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Abstract

When placed in the wake of an upstream rotor, a wind turbine is subjected to significant
power reductions. The modelling of wind turbine wakes is therefore a subject of growing
importance, as part of a broader drive to develop renewable energies worldwide. Typically, wind
farms comprise dozens of turbines, for which conventional methods of flow simulation quickly
become unfeasible. For this reason, engineering wake models are used to give fast and reliable
estimates of the Annual Energy Production of wind farms. One of these models, currently
under development at the Technical University of Denmark, is based on a RANS look-up
table of wakes, generated for a stand-alone wind turbine under various flow conditions. Despite
promising results, this method is currently limited by its high memory requirements. Therefore,
the aim of this work is to design a new wake model capable of faithfully replacing the look-up
table. In particular, emphasis is placed on the development of a new added turbulence intensity
model. First, several expressions for a one-dimensional single-wake model are investigated. The
retained model is then generalized to higher dimensions and studied in parallel to a velocity
deficit model. Finally, the new wake model is implemented in the PyWake software, with which
wake superposition methods are used to analyze the flow characteristics in the merged wakes
of an array of five wind turbines. It results that, whether used in single or multiple wake
situations, the new model developed in this work faithfully represents the predictions of the
RANS look-up table model. In addition, an in-depth analysis of the superposition methods
supports the physical interpretation, still debated today, of some of these methods.
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Chapter 1

Introduction

1.1 Context and motivation
Before delving into the details of wind farm flow modelling, a quick overview of the main
characteristics of a wake flow is provided. Far upstream of a wind turbine, the air flow is
considered undisturbed. Two key quantities are used to describe it, i.e. the mean speed U8

and the level of atmospheric turbulence intensity Ti0k. While the former has a fairly intuitive
definition, the latter will be precisely defined in the next section of this work. In the few meters
upstream of the rotor, the presence of the turbine has an impact on the flow, the velocity of
which begins to decrease. This region is known as the induction zone, and is a symptomatic
feature of a wider phenomenon called the blockage effect. This effect represents the tendency
of a fraction of the flow to bypass the rotor, and on a larger scale, the entire wind farm. In
practice, the operating regime of a wind turbine is defined in terms of the thrust and power
coefficients, respectively denote CT and CP . Those two coefficients are linked to the total thrust
force T on the blades and to the harnessed power P as

CT “
T

1
2
ρU2A

and CP “
P

1
2
ρU3A

. (1.1)

In these expressions, ρ is the air density, U is the local incoming velocity and A is the rotor
area. Intuitively, CT is a measurement of the magnitude of the footprint left by the turbine
on the flow and CP is the fraction of power collected relative to the total wind power passing
through the rotor. The power is harnessed by extracting momentum from the flow, causing a
significant velocity deficit, ∆U , right downstream of the turbine. Besides, the velocity gradients
between this region and the surrounding flow result in a large production of turbulent kinetic
energy, and therefore a higher level of turbulence intensity. This increment of turbulence is
referred to as the added turbulence intensity, ∆Tik. As the downstream distance increases,
the diffusion of momentum from the surrounding flow to the wake reduces the velocity deficit.
This effect is known as the wake recovery process. A key element to keep in mind is that the
turbulence intensity in the wake enhances the mixing with the undisturbed flow and therefore
leads to faster wake recoveries. An insight of the velocity and turbulence intensity fields in the
wake of a stand-alone wind turbine is depicted in Fig. 1.1. The data how been generated for a

5



NREL-5MW turbine using LES [1] and RANS [2] simulations. Fig. 1.1 gives a clear overview
of the general shape of the wake, and highlights the different degrees of fidelity specific to LES
and RANS.

(a) LES: U [m/s] (b) LES: Tik [-]

0

5

10

(c) RANS: U [m/s]

0

0.05

0.1

0.15

(d) RANS: Tik [-]

Figure 1.1: Overview of the velocity (left) and turbulence intensity fields (right) in the wake of
a NREL-5MW rotor at Ti0k “ 0.04 and CT » 0.7. The upper and lower figures show the LES
and the RANS predictions, respectively.

In order to dispense with cumbersome and time-consuming RANS or LES simulations of
wind farms, several engineering models have been developed. In general, those models tackle
the description of the evolution of ∆U and ∆Tik in the wake of a stand-alone turbine. When
considering arrays of wind turbines, the single-wake models can be seen as building blocks that
are combined together through superposition methods to represent the merged wake. It is
important to point out that these superposition methods have no strong physical basis to date,
and are therefore currently the subject of a considerable number of research studies.

In this context, a single-wake engineering model, currently under development at the Tech-
nical University of Denmark, consists in a large look-up table containing the velocity deficit and
the added turbulence intensity at any point in a three-dimensional domain. Moreover, these
quantities have been generated under a wide variety of conditions and are intended to provide a
comprehensive RANS-based single-wake model. This approach provides highly reliable building
blocks that can be used in parallel to superposition methods in multiple-wake situations. Still,
the use of this model is limited by its substantial memory requirements. Hence, the aim of
this work is to provide a memory-efficient and equally reliable alternative to the look-up table
model. In particular, the focus is on improving the modelling of added turbulence intensity,
which has so far been the subject of little research works.
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1.2 State of the art

1.2.1 Velocity field in the wake of a stand-alone turbine

The modelling of the velocity field in the wake of a single wind turbine has been the topic of a
large number of research studies over the past decades. Since the second half of the twentieth
century, numerous models have been proposed and tested against numerical predictions of in-
creasing fidelity. In parallel, the development of remote measurement devices such as Sodar [3]
and Lidar [4] has enabled to collect measurements of full-scale wind field, which have been
wildly used to calibrate the velocity deficit models. Among all the existing wake models, this
section aims at presenting the main velocity deficit models that are currently used to estimate
the velocity deficit generated in the wake of a stand-alone wind turbine.

Although the performance of this model has now been surpassed by that of more recent
models, the Jensen model [5] is considered one of the pioneers of the field and is still in use
today. The initial expression proposed by Jensen stems from the conservation of mass over a
cylindrical control volume that encompass the rotor and is later re-written by Katic et al. [6]
in term of the thrust coefficient CT of the turbine:

∆U

U8

“
1 ´

?
1 ´ CT

p1 ` 2 k x{Dq2
, (1.2)

where ∆U is the velocity deficit with respect to the undisturbed velocity U8, D is the diameter
of the rotor and x is the downstream distance behind it. In this early model, the value of the
wake decay constant k is set to 0.075 and accounts for the expansion of the wake width as
well as for the reduction of the deficit with increasing downstream distances. Note that other
values of the k coefficients have been proposed in Barthelmie et al. [7], i.e. k “ 0.04 „ 0.05,
for offshore conditions, specifically. In the initial Jensen model [5], the velocity field is assumed
to have a simple top hat distribution, the amplitude of which is given by Eq. 1.2. Hence, the
model predictions have been observed to be marred by a non-physical discontinuity between the
undisturbed flow field and the wake region. However, implementations of the Jensen model [5]
are available in many wind farm flow modelling software, e.g. WAsP [8] or PyWake [9], and
are still commonly used in practice.

More recently, Nygaard [10] proposed a variation of the Jensen model based on the assump-
tion that the wake growth depends on the local level of turbulence intensity, denoted Tiupxq,
in the wake:

dDw

dx
“ ATiupxq, (1.3)

where Dwpxq is the local diameter of the wake at distance x from the rotor and A is a calibration
constant. In order to close the model (Eq. 1.3), Nygaard follows the expression suggested by
Frandsen [11] for the turbulence intensity in the wake. The exact definition of this quantity as
well as details on the Frandsen model are given in Sec. 1.2.2. Contrary to the initial Jensen
model (Eq. 1.2), Eq. 1.3 accounts for the effect of turbulence on the wake recovery and allows
to leave out the assumption of linear wake growth. For a value of the calibration coefficient
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A “ 0.6, the Nygaard model (Eq. 1.3) was used to evaluate the impact that the wake created
by the Humber Gateway wind farm has on the neighbouring wind farm of Westermost Rough,
UK. This benchmark study concluded that the power predictions of the Nygaard model outper-
formed that of the classical Jensen model when compared to the actual power measurements.
For that reason, the promising expression Eq. 1.3 will be further investigated later in this work
(Sec. 3.2.1).

A few years after the development of the original Jensen model, Larsen [12] proposes a
velocity deficit model based on the RANS axisymmetric form of the Navier-Stokes equations.
The continuity and momentum equations are simplified under the assumptions of a steady
and self-similar flow at high Reynolds number. The Prandtl’s mixing length model, where the
characteristic length is selected as the wake width, is used to close the set of equations. The
latter is then solved analytically for a small perturbation of the velocity field using first, and
alternatively second, order approximations. The resulting velocity deficit and wake growth are
respectively found to evolve as ∆U „ x´2{3 and rw „ x1{3. In contrast to the non-physical
profile of the Jensen [5] model, Larsen’s development leads to a continuous velocity deficit pro-
file reminiscent of a Gaussian function. Later, a modification of the boundary conditions used
to solve the set of equations is proposed in order to account for multiple wakes, leading to a
second version of the Larsen model [13].

In Frandsen [14], the mass and momentum conservation equations are both written over
the cylindrical control volume introduced by Jensen. Assuming a steady, self-similar and ax-
isymmetric wake, Frandsen derives the following equation:

∆U

U8

“
1

2

˜

1 ´

d

1 ´
2CT

β ` αx{D

¸

with β “
1 `

?
1 ´ CT

2
?
1 ´ CT

, (1.4)

in which the wake growth coefficient α is estimated to be around ten times the value of the k
coefficient used in Jensen [5] (Eq. 1.2). In the same work, the generalization of this model to
a row of wind turbines is made possible by the development of a recursive scheme. Although
the model accounts for momentum conservation and is therefore physically more comprehen-
sive than the Jensen model, Frandsen [14] still relies on the strong assumption that, at each
downstream position, the velocity deficit is evenly distributed in the plane perpendicular to the
flow.

In light of the results of the Frandsen [14] model, Bastankhah and Porté-Agel[15] suggest
to relax the straight velocity profile assumption by introducing the self-similar relation:

∆U

U8

“ Cpxq fpr{δpxqq with f “ exp

ˆ

´r2

2σ2

˙

, (1.5)

where r is the radial distance from the center of the rotor and δpxq “ σpxq the characteris-
tic wake width at each downstream position. Note that the choice of a Gaussian self-similar
function is inspired by the shape of the wakes behind bluff bodies, for which numerous studies
exist. Following the approach introduced by Frandsen [14], Eq. 1.5 is injected in the mass and
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momentum conservation equations so as to retrieve the analytical form of Cpxq. Similarly to
Jensen [5], Bastankhah and Porté-Agel [15] assume a linear wake growth, i.e. σ „ k x, and
retrieve the values of k from LES simulations under various flow conditions. As a direct result
of the wake recovery phenomenon, Bastankhah and Porté-Agel observe that the wake expan-
sion coefficient k tends to significantly increase with the level of atmospheric turbulence in the
incoming flow. Eventually, provided that the value of the expansion coefficient k is known, the
model proposed by Bastankhah and Porté-Agel is shown to offer significant improvements in
terms of velocity field and power estimations. On a relevant note, it should be recalled that
alternatives to the simple linear wake growth exist. For example, Shapiro et al. [16] derive
distinct expressions for the vertical and the horizontal wake growths, i.e. σpxqy and σz, in
which the wake width remains essentially constant before linearly increasing in the far wake.

In the continuation of the work of Bastankhah and Porté-Agel [15], Niayifar and Porté-
Agel [17] use the set of measurements for k from [15] to derive a linear empirical law for the
evolution of the wake expansion coefficient with respect to the level of incoming turbulence
intensity. The performance of the full model for the velocity deficit are then assessed using
LES simulations of the Horns Rev1 wind farm. To do so, the velocity deficit model is used in
parallel with the Crespo and Hernandez [18] model for the added turbulence intensity model.
Overall, the resulting model shows good agreement with the LES and substantial improvements
compared to the predictions of the WAsP [8] software. In light of these results, the Niayifar
and Porté-Agel model [17] is further investigated in Sec. 3.1.1 and used together with the new
model for the added turbulence intensity developed in Sec. 2.4.1. For the sake of brevity, the
expressions of the deficit amplitude Cpxq, the standard deviation σpxq (Eq. 1.5) and the wake
expansion coefficient k are explicitly given in Sec. 3.1.1.

Although Niayifar and Porté-Agel [17] provides close estimate of the power in the Horns
Rev wind farm, it is important to bear in mind that the model is not flawless. For example,
recent work by Lingkan and Buxton [19] suggest that the amplitude of the deficit evolves as
∆Umax „ x´2, whereas Niayifar predicts ∆Umax „ x´1, as seen in Sec. 3.1.1. In Lingkan and
Buxton [19], the emphasis is on the experimental study of the evolutions of the velocity deficit
and the added turbulence in the wake. The wind tunnel measurements are performed using a
hot wire probe in the wake of porous disks, placed either in stand-alone or columnar configu-
ration. These very recent experimental data will be used several times in this work to keep a
critical eye on the results of the various models discussed.

To conclude this section, a brief overview of the model proposed by Blondel [20] is given.
The main idea of this model is to generalize the self-similarity assumption to the near wake,
using a Gaussian function of order n. A corrective term for the near-wake is then introduced
and the value of the n parameter is determined such that the equations of conservation of mass
and momentum remain verified. Although this model shows promising results, it should be
kept in mind that it requires empirical calibration of a large number of parameters.
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1.2.2 Turbulence intensity field in the wake of a stand-alone turbine

As mentioned earlier, the turbulence intensity enhances the mixing of the wake with the undis-
turbed air and therefore plays an important part in the recovery process of the velocity deficit.
In the most recent deficit models introduced in Sec. 1.2.1, the level of turbulence directly im-
pacts the wake expansion coefficient k, simultaneously affecting both the recovery rate and the
wake growth. While, for a stand-alone turbine, the atmospheric turbulence intensity is dom-
inant, the level of turbulence intensity added by the upstream turbines should be considered
in multiple-wake situations. For that reason, this section focuses on a review of existing added
turbulence intensity models and their main features.

Before going any further, the general definition of the turbulence intensity Tik and that of
the streamwise turbulence intensity Tiu are recalled hereafter:

Tik “

c

2

3

?
k

U
with k “

σ2
u ` σ2

v ` σ2
w

2
(1.6)

and
Tiu “

σu
U
. (1.7)

In Eq. 1.6 and Eq. 1.7, U is the mean flow velocity, k is the turbulent kinetic energy and
σu is the standard deviation of the wind speed fluctuations along the downstream direction.
Two similar quantities, σv and σw, can be defined to respectively account for the turbulent
fluctuations along the transverse and the vertical directions. Measurements of the fluctuations
in the atmospheric surface layer have been performed at several places around the world and a
summary of the main results is provided by Panofsky and Dutton [21]. It follows that, in the
scope of this work, the standard ratios of turbulence of the atmospheric surface layer can be
assumed equal to:

σ8
v

σ8
u

» 0.8 and
σ8
w

σ8
u

» 0.5 (1.8)

It is important to realize that, if isotropic turbulence is assumed, the ratios take unitary values
and both definitions of the turbulence intensity, Eq. 1.6 and Eq. 1.7 are identical. In the
atmospheric boundary layer, Crespo and Hernandez [18] relate the atmospheric turbulence
intensity Ti0k to the streamwise turbulence intensity Ti0u by injecting Eq. 1.8 into Eq. 1.6:

Ti0k » 0.8 ˆ Ti0u where Ti0k “

c

2

3

?
k8

U8

and Ti0u “
σ8
u

U8

. (1.9)

In this expression, the mean flow velocity U and the turbulent kinetic energy are the free stream
quantities, U8 and k8. In the wake of a wind turbine, it is known that the flow is subjected
to an increase of turbulence intensity due to the viscous rotor drag, the surface shear and the
wake shear [22]. In this region, Crespo and Hernandez [18] propose to simply re-write Eq. 1.9
for the total level of turbulence intensity as:

Tik » 0.8 ˆ Tiu where Tik “

c

2

3

?
k

U8

and Tiu “
σu
U8

, (1.10)
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in which the mean flow velocity is assumed equal to the free stream velocity U8. Note that
in Eq. 1.10, the relation between Tik and Tiu implicitly assumes that Eq. 1.8 remains valid in
the wake, i.e. that the turbulence anisotropies in the wake and in the atmospheric boundary
layer are similar. In the literature, two main definitions of the added turbulence intensity can
be found:

∆Tik “

c

2

3

?
k ´

?
k8

U8

“ Tik ´ Ti0k (1.11)

and

∆Tik “

c

2

3

?
k ´ k8

U8

“

b

pTikq2 ´ pTi0kq2, (1.12)

in which ∆Tiu » ∆Tik{0.8 directly results from Eq. 1.10. While Eq. 1.11 has the advantage
of remaining defined even for k ă k8, Eq. 1.12 stems from the physical hypothesis that the
turbulent kinetic energy ∆k produced at the rotor adds up to that of the ambient flow:

k “ ∆k ` k8. (1.13)

This assumption, introduced by Crespo and Hernandez [18], is wildly used in the literature, as
in Larsen [22], Frandsen [11], Xie and Archer [23], Qian and Ishihara [24], Tian et al. [25] and
Lingkan and Buxton [19]. In all these works, Eq. 1.12 is preferred over Eq. 1.11 to define the
added turbulence intensity in the wake.

In Crespo and Hernandez [18], the equations of conservation of momentum and of the
turbulent kinetic energy are simplified under a set of assumptions and solved for the maximum
value of ∆k in the wake. Using the definition Eq. 1.12, the maximum level of streamwise added
turbulence intensity writes:

∆Tiu,max “ 0.362 p1 ´ p1 ´ CT q
0.5

q. (1.14)

This expression is expected to be verified in the near wake only, i.e. where the turbulent
dissipation is negligible compared to the production of turbulent kinetic energy. In the far
wake region, Crespo and Hernandez [18] calibrate the coefficients of an empirical expression
against the results of RANS simulations and obtain:

∆Tiu,max “ 0.73 a0.8325 pTi0uq
´0.0325 x̃´0.32, (1.15)

in which the subscript max refers to the maximum over a crosswind section at a distance
x behind the rotor. In Eq. 1.15, x̃ denotes the normalized downstream distance x{D and
a “ 1´p1´CT q0.5 is the induction factor. Overall, Crespo and Hernandez [18] show acceptable
results of both Eq. 1.14 and Eq. 1.15.

