with the number of classes they contain and the
number of images. Similar projects are grouped together and separated by a single line while

4https://kimialab.uwaterloo.ca/kimia/index.php/data-and-code-2/kimia-net/

40

independent projects are separated by 2 lines. In the Annexe A, Table 7.1 gives the numbers of
the classes composing the different projects (original numbers and new).

Project #c #i Project #c #i

Camelyon16 2 292 226 ulg lbtd2 chimio necrose 2 882
cells no aug 2 3 637 ulg lbtd lba 8 4 284

patterns no aug 2 1 857 ulg bonemarrow 8 1 291
glomeruli no aug 2 29 213 tupac mitosis 2 77 853

iciar18 micro 4 4 800 warwicj crc 2 2 500
janowczyk1 2 31 725 umcm colorectal 8 5 000
janowczky2 2 3 402 mitos2014 3 64 873
janowczyk5 2 24 870 ulb anapth lba 9 5 420
janowczyk6 2 277 456 lbpstroma 2 2 313
janowczyk7 3 2 244 Total 67 835 846

Table 4.1: Division of the histopathology dataset #c = number of classes, #i = number of images

4.3.2 Visualization and analysis

Image samples

As previously stated, the images are really diverse5 and this diversity is mainly explained by
the different labels, but there is also some intra-class diversity that has to be considered.

Nevertheless, most images in a same class have a similar visual appearance, i.e. follow a
similar theme, be it in the elements it contains or the main color scheme. This can be observed
when looking at several samples of each class, as represented in Figures 7.68 to 7.82 in Appendix
D. From those figures, the previous separation in classes, projects and ‘similarity’ is making
sense as it can be seen that images of two classes of a same project are looking almost identical,
with sometimes images from the other class more resembling to one of the class considered than
other images of the same class. Links between some of the projects are also visible, with all the
janowczyk projects having the same overall feeling (7.73, 7.74, 7.75) or the projects patterns no
aug (7.69) and cells no aug (7.70) sharing very similar images.

A small representation of the dataset is available in Figure 4.3 with the images in their
original format to show the differences in dimensions. They are also represented in Figure 4.4
after being resized to the same dimension to see more clearly the content. Each image represents
one different class and has been drawn randomly. The order of the classes is the same on both
figures, although the labels have been added only on the first figure.

Class Imbalance

While the researchers having built this dataset tried their best to have a similar number of
images in each class, they had to deal with too much disparity in the datasets they managed to
obtain to be able to reach this goal. As it did not impact their work too much, they decided
to leave it as it is currently, leading to a great imbalance in the dataset. In particular, two
classes, janowczyk6_0 and camelyon16_0, contain together more than 50% of the total number
of images in the dataset as can be seen in Table 4.2.

5Visually different, from a non expert point of view

41

Figure 4.3: Sampled images in their original format of the dataset

42

Figure 4.4: Sampled images from each class of the dataset

Consequently, the other 65 classes, having to share the remaining images of the datasets,
have a very low images count. The division of those remaining images in the other classes can be

43

Train Test Validation Total
Camelyon16_0 218 938 - 34,56% 23 810 - 22,4% 25 697 - 26,73% 268 445 - 32,11%
Janowczyk6_0 160 790 - 25.38% 15 089 - 14,2% 22 791 - 23,78% 198 738 - 23,77%

Together 379 728 - 59,94% 38 899 - 36,6% 48 488 - 50,54% 467 115 - 55,89%
All 633 499 106 281 96 066 835 846

Table 4.2: Number of images and percentage for each of the 2 majority classes as well as together

found in Figure 4.5, where camelyon16_0 and janowczyk6_0 have been removed for readability
and clarity reasons. As expected, those classes only contain a small number of images compared
to camelyon16_0 and janowczyk6_0. Furthermore, it can be seen that the other classes of the
related projects (camelyon16_1 and janowczyk6_1) belong to the remaining classes with the
most images, being at least in the top 10 classes in terms of the number of images. Those two
projects are at risk of taking more importance in the feature representations learned. On the
other hand, several projects do not reach 1% with all their classes added like ulg_lbtd_lba or
ulg_bonemarrow. Umcm_colorectal does not even manage to reach 0.01%. Those projects tend
to not be able to meaningfully impact the feature representation such that they would be well
represented. In Section 6.6, a study of the impact of that imbalance on the results is conducted.

Diversity

The diversity in the images is quite clear in Figures 4.3 and 4.4 with very different images
depending on the class to which they belong. However, on top of that diversity, there is also some
variance inside one same class, with some classes being much more variable than others. For
example, in Figure 4.6 are represented 4 images that can all be found in the class camelyon16_0.
Similarly, Figure 4.7 represents images that can be found in the class janowczyk6_0. All those
images seem really different and yet belong to the same class. Iciar18_micro_0 also has some
variability as can be seen in Figure 4.8 though less than the 2 previous classes. There is also
‘less meaningful’ variability. If we take a look at images from ulb_anapath_5 in Figure 4.9, we
can see that the core element of the different images is very different, both in color and shape.
However, the background of all the images is identical, which was less the case for the previous
classes (usually common color schemes but different shapes of elements and intensity of colors).

Finally, there are the classes like janowczyk7, 1 to 3 or umcm_colorectal_5 whose content
is quite similar, with the most visible difference being the colors, as can be seen in Figure 4.10
and Figure 4.11.

Due to that diversity, some images seem closer to images from other classes than from images
of their own class. The two images on the left part of Figure 4.12 are coming from the class
Camelyon16_0 while the two at the right are coming from Tupac_mitosis_0. In Figure 4.13 are
images that feel similar to the image right above them, in order from the classes Janowczyk7_0,
Camelyon_1, Janowczyk1_1, Tupac_1.

It is interesting to note that the diversity inside a class is potentially linked to the size of the
class. The largest classes tend to be more diverse than the smallest. This makes sense considering
that they contain much more images and are thus less likely to have that many images really
similar. At the opposite of that diversity though, there are also very similar, nearly identical
images in each class. Indeed, some images only differ in some pixels because they represent the
same original image but are cut at slightly different positions, with overlap.

This diversity inside the class is one of the motivations behind the use of unsupervised/self-
supervised learning algorithms to reduce the impact that the labels would have on the feature
representation. As the labels won’t be used, two images of the same class but that do not

44

Figure 4.5: Images division per class per set

45

Figure 4.6: 4 different images belonging to Camelyon16_0

Figure 4.7: 4 different images belonging to janowczyk6_0

Figure 4.8: 4 different images belonging to Iciar18_micro_0

Figure 4.9: 4 different images belonging to ulb_anapath_5

Figure 4.10: 4 different images belonging to janowczyk7_1

Figure 4.11: 4 different images belonging to umcm_colorectal_5

46

Figure 4.12: The two left images are from Camelyon_0, the two right images are from Tupac_mitosis_0

Figure 4.13: Images from Janowczyk7_0, Camelyon16_1, Janowczyk1_1 and Tupac_mitosis_1

look similar will not necessarily be considered similar by the model, removing a bias that, in a
situation with such intra-class diversity, could be detrimental. It has especially motivated the
use of the K-means algorithm.

Note that Figures [7.68 to 7.82] in the Appendix represent carefully selected samples of each
class, chosen to represent the diversity present in each class. Each image has been chosen such
that it would be different from the ones already selected for that class.

Another type of diversity present in this dataset is the difference in dimensions and shapes of
the images. A first demonstration of that aspect can be observed in Figure 4.3 where we can see
that the axis scales are not all the same and that some images are rectangular rather than square.
This diversity is mainly between the classes rather than in the classes like in the previous one.
Table 4.3 presents the mean width and mean height per class of the dataset with their standard
deviations (the class names were shortened for the Table to fit). Several observations can be
made.

• Diversity in a same project is small. Classes belonging to a same project have the same
dimensions both in height and width in most of the cases. If there is a difference, there are
three groups. One where it is frequently around only 25 pixels or less, as in Glom, Lbps,
and Ulb. The second where the biggest differences are seen, 100 in Patt, 70 in Ulg_lbtd2.
And finally the last, where most classes of the project have similar dimensions except one
where the difference is huge, more than 100 pixels, in Ulg_bone and Ulg_lbtd.

• Presence of diversity between similar projects. Similar projects do not tend to have similar
image dimensions as can be seen with the Jano or with patt/cells.

• Diversity of shape is small. Most classes are composed of (perfectly or almost) squared
images, with only 4 out of the 67 with a rectangular form (2 of Patt and 2 of Ulg_lbtd2).

• Diversity between projects is big. Projects tend to have very different image dimensions
from one another, with the smallest dimension being 34.2x34.2 and the biggest 542.7x492,
more than 500 pixels of difference.

• The mean width is 203.14 and the mean height is 200.3.

• In the majority of the classes, the diversity in a class seems small with most of them
having a std of 0 or close (<5). In the others, browsing through the images composing
them confirms the variety, with images of the same class having very different dimensions.
For example, in Cells_0, the biggest image is (1754, 1456) while the smallest is (19, 19)

47

Name (Width + std, Height + std) Name (Width+std, Height+std)
Cam_0 (384 ± 3.33, 384 ±3.33) Ulb_4 (129.4 ±51.63, 128.66 ±50.68)
Cam_1 (384 ± 0, 384 ±0) Ulb_5 (124.5 ±87.5, 123 ±91.7)
Cells_0 (83.9 ±81.5, 81.4 ± 72) Ulb_6 (121 ±37.7, 121.2 ± 37.3)
Cells_1 (82.4 ± 29.9, 80.4 ± 29.8) Ulb_7 (100.4 ±3.9, 100.3 ±2.98)
Glom_0 (120.5 ± 185.6, 121.5 ± 177.4) Ulb_8 (124+5 ±32.7, 128.2 ±35.31)
Glom_1 (142.7 ±54.2, 145.5 ±54.4) Ulg_bone_0 (49.25 ±6.1, 49.2 ±6.1)
Iciar_0 (512 ±0, 512 ±0) Ulg_bone_1 (44.2 ±5.31, 44.2 ±5.29)
Iciar_1 (512 ±0, 512 ±0) Ulg_bone_2 (44.6 ±5.78, 44.6 ±5.76)
Iciar_2 (512 ±0, 512 ±0) Ulg_bone_3 (42.2 ±5.25, 42.2 ±5.25)
Iciar_3 (512 ±0, 512 ±0) Ulg_bone_4 (42.5 ±5.04, 42.6 ±5)
Jano1_0 (250 ± 0, 250 ±0) Ulg_bone_5 (39.5 ±5.12, 39.5 ±5.14)
Jano1_1 (250 ±0, 250 ±0) Ulg_bone_6 (34.2 ±5.71, 34.2 ±5.73)
Jano2_0 (200 ±0, 200 ±0) Ulg_bone_7 (150 ±35.65, 150 ±35.71)
Jano2_1 (200 ±0, 200 ±0) Ulg_lbtd2_0 (542.7 ±154.53, 492 ±136.27)
Jano5_0 (250 ±0, 250 ±0) Ulg_lbtd2_0 (469.7 ±190.45, 404 ±167.23)
Jano5_1 (250 ±0, 250 ±0) Ulg_lbtd_0 (230.15 ±120.98, 231.33 ±147.66)
Jano6_0 (50 ± 0.06, 50 ±2.67) Ulg_lbtd_1 (100.12 ±1.48, 100.15 ±1.76)
Jano6_1 (50 ±0.07, 50 ±0.15) Ulg_lbtd_2 (100 ±0, 100 ±0.19)
Jano7_0 (384 ±0, 384 ±0) Ulg_lbtd_3 (100 ±0, 100 ±0)
Jano7_1 (384 ±0, 384 ±0) Ulg_lbtd_4 (103.3 ±7.11, 104.8 ±7.97)
Jano7_2 (384 ±0, 384 ±0) Ulg_lbtd_5 (100 ±0, 100 ±0)
Lbps_0 (448 ±99.14, 448 ±99.14) Ulg_lbtd_6 (101.6 ±9.62, 101.96 ±10.91)
Lbps_1 (423 ± 117.39, 423 ± 117.39) Ulg_lbtd_7 (124 ±67.4, 126.3 ±75.6)
Mitos_0 (323 ±0, 323 ±0) Umcm_0 (150 ±0, 150 ±0)
Mitos_1 (323 ±0, 323 ±0) Umcm_1 (150 ±0, 150 ±0)
Mitos_2 (323 ±0, 323 ±0) Umcm_2 (150 ±0, 150 ±0)
Patt_0 (212.19 ±212.8, 176,6 ±156.59) Umcm_3 (150 ±0, 150 ±0)
Patt_1 (306.55 ±262.42, 260.8 ± 200.86) Umcm_4 (150 ±0, 150 ±0)

Tupac_0 (250 ±0, 250 ±0) Umcm_5 (150 ±0, 150 ±0)
Tupac_1 (250 ±0, 250 ±0) Umcm_6 (150 ±0, 150 ±0)
Ulb_0 (111.4 ±21.49, 111.2 ± 21.73) Umcm_7 (150 ±0, 150 ±0)
Ulb_1 (100 ±0.72, 100 ±1.02) Warw_0 (100 ±0, 100 ±0)
Ulb_2 (100 ± 0, 100 ±0) Warw_1 (100 ±0, 100 ±0)
Ulb_3 (125 ±38.6, 125.5 ±37.06)

Table 4.3: Mean width and height per class

and the mean (83.9, 81.4) is different from the median ((67, 67)), indicating a large range,
confirmed by the values of the standard deviations.

This diversity might impact the results as all images will be resized to a constant size and thus
the ‘quality’ of the input will vary given the class.

48

4.3.3 Image preparation

An important step in CV systems is the preparation of the data. In order to make the model
robust to small changes in the data, it is customary to apply transformations to it before feeding
it to the network. In this work, the following data transformations6 are applied to the data
in the training part of the process and in the majority of the scenarios (the only exception is
when using Augmented Learning as it will be discussed in the related section). For indexing and
retrieval, only the normalization is applied.

• Random flips, both vertical and horizontal, with p = 0.5.

• Color alterations by changing the chromaticity of the image (saturation (p = 0.2) and hue
(p = 0.1)). The hue represents the type of color (values of the RGB components) while the
saturation is the ‘purity’ of the color. When changed, the new value is randomly picked
inside an interval defined by the min and max value of the image considered.

• Normalization, with each channel being applied a different mean and standard deviation,
with the means = [0.485, 0.456, 0,406] and the standard deviations (std) = [0.229, 0.224,
0.225] which are obtained from the analysis of the ImageNet dataset.

Note that in the case of the normalization step, the means and standard deviations were kept
unchanged even though it might have been better to use values obtained from this dataset as the
nature of the images is completely different from the nature of the images of Imagenet. However,
for comparison purposes with the previous work, they were left untouched. Figure 4.14 represents
one image and its different transformations.

Figure 4.14: From left to right: Original image - Image with random vertical and horizontal flips
- Image with random change in saturation and hue - Normalized image - Image with all previous
transformations applied

In addition to the use of data transformations for robustness, their usage is actually required
to resize the input to a constant size acceptable by the networks used in this work. Indeed, due
to the architectures used in this work, the images must be of similar and constant dimensions
equal to 224x224x3, as they are kept colored (RGB).

It is particularly important here because the images all have different dimensions and even
shapes as explained earlier. 224x224 has been chosen because it is a common choice in CV for
resizing images and it is close enough to the mean width and height of the histopathology dataset
used. To resize the images, a squared area of size randomly picked between 80% and 100% of
the original image is selected at a random position in the image. Randomness is again used to
increase robustness to variation7. This area is then resized to 224x224.

6Those transformations are obtained from S. Defraire’s Master thesis [Defraire, 2021] and kept unchanged.
7Only for training. In indexing and retrieval, the entirety of the image is kept

49

Chapter 5

Methodology & Process

This section presents the methods and elements that have been investigated, implemented,
and tested as part of this work following their identification in the second chapter. All the
methods presented in this chapter are available for use in the implementation related to this
thesis.

This process for CBIR is not fixed, it is built such that it is modular. As explained in
Chapter 3, CBIR is composed of several distinct parts. The methodology presented here treats
those parts as if they were independent, making it then possible to change the elements/concepts
of one part while keeping the other unchanged. It particularly focuses on the first part, i.e.
feature extraction, while only offering one option for the other part, i.e. search and similarity.
The modularity is present both in the selection of the main structure (e.g. backbone neural
networks) and in the choice of less consequent structures (e.g. composition of the training data)
or parameters (e.g. feature number).

The CBIR framework is designed as displayed in Figure 5.1. The organization of this chapter

Figure 5.1: CBIR Process

follows the steps of the framework except for the first step, Data preparation and selection,
which is explained in Chapter 4. It starts with the options for the Deep features extraction
step in Section 5.1. Then it presents the Indexing step in Section 5.2 before explaining the step
Retrieval in Section 5.3. It continues in Sections 5.4 and 5.5 with the Evaluation step, with the
protocols and metrics. The final section is a quick description of the implementation in Section
5.6, with a more detailed one in an annexed file.

50

5.1 Features extraction - Design

Several deep learning architectures are tested to extract the most representative features for
the histopathology dataset. On top of the architectures, several concepts impact the way the
data is provided to them. The main division between the approaches investigated in this work
is the type of learning with the first approaches explored being trained in a supervised fashion
while the latest are trained in a self-supervised way.

5.1.1 Supervised learning

The models and concepts of this section rely on the use of labels to obtain the final feature
extraction. Two types of architectures are used, CNNs and Transformers, presented in Parts A
and B. The architectures have to be combined with a training concept, described in Part C.

A. CNN Architectures

Three CNN architectures were selected for various reasons and described in Chapter 2.

• Resnet50: Chosen because it is one of the most popular CNNs, winner of ILSVRC in 2015
and frequently used in papers as a benchmark. It is also a model used in [Defraire, 2021]
and the one that provided the best results.

• Densenet121: Chosen because it is designed as a response to an issue noticed in the
ResNet and as such, hoped to achieve better results. It is also one of the models used
in [Defraire, 2021].

• EfficientNet_B0: Chosen because it is a more recent architecture than the two previous
and it is supposed to be more computationally efficient than them, which, given the amount
of data to treat here, is an important advantage.

There is one more backbone model that is considered which is KimiaNet. As explained previously,
KimiaNet is a DenseNet121 that has been trained from scratch on medical images (2nd dataset
presented in Chapter 4). It has been chosen because it is the only architecture that is pre-trained
on the same kind of data as the data of interest.

All those architectures are made for classification on Imagenet_1K (1st dataset in Chapter
4), as such they have as their final layer a fully connected with 1000 outputs. To use them for
feature representation, this last layer was removed and replaced by a fully connected layer with
67 (number of classes of the histopathology dataset) outputs.

B. Transformers Architectures

As for the CNNs, several architectures were explained in Chapter 2 for the Transformers.

• ViT: Chosen because it is the first Transformer model adapted and used for vision which
makes it the original/baseline model.

• DeiT: Chosen because it is a Vision transformer that has been designed to be data efficient,
which, again, given the size of our dataset is a non-negligible advantage.

51

• CvT: Chosen because it combines convolution elements with a Transformer architecture
which makes it at first sight particularly adapted to vision tasks.

Again, all those architectures are available as classification models and need to be adapted
for feature representation. This is done the same way as for the CNN, by removing their last
layer and replacing it with a FC of 67 outputs.

C. Concepts

Now that the backbone architectures have been presented, it is the turn of the concepts used
to train them. As explained in Chapter 2, feature extraction/representation learning is a very
distinct application of DL and requires different training methods than those commonly used in
classification for example. Three of such concepts, Deep metric learning (DML), Deep Ranking
(DR), and Contrastive Learning (CL), have been explained previously. They will all be used in
this implementation as a way of training the supervised networks. Note that they will also be of
use for some of the unsupervised methods as will be explained in due time.

Deep Metric Learning

DML allows the training of a network such that it takes into consideration the distance
of the model output to a predefined goal or the similarity between elements. It is an ‘overall’
concept that comprises a lot of different structures as explained in the theoretical part. A training
structure is considered to be DML if it includes 3 elements, a feature extraction model, a ranking
loss, and a sampling strategy.

The feature extraction models have been described in Parts A and B of this section.

The losses have been described in Section 2.4.1. Three were from the previous thesis imple-
mentation, [Defraire, 2021], and kept unchanged: Custom Margin Loss1 (It combines the margin
loss with the contrastive loss given the value of a probability given as a parameter.), Prox-
yNCA++, and Normalized Softmax. On top of those three, the SoftTripleLoss is also tested.

Finally, for the data sampling strategy, simple balanced sampling is used. n samples per
selected class will be taken until all classes of interest have been browsed. Then, one sample per
class will be retrieved until the batch is full given the chosen batch size2.

Deep Ranking

DR is a kind of specialization of DML that limits the options in each of its three categories
to a specific type. A model trained using DR has: a backbone architecture accompanied by two
shallows networks, repeated 3 times, a triplet Loss function, and a triplet sampling strategy.
While several options could be considered for the backbone architectures, to respect the model
developed in the paper presenting DR [Wang et al., 2014], only the CNN architectures are used
with DR.

The loss function consists of the basic triplet loss function, also used in said paper and
described in Section 2.4.2.

Regarding the sampling, for simplicity and computational efficiency, only random sampling
was implemented. It was not possible to use the sampling strategy described in the paper as
our dataset did not dispose of the relevance score needed to perform the computations leading
to the more sophisticated sampling. It would also not have been possible to obtain those scores
as part of this master thesis.

1Based on the implementation of Deep Metric Learning Baselines, Github.
2Based on the implementation furnished in Deep Metric Learning Baselines, Github which is based on

[Roth et al., 2020]

52

https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch/blob/master/batchminer/rho_distance.py
https://github.com/Confusezius/Deep-Metric-Learning-Baselines/blob/60772745e28bc90077831bb4c9f07a233e602797/datasets.py#L428

Note that while the triplet loss and sampling, or the addition of the two shallow networks,
could also be used with the two other concepts, they will be strictly reserved for the DR concept.
There will thus be no model using one without also using the other.

Contrastive Learning and Non-contrastive learning

Contrastive learning (CL) learns about the images by contrasting them with similar or dis-
similar images of the dataset by pair or triplet. The methods implemented here are mostly
pair-based. In the following, CL will thus names approaches that use: A Twin network or
Siamese Network, a pair-based loss, and a pair sampling strategy.

For the backbone networks, it can be any of the ones presented in Parts A and B. Not all
will be tested with CL though as the number of models would be too important to properly
investigate everything (see Section 6.1).

Regarding the losses, they are the ones that have been described in Section 2.4.3: CosineEm-
beddingLoss, BCE loss, Contrastive Loss, InfoNCE loss3

Finally, for the sampling strategy, it will be the same as for DR except that only one of the
positive and negative samples will be kept. Both are drawn randomly, but when the index of the
anchor is even, the negative sample is returned with the anchor, otherwise, the pair is composed
of the positive sample. This proportion was selected to have 50% of the pairs dissimilar and 50%
similar but different proportions can be chosen. It was not tuned at all in this work.

Regarding Non-Contrastive Learning, a true NCL architecture has not been implemented
for supervised learning. Without the results of the contrastive methods first, it was thought
not pertinent. Instead, a study of the necessity of the negative pairs without changes to the
architectures is realized to look at the dimensional collapse effect. This is done with two losses,
the contrastive loss (the most classic one) and the NT-Xent loss (as it seems to grant more
importance to positive pairs).

D. Summary of supervised learning

Figure 5.2 shows how to obtain an operational feature extractor using supervised learning
as implemented in this work. In short, one of the 3 concepts: DR - DML - CL/NCL, must be
combined with one backbone architecture, either a CNN: ResNet - DenseNet - EffNet - KimiaNet
or a transformer: ViT - CvT - DeiT. In addition, the concepts have different options to consider
for the loss function.

5.1.2 Self-supervised Learning

A. Auto-encoders

Auto-encoders were the first unsupervised architecture thought of for this master thesis.
Their principle of learning an image representation by trying to reconstruct the image, so just by
basing themselves on the content of the image, made them the seemingly best-fitted architecture
for our purpose, especially given the diversity of the data, between and inside the classes. AE is a
concept that can be implemented using very different architectures, losses, parameters,... While
AEs have been used in articles for CBIR, there was never a single framework used. Instead, each
article introduced its own structure. As a consequence, there were plenty of implementations
available that needed to be sorted according to their strength and use in this thesis. Finally,
three implementations of AE have been selected, each with its strengths / drawbacks4.

3This loss requires the use of positive pairs. It will thus be used either with triplet pair or with NC learning.
It cannot be used for pair-based CL as it would lead to some pairs being exclusively negative.

4Based on the following websites: ImageNet-autoencoder, github, pytorch-example and geekForgeek

53

https://github.com/Horizon2333/imagenet-autoencoder
https://github.com/pytorch/examples/blob/main/vae/main.py
https://www.geeksforgeeks.org/contractive-autoencoder-cae/?ref=rp

Figure 5.2: Summary of Supervised features extraction

Implementation 1: Complex, Resnet-based

This implementation5 offers 8 auto-encoders, 4 are versions of VGG and 4 of ResNet, coded
to be used on ImageNet or other datasets similar to it. The loss used is the Mean squared error
loss, which is one of the most classical reconstruction losses.
This implementation was selected because it had the particularity of offering ResNet and VGG
structure as the backbone of the AE. An effective, known-to-be successful in vision tasks, back-
bone architecture was a strong requirement at the start of the research on AE as it was thought to
lead to better results than a newly, built-from-scratch architecture. Furthermore, it even offered
pretraining on several datasets, including ImageNet, for one of the 8 versions. Regarding the
quality of the implementation, there were no problems running the code and the architectures
respect the description of the official ResNet and VGG networks. However, it is not based on
any paper and it does not seem to be much known.

Different experiments were realized with that implementation, to try and achieve the best
results possible, or fix issues that previous experiments had raised (those results will be discussed
in more depth in Chapter 6).

1. VGG-16 as the backbone, kernel sizes as well as input/output dimension of each layer
modified such that the number of features in the latent space would be equal to 128.
Trained on the entire training dataset.

2. Basic VGG-16 and VGG-11 implementations, not modified. Trained on the entire VGG-16
dataset.

3. Testing of the basic implementations with ResNet18 as the backbone architecture, not
modified. Trained on the entire training dataset. (a) is using a cosine scheduler as offered
by the implementation from whose the model has been obtained and (b) is trained using
an exponential scheduler in the framework built for this work.

4. VGG-16 architecture, pre-trained on ImageNet, no modifications of the architecture. Trained
on the entire dataset.

5Horizon2333’s Github page

54

https://github.com/Horizon2333/imagenet-autoencoder

5. Basic VGG-16 architecture, no modification. Trained on the entire dataset except for the
Janowczyk6_0 class.

6. Basic VGG-16 architecture, no modification nor pretraining. Trained on only one project
and on only one class to see the learning done by the autoencoder.

7. Modification of the AutoEncoder class of the Resnet model to include the three additional
layers present in the ResNet classification model, to reduce the number of features of the
latent space without modifying the parameters of the layers. The backbone architecture
is the ResNet-50, the number of end features is 1000 (kept the same parameters as in the
ResNet classification model) and it was trained on the entire dataset.

Note that with all experiments, the loss used was the Mean squared error (MSE) loss, between
the original and the reconstructed images.

Implementation 2: Variational AE

Given the poor results obtained with the previous implementation (see Chapter 6), other
implementations, of simpler backbone architecture, were sought out. This implementation6 is
one of the two that were kept and implemented in the framework. It is a basic implementation
of a variational autoencoder. The appeal of this implementation first resides in its seriousness
(made by Pytorch) and can be thus deemed trustworthy. Furthermore, it was a different type
of AE (variational) that could prove useful for this task, and the number of end features was by
default smaller than with the previous AE. On the other hand, variational AEs are usually used
for data generation which is not the end goal here. It is also not available pre-trained and it
is built for the Mnist dataset which has a very different image format compared to our dataset
(28x28x1 against 224x224x3). It may thus not lead to the expected results.

The implementation is based on the paper ‘Auto-Encoding Variational Bayes ’,
[Kingma and Welling, 2022]. It uses a Multi-Layer Perceptron to learn the parameters of a
multivariate Gaussian Distribution from the input x. Hence, the outputs are the mean µ and
std σ of the approximated Gaussian qϕ(z|x(i)). Mathematically,

log qϕ(z|x(i)) = logN (z;µ(i), σ2(i)I)

From those two outputs, it generates a random variable z through the use of what they call the
‘reparametrization trick’:

z(i,l) = gϕ(x
(i), ϵ(l)) = µ(i) + σ(i) ◦ ϵ(l)

where µ and σ are obtained from the MLP, given the input x and ϵ ∼ N (0, I). This random
variable is then fed to the decoder part of the architecture which is again two simple FC layers
such that it returns an output of same dimension as the input, so in this case, the reconstructed
image.

This reconstructed image is finally compared to the original one to compute the loss. This
loss is composed of two terms. The first one is given by the binary cross entropy between the
original and the reconstructed images, which acts as the reconstruction error. The second term
is given by the Kullback-Leibler (KL) divergence between the approximation of the posterior
and the true distribution, which makes it a regularization term. The loss is computed using the
following formula:

L(θ, ϕ;x(i)) ≈ 1

2

J∑
j=1

(1 + log((σ
(i)
j)2)− (µ

(i)
j)2 − (σ

(i)
j)2) +

1

L

L∑
l=1

log pθ(x
(i)|z(i,l))

6Pytorch-examples

55

https://github.com/pytorch/examples/blob/main/vae/main.py

with log pθ(x
(i)|z(i,l)) obtained from the model, the first term the KL divergence and the second

is the cross entropy.

Note however that the Pytorch implementation deviates slightly from the original paper by
including ReLUs among other changes.

For this implementation, 3 experiments were designed:

1. Keep the original implementation and modify the way of viewing the inputs to fit the
implementation. Each image is fed to the model by pieces of 28x28 dimension, flattened.
The outputs of each piece are then concatenated. The dimension reductions are as follows:
784→ 400→ 20. This leads to 2242·3

282
· 20 = 192 · 20 = 3072 features per image.

2. (a) Modify the dimensions of the layers of the original implementation such that the images
are fed in their original dimension (224x224x3) but flattened: 224x224x3→ 400→ 20. It
leads to 20 features. (b) Add one more layer to diminish the impact of the original decrease
in dimensions: 2242 · 3 → 784 → 400 → 20, also ending with 20 features. (c) Change the
reductions to end up with the usual number of features: 2242 · 3→ 1500→ 750→ 128.

3. Add convolutional and deconvolutional layers and modify the dimensions of the original
layers of the original implementation such that the images are fed to the model in their
original dimensions and not flattened: 224x224x3→convolutions 128x56x56→ 1000→ 128.

Implementation 3: Contractive

The third and last AE implementation uses a simple MLP as the backbone architecture like
the previous one. It was likewise motivated by the intention of going with a simpler architecture
compared to the one used in the first implementation. This architecture comes from the paper:
‘Contractive auto-encoders: Explicit invariance during feature extraction’[Rifai et al., 2011]7.
This implementation was chosen because it was focused on feature extraction rather than image
reconstruction, unlike many other implementations. It is said to be able to retrieve more robust
features to represent an image, i.e. features that would be less sensitive to small variations.
However, similarly to the previous one, it is not pre-trained and was built for the Mnist dataset
which does not have images of the same dimensions as the dataset of interest here.

To reduce the impact of the variations in the data or, as said in the paper, to reduce the
sensitivity of the model to input data x, one more term, a regularization or penalization term, is
added to the reconstruction loss. This added term is the Frobenius norm of the Jacobian Jf (x)
of the non-linear mapping. Mathematically:

||Jf (x)||2F =
∑
ij

(
∂hj(x)

∂xi

)2

with x the input, f the encoding function and h the latent space representation. This term
contracts the feature space, i.e. ensures that the points in the latent space are closer than the
points in the original space. It helps against the small variations of the data by giving points
closer to one another similar outputs. This makes it generalize better as well as helps against
overfitting.

The final objective function is given by the combination of this term with the reconstruction
loss:

JCAE(θ) =
∑
x∈Dn

(L(x, g(f(x))) + λ||Jf (x)||)2F)

7And is presented in This website.

56

https://www.geeksforgeeks.org/contractive-autoencoder-cae/?ref=rp

For the implementation, it uses the MSE loss as the reconstruction loss. The second term is
computed using the following formula:

λ ·

 dh∑
i=1

(hi · (1− hi))
2 ·

dx∑
j=1

W 2
ij

which is given in the paper as a simpler expression once the sigmoid function is used as activation.

Two important elements need to be highlighted. The original implementation is not com-
pletely coherent with respect to the paper. It uses ReLUs instead of sigmoid, without changing
the loss formula. Furthermore, it uses the single-layer MLP formula while using several layers for
the model. Unfortunately, these adaptations with respect to the model described in the paper
were only discovered after the design of the experiments and after most models were trained.
Nevertheless, the model based on the adequate loss was then implemented and tested to see the
potential impact of these changes. For that, the Frobenius norm of the Jacobian corresponding
to the specific network was computed, using the chain rule for derivatives. The details of the
computation can be found in Appendix B. This new implementation gives slightly better results
than the original one as will be discussed in Chapter 6. However, it is quite impossible to apply
to all the designed experiments as it would require far too much memory to store the weight
matrices. It was thus decided to keep the simplified original implementation to study the effect
of the experiments while presenting the results of the more complex implementation only for the
first experiment to illustrate the difference in range.

Therefore, after testing the implementation based on the adequate computation of the Frobe-
nius norm, considered as Experiment 0, the following experiments are realized

1. The original architecture is kept: 784 → 64 → 32 → 16, It leads to 2242·3
282
· 16 = 192 · 16 =

3072 features.

2. The original input dimension is kept but smaller steps are made for the reduction: 784 →
400 → 200 → 16, 3072 features

3. The original input dimension is kept but the number of features is higher: 784 → 400 →
200 → 50, 192 * 50 = 9600 features

4. The input dimensions are changed to fit our dataset, and the rest of the architecture is
kept as the original: 2242*3 → 64 → 32 → 16, 16 features.

5. Same as the previous but with more features at the end: 2242 ∗ 3 → 512 → 256 → 128,
128 features

6. Same as previous, but with an even higher number of features: 2242 ∗ 3 → 3000 → 1500
→ 750, 750 features.

B. K-Means

The second architecture implemented and tested in this thesis that is trained in an unsu-
pervised fashion is using clustering as its base. Due to the diversity present inside the classes
themselves of the dataset, as discussed in Chapter 4, an application of the technique of K-means
clustering was applied to the dataset, directly to the pixels of the images. The purpose of this
operation was to see how would the images be grouped based on their content only.
Afterward, it was thought that those new groups created using K-means clustering could be used
as labels for the previously introduced supervised models. The K-means method is then com-
posed of two steps. First, the K-means model is trained on the histopathology training dataset

57

and new labels are retrieved for each image composing it. Second, those images and their new
labels are used to train one of the supervised feature extraction models described in 5.1.1.

Two different configurations of the K-means models are being proposed, based on the number
of clusters selected.

• n_clusters = 67. This was selected to make a parallel with the original labels. This allows
to look if the original 67 classes are more or less making the 67 new or if they are all split
and regrouped differently. An analysis of this split will be presented in the next chapter.

• n_clusters = 10. This number was obtained through the use of the elbow technique, with
10 being the last number with the highest improvement as shown in Figure 5.3.

Figure 5.3: Elbow Plot for K-means clustering

C. Augmented Contrastive Learning

These two methods, Augmented Contrastive Learning and Augmented Non-Contrastive Learn-
ing (ACL and ANCL) are the last way used in this thesis to train the framework in a self-
supervised fashion.

ACL is contrastive learning with a different type of sampling methods. In ACL, the positive
sample of the pair is obtained by applying data transformations to it. The negative sample is
randomly selected from all other images of the dataset, including the images of the same class as
the sample image under consideration. In the manner of applying the transforms to the samples,
different approaches are available as was discussed in Chapter 28. Those approaches are the
following:

• Custom transforms and unique application. The transforms are applied only to the anchor
to form the positive sample. The anchor and the negative sample are used in their original
aspect. The transforms in question are the following and have been selected arbitrarily
taking into account the usual transforms used in similar projects.

– Random vertical and horizontal flips, with p = 0.5.

– Color changes in saturation, brightness, contrast, and hue, with p = 0.4 each.

– Gaussian blur with probability 0.5 and random grayscale with p = 0.05.

– Random rotation between 0 and 360 degrees.
8based and inspired by the paper A Framework For Contrastive Self-Supervised Learning And Designing A

New Approach [Falcon and Cho, 2020] and its related blog

58

https://towardsdatascience.com/a-framework-for-contrastive-self-supervised-learning-and-designing-a-new-approach-3caab5d29619

– Resizing to 2242 after random cropping of an area between 80 and 100% of the original
image.

– Normalization with ImageNet means and stds.

• Custom transforms, AMDIM application: The transforms of the previous points are reused
but this time applied to the 3 images9. Hence, the anchor is no longer the original image
but another version of it, like the positive sample.

• AMDIM transforms10, AMDIM application. The following transforms are used:

– Random horizontal flip with probability 0.5

– Resizing to 2242 after randomly selecting an area between 8 and 100% of the original
one.

– Random color changes in brightness, contrast, and saturation with p = 0.4∗0.8 = 0.32
and in hue with p = 0.1 ∗ 0.8 = 0.08.

– Random grayscale with p = 0.25

– Normalization with ImageNet means and stds.

• SimCRL transforms11, AMDIM application. The following transforms are used:

– Random horizontal flip with p = 0.5.

– Resizing to 2242 after randomly selecting an area between 8 and 100% of the original
one.

– Random color changes in brightness, contrast, and saturation with p = 0.8∗0.8 = 0.64
and in hue with p = 0.2 ∗ 0.8 = 0.16.

– Random grayscale with p = 0.2 and Gaussian Blur with kernel size of 23 and p = 0.5.

Note that the CPC approach was not selected as it didn’t seem appropriate to divide the images
in patches given their sizes. The other approaches were chosen because of their proposed differ-
ent application techniques and different choice of transforms, with the two last being carefully
selected and proposed in papers.

For the feature extractor and the loss function, all options presented for supervised Con-
trastive Learning can be used.
On top of those options, for NACL, a complete framework, BYOL, is also implemented and
tested. There is also one model that will just show the impact of using only negative pairs,
without related architectural changes, similarly to the experiments explained in the supervised
Contrastive learning section.

5.2 Indexing

This section describes the indexing part of a CBIR framework, the insertion in a chosen
database of the vectors of the images of interest. In this work, the images added to the database
are most of the time the ones present in the indexing set. For some time trials and to check the
efficiency of the framework for a higher number of indexed images, the training data and the test
data are indexed.

9No mention of the treatment of the negative image is made, by default the transform will also be applied to
it.

10Based on Pytorch lightning bolt - Self-supervised models
11Based on Pytorch lightning bolt - Self-supervised models

59

https://pytorch-lightning-bolts.readthedocs.io/en/latest/transforms/self_supervised.html
https://pytorch-lightning-bolts.readthedocs.io/en/latest/transforms/self_supervised.html

Figure 5.4: Original image -with Custom transforms - with AMDIM transforms - with SimCRL
transforms

The indexing of the images uses the two structures described in Chapter 3: FAISS and Redis.
As explained, FAISS is a structure developed for similarity search between vectors while Redis is
an in-memory database. Both of those elements had already been used in [Defraire, 2021]. After
further research and given the quality of their fit, it was decided to keep both of them in this
work as well.

FAISS

While FAISS’s main interest is for the next section, i.e. search, this functionality is only
possible thanks to its indexing structures. As discussed in Chapter 3, FAISS offers different
indexing methods that have a direct impact on the type of search performed. Due to their
important link with the search methods, those indexings will be discussed in the next subsection.
What is of interest here is the access to the structure and its information.

FAISS stores the vectors by attributing them two index numbers. The first one is referred to
as the FAISS index. It is an index set by FAISS and uniquely accessible by FAISS. Hence the
need for the second index number which is referred to as the ‘external index’. This index is used
to access externally the vectors stored in FAISS. FAISS keeps a mapping between the external
indexes and the FAISS indexes.

While it may seem counterintuitive to use Redis in addition to FAISS as FAISS could be used
alone, it was not possible in this case for two reasons.

• Absence of string indexes. FAISS only offers integers as indexes which makes it impossible
to keep the link between the vectors and the images’ names, crucial for the evaluation of
the framework. Be it for the quantitative or the qualitative results, the original image must
be retrieved.

• Difficult access to vectors. FAISS does not seem to have a direct, efficient, and reliable way
to retrieve all vectors indexed in its structure. There are ways to do it but they are neither
efficient nor reliable, especially in the case of removal of vectors.

For those two reasons, Redis was selected as an additional database.

Redis

Redis is used to conserve the mapping between FAISS external ids and the filenames as well as
for retrieving the vectors saved in FAISS. It saves that information using a Key-Value structure

60

(or dictionary). It is the default structure though others can be used and one in particular, the
Sorted index and hashing has been an envisaged option to replace Key-Value.

The mapping between the filenames and external ids is the main mapping stored in FAISS,
with both the filename and the ids being registered as keys to allow efficient access (hence, each
mapping is stored twice in Redis). However, when the K-means method is employed, another
type of mapping is used. This mapping still links the filenames to the external ids and vice-
versa but this time, when retrieving the filename based on the id, the K-means label of the
corresponding image is also returned.
In addition to the mappings, Redis is also used to store the value of the last external id attributed,
allowing insertions to be done in several steps.

Process

The indexing process is a global way to refer to the management of the set of images available
for search. It includes the insertion of images, the removal of images, and simply access to the
saved content (vectors mostly). Note that for all three, the database and FAISS structure are
considered instantiated and running.

Addition

1. The dataset is prepared and the images are separated in batches of 128 to avoid saturating
the memory12. The following operations are done per batch.

2. The images are fed to the feature extraction model and their features vectors are retrieved.

3. The next available ‘external’ id is retrieved from Redis using the key last_id.

4. The vectors are added to FAISS along with a range of ids: [last_id ; last_id +#images]

5. One by one, the filenames and ids mappings are added to Redis.

6. Value associated to the key last_id is set to last_id + #images + 1 in Redis. The next
batch of images is processed.

Removal

1. The id corresponding to the given filename is retrieved from Redis.

2. It is given to FAISS that then removes the corresponding entry.

3. The entries in Redis are removed using the retrieved index and the filename.

Vector access

For one single vector:

1. Retrieve the key corresponding to the given filename from Redis.

2. Retrieve the vector from FAISS using index.reconstruct().
12if more than 128 images, otherwise they are processed together

61

For all vectors:

1. Retrieve all keys from Redis using keys("*").

2. Iterate on each key and discard the entries whose keys are filenames or the last id used (i.e.
keys with an "\" or an "_").

3. Reconstruct the vector from FAISS using index.reconstruct and add it to the list of
vectors.

5.3 Search and retrieval

Settings

The search is entirely handled by FAISS as a variant of k-nearest neighbors, depending on the
index used for the vectors and the distance measure chosen, as explained in Chapter 2. For the
quantitative evaluation, the 5 nearest results are retrieved while for the qualitative evaluation,
the 10 best results are displayed.