Later, Larsen [22] suggests, without further detail, to use the Bernoulli representation of
an idealized rotor together with a Boussinesq-K model [26] and the additive kinetic energy
assumption (Eq. 1.13). The resulting expression for ∆Tiu,max reads:

∆Tiu,max “ 0.29 x̃´1{3

b

1 ´
a

1 ´ CT . (1.16)
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It can be noted that both Eq. 1.15 and Eq. 1.16 predict approximately the same evolution with
respect to the downstream distance.

In Frandsen [11], the determination of a conservative added turbulence intensity model
is tackled in view of improving the modelling of the loading on the blades. The expression
proposed by Frandsen [11] involves two coefficients, the calibration of which is carried out
based on full-scale measurements at CT » 0.7, and writes:

∆Tiu,max “
1

1.5 ` 0.8 x̃ C´0.5
T

. (1.17)

Moreover, it is shown and discussed in Lingkan and Buxton [19] that the scaling ∆Tiu,max „ x̃´1

used in Frandsen [11] offers the best agreement with respect to the wind tunnel measurements.

Based on an initial model proposed by Quarton [27], Xie and Archer [23] re-calibrate the
expression using LES data generated for an incoming turbulence intensity level Ti0u “ 0.07 over
the range of conditions CT P r0.37; 0.56s. The final relationship for ∆Tiu,max involves the length
of the near wake region, denoted xn, as predicted by Vermeulen [28]:

∆Tiu,max “ 5.7C0.5
T pTi0uq

0.68

ˆ

x

xn

˙´0.96

. (1.18)

In all the one-dimensional added turbulence intensity models introduced so far, the focus
is on the maximum value over a crosswind section so that the distribution of the turbulence
over this section is considered homogeneous. The only exception being Frandsen [11], in which
a simple Gaussian profile, similar to that of the velocity deficit, is assumed. More recently,
Qian and Ishihara [24] have developed a three-dimensional added turbulence intensity model
based on the results of LES simulations. Over the set of conditions CT P r0.35; 0.8s and
Ti0u P r0.035; 0.137s, Qian and Ishihara [24] first derive the relation

∆Tiu,max “
1

2.3C´1.2
T ` pTi0uq0.1x̃ ` q

, where q “ 0.7C´3.2
T pTi0uq

´0.45
p1 ` x̃q

´2. (1.19)

Attention should be paid to the fact Eq. 1.19 is expected to remain valid in both the near and
far wakes, contrary to all the other models considered in the scope of this work. Then, an
axisymmetric added turbulence intensity field is modelled using a two-term Gaussian function.
Contrary to the simple Gaussian function used in Frandsen [11], a two-term Gaussian allows
to represent the high levels of added turbulence generated at the rotor periphery. Moreover,
this choice of modelling function appears to be strongly supported by the results of Lingkan
and Buxton [19]. The final modelling step consists in correcting the axisymmetric profile so
as to account for the dependence on the vertical position. Eventually, the model is shown to
outperform the predictions of the Frandsen [11] model when compared to wind tunnel experi-
mental measurements.

Inspired by the researches of Xie and Archer [23], Tian et al. [25] calibrate the following
expression for the amplitude of the added turbulence intensity:

∆Tiu,max “
κ

2
C

κ{4
T pTi0uq

´κ{8 x̃´κ, with κ “ 0.5 (1.20)
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against LES data. Following the procedure described in Qian and Ishihara [24], an axisymmet-
ric profile is proposed. Unlike Qian and Ishihara [24], in which a two-term Gaussian function
is considered, a dual-cosine shape function is used to model the profile of the added turbu-
lence intensity. Finally, a vertical correction, similar to that applied in Qian and Ishihara [24]
is added to the model. Overall, the model shows good performance, although no significant
improvement with respect to the Qian and Ishihara [24] model is observed.

In Sec. 2.1.2 the predictions of all the models introduced in the current section are compared
to the RANS data generated by EllipSys, with the aim of identifying potential candidates for
the modelling of the RANS look-up table.

1.2.3 Superposition methods for wind farm flow modelling

In Sec. 1.2.1 and Sec. 1.2.2, the emphasis was placed on the modelling of the velocity deficit
and the added turbulence intensity in the wake of a stand-alone turbine. As explained in
Sec. 1.1, the single-wake models can then be combined using superposition methods to repre-
sent multiple-wake situations. For that reason, this section aims at providing a comprehensive
overview of the existing superposition methods used to assess the effects, both in terms of
velocity deficits and added turbulence intensities, of merged wakes in wind farms.

An non-exhaustive overview of the main current superposition methods is given in Tab. 1.1.
In Tab. 1.1a, the total wake velocity U at a downstream position x is observed to depend on
the velocity deficit ∆Uipxq computed for each of the N upstream turbines. As specified in
Zong [29], for each method in Tab. 1.1a, the velocity deficit ∆Ui can be either defined with
respect to the inflow velocity of the wind farm, i.e.

∆Ui “ U8 ´ uiw, (1.21)

or with respect to the local inflow velocity ui0 perceived by the ith turbine:

∆Ui “ ui0 ´ uiw. (1.22)

In Eq. 1.21 and Eq. 1.22, uiw denotes the wake velocity of the ith turbine considered in a
stand-alone configuration. It should be noted that a similar discussion holds for the increase
of turbulence intensity ∆Tik,i. However, in order to limit the number of methods investigated
in the scope of this project, only the definition of ∆Ui given by Eq. 1.22 is retained. Likewise,
the local incoming turbulence intensity seen by the ith turbine is always used to compute the
increment ∆Tik,i. The decision made to use the local inflow values as inputs to determine the
characteristics of the next wake is essentially motivated by the physical intuition of the problem
and follows the recommendations of Zong [29].

Although Machefaux et al. [30] and Lingkan and Buxton [19] point out that the superposi-
tion methods listed in Tab. 1.1 do not have any strong theoretical basis, physical interpretations
of some of these methods have been proposed. For example, Lissaman [31] claims that the ex-
pression of method A in Tab. 1.1a, used together with the definition Eq. 1.21, can be seen as
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Table 1.1: Non-exhaustive list of existing superposition methods for the velocity deficit (a) and
the added turbulence intensity (b).

(a) Velocity deficit

Method Rule

A U “ U8 ´
řN

i p∆Uiq

B U “ U8 ´

b

řN
i p∆Uiq

2

C U “ U8 ´ maxit∆Uiu

(b) Added turbulence intensity

Method Rule

A Tiwk “ Ti0k `
řN

i p∆Tik,iq

B Tiwk “ Ti0k `

b

řN
i p∆Tik,iq2

C Tiwk “ Ti0k ` maxit∆Tik,iu

D Tiwk “

b

pTi0kq2 `
řN

i p∆Tik,iq2

E Tiwk “

b

pTi0kq2 ` p∆Tik,Nq2

a first order approximation of the momentum conservation equation. This method is however
not recommended by Crespo et al. [32] who highlight the risk of predicting negative values of
U . Katic et al. [6] then propose the relation given as method B in Tab. 1.1a, arguing that the
mean kinetic energy can reasonably be assumed conserved in the wake. Later, Niayifar and
Porté-Agel [17] and Voustinas et al. [33] respectively re-write methods A and B in Tab. 1.1a
using the second definition for ∆Ui (Eq. 1.22). Eventually, Machefaux et al. [30] introduce
method C in Tab. 1.1a, following from the assumption that only the largest velocity deficit has
an impact in the merged wake.

In Tab. 1.1b, methods A, B and C are simply proposed by analogy to the deficit methods
in Tab. 1.1. Moreover, method D can be seen as the generalization of Eq. 1.12 to a multiple-
turbine configuration. On a relevant note, it can be recalled that in Sec. 1.2.2, Eq. 1.12 has been
shown to stem from the assumption that the turbulent kinetic energy is an additive quantity.
In Lingkan and Buxton [19], method D and B (Tab. 1.1b) are investigated and lead to close
and consistent results for small spacings between the porous disks. Finally, in method E, only
the effect of the most upstream turbine is accounted for. Note that the results from Lingkan
and Buxton [19] suggest the use of method E only in case of larger spacings in the wind farm.

1.3 The PyWakeEllipSys software
The software used to generate the RANS look-up table model introduced in Sec. 1.1 is the Py-
WakeEllipSys in-house flow solver of DTU Wind and Energy Systems [2], referred to as EllipSys
in the rest of this work. It consists of a plug-in to PyWake, with which the Reynolds-averaged
Navier-Stokes equations can be solved for a wind farm, without the need for any engineer-
ing models. The characteristic features of this software are briefly described, emphasizing the
choices made when generating the RANS look-up table.
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In EllipSys, the forces exerted by the turbine on the flow are represented by an actuator disk
model over a local polar grid. A total of twenty-two different actuator disk models of various
fidelity levels is featured. Among other characteristics, an atmospheric surface layer model was
applied at the inflow boundary and the wake rotation effects were accounted for when building
the RANS look-up table. Moreover, the local rotor grid is mapped onto a cartesian grid covering
the entire domain, the spacing of which increases with distance from the turbine. In addition,
EllipSys offers different closure model of the RANS equations. In the case of interest, the k-ε-fP
model proposed by van der Laan et al. [34] was employed. This model relies on the expression
of the Reynolds stress u1

iu
1
j provided by the classical Boussinesq hypothesis,

u1
iu

1
j “

2

3
k δij ´ 2 νTSij, with Sij “

1

2

ˆ

Bui
Bxj

`
Buj
Bxi

˙

, (1.23)

where νT is the eddy viscosity and ui is the i component of the mean flow velocity. A modified
version of the popular k-ε closure is introduced, in which the additional parameter fP allows
to limit the impact of νT in the regions of large velocity gradients, i.e. the near wake. This
modification is particularly suitable for wind farm flow modelling as an over-estimation of the
Reynolds stress leads to excessive values of the turbulence intensity, and therefore to too opti-
mistic predictions of the wake recovery speed.

In the RANS look-up table model of the added turbulence intensity, for which alternative
options are explored in this work, ∆Tik is defined following Eq. 1.12. An important comment
must however be addressed. Since the RANS look-up table model relies on the Boussinesq
hypothesis (Eq. 1.23), the anisotropy in the wake cannot be well accounted for. For that
reason, the results of EllipSys, identified by "RANS", verify the following identities

TiRANS
k,max pxq » TiRANS

u,max pxq and TiRANS
k,avg pxq » TiRANS

u,avg pxq. (1.24)

In these expressions, the subscripts max and avg respectively denote the maximum and the
average over a rotor section at position x. It can be concluded that a wake modelled with the
RANS look-up table approach is always implicitly assumed isotropic. It should however be
emphasized that, upstream of a stand-alone turbine, the standard ratios of turbulence of the
atmospheric surface layer (Eq. 1.8) remain valid, i.e. Ti0k » 0.8ˆTi0u.

Before going any further, it is worth pointing out that, although RANS data are used as
a reference for calibrating a new engineering wake model, they are intrinsically flawed. A
comparison between the LES predictions generated by van der Laan [1] for the NREL-5MW
rotor and the corresponding RANS data (Ti0k “ 0.04) is shown in Fig. 1.2a and Fig. 1.2b.
The isotropic behavior of the RANS quantities can be observed by comparing the evolution of
TiRANS

u,max (Fig. 1.2a) and TiRANS
k,max (Fig. 1.2b). As expected from Eq. 1.24, the RANS predictions

do not show any clear distinction between Tik and Tiu. By contrast, the LES results depict
a strong increase of the maximum streamwise added turbulence intensity in the near wake.
Although the RANS predictions show better agreement with the LES data for Tik than for
Tiu, the RANS results are seen to significantly under- then over- predict the LES predictions
as x increases (Fig. 1.2b). In view of the significant differences observed, it’s worth pointing
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out that the methodology developed in the following sections is not intrinsically linked to the
RANS data from the look-up table. In other words, the new model developed in this work
could easily be re-calibrated against an LES database.

(a) Tiu (b) Tik

Figure 1.2: Comparison of the LES and RANS predictions of the total level of turbulence
intensity in the wake. The maximum and rotor average values are shown for Tiu (a) and Tik
(b). A 95% confidence interval is added the LES curves.

1.4 Thesis outline
As introduced in Sec. 1.1, the main objective of this work is to provide a reliable and memory-
efficient alternative to the single-wake RANS look-up table model. To do so, Chapter 2 tackles
the determination of a one-dimensional single-wake model for the added turbulence intensity.
A first approach, informed by a comparative analysis of the existing models, is developed on
the basis of theoretical considerations. Three different models for the amplitude, or maximum,
of the added turbulence intensity, ∆Tik,max, are investigated. A second approach is then con-
sidered for the development of a fourth model.

In Chapter 3, the focus is placed on the multi-dimensional generalization of the new one-
dimensional single-wake model. In order to derive a comprehensive wake model capable of
reliably substituting the RANS look-up table, the added turbulence intensity model is supple-
mented by a two-dimensional single-wake velocity deficit model. Since the main focus of this
work is not on improving velocity deficit models, a recently developed model is selected and
re-calibrated against the RANS data.

Eventually, the analysis carried out in Chapter 4 allows to assess the performance of the new
comprehensive wake model in a multiple-wake configuration. To achieve this, the new model is
implemented in the PyWake software [9]. Besides discussing whether or not the RANS look-up
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table model can effectively be replaced by the new wake model, the superposition methods
themselves are analysed. In particular, emphasis is placed on the inherent link between the
selected definition of ∆Tik (Eq. 1.11 or Eq. 1.12) and the suitable superposition methods.
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Chapter 2

Single wake modeling: Determination of a
new model for the amplitude of the wake
added turbulence intensity

2.1 Preliminary study

2.1.1 Theoretical considerations

This first step towards the development of a new added turbulence intensity model consists in
an analytical approach that aims at determining the scaling of the turbulence intensity added
by the presence of a wind turbine. The current section relies on various assumptions and is
therefore only intended to provide a theoretically-grounded starting point for the development
of a more complete model. It should be emphasized that the following discussion is widely
inspired from the work of Scott et al. [35], in which a theoretical model of the eddy viscosity is
investigated. The main idea proposed by Scott et al. [35] is to write the total Reynolds stress
in the wake flow, u1

iu
1
j, as:

u1
iu

1
j “ u1

iu
1
j

∣∣∣
8

` ∆u1
iu

1
j (2.1)

where ∆u1
iu

1
j denotes the increment of Reynolds stress caused by the presence of the turbine and

u1
iu

1
j

∣∣∣
8

refers to the background Reynolds stress, assumed equal to the atmospheric Reynolds
stress in the scope of this work. Applying the Boussinesq hypothesis to the background flow,
the corresponding Reynolds stress read

u1
iu

1
j

∣∣∣
8

“
2

3
k8 δij ´ 2 ν8

T Sij

∣∣∣
8
, (2.2)

where ν8
T is the atmospheric eddy viscosity. Injecting 2.2 into Eq. 2.1 and using Eq. 1.23 for

u1
iu

1
j, the following expression can be derived

∆u1
iu

1
j “

2

3
∆k δij ´ 2 pνT Sij ´ ν8

T Sij

∣∣∣
8

q. (2.3)
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In this expression, the difference between the atmospheric and the wake flow turbulent kinetic
energies explicitly appears and is therefore substituted by ∆k (Eq. 1.13). This shows that,
as could have been expected, the decomposition introduced by Scott et al. [35] is intrinsically
linked to the assumption that the turbulent kinetic energy is additive, Eq. 1.13. By analogy to
the cononical form of the Boussinesq hypothesis, Scott et al. [35] define an increment of eddy
viscosity, ∆νT , as:

∆νT pSij ´ Sij

∣∣∣
8

q “ νT Sij ´ ν8
T Sij

∣∣∣
8
, (2.4)

so that Eq. 2.3 re-writes

∆u1
iu

1
j “

2

3
∆k δij ´ 2∆νT pSij ´ Sij

∣∣∣
8

q. (2.5)

In Scott et al. [35], LES simulations of the flow with and without the turbine are performed
and processed to retrieve the values of ∆νT from Eq. 2.5 at any downstream position.

Moreover, in Davidson [36] a scaling of the eddy viscosity is obtained, based on dimensional
analysis:

νT „
?
k lc, (2.6)

where lc is the characteristic size of the large eddies in the flow. In light of this expression and
following from the assumption of additive turbulent energy (Eq. 1.13), it is proposed to assume
that the added eddy viscosity ∆νT (Eq. 2.4) scales as:

∆νT „
?
∆k lc. (2.7)

As a result, Eq. 1.12 can be re-written as:

∆Tik „

c

2

3

∆νT
U8 lc

. (2.8)

In this last expression, a key element to keep in mind is that the characteristic size lc of the
eddies is unknown but expected to decrease with increasing downstream distance. In addition,
Eq. 2.8 is presumed valid at any distance from the rotor, since no near or far wake specific
assumptions have been made. The aim of the rest of this section is therefore to particularize
this equation according to the region considered in the wake.

At large downstream distances, the main assumption widely made in the literature is that
the wake profile is self-similar. Considering, in addition, that the wake is axisymmetric, Durbin
and Pettersson [37] obtain the following scaling for the center-line velocity deficit ∆UCLpxq and
the wake diameter δpxq:

∆UCL „ x´2{3 and δpxq „ x1{3. (2.9)

Although the experimental research studies carried out by Lingkan and Buxton [19] point
out that Eq. 2.9 leads to discrepancies for both δpxq and ∆UCLpxq, the scaling proposed by
Durbin and Pettersson [37] is retained in the scope of this work. From Eq. 2.9, Durbin and
Pettersson [37] predict that the eddy viscosity should evolve as:

νT „ x´1{3. (2.10)
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Moreover, in the development of Scott et al. [35], the background, i.e. atmospheric, flow is
assumed fully developed so that Sij

∣∣∣
8

and ν8
T do not depend on the downstream position.