The indexes used were presented in Chapter 3, IndexIVFFlat and IndexFlat. The dis-
tance measure used is the Euclidean or L2 distance. It is the default one offered by FAISS and
seemed to offer good results in the previous master’s thesis. It was thus kept in this work.

Processes

The search is internal to FAISS and does not need any more actions than calling the appro-
priate function. However, to use IndexIVFFLat, it first requires to be trained using K-means
clustering and needs several ‘outside’ steps. Similarly, the retrieval process is done in several
steps, described after.

Training of the index

1. The vectors are retrieved from the current index structure following the Vector access
process of section 5.2.

2. The index is instantiated and its parameters set, with the number of clusters set to the
square root of the number of vectors retrieved.

3. The index is trained on the vectors using the train() method of the index.

4. The vectors are indexed to the newly trained index by batches of 128.

Retrieval

1. The query is subjected to the data transformations discussed earlier and then put through
the features extraction model to retrieve its features vector.

2. Using the search method of the index, the 5 / 10 ids of the closest vectors are returned,
along with their distance to the query vector.

3. Using the ids, the filenames (and labels in the case of the use of the K-means model) are
retrieved using the Redis database (retrieve the values whose key is in the ids).

62

5.4 Training and Testing Protocols

Several techniques have been used when training the model to investigate two important
elements in deep learning and their impact, pretraining/transfer learning, and generalization.
Similarly, several divisions of the query dataset have been implemented concerning the evaluation
of the frameworks.

Training on other datasets

It has been shown in different papers ([Oztel et al., 2019]) that taking a network already
trained on another image dataset leads to better results than using a network trained from
scratch. Regardless of the type of images on which the model is trained compared to the ones on
which it will be used, pre-training improves the results by furnishing a model that has already
learned some specificities of the processing of images. Especially in CBIR and representation
learning, it is quite common to take a network trained on classification tasks and use it as a
feature extractor ([Caron et al., 2021], [Grill et al., 2020]).

When dealing with pre-trained networks, two types of training can be performed ([Louppe, 2022]).
The first one is called transfer learning and consists in preventing the weights of the pre-trained
network to be further updated when training the new model (pre-trained network and added
output layer) on new data. We say that the weights of the network are frozen. The second
one is called fine-tuning and unlike for transfer learning, the weights of the pre-trained net-
work are updated through backpropagation. They are not frozen. A representation of it can
be seen in Fig 5.5. A comparison of training from scratch, transfer learning, and fine-tuning

6/05/23 15:49

Page 1 sur 1https://d2l.ai/_images/finetune.svg

Figure 5.5: Fine-tuning: a network is trained on a source dataset. Its layers except the output
layers are taken to form a new model that is then trained on the dataset of interest. Those layers
have their weights updated, i.e. fine-tuned while the new output layer is trained from scratch.
Credits: Dive into Deep Learning, 06/05/2023

(in particular the last two) was made in Deep Transfer Learning for Art Classification Problem
[Sabatelli et al., 2019] as can be seen in Figure 5.6.

All three types of learning have been tested as part of this thesis and are available for most
of the models, with the pretraining being made on ImageNet as stated in Chapter 4. There
are however a few exceptions. Implementations 2 and 3 of the autoencoders are only trained
from scratch as they were not made available pre-trained. When KimiaNet is used as backbone

63

https://d2l.ai/chapter_computer-vision/fine-tuning.html

Figure 5.6: ‘ Comparison between the fine tuning approach versus the off the shelf one when
classifying the material of the heritage objects of the Rijksmuseum dataset. We observe how
the first approach (as reported by the the dashed lines) leads to significant improvements when
compared to the latter one (reported by the dash-dotted lines) for three out of four neural archi-
tectures. Furthermore, we can also observe how training a DCNN from scratch leads to worse
results when compared to fine-tuned architectures which have been pre-trained on ImageNet
(solid orange line).’ Credits: [Sabatelli et al., 2019] (Deep Transfer Learning for Art Classifica-
tion Problem)

architecture, it is by definition pre-trained on histopathological images rather than on ImageNet
(it is also not available from scratch as it would be a basic DenseNet).

The pretraining is not done in the implementation but rather the weights of the models are
retrieved directly from the same libraries as the models were obtained from, except for KimiaNet
whose weights were downloaded from here. Fine-tuning is used by default but training from
scratch is possible by not downloading the models’ weights and transfer learning by setting the
parameter ‘freeze’ to True.

Split of the histopathology dataset

It has proven necessary during training and during testing to split the sets of the dataset into
subgroups. This section explains the different splits used when training and when evaluating
the framework. Note that those splits are the only way the training set was modified. No
modifications were made to resolve the class imbalance during the training of the framework.
This is due to several reasons: the type of data considered that would make it hard to generate
new data that would be with certainty representative for a given class, the ‘gravity’ of the
imbalance that would have led to a dataset either extremely reduced or extremely artificial, and
finally the focus of this master thesis on unsupervised techniques that makes it in some way
irrelevant to fix the labels when those are not supposed to be used.

64

https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Sabatelli_Deep_Transfer_Learning_for_Art_Classification_Problems_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Sabatelli_Deep_Transfer_Learning_for_Art_Classification_Problems_ECCVW_2018_paper.pdf
https://kimialab.uwaterloo.ca/kimia/index.php/sdm_downloads/kimianet-weights/

Generalisation

As the end data on which the models are used in real applications can be data that have not
been seen by the model during training, it needs to be able to process it. To test the way our
model generalizes, two splits of the dataset have been devised. Both of them consist in using only
half the classes of the dataset for training the feature extraction models, with the other classes
being used for the indexing and the retrieval (Note that the separation in training - indexing -
retrieval sets is still holding). While it leads to the non-use of some images, it allows comparison
with the models trained on all the classes.

• The first method, the simplest, keeps half of the classes for training, randomly selected.
This method was retrieved from the previous master’s thesis. The classes used can be
found in Table 5.1, for a total of 458 861 images, hence 72.4 % of the images of the training
set. This allows us not to lose too many training samples while keeping an appropriate
number of images for testing. However, some classes of the same project are separated as
well as most classes of similar projects.

• The second method takes around half of the training images and a little bit more than half
of the classes, with the first 10 classes kept (all classes from camelyon16, Cells_no_aug,
Glomeruli_no_aug and Iciar18_micro) as well as the classes number 21 to 36 (all classes
from Lbpstroma, Mitos2014, Patterns_no_aug, Tupac_mitosis, ulb_anapath_lba and ulg_bonemarrow.
The difference compare to the previous method is that no class used for training is in the
same project as a class not selected, to avoid some interference. However, classes from
similar projects could end up separated. This separation was chosen such that only half of
the images would be kept and especially such that the two most populated classes would
be separated.

janowczyk2_0 ulg_lbtd_lba_0 umcm_colorectal_0 patterns_no_aug_0
janowczyk2_1 ulg_lbtd_lba_1 umcm_colorectal_1 patterns_no_aug_1
lbpstroma_0 ulg_lbtd_lba_2 umcm_colorectal_2 tupac_mitosis_0
lbpstroma_1 ulg_lbtd_lba_3 umcm_colorectal_3 tupac_mitosis_1
mitos2014_0 ulg_lbtd_lba_4 umcm_colorectal_4 iciar18_micro_0
mitos2014_1 ulg_lbtd_lba_5 umcm_colorectal_5 iciar18_micro_1
mitos2014_2 ulg_lbtd_lba_6 umcm_colorectal_6 iciar18_micro_2
camelyon16_0 ulg_lbtd_lba_7 umcm_colorectal_7 iciar18_micro_3
camelyon16_1 warwick_crc_0

Table 5.1: Classes used for the first method of generalization

Potential bias in results

As discussed in Chapter 4, there is a severe imbalance in the dataset between the different
classes. This imbalance can impact the results as more important classes, being seen more, could
have better representations, in turn leading to better results on average as they would be ‘hiding’
the other classes’ results by taking up a more important space in the average. For this reason,
different splits of the indexing and query dataset have been picked (in addition to the 2 previous
ones).

• Default: All images of all classes. This setting leads to the most summarized but complete
results, by taking into account all the images and summarizing them. However, it can be
impacted by class imbalance and does not inform on the results of the individual classes.

65

• Weighted: All images of all classes but the measure are multiplied by a weight associated
with the class, set to 1

elements in the class . It leads to summarized results using the entire
dataset but ‘artificially’ modified to reduce the impact of class imbalance.

• Remove: All images for all the classes except the classes Camelyon16_0 and Janowczyk6_0.
This setting furnishes summarized results, less subject to overfitting as the two major
classes have been removed. However, it is not as complete as the previous as about 50% of
the images of the two sets are included. Furthermore, it completely disregards two classes
of the dataset without taking them into account at all in the results which is also biased
in some way.

• Random: 1020 images are drawn at random from the dataset, with an almost equal number
per class. One image per class is retrieved till at least 1000 images are reached (the cycle
is still completed before ending the retrieval of images) or no classes have images left in
them. All classes do not have an equal number of images. Classes that do not contain
enough images are removed from the cycle once all their images have been taken. This
setting still leads to condensed results and is a partial solution to the class imbalance. It is
also much faster to obtain. However, it is not reproducible due to the randomness of the
image selection and only a small portion of the dataset is used. To reduce the impact of
randomness, when using this protocol, 50 repetitions are made and the means and stds of
the results are given.

• Per class: All images of the class given as argument. This allows to have specific results
per class but it is not condensed (67 times each evaluation metric). A method exists to
retrieve all the results of each of the 67 classes in an Excel file.

None of the protocols is perfect, as is summarised in Table 5.2. In the following, the results will
mostly be given using the default and weighted protocols as they are the most representative.
The random protocol will be used instead of the default and all for the AE models whose number
of features is greater than 128 as the number of features makes the search process too slow to use
the most complete protocols. For the two best models, detailed results per class will be available
in the appendix as well as results using the remove protocol.

Protocols Default Weighted Remove Random Per class
Images 96 134 96 134 47 578 (49,5%) 1020 (1%) 96 134

of results 1x 1x 1x 1x 67x
Impact of imbalance High Small but artificial Reduced Small None

Table 5.2: Summary of characteristics of the protocols

5.5 Evaluation protocols

To evaluate the quality of a model, different measures are computed to retrieve quantitative
results. In parallel to those quantitative results, qualitative ones are also obtained through the
use of various figures and graphs.

Regarding the data onto which those measures are computed, the indexing set is indexed in
the database while the queries are obtained from the query set, following the protocols explained
just before. The training set is only used to train the feature extraction models. The only
exception is for the time measures, with a few experiments being made with the indexing set
and training set indexed into the database to see the impact of the number of vectors indexed
on the search and retrieval time.

66

Qualitative

Qualitative evaluations are used for two different purposes. The first purpose is to evaluate
the quality of the representation made by the feature extraction models.

To evaluate it, the first technique used is called t-SNE. It was introduced in 2008 by L. Van
der Maaten and G. Hinton in [van der Maaten and Hinton, 2008]. It is a technique that decreases
the dimensionality of a given vector such that it can be displayed in 2 to 3 dimensions. It is
also a kind of feature extractor that works in an unsupervised fashion and conserves the relative
distances between the data it is given (vectors close to one another originally are expected to still
be close in the new 2D/3D space). Unlike PCA, it is a non-linear technique. It uses Stochastic
neighbor embedding (SNE) as the backbone but has changed some elements to improve the
visualization/results. SNE consists in using probabilities to represent the distance or similarity
between data points, with one probability pj|i for the original distance and one for the distance
in the new dimension qj|i. Those probabilities are computed as follows:

pj|i =
exp(−||xi − xj ||2/2σ2

i)∑
k ̸=i exp(−||xi − xk||2/2σ2

i

qj|i =
exp(−||yi − yj ||2)∑
k ̸=i exp(−||yi − yk||2

where the x are the original data points and the y are the data points in the new dimension.

The reduction is considered optimal if the 2 probabilities are equal, making the reduction of
the difference between the two the optimization goals of (t-)SNE. This difference is computed
using the Kullback-Leibler divergence and is minimizing gradient descent (over yi).

It leads to the kind of figures displayed in 5.7.

Figure 5.7: t-SNE on embeddings obtained using two different feature extraction models (DeiT
on the left, the first implementation of the AE on the right). The colors represent the class to
which the point belongs. See how the left model leads to a better distinction between classes
than the right model.

Still for the evaluation of the representation, the second technique used is specific to the
autoencoder models as it consists in comparing visually the reconstructed image with the orig-
inal image. Such visualization allows to know how well the model has learned the important
features of the image (if it cannot rebuild it, chances are that the representation is not com-
plete enough). However, a good reconstructed image is not necessarily promise of great results

67

because a too-good reconstructed image may indicate overfitting rather than the existence of a
good representation. An example of such a comparison is displayed in Fig 5.8.

Figure 5.8: Original image and its reconstruction by one of the autoencoder implementations.

Finally, regarding the qualitative evaluation of the whole framework, it consists in retrieving
and displaying the 10 best results retrieved by the framework. Those results are displayed from
best (closest) to worst (furthest), right after the query and with their distance to it given too.
All those retrieved images are saved in a selected directory and renamed such that the class
to which they belong appears in the name. This qualitative analysis is important because the
quantitative measures, using labels, can not grasp the issue of intra-class diversity while here, it
can be seen if the images retrieved look similar to the query.13 An example of such results can
be seen in Figure 5.9.

Figure 5.9: Query (camelyon16_0) and the 10 retrieved images

Quantitative

Retrieval results

When evaluating an image retrieval system, several measures have been used in papers
such as (mean average) precision ([Caron et al., 2021]), recall ([Zheng et al., 2021]), F1 score

13Note that for this work, due to the time limitations, the qualitative analysis is not judged by experimented
people.

68

([Riasatian et al., 2021]), top-k (top-1 in [Kalra et al., 2020], top-5 in [Hegde et al., 2019]), ma-
jority vote ([Chen et al., 2022]), ... with the most popular being the Mean Average Precision
(MAP) and top-k accuracy. For this work, this last one was selected as the main evaluation
measure, with k = 1, k = 5 as well as the majority vote in the 5 first results.

The top-k accuracy consists basically in checking whether at least one image in the k first
results belongs to the same class as its corresponding query (summed and averaged over all
queries). Mathematically:

topk =

∑
xi∈X I(

∑k
j=1 I(yi = yji) > 0)

|X |

where xi is the ith query, yi the associated ‘label’14, yji the ‘label’ of the jth best result retrieved
for the query xi and I(cond) = 1 if cond is True, 0 otherwise. In the case of k = 1, then it
simplifies to the number of times the best result has the same class as the query. Mathematically:

top1 =

∑
xi∈X I(yi = y1i)

|X |

The Majority vote is quite similar to top-k accuracy but instead of being satisfied with only
one result being of the correct class, the Majority vote requests that at least half of the results
be of the correct class. The results must be good on average. Mathematically:

majk =

∑
xi∈X I(

∑k
j=1 I(yi = yji) >

⌊
k
2

⌋
)

|X |

These three measures are applied on three different levels, defined as follows:

• Class level: the label y in the previous formulas represents the class of the image. It is the
strictest measure, that focuses on the validity of the retrieval for one single class at a time.

• Project level: the label y represents this time the project of an image. This means that
if the query and the retrieved image do not belong to the same class, as long as their two
classes belong to the same project (eg, camelyon16_1 and camelyon16_0), then it will
be valid per this measure. This measure is less strict than the previous one. It is a good
indication of whether or not the framework can at least retrieve an image of the same
group as the image of interest. Even if it is not totally correct, it is at least not totally
out of touch. Furthermore, it also indicates how many of the incorrect results per the first
measure are related to a project classification (correct project, wrong class) which may be
of great importance when, for example, the two classes of a project are ‘healthy’ vs ‘sick’.

• Similar projects level: the label y represents the project of an image as for the previous
measure but this time, the = in the condition is not a ‘strict’ equality but signifies that
the projects are similar (see Chapter 4). It will be thus valid if the query and the retrieved
image belong to projects that are considered similar (Table 7.1, projects separated by a
single line). It is the loosest measure, used to see if the framework captures information
about the ‘provenance’ of an image, if it realizes that similar projects are connected.

In total, 9 measures will be used as shown in Table 5.3.

As it could quickly crowd the results, especially given the number of protocols available, most
of the models will only use the first two measures in Table 5.3 or those two with the 4th and 5th
too instead of all. The full results will be reported only for the best models. Also note that for
the K-means, results with both the ‘old’ labels and ‘new’ labels will be available.

14See later what label refers to.

69

top1_class top5_class maj_class top1_proj top5_proj maj_proj top1_sim top5_sim maj_sim

Table 5.3: Quantitative measures

Computing times

On top of the measures for the quality of the retrieval, three measures for the computational
efficiency of the framework are used, based on the time certain actions take.

The first one concerns only the feature extraction model and its training. It does not concern
itself with the efficiency of the search and retrieval. The time that a model takes to finish one
epoch, te, is considered in the choice of the feature extraction element.

The second one is relative to the indexing element. It indicates the time it takes to index all
given elements in the database (ti). This time is split into 2: the time taken by the model to
retrieve the image representation, tmi and the time taken by the indexing of the vectors in the
different structures (Redis and Faiss), tdbi .

The last time is the one relative to the search and retrieval. It is the time taken to retrieve
the supposedly most similar images to the queries given, ts. As the number of queries depends
on the protocols used, it will be indicated per query. It is also split into two values, one for the
time taken by the model, tms , and one for the time of the search and retrieval by FAISS, tdbs .

Note that the two times corresponding to the model comprise both the time to ‘turn’ the
image into its feature vector as well as the time to transfer the vector to the CPU from the GPU.
It is also considered as the time taken by the model as the size of the model directly impacts the
time of that transfer.

5.6 Implementation

This section presents the material used for the testing of the frameworks as well as the
different libraries it used/ was inspired from.

5.6.1 Material

The set-up onto which the different tests have been run is composed of

• 2 NVIDIA GeForce RTX 4090 GPUs, each with 23.988Gb of memory.

• One Intel CPU. The CPU model is Intel(R) Core(TM) i9-13900KF (13th generation) run-
ning at a clock speed of 5.5GHz. It has 24 physical cores, supporting hyper-threading,
making it 32 logical processors. The CPU cache size is 36.8MB.

• 64GB of RAM.

Except when the training is paralleled, the codes were all run on the first GPU. For time measures,
no other applications were running during the tests to ensure the reliability of the results.

70

5.6.2 Libraries & external codes

This implementation was made of original code as well as codes/functions from several li-
braries and other sources. The different elements used are cited in the following.

One of the two most important components is Pytorch. This implementation is PyTorch-
based and solely uses torch elements to build and train the models (layers, loss, models,..). The
second most important element is the implementation corresponding to [Defraire, 2021]. It was
used as the base for this implementation, with the new elements being added to the existing
structure (Implementation).

For the supervised models, pretrained architectures were retrieved from Torchvision models
(DenseNet121, ResNet500, VGG19, ViT), HuggingFace (DeiT, CvT), Kimia Lab (KimiaNet)
and EfficientNet-PyTorch (EffNet).

For the self-supervised models, the first AE implementation is from a Github implementation
of an ImageNet autoencoder, the second implementation is from Pytorch while the third is from
an article about Contractive AE on a data-science website. The K-means model is from sklearn
and Byol is from Byol-pytorch.

For the dataset preparation, the data augmentations are composed using Torchivision trans-
forms. For AMDIM and SIMCLR data augmentations, the lists were obtained from Lightning-
Bolt github (AMDIM) and documentation (SimCLR). For the sampling method in the Dr and
CL concepts, the DR sampling was obtained from Tejaswi’s Github page and the samplings
for (A)CL were built upon it. The informative sampling is obtained from the source code of
[Roth et al., 2020].

For the losses, the margin loss and softmax loss come from Revisiting Deep Metric Learning
Pytorch. and Deep Metric Learning Baselines, source code of [Roth et al., 2020] and other DML
papers. The ProxyNCA++ loss comes from the source code of [Teh et al., 2020]. The contrastive
loss and BCE loss are based on Siamese Network using Pytorch by Pritam Chanda. The soft
triple loss is obtained from the source code of [Qian et al., 2019]. Finally, the triplet margin
loss and the CosineEmbedding loss come from torch while the NT-Xent loss comes from pytorch
metric learning.

The manipulations of the FAISS indexes are made through the faiss library while the manip-
ulation of the Redis database is made possible by redis-py.

71

https://pytorch.org
https://github.com/stephdef08/tfe2
https://pytorch.org/vision/stable/models.html
https://huggingface.co/docs/transformers/main/index
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/Horizon2333/imagenet-autoencoder
https://github.com/Horizon2333/imagenet-autoencoder
https://github.com/pytorch/examples/tree/main/vae
https://www.geeksforgeeks.org/contractive-autoencoder-cae/?ref=rp
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://github.com/lucidrains/byol-pytorch
https://github.com/Lightning-Universe/lightning-bolts/blob/5669578aba733bd9a7f0403e43dd6cfdcfd91aac/src/pl_bolts/transforms/self_supervised/amdim_transforms.py#L207
https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html?highlight=transforms#simclr-transforms
https://github.com/SathwikTejaswi/deep-ranking/blob/master/Code/data_utils.py
https://github.com/Confusezius/Deep-Metric-Learning-Baselines/blob/60772745e28bc90077831bb4c9f07a233e602797/datasets.py#L428
https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch
https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch
https://github.com/Confusezius/Deep-Metric-Learning-Baselines
https://github.com/euwern/proxynca_pp
https://pchanda.github.io/Siamese_plots_torch/
https://github.com/idstcv/SoftTriple/tree/master
https://kevinmusgrave.github.io/pytorch-metric-learning/losses/
https://kevinmusgrave.github.io/pytorch-metric-learning/losses/
https://github.com/facebookresearch/faiss
https://redis.io/docs/clients/python/

Chapter 6

Results and Discussion

This chapter presents the results obtained through the empirical experiments described in
the previous chapter. It first discusses the results obtained using supervised models, presenting
each backbone architecture, concept, and each loss one by one (Section 6.1). It then talks about
the unsupervised methods, making a distinction between the three methods, and then each of the
experiments of each method (Section 6.2). After those two sections, their results are compared
and discussed (Section 6.3). The next four sections (6.4, 6.5, 6.6, and 6.7)present the remaining
parameters/elements that may affect the results, to finally end with a general conclusion on all
the elements and their impact (Section 6.8).