Therefore, from Eq. 2.4 it follows that:

∆νT „ νT „ x´1{3. (2.11)

Injecting this last relation in Eq. 2.8, it can be concluded that the added turbulence intensity
in the far wake evolves as:

∆Tik „

c

2

3

x´1{3

U8 lc
. (2.12)

By contrast to the self-similar wake profile observed in the far wake, the near wake is
essentially a foot print of the blade thrust force distribution, which leads to a non-self-similar
shape, often approximated by a top hat profile. For that reason, an alternative to the work
of Durbin and Pettersson [37] must be considered. While the self-similarity assumption is not
valid in the near wake region, the viscous dissipation is expected to be negligible compared to
the production of turbulent kinetic energy. Consequently, the steady dissipation-free transport
equation for the turbulent kinetic energy has been re-written as a transport equation for ∆k,
under the assumption that the inflow turbulent kinetic energy k8 is independent of x. All the
attempts made to solve this equation however proved unsuccessful. Hence, the decision was
made to simply inject the expression obtained by Scott et al. [35] for the added eddy viscosity
∆νT into Eq. 2.8. The resulting equation for ∆Tik reads:

∆Tik “

c

2

3

Afpx̃q

U8, lc
with fpx̃q “

x̃

σ2
exp

ˆ

´x̃2

2σ2

˙

, (2.13)

where x̃ “ x{D, σ “ x̃max is the relative position at which ∆νT is maximum and A is a
parameter to be defined.

2.1.2 Comparative study of the existing added turbulence intensity
models

In this section, the focus is on the comparison of the existing models for the maximum of
the added turbulence intensity, ∆Tik,max, with the RANS predictions of the EllipSys software,
TiRANS

k,max . Through this analysis, two main objectives are addressed. First, it is interesting
to identify which existing models give the best approximation of the data, the underlying
idea being to determine the key characteristics for the design of the new model. Then, this
section also aims to provide evidence for the validation of the scalings, Eq. 2.12 and Eq. 2.13,
obtained for ∆Tik in Sec. 2.1.1. It should be pointed out that the distinction made in Sec. 1.2.2
between the definitions of ∆Tiu,max and ∆Tik,max is no longer relevant in this analysis, given
the isotropic nature (Eq. 1.24) of the reference data, ∆TiRANS

k,max . For that reason, the output of
each added turbulence model listed in Sec. 1.2.2 is denoted ∆Tik,max for consistency. In order
to qualitatively assess the performances of these models, a relative cumulative error ε can be
defined as:

ε “

şx̃f

x̃0
|∆TiRANS

k,max ´ ∆Tik,max| dx̃
şx̃f

x̃0
∆TiRANS

k,max dx̃
. (2.14)
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In Eq. 2.14, the boundaries x̃0 and x̃f define the range of downstream distance over which
the relative error ε is computed. The upper limit x̃f is set at the furthest position available
in the RANS look-up table. In order not to excessively penalize models that are not defined
in tildex “ 0, the lower limit is arbitrarily set at 50m behind the rotor. One could, however,
repeat this analysis starting a few diameters away from the rotor, arguing that the focus should
be placed on the region in which another turbine is likely to be located.

For the sake of completeness, the modelled values, ∆Tik,max, are compared to their RANS
counterparts, ∆TiRANS

k,max , over a large variety of conditions. Indeed, three values of the atmo-
spheric turbulence intensity are considered, i.e., Ti0k = 0.05, Ti0k = 0.15 and Ti0k = 0.30, together
with three different thrust coefficients, i.e., CT “ 0.1, CT “ 0.4, CT “ 0.8). Only the case Ti0k
= 0.05 is depicted hereafter, the two others being shown in App. 5.2. The effect of the down-
stream distance on the added turbulence intensity is highlighted in Fig. 2.1, Fig. 5.1 (App. 5.2)
and Fig. 5.3 (App. 5.2), for which physical interpretations are discussed. Note that, in order
to facilitate the comparison of the ∆Tik,max curves for different CT values, the values are nor-
malized by the absolute RANS maximum ∆TiRANS

k,max , i.e. the peak value of ∆TiRANS
k,max over the

downstream distance. Besides that, the relative cumulative error ε defined in Sec. 2.1.2 and
represented in Fig. 2.2, Fig. 5.2 (App. 5.2) and Fig. 5.4 (App. 5.2) allows a clear comparison
of the fidelity of the tested models.

From Fig. 2.1, a few observations of the RANS predictions can be made and discussed
in parallel with physical interpretations. First, a strong increase of ∆TiRANS

k,max can be seen in
the near wake region, followed by a smooth decay in the far wake, the magnitude of which is
determined by the value of the CT coefficient. At short distances from the rotor, the strong
large-scale velocity gradients involve a large production of turbulent kinetic energy, resulting in
the sudden increase of ∆TiRANS

k,max . Note that this significant growth is in line with the Rayleigh
function suggested by Scott et al [35] (Eq. 2.13). It should be emphasized that the turbulent
kinetic energy (TKE) is not produced, strictly speaking, but converted from the kinetic energy
of the surrounding flow. As the downstream distance increases, the eddy viscosity enhances the
momentum diffusion from the surrounding flow towards the wake so that the velocity deficit
starts to recover. This results in lower velocity gradients and therefore less turbulent kinetic
energy generation. Hence, the evolution of ∆TiRANS

k,max flattens, as shown in Fig. 2.1. Simul-
taneously, the turbulent kinetic energy is transferred from the large eddies to smaller scales,
following the Kolmogorov’s theory. At some downstream distance in the wake, the viscous
dissipation becomes non-negligible compared to the production of TKE. This position seems
to be x̃ » 5 for CT “ 0.8, as shown in Fig. 2.1 for CT “ 0.8. Contrary to wall turbulence,
for which Durbin [37] identifies that the ratio of the production and the dissipation rates is
approximately equal to 0.9, the exact value of this ratio in the far wake of a turbine appears
to be function of both the thrust coefficients and the inflow turbulence intensity. Similarly,
the peak value ∆TiRANS

k,absmax and the position x̃max at which it is reached is observed to evolve
with CT and Ti0k. From Fig. 2.1, Fig. 5.1 (App. 5.2) and Fig. 5.3 (App. 5.2), it appears that
∆TiRANS

k,max is essentially an increasing function of CT . In the same figures, the position x̃max

is seen to approach the rotor when CT and/or Ti0k increase. This phenomenon is discussed in
more details in Sec. 2.3.1 and Sec. 2.4.1.
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In the rest of this section, particular attention is paid to the Larsen (Eq. 1.16), Ishihara
(Eq. 1.19) and Crespo (Eq. 1.15) models. As a matter of fact, the results provided by the
Frandsen (Eq. 1.17), Xie&Archer (Eq. 1.18) and Tian (Eq. 1.20) models in Fig. 2.2, Fig. 5.2
(App. 5.2) and Fig. 5.4 (App. 5.2) often show large discrepancies with respect to the RANS
data and are therefore not further discussed for the sake of brevity. Despite the small rela-
tive error obtained with the first model proposed by Crespo and Hernandez [18] (Eq. 1.14) at
CT “ 0.1, more realistic values of the thrust coefficient lead to significantly larger errors. For
that reason, the Crespo model of the near wake region is not retained as a promising candidate
for possible improvements of the added turbulence intensity modeling. However, the far wake
model developed by Crespo and Hernandez [18] (Eq. 1.15) matches the far wake behavior of
the predicted RANS data ∆TiRANS

k,max with high fidelity, as seen in Fig. 2.1. This observation
is of particular interest as it supports the theoretical scaling, Eq. 2.12, derived in Sec. 2.1.1.
Indeed, both Eq. 2.12 and the Crespo model ( Eq. 1.15), for which good agreement is shown
in Fig. 2.1, predict an evolution ∆Tik,max „ x´1{3 in the far wake.

Moreover, in Fig. 2.1, Fig. 5.2 (App. 5.2) and Fig. 5.4 (App. 5.2), the principal asset of
the relation proposed by Qian and Ishihara [24] (Eq. 1.19), i.e. the near wake modelling, can
be observed. Provided that the turbine operates at CT ą 0.1, this model indeed features a
close estimation of the RANS data in the near wake region. In Fig.2.2, Fig. 5.2(App. 5.2)
and Fig. 5.4(App. 5.2), the resulting relative cumulative error appears to be strongly limited,
showing evidence of the need for a reliable near wake model. By comparison to the other
models, the expression proposed by Larsen [22] (Eq. 1.16) seems to provide the most robust
estimation of the added turbulence intensity under various CT and Ti0k conditions. The model
indeed performs well at predicting the CT dependence as very little variation of the relative
error (Eq. 2.14) is observed in Fig. 2.2, Fig. 5.2 and Fig. 5.4 for values of CT ą 0.1. Furthermore,
it should be noted that the evolution of the added turbulence intensity with the downstream
distance, as predicted by Larsen, is the same as that obtained analytically in Sec. 2.1.1, Eq. 2.12.
In Fig. 2.1, Fig. 5.1 (App. 5.2) and Fig. 5.3 (App. 5.2), the model matches the far wake behavior
of the RANS data with great fidelity.
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Figure 2.1: Comparison of ∆Tk,maxpx{Dq as computed by the RANS simulations and as pre-
dicted by the existing models for Tik0 “ 0.05 and different values of CT . Data are normalized by
the maximal value of the RANS added turbulence intensity over the 3D domain (∆TiRANS

k,absmax).

Figure 2.2: Comparison of the relative cumulative error ε (Eq. 2.14) for each existing model
under Tik0 “ 0.05 and different CT conditions.
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The analysis carried out in this section first allows a better understanding of the wake
recovery process. Among all the tested expressions, mainly those which tend to give the closest
results to the RANS data for a wide variety of CT and Ti0k are discussed. Both the Larsen and
the Crespo models, Eq. 1.16 and Eq. 1.15 suggest that ∆Tik,max decreases as x´1{3 downstream,
hence supporting the theoretical prediction of Sec. 2.1.1. In light of the performance of the
Ishihara model (Eq. 1.19), it can be concluded that a faithful representation of the near wake
allows to drastically reduce the relative cumulative error ε. At this stage, it is therefore difficult
to determine which of the two proposed theoretical scalings, Eq. 2.12 and Eq. 2.13, would be
best suited to describe the evolution with x of added turbulence intensity in the wake.

2.2 Development of a first approach for the design of a new
added turbulence intensity model

2.2.1 Methodology

In order to account for the downstream evolution of ∆Tik,max in both the far and the near
wake regions, the scaling (Eq. 2.13) derived from the work of Scott et al. [35] is used as a first
starting point for the development of the new ∆Tik,max model. In Eq. 2.13, the expression of
A parameter is has to be determined. To do so, Scott et al [35] suggest to use the radius R of
the rotor as a representative length scale, together with the expression of the wake velocity

U “ U8

a

1 ´ CT (2.15)

proposed by Bastankhah and Porté-Agel [38]. Using dimensional analysis, Scott et al [35]
obtain that A “ RU{2. The choice of this velocity scale however seems unsuitable to describe
the turbulence intensity as it predicts negligible values of ∆ Tik,max when the turbine operates
at high thrust coefficients. Therefore, the velocity deficit derived from Eq. 2.15,

∆U “ U8 ´ U “ U8 p1 ´
a

1 ´ CT q, (2.16)

is expected to be a better candidate for the velocity scale. It follows the expression of the
corresponding scaling factor A:

A “
RU8 p1 ´

?
1 ´ CT q

2
(2.17)

Injecting A (Eq. 2.17) into Eq. 2.13 allows to write:

∆Tik,max “ α p1 ´
a

1 ´ CT q
x̃

σ2
exp

ˆ

´x̃2

2σ2

˙

, (2.18)

where α is function of Ti0k and is a scaling parameter of the problem that is to be determined.
It is important to mention that Eq. 2.18 is obtained assuming that the characteristic size of the
large eddies, lc in Eq. 2.8, can be taken equal to the rotor radius. Based on some observations,
the model as defined by Eq. 2.18 appears to under-predict the values of ∆Tik,max computed
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for low thrust coefficients. Inspired by the analysis carried out in Sec. 2.1.2, and in particular
by the good results of the physics-based Larsen model (Eq. 1.16) under different CT values
(Fig. 2.1), it is proposed to replace the A{lc term in Eq. 2.13 by a ΦpCT q fucntion, so that
Eq. 2.13 re-writes

∆Tik,max “ αΦ
x̃

σ2
exp

ˆ

´x̃2

2σ2

˙

with ΦpCT q “

b

1 ´
a

1 ´ CT , (2.19)

where ΦpCT q is the CT dependent term. As a result, the relationship Eq. 2.19 is expected to
model the variation of thrust coefficients with greater fidelity than Eq. 2.18.

Eventually, the Rayleigh function fpx̃q that models the impact of the downstream distance
on ∆Tik,max has a maximum value of amplitude fpx̃ “ σq “ σ´1 exp p´1{2q and can therefore
be normalized as:

fNpx̃q “ fpx̃qσ exp

ˆ

1

2

˙

“
x̃

σ
exp

ˆ

σ2 ´ x̃2

2σ2

˙

. (2.20)

Doing so, fNpx̃q reaches a maximum value of unitary amplitude at x̃ “ σ. Similarly to what
Scott et al. [35] suggest for ∆νT , the position σ of the maximum added turbulence intensity is
taken equal to σ “ 5.5. Note that further analysis of the exact position of σ is carried out in
Sec. 2.3 and an empirical law is eventually proposed for σ. The resulting new model for the
added turbulence intensity reads:

∆Tik,max “ α

b

1 ´
a

1 ´ CT
x̃

σ
exp

ˆ

σ2 ´ x̃2

2σ2

˙

, σ “ 5.5 (2.21)

In this expression, the remaining parameter α is expected to be function of the atmospheric
turbulence intensity Ti0k only and can be determined in light of the available RANS data
∆TiRANS

k,max . First, the following relation is evaluated for any combination of the thrust coefficients
and the downstream distances:

α “
∆TiRANS

k,max px̃, CT ,Ti0kq
a

1 ´
?
1 ´ CT px̃{σq exp

`

σ2´x̃2

2σ2

˘
(2.22)

The α parameter is then plotted against Ti0k to highlight the existing relationship between both
quantities. This procedure also allows to assess the reliability of the predictions of the new
model (Eq. 2.21) proposed for different thrust coefficients and downstream distances. Greater
fidelity is indeed achieved by the model for any (CT , x̃) combinations for which no significant
variations of α (Eq. 2.22) is observed. The corresponding results are shown and discussed in
Sec. 2.2.2.

In addition, a slightly different model is proposed as an alternative to Eq. 2.21. As discussed
earlier in Sec. 2.1.2, Fig. 2.1, Fig. 5.1 (App.5.2) and Fig. 5.3(App.5.2) showed a steep increase
of added turbulence intensity in the near wake region, followed by a slow decrease for larger
downstream distance. Although the normalized Rayleigh function used in the new model
(Eq. 2.21) is expected to faithfully represent the near wake region, large discrepancies can be
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anticipated further away from the rotor. The theoretical scaling Eq. 2.12, supported by the
results of the Larsen [22] and the Crespo and Hernandez [18] models, therefore inspires a far
wake version of Eq. 2.21, for which fNpx̃q “ x̃´1{3. It follows:

∆Tik,max “ β

b

1 ´
a

1 ´ CT x̃
´1{3 (2.23)

Where β plays the same role as the α parameter in Eq. 2.21. It is interesting to notice that
this expression reduces to Larsen model if β is taken equal to 0.29. As β is however foreseen
to vary with Ti0k, the same procedure as for the determination of α is carried out. The scaling
parameter β is computed as

β “
∆TiRANS

k,max px̃, CT ,Ti0kq
a

1 ´
?
1 ´ CT x̃´1{3

(2.24)

and then plotted against Ti0k. The results obtained for various combinations of CT and x̃ are
investigated in Sec. 2.2.2

2.2.2 Results

The results of the development carried out in Sec. 2.2.1 are shown and discussed. The analysis
is limited to four values of CT , spanning a large range of thrust coefficients. The impact of the
downstream distance from the rotor is evaluated at representative values of x in the near and
far wakes.

From Fig. 2.3, no clear trend is appearent in the very near wake or in the very far wake. In
those regions, the normalized Rayleigh distribution fNpx̃q fails to reasonably approximate the
downstream distance dependence predicted by the RANS data. It is clear that for a data point
α, computed for a given CT and Ti0k, fNpx̃q is found to be a good modelling of the downstream
distance dependence if no significant variation of α is observed between the successive subplots
of Fig. 2.3. The same conclusion holds for Fig. 2.4, in which fNpx̃q “ x̃´1{3. In the first model,
i.e., Eq. 2.21, one should however bear in mind that the shape of fNpx̃q strongly depends on
the position of the maximum added turbulence intensity, taken equal σ “ 5.5 in Sec. 2.2.1.
This motivates the use of a more reliable σ value, as discussed in Sec. 2.3.

For distances x̃ between 2D and 8D, the values of α computed by Eq. 2.22 gather around
a clear trend (Fig. 2.3). By comparison to the first model, the data points β computed with
the second relation (Eq. 2.23) and shown in Fig. 2.4 follow a similar trend over a larger range
of downstream distances. Still, the noticeable evolution along x of this trend and of the data
point distribution unveils some flaws in the way the x dependence is modeled by Eq. 2.23.
On Fig. 2.4, one should however note that the discrepancies between β at x “ 12D and β at
x “ 16D are significantly smaller than those between β at x “ 1D and β at x “ 4D. This
clearly shows evidence of the greater fidelity of model Eq. 2.23 in the far wake region.

In both Fig. 2.3 and Fig. 2.4, smaller spacing between the curves of constant CT essentially
reflects a greater fidelity of the CT dependent term (i.e., ΦpCT q) in the model. For larger values
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of Ti0k, the vertical spacing between the data points computed for different CT values is seen
to decrease significantly. This observation is all the more obvious at large distances from the
rotor. When varying the thrust coefficient, one can therefore conclude that the RANS data
indeed evolve as "ΦpCT q “

a

1 ´
?
1 ´ CT", in the far wake or provided that the atmospheric

turbulence intensity is large. Under this last condition, the turbulent mixing is enhanced,
hence leading to a faster wake recovery. This seems to point out that the assumptions made by
Larsen [22] to derive the CT dependence ΦpCT q are in line with the self-similarity assumption,
the validity of which increases at large Ti0k values and large x values. Moreover, it is important
to recall that the quality of the predictions of the Larsen model [22] was observed to signifi-
cantly decrease for CT ă 0.4 (Fig. 2.2). This can clearly be observed on Fig. 2.4 at downstream
distances x “ 8D, x “ 12D and x “ 16D as larger discrepancies, i.e. larger vertical spacings,
occur for CT “ 0.1.

For values of the thrust coefficients larger than CT “ 0.1, Fig. 2.4 shows that the scaling
coefficient β has a linearly decreasing dependence on Ti0k for x ě 12D. Physically, this results
again seems to indicate that the remaining added turbulence intensity in the far wake is smaller
for large atmospheric turbulence intensities (i.e., rapid wake recovery). With regard to the near
wake region, it is clear that the current model leads to non-negligible inaccuracies in that area.
Still, a trend seems to emerge. Contrary to the very far wake, the scaling coefficients all observe
a non linear growth with Ti0k in the very near wake. In this area, it seems that an increase
in the atmospheric turbulent intensity is associated with an increase in the added turbulent
intensity. Depending on the downstream distance, the atmospheric turbulent intensity appears
to either reinforce ∆Tik,max (near wake) or to contribute to its decrease by favouring the wake
recovery (far wake). For intermediate distances, the behavior of the calculated data points β
lays in between the non-linear growth predicted in the very near wake and the linear decay
obtained in the very far wake.
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Figure 2.3: Evolution of the scaling parameter α as function of Ti0k. Data are computed with
Eq. 2.22 for four different thrust coefficients, at six representative distances downstream. A
unit offset is applied to the vertical axis of x “ 16D for readability.

Figure 2.4: Evolution of the scaling parameter β as function of Ti0k. Data are computed with
Eq. 2.24 for four different thrust coefficients, at six representative distances downstream.
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As a conclusion, this section explicitely shows that the CT dependence is overall well modeled
by ΦpCT q, especially in situations for which the assumptions of self-similarity is valid. It appears
that the model proposed by Eq. 2.21 is poorly correlated with the RANS data in the very near
and very far wakes. The determination of an empirical law for the position x̃max “ σ of the
maximum added turbulence intensity is expected to significantly improve the fidelity of fNpx̃q in
the first model (Eq. 2.20). On the contrary, good agreement is exhibited for fNpx̃q “ x̃´1{3 in the
far wake region and for a sufficiently high thrust coefficient (CT ą 0.1). Given the results shown
in Fig. 2.3 and Fig. 2.4, it is evident that no analytical expression of the form αpTi0kq and βpTi0kq

would provide an accurate modeling of these scaling parameters. The remaining dependence
in the downstream distance and, to a lesser extent, in the thrust coefficient, motivates the
investigation of alternative forms of the ΦpCT q and fNpx̃q functions.

2.3 Investigation of a possible improvement of the new tur-
bulence added intensity model

2.3.1 Methodology

Based on the promising results of Sec. 2.2.1, the two tested models (Eq. 2.21 and Eq. 2.23) pave
the way to the determination of a more sophisticated expression. The main idea behind this new
model is to take advantage of the flexibility introduced by the σ parameter in Eq. 2.20 in order
to approximate the downstream distance dependence fNpx̃q with greater fidelity in the near
wake. As previously mentioned, this requires an accurate estimation of the position σ “ x̃max

of the maximum added turbulence intensity ∆Tik,absmax behind the rotor. First, it is worth
recalling that the study of the existing ∆Tik models carried out in Sec. 2.1.2 showed evidence
of the impact of CT and Ti0k on the position x̃max. In particular, it has been observed that the
added turbulence intensity reaches its maximum faster if the wake recovery is enhanced. This
is the case for large values of the thrust coefficients, i.e., for large gradients between the wind
velocity at the rotor and the undisturbed flow (U8). Denoting by UR the axial wind velocity
at the rotor hub, the position x̃max is expected to vary as:

x̃max „
UR

U8

. (2.25)

The velocity ratio UR{U8 can be related to the thrust coefficient CT using the Actuator Disk
Theory and the definition of the induction factor ”a”:

1 ´ a “
UR

U8

“
a

1 ´ CT (2.26)

Besides that, high atmospheric turbulence intensities are known to accelerate the recovery
process and therefore reduce x̃max. As a matter of fact, Fig. 2.1, Fig. 5.1 (App. 5.2) and
Fig. 5.3 (App. 5.2) show that a variation of Ti0k has, in general, more impact on the position
x̃max of the turbulence intensity peak than a modification of CT . The following relation for
σ “ x̃max is proposed:

x̃max “

?
1 ´ CT

ψTi0k
, (2.27)

29



where ψ is an unknown constant. An optimization process is then carried out to determine the
value of ψ that ensures the greatest fidelity of the model Eq. 2.27. As a reference, the position
x̃RANS
max of the added turbulence intensity peak can be recovered from the RANS look-up table

provided by EllipSys, for all combinations of CT and Ti0k. The value of ψ is eventually selected
so as to minimize the sum of the absolute difference |x̃max ´ x̃RANS

max | over all the (CT ,Ti0k)
combinations. Eventually, the value of the optimal parameter of Eq. 2.27 is found to be

ψ “ 2.03 (2.28)

Excellent agreement is shown in Sec. 2.3.2 between the model (Eq. 2.27) and the RANS data.
Moreover, a relative error ϵpos ([%]) on the position of the maximum x̃max can be defined as:

ϵpospCT ,Ti0kq “ 100 ˆ
x̃max ´ x̃RANS

max

x̃RANS
max

, (2.29)

This error aims to assess the reliability of the model (Eq. 2.27) in a quantitative manner.

It is interesting to notice that the optimization process can be carried out with an alternative
form of Eq. 2.27,

x̃max “
p1 ´ CT qϕ

ψ pTi0kqθ
, (2.30)

where two additional parameters, ϕ and θ, are introduced for more generality. Values of the
parameters ψ, ϕ and θ have been tested over a large range with numerical steps as small as
0.001, resulting in the optimal set:

ψ “ 2.321, ϕ “ 0.485, θ “ 1.036. (2.31)

This very encouraging result therefore seems to confirm the relevance of the reasoning behind
Eq. 2.27. Note that the size of the numerical step used to determine the optimal value of ψ is
discussed in Sec. 2.4.3.

In light of the results obtained in Sec. 2.1.2 for Eq. 2.21 (Fig. 2.3), it is now clear that a
Rayleigh function cannot satisfyingly be used to estimate the downstream distance dependence
in the far wake. This can be explained by the fact that the characteristic size of the eddies, lc
in Eq. 2.13, is considered equal to the rotor radius R at any downstream distance. Inspired by
the two theoretical scalings introduced in Sec. 2.1.1 and validated in Sec. 2.1.2, an expression
for a third ∆Tik,max model is proposed as:

∆Tik,max “ γ

b

1 ´
a

1 ´ CT fNpx̃q with fNpx̃q “

#

px̃{σq exp
´

σ2´x̃2

2σ2

¯

if x̃ ď σ

px̃{σq
´1{3 if x̃ ě σ

(2.32)

where σ “ x̃max is given by Eq. 2.27 with ψ “ 2.25, and where γ is the scaling parameter.
Similarly to the procedure followed for the first two models (Eq. 2.22 and Eq. 2.24), the scaling
parameter γ is computed as:

γ “
∆TiRANS

k,max px̃, CT ,Ti0kq
a

1 ´
?
1 ´ CT fNpx̃q

, (2.33)
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with fNpx̃q given by Eq. 2.32. The corresponding results are discussed in Sec. 2.3.2. Note that
the far wake expression of the downstream distance dependence is modified with respect to
Eq. 2.23 to ensure that fNpx̃ “ σq “ 1 in both the near wake and the far wake expressions. It
can already be anticipated that this modification will tend to affect the quality of the excellent
agreement between the second model (Eq. 2.23) and the RANS data in the far wake.

2.3.2 Results

The result of the optimization analysis carried out to define the value of ψ “ 2.03 in Eq. 2.27 are
discussed. Fig. 2.5 explicitly compares the RANS data x̃RANS

max and the good approximations,
x̃max, provided by Eq. 2.27 for representative values of CT and Ti0k. Furthermore, the relative
errors computed under representative conditions are given in Tab. 2.1. Among all the tested
conditions, the largest relative error occurs for CT “ 0.2 and Ti0k “ 0.4 and corresponds to a
relative error of ϵpos “ `60% between x̃max “ 1.10 and x̃RANS

max “ 0.69. Of all the values of CT

and Ti0k commonly met in practice (Tab. 2.1), it is important to notice that a relative error
ϵpos “ ´36% is obtained for CT “ 0.8 and Ti0k “ 0.15. The impact that this large relative error
has on the accuracy of the final model is to be investigated in Sec. 2.4.3 through a sensitivity
analysis.

Figure 2.5: Downstream position at which
the maximum added turbulence intensity
Tik,absmax is reached. The predictions x̃max

of Eq. 2.27 are compared to the RANS data
x̃RANS
max for different combinations of CT and

Ti0k.

Table 2.1: Relative error ϵpos [%] computed
with Eq. 2.29 for representative flow condi-
tions.

CT Ti0k “ 0.05 Ti0k “ 0.15 Ti0k “ 0.30

0.1 7.6 16 31
0.4 -5.3 -0.7 20
0.8 -3.4 -36 -31

The results of Eq. 2.33 are computed and depicted in Fig. 2.6. As said earlier, to any com-
bination of CT and Ti0k corresponds a specific value of σ (i.e., x̃max), retrieved from Eq. 2.27.
At a given distance from the rotor, fNpx̃q cristalizes to the first or the second expression of
Eq. 2.32 depending on the situation. For instance, at x̃ “ 1, the first expression of fNpx̃q is
to be considered for conditions CT “ 0.1, Ti0k “ 0.3. At the same position x̃ “ 1, the second
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expression fNpx̃q is employed for conditions CT “ 0.8 and Ti0k “ 0.3. In Fig. 2.6, a non-linear
and decreasing trend can be observed at x “ 1D. The CT dependence appears to be well ac-
counted for since the spacings between the curves are small. Discrepancies are however noticed
for CT “ 0.8 if Ti0k ě 0.3 as the corresponding σ values are such that x̃ “ 1 ą σ. Fig. 2.6
clearly shows that, when further downstream distances are considered, the far wake expression
of Eq. 2.32 is gradually used for more combinations of (CT ,Ti0k). In addition, thanks to the
expression fNpx̃q „ x̃´1{3, no significant evolution along x̃ is observed in Fig. 2.6 in the far wake.
Nevertheless, the presence of an additional CT dependence (through σ) in fNpx̃q “ px̃{σq´1{3

results in a substantially larger spacings between the CT curves than what has been observed
with Eq. 2.23 in Fig. 2.4.

Overall, this third model for ∆Tik,max brings a significant improvement solely for a very
limited set of downstream distances, essentially centered around x̃ “ 1. In this region, the
CT dependence is well modelled for most values of the atmospheric turbulence intensity but
rapidly leads to large discrepancies further away from the rotor. It seems difficult that a
simple expression of the γ parameter can exist in view of the large variability in either x or
CT introduced by this new model in most conditions. For that reason, no further study of
this model is provided in the scope of this project. However, it is good to remember that the
analysis carried out in this section allowed to determine a reasonably accurate model for the
position of the added turbulence intensity peak, x̃max (Eq. 2.27). As shown later in this work,
this quantity is to play an important part in the final model for the amplitude of the added
turbulence intensity.

Figure 2.6: Evolution of the scaling parameter α as function of Ti0k. Data are computed with
Eq. 2.33 for four different thrust coefficients, at six representative distances downstream.
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2.4 Development of a second approach for the design of a
new added turbulence intensity model

2.4.1 Methodology

In light of the previous sections, an alternative approach is considered for the modelling of
the added turbulence intensity. The idea of a downstream distance dependence described by
a Rayleigh-like function is retained, together with the expression of the position x̃max of the
added turbulence intensity peak developed in Sec. 2.3.

In Sec. 2.2.1, the first two attempts made to derive a new added turbulence intensity model
(Eq. 2.21 and Eq. 2.23) implicitly rely on the assumption that the turbulence intensity can be
decomposed as the product of three functions:

∆Tik,max “ ApTi0kqΦpCT q fNpx̃q, (2.34)

where ApTi0kq is the scaling coefficient denoted as αpTi0kq and βpTi0kq in the first and second
models, respectively. Although some trends for α and β seem to emerge under particular condi-
tions (Fig. 2.3 and Fig. 2.4), results have shown that both scaling coefficients still substantially
depend on the thrust coefficient and the downstream distance. A potential improvement is
subsequently investigated in Sec. 2.3, where the downstream distance dependence fNpx̃q is
modelled based on both Eq. 2.21 and Eq. 2.23. Note that this third model slightly deviates
from the form of Eq. 2.34 as fNpx̃q also depends on Ti0k and CT through the σ parameter.

Contrary to those models, the alternative approach introduced in this section does not rely
on the decomposition of ∆Tik,max into a product of three terms, each depending on either CT ,
Ti0k or x̃. Instead, observations of the RANS database suggest that the position x̃max and
the corresponding amplitude ∆Tik,absmax of the turbulence intensity peak along the streamwise
direction are key parameters in the modelling of Tik,maxpx̃, CT ,Ti0kq. The following self-similar
expression is therefore proposed:

∆Tik,max “ ∆Tik,absmax fN px̃{x̃maxq , (2.35)

where the shape function fN takes a unitary value for x̃ “ x̃max. As a reliable expression for
x̃maxpCT ,Ti0k) has been obtained in the previous section (Eq. 2.27), the task that remains at
this point is to ascertain analytical relationships for ∆Tik,absmax and fN .

In order to determine an expression for ∆Tik,absmax, one simple idea would be to use the
peak value predicted by Eq. 2.32 (i.e., for x̃ “ x̃max):

∆Tik,absmax “ λ

b

1 ´
a

1 ´ CT , (2.36)

with λ being a scaling parameter. Besides that, empirical testings appear to suggest the use of
an even simpler expression:

∆Tik,absmax “ λCT . (2.37)
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To determine the value of , one should first recall that the comparison of the existing models
carried out in Sec. 2.1.2 have shown little variation of ∆Tik,absmax with Ti0k. In order to further
investigate the reason behind this observation, the evolution of ∆TiRANS

k,absmax was also studied
using the second definition of the added turbulence intensity (Eq. 1.11). It appeared that, when
∆Tik is defined according to Eq. 1.11, the amplitude of the added turbulence peak, ∆TiRANS

k,absmax

decreases significantly and non-linearly with Ti0k. A potential explanation could be that, if the
turbulent kinetic energy of the atmospheric flow (k8) is increased by a small increment, the
turbulent kinetic energy of the wake (k) is consequently increased by approximately the same
increment, so that ∆k (Eq. 1.13) remains constant. As a result, the value of ∆Tik,absmax as
defined by Eq. 1.12 is not affected, i.e. ∆Tik,absmax is not a function of Ti0k. On the contrary,
the definition Eq. 1.11 naturally leads to the non-linear behavior that has been observed. This
interesting conclusion therefore points out that definition Eq. 1.12, in addition to relying on
the energy additivity assumption, simplifies the modeling of ∆Tik,absmax. Hence, it follows that
the scaling parameter λ is assumed to be a constant, the optimal value of which is defined so
as to minimize the absolute difference |∆TiRANS

k,absmax - ∆Tik,absmax| summed over all the tested
combinations of CT and Ti0k. The result of this optimization process is shown in the next section
for ∆Tik,absmax, computed with both Eq. 2.36 and Eq. 2.37. Eventually, the minimum error on
∆Tik,absmax (Eq. 2.37) is obtained for

λ “ 0.175. (2.38)

The definition Eq. 2.37 is found to perform slightly better than Eq. 2.36, for which the optimal
scaling coefficient is λ “ 0.166. Similarly to the relative error ϵpos on the position x̃max of the
added turbulence intensity peak (Eq. 2.29), a relative error ϵamp on the amplitude of the peak
is defined as

ϵamppCT ,Ti0kq “ 100 ˆ
∆Tik,absmax ´ TiRANS

k,absmax

TiRANS
k,absmax

. (2.39)

and allows to quantify the quality of the modelling of ∆Tik,absmax.

Given the self-similar expression Eq. 2.35, it is necessary to determine a family of shape
functions fN appropriate to represent the downstream evolution of the added turbulence inten-
sity. In light of the physical interpretation given in Sec. 2.1.2, it is clear that the shape function
must show specific characteristics. In particular, the function must have a rapid growth before
x̃ “ x̃max, after which a decrease is observed, the latter being more or less rapid depending on
the situation. Contrary to a Rayleigh function, a Weibull function with parameters k and c,
i.e.,

fWbpx̃{x̃maxq “
k

c

ˆ

px̃{x̃maxq

c

˙k´1

exp

ˆ

´
px̃{x̃maxqk

ck

˙

(2.40)

can be modified to reach a unitary maximum at px̃{x̃maxq “ 1 while keeping an additional free
parameter.The following expression is proposed:

fNpx̃{x̃maxq “

ˆ

x̃

x̃max

˙m

exp

ˆ

m

ˆ

1 ´
x̃

x̃max

˙˙

, (2.41)

where the additional free parameter is denoted m. In a sense, replacing the Rayleigh function
(Eq. 2.13) by Eq. 2.41 somewhat allows to account for the variation of the characteristic size
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of the large eddies, lc (Eq. 2.13), which was simply taken equal to the rotor radius in the first
model, Eq. 2.21. Eventually, the value of m can be set using a numerical optimization process
described as follows.

˝ For each value of CT and Ti0k, the quantities ∆TiRANS
k,max pCT ,Ti0k, x̃q, ∆TiRANS

k,absmaxpCT ,Ti0kq

and x̃RANS
max are retrieved from the RANS database.

˝ The quotient ∆TiRANS
k,max /∆TiRANS

k,absmax is then plotted against x̃{x̃RANS
max so that an empirical

shape function is observed. This function is denoted fRANS
N (x̃{x̃RANS

max ).

˝ For given CT and Ti0k values, the optimal value of m is chosen so as to minimize the
quantity Ef defined as

Ef “

ż η2

η1

|fRANS
N pηq ´ fNpηq| dη, (2.42)

where dη “ dpx̃{x̃RANS
max q, η1 “ 0 and η2 is so that the integration is performed over a

downstream distance of 20D.