All time results are retrieved in the exact same conditions. Furthermore, unless specified
otherwise, the FAISS index was not trained.

6.1 Results per Supervised model

This section presents the results of the supervised models. It first starts with the architectures,
split between CNNs and transformers. For each model, the results are obtained using the random
(Rand.)1, default (Def.) and weighted (Weig.) protocols (Section 5.4). Then the results using the
different concepts and varying their parameters are introduced. It ends with a general discussion
of the impact of the different concepts, backbones, and parameters.

The models are described in Table 6.1. The first 7 test the different CNN and Transformer
architectures, then the next 3 the losses of DML2. The 11th tests DR and the last models test
the loss of CL and NCL. Numbers in the first column will be used in other tables to refer to
these models.

Note that all architectures are taken pre-trained and without the weights frozen. They lead
to vectors of 128 elements and are trained on the entire training set. The scheduler is Exponential
each time. The number of epochs and batch size vary because all models were not launched at
the same time and those parameters were thus changed frequently during this work. As they
do not impact the results too much, it was kept as presented. For the time taken by an epoch
though, it has been obtained in the same conditions (Section 5.6.1). Note that for kimiaNet, it
is trained using parallelism because the official KimiaNet implementation uses parallelism.

CNNs

Before going to the comparison of the architectures, a quick note on the metrics and protocols
themselves. First, it can be seen from Table 6.2 that for all models, the weighted and random

1To show the range obtained with the protocol.
2Resnet50 has been chosen as default for the architecture based on the results in [Defraire, 2021]

72

Nb Architecture Concept + Loss # epochs Batch size
1 Resnet50 DML + Margin 15 32
2 Densenet121 DML + Margin 20 32
3 EfficientNet_B0 DML + Margin 20 32
4 KimiaNet DML + Margin 50 32 + parallelism
5 ViT DML + Margin 20 32
6 DeiT DML + Margin 15 32
7 CvT DML + Margin 20 32
8 Resnet50 DML + Proxy 15 32
9 Resnet50 DML + Normalised softmax 15 32
10 Resnet50 DML + SoftTriple 15 32
11 Resnet50 DR + triplet 15 32
12 Resnet50 CL + contrastive 15 128
13 Resnet50 CL + Cosine 15 128
14 Resnet50 CL + BCE 15 128
15 Resnet50 CL + NT-Xent 15 64
16 Resnet50 NCL + contrastive 15 128
17 Resnet50 NCL + NT-Xent 15 64

Table 6.1: Models tested in supervised learning

Nb Prot. top1 top5 top1_proj top5_proj tms
% % % % s

1 Rand. 72.06 ± 0.9 87.7 ± 0.9 95.35 ± 0.4 97.92 ± 0.28 2.85 ± 0.077
2 Rand. 74.26 ± 1.02 88.7 ± 0.87 95.44 ± 0.35 98.2 ± 0.3 5.61 ± 0.07
3 Rand. 73.12 ± 1.1 88 ± 0.6 95.85 ± 0.24 97.4 ± 0.31 2.71 ± 0.074
4 Rand. 54.98 ± 1.06 80.94 ± 0.78 91.46 ± 0.66 96.23 ± 0.5 11.4 ± 0.079
1 Def. 75.89 92.93 94.83 98 260.72
2 Def. 79.27 93.96 95 98.46 537.473
3 Def. 77.78 92.33 94.94 97 253.16
4 Def. 72.6 92.16 93.18 97.15 1061.23
1 Weig. 72.46 86.56 95.42 97.93 260.1
2 Weig. 76.36 88.53 96.5 98.6 536.7
3 Weig. 74.76 87.84 96.4 97.78 248.88
4 Weig. 56.92 79.36 92.64 96.44 1071.22

Table 6.2: Accuracy Results for the models using a CNN as backbone + total time of the model
for the search

Nb te (min) tmi (s) tms /query (ms)
1 20 51.4 2.72
2 25 63.07 5.6

Nb te (min) tmi (s) tms /query (ms)
3 18 38.45 2.64
4 17 42.22 11.05

Table 6.3: Time results for the models using a CNN as backbone

protocols offer very similar ranges of accuracy (especially visible with the top-1 accuracy of
the 4th model). From this, it can be concluded that the random protocol leads to a good
approximation of the ‘true’ accuracy even when using only 1020 images instead of the whole set.
It validates the decision of using the random protocol when a high number of features make the
other two protocols undoable in an appropriate time. Similarly, as expected, the default protocol
offers higher results than the other two, leading to believe that it is indeed impacted by the
class imbalance of the dataset which is taken into account in the two other protocols. Second,

73

it might be surprising at first sight that the indexing time tmi is much smaller than what could
be expected seeing the search time per query tms /query. Indeed, as the indexing set is made of
around 100 000 images, the indexing time per query becomes less than 1 ms in all cases, with
the search time per query at least 2-3ms. This is due to the indexing being made by batches of
128 images whereas the queries are given to the model one by one (The times’ signification can
be found in Section 5.5).

Let us now turn to the discussion on the performance of the four CNN-based frameworks
using the accuracy results of the same Table 6.2. As can be seen, the four models have very
close results for the three protocols for the accuracy made at the project level (columns 5 and
6), with around 94-95% top-1 accuracy and 97-98% top-5. They also have similar results at the
class level for the default protocols but when it comes to the random and weighted protocols, it
can be seen that KimiaNet is lagging far behind. KimiaNet is also slightly behind in the three
other metrics but it is particularly visible with top-1 accuracy on the class scale. This seems to
indicate that, on top of globally being less good than the other models, KimiaNet is also more
impacted by class imbalance and tends to classify better the dominant class than the minority
ones3. Furthermore, as seen in the last column of 6.2 and in Table 6.3, KimiaNet is much less
efficient than its counterparts, taking more than twice the time of the Densenet per query for
the search (While it is on par for the training time and indexing time, it must be taken into
account that it is the only model trained in parallel, which explains those differences. Had it
been trained without parallelism as the other models, it would not have been the case4).

The three other models offer very similar results, with Densenet (2) being slightly better, but
never by more than 2%. However, as shown in Table 6.3, Densenet is much slower than the other
two models, in any part of the framework (training, indexing, search). Especially, it is twice
slower when comparing the time per query, which for the end purpose, is the most important.
While it stays really small (not even a second), only around 100 000 images were indexed in the
database. For a higher number of images, such a difference would be much more significant.

Hence, the two best architectures seem to be the Resnet and the Efficientnet models. They
have similar timings in all three parts of the framework and very similar results, alternating
between which is better than the other.

Transformers

Nb Prot. top1 top5 top1_proj top5_proj tms (s)
5 Rand. 58.29 ± 1.1 82.7 ± 0.75 91.8 ± 0.59 96.25 ± 0.45 2.65 ± 0.077
6 Rand. 61.65 ± 1.07 83.57 ± 0.82 91.73 ± 0.6 96.18 ± 0.39 3.06 ± 0,092
7 Rand. 55.29 ± 0.76 80.2 ± 0.87 90.77 ± 0.47 95.3 ± 0.42 5.5 ± 0.076
5 Weig. 59.28 81.44 92.98 96.5 248.98
6 Weig. 59.95 82.64 91.1 96.46 287.87
7 Weig. 57.04 79.37 91.12 95.5 533.44
5 Def. 72.83 91.19 92.67 96.66 249.42
6 Def. 73.69 90.82 92.13 96.66 289.55
7 Def. 70.7 91.47 93.37 96.27 529.45

Table 6.4: Results for models using a Transformer as backbone

Using Table 6.4, the same remarks as those made in the CNN sections (6.1) can be made
again on the protocols. The weighted and random protocols have the same range of accuracies

3This will be discussed and shown in more depth in Section 6.6
4The parallelism was kept anyway to match as much as possible to the original KimiaNet

74

Nb te (min) tmi (s) tms /query (ms)
5 43 123.27 2.6
6 43 141 3.02

Nb te (min) tmi (s) tms /query (ms)
7 40 94.56 5.51

Table 6.5: Time results for the models using a Transformer as backbone

while the default protocol shows much better results. This means that the behavior was not
only observed with CNNs but also with Transformers which ratifies the validity of the random
protocol. Similarly, the indexing time is still smaller than what could be expected based on the
query time, though the difference is less obvious.

The results in accuracies of the frameworks based on a Transformer architecture can be seen
in the same Table 6.4. As can be observed, none of the three architectures is much better than
another. All three lead to results in the same accuracy range, regardless of the protocol or the
metric. Except for the top-5 accuracy at the class level, with the default protocol, where CvT
(7) is slightly higher (but by a negligible amount), the two other models always provide results a
little bit better, though again never more than 1-2% better. At first sight, DeiT (6) seems better
at the class level, tending to discriminate better between classes of the same project whereas
ViT (5) takes the first place on the project scale. Nevertheless, both of them are pretty much
interchangeable.

In terms of computing times (see Table 6.5), ViT and DeiT exhibit again a similar behavior.
However, while CvT is a bit better in terms of training time and indexing time, its performance
crashes when looking at the query time, with a value almost twice higher as the ones of the
others. It might indicate that CvT is optimized to process the data in batches rather than one
by one.

Overall, both DeiT and ViT could be chosen as Transformer architectures, with ViT being
slightly quicker and thus preferable.

Deep Metric Learning with different losses (DML)

Nb Prot. top1 top5 top1_proj top5_proj tms (s)
1 Weig. 72.46 86.56 95.42 97.93 260.1
8 Weig. 57.54 80.32 91.4 95.11 259.91
9 Weig. 76.78 88.36 95.05 97.31 260.93
10 Weig. 74.79 86.75 94.58 96.63 262.13
1 Def. 75.89 92.93 94.83 98 260.72
8 Def. 72.99 91.13 92.87 96.22 260.17
9 Def. 82.68 94.07 95.28 97.58 268.63
10 Def. 81.83 93.77 95.34 97.56 261.39

Table 6.6: Results for models using the different DML losses

Nb te (min) tmi (s) tms /query (ms)
1 20 51.4 2.72
8 16 49.55 2.74

Nb te (min) tmi (s) tms /query (ms)
9 16 49.19 2.8
10 17 49.53 2.71

Table 6.7: Time results for the models using the DML learning and its different losses

The accuracy results are presented in Table 6.6. The first thing to notice is how the model
using the proxy loss (8) seems to be the most impacted by class imbalance, with a drop of 15% and
11% in top-1 and top-5 accuracy at the class level between the Default and Weighted protocols.

75

When giving equal importance to all the classes, it gets far worse results than when attributing
each image the same importance and hence more weight to dominant classes. Interestingly, this
difference almost disappears when the level is set to project rather than class, suggesting that
while the proxy loss fails at correctly recognizing between classes of small projects, it does well
when having to recognize only the project. For the three other losses, the impact of the imbalance
is barely noticeable in the Margin loss (1) while it is present but reduced (around 6-7 %) in the
softmax and softTriple losses (9 and 10). The resilience of the margin loss to the class imbalance
is probably linked to the fact that, unlike the three other losses, it is not a proxy-based loss
but a ranking one. It thus relies less on the labels than the others. The proxy loss being more
impacted than the two other losses does not have a directly visible cause. A possibility might be
that the distance on which the proxy loss is based, the Euclidean distance, is more sensitive to
imbalance than the cosine distance used in the others. s

Regarding the range of the results, the proxy loss, on top of being more affected by class
imbalance, also leads to worse results than the other losses, always being below the others, for all
metrics and all protocols. The three remaining losses have quite similar results for the weighted
protocol, with only the softmax loss being very slightly above at the class level and the Margin
loss above at the project level. For the default protocol, the results are similar in the project
scale, with no loss being always the best and less than 1% difference between the scores. In
the class scale, the softmax always comes on top, with a significant difference in score with the
margin in top-1 accuracy (7%). The softTriple loss is right below the softmax, taking second
place at the class level.

Regarding the times in Table 6.7, there is basically no difference between the four losses in
the indexing and search time. It is to be expected as the loss is only used during training and
has no use during the other phases. Hence, during training some differences can be seen that
directly relate to the nature of the loss. As expected, the margin loss takes longer to train than
the other losses due to it being a ranking loss rather than a proxy-based loss. The margin loss
requires the formation of pairs in the batch of data, explaining the few additional minutes it
takes per epoch.

Overall, the Normalized softmax loss seems to be the most accurate, although the margin
has the advantage of being barely impacted by the class imbalance, making it a preferred choice
in such a context where the dataset is highly imbalanced.

Deep Ranking

Nb Prot. top1 top5 top1_proj top5_proj tms
11 Weig. 25.8 53.29 63.64 82.08 270.96
11 Def. 65.36 86.06 85.39 94.18 271.75

Table 6.8: Results for the model using deep ranking

Nb te (min) tmi (s) tms /query (ms)
11 43 49.77 2.83

Table 6.9: Time results for the model using deep ranking

The results are presented in Tables 6.8 and 6.9. A very big drop in accuracy can be seen
between the results of the default and weighted protocols, especially for the top-1 accuracy at
the class level with a drop of near 40%. A highly probable hypothesis to explain such a drop
is the way the batch is formed. It is not made informatively unlike in the previous supervised

76

method, to fit the definition of the random sampling. Thus, the batches are highly imbalanced
and this seems to lead to imbalanced results per class.

Contrastive Learning (CL) with different losses

Nb Prot. top1 top5 top1_proj top5_proj tms (s)
12 Weig. 30.96 53.82 63.47 81.15 262.14
13 Weig. 37.83 72.06 92.26 97.71 261.07
14 Weig. 39.43 73.39 90.16 96.8 260.78
15 Weig. 59.1 81.33 93.82 96.9 261.14
12 Def. 61.21 84.92 80.65 93.44 262.47
13 Def. 64.5 91 91.21 96.96 260.15
14 Def. 60.78 90.47 89.94 96.69 261.15
15 Def. 83.14 94.11 95.23 97.81 261.55

Table 6.10: Results for models using the different CL losses

Nb Prot. top1 top5 top1_proj top5_proj tms (s)
16 Weig. 5.92 15.57 12.6 35.88 260.96
17 Weig. 58.81 79.85 94.63 97.49 259.39
16 Def. 29.5 59.89 37.65 72.39 260.98
17 Def. 82.97 93.76 95.06 97.1 260.95

Table 6.11: Results of the models using only positive losses to investigate the impact of dimen-
sional collapse, given the loss

Nb te (min) tmi (s) tms /query (ms)
12 33 49.5 2.73
13 32 49.56 2.71
14 31 49.57 2.72

Nb te (min) tmi (s) tms /query (ms)
15 51 49.48 2.72
16 33 49.52 2.72
17 30 49.65 2.72

Table 6.12: Time results for the models using the CL concept and its different losses

The results are presented in Table 6.10. The first thing to notice is that similarly to deep
ranking, the contrastive methods are highly impacted by class imbalance, with a drop between
20 and 30% of top-1 accuracy at the class level, for each, between the default and weighted
protocols. This issue with the class imbalance is probably related again to the absence of the
informative sampling present in the other supervised methods.

Regarding the losses themselves, surprisingly, the contrastive loss (12) presents the worse
results of all, with a significant difference to the second worse. The cosine (13) and BCE (14)
both have similar results, with the cosine slightly better at the project level and the BCE better
at the class level, regardless of the protocol. Surprisingly again, the NT-Xent loss (15) achieves
much higher results than the other three losses, with a 20% of difference with the second best
in top-1 class accuracy. That difference is less evident on top-5 class accuracy and top-1 at
the project level, with around a 5% difference between the two best losses, and is completely
absorbed on top-5 project accuracy. This is probably explained by the fact that contrarily to
the other losses, where only half the samples of the batch form a negative pair, in the NT-Xent
loss, every sample is used to form a negative pair with another sample of the batch unless it is
a constructed positive pair. This brings much more contrast than in the other losses.

For the time results reported in Table 6.12, all models take the same time to train regardless
of their loss, except for NT-Xent. This was expected due to the different sampling method of

77

NT-Xent that leads to a much higher number of pairs being taken into consideration in the
computation. This takes more time to process and also reduces the maximum usable batch size
as the used GPU memory is greater, hence the reduced batch size of models 15 and 17 of 64
instead of 128.

Finally, for the models using only positive pairs, the results are displayed in Table 6.11. There
is not much surprise in the results, with the contrastive loss collapsing completely with a drop
of accuracy between 25 and 45% compared to the ‘correct’ model. For NT-Xent, the results are
barely affected due to the particularity of the loss of still forming negative pairs based on the
other elements of the batch rather than simply relying on the furnished negative pairs as in the
other three losses

Discussion on the supervised

The results per model have been discussed in the previous section, with a comparison of the
different options of each concept/architecture style. This section compares the different types of
architecture together and the different concepts.

For the architectures, the CNN-based models clearly surpass the Transformer based models,
except for KimiaNet which achieves similar ranges of accuracies. On top of that, transformers
take more time to train and index. Their query times vary between the different architectures
of the two types but the quickest Transformers have similar query times as the quickest CNNs.
Different elements could explain such differences in results such as a lack of training data (Trans-
formers are known to need much more data than CNNs as they do not dispose of the inductive
bias CNNs have that allow them to better/quicker understand image data) or an incompatibility
of the training method chosen to that specific type of architecture (CNNs might be more adapted
to deep metric learning than Transformers) or again a lack of training time. It might be inter-
esting to note nevertheless that when looking at the results at the project level, Transformers
and CNNs are mostly on par, with CNNs only having 1-2% more on average. The same happens
for the results of the default protocols, with results for the two types of architectures being very
close. This suggests that Transformers are more affected by class imbalance than CNNs and also
have more difficulty at grasping details than CNNs. Qualitatively, all architectures lead to well-
discriminating algorithms. T-SNE projections for the ResNet (1), EfficientNet (3), and ViT(5)
architectures are presented in Figure 6.1. It can be seen that several well-separated clusters have

Figure 6.1: T-SNE for ResNet (1), EfficientNet (3), ViT (5) models

been formed, corresponding to different classes. The clusters of the ViT model seem a little bit
more noisy than the two CNN models, which is coherent with the quantitative analysis. Indeed,
several darker points can be noticed everywhere on the graph for ViT. It is especially noticeable

78

in the middle part of the graph, on the light blue and yellowish clusters. EfficientNet also has
some ‘floating’ points, but far less numerous and less noticeable.s

For the concepts, DML is the best, by far if we exclude the NT-Xent loss of contrastive
learning (15). The complexity of comparing the different protocols comes from the high variance
of the results inside one single protocol. If we exclude the proxy loss in DML (8) and the NT-
Xent loss in contrastive learning (15), then there is a high difference between the results of the
weighted protocols of the three concepts, especially noticeable on the top-1 accuracy at the class
level. That difference is also there on the default protocol though much less important (a 10-15%
drop for the top-1 class accuracy for default against a 35-40% drop for weighted). The proxy loss
and NT-Xent losses make the situation harder to ‘classify’ as the NT-Xent loss results in the
default protocol are higher than the results of the DML losses, making CL win in that specific
configuration. However, in the weighted protocol, NT-Xent loss is clearly below the DML loss
at the class level, being impacted much more by the class imbalance. It is only above the proxy
loss but this loss is the worst of DML and thus not representative of the concept.
The difference in results between the different protocols may be explained by the smaller depen-
dency of CL and DR on the class labels as they only use them to form the pairs, and such that
it would only concern themselves with the binary categorization of ‘same class’/‘different class’.
Furthermore, as stated in Chapter 4, the diversity inside a single class can be quite important
and sometimes, samples from another class might be closer to the anchor than a sample from the
same class. As the pairs are formed by randomly selecting a sample from the same class and from
a different class, it might have happened that the sample chosen for the positive pair be actually
more different from the anchor that the sample selected for the negative pair, messing up the
learning process. Qualitatively, the results are reflected by the quality of the embeddings. In
Figure 6.2, the t-SNE maps of models 9 (DML - softmax loss), 11 (DR), and 15 (CL - NT-Xent
loss) are displayed. Models 9 and 15 have well-separated clusters with those of model 15 being
slightly more noisy while the clusters of model 11 are much less separated and most classes are
superimposed (especially visible with the yellowish colors that are not as visible as in the other
maps). In conclusion, the best supervised model seems to be model 9, hence a ResNet-based

Figure 6.2: t-SNE for DML with Softmax loss (9), CL with NT-Xent loss (15), and DR with
triplet loss (11)

feature extractor trained using the DML concept using a Normalized softmax loss. However,
Model 1 (ResNet-based, trained using the DML concept with the margin loss) is more robust
to class imbalance, with almost the same results as Model 9. Therefore, it is that model that is
kept for the supervised learning part as reference.

79

6.2 Results per self-supervised model

The results are presented for the AE, separated per implementation then followed by a joint
discussion. Then the K-means final results are provided and the analysis of the new labels is
made. It finishes with the results of the A(N)CL and a joint discussion of the three self-supervised
methods.