As could have been expected, m is not a unique constant but takes slightly different values
depending on CT and Ti0k. Those values of m are stored in a look-up table. As will be observed
in Fig. 2.8 (Sec. 2.4.2) for a wide variety of cases, good agreement is shown between the
predictions fN of Eq. 2.41 and the shape functions fRANS

N recovered from the RANS database.
Following the same logic as for ϵpos (Eq. 2.29) and ϵamp (Eq. 2.39), a measure of the quality of
the estimations provided by fN can be written as:

ϵf pCT ,Ti0k, x̃q “ 100 ˆ
fNpηq ´ fRANS

N pηq

fRANS
N pηq

, (2.43)

with η “ x̃{x̃RANS
max . Attention should be paid to the fact that the ratio η is used as the argument

of both fRANS
N and fN . This choice indeed allows to make sure that no modelling error of x̃max

is implicitly contained in ϵf . In other words, ϵf defined in Eq. 2.43 reflects how close the
empirical shape function fRANS

N is to the theoretical Weibull shape used for fN (Eq. 2.41). It
should also be noted that, contrary to errors ϵpos and ϵamp, the error ϵf on the modelling of the
empirical shape function fRANS

N has an additional dependency of the downstream distance x̃.
Eventually, the methodology presented in this section allows to re-write the model intro-

duced in Eq. 2.35 as

∆Tik,max “ λCT

ˆ

x̃

x̃max

˙m

exp

ˆ

m

ˆ

1 ´
x̃

x̃max

˙˙

with x̃max “

?
1 ´ CT

ψTi0k
(2.44)

where λ “ 0.175, ψ “ 2.03 and for which the values of the parameter mpCT ,Ti0kq are stored
in a look-up table. In general, it is advisable to replace a large look-up table by an empirical
law derived from it to facilitate the use of the model. This can however only be done at
the expense of additional errors introduced into the model, the impact of which needs to be
accurately estimated through a sensitivity study. Such an analysis is performed in Sec. 2.4.3
and eventually supports the choice of a look-up table over an empirical relationship for the
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modelling of the m parameter. Note that in the scope of this project, eight values of CT are
tested in the interval [0.1; 0.8], together with eight values of Ti0k in [0.04; 0.4]. The resulting
look-up table for m (App. 5.2) therefore only contains 64 elements, between which interpolation
is recommended for greater accuracy.

2.4.2 Results

This section aims at evaluating the performances of the model developed for ∆Tik,max using
the alternative approach developed in Sec. 2.4.1. First, the results of the optimization process
carried out to determine the optimal value of λ (Eq. 2.36 and Eq. 2.37) are discussed. In Fig. 2.7,
only negligible variations of ∆TiRANS

k,absmax with Ti0k can be observed. Those slight fluctuations
are essentially contained between the predictions of Eq. 2.36 (denoted "Model 1") and that of
Eq. 2.37 (denoted "Model 2"). Although good agreement is shown in both cases, Eq. 2.37 is
found to lead to a slightly smaller error, for which the optimal value of the scaling coefficient
is λ “ 0.175. Some representative values of the relative error ϵamp defined in Eq. 2.39 are
summarized in Tab. 2.2.

Table 2.2: Relative error ϵamp [%] computed with Eq. 2.39 for representative flow conditions.

Ti0k “ 0.05 Ti0k “ 0.15 Ti0k “ 0.30

CT “ 0.1 -17.3 -37.6 -44.9
CT “ 0.4 4.0 -5.8 -8.4
CT “ 0.8 -1.9 -0.7 4.8

From Tab. 2.2, it appears clear that for common values of the thrust coefficient, very little
relative error is introduced by the modelling of the peak amplitude (Eq. 2.37). One should
however bear in mind that the sensitivity analysis discussed in Sec. 2.4.3 is necessary to show
that the impact of any small error ϵamp on the final model (Eq. 2.44) remains limited.

Although the peak amplitude ∆TiRANS
k,absmax and the corresponding downstream position x̃max

are related, the physical interpretation of Fig. 2.7 differs from that of Fig. 2.5 discussed in
Sec. 2.3.2. In this last section, it has been observed that an increase in CT led to higher veloc-
ity gradients and therefore to a faster wake recovery, leading in turn to a reduction of the value
of x̃max. Larger values of the atmospheric turbulence intensity Ti0k also appeared to further
reduce x̃max by facilitating the mixing with the undisturbed flow. Contrary to the effect that
an increase of CT has on x̃max, Fig. 2.7 explicitly shows that larger values of CT lead to larger
amplitudes of the turbulence intensity peak, ∆Tik,absmax. This is expected as the production
of turbulent kinetic energy is enhanced by an increase of velocity gradients.

As mentioned above, the m parameter used to describe the family of shape functions
(Eq. 2.41) depends on both CT and Ti0k. The values of m are first obtained through the
minimization of the absolute error defined in Eq. 2.42. These values are subsequently injected
in Eq. 2.41 and the resulting shape functions are displayed in Fig. 2.8 for a set of representative
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Figure 2.7: Comparison of the amplitude of the added turbulence intensity peak ∆Tik,absmax

as computed with Eq. 2.36 and Eq. 2.37, respectively denoted by "Model 1" and "Model 2".
The quantity ∆TiRANS

k,absmax is recovered from the RANS database and is used as the reference.

conditions. The corresponding relative error ϵf (Eq. 2.43) is computed at each downstream
position, from which the maximum and minimum values of the relative error are recovered and
shown in Tab. 2.3. The set of downstream distances over which the maximum and minimum
values of ϵf are retrieved is however limited to the far wake region (i.e., x̃ ą x̃max). This
choice has been made to avoid considering the cases for which fN ăă fRANS

N . Contrary to its
empirical counterpart (fRANS

N ), the modelled shape function fN indeed equals 0 at x̃ “ 0 and
therefore shows a sharper evolution with downstream distances in the near wake.

Table 2.3: Relative error ϵf [%] computed with Eq. 2.43 for representative flow conditions. The
maximum and minimum values of ϵf along x̃ are given for each tested combination of CT and
Ti0k.

(a) Maximum values of ϵf

Ti0k “ 0.05 Ti0k “ 0.15 Ti0k “ 0.30

CT “ 0.1 0.03 6.5 7.1
CT “ 0.4 1.5 6.1 8.0
CT “ 0.8 4.7 6.1 8.7

(b) Minimum values of ϵf

Ti0k “ 0.05 Ti0k “ 0.15 Ti0k “ 0.30

-5.3 -1.5 -2.4
-4.6 -0.5 -3.4
-12.2 -7.6 -13.3

It is observed from Fig. 2.8 that fN tends to overestimates fRANS
N right after the peak of

added turbulence intensity is reached. Tab. 2.3 further indicates that the amplitude of these
overestimation increases with Ti0k but does not significantly vary with CT . By contrast, the
model shows clear underestimation of fRANS

N in the furthest part of the wake only, particularly
at large CT values. One can finally see from Fig. 2.8 that the global appearance of the empirical
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Figure 2.8: Comparison of the shape functions recovered from the RANS database (fRANS
N )

with the model predictions fN computed by minimization of Eq. 2.42. Several representative
values of CT and Ti0k are tested.

shape function fRANS
N tends to deviate more from the theoretical Weibull profile (fN) for low

values of CT . This is especially true for higher atmospheric turbulence intensities as the level
of added turbulence is driven by an enhanced mixing and low velocity gradients, resulting in
irregular empirical shape functions (i.e., fRANS

N ). For larger thrust coefficients, the RANS sim-
ulations show that fRANS

N resembles a Weibull profile more, for which acceptable estimations
are provided by Eq. 2.41.

Unlike the first three models (Eq. 2.21, Eq. 2.23 and Eq. 2.32) for which the α, β and γ pa-
rameters were left undetermined, the alternative approach proposed in this section leads to the
closed form expression Eq. 2.44. The performance of this new comprehensive model can there-
fore be compared to that of the existing models similarly to what has been done in Sec. 2.1.2.
Note that the relative cumulative error ε defined in Eq. 2.14 is used again as an indicator of
the fidelity of the model. Overall, Fig. 2.9 clearly shows that the new model developed in this
section conducts to considerable improvement in a wide variety of situations. In particular, it
can be seen from Fig. 2.9a, Fig. 2.9c and Fig. 2.9e that the model predictions almost perfectly
overlap with the RANS data (represented by a continuous blue curve) provided that CT is large
enough. The near wake behavior also appears to be described with much higher fidelity than
the existing models.

For values of the thrust coefficients smaller than 0.4, the new added turbulence intensity
model fails to outperform the current models, especially for larger values of Ti0k. This could
have been expected as Eq. 2.27 for x̃max (Tab. 2.1) and Eq. 2.37 for ∆Tik,absmax ((Tab. 2.2))
simultaneously give relatively large discrepancies at low CT values. In practice, it is however

38



very unlikely to encounter such small values of CT so that the new model performs well in
any standard conditions. It must also be emphasized that only moderate deterioration of the
performance of the model is observed for increasing values of Ti0k. This great robustness is of
the utmost importance as Eq. 2.44 is to be eventually combined with superpositions methods,
i.e., in conditions for which Ti0k becomes larger as a result of the turbulence intensity added
by the upstream turbines. For Ti0k “ 0.05 and values of CT larger than 0.1, it can be observed
in Fig. 2.9b, that the error is essentially constant with CT and substantially lower than that of
the existing models.
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(a) Ti0k “ 0.05 [-] (b) Ti0k “ 0.05 [-]

(c) Ti0k “ 0.15 [-] (d) Ti0k “ 0.15 [-]

(e) Ti0k “ 0.30 [-] (f) Ti0k “ 0.30 [-]

Figure 2.9: Normalized added turbulence intensity and relative cumulative error (Eq. 2.14) for
different CT and Ti0k. The continuous blue curves in Fig. 2.9a,2.9c,2.9e represent the RANS
data.



As a conclusion, the alternative approach followed in this section results in a promising
new model for the added turbulence intensity ∆Tik,max (Eq. 2.44). A major improvement is
shown in all the conditions that are to be met in practice. This new model is therefore to be
implemented in the PyWake software in order to study the wake superposition effects. Although
this model is based on physical considerations, it seems relevant to recall that the values of
the parameters ψ (Eq. 2.27), λ (Eq. 2.37) and m (Eq. 2.41) are obtained through numerical
optimization processes. As only a limited number of conditions are tested, the values of m are
stored in a look-up table considerably smaller than the initial RANS database.

2.4.3 Sensitivity analysis

The sensitivity of the new one-dimensional model for the added turbulence intensity ∆Tik,max

(Eq. 2.35) is discussed in this section. In particular, the study is based on analytical develop-
ments and aims at evaluating the extent to which an error on x̃max, ∆Tik,absmax and fN impacts
∆Tik,max. From the expression

∆Tik,max “ ∆Tik,absmax fN px̃{x̃maxq “ ∆Tik,absmax

ˆ

x̃

x̃max

˙m

exp

ˆ

m

ˆ

1 ´
x̃

x̃max

˙˙

, (2.45)

the analytical form of the error on the added turbulence intensity, i.e., dp∆Tik,maxq, can be
written as a weighted sum, truncated to the first derivatives only:

dp∆Tik,maxq »
B∆Tik,max

B∆Tik,absmax

dp∆Tik,absmaxq `
B∆Tik,max

BfN
dpfNq, (2.46)

for which the two derivatives are trivially given by

B∆Tik,max

B∆Tik,absmax

“ fN and
B∆Tik,max

BfN
“ ∆Tik,absmax. (2.47)

In Eq. 2.46, the error term dpfNq accounts for the discrepancy between the modelled shape
function fN evaluated at downstream positions x̃{x̃max and its empirical counterpart, evaluated
at x̃{x̃RANS

max . If fRANS
N perfectly followed a Weibull shape of parameter m, assessing the impact

of dx̃max and dm on dpfNq would require to evaluate:

dpfNq “
BfRANS

N

Bx̃max

dx̃max `
BfRANS

N

Bm
dm. (2.48)

However, in Sec. 2.4.2, Fig. 2.8 has explicitly shown that fRANS
N deviates from the Weibull

shape, leading to an inevitable relative error ϵf . Given that the derivatives of fRANS
N with

respect to x̃max and m cannot be obtained analytically, the following linear decomposition of
dpfNq is assumed:

dpfNq »
BfN

Bx̃max

dx̃max `
BfN
Bm

dm ` ϵf,abs (2.49)

in which the first term accounts for the error dx̃max on the position of the added turbulence
intensity peak. The second and third terms are related to the error introduced when modelling
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fRANS
N as fN and respectively represent the sensitivity of fN to the m parameter and the

remaining absolute error ϵf,abs. This absolute error can simply be retrieved from the relative
error ϵf as:

ϵf,abs “ pϵf{100q fRANS
N . (2.50)

Note that in expression Eq. 2.49, the error term dm denotes a discrepancy to the optimal value
of m computed in Sec. 2.4.1 and stored in the look-up table. In the same section, the question
arises as to whether it is possible to replace this look-up table by an analytical expression for
the value of m. The answer to this question is discussed later in this section but can already
be anticipated to strongly depend on the sensitivity of fN with respect to m, i.e. the value
of pBfN{Bmq for a given set of flow conditions and downstream distances. The results of the
analytical developments of the two derivatives in Eq. 2.49 read:

BfN
Bx̃max

“ AfN where A “
m

x̃max

ˆ

x̃

x̃max

´ 1

˙

,

BfN
Bm

“ BfN where B “ ln

ˆ

x̃

x̃max

˙

` 1 ´
x̃

x̃max

.

(2.51)

Injecting Eq. 2.51, Eq. 2.49 and Eq. 2.47 into Eq. 2.46, the final form of the absolute error
on the added turbulence intensity is:

dp∆Tik,maxq » fN dp∆Tik,absmaxq ` ∆Tik,absmax pAfN dx̃max ` BfN dm ` ϵf,absq (2.52)

with A and B defined in Eq. 2.51. In this expression, the shape function fN is by definition lim-
ited to a unitary value reached for x̃ “ x̃max. Therefore, it is clear that an error dp∆Tik,absmaxq

has an impact on dp∆Tik,maxq that is smaller or equal to dp∆Tik,absmaxq for any flow conditions
and any downstream distances. Eq. 2.52 also shows that at x̃max, since the values of A, B and
ϵf,abs are equal to zero, the error on the final model dp∆Tik,maxq is solely dictated by the value of
dp∆Tik,absmaxq. At this stage of the sensitivity study, it is important to distinguish the different
analyses that can be made on the basis of Eq. 2.52. First, this expression allows to evaluate
the impact of the errors introduced by the modelling of x̃max, ∆Tik,absmax and fN derived in
Sec. 2.3.1 and Sec. 2.4.1. To this effect, dx̃max and dp∆Tik,absmaxq represent the absolute errors
on the peak position (ϵpos,abs) and on the peak amplitude (ϵamp,abs) of the added turbulence
intensity. Those last two quantities can easily be computed from ϵpos and ϵamp in Eq. 2.29 and
Eq. 2.39 following the same reasoning as for ϵf,abs (Eq. 2.50). As the sensitivity of the model to
the selected value of m is not evaluated in this part of the analysis, dm reduces to 0. Finally,
the reference values (i.e., the RANS generated values) x̃RANS

max and ∆TiRANS
k,absmax are injected into

Eq. 2.52. This results in the following form:

dp∆Tik,maxq » fRANS
N ϵamp,abs ` ∆TiRANS

k,absmaxAfN ϵpos,abs ` ∆TiRANS
k,absmax ϵf,abs, (2.53)

where the use of fNpx̃{x̃maxq if preferred over fRANS
N in the second and third terms for consis-

tency with the assumption formulated to derive Eq. 2.49. Eventually, the results of Eq. 2.53
are represented against x̃ in Fig. 2.10 for four different conditions. The combinations of CT and
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Ti0k are summarized in Tab. 2.4 and correspond to either conditions commonly met in practice
(case C) or cases for which large discrepancies have been observed in Fig.2.9 (cases A, B and
D).

Table 2.4: Summary of the tested conditions.

Case A B C D

CT 0.1 0.1 0.8 0.8
Ti0k 0.05 0.3 0.05 0.3

Contrary to an empirical sensitivity study for which only the total error dp∆Tik,maxq could
possibly be retrieved for a given set of conditions, the analytical development carried out in
this section allows to clearly assess the sensitivity of the overall model to ∆Tik,absmax, x̃max

and fN separately. In Fig. 2.10, the first, second and third terms of Eq. 2.53 are expressed
as percentages of ∆TiRANS

k,max and denoted by T1, T2 and T3 respectively. The square markers
indicate the resulting values of ϵtot, i.e., of the relative error on ∆Tik,max.

Figure 2.10: Analysis of the evolution of the relative error ϵtot [%] with downstream distance x̃
under different values of CT and Ti0k detailed in Tab. 2.4. T1, T2 and T3 denote the three terms
of Eq. 2.53 as percentages of ∆TiRANS

k,max , the square markers show the resulting values of ϵtot.

For all the four tested cases, the predicted trend of the total relative error on ∆Tik,max

represented in Fig. 2.10 are shown to agree with the values of the relative error deduced from
Fig. 2.9. Those relative errors are summarized in Tab. 2.5 to facilitate the comparison. Despite
slight discrepancies between the relative error empirically retrieved from Fig. 2.9 and the value
predicted by Eq. 2.53, it clearly appears in Tab. 2.5 that the assumption made to linearize dpfNq

(Eq. 2.49) holds for all the tested cases. One could point out a single exception: at the position
of the rotor, i.e. at the first node of the grid used in EllipSys, the analytical development seems
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Table 2.5: Comparison between the relative error ([%]) on ∆Tik,max empirically retrieved from
Fig.2.9 and the relative error ϵtot ([%]) computed by Eq. 2.53 and indicated by the square
markers in Fig.2.10. For each case, the empirical and the analytical relative errors are given in
the upper and lower lines respectively.

(a) Case A

x̃ “ 0 x̃ “ 5 x̃ “ 10 x̃ “ 15 x̃ “ 20

-9.4 -16.8 -17.1 -16.8 -18.3
-35.6 -17.1 -17.0 -16.4 -18.5

(b) Case B

x̃ “ 0 x̃ “ 5 x̃ “ 10 x̃ “ 15 x̃ “ 20

-37.2 -39.7 -41.4 -37.4 -33.1
-36.9 -33.9 -35.8 -27.5 -19.0

(c) Case C

x̃ “ 0 x̃ “ 5 x̃ “ 10 x̃ “ 15 x̃ “ 20

70.3 -1.9 0.8 -4.1 -13.7
25.0 -1.76 1.5 -3.4 -13.1

(d) Case D

x̃ “ 0 x̃ “ 5 x̃ “ 10 x̃ “ 15 x̃ “ 20

16.4 -2.5 -20.3 -35.1 -49.6
7.9 2.8 -12.6 -27.1 -43.0

to underestimate the value of the relative error on ∆Tik,max.