AutoEncoders

As previously stated, for efficiency purposes, the random protocol is the protocol by default
used for the AEs with a high number of features due to prohibitive search times with the other
protocols.

The tested models are presented in Table 6.13 while the description of the different experi-
ments is made in Chapter 5, Section 5.1.2.

All those models are trained on the entire dataset, without being pre-trained, unless specified
otherwise in the experiment description. The Scheduler is also always exponential except for the
first implementation where the learning rate is modified based on the cosine function. Similarly
to the supervised models, the varying number of epochs is due to both time constraints and
different design choices given the time of launch. The number of features is directly dependent
on the implementation and the experiment.

Auto-encoders

Nb Model # epochs batch size # features other
18 Imp 1 - CNN based 50 256 + parallelism 128 Exp 1
19 Imp 1 - CNN based 5 256 + parallelism 25088 Exp 2 - vgg11
20 Imp 1 - CNN based 5 256 + parallelism 25 088 Exp 2 - vgg16
21 Imp 1 - CNN based 5 256 + parallelism 25 088 Exp 3a - resnet18
22 Imp 1 - CNN based 5 256 + parallelism 25 088 3b - resnet18
23 Imp 1 - CNN based 20 256 + parallelism 25 088 Exp 4 - pre-trained
24 Imp 1 - CNN based 5 256 + parallelism 25 088 Exp 5 - no jano
25 Imp 1 - CNN based 5 256 + parallelism 25 088 Exp 6 - class
26 Imp 1 - CNN based 5 256 + parallelism 25 088 Exp 6 - project
27 Imp 1 - CNN based 50 64 + parallelism 1000 Exp 7
28 Imp 2 - VAE 15 32 + parallelism 3840 Exp 1
29 Imp 2 - VAE 15 256 + parallelism 20 Exp 2a
30 Imp 2 - VAE 15 256 + parallelism 20 Exp 2b - one more layer
31 Imp 2 - VAE 15 256 + parallelism 128 Exp 2c - smaller reduction
32 Imp 2 - VAE 15 256 + parallelism 128 Exp 3
33 Imp 3 - Contrastive AE 15 128 + parallelism 3072 Exp 0 (fixed imp.s)
34 Imp 3 - Contrastive AE 15 et 100 128 et 256 + parallelism 3072 Exp 1
35 Imp 3 - Contrastive AE 100 256 + parallelism 3072 Exp 2
36 Imp 3 - Contrastive AE 100 256 + parallelism 9600 Exp 3
37 Imp 3 - Contrastive AE 15 32 + parallelism 16 Exp 4
38 Imp 3 - Contrastive AE 100 256 + parallelism 128 Exp 5
39 Imp 3 - Contrastive AE 10 256 + parallelism 750 Exp 6

Table 6.13: Models tested for the Autoencoder

80

Implementation 1

Nb Exp. Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) tms (s)
18 1 Rand. 8.82 ± 0.8 19.17 ± 1 19.72 ± 0.98 37.04 ± 1.25 1.18 ± 0.09
19 2a Rand. 6.04 ± 0.61 11.27 ± 0.72 13.94 ± 0.7 22.9 ± 0.73 1.97 ± 0.1
20 2b Rand. 6.19 ± 0.52 11.19 ± 0.66 14.69 ± 0.71 23.15 ± 0.8 3.162 ± 0.09
21 3a Rand. 2.4 ± 0.3 9.7 ± 0.75 8.17 ± 0.6 26.08 ± 0.97 2.45 ± 0.09
22 3b Rand. 16.34 ± 1 31.43 ± 0.89 35.46 ± 0.74 52.54 ± 0.76 2.18 ± 0.1
23 4 Rand. 8.93 ± 0.72 16.4 ± 0.71 21.31 ± 0.73 33.02 ± 1.14 3.162 ± 0.09
18 1 Weig. 7.2 16.02 17.82 33.53 110.8
18 1 Def. 30.47 45.09 38.57 59.16 111.18

Table 6.14: Results for the model using the first implementation of the AE

Nb te (min) tmi (s) tms /query (ms)
18 20 23.47 1.16
19 20 56.56 1.93
20 36 110 3.1

Nb te (min) tmi (s) tms /query (ms)
21 9 18.36 2.4
22 9 17.04 2.13
23 62 109.75 3.1

Table 6.15: Time results for the first implementation of the AE

Nb features 128 25088 1000
tdbs /query (ms) 3 500 20

tdbi (s) 5-7 11 7-8

Table 6.16: Search time per query given the size of the feature vector

The results of the different experiments made on the first implementation of an Autoencoder
architecture are presented in Table 6.14. It must be taken into consideration that the models
are trained without using the labels while those labels are used to quantify their results, hence
leading to some bias. Still, the results obtained with this implementation are disappointing.
Furthermore, each additional experience was executed in the hope to get better results than the
previous ones, without much success. This means that regardless of the setting or the parameters,
this implementation of the AE did not seem to truly learn anything.

The first experience (18) consists in taking the vgg16-based autoencoder and changing the
kernels’ dimensions to obtain a feature vector of the same size as the usual one. Given its poor
results, the second and third experiments are conceived, thinking that the results might be due
to the change in the size of the kernels. They thus consist in testing the two original VGG-based
AEs (19 - 20). Again, the results are not up to par and it is decided to test a Resnet18-based
architecture (21), as the second hypothesis to explain those poor results would be a non-fitting
backbone. This time, the results are even poorer than previously. Changes to the training
strategy are then introduced, first by testing a pre-trained version (23), then by restricting the
training set to see if the model manages to learn better when submitted to fewer data. For this,
model 24 is trained on all images except the images belonging to the class Janowczyk6_0, the
most important of the dataset. It was decided based on the t-SNE of the previous model that
showed that class is present in all clusters, leading to believe that it was confusing the model.
Model 25 is trained on one single class of the dataset (cell_no_aug_0) while Model 26 is trained
on a single project (cells_no_aug). The pretraining (23) improves the results a bit but it is still
below what is wanted. Models 24-25-26 did not get better results on the specific data they were
trained on5. Indeed, the top1 accuracy of the class cells_no_aug_0 is 33% for model 26, 28%

5As nothing was learned from those results, they are not presented in the Table.

81

for model 25, and 39% for model 23, which was trained on the full dataset, with all the data
indexed in the database. While it could be argued that it makes sense that Model 23 does better
considering that all classes are used for the indexed data, looking at the results of Model 26
when only the project cells_no_aug is indexed shows that it does not manage to learn well,
even on such a small dataset, with the top1 accuracy of the second class of the project being
only 10%. For Model 25, indexing only the class of interest and retrieving similar images to a
query of that class was also disappointing, with the retrieved images not being the most similar
available in the database. It shows either that the architecture is not good at learning or that
the reduced training data was not enough to learn effectively. Finally, the last experience (27)
was designed to reduce the dimension of the feature vector without modifying the parameters of
the backbone architecture. Indeed, from looking at the reconstructed images, it was obvious that
all the models were learning pretty well as the reconstructed images were really good (Figure
6.3). From this, it was hypothesized that the feature number of the models (except the first)

Figure 6.3: Original image and reconstructed images using the models 22, 23 and 27

was too big and the vector actually did not represent a summary of the image at all, and instead
of retrieving the best features, it kept almost identically the original pixel values. This would
explain why the reconstructions were good (basically no information loss between the original
and the latent representations) while the search results are terrible (basically it consisted of a
pixel-wise distance computation). Furthermore, as can be seen in Table 6.16, due to the number
of features, the search time was becoming prohibitive. Unfortunately, the method to reduce the
dimension did not seem to have been well designed and it lead to terrible results (less than 5%
accuracy for all metrics, hence not even presented here), though the reconstructed image (Figure
6.3) shows that the model has learned from the data. Based on that it was decided to drop this
implementation and to look for others.

Experience 3b (22) was actually the last tested one (and after the other two AE implemen-
tations), after thinking that maybe the scheduler was the issue, as in [Defraire, 2021], changing
from the exponential scheduler to the step or no scheduler would dramatically affect the results.
And this experiment gave better results, though still not the best but a clear improvement com-
pared to the other experiences and in particular compared to Experience 3a (21) which was the
same model except for the scheduler. In Table 6.156, it can also be seen that model 22 is one of
the quickest, for all three time metrics presented. Unfortunately, due to lack of time, the other
experiments were not remade using that scheduler.

Implementation 2

All experiments were realized sequentially, as a way to see if changing some parameters ‘for
the better’ would improve the results. It is the case for the first one which has the worst results.
This was expected as this first experiment was reusing the original implementation which was
built for another dataset, making its input dimensions differ from the input dimensions of the

6The times for models 24-25-26 are not included because those models were only used to try and find out how
the implementation learns, rather than in the objective of being used in the final framework. For model 27, it
was not included due to the very poor results.

82

Nb Exp. Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) tms (s)
28 1 Rand. 13.69 ± 0.53 23.37 ± 0.66 29.8 ± 0.8 41.99 ± 0.78 0.19 ± 0.05
29 2a Rand. 27.82 ± 0.95 52.71 ± 1.18 58.3 ± 1.3 77.93 ± 1.19 0.31 ± 0.05
29 2a Weig. 28.59 50.76 58.16 75.11 31.27
30 2b Weig. 26.35 47.05 49.12 69.78 54.42
31 2c Weig. 26.99 46.86 50.7 70.81 99.12
32 3 Weig. 23.37 37.62 41.9 56.26 193.64
29 2a Def. 48.84 73.42 61.95 84.12 31.21
30 2b Def. 45.53 71.84 56.68 82.38 54.44
31 2c Def. 47.85 71.53 59.81 81.75 99.07
32 3 Def. 47.12 64.3 56.7 72.2 194.1

Table 6.17: Results for the model using the second implementation of the AE

Nb te (min) tmi (s) tms /query (ms)
28 11 2.12 1.9
29 9 2.12 3.3
30 30 2.6 5.7

Nb te (min) tmi (s) tms /query (ms)
31 30 3.97 1.03
32 50 34.91 2.02

Table 6.18: Time results for the second implementation of the AE

Nb features 20 128 3840
tdbs /query (ms) 0.6 2.97 79.7

tdbi (s) 5-6 5-7 7-8

Table 6.19: Search time per query given the size of the feature vector

dataset used in this work. While it could still be applied in a somewhat logical operation (splitting
the input images into subparts of correct dimensions), it was not the most appropriate strategy.

The four other experiments however offer mostly the same range of accuracies, with the 2a
(29) being slightly better. The two next, 2b and 2c (30-31), have almost identical results while
surprisingly, the third experiment (32) is the second worst experiment of all. The slightly higher
results of 2a compared to 2b and 2c seems to signify that trying to smooth the dimensional
reduction, either by adding a layer (2b) or by ending up with a bigger feature vector (2c), does
not bring anything and rather tends to over complicate the network for nothing. This is confirmed
by the time results presented in Tables 6.18 and 6.19, where it can be seen that the experiment
2a (29) has a smaller total query time than 2b (30) and 2c (31) with a total of 3.3+0.6 = 3.9
against 5.7+0.6 = 6.3 and 1.03 + 2.97 = 4. Indeed, even if the model is three times faster when
computing the query vector for 2c than for 2a due to a smaller reduction (and no layer addition),
this speed gain is lost when looking at the search query time due to the bigger size of vector for
2c than for 2a. While the lack of difference between 2a and 2b in accuracy is understandable
considering that in the end, the same number of features is used in both to represent the image, it
was expected that 2c would get better results as its latent representation contains more features.
As it is not the case, one hypothesis might be that the features learned in the 128-representation
are related to one another, making the information less condensed than in the 20-representation.
In the end, both representations would thus contain the same amount of information, explaining
the similar results.

What is more unexpected however are the results of the last experiment. The addition of
convolutional layers to the architecture was believed to be beneficial to the model granted the
positive impact convolutions have shown to have in vision. Instead, it leads to a decrease in
the model performance. What is even more surprising is the fact that this observed decrease is

83

not constant across the four metrics. The top-1 class accuracy is barely below the ones of the
previous three experiments while the top-5 project accuracy is 20% below the best one. This
variability is also present between protocols, with the difference in top-1 project accuracy for
the weighted being 8% compared to the second worst but only 0.02% for the default protocol.
Overall, the differences are smaller for the default than for the weighted. A hypothesis could
be that the added convolutions make the model focus more on details, making the top-1 class
accuracy on par with the other experiments but this also makes the model more sensitive to class
imbalance.

Again, it can be seen that none of them handle well the class imbalance, with quite severe
drops (between 10 to 20%) between the weighted and default protocols, on all measures.

Implementation 3

Nb Exp. Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) tms (s)
33 0 Rand. 27.7 ± 1.1 50.31 ± 1.1 56.91 ± 1.18 76.6 ± 1.03 0.64 ± 0.05
34 1 Rand. 20.5 ± 0.9 36.49 ± 1.13 42.94 ± 0.8 59.35 ± 0.89 0.18 ± 0.046
35 2 Rand. 23.7 ± 1.2 43.89 ± 0.9 48.81 ± 1.23 67.92 ± 1.09 0.19 ± 0.049
36 3 Rand. 22.46 ± 0.76 40.99 ± 1.19 48.84 ± 1.25 66.42 ± 1.16 0.19 ± 0.047
37 4 Rand. 6.78 ± 0.44 19.34 ± 0.83 15.41 ± 0.94 38.1 ± 0.9 0.2 ± 0.1
38 5 Rand. 26.28 ± 0.88 49.92 ± 0.89 51.14 ± 0.94 72.72 ± 1.18 0.79 ± 0.1
39 6 Rand. 24.7 ± 0.83 46.48 ± 0.78 47.81 ± 1.14 67.96 ± 0.5 0.019 ± 0.1

Table 6.20: Results for the model using the third implementation of the AE

Nb te (min) tmi (s) tms /query (ms)
33 30 195.6 0.63
34 4 1.65 0.18
35 4 2.66 0.19
36 4 3.15 0.2

Nb te (min) tmi (s) tms /query (ms)
37 11 1.49 0.18
38 11 1.98 0.75
39 55 7.15 4.1

Table 6.21: Time results for the third implementation of the AE

Nb features 16 128 750 3072 9600
tdbs /query (ms) 0.6 3 16.3 67 200

tdbi (s) 5-6 6-7 6-7 7-8 9-10

Table 6.22: Search time per query given the size of the feature vector

The results of the different experiments are presented in Table 6.20. As expected, the best
results are attributed to model 33, which corresponds to Experience 0, i.e. the implementation
based on the adequate computation of the loss. The same model (i.e. same architecture) but
based on the other loss formulation is model 34 (Experience 1). As can be seen, there is a
drop between 7 and 15% between the metrics of the two models, showing the importance of the
coherence between the architecture of the model and its loss function. However, as model 33
requires the multiplication of the weight matrices of each layer composing the architecture, the
training time is extremely long as seen in Table 6.21 and the amount of memory is prohibitive.
It effectively prevents using model 33 for the other experiments as the increase of the number of
layers and/or dimensions of the layers makes the computation intractable.

Without taking into account the impact of the loss formulation, it is interesting to see the
results the successive modifications of the base model (34 - Experience 1) have brought. The

84

second experience, represented by model 35, confirms that having smaller reductions in the
dimensions of the layers is beneficial. It leads to a gain between 3.2 and 8.5% in accuracy
depending on the metrics. However, combining the smaller reductions with a higher number of
end features as done in Experience 3 (model 36) does not bring any advantages and even tends
to decrease the accuracy on the class scale. This might mean that when using too many features,
these features are less informative than what a smaller subset would be. Furthermore, due to the
highest number of end features, the time taken by the model in indexing and search is higher,
with 3.15s and 0.2ms against the 2.66 and 0.19 of model 35 (Table 6.21). The same is happening
with the time taken by the rest of the framework, with a search time of around 200ms per query
against a search time of around 67ms per query for model 35 (Table 6.22).

The following groups of experiences are all based on the modification of the dimension of the
input layer to make it fit the histopathology dataset rather than the Mnist dataset for which
the implementation was first conceived. Surprisingly, the first experience of this sub-group,
Experience 4 and Model 37, sees its performances drop dramatically compared to the results of
Model 34 (the corresponding model, with the original input size). It was not expected due to the
opposite effect observed in Implementation 2. It may be due to the fact that the number of end
features is really too small to represent the input image for this implementation. It seems to be
the case as the next experience, Experience 5 with model 38, retrieves the range of results seen in
the first experience. It is even the best model after model 33, with only around a 1% difference
in results in the class scale. It indicates that adapting the dimensions of the layers to fit the
dataset is beneficial, granted that the number of end features is also adapted to a reasonable
number. This reasonable number must not however be too big. Experience 6, model 39, shows
that using more features leads to a decrease in performance, in the same way as what happened
with model 36, combined with increased indexing and search times, both for the model and for
the rest of the framework (7.15s against 1.98s for indexing, 4.1ms vs 0.75ms for the model during
search and 16.3ms vs 3ms for the database search itself).

Overall, the implementation benefits from an appropriately dimensioned architecture and a
reasonable number of features. It would be even better if the loss was perfectly coherent with
the architecture but it is not feasible due to memory constraint.

K-means

Two experiments are made with K-means, one with 67 clusters (model 41) and one with 10
(model 40), with a ResNet50 trained using DML and the Margin loss. Both models lead to
vectors of 128 elements. They are taken pre-trained, without their weights frozen, and trained
on the entire dataset for 15 epochs with a batch size of 256 in parallel.

Before going to the evaluations of the retrieval part, an evaluation of the new labels obtained
through the clustering is presented.

For the evaluation of the quality of the clusters, different methods are used. The first one
is the computation of the silhouette score which is the mean of the silhouette scores of each
data point, which is given by b−a

max(a,b) , with a the mean intra-cluster distance and b the mean
nearest-cluster distance7. This silhouette score is 0.061 for model 40 and -0.08 for model 41,
indicating that model 40 is leading to better cluster attribution (silhouette score is between −1
and 1, with 1 being the best).

The second method for analyzing the clusters is by observing the distribution of the images
in them. In Figure 6.5, the image distribution in the clusters are displayed for model 40 and 41.

7Sklearn metrics, silhouette score

85

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html

Even if neither of the two bar plots is perfectly balanced, model 40 leads to a better distribution
than model 47, with the latest having some classes with less than 100 images.

Finally, the third method used to analyze the clustering is by analyzing the fragmentation of
the classes and clusters. A boxplot of the number of classes contained per cluster is presented in
Figure 6.4 for the two models alongside a boxplot of the number of clusters onto which each class
has been mapped. For model 40, the mean of the number of classes per cluster is 48.3 and the
standard deviation is 11.2. For model 41, the mean is 24.82 and the standard deviation is 15.13.
Model 40 has a higher mean number, which is natural as it builds fewer clusters, and it shows
less variability as its clusters contain similar numbers of classes. Model 41 has big variations,
with some clusters containing only one class while another contains 53 classes (bottom right plot
of Figure 6.4). It is confirmed by looking at the boxplots, with model 40 displaying a less wide
one. The range of model 41 is 52 whereas the range of model 40 is 38. It is also partly due to
the difference in the number of clusters but it leads to model 40 being more ‘stable’.

Additional graphs are available in annexed files, ‘cluster_analysis_model_40’ and ‘clus-
ter_analysis_model_41’. Those files contain the graphs presented here as well as one barplot
and one boxplot per class and per cluster showing the distribution respectively of the number of
clusters and the number of classes. There is also a confusion matrix presenting how the images
of each class have been split into the different clusters.

Figure 6.4: Class distribution per cluster (top row) and Cluster distribution per class (bottom
row). Model 40 is in blue while model 41 is in orange.

Figure 6.5: Image distribution in clusters for model 40 and 41.

The results are presented in Table 6.23. The time results of the models during the indexing
and the search are not presented as they are the same as the ones of Model 1. Surprisingly, Model

86

Nb Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) top1newLabels top5newLabels

40 Weig. 24.86 44.68 51.76 73.5 / /
41 Weig. 35.46 56.79 67.47 84.41 / /
40 Def. 48.98 74.75 61.12 85.8 87.25 96.15
41 Def. 53.14 80.16 67.05 89.41 50.72 83.45

Table 6.23: Results for the model using K-means clustering

Nb te (min) tK−means (min) tlabels (min)
40 13 35 33.5
41 13 41 37

Table 6.24: Time per epoch of the feature extraction model during training (after K-means),
time of training of the K-means, time to retrieve the new labels of the training dataset.

41 reaches better results on the original metrics than Model 40, with around a 10% difference.
However, its performance is falling when computing the top-1 and top-5 accuracies on the new
clusters. This might be because Model 41 uses a number of clusters equal to the number of
original classes. As such, its clustering might lead to the regrouping of images that originally
belonged to the same class, explaining the better results on the original labels. However, it has
not obtained the same distribution as the original, otherwise, the results would be the same as
the results of model 1 which is far from being the case. Even though Model 41 is better on the
original labels, its poor results on the new ones tend to indicate that it had difficulties learning
the discriminating features of its own clusters, which brings a negative light to its capacity to
learn. This is probably due to the high number of clusters making the learning difficult. Indeed,
after all, the elbow plot recommended a number of clusters close to 10, which is far below 67.
For this reason, Model 40 is the one that will be retained for the following. Indeed, its results
show that its learning capacity is good and that it was able to discriminate well between the
clusters it formed, unlike Model 41. Furthermore, the clusters’ analysis deemed it slightly better
in terms of stability. On top of that, Model 41’s main goal was to see if the original classes were
perfectly recovered using unsupervised clustering rather than being used as a feature extractor.
It fulfilled its goal, showing that the original image distribution was not retrieved when using
clustering, proof of the impact of the intra-class diversity discussed in Chapter 4.

ACL

Nb Architecture Transforms app batch size
42 Resnet50 custom unique 256 + parallelism
43 Resnet50 custom AMDIM 32
44 Resnet50 AMDIM AMDIM 256 + parallelism
45 Resnet50 SimCRL AMDIM 256 + parallelism
46 Resnet 50 (NC) custom AMDIM 32
47 BYOL network BYOL BYOL 64

Table 6.25: Models tested for the ACL

The models’ description can be found in Table 6.25. All models are trained for 15 epochs
with an Exponential scheduler using a contrastive loss. They lead to 128-element feature vectors
except for BYOL (47) which leads to 256-element feature vectors. s

The results are presented in Table 6.26. A first remark is that these models were trained
before all the variants of contrastive learning loss were tested. The contrastive loss was thus

87

Nb Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) tms (s)
42 Weig. 6.21 16.92 17.76 39.11 259.21
43 Weig. 29.58 51.83 57.46 77.55 258.17
44 Weig. 25.73 48.95 58.46 74.8 259.9
45 Weig. 19.42 37.59 32.93 58.25 259.06
46 Weig. 9.69 22.62 27.07 50.02 259.25
47 Weig. 41.24 63.17 77.52 88.08 274.13
42 Def. 39.73 69.09 54.76 79.84 257.89
43 Def. 63.63 83.86 81.11 91.01 260.01
44 Def. 55.64 79.18 73 89.09 258.16
45 Def. 47.15 68.23 57.51 78.83 260.03
46 Def. 36.22 66.6 46.93 78.98 259.98
47 Def. 68.08 85.87 86.45 92.37 274.06

Table 6.26: Results for the model trained using Augmented (Non) Contrastive Learning

selected in this case as it is the most renowned loss for contrastive learning. In retrospect, given
the results in Table 6.10, the NT-Xent loss should have probably been chosen to train those
models, which would have likely resulted in better performances.

Now, for the different techniques and transforms, a first observation is that the ‘Unique’
application (42) leads to terrible results. One hypothesis that could explain this is the fact
that only the positive sample is obtained from the data augmentations. The anchor might then
end up closer to the negative sample than to the positive sample as both the negative and the
anchor have gone through the same process, unlike the positive sample. Secondly, the best-fitted
transform for the histopathology dataset seems to be the custom one (43) as it reaches the highest
results on three out of four accuracies. It is closely followed by the AMDIM transforms while the
results drop with the SimCLR transforms, especially in terms of project accuracy. One potential
explanation behind the failure of SimCLR is the absence of normalization, present in both other
transforms.

Model 46 did unpredictably ‘well’. As it was a model constructed only to see the impact of
dimensional collapse, the results were expected to be much worse than they are. It is still much
lower than its contrastive counterpart, model 43, as predicted, but it reaches better results than
model 42 which is using negative pairs and should have arrived on top of it.

For model 47, it was the first complete non-contrastive model tested in this work and it did
pretty well, getting first place by far on all metrics and all protocols. This shows the important
impact that the choice of the negative samples can have on training as removing them improves
the results in this case.

In terms of time results, there is no difference in the model times during indexing and search-
ing between them because all models use a Resnet50 as backbone architecture, which makes all
models execute the same operation when computing the feature vectors. The time taken for the
search in the database is twice as high for Byol than for the others as its feature vectors are twice
the size of the feature vectors of the other models. For the indexing, it has a smaller impact due
to the batch insertion, with the indexing time of Byol being 17% higher than the indexing time
of the others (4.5s against 3.86s).

Discussion on the self-supervised approaches

Three methods are tested for self-supervised learning: Auto-Encoders, K-means, and Aug-
mented Contrastive Learning, each disposing of different configurations as was described earlier.

88

The results per implementation have been discussed before. This section first compares the three
implementations of the AE, before comparing the best models of each method together.

The best models of each implementation, i.e. Model 22 for Implementation 1, Model 29 for
Implementation 2, and Models 33 and 38 for Implementation 3, are used as representatives of
their implementation (Table 6.27). Model 22 is taking third place, being far below the three other
models. Model 29 is coming up first but by a very small margin. Those results are reflected in
their embeddings representations (Figure 6.6). The groups in Model 29 are more distinct than
in the others. Surprisingly, the representations of Model 22 and Model 38 both lack properly
defined groups, while Model 38 reached better results than Model 22. One last way to compare
the different models is by visualizing the images they retrieved given a single query (Figure
6.7). Visually, it seems like Model 29 retrieved the images the most similar to the query in
the four that were retrieved. The returned image of Model 38 ranks second while Models 22
and 33 have returned nearly identical results, a little bit further away from the query, visually.
Other tests with different queries have confirmed the tendency of Model 29 to rank first while
the three other models are more difficult to rank. This confirms that Model 29 seems to be the
best implementation of the AE presented in this work. However, this visual analysis also shows
that using labels to evaluate self-supervised methods is tricky and may lead to false conclusions.
Indeed, the quantitative results of Model 22 are lower than the results of Models 33 and 38
while their qualitative results are similar. Similarly, the other experiences for implementation
1 have shown pretty terrible quantitative results while in reality, their qualitative results, while
being below the results of Model 22 (same implementation), are not completely without sense.
In Figure 6.7, the last image is the top1 result from Model 23. While it is further from the query
compared to the results of the other models, the top left corner of the image displays structures
identical to the structures present in the top left of the query (purple circles), which tends to
indicate that the model has managed to learn and represent distinctive features of the images
(Note that more examples of retrieved images for several models are available in Appendix E).

Nb Exp. Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) tms (s)
22 3b Rand. 16.34± 1 31.43±0.89 35.46±0.74 52.54±0.76 2.18
29 2a Rand. 27.82 ± 0.95 52.71 ± 1.18 58.3 ± 1.3 77.93 ± 1.19 0.31 ± 0.05
33 0 Rand. 27.7 ± 1.1 50.31 ± 1.1 56.91 ± 1.18 76.6 ± 1.03 0.64 ± 0.05
38 5 Rand. 26.28 ± 0.88 49.92 ± 0.89 51.14 ± 0.94 72.72 ± 1.18 0.79 ± 0.1

Table 6.27: Best models of the three AE implementations

Figure 6.6: T-SNE maps for model 22, model 29, model 33 and model 38

Figure 6.7: Query image (leftmost) and the top1 images for model 22 - 29 - 33 - 38 - 23

89

Interestingly, the quality of the reconstructed images is not a good indicator at all of the
results that a model will get (Figure 6.8). Indeed, Model 23 had quite good reconstructed
images as shown in Figure 6.3. The opposite can be said about the reconstructions of Models
29 and 33. Model 38 has a slightly better representation, but is still far from the quality of the
representation of Model 23 (Note that the reconstruction was tested on several images, which all
led to a similar ranking of the reconstructions). This might indicate that the choice of an AE

Figure 6.8: Original images and their reconstruction by the models 29 - 33 - 38

for CBIR is not the most appropriate as the best AE in the sense of the reconstructed images
(which is the primary goal of an AE) is not the best when used for CBIR. However, it might also
be due to other parameters such as the feature numbers as stated earlier.

To compare now the three methods, the best models are again taken as representatives:
model 29 for AE, model 40 for K-means, and model 47 for ACL. Quantitatively (Table 6.28),

Nb Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%)
29 Weig. 28.59 50.76 58.16 75.11
40 Weig. 24.86 44.68 51.76 73.5
47 Weig. 41.24 63.17 77.52 88.08

Table 6.28: Results for the best models of each self-supervised method

Figure 6.9: T-SNE maps for model 40 (original labels and K-means labels) and model 47

Model 47 is way above the two other models with a difference between 10 and 20 %. This is also
reflected in the embeddings with Model 47 having very distinct groups for the original classes
while Model 29 and 40 do not (Figure 6.6 and Figure 6.9). Note that Model 40 does lead to
distinct groups but on the new labels generated by K-means. This, rather than showing the
capacity of the model to differentiate the data in groups by itself, shows more the effectiveness of
the supervised training concept, DML, in learning embeddings that discriminate well the given
labels. It is nevertheless interesting to compare the two t-SNE maps of Model 40 as it shows
how are split the original labels in the new labels. As can be seen, the distribution seems quite
uniform, which is coherent with the cluster analysis done previously. Comparing their retrieved
images for the same query, Figure 6.10, shows that all three models have done reasonably well.
At first sight, 29 seems to be the closest but Model 47 is quite as close if the white element
in its retrieved image is abstracted (the white element tends to draw the attention and makes
the retrieved image look much lighter than the query when the background is actually in the

90

same tone). It seems like Model 47 paid more attention to the elements in the image than in its
background (while still having a background coherent with the one of the query) while Model
29 did the opposite, with a closer background but elements less close. Model 40 however, is
further both in terms of background and terms of elements, tending to confirm its last place in
the quantitative results. Other tests with other queries were also conducted for this comparison
and have shown Model 47 to be slightly better although Model 29 is quite close to it.

Figure 6.10: Query image (leftmost) and the top1 images for model 29 - 40 - 47

In conclusion, regarding the self-supervised models, model 47, Byol (ACL), appears to be on
top, followed closely (qualitatively, less closely quantitatively) by model 29.

6.3 Discussion on the difference between supervised and unsu-
pervised models results

It is quite complicated to evaluate impartially the results of the supervised It is quite compli-
cated to evaluate impartially the results of the supervised models and the results of the unsuper-
vised models. Indeed, quantitative results will obviously tend to favor supervised models. Those
models are optimized based on the labels used for the quantitative results while self-supervised
models have never been in possession of them.

And it is indeed the case with the best model of the self-supervised methods, Model 47, only
reaching 41.24 % in top-1 class accuracy whereas the best supervised model, Model 9, reaches
almost twice that value, with 76.78% in top-1 class accuracy. However, it is important to notice
that Model 47 still beats all models trained using contrastive learning (except Model 15) and
the model trained using DR. This shows that self-supervised methods have some potential and
may, with the correct architectures and training methods, reach similar ranges as the supervised
methods. This unfortunately is only relevant for Model 47, with all the other self-supervised
models having worse results than any of the supervised models.

This domination of the supervised models is confirmed by the different t-SNE graphs pre-
sented in the previous sections (Figures 6.1, 6.2, 6.6 and 6.9). It can be observed that while
supervised models present different groups, most self-supervised models have all their data points
grouped into one single ensemble. Regardless of the distribution of the classes in the embed-
ding space, the data is simply not split into groups and all samples are packed together. The
exceptions are Models 29 and 47, which show a more separated distribution of the data points,
starting to look like the distributions that can be observed for supervised models. Note that us-
ing these graphs for contrasting the two types of methods is again positively biased towards the
supervised models due to their use of labels. Furthermore, while it may seem more interesting
to have a model able to form well-defined, separate groups, it may actually not be the case for
CBIR. Indeed, CBIR is concerned with finding images that are similar to a query, but it does not
mean that the images similar to the query must be necessarily dissimilar to other images. Even
if all the data is forming one single ensemble, as long as there are different distances between
the elements of that ensemble, then similarity can be computed. It would simply mean that all

91

images are in some way related rather than having hard separations between groups of images,
as can be observed in labeled datasets. Hence, the ‘single ensemble’ of the self-supervised models
may be more appropriate than the hard groups of the supervised models.

To remove completely the bias of evaluating with the labels, the next step is to compare the
top1 retrieved image of each model. For that, models 1 (one of the best CNN backbones), 5 (best
transformer backbone), 3 (second of the best CNN backbones), 9 (best DML loss), 11 (DR), and
15 (best CL model) of the supervised ones are selected. Models 29 (AE), 40 (K-means), and 47
(ACL) of the self-supervised are taken. First the results of the supervised models for the query
used in Figure 6.7 and 6.10 are shown in Figure 6.11. Using that query, the results are quite split.

Figure 6.11: Query image (leftmost) and the top1 images for model 1 - 3 - 5 - 9 - 11 - 15

It is difficult to say if the supervised models are better or not with respect to the self-supervised
ones. The retrieved image of Model 1 is the furthest of all models. Model 11’s image is not that
close either; even when abstracting the white elements that give a lighter aspect to the image, it
stays quite far compared to the other models. Models 3, 5, 9, and 15 however have retrieved quite
good images which, if they are closer than the retrieved images of the self-supervised, is not by
far. These four models seem to have mostly focused on the elements, like Model 47 did, with the
most similar element between the query and their retrieved images being the purple structures.
In Figures 6.12, 6.13, 6.14 and 6.15, the results for the same models using two other queries are
presented. In Figures 6.12 and 6.13, Model 29 is disappointing, with the least similar images
of all. Models 11 and 47 return images similar to one another though less similar to the query
itself. However, especially for Model 47, some darker points can be noticed that appear to be
identical to the darker points in the query, probably explaining why the images were considered
similar. Models 1 and 5 are the most satisfactory, with models 9, 15, and 40 not so far. Model
3 is in the middle, with the theme of its image matching the query but several elements making
it dissimilar. In Figures 6.14 and 6.15, the first observation is that almost all models do really
well. This shows how much the results can be impacted by class imbalance as this query belongs
to one of the two main classes of the dataset (camelyon16_0). Only Model 40’s result is not
that great with barely any resemblance with the query image, except for the color theme and the
white element in the center that looks similar to the white element on the bottom of the query.
It is quite hard to rank the other results because they are all really good. Models 1, 29, and 3
seem a little bit better, followed closely by Models 15, 5, and 47. Finally, Models 9 and 11 take
the final places, right before Model 40. This shows that the self-supervised models, despite their
not-so-great quantitative results can still lead to great qualitative results.

Overall, the supervised models as of now still lead to better results and are more consistent,
with relevant retrieved images for most queries. This was expected because supervised models
have benefited from more research and time spent on finding techniques that make them work well
in a diverse range of situations, CBIR included. Compared to that, self-supervised techniques are
relatively new and have not received yet the same amount of attention as supervised ones have,
explaining why they do not reach yet the same level of performance. However, the quantitative
results still show potential and the qualitative results demonstrate the capacity of the self-
supervised models to learn directly from the content of the images, as hoped. Combining all
results, model 1 and model 9 seem to be the best supervised models while model 47 seems to
win on the self-supervised side.

92

Figure 6.12: Query image (leftmost) and the top1 images for model 1 - 3 - 5 - 9

Figure 6.13: Top1 images for model 11 - 15 - 29 - 40 - 47

Figure 6.14: Query image (leftmost) and the top1 images for model 1 - 3 - 5 - 9

Figure 6.15: Top1 images for model 11 - 15 - 29 - 40 - 47

6.4 Impact of training data

This section discussed the impact of the training data on the results. It is split in two.
First, it discusses the effect of pretraining, transfer learning, and fine-tuning before discussing
the generalization quality. The models tested are presented in Table 6.29. They are trained on
15 epochs with an Exponential scheduler and a batch size of 256 split on 2 GPUs. They all lead
to vectors of 128 elements except for BYOL which gives a 256-element vector.

For the generalization models, they are trained on half the classes as listed in the description
of the protocols (Chapter 5, Section 5.4). The images of the other classes are selected to be
indexed and used as queries.

Type of training

The results are presented in Table 6.30. They are as expected, with the fine-tuned model
(48) reaching the best results in all metrics and both protocols, followed by the Transfer learning
model (49) and finishing with the model trained from scratch (50). The training time is also
coherent, with the model whose weights were frozen (49) being the quickest as fewer parameters
had to be updated at each epoch.

93

Nb Architecture Training Pretraining
48.0 Resnet50 Entire set Fine-tuning
49 Resnet50 Entire set Transfer Learning
50 Resnet50 Entire set From scratch
51 Resnet50 1st generalisation Fine-tuning
52 Resnet50 2nd generalisation Fine-tuning
53 Kmeans - Resnet50 2nd generalisation Fine-tuning
54 AE - Imp. 2 - Exp 2c 2nd generalisation Fine-tuning
55 Byol 2nd generalization Fine-tuning

Table 6.29: Models tested for generalization purpose

Nb Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) te (s)
48 Weig. 78.21 87.14 94.65 97.02 14
49 Weig. 56.35 76.6 88.27 95.55 8
50 Weig. 34.75 62.29 67.21 85.16 13

48.0 Def. 81.04 94.14 94.32 98.12 14
49 Def. 72.41 90.75 90.98 95.96 8
50 Def. 59.29 83.58 76.16 92.63 13

Table 6.30: Results for the different types of training

Generalization

Nb Nbeq Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%)
51 48 Weig. 52.1 71.9 90.07 96.4
52 48 Weig. 65.96 89.48 88.6 98.75
53 40 Weig. 49.95 69.24 75.2 84.77
54 29 Weig. 31.14 60 49.59 73.98
55 47 Weig. 61.12 81.06 89.37 94.84
51 48 Def. 75.64 93.33 94.08 98.99
52 48 Def. 74.8 94.06 94.44 98.63
53 40 Def. 69.49 91.22 90.86 97.31
54 29 Def. 54.65 78.59 69.73 87.91
55 47 Def. 69.33 91.5 93.29 97.67
53 40 new labels 88.95 96.69 / /

Table 6.31: Results for generalization of the different architectures

The results are presented in Table 6.318. Several observations can be made. First, despite the
generalization, class imbalance still impacts the results, with the weighted protocols having worse
accuracies than the default which means that even without being trained on them, the retrieval
of major classes is better than the retrieval of the minor classes. Second, looking at Models
51 and 52, it can be seen that the first protocol leads to very different results compared to the
second protocol. This means that the choice of the classes on which to train and on which to test
is important, with some classes leading to better generalization than others. Third, the effects
of generalization are opposed on the supervised models and self-supervised. The supervised
model, 51 and 52, sees its accuracies decrease when tested on different classes than trained. Self-
supervised models, 53, 54, and 55, see their accuracies actually increase when tested and trained
on different classes. While it was expected that self-supervised models would suffer to a lesser

8Nbeq represents the number of the model of same architecture but trained on the entirety of the dataset

94

extent than supervised models, as they do not rely on labels, it was not expected that the results
would improve. To explain this, one hypothesis is that as half the indexing set and query set were
removed and only half as many classes were present in the dataset, it is actually much likelier
to retrieve an image of the same class as the query, leading to better results. In conclusion,
self-supervised models cope quite well with predicting unknown data whereas supervised models
see their performance reduced quite strongly.

6.5 Impact of Batch size and parallelism

Nb batch size Parallelism
1 32 No
56 128 No
57 32 Yes

48.0 256 Yes

Table 6.32: Models used for Parallelism and batch size effect

The models are presented in Table 6.32. They all use a supervised Resnet50, trained using
DML and Margin loss. They are trained on the entire dataset for 15 epochs using exponential
scheduling. They are also taken pre-trained without their weights frozen.

Nb Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) te (s)
1 Def. 75.89 92.93 94.83 98 20
56 Def. 82.38 94.17 95 98.21 19
57 Def. 75.81 92.54 94.62 97.48 22

48.0 Def. 81.04 94.14 94.32 98.12 14
1 Weig. 72.46 86.56 95.42 97.93 20
56 Weig. 75.29 86.39 96.14 97.96 19
57 Weig. 73 87.37 95.46 97.25 22

48.0 Weig. 78.21 87.14 94.65 97.02 13

Table 6.33: Accuracy Results for different batch sizes and set-ups

The results are presented in Table 6.33. Globally, all accuracy results look the same, showing
that batch size and parallelism do not affect the accuracy that much. It can still be seen that in
top1 at the class level, the bigger batch size models (56 and 48.0) have slightly better results. It
is especially visible with the default protocol where the difference is up to 7% while the difference
in the weighted protocol is barely around 2-3%. This may be caused by the imbalance of the
dataset used for training. Indeed, the batches are composed using informative sampling. When
the batch size is small, the batches will be more informative than when they are large because
it will be easier to get an equal number of samples for each class. When batch sizes are too big,
there might be classes whose number of samples is not big enough to contribute in an equal way
to the other classes. This makes the smaller batch size models more resistant to the imbalance
and their results are quite similar for the two protocols, also explaining why the discrepancy in
the results is higher for the default protocol9.

For the time results, it can be seen that parallelism greatly reduces the training time when
associated with big enough batch sizes. When the batch size is too small (model 57), then the

9If small batch size models have the same range in both protocols and that this range is the same than the
range of the high batch size models for the weighted protocols, it must mean that the ranges will be different in
the default.

95

overhead operations due to the parallelism actually takes more time than the time saved by
parallelizing the operations.

6.6 Impact of class imbalance

The class imbalance has already been discussed a bit when discussing each model’s results.
It was observed that the class imbalance could lead to biased results with the results obtained
through the default protocol being always better, and sometimes by more than 20%, than the
results of the weighted protocol (weighted has for effect to make each class have the same impact
on the total results while default gives each image the same impact and hence, classes with more
images have more impact).
To investigate if, as hypothesized, the largest classes have the best results and the smallest the
worst, the results per class are generated using model 1 (best supervised), model 4 (has shown one
of the biggest discrepancies between the two protocols) and model 47 (the best self-supervised).
The Top1 class accuracies are presented in Table 6.3410.