For cases A and B, Fig. 2.10 indicates that the model respectively underestimates by about
20% and 40% the actual value of ∆TiRANS

k,absmax observed in Fig. 2.9a and Fig. 2.9e. From Fig. 2.10,
it appears that this is mainly due to the error ϵamp on the amplitude of the maximum added
turbulence intensity. For case B, the effect of ϵpos through T2 can be seen to counterbalance T1.
In case C, Fig. 2.10 shows that the new model for the added turbulence intensity introduces an
overestimation with respect to ∆TiRANS

k,max in the near wake, followed by a slight underestimation
in the far wake. This indeed seems to be the case as observed in Fig. 2.9a. Moreover, Fig. 2.10
allows to realize that the term T3 in Eq. 2.53 is the main responsible for both the overestimation
in the near wake and the underestimation observed in the far wake.

Contrary to cases A and B, cases C and D are combinations of CT and Ti0k for which the
effect of an error on the modelling of the peak position x̃max matters. In Fig. 2.10, case D,
it is interesting to notice that the effects of ϵamp and ϵpos through T1 and T2 again seem to
offset each other, at a distance of about 5D behind the rotor. Beyond this point, the error
on the modelling of the peak position dominates and displays a decreasing trend. This trend
is furthermore linear, as could have been expected from the A term in Eq. 2.51. In the far
wake for case D, the large values of T2 are partially justified by the important relative errors
ϵpos computed in Sec. 2.3.2 and shown in Tab. 2.1. More generally, it can be concluded, by
comparison of Fig. 2.10 with the values of ϵpos (Tab. 2.1), ϵamp (Tab. 2.2) and ϵf (Tab. 2.3),
that the maximum along x̃ of the relative error on ∆Tik,max is essentially given by the value of
either ϵpos, ϵamp or ϵf depending on the flow conditions. In other words, the new model for the
added turbulence intensity never amplifies the modelling errors made on x̃max, ∆Tik,absmax or
fN . For that reason, the following expression for the bound on the total error ϵtot is proposed:

|ϵtotpCT ,Ti0k, x̃q| ď maxpϵpos, ϵamp, ϵf q, (2.54)

44



It is crucial to highlight that the validity of this empirical expression is challenged in some rare
cases for which two of the three relative errors ϵamp, ϵpos and ϵf have large amplitudes that add
up. Therefore, one should keep in mind that Eq. 2.54 has no mathematical basis and simply
provides a quick estimate of the probable total relative error ϵtot under a given set of conditions.

In light of this result, a sensitivity analysis can be further applied to the absolute error
terms dpx̃maxq and dp∆Tik,absmaxq to identify the impact of a calibration errors on ψ and λ.
From the expressions Eq. 2.27 and Eq. 2.37, the absolute errors dpx̃maxq and ∆Tik,absmax can
be decomposed as:

dpx̃maxq “
Bx̃max

Bψ
dψ “ ´

?
1 ´ CT

ψ2 Ti0k
dψ (2.55)

dp∆Tik,absmaxq “
B∆Tik,absmax

Bλ
dλ “ CT dλ. (2.56)

Moreover, Eq. 2.55 can be re-written as dpx̃maxq “ ´px̃max{ψq dψ, for which Fig. 2.5 can
advantageously be consulted to retrieve the values of x̃max. It is clear that the highest sensitivity
to ψ is reached with CT “ 0.1 and Ti0k “ 0.05, for which x̃RANS

max “ 8.69 is estimated to be
x̃max “ 9.35 by Eq. 2.27 with ψ “ 2.03 . Under those conditions, one can investigate the
maximum numerical step dψ that can be used to determine the optimal value of ψ in the
optimization process carried out in Sec. 2.3.1. Similarly for the optimization process of λ
(Sec. 2.4.1), CT “ 0.8 leads to the highest sensitivity in Eq. 2.56 and this condition is therefore
used to determine the suitable numerical step dλ. The relative errors on the values of the peak
position x̃max “ 9.35 and the peak amplitude ∆Tik,absmax “ 0.14, modelled with the optimal
parameters ψ “ 2.03 and λ “ 0.175 are given in Tab. 2.6 for different numerical steps dψ and
dλ.

Table 2.6: Sensitivity of the modelling of the peak position and amplitude to the calibration
of ψ and λ. The results are given in terms of the relative errors ([%]) on the modelled peak
position and amplitude (i.e., x̃max and ∆Tik,absmax) for different numerical steps dψ and dλ
respectively.

(a) Numerical steps for ψ

Step dψ 0.1 0.01 0.001
Rel. Error -4.9 -0.5 -0.05

(b) Numerical steps for λ

Step dλ 0.1 0.01 0.001
Rel. Error 57 5.7 0.6

If one wants to limit the calibration error on the modelled values of x̃max and ∆Tik,absmax

to less than 1%, Tab. 2.6 seems to indicate that the numerical steps dψ “ 0.01 and dλ “ 0.001
ought to be selected. Attention should be drawn to the fact that the relative errors on x̃max

and ∆Tik,absmax, denoted by "Rel. Error" in Tab. 2.6, are different quantities than the relative
error ϵpos and ϵamp defined in Eq. 2.29 and Eq. 2.39. As a matter of fact, it can be shown
that, for the flow conditions of interest (CT “ 0.1 and Ti0k “ 0.05), a small calibration error
dψ “ 0.1 would be beneficial as it would reduce the value of ϵpos from 7.6% (Tab. 2.1) to 2.3%.
Considering the evolution of ϵpos with dψ when investigating the effect of a calibration error
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appears misleading and the relative error on x̃max should therefore be preferred.

A key element to bear in mind is that the sensitivity analysis of the model has so far been
carried out assuming that the value of the parameter m in Eq. 2.45 is equal to the optimal value
determined in Sec. 2.4.1 so that dm “ 0 throughout the analysis. As recalled earlier in this
section, it is interesting to study the impact that a deviation from the optimal value of m would
have on ϵtot. The objective here is to determine if the information contained in the look-up
table could be reliably summarized in an analytical expression. This would indeed facilitate
the implementation and, in general, allow the use of the model without having to generate
or download the look-up table. It is however likely that if a simple analytical expression
to summarize the look-up table exists, it introduces a deviation dm from the optimal value
contained in the table. In view of the relative errors obtained in Tab. 2.1 and Tab. 2.2 when
modeling x̃max and ∆Tik,absmax, it seems reasonable to assume a relative error with respect to
the look-up table value between -20% and +20%. Assuming that all terms in Eq. 2.53 remain
unchanged, the term

T4 “ ∆TiRANS
k,absmaxB fNpx̃{x̃maxq (2.57)

can be added to the right-hand side of the equation to account for the effect of dm on ϵtot. For
each combination of CT and Ti0k, the relative errors ϵ´

tot and ϵ`
tot are then computed, respectively

for a relative discrepancy on the value of m of ´20% and of `20%. The resulting values of
ϵtot are eventually shown in Fig. 2.11. Worth mentioning is that, with respect to Fig. 2.10, the
scale of the axes has been modified and the three terms T1, T2, T3 removed for clarity.

Figure 2.11: Analysis of the evolution of the relative errors ϵ´
tot, ϵtot and ϵ`

tot with downstream
distance x̃ under different values of CT and Ti0k detailed in Tab. 2.4. The relative errors ϵ´

tot

and ϵ`
tot are computed for a relative error on m of ´20% and of `20% respectively.

For the standard operational and flow conditions represented by case C (i.e., CT “ 0.8 and
Ti0k “ 0.05), Fig. 2.11 explicitly shows that a modelling error on m would have little impact
on the the global relative error ϵtot between x̃ “ 5 and x̃ “ 10 behind the rotor. Before and
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after this region, it can be seen that large discrepancies are introduced by the deviation dm
with respect to the optimal value of m. The resulting relative errors on the model appear to
be as large as ϵtot » 50% in the near wake and about ϵtot » ´25% in the far wake. At large
incoming turbulence intensities and usual values of the thrust coefficient (i.e., case D), it is
observed that a relative error of `20% on m would lead to a relative error of up to ϵtot “ ´65%
in the far wake. Similar results are shown at low values of the thrust coefficients i.e., cases A
and B, for which the relative error of `20% on m again tends to increase the resulting relative
error on the global model. By contrast, a relative difference of -20% on m appears to reduce
the amplitude of ϵtot in most situations. One idea that stems from this observation would be to
replace the look-up table by an analytical expression, the predictions of which never exceed the
reference values contained in the look-up table. However, this would lead to large errors in the
near wake region as shown in Fig. 2.11 at Ti0k “ 0.05 and CT “ 0.8. Given the high sensitivity
of the added turbulence model to the value of the m parameter, no substitute to the look-up
table is further studied in the scope of this work. At this stage of the model development, it
is indeed advisable to prioritize the options that lead to the lowest possible error, in this case
the use of the m look-up table.

As a conclusion, the thorough sensitivity analysis carried out in this section first allowed to
shed light on the origin of the relative error ϵtot on the added turbulence model. In particular,
four different sets of flow conditions have been investigated. It was shown that, for all the
tested conditions, the values of the relative errors on the peak position x̃max, on the peak
amplitude ∆Tik,absmax and on the shape function fN were never amplified by the model. For
most conditions Eq. 2.54 was observed to provide a good estimation of the bound of the relative
error met along x̃. The sensitivity analysis then allowed to justify the choice of the numerical
steps dψ and dλ used in the optimization processes in Sec. 2.3.1 and Sec. 2.4.1. Finally, the
question of whether the lookup table for parameter m could be replaced by a more convenient
expression was investigated. From this last analysis, it appeared that such an expression would
likely have a non-negligible impact on the reliability of the added turbulence model. For that
reason, the decision was made not to investigate further attempts to replace the m look-up
table by an analytical law in the scope of this work.
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Chapter 3

Single wake modelling: Determination of
the two-dimensional profiles of the
velocity deficit and the added turbulence
intensity.

3.1 Modelling of the two-dimensional velocity deficit pro-
file

3.1.1 Initial form of the Bastankhah and Porté-Agel velocity deficit
model

As stated in Sec. 1.4, the development of a comprehensive two-dimensional single wake model
requires to study both the velocity deficit and the added turbulence intensity profiles. In this
section, the focus is placed on the modelling of the velocity deficit profile and its evolution with
downstream distance under different flow conditions. It is worth remembering that the main
purpose of this section is to eventually propose a velocity deficit model that could be used as
an alternative to the RANS look-up table introduced in Sec. 1.3.

In contrast to the added turbulence models for which the literature provides only a very
limited amount of work to date, many velocity deficit models have been studied over the past
decades. Therefore, a good starting point in the development of a velocity deficit model would
be to compare the existing models to the look-up table RANS data. Similar to what was done
in Section Sec. 2.1.2 when comparing added turbulence models, several deficit models could be
tested against the RANS predictions. However, it seems that among the models introduced in
Sec. 1.2.1, the LES-validated Bastankhah and Porté-Agel model [15] is the most suitable in the
context of this work. At hub height, this two-dimensional model gives:

∆U

U8

“

˜

1 ´

d

1 ´
CT

8 pσ{Dq2

¸

exp

ˆ

´
y2

2σ2

˙

. (3.1)
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In this expression, D denotes the diameter of the rotor, U8 the undisturbed flow and ∆U the
velocity deficit caused by the turbine operating at a thrust coefficient CT . As explained earlier
in Sec. 1.2.1, the velocity deficit tends to decrease as the downstream distance x increases due
to the wake recovery phenomenon. Therefore, the evolution of the standard deviation σ with
x is modelled by Bastankhah and Porté-Agel [15]1 as

σ “ k x ` εD with k » α1I ` α2 and ε “ 0.2 ˆ

ˆ

1 `
?
1 ´ CT

2
?
1 ´ CT

˙0.5

, (3.2)

where α1 and α2 are two coefficients that have been calibrated over the range 0.06 ă I ă 0.15
at CT “ 0.8. From this calibration, the values are set to α1 “ 0.38 and α2 “ 0.004. Note that
the notation I is equivalent to Tiu and refers to the incoming streamwise turbulence intensity
defined in Eq. 1.7. Attention should also be paid to the fact the standard deviation σ, that
characterises the width of the wake, is assumed to grow linearly as one moves away from the
rotor. In particular, the wake expansion coefficient k is a key parameter in Bastankhah and
Porté-Agel [15] model as it impacts both the deficit amplitude and the growth of the wake. For
this purpose, it seems natural that the parameter k takes larger values for increasing levels of
initial streamwise turbulence I. Moreover, under the strong assumption that the wake profile
is axisymmetric, the crosswind distance y in Eq. 3.1 can be replaced by the radial distance r.
Doing so, Eq. 3.1 together with Eq. 3.2 then describe a three-dimensional axisymmetric wake.
In the rest of this section, the discussion is however carried out based on the two-dimensional
velocity deficit profile at hub height provided by Eq. 3.1.

In view of comparing the performance of Bastankhah and Porté-Agel [15] deficit model to
the predictions of EllipSys stored in the look-up table, two quantities of interest are defined.
First, the characteristic wake half-width r1{2 as defined in Lingkan and Buxton [19], i.e. half
the lateral distance between two points with a value that is half of the center-line amplitude,
can be computed from a Gaussian profile of standard deviation σ as:

r1{2 “ σ
a

2 lnp2q. (3.3)

This simple way of characterizing the width of the wake has been extensively used in the
literature (Bastankhah and Porté-Agel [38], Qian and Ishihara [24]). The second parameter
of interest discussed in this section is the center-line deficit ∆Umax, i.e. the amplitude of the
Gaussian curve of the velocity deficit. In Bastankhah and Porté-Agel [15], it is evident that
this quantity is related to Eq. 3.1 as:

∆Umax “ U8

˜

1 ´

d

1 ´
CT

8 pσ{Dq2

¸

. (3.4)

For any given combination of CT and Ti0k values, the predictions of Bastankhah and Porté-
Agel [15] are computed according to Eq. 3.2, Eq. 3.3 and Eq. 3.4. It is noteworthy to mention

1The relationship between I and k was anticipated by Bastankhah and Porté-Agel [15] but explicitly formu-
lated in the work of Niayifar and Porté-Agel [17]
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that the value of the initial streamwise turbulence intensity Ti0u (denoted I in Eq. 3.2) should be
retrieved from Ti0k using the standard ratios of atmospheric turbulence, i.e., Ti0u “ 1.25ˆTi0k, as
discussed in Sec. 1.3. It has been observed that, if this step were to be omitted, the fidelity of the
Bastankhah and Porté-Agel [15] model would be significantly impacted. In parallel, the RANS
values of the wake half-width (rRANS

1{2 ) and of the deficit amplitude (∆URANS
max ) are extracted

from the look-up table for the same flow conditions. However, it important to keep in mind that
the RANS data have been generated in EllipSys over a discrete grid, as explained in Sec. 1.3.
Therefore, for a given downstream distance, it is likely that no grid point is located at the very
particular lateral position where half of the deficit amplitude is reached. The resulting half-
width rRANS

1{2 would thus be computed from the lateral position of the node at which the deficit
is the closest to half of the maximum deficit amplitude. In other words, one can anticipate the
value of rRANS

1{2 to be inevitably marred by an error related to the spatial step used to generate
the grid. Even though the impact of this error on the value of rRANS

1{2 has not been further
investigated, a more robust alternative is proposed. The idea of this second approach is, for
all tested conditions and downstream distances, to fit a Gaussian law of standard deviation
σRANSpCT ,Ti0k, xq and amplitude ∆URANS

max pCT ,Ti0k, xq to the RANS data points. In order to
retrieve the optimal value of these two parameters, different amplitudes ∆U 1

max and standard
deviations σ1 are considered. For each tested pair of U 1

max and σ1, an error

εfit “

N{2
ÿ

i“´N{2

|∆U 1
max exp

ˆ

´y2i
2pσ1q2

˙

´ ∆URANS
pyiq| (3.5)

is computed over a set of N ` 1 lateral grid points. The quantity ∆URANS denotes the velocity
deficit at hub height stored in the RANS look-up table. The pair σRANS and ∆URANS

max is then
defined as the one for which the minimum value of εfit, denoted εmin

fit , is obtained. Eventually,
the value of the optimal standard deviation σRANS is converted into the wake half-width rRANS

1{2

using Eq. 3.3.

In Fig. 3.1, the values of the wake half-widths, computed from Bastankhah and Porté-
Agel [15] are compared to the ones extracted from the RANS look-up table. The results are
normalized by the rotor radius D{2 and plotted against the normalized downstream distance
x̃ “ x{D for three values of Ti0k at three different operating conditions. In general, Fig. 3.1
shows excellent agreement for all thrust coefficients provided that the incoming turbulence
intensity is low. This is by no means a surprise given the range of streamwise turbulence in-
tensity (0.06 ă I ă 0.15 or equivalently 0.048 ă Ti0k ă 0.12) over which the Bastankhah and
Porté-Agel [15] model has been calibrated. At Ti0k “ 0.05, Fig. 3.1 clearly shows evidence of
the linear growth of the wake, for which the expansion coefficient k defined in Eq. 3.2 provides
an excellent estimation. This linear behavior however tends to be less pronounced as Ti0k in-
creases. In particular, for CT “ 0.1 and large Ti0k, the values of the wake half-width rRANS

1{2

extracted from the RANS look-up table become unpredictable and irregular. This observation
can be easily explained by the very low amplitude of the deficit observed for the same con-
ditions in Fig.3.2. Indeed, as explained several times throughout this work, strong incoming
turbulence favors wake recovery and therefore the rapid disappearance of the wake. This is all
the more pronounced when the velocity gradients at the rotor are low, i.e. for low values of
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CT . Therefore, the irregular cases pointed out above are justified by the extreme flatness of
the velocity deficit, for which no clear value of the standard deviation can be determined. To
a lesser extent, the same explanation applies to Fig. 3.2, in which the amplitude is observed
to slightly fluctuate for CT “ 0.1. At CT “ 0.8, the momentum extracted by the turbine is
maximum and leads to large velocity gradients in the wake. In addition, if there is only little
mixing with the undisturbed flow, e.g. for Ti0k “ 0.05, it is possible that the Bastankhah and
Porté-Agel [15] model predicts complex values of the velocity deficit in the near wake. In this
situation, the spurious values are set to the theoretical maximum deficit, i.e., ∆Umax “ U8.
However, this assumption corresponds to a full blockage of the flow and is clearly not verified
in practice. In general, it can be concluded from Fig.3.2 that the predictions of the Bastankhah
and Porté-Agel [15] model should not be trusted blindly in the near wake.

Although the analysis of Fig. 3.1 and Fig. 3.2 allows to assess the performances of the
Bastankhah and Porté-Agel [15] model in a wide variety of conditions, no information on the
quality of the Gaussian fitting can be retrieve from those graphs. Therefore, the RANS data
points and the corresponding fitted Gaussian curves are represented in Fig. 3.3, together with
the two-dimensional velocity deficit profile predicted by Eq. 3.1. The excellent estimations of
both the wake half-width and the deficit amplitude provided by Bastankhah and Porté-Agel [15]
are notable for x̃ ě 3 in Fig. 3.3a. Below this distance, a top-hat profile, symptomatic of the
near wake region behind a rotor operating at high thrust coefficients, is clearly observed. In
particular, the portion of the wake located close to the axis of the rotor appears to be subject
to fewer velocity deficit. In practice, this is justified by the fact that very little momentum is
dissipated by the viscous forces at the hub compared to the momentum deficit caused by the
blades. It is however possible that the low deficit observed at x̃ “ 1 in Fig. 3.3a is slightly
underestimated since the hub is simply modelled as a circular hole at the center of the force
actuator disk used in EllipSys. In other words, no viscous friction with the surface of the hub is
accounted for in the RANS simulations, causing the air to freely flow through the central sec-
tion of the actuator disk. Even though the top-hat profile is rapidly smoothed by the diffusion
of momentum as x̃ increases, the fitted Gaussian curve does not provide a reliable modelling
of the near wake in Fig. 3.3a. At CT “ 0.8 and Ti0k “ 0.3, Fig. 3.3b shows large discrepancies
between the modelled profiles and the actual RANS values. This result appears to be consistent
with the important modelling errors that have been observed in both Fig. 3.1 and Fig. 3.2 for
CT “ 0.8 and Ti0k “ 0.3. Contrary to the top-hat velocity deficit profile shown in the near wake
in Fig. 3.3a, the large initial turbulence intensity Ti0k “ 0.3 allows to recover a Gaussian curve
faster as evidenced in Fig. 3.3b. In the same figure, the wake recovery phenomenon enhanced
by the large value of Ti0k can clearly be observed.
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Figure 3.1: Comparison of the streamwise evolutions of the wake half-width r1{2 derived from
Eq. 3.2 and the wake half-width rRANS

1{2 recovered from the RANS look-up table under different
flow conditions.

Figure 3.2: Comparison of the streamwise evolutions of the amplitude of the velocity deficit
∆Umax derived from Eq. 3.4 and the amplitude ∆URANS

max recovered from the RANS look-up
table under different flow conditions. The scale of the vertical axis is adapted in each case for
readability.
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(a) CT “ 0.8 and Ti0k “ 0.05 [-]

(b) CT “ 0.8 and Ti0k “ 0.30 [-]

(c) CT “ 0.1 and Ti0k “ 0.05 [-]

Figure 3.3: Streamwise evolution of the two-dimensional velocity deficit profile under different
flow conditions. The predictions of the initial Bastankhah and Porté-Agel [15] model are
compared to the Gaussian curve fitted to the RANS data. Both the modelled wake half-width
r1{2 and the RANS wake half-width rRANS

1{2 are represented as dashed lines in the figure.
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Eventually, the academic situation in which a turbine would operate at CT “ 0.1 is dis-
cussed based on the results of Fig. 3.3c. As expected, the rotor is shown to have very little
impact on the flow. It can be observed that the low velocity gradients do not allow an efficient
diffusion of momentum from the undisturbed flow towards the wake. Indeed, in contrast to the
case represented in Fig. 3.3a for the same value of Ti0k “ 0.05, Fig. 3.3c shows a significantly
slower recovery of the wake. Despite small velocity gradients, the deficit profile still appears to
be irregular in the near wake due to the little mixing with the undisturbed flow (Ti0k “ 0.05).
As soon as the profile becomes reasonably Gaussian (x̃ ą 3), Eq. 3.1 provides an excellent
approximation of it, suggesting that the Bastankhah and Porté-Agel [15] model can be reliably
used over a large range of CT values.

It should be remembered, that the model discussed in this section is intended to be used
in parallel with superposition methods, for which the incoming turbulence intensity of a down-
stream turbine is the turbulence in the wake of the upstream turbines. Therefore, it is necessary
to ensure that the results of the single wake velocity deficit model remain reliable even for large
values of incoming turbulence. Moreover, the initial calibration of the parameters α1 “ 0.38 and
α2 “ 0.004 was performed with respect to the streamwise turbulence intensity I and therefore
requires the use of the conversion I “ 1.25ˆTi0k, suggested by the standard ratio of atmospheric
turbulence (Eq. 1.8). This ratio being roughly assumed equal to one in Sec. 1.3, the streamwise
incoming turbulence of the downstream turbines cannot be precisely determined.For those two
reasons, the decision was made to re-calibrate the values of the α1 and α2 parameters with
respect to the RANS data set so as to express Eq. 3.2 directly in terms of Ti0k.

3.1.2 Re-calibration of the Bastankhah and Porté-Agel velocity deficit
model

Before going any further into the development of the calibration process of α1 and α2, it is
important to recall that the assumption of a Gaussian velocity deficit profile is not always
verified. In particular, the analysis of the RANS data set carried out in Sec. 3.1.1 showed that
a Gaussian curve generally fails to describe the velocity deficit top-hat profile observed in the
near wake. In this region, the wake half-width rRANS

1{2 and the amplitude ∆URANS
max , computed

as the parameters of the fitted Gaussian law (Eq. 3.5), are spurious data that should thus not
be accounted for when re-calibrating α1 and α2. Furthermore, the wake recovery phenomenon
is so that the amplitude of the velocity deficit becomes negligible at some point in the far wake.
It was shown in Fig. 3.3 that the downstream position where it occurs strongly depends on
the flow conditions. Beyond this downstream position, Fig. 3.1 and Fig. 3.2 have shown that
the values of rRANS

1{2 and ∆URANS
max tend to fluctuate and should therefore be neglected in the

re-calibration process.

In light of these considerations, the region x̃0 ă x̃ ă x̃f in which the re-calibration can be
performed should be clearly identified prior to investigating different values of α1 and α2. First,
the maximum downstream distance x̃f of the domain of interest is arbitrarily defined as the
first downstream position at which the amplitude ∆URANS

max reaches a value lower than 5% of
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the undisturbed flow velocity U8. Then, the lower bound x̃0 is selected as the first downstream
position for which the following expression is verified:

εmin
fit pCT ,Ti0k, x̃0q ď ∆URANS

max pCT ,Ti0k, x̃ “ 1q, (3.6)

where εmin
fit is the sum along the lateral direction of the errors between the RANS data points

and the corresponding fitted Gaussian (Eq. 3.5). In other words, for each tested combination
of CT and Ti0k, the downstream distances of interest are those for which the quantity εmin

fit does
not exceed the deficit amplitude computed one diameter behind the rotor. Alternatively, the
expression

εmin
fit pCT ,Ti0k, x̃0q ď ∆URANS

max pCT ,Ti0k, x̃ “ x̃0q (3.7)

was proposed but appeared to be too restrictive in all the situations for which the amplitude
of the deficit is small. Using the definition of x̃0 provided by Eq. 3.6, the calibration procedure
of α1 and α2 over CT P r0.1; 0.8s and Ti0k P r0.04; 0.4s can be summarized as follows:

˝ First, a pair of tested values αi
1 and αj

2 is selected.

˝ For each combination of CT , Ti0k and x̃, the standard deviation following the Bastankhah
and Porté-Agel [15] model is recovered:

σij
{D “ kij x̃ ` ε with kij » αi

1Ti0k ` αi
2, (3.8)

where ε is the parameter defined in Eq. 3.2. Attention is drawn to the fact that the wake
expansion coefficient kij is now defined as a function of Ti0k. This contrasts with the initial
definition of k provided in Eq. 3.2 and for which the streamwise turbulence intensity Tiu
was used.

˝ The values of the standard deviation σRANSpCT ,Ti0k, x̃q retrieved from the fitted Gaussian
laws are then used to compute the quantity εσ defined as:

εσpαi
1, α

j
2q “

ÿ

CT

¨

˝

ÿ

Ti0k

¨

˝

x̃f pCT ,Ti0kq
ÿ

x̃“x̃0pCT ,Ti0kq

|σij
´ σRANS

|

˛

‚

˛

‚. (3.9)

The procedure is then repeated for all the tested pairs of αi
1 and αj

2.

˝ Eventually, the pair of calibrated parameters for which the quantity εσ is minimum is
retained.

In practice, this procedure can easily be implemented using multi-dimensional matrix opera-
tions. The resulting values of the re-calibrated coefficients α1 and α2 (initially equal to 0.380
and 0.0040, respectively) are found to be:

α1 “ 0.264 and α2 “ 0.0126. (3.10)

Similarly to what was done in Sec. 3.1.1, the performance of this re-calibrated model can
be evaluated and compared to that of the original Bastankhah and Porté-Agel [15] model. At
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this point, it is worth recalling that the objective is to obtain a model of the velocity deficit
as a function of Ti0k, the predictions of which have to remain faithful to the RANS data even
for strong incoming turbulence intensities. As it has been said before, the calibration of the
parameters α1 and α2 is performed on the interval CT P r0.1; 0.8s so that the re-calibrated
model is general enough to replace all the cases contained in the look-up table. In Niayifar and
Porté-Agel. [17]), it is however specified that the wake expansion coefficient k depends not only
on the atmospheric turbulence level but also on the operating conditions (i.e., the CT value) of
the turbine. For this reason, Niayifar and Porté-Agel al. [17] emphasize the need to determine
in the future a law for k that is both a function of Ti0k and CT . In this work, the initial form
of the expression of k is kept for the sake of simplicity and the impact of the different values of
CT is thus accounted for through the re-calibration of α1 and α2.

Given the form of Eq. 3.1, it is clear that any modelling error on σ will impact both the
predicted wake half-width and the amplitude of the velocity deficit. It is therefore difficult
to distinguish whether an error in the re-calibrated model is due to the form of the analyt-
ical expression Eq. 3.1 or to an inaccuracy in the modelled value of σ. This distinction can
nevertheless be made by studying in parallel the amplitude ∆UR defined by:

∆UR

U8

“

˜

1 ´

d

1 ´
CT

8 pσRANS{Dq2

¸

exp

ˆ

´
y2

2pσRANSq2

˙

. (3.11)

In this expression, referred to as the unbiased Bastankhah and Porté-Agel model, the standard
deviation of the fitted Gaussian is used to remove the effect of any modeling error on σ. As a
result, it can be expected that any discrepancy observed between the fitted Gaussian and the
unbiased Bastankhah and Porté-Agel model is due to the analytical form of the model.

The results of the calibration procedure are explicitly shown in Fig. 3.4a and Fig. 3.4b for
the common operating regime CT “ 0.8. To facilitate the analysis of these two figures, the
relative error with respect to the RANS data is calculated for the original Bastankhah and
Porté-Agel [15] model, for its unbiased version, and for the re-calibrated model. These models
are respectively denoted by "I.B.", "U.B." and "C.B.". The values of the relative errors are
summarized in Tab. 3.1 for three downstream distances and three initial turbulence levels. Note
that for model "U.B." in Tab. 3.1a, the relative error is by definition zero as the RANS fitted
values of the wake half-width are used as such in the unbiased Bastankhah and Porté-Agel
model. Eventually, as discussed earlier, the RANS data rRANS

1{2 and ∆URANS
max recovered from

the fitted Gaussian laws cannot be fully trusted out of the region x̃0 ă x̃ ă x̃f . The representa-
tion of the RANS data and of the unbiased model (Eq. 3.11) is therefore limited to the reliable
interval of downstream distances.
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(a) Wake half-width (b) Velocity deficit amplitude

Figure 3.4: Streamwise evolution of the wake half-width r1{2 (a) and of the amplitude of the
velocity deficit (b) for CT “ 0.8. In both figures, the initial Bastankhah and Porté-Agel [15]
model and its re-calibrated version are compared to the RANS fitted parameters rRANS

1{2 and
∆URANS

max . The amplitudes computed with the unbiased model (Eq. 3.11) are also displayed in
figure (b). For both (a) and (b), the blue, red and yellow curves are obtained for an incoming
turbulence Ti0k “ 0.05, Ti0k “ 0.15 and Ti0k “ 0.30 respectively.

Table 3.1: Relative error [%] on the wake half-width (a) and on the deficit amplitude (b) with
respect to the RANS fitted parameters rRANS

1{2 and ∆URANS
max at CT “ 0.8. For both (a) and

(b), "I.B.", "C.B." and "U.B" respectively denote the initial (Eq. 3.1), the re-calibrated, and
the unbiased (Eq. 3.11) Bastankhah and Porté-Agel models. Three values of the atmospheric
turbulence intensities are tested together with three different downstream distances.

(a) Wake half-width

Ti0k Model 5D 10D 15D

0.05
I.B. -10 -11 -7
C.B. -12 -14 -12
U.B. 0 0 0

0.15
I.B. 14 35 49
C.B. -7 4 12
U.B. 0 0 0

0.3
I.B. 37 NA NA
C.B. -1 NA NA
U.B. 0 0 0

(b) Velocity deficit amplitude

Ti0k Model 5D 10D 15D

0.05
I.B. 4 -4 -18
C.B. 11 4 -10
U.B. -20 -25 -31

0.15
I.B. -39 -60 -67
C.B. -5 -31 -41
U.B. -19 -24 -25

0.3
I.B. -56 NA NA
C.B. -14 NA NA
U.B. -15 NA NA

From Fig. 3.4a for Ti0k “ 0.30 and Ti0k “ 0.15, the re-calibrated linear growths are observed
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to be significantly closer to the fitted RANS values. The same conclusion holds for the re-
calibrated deficit amplitudes as seen in Fig. 3.4b. In a more quantitative manner, Tab. 3.1
shows a considerable reduction of the relative error for C.B., for the case Ti0k “ 0.15 at all
downstream distances. This was expected as the original calibration does not account for val-
ues of I larger than 0.15 (i.e. values of Ti0k larger than 0.12). However, it is obvious that this
re-calibration cannot simultaneously maintain the excellent performance of the original model
observed in Fig. 3.3a for the conditions Ti0k “ 0.05. Therefore, Fig. 3.4a shows that calibrat-
ing the model over a larger number of flow conditions leads, at Ti0k “ 0.05, to slightly larger
discrepancies for C.B..This is also reflected in Tab. 3.1a for all tested distances. The relative
error obtained for the re-calibrated model remains nevertheless low and thus allows to obtain
reliable estimations of the wake half-width over a larger set of incoming turbulence intensities.
Similar conclusions can be drawn for the other values of CT over which the re-calibration has
been performed.

In Fig. 3.4b, an unexpected result must be highlighted. Indeed, the unbiased Bastankhah
model (Eq. 3.11) in the case Ti0k “ 0.05 seems to underestimate the amplitude of the deficit,
whereas this same model appears to be in good agreement with the RANS data for the case
Ti0k “ 0.30. This seems to suggest that the form of the analytical relation proposed by Bas-
tankah and Porté-Agel to link the standard deviation σ to the amplitude of the deficit ∆Umax

leads to a slight under-prediction of this amplitude, at least in the case Ti0k “ 0.05. However,
this relation is derived from well-established physical concepts and has shown excellent results
when used with a LES data set in Bastankhah and Porté-Agel [15] for CT “ 0.8 and Ti0k » 0.05.
If the analytical form of this law is not an inherent source of significant error, then it should
allow to recover the amplitude ∆URANS

max from the knowledge of the input σRANS. The origin of
this paradox is unclear but seems to be related to the high sensitivity of Eq. 3.1 with respect
to σ. Indeed, a slight positive deviation introduced on the value of σ has been observed to lead
to a significant underestimation of the corresponding amplitude. Mathematically, this is shown
by the expression:

dp∆Umaxq »
B∆Umax

Bpσ{Dq
dpσ{Dq “

´
?
2CT

4
a

8 pσ{Dq6 ´ CT pσ{Dq4
dpσ{Dq, (3.12)

from which it is clear that the sensitivity increases strongly when σ is small, i.e. for low values
of Ti0k. It is therefore likely that the RANS data σRANS and URANS

max are in fact subject to
a small error compared to a higher fidelity reference, e.g., a set of LES data generated un-
der the same conditions. As a result of Eq. 3.12, the error on σRANS is strongly amplified
when using the unbiased Bastankhah model (Eq. 3.11), causing the discrepancy observed in
Fig. 3.4b and Tab. 3.1b for Ti0k “ 0.05. Worth mentioning is the fact that this explanation
remains hypothetical and should be confirmed by comparing σRANS and ∆URANS

max with their
LES equivalent generated for CT “ 0.8 and Ti0k “ 0.05. It should be noted that the ex-
cellent results obtained by the initial model of Bastankhah and Porté-Agel [15] for the case
Ti0k “ 0.05 seem to confirm this theory. Indeed, these results are based on the initial cali-
bration performed on a LES data set, specifically for the case CT “ 0.8 and over a reduced
interval of Ti0k values. The high fidelity of this calibration is shown explicitly in Niayifar et
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al.[17]. Hence, it is possible that the wake half-width predicted by the initial Bastankhah and
Porté-Agel model˜[\egroup ]BastankhahPorteAgel and slightly lower than rRANS

1{2 is in reality
more reliable than the RANS fitted wake half-width. This explanation would therefore justify
the excellent performances of the initial Bastankhah and Porté-Agel model [15] observed in
Fig. 3.4b for Ti0k “ 0.05.