Class 1 4 47 Class 1 4 47 Class 1 4 47
cam_0 97.01 97.01 95.11 mitos_0 8.44 9.7 7.38 chimio_0 100 95.65 56.52
cam_1 57.39 42.34 32.67 mitos_1 26.08 36.18 34.2 chimio_1 85.71 92.86 50
cells_0 91.74 84.3 62.81 mitos_2 75.44 65.55 59.05 ulg_lbtd_0 97.56 91.46 70.73
cells_1 80.77 44.23 28.85 patt_0 88.3 72.34 53.19 ulg_lbtd_1 68.75 12.5 6.25
glom_0 98.71 93.4 90.37 patt_1 49.32 46.58 43.84 ulg_lbtd_2 86.47 17.39 14.01
glom_1 92.5 83.63 61.74 tupac_0 70.11 65.5 50.97 ulg_lbtd_3 77.89 34.74 26.32
iciar_0 82.14 71.03 51.59 tupac_1 21.03 21.54 11.67 ulg_lbtd_4 96.93 76.07 65.64
iciar_1 48.33 39.17 22.5 ulb_0 91.37 71.22 10.7 ulg_lbtd_5 90.07 46.3 14.81
iciar_2 62.5 45.83 31.25 ulb_1 97.56 70.73 29.27 ulg_lbtd_6 0 33.33 0
iciar_3 43.52 33.33 13.89 ulb_2 100 23.08 7.69 ulg_lbtd_7 89.06 62.5 43.75
jano1_0 50.55 59.69 34.44 ulb_3 84.78 50 28.26 umcm_0 46.94 22.45 0
jano1_1 63.4 55.94 33.93 ulb_4 94.12 52.94 5.88 umcm_1 100 100 100
jano2_0 61.9 80.95 67.62 ulb_5 0 0 0 umcm_2 100 100 100
jano2_1 83.67 82.33 36 ulb_6 25 12.5 25 umcm_3 100 0 100
jano5_0 19.32 20.37 10 ulb_7 0 0 0 umcm_4 100 100 100
jano5_1 2.44 2.09 0.58 ulb_8 75 8.33 16.67 umcm_5 50 50 100
jano6_0 89 88.4 86.57 bone_0 87.5 75 0 umcm_6 100 100 100
jano6_1 65.63 68.88 54.89 bone_1 66.67 22.22 0 umcm_7 100 100 0
jano7_0 85.61 73.48 59.85 bone_2 100 25 12.5 warw_0 60.56 59.86 48.59
jano7_1 79.89 74.71 67.82 bone_3 75 25 12.5 warw_1 74.07 70.83 46.3
jano7_2 75.67 77.33 57.33 bone_4 88.89 66.67 22.22
lbps_0 99.28 98.92 93.19 bone_5 77.78 75 38.89
lbps_1 99.22 98.44 90.63 bone_6 85 90 50

Table 6.34: Top1 accuracy per class for the models 1, 4 and 47

It can be seen that the results are very different depending on the class. As expected, the
two main classes have high results, above 95% for camelyon16_0 for all three models and above
86% for janowczyk6_0 for all three models. Given that by themselves they represent 50% of the
query dataset, it is no surprise that in the default protocol, they tend to increase the results.

For the rest of the classes, the results are not necessarily linked with the size of the classes di-
rectly. It is especially visible in Figure 6.16 where no relationship can be established between the
points, for any of the model. Looking at specific cases from Table 6.34, for example, ulg_lbtd_4
has above 65% in all models and it only possesses 520 images while mitos_1 ’s highest result is
36.18% and it contains 15020 images, making it one of the biggest classes. What is interesting
is that mitos_2 has great results compared to mitos_0 and mitos_1. It is also the class of
the mitos project that has the most images. So while the size does not necessarily explain the

10The results for all the metrics can be found in the excel file ‘results_per_class.xlsl’ in the annexed files

96

Figure 6.16: Top1 accuracy per class given the number of images in the class, for the models 1
(ResNet), 4 (KimiaNet) and 47 (Byol)

results when comparing all sizes of all classes and all results of all classes, it becomes an impor-
tant variable when we restrict the view to one single project. In a project, the class with more
images tends to have better results than the classes of the same project with fewer images. From
this, it can be inferred that while the models can distinguish quite well the projects, they have
more trouble distinguishing the classes inside the same project, tending to learn better how to
represent the major class of the project and as such, have better retrieval results for that class.
This is confirmed by looking at the Top1 project accuracy vs the Top1 class accuracy for all
models, with the first one being much better (around 20-30% higher).

Note that this is also a direct consequence of the intra-class diversity discussed in Chapter
4. As some classes have very diverse images, sometimes images from another class of the same
project tend to be more similar than an image from the same class. For example, in Figure 6.17
is represented a query image from mitos_0 and the top1 retrieved image by the three models.
All three models return images that are very similar visually to the query. Yet, none of them
is of the same class, with all three retrieved images belonging to the major class of the project,
mitos_2. The opposite happened in Figures 6.12 and 6.13. All retrieved images except for the
one of Model 29 are of the same class, glom_0 as the query. Yet, the retrieved images of Model
11 and Model 47 are quite different from it. Meaning that in this case, despite the diversity
present in the class, the models still managed to retrieve images of the same class. But again,
like mitos_2, glom_0 is actually the dominant class of its project, which would explain why the
models will by default retrieve images from that class instead of images of the glom_1 class that
might be more similar to the query. The models have preferably learned the representation of
the dominant class of each project, leading to better results for these classes.

Note that as seen in the quantitative results for the CNN backbone architectures, KimiaNet
leads to worse results than ResNet, with a much higher number of data points with low accuracy.
It also presents a bigger range in the accuracy, explaining its important discrepancy between the
results of the weighted and default protocols.

Note that while the weighted protocol allows avoiding the dominance of the two main classes,
it is also biased. Indeed, in Table 6.34, it can be seen that some classes have very different results

97

Figure 6.17: Query and Top1 images for model 1 - 4 - 47

for the three models, the extreme being 100% with two models and 0 with the last. These classes
are composed of only a few images, sometimes even only one. Hence, by miss retrieving this one
image, the result for the class directly becomes zero while correctly retrieving it gives the class a
100% result. And in the weighted protocol, these classes have the same weights as classes with
thousands of images whose results are much more stable. This also explains why the results of
the weighted protocol are smaller than for the default, as a few classes with 0 as the result would
not matter much in default due to containing barely a few images while they amount for 1/67th
in weighted.

6.7 Search and Retrieval

Nb Architecture Feature number Indexed Set # images FAISS Training
48 Resnet 50 128 Indexing 106 281 No

48.1 Resnet 50 128 Indexing 106 281 Yes
48.2 Resnet 50 128 Train + Indexing 739 780 No
48.3 Resnet 50 128 Train + Indexing 739 780 Yes
36 AE - imp. 2 - Exp 6 9600 Indexing 106 281 No

36.1 AE - imp. 2 - Exp 6 9600 Train + test 739 780 Yes

Table 6.35: Models tested for Search

The models are described in Table 6.35. The supervised Resnet50s are trained using DML
and the margin loss. They are all trained using exponential scheduling on 15 epochs, with a
batch size of 256 split onto 2 GPUs. Several observations can be drawn from the results in Table

Nb Prot. top1 (%) top5 (%) top1_proj (%) top5_proj (%) tdbi (s) tdbs /query (ms)
48.0 Weig. 78.21 87.14 94.65 97.02 3.93 3.06
48.1 Weig. 78.22 87.14 94.67 97.01 3.93 0.39
48.1 Weig. 78.28 86.17 93.62 96.27 27.5 19.75
48.2 Weig. 78.3 86.16 93.64 96.27 27.5 2.066
36 Rand. 22.35 41.96 49.6 67.94 8.94 197

36.1 Rand. 23.13 44.7 47.5 67.94 56.08 1 324

Table 6.36: Accuracy Results for different batch sizes and set-ups

6.36. First, not really related to the search itself, it can be seen that the results of the models are
quite stable with almost the same results with only the indexing set indexed and when both the
train and indexing sets are indexed. Second, using the second type of FAISS index, the inverted
index that requires clustering training barely changes the results. The difference is at most 2%
between the brute-force index and the inverted one. However, the search is much faster, a factor
10 of difference per query, regardless of the amount of data inside (i.e. the gain of the training
of the index is the same regardless of the amount indexed in the database (48 vs 48.1 and 48.2
vs 48.3)). This suggests that using the inverted index is purely beneficial and greatly improves

98

the efficiency of the system. Third, the last two models demonstrate the impact that the feature
vector size has on the performance. For the same amount of data, the untrained index takes
64 times longer to treat vectors of 9600 features (36) than vectors of 128 features (48). For the
trained index, it takes 640 times longer for the 9600 feature vectors (36.1) than for a 128 feature
vector (48.2). Again, it demonstrates the utility of the inverted index, especially in the case of
large feature vectors. If model 36.1 had been tested on the entire validation set (96 066), it would
have taken 35h+ to compute the results for all queries, with a trained index.

6.8 Overall conclusion

This section marks the end of this Chapter. A lot of results have been presented in it. This
section will quickly summarise the findings obtained from them.

superior to Transformer-based ones. DML and the softmax loss is the winning concept,
though all the losses of DML are globally good. The NT-Xent loss of CL also gives good results,
though worse than the results of all models of DML.

For the self-supervised models, the Augmented non-contrastive learning method wins with
the Byol model, by far when looking quantitatively. It is followed by experience 2a of the second
implementation of the autoencoder, itself followed closely by experiences 0 and 5 of the second
implementation of the AE as well as the 10 clusters K-means model. Qualitatively, all models
retrieve images that usually match well the query.

Comparing the supervised and self-supervised, the supervised models have much better results
quantitatively. Qualitatively, they also tend to retrieve images that better match the query than
the images retrieved by the self-supervised models but the gap is much smaller than what is shown
by the quantitative results. Overall, the self-supervised models have proved to have plenty of
potential and could lead to great results with a little bit more research. s

For the other parameters, fine-tuning has proven to be the best training strategy. In re-
gards to generalization, the supervised models see their performance deteriorate whereas the
self-supervised see their results improve. Globally though, all models still perform quite well
on unseen data, even if it is obviously less well than on known data. The use of parallelism
with big batch sizes helps speed up the training of the model without consequences on their
accuracies. Same for the training of the FAISS index, it speeds up the search in the database
without impacting the accuracy of the models. Finally, class imbalance stays an issue, with the
dominant classes biasing positively the results obtained through the default protocol while the
weighted protocol is negatively biased by the smallest classes. The size of the classes especially
intervenes at the project level, with the dominant class of each project tending to be better
represented/learned than the other classes of the project.

The two best models, one for each training fashion, are chosen to be model 1 (Supervised
ResNet-based model trained using DML with the margin loss) and model 47 (BYOL, NACL
model), though model 9 (same as model 1 but with the softmax loss) could have also been
selected for supervised learning. The complete results for these two models, both quantitative
and qualitative, can be found in Appendix C.

99

Chapter 7

Limitations and Conclusion

This chapter marks the end of this master thesis. It was developed in order to test different
elements that can be used in the making of a CBIR framework. In particular, it had the purpose
of looking into unsupervised and self-supervised methods to remove any need of labels and making
it closer to its core concept which is to find the similarities between images based on the content
alone of the images, rather than on their labels.

This study has effectively carried out its research and presentation of several different concepts
and architectures that can be used for CBIR. It offers several options both in supervised and self-
supervised learning. It displays their performances using numerous and varied metrics alongside
an analysis providing plausible explanations to why some perform better than others.

While the self-supervised methods are still subpar compared to the supervised ones on the
quantitative results, their qualitative results have confirmed their potential and the interest
there is to try and develop them further. This outcome is actually even more noteworthy than
obtaining great results for the self-supervised methods as part of this study as it shows that the
intuition into which this work was approached was relevant and it opens the way to a new field
and to new developments that could lead to great discoveries.

In the future, it could be interesting to develop further the self-supervised concepts and
identify the elements that may limit their performances. Such research would still be impor-
tant for supervised models as, even if they already reach great results, there is still place for
improvements.

Even though this work has reached its objectives, it could be improved in different aspects.
First, due to time constraints, the interest of specific elements have been discovered too late to
be extended to more models/ integrated with the best other elements. Further experiences on
them could have led to better results than those obtained. Such elements includes the Exponen-
tial scheduling for the second implementation of the AE and the infoNCE loss for augmented
contrastive learning. On top of that, the hyperparameters and data augmentations were not
tuned in any way (except the data augmentations in ACL). If they had been set to values more
appropriate to the situation at hand, it might have led to better results. Especially regarding
the data normalization step that uses values based on natural data rather than histopathological
one. Finally, the biggest limitations of this work is the quantitative metrics used to evaluate the
frameworks. The metrics all use the labels to evaluate the quality of the results of the frame-
works. However, this fact makes the supervised methods more likely to have great results as they
have been trained on those labels where the self-supervised methods have never seen them. It is
then normal to see the supervised methods get better results per these metrics compared to the
self-supervised, leading to some bias. As part of this work, it was not possible to find another
way to get quantitative results without using the labels. The only other alternative found was

100

to display the retrieved images to compare them visually. Unfortunately, it does not allow to
have full results as displaying the retrieved images for all queries would be intractable and the
quality of the similarity was not evaluated by professionals which leads to incertitude as to how
relevant the conclusions based on the visuals can be.

Overall, this work has managed to reach its objectives. It is not perfect but provides a great
base to research even further into this field. In particular, a study of the most recurring errors
made by the ensemble of models could provide great insights into what limits the performance
of CBIR frameworks. It would also be relevant to try other combinations and identify other
elements that could be added to the list of options made in this work. The implementation of
this work can be found in the cbir-tfe repositery on the Github page of the author of this thesis,
at the following url: https://github.com/AxelleSchyns/cbir-tfe.

101

https://github.com/AxelleSchyns/cbir-tfe

Bibliography

[An et al., 2021] An, X., Zhu, X., Xiao, Y., Wu, L., Zhang, M., Gao, Y., Qin, B., Zhang, D., and Fu, Y. (2021).
Partial fc: Training 10 million identities on a single machine. In Proceedings of IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, pages 1445–1449.

[Bachman et al., 2019] Bachman, P., Hjelm, R. D., and Buchwalter, W. (2019). Learning representations by
maximizing mutual information across views. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, NIPS’19, pages 15535–15545.

[Bahdanau et al., 2016] Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural machine translation by jointly
learning to align and translate. arXiv preprint: arXiv:1409.0473.

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In
Proceedings of the European Conference on Computer Vision-ECCV 2006, volume 3951, pages 404–417.

[Caron et al., 2021] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A.
(2021). Emerging properties in self-supervised vision transformers. arXiv preprint: arXiv:2104.14294.

[Chen et al., 2022] Chen, C., Lu, M., Williamson, D., Chen, T., Schaumberg, A., and Mahmood, F. (2022). Fast
and scalable search of whole-slide images via self-supervised deep learning. Nature Biomedical Engineering,
6:1–15.

[Chen et al., 2020] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for con-
trastive learning of visual representations. In Proceedings of the 37th International Conference on Machine
Learning, pages 1597–1607.

[Defraire, 2021] Defraire, S. (2020-2021). A distributed deep learning approach for histopathology image retrieval.
Master’s thesis, University of Liège.

[Dewan and Thepade, 2020] Dewan, J. and Thepade, S. (2020). Image retrieval using low level and local features
contents: A comprehensive review. Applied Computational Intelligence and Soft Computing, 2020:1–20.

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint: arXiv:2010.11929.

[Dosovitskiy et al., 2016] Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M., and Brox, T. (2016).
Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38:1734–1747.

[Falcon and Cho, 2020] Falcon, W. and Cho, K. (2020). A framework for contrastive self-supervised learning and
designing a new approach. arXiv preprint: arXiv:2009.00104.

[Grill et al., 2020] Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C.,
Pires, B. A., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M. (2020). Bootstrap
your own latent: A new approach to self-supervised learning. In Proceedings of the 34th Conference on Neural
Information Processing Systems (NIPS 2020).

[Hadsell et al., 2006] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an
invariant mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
arXiv preprint: arXiv:1512.03385.

[Hegde et al., 2019] Hegde, N., Hipp, J., Liu, Y., Emmert-Buck, M., Reif, E., Smilkov, D., Terry, M., Cai, C.,
Amin, M., Mermel, C., Nelson, P., Peng, L., Corrado, G., and Stumpe, M. (2019). Similar image search for
histopathology: Smily. npj Digital Medicine, 2:1–9.

[Huang et al., 2018] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2018). Densely connected
convolutional networks. arXiv preprint: arXiv:1608.06993.

[Jain and Vailaya, 1996] Jain, A. K. and Vailaya, A. (1996). Image retrieval using color and shape. Pattern
Recognition, 29(8):1233–1244.

102

[Johnson et al., 2017] Johnson, J., Douze, M., and Jégou, H. (2017). Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 7(3):535–547.

[Jégou et al., 2011] Jégou, H., Douze, M., and Schmid, C. (2011). Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128.

[Kalra et al., 2020] Kalra, S., Tizhoosh, H., Choi, C., Shah, S., Diamandis, P., Campbell, C. J., and Pantanowitz,
L. (2020). Yottixel – an image search engine for large archives of histopathology whole slide images. Medical
Image Analysis, 65:1–12.

[Kaya and Bilge, 2019] Kaya, M. and Bilge, H. (2019). Deep metric learning: A survey. Symmetry, 11:1066.

[Kingma and Welling, 2022] Kingma, D. P. and Welling, M. (2022). Auto-encoding variational bayes. arXiv
preprint: arXiv:1312.6114.

[Kobs et al., 2021] Kobs, K., Steininger, M., Dulny, A., and Hotho, A. (2021). Do different deep metric learning
losses lead to similar learned features? In Proceedings of the 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 10624–10634, Los Alamitos, CA, USA. IEEE Computer Society.

[Krizhevsky et al., 2017] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90.

[Kumar et al., 2013] Kumar, A., Kim, J., Cai, W., Fulham, M., and Feng, D. D. F. (2013). Content-based
medical image retrieval: A survey of applications to multidimensional and multimodality data. Journal of
Digital Imaging, 26:1025–1039.

[Le-Khac et al., 2020] Le-Khac, P., Healy, G., and Smeaton, A. (2020). Contrastive representation learning: A
framework and review. In Proceedings of the 37th International Conference on Machine Learning, volume 8,
pages 193907–193934.

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[Louppe, 2022] Louppe, G. (2021-2022). Deep learning, info8010. ULiège.

[Lu et al., 2017] Lu, J., Hu, J., and Zhou, J. (2017). Deep metric learning for visual understanding: An overview
of recent advances. IEEE Signal Processing Magazine, 34(6):76–84.

[Lu et al., 2015] Lu, J., Wang, G., Deng, W., Moulin, P., and Zhou, J. (2015). Multi-manifold deep metric
learning for image set classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Maliki et al., 2019] Maliki, N. E., Silkan, H., and Maghri, M. E. (2019). Efficient indexing and similarity search
using the geometric near-neighbor access tree (gnat) for face-images data. Procedia Computer Science, 148:600–
609.

[Malkov and Yashunin, 2018] Malkov, Y. A. and Yashunin, D. A. (2018). Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836.

[Manjunath and Ma, 1996] Manjunath, B. and Ma, W. (1996). Texture features for browsing and retrieval of
image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842.

[Minarno et al., 2021] Minarno, A. E., Ghufron, K. M., Sabrila, T. S., Husniah, L., and Sumadi, F. D. S. (2021).
Cnn based autoencoder application in breast cancer image retrieval. In Proceedings of the 2021 International
Seminar on Intelligent Technology and Its Applications (ISITIA), pages 29–34.

[Mormont et al., 2021] Mormont, R., Geurts, P., and Maree, R. (2021). Multi-task pre-training of deep neural
networks for digital pathology. IEEE Journal of Biomedical and Health Informatics, 25(2):412–421.

[Nguyen et al., 2020] Nguyen, B. X., Nguyen, B. D., Carneiro, G., Tjiputra, E., Tran, Q. D., and Do, T.-T.
(2020). Deep metric learning meets deep clustering: An novel unsupervised approach for feature embedding.
arXiv preprint: arXiv:2009.04091.

[Nguyen and Bai, 2010] Nguyen, H. and Bai, L. (2010). Cosine similarity metric learning for face verification. In
Proceedings of the Asian Conference on Computer Vision, pages 709–720.

[Oztel et al., 2019] Oztel, I., Yolcu, G., and Oz, C. (2019). Performance comparison of transfer learning and
training from scratch approaches for deep facial expression recognition. In 2019 4th International Conference
on Computer Science and Engineering (UBMK), pages 1–6.

[Qian et al., 2019] Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., and Jin, R. (2019). Softtriple loss: Deep metric
learning without triplet sampling. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 6449– 6457.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training. OpenAI.

103

[Riasatian et al., 2021] Riasatian, A., Babaie, M., Maleki, D., Kalra, S., Valipour, M., Hemati, S., Zaveri, M.,
Safarpoor, A., Shafiei, S., Afshari, M., Rasoolijaberi, M., Sikaroudi, M., Adnan, M., Shah, S., Choi, C.,
Damaskinos, S., Campbell, C. J., Diamandis, P., Pantanowitz, L., Kashani, H., Ghodsi, A., and Tizhoosh,
H. R. (2021). Fine-tuning and training of densenet for histopathology image representation using tcga diagnostic
slides. Medical Image Analysis, 70:1–11.

[Rifai et al., 2011] Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, page 833–840, Madison, WI, USA. Omnipress.

[Roth et al., 2020] Roth, K., Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. P. (2020). Revis-
iting training strategies and generalization performance in deep metric learning. In Proceedings of the 37th
International Conference on Machine Learning, volume 119.

[Sabatelli et al., 2019] Sabatelli, M., Kestemont, M., Daelemans, W., and Geurts, P. (2019). Deep transfer
learning for art classification problems. In Leal-Taixé, L. and Roth, S., editors, Computer Vision – ECCV 2018
Workshops, pages 631–646, Cham. Springer International Publishing.

[Siddiqui et al., 2017] Siddiqui, S., Salman, A., Malik, I., Shafait, F., Mian, A., Shortis, M., and Harvey, E.
(2017). Automatic fish species classification in underwater videos: Exploiting pretrained deep neural network
models to compensate for limited labelled data. ICES Journal of Marine Science, 75.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[Singh and Srivastava, 2017] Singh, V. P. and Srivastava, R. (2017). Improved image retrieval using color-
invariant moments. In 2017 3rd International Conference on Computational Intelligence & Communication
Technology (CICT), pages 1–6.

[Sivic and Zisserman, 2003] Sivic and Zisserman (2003). Video google: a text retrieval approach to object match-
ing in videos. In Proceedings of the Ninth IEEE International Conference on Computer Vision, pages 1470–1477
vol.2.

[Tan et al., 2019] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019).
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2815–2823.

[Tan and Le, 2020] Tan, M. and Le, Q. V. (2020). Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint: arXiv:1905.11946.

[Teh et al., 2020] Teh, E. W., DeVries, T., and Taylor, G. W. (2020). Proxynca++: Revisiting and revitalizing
proxy neighborhood component analysis. In Proceedings of the 16th European Conference on Computer Vision
– ECCV 2020, pages 448–464.

[Tian et al., 2021] Tian, Y., Chen, X., and Ganguli, S. (2021). Understanding self-supervised learning dynamics
without contrastive pairs. In Proceedings of the 38th International Conference on Machine Learning.

[Touvron et al., 2021] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. (2021).
Training data-efficient image transformers & distillation through attention. In Proceedings of the 38th Inter-
national Conference on Machine Learning Research, volume 139, pages 10347–10357.

[van den Oord et al., 2019] van den Oord, A., Li, Y., and Vinyals, O. (2019). Representation learning with
contrastive predictive coding. arXiv preprint: arXiv:1807.03748.

[van der Maaten and Hinton, 2008] van der Maaten, L. and Hinton, G. (2008). Viualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, NIPS
2017, pages 5998–6008.

[Wang et al., 2014] Wang, J., song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., and Wu, Y.
(2014). Learning fine-grained image similarity with deep ranking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

[Wang et al., 2023] Wang, X., Du, Y., Yang, S., Zhang, J., Wang, M., Zhang, J., Yang, W., Huang, J., and
Han, X. (2023). Retccl: Clustering-guided contrastive learning for whole-slide image retrieval. Medical Image
Analysis, 83:102645.

[Wiggers et al., 2019] Wiggers, K. L., Britto, A. S., Heutte, L., Koerich, A. L., and Oliveira, L. S. (2019). Image
retrieval and pattern spotting using siamese neural network. In Proceedings of the 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.

[Wu et al., 2017] Wu, C.-Y., Manmatha, R., Smola, A. J., and Krähenbühl, P. (2017). Sampling matters in deep
embedding learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages
2859–2867.

104

[Wu et al., 2021] Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., and Zhang, L. (2021). Cvt: In-
troducing convolutions to vision transformers. In Proceedings on the IEEE/CVF International Conference on
Computer Vision (ICCV).

[Zhai and Wu, 2019] Zhai, A. and Wu, H.-Y. (2019). Classification is a strong baseline for deep metric learning.
arXiv preprint: arXiv:1811.12649.

[Zheng et al., 2021] Zheng, W., Zhang, B., Lu, J., and Zhou, J. (2021). Deep relational metric learning. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[Zhong et al., 2021] Zhong, A., Li, X., Wu, D., Ren, H., Kim, K., Kim, Y., Buch, V., Neumark, N., Bizzo, B.,
Tak, W. Y., Park, S. Y., Lee, Y. R., Kang, M. K., Park, J. G., Kim, B. S., Chung, W. J., Guo, N., Dayan, I.,
Kalra, M. K., and Li, Q. (2021). Deep metric learning-based image retrieval system for chest radiograph and
its clinical applications in covid-19. Medical Image Analysis, 70:101993.

105

Appendix

The following elements are presented in this Appendix:

• A. The Classes and projects in the histopathology dataset

• B. Demonstration of the loss formula for the third implementation of the AE

• C. Complete results for the model 1 and model 47

• D. Visualization of the data

• E. Retrieved images for several models and queries

Note that in addition of these elements, several annex files are available on MatheO: implementa-
tion.pdf, results_per_class.xlsx, model40_clusters_analysis.pdf and model41_clusters_analysis.pdf.

106

A. Classes and projects in the histopathology dataset

The table 7.1 shows all the projects composing the dataset. C1 is the original number of the
class while C2 is the new number that were attributed to them for simplicity purpose.

Project C1 C2 Project C1 C2

Camelyon16 0 0 ulg lbtd2 chimio necrose 36362022 0
1 1 36362044 1

cells no aug 0 0

ulg lbtd lba

4762 0
1 1 4763 1

patterns no aug 0 0 4764 2
1 1 4765 3

glomeruli no aug 0 0 4766 4
1 1 4767 5

iciar18 micro

113351562 0 4768 6
113351588 1 406558 7
113351608 2

ulg bonemarrow

0 0
113351628 3 1 1

janowczyk1 1 0 2 2
1 1 3 3

janowczky2 2 0 4 4
1 1 5 5

janowczyk5 0 0 6 6
1 1 7 7

janowczyk6 0 0 tupac mitosis 0 0
1 1 1 1

janowczyk7
0 0 warwicj crc 0 0
1 1 1 1
2 2

ulb anapth lba

4711 0

umcm colorectal

01_TUMOR 0
4712 1 02_STROMA 1
4713 2 03_COMPLEX 2
4714 3 04_LYMPHO 3
4715 4 05_DEBRIS 4
4720 5 06_MUCOSA 5
68567 6 07_ADIPOSE 6
485565 7 08_EMPTY 7
672444 8

mitos2014
0 0

lbpstroma 113349434 0 1 1
113349448 1 2 2

Table 7.1: Division of the histopathology dataset
C1 = original class number, C2 = simplified class number

107

B. Demonstration of the loss formula for the third implementation
of the AE

The function of interest is given by

hj(x) = σ ([w3σ(w2σ(w1x))]j) (7.1)

where σ is the element-wise sigmoid activation function and wi (i = 1, 2, 3) are the weight
matrices of the different layers of the network. x is the input vector while h is the output of the
bottleneck layer. As a remainder, the layers have the following dimensions:

• Layer 1: input size = 784, output size = 64

• Layer 2: input size = 64, output size = 32

• Layer 3: input size = 32, output size = 16

In order to differentiate hj(x) with respect to xi, let us write hj more explicitly using matrix
calculations and relying on the dimensions detailed above. First, the jth element inside the
brackets in (7.1) is given by

[w3σ(w2σ(w1x))]j =
32∑
l=1

(w3)jlσ ([w2σ(w1x)]l) (7.2)

and this element will be referred to as (h3)j in the derivation below.

Similarly, the lth element inside the brackets in (7.2) can be written as

[w2σ(w1x)]l =
64∑

m=1

(w2)lmσ ([w1x]m) (7.3)

and it will be denoted by (h2)l in the computations.

Finally, the mth element in (7.3) is given by

[w1x]m =
784∑
k=1

(w1)mkxk (7.4)

and it will be denoted by (h1)m.

Putting (7.2), (7.3) and (7.4) together in (7.1) yields

hj(x) = σ

(
32∑
l=1

(w3)jl σ

(
64∑

m=1

(w2)lm σ

(
784∑
k=1

(w1)mkxk

)))

and following the same notations as before, this whole expression will be referred to as (h4)j .

108

For the differentation step, it might be useful to add the intermediate notations to the full
expression of (h4)j :

(h4)j = σ

(h3)j︷ ︸︸ ︷
32∑
l=1

(w3)jl σ

64∑

m=1

(w2)lm σ

(h1)m︷ ︸︸ ︷

784∑
k=1

(w1)mkxk

︸ ︷︷ ︸

(h2)l

By the chain-rule of differentiation, we get

∂(h4)j
∂xi

= σ′
|(h3)j

∂(h3)j
∂xi

= σ′
|(h3)j

(
32∑
l=1

(w3)jl σ
′
|(h2)l

∂(h2)l
∂xi

)

= σ′
|(h3)j

(
32∑
l=1

(w3)jl σ
′
|(h2)l

(
64∑

m=1

(w2)lm σ′
|(h1)m

∂(h1)m
∂xi

))

= σ′
|(h3)j

(
32∑
l=1

(w3)jl σ
′
|(h2)l

(
64∑

m=1

(w2)lm σ′
|(h1)m

(w1)mi

))
(7.5)

Now, due to its analytical expression, we know that

σ′(h) = σ(h)(1− σ(h))

Therefore,

σ′
|(h3)j

= σ′((h3)j) = σ ((h3)j) (1− σ ((h3)j))

= (h4)j(1− (h4)j) by definition of h3 and h4

= [diag(h4(1− h4))]jj

Using the same type of expressions for the other derivatives of σ appearing in (7.5) and by the
properties of matrix products, we end up with

∂(h4)j
∂xi

= (diag(h4(1− h4)) w3 diag(h3(1− h3)) w2 diag(h2(1− h2)) w1)ji

109

C. Complete results for the model 1 and model 47

Quantitative results

Model 1 with the different protocols Model 47 with the different protocols
Metric Random All Weighted Remove Random All Weighted Remove
Top-1 72.06 ± 0.9 75.89 72.46 59.69 39.95 ± 0.79 68.08 41.24 44.63
Top-5 87.7 ± 0.9 92.93 86.57 85.22 64.06 ± 0.87 85.87 63.17 72.71
Top-1 proj 95.35 ± 0.4 94.8 95.42 89.29 74.3 ± 0.65 86.45 77.52 73.92
Top-5 proj 97.92 ± 0.28 97.97 97.93 94.69 86.6 ± 0.84 92.37 88.08 84.92
Top-1 sim 95.36 ± 0.4 94.82 95.44 89.33 76.24 ± 0.71 89.92 79.13 80.93
Top-5 sim 97.92 ± 0.28 97.99 97.93 94.73 88.11 ± 0.82 94.75 89.31 89.72
Maj 71.72 ± 0.9 78.03 72.15 61.81 33.14 ± 0.98 68.8 32.5 43.37
Maj proj 95.14 ± 0.4 94.64 94.91 89.45 71.87 ± 0.83 86.17 72.75 73.16
Maj sim 95.14 ± 0.4 94.66 94.914 89.52 74.05 ± 0.93 90.09 74.1 81.06

Qualitative results

For each class, one image is selected at random as query. The top1 retrieved image for each
model and class is presented, with its class and distance to the query.

Figure 7.1: Query: Cam_0; 1: Cam_0, d = 0.04
; 47: Cam_0, d = 4.92

Figure 7.2: Query: Cam_1; 1: Cam_1, d = 0.06
; 47: Cam_0, d = 19.84

Figure 7.3: Query: Cell_0; 1: Cell_0, d = 0.13 ;
47: Cell_0, d = 1.5

Figure 7.4: Query: Cells_1; 1: Cells_0, d = 0.25
; 47: ulg_lbtd_0, d = 1.95

Figure 7.5: Query: Glom_0; 1: Glom_0, d =
0.12 ; 47: Glom_0, d = 63.98

Figure 7.6: Query: Glom_1; 1: Glom_1, d =
0.07 ; 47: Glom_1, d = 16.76

Figure 7.7: Query: iciar_0; 1: iciar_0, d = 0.06
; 47: iciar_0, d = 31.45

Figure 7.8: Query: iciar_1; 1: iciar_2, d = 0.18
; 47: iciar_2, d = 41.36

110

Figure 7.9: Query: iciar_2; 1: iciar_3, d = 0.2 ;
47: mitos_2, d = 48.49

Figure 7.10: Query: iciar_3; 1: iciar_0, d = 0.15
; 47: tupac_0, d = 24.85

Figure 7.11: Query: jano1_0; 1: jano1_1, d =
0.09 ; 47: jano1_1, d = 16.97

Figure 7.12: Query: jano1_1; 1: jano1_0, d =
0.11 ; 47: tupac_0, d = 9.2

Figure 7.13: Query: jano2_0; 1: jano2_0, d =
0.05 ; 47: jano2_0, d = 21.98

Figure 7.14: Query: jano2_1; 1: jano2_0, d =
0.08 ; 47: jano2_0, d = 8.92

Figure 7.15: Query: jano5_0; 1: tupac_0, d =
0.01 ; 47: mitos_2, d = 17.18

Figure 7.16: Query: jano5_1; 1: jano5_1, d =
0.01 ; 47: mitos_0, d = 5.04

Figure 7.17: Query: jano6_0; 1: jano6_0, d =
0.02 ; 47: jano6_0, d = 9.86

Figure 7.18: Query: jano6_1; 1: jano6_1, d =
0.005 ; 47: jano6_1, d = 5

Figure 7.19: Query: jano7_0; 1: jano7_0, d =
0.03 ; 47: jano7_1, d = 23.64

Figure 7.20: Query: jano7_1; 1: jano7_1, d =
0.04 ; 47: jano7_1, d = 6.98

111

Figure 7.21: Query: jano7_2; 1: jano7_2, d =
0.02 ; 47: jano7_2, d = 12.04

Figure 7.22: Query: lbps_0; 1: lbps_0, d = 0.07
; 47: lbps_0, d = 3.6

Figure 7.23: Query: lbps_1; 1: lbps_1, d = 0.02
; 47: lbps_1, d = 16.05

Figure 7.24: Query: mitos_0; 1: mitos_2, d =
0.01 ; 47: mitos_1, d = 8.36

Figure 7.25: Query: mitos_1; 1: mitos_2, d =
0.006 ; 47: mitos_0, d = 5.11

Figure 7.26: Query: mitos_2; 1: mitos_2, d =
0.08 ; 47: jano1_1, d = 15.97

Figure 7.27: Query: patt_0; 1: patt_0, d = 0.3
; 47: cells_0, d = 7.07

Figure 7.28: Query: patt_1; 1: patt_0, d = 0.12
; 47: patt_0, d = 20.71

Figure 7.29: Query: tupac_0; 1: tupac_0, d =
0.007 ; 47: tupac_0, d = 12.89

Figure 7.30: Query: tupac_1; 1: tupac_0, d =
0.01 ; 47: tupac_0, d = 14.13

Figure 7.31: Query: ulb_0; 1: ulb_0, d = 0.1 ;
47: ulb_2, d = 8.05

Figure 7.32: Query: ulb_1; 1: ulb_1, d = 0.02 ;
47: ulb_0, d = 5.99

112

Figure 7.33: Query: ulb_2; 1: ulb_2, d = 0.24 ;
47: ulb_1, d = 7.08

Figure 7.34: Query: ulb_3; 1: ulb_3, d = 0.05 ;
47: ulb_3, d = 16.88

Figure 7.35: Query: ulb_5; 1: ulb_5, d = 0.15 ;
47: glom_0, d = 27.05

Figure 7.36: Query: ulb_6; 1: ulb_3, d = 0.29 ;
47: jano6_0, d = 19.92

Figure 7.37: Query: ulb_7; 1: ulb_7, d = 0.37 ;
47: glom_0, d = 32.44

Figure 7.38: Query: ulb_8; 1: ulb_7, d = 0.34 ;
47: ulb_0, d = 6.78

Figure 7.39: Query: ulb_9; 1: ulb_9, d = 0.08 ;
47: ulb_0, d = 6.8

Figure 7.40: Query: bone_0; 1: bone_0, d =
0.25 ; 47: ulg_lbtd_2, d = 5.85

Figure 7.41: Query: bone_1; 1: bone_1, d = 0.1
; 47: bone_5, d = 1.7

Figure 7.42: Query: bone_2; 1: bone_2, d =
0.09 ; 47: bone_3, d = 2.13

113

Figure 7.43: Query: bone_3; 1: bone_4, d =
0.13 ; 47: bone_5, d = 1.11

Figure 7.44: Query: bone_4; 1: bone_4, d =
0.16 ; 47: bone_3, d = 2.84

Figure 7.45: Query: bone_5; 1: bone_5, d =
0.15 ; 47: cells_0, d = 1.04

Figure 7.46: Query: bone_6; 1: bone_6, d =
0.19 ; 47: bone_6, d = 2.31

Figure 7.47: Query: bone_7; 1: bone_7, d =
0.13 ; 47: jano5_1, d = 38.16

Figure 7.48: Query: ulg_lbtd_0; 1: ulg_lbtd_0,
d = 0.38 ; 47: ulg_lbtd_1, d = 2.14

Figure 7.49: Query: ulg_lbtd_1; 1: ulg_lbtd_1,
d = 0.1 ; 47: ulg_lbtd_0, d = 4.84

Figure 7.50: Query: ulg_lbtd_2; 1: ulg_lbtd_2,
d = 0.04 ; 47: ulg_lbtd_2, d = 2.05

Figure 7.51: Query: ulg_lbtd_3; 1: ulg_lbtd_3,
d = 0.33 ; 47: cells_0, d = 4.33

Figure 7.52: Query: ulg_lbtd_4; 1: ulg_ana_2,
d = 0.16 ; 47: ulg_lbtd_2, d = 3.69

Figure 7.53: Query: ulg_lbtd_5; 1: ulg_lbtd_5,
d = 0.33 ; 47: ulg_lbtd_2, d = 2.68

Figure 7.54: Query: ulg_lbtd_6; 1: ulg_lbtd_5,
d = 0.16 ; 47: ulg_lbtd_6, d = 7.48

114

Figure 7.55: Query: ulg_lbtd_7; 1: ulg_lbtd_3,
d = 0.21 ; 47: ulg_lbtd_1, d = 8.93

Figure 7.56: Query: ulg_lbtd2_0; 1:
ulg_lbtd2_0, d = 0.11 ; 47: ulg_lbtd2_0, d =
16.11

Figure 7.57: Query: ulg_lbtd2_1; 1:
ulg_lbtd2_1, d = 0.07 ; 47: ulg_lbtd2_1, d =
32

Figure 7.58: Query: umcm_0; 1: umcm_0, d =
0.09 ; 47: umcm_1, d = 16.48

Figure 7.59: Query: umcm_1; 1: umcm_1, d =
0.38 ; 47: umcm_1, d = 6.77

Figure 7.60: Query: umcm_2; 1: umcm_2, d =
0.2 ; 47: umcm_2, d = 14.07

Figure 7.61: Query: umcm_3; 1: umcm_3, d =
0.006 ; 47: umcm_3, d = 6.69

Figure 7.62: Query: umcm_4; 1: umcm_2, d =
0.15 ; 47: umcm_4, d = 6.58

Figure 7.63: Query: umcm_5; 1: umcm_5, d =
0.06 ; 47: umcm_5, d =5.5

Figure 7.64: Query: umcm_6; 1: umcm_6, d =
0.11 ; 47: umcm_4, d = 16.97

Figure 7.65: Query: umcm_7; 1: umcm_7, d =
0.06 ; 47: umcm_7, d = 1.98

Figure 7.66: Query: warw_0; 1: warw_1, d =
0.05 ; 47: warw_1, d = 24.96

115

Figure 7.67: Query: warw_1; 1: warw_0, d =
0.14 ; 47: warw_1, d = 14.85

116

D. Visualization of the data

Figure 7.68: Camelyon16: class 0 (left) and 1 (right)

117

Figure 7.69: Cells no aug: class 0 (left) and 1 (right)

118

Figure 7.70: Patterns no aug: class 0 (left) and 1 (right)

119

Figure 7.71: Glomeruli: class 0 (left) and 1 (right)

120

Figure 7.72: Iciar18 micro: classes in order from left to right (columns)

121

Figure 7.73: Janowczyk1: class 0 (1st) and 1 (2nd) - janowczyk2: class 0 (3rd) and 1 (4th)

122

Figure 7.74: Janowczyk5: class 0 (1st) and 1 (2nd) - janowczyk7: class 0 (3rd - top) and 1 (3rd -
middle) and 2 (3rd - bottom)

123

Figure 7.75: Janowczyk6: class 0 (left) and 1 (right)

124

Figure 7.76: ulb anapath: classes in order from top to bottom then left to right

125

Figure 7.77: lbpstroma: class 113349434 (1st) and 113349448 (2nd) - ulg bonemarrow: classes in
order from left to right then top to bottom

126

Figure 7.78: ulg lbtd lba: classes in order from top to bottom

127

Figure 7.79: Mitos2014: class 0 (1st), 1 (2nd) and 2 (3rd) - ulg lbtd2 chimio necrose: bottom
right

128

Figure 7.80: Tupac mitosis: O (left) and 1 (right)

129

Figure 7.81: warwickj crc: 0 (left) and 1 (right)

130

Figure 7.82: Umcm colorectal: classes in order

131

E. Retrieved images for models 3, 5, 9, 11, 15 and 22, 23, 29, 33, 38

Supervised models (3, 5, 9, 11, 15)

Figure 7.83: Query from lbpstroma_1, retrieved images from Model 3, 5, 9, 11 and 15

Figure 7.84: Query from jano6_1, retrieved images from Model 3, 5, 9, 11 and 15

Figure 7.85: Query from ulg_lbtd_lba_5, retrieved images from Model 3, 5, 9, 11 and 15

Figure 7.86: Query from ulg_lbtd2_chimio_necrose_1, retrieved images from Model 3, 5, 9, 11 and 15

Autoencoder models (22, 23, 29, 33, 28)

Figure 7.87: Query from lbpstroma_1, retrieved images from Model 22, 23, 29, 33 and 38

132

Figure 7.88: Query from jano6_1, retrieved images from Model 22, 23, 29, 33 and 38

Figure 7.89: Query from ulg_lbtd_lba_5, retrieved images from Model 22, 23, 29, 33 and 38

Figure 7.90: Query from ulg_lbtd2_chimio_necrose_1, retrieved images from Model 22, 23, 29, 33 and 38

133