Eventually, the results of this re-calibration can be assessed in terms of the two-dimensional
velocity deficit in Fig. 3.5. Similarly to Fig. 3.4a and Fig. 3.4b, the fitted Gaussian and the
corresponding unbiased Bastankhah and Porté-Agel model (Eq. 3.11) is only shown in the
interval of downstream distances used in the re-calibration process, i.e. x̃0 ă x̃ ă x̃f . In
Fig. 3.5a, it is clear that the beginning of this interval coincides with the end of the so-called
top-hat profile (x̃ ą 3). From the same figure, one can observe the slight overestimation of
the deficit amplitude induced by the re-calibrated values of α1 and α2 (Eq. 3.10). Moreover, a
sensitivity interval is represented in light grey in Fig. 3.5. It is computed following Eq. 3.1, in
which σ “ σRANS ˘ dpσq with dpσq equal to 10% the value of σ. Since the computation of the
sensitivity interval involves σRANS, it is shown only in the region where σRANS is considered
reliable, i.e. x̃0 ă x̃ ă x̃f . This representation thus visually supports the high sensitivity of
Eq. 3.1 with respect to the parameter σ predicted by Eq. 3.12 earlier in this section. For the
conditions CT “ 0.8 and Ti0k “ 0.3 (Fig. 3.5b), the re-calibrated model does lead to significant
improvements for x̃ ą 1. Below this downstream distance, the wake half-width predicted by the
re-calibrated model is barely lower than the RANS data (Fig. 3.4a) but this small discrepancy
is strongly amplified by the high sensitivity to σ. Attention should be paid to the case x̃ “ 10
in Fig. 3.5b, for which the wake is considered fully recovered and therefore disregarded by the
re-calibration procedure. Finally, Fig. 3.5c essentially shows that the re-calibration has no sig-
nificant effect on the model if the thrust coefficient is as low as CT “ 0.1. In general, the initial
Bastankhah and Porté-Agel model [15] was however observed to be slightly outperformed by
its re-calibrated version for all the CT values between 0.1 and 0.8.

To sum up, a method to reliably retrieve the wake half-width and the deficit amplitude
from the velocity field generated in EllipSys was investigated in Sec. 3.1.1. The Bastankhah
and Porté-Agel model [15] was then studied as an alternative to the current look-up table model
of the velocity deficit. Good agreement was shown between the model (Eq. 3.1) and the RANS
fitted data in the conditions for which the model was initially calibrated. In order to extend
the range of atmospheric turbulence intensities over which the velocity deficit model matches
the RANS data, a re-calibration of the Bastankhah and Porté-Agel model was carried out in
Sec. 3.1.2. This re-calibration first allowed to re-write the expression of the wake expansion
coefficient k (Eq. 3.2) as a linear function of Ti0k, instead of Ti0u. Although at the expense of
slightly larger amplitude errors for the case Ti0k “ 0.05, significant improvements were observed
for the re-calibrated model in the event of larger incoming turbulence intensities.
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(a) CT “ 0.8 and Ti0k “ 0.05 [-]

(b) CT “ 0.8 and Ti0k “ 0.30 [-]

(c) CT “ 0.1 and Ti0k “ 0.05 [-]

Figure 3.5: Streamwise evolution of the two-dimensional velocity deficit profile under different
flow conditions. The predictions of the initial (Eq. 3.1), the unbiased (Eq. 3.11) and the re-
calibrated Bastankhah and Porté-Agel models are compared to the Gaussian curve fitted to
the RANS data. The initial and the unbiased models are only displayed in the calibration
range x̃0 ă x̃ ă x̃f . A sensitivity interval on σ (˘10%) is also shown in this region. The wake
half-widths are represented as dashed lines in the figure.
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3.1.3 Validity of the axisymmetric velocity deficit assumption

As mentioned earlier in Sec. 3.1.1, the two-dimensional profile of the velocity deficit can easily
be generalized in three dimensions under the assumption of an axisymmetric wake. In fact, the
PyWake software, in which the model is to be implemented2, relies on the assumption that the
wake is axisymmetric in order to compute the three-dimensional wake and the incoming flow
conditions of the downstream turbines. For that reason, it is interesting to assess the validity of
this assumption by comparing the predictions of the model to the RANS velocity deficit field,
as shown in Fig. 3.6 for CT “ 0.8 and Ti0k “ 0.05.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.6: Velocity deficit (∆U{U8) fields in vertical cuts at increasing downstream distances
for CT “ 0.8 and Ti0k “ 0.05. The predictions of the re-calibrated Bastankhah model (lower
row) are compared to the RANS data generated by EllipSys (upper row). The perimeter and
rotor center are shown in white in the figures.

In the RANS velocity field shown in Fig. 3.6, only slight deviations from an axisymmetric
wake are observed for x̃ ě 5. In this region, the ground induced boundary layer acts as an
additional source of velocity deficit close to the ground so that the total deficit is larger in the
lower part of the rotor. Below x̃ ă 5, the boundary layer still exists but its impact appears to
be compensated by the blockage effect of the rotor on the flow. As a matter of fact, the RANS
velocity deficit field at x̃ “ 1 in Fig. 3.6 shows a very clear acceleration, i.e. negative deficit
values, of the flow around the turbine. This effect is particularly marked in the lower zone of
the figure, since the flow is confined between the ground and the rotor, and therefore accelerates
more due to the nozzle effect. As expected, Fig. 3.6 at x̃ “ 1 shows a strong over-estimation of
the deficit amplitude predicted by the re-calibrated Bastankhah and Porté-Agel model. From
Fig. 3.4b, it should be recalled that the predicted deficit at the center of the rotor reaches a

2since the initial Bastankhah and Porté-Agel model [15] is already included in the software, only the values
of the re-calibrated coefficients α1 and α2 need to be modified.
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unitary value, even though the scale is limited to ∆U{U8 “ 0.6 for readability. By contrast,
the RANS velocity deficit field at x̃ “ 1 in Fig. 3.6 exhibits interference due to the presence of
the hub. Attention should be paid to the fact that EllipSys represents the hub as a central void
in the force actuator disk, as mentioned in Sec. 3.1.1. The momentum of the undisturbed air
flowing through the center of the disk however quickly diffuses towards the edge of the rotor to
such an extent that a Gaussian profile is effectively recovered less than three diameters behind
the turbine.

The discussion carried out in this section only focuses on the flow conditions CT “ 0.8,
Ti0k “ 0.05 for brevity. Nevertheless, the same conclusions were seen to hold, although to a
different extent, in all the other tested conditions. In particular, the blockage effect tends to
disappear when the turbine has little impact on the flow, i.e. for low values of the thrust
coefficient. The hub interference also seem to vanish more rapidly under high atmospheric
turbulent intensity levels, due to the enhanced mixing. To conclude, Fig. 3.6 shows evidence
that assuming the velocity deficit field to be axisymmetric is essentially equivalent to neglecting
the hub interference, the blockage effect and the presence of the boundary layer. For that reason,
the use of the axisymmetric wake assumption for the velocity deficit is retained in the scope of
this work.

3.2 Modelling of the two-dimensional added turbulence in-
tensity profile

3.2.1 Generalization of the new one-dimensional model to higher di-
mensions

In Sec. 1.2, the two-dimensional turbulence intensity profile was introduced. Contrary to the
velocity deficit profile, for which the largest deficit is observed along the axis of the rotor, the
presence of significant velocity gradients leads to increased turbulence intensity levels at the
edge of the wake. Therefore, the simple Gaussian curve proposed in Frandsen [11] appears
ill-suited to reliably reflect the physics behind the actual profile of the turbulence intensity in
the wake of a wind turbine. Following the approach presented in Lingkan and Buxton [19],
a two-term Gaussian function is used to represent the added turbulence intensity profile at
each location downstream of the rotor. Assuming that both Gaussian terms have the same
amplitude C˚pxq and the same standard deviation σ˚pxq, the analytical form of the horizontal
profile at hub height reads:

∆Tikpx, yq “ C˚pxq

ˆ

exp

ˆ

´
py ´ ycq

2

2σ2
˚

˙

` exp

ˆ

´
py ` ycq

2

2σ2
˚

˙˙

. (3.13)

In this expression, the position of the center-line yc of each Gaussian term is considered to
coincide with the rotor edge, i.e. yc “ D{2. Lingkan and Buxton [19] justify this assumption
based on observations from experimental and numerical studies. It is important to specify that
the standard deviation σ˚ in Eq. 3.13 is in general different from that of the simple Gaussian
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function used to describe the velocity deficit (Eq. 3.1). The wake half-width defined with
respect to the added turbulence intensity is denoted r˚

1{2 and can naturally be written as:

r˚
1{2 “ σ˚

a

2 ln p2q ` yc, (3.14)

with yc “ D{2, as proposed by Lingkan and Buxton [19]. Under the axisymmetric wake
assumption, replacing the lateral distance y at hub height by the radial distance r allows to
re-write Eq. 3.13 in a three dimensional form. Note that the validity of this assumption will
later be seen to be challenged by the presence of the ground boundary layer.

Similar to the procedure applied in Sec. 3.1.1, the first step towards the determination of
a reliable two-dimensional profile consists in recovering the values of σRANS

˚ pCT ,Ti0k, xq and
CRANS

˚ pCT ,Ti0k, xq from the values of the added turbulence intensities stored in the RANS
look-up table. This is done by fitting the two-term Gaussian law Eq. 3.13 to the set of RANS
data for all the considered combinations of CT , Ti0k and x. In each case, the fitting error

εfit “

N{2
ÿ

i“´N{2

ˇ

ˇ

ˇ

ˇ

C 1
˚

ˆ

exp

ˆ

´pyi ´ ycq
2

2pσ1
˚q2

˙

` exp

ˆ

´pyi ` ycq
2

2pσ1
˚q2

˙˙

´ ∆TiRANS
k pyiq

ˇ

ˇ

ˇ

ˇ

(3.15)

is evaluated for a large number of pairs of C 1
˚ and σ1

˚ over a set of N ` 1 lateral grid points.
Note that in this expression, ∆TiRANS

k refers to the value of the added turbulence intensity
stored in the RANS look-up table at hub height. The optimal values of the fitted parameters
σRANS

˚ and CRANS
˚ are finally selected such that the fitting error εfit is minimum.

In Chapter 2, emphasis was placed on the determination of a new model for the ampli-
tude of the added turbulence intensity. The modelling of the corresponding wake half-width
has therefore not been considered so far but is a key element in the determination of a two-
dimensional profile. In Sec. 1.2.1, the expression Eq. 1.3 proposed by Nygaard [10] for the
wake growth was introduced. This model, used in parallel to the Frandsen model (Eq. 1.17) for
the amplitude of the added turbulence intensity, appeared to outperform the results obtained
under the classical linear wake growth assumption. Moreover, Eq. 1.3 accounts for the local
level of turbulence intensity in the wake at each position downstream of the rotor, contrary to
Eq. 3.2, in which only the level of turbulence at the rotor position matters. For that reason,
Eq. 1.3 seems particularly well-suited to model the evolution of the wake half-width r˚

1{2 and
that of the corresponding standard deviation σ˚ (Eq. 3.14) that has to be used in Eq. 3.13.
The wake growth TurbOPark model [10] combined to the new model for the amplitude of the
added turbulence intensity (Eq. 2.44) leads to the following expression:

dDw

dx
“ A

d

pTi0kq2 ` pλCT q2

ˆ

x̃

x̃max

˙2m

exp

ˆ

2m

ˆ

1 ´
x̃

x̃max

˙˙

, (3.16)

where Dw “ 2 r˚
1{2 is the diameter of the wake and A a calibration coefficient. The expression

of x̃max and the value of λ are unchanged with respect to Eq. 2.44. Several comments can be
made on the form of Eq. 3.16. First of all, considering the local value of the total turbulence
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(Tik) in the wake and not only the incoming turbulence (Ti0k) requires to introduce a method
of superposition in the model. Following the recommendation of Nygaard [10], a quadratic
superposition method (Tab. 1.1b) is chosen to evaluate the total level of turbulence in the
wake. As will be further discussed later in this work, the superposition methods are imperfect
and inevitably introduce errors in the modelling of the level of total turbulence intensity Tik
in the wake. This error is expected to in turns affect the computed value of r˚

1{2 through
Eq. 3.16. Moreover, the right-hand side term of Eq. 3.16 has to be integrated with respect to
x to isolate the wake half-width, from which the two-dimensional profile can subsequently be
deduced (Eq. 3.14 and Eq. 3.13). All the attempts made so far to perform the integration of
Eq. 3.16 analytically have however proved unsuccessful. Although the potential benefit brought
by the combination of Eq. 1.3 and the new added turbulence intensity model (Eq. 2.44) is worth
further investigation, the decision was made to use a linear law for the streamwise evolution
of r˚

1{2 in the scope of this project. The analytical form proposed by Bastankhah and Porté-
Agel [15] for the standard deviation defined with the velocity deficit (σ) is re-written as:

σ˚ “ k˚x ` εD with k˚
“ α˚

1 Ti0k ` α˚
2 and ε “ 0.2 ˆ

ˆ

1 `
?
1 ´ CT

2
?
1 ´ CT

˙0.5

. (3.17)

Note that this relation assumes that both standard deviations, σ and σ˚, are equal at x “ 0.
Following the methodology introduced in Sec. 3.1.2 for the re-calibration of α1 and α2, the
calibrated values of α˚

1 and α˚
2 over CT P r0.1; 0.8s and Ti0k P r0.04; 0.4s are found to be:

α˚
1 “ 0.248 and α˚

2 “ 0.0114. (3.18)

Unlike the velocity deficit profile, for which a Gaussian function was suitable in the interval
x̃0 ă x̃ ă x̃f only, the added turbulence intensity profile appears to be well modelled by a
two-term Gaussian function in both the near and far wakes. For that reason, the interval
of downstream distances over which the calibration of α˚

1 and α˚
2 is performed is given by

0 ă x̃ ă x̃f . The value of x̃f is defined for each flow condition as the distance at which the
amplitude of the added turbulence intensity (CRANS

˚ ) becomes lower than 0.1%. The two re-
sults in Eq. 3.18 appear to be very close to the re-calibrated values α1 “ 0.264 and α2 “ 0.0126
obtained in Sec. 3.1.2. Hence, modelling σ˚ with Eq. 3.17 leads to very little distinction
between the wake growth defined with the velocity deficit and that defined with the added
turbulence intensity. The importance of this distinction is however highlighted in Lingkan and
Buxton [19] and therefore seems to point out imperfections in the modeling of σ˚ with Eq. 3.17.

The comparison between the RANS fitted values (σRANS
˚ ) and the modelled values (σ˚,

Eq. 3.17) of the standard deviation is shown in Fig. 3.7. First, it is clear that the offset intro-
duced by yc “ D{2 in Eq. 3.14 leads to a significantly larger wake than the one observed in
Fig. 3.1. In general, this suggests that the region influenced by the turbulence intensity added
by an upstream turbine is wider than the zone in which a velocity deficit is sensed. In contrast
to the wake half-width rRANS

1{2 defined by the velocity deficit and shown in Fig. 3.1, no strong
fluctuation of the values of pr˚

1{2qRANS is observed in Fig. 3.7. This shows evidence that a two-
term Gaussian function provides a more robust fitting than a single term Gaussian curve in the
regions where the wake has almost fully recovered. The only notable irregularities in Fig. 3.7
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Figure 3.7: Comparison of the streamwise evolutions of the wake half-width r˚
1{2 derived from

Eq. 3.17 and the wake half-width pr˚
1{2qRANS recovered from the RANS look-up table under

different flow conditions.

are observed at downstream distances less than 3D for the case CT “ 0.1, Ti0k “ 0.3. Under
such conditions, EllipSys predicts a spurious local decrease of the turbulent kinetic energy, k,
for a large portion of the profile. The corresponding values of the added turbulence intensity
are automatically set to 0 at those locations for consistency with physics. As a result, the
two-term Gaussian was observed to reduce to two narrow peaks of incorrect standard deviation
and amplitude. Still, those very specific cases correspond to theoretical flow conditions that
would hardly be met in practice and will therefore be disregarded in the rest of this analysis.

From Fig. 3.7, it clearly appears that the wake growth as defined by the added turbulence
intensity is non-linear. This observation is in agreement with Lingkan and Buxton [19], in
which the scaling r˚

1{2 „ x1{2 seems to be the most appropriate. Nevertheless, approximating
the evolution of r˚

1{2 with a linear function (Eq. 3.17) seems to introduce little errors in the
model. For the operating regimes CT “ 0.1, CT “ 0.4 and CT “ 0.8, the relative error on σ˚

with respect to σRANS
˚ is given in Tab. 3.2a under different turbulent inflow conditions. Note

that this quantity is by definition (Eq. 3.14) larger than the corresponding relative error on
r˚
1{2 and is of greater interest in the scope of this analysis due to its direct impact on ∆Tik

(Eq. 3.13). This is in contrast to the standard deviation σ of the Gaussian velocity deficit
distribution (Eq. 3.1), for which the relative error given in Tab. 3.1a is the same as for the wake
half-width r1{2. In Tab. 3.2a, the maximum relative error introduced by the modelling of σRANS

˚

as σ˚ is 52% for CT “ 0.1 and Ti0k “ 0.15 at x̃ “ 5. In general, the relative error computed with
CT “ 0.1 under any turbulent incoming intensities is found to be larger than that computed
with more common values of the thrust coefficient, i.e. CT “ 0.8 and CT “ 0.4. Eventually, for
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Table 3.2: Relative error [%] on the standard deviation σ˚ (a) and on the C˚ coefficient (b)
with respect to the RANS fitted parameters σRANS

˚ and CRANS
˚ at CT “ 0.1, CT “ 0.4 and

CT “ 0.8. Three values of the atmospheric turbulence intensities are tested together with three
different downstream distances.

(a) Standard deviation σ˚

Ti0k CT 5D 10D 15D

0.05
0.1 9 15 18
0.4 -6 7 7
0.8 -2 -5 -30

0.15
0.1 52 22 12
0.4 0.02 -5 -4
0.8 -7 -19 -15

0.3
0.1 46 -12 20
0.4 4 -10 21
0.8 -13 -11 24

(b) Coefficient C˚

Ti0k CT 5D 10D 15D

0.05
0.1 -1 -6 -8
0.4 7 -2 -1
0.8 -12 -7 9

0.15
0.1 -13 -34 -34
0.4 6 4 4
0.8 -8 -12 -29

0.3
0.1 -40 -31 -33
0.4 6 12 10
0.8 9 -12 -34

those two operating regimes, the relative error on the standard deviation essentially remains
between ˘20%.

In order to tackle the comparison of the amplitudes of the two-dimensional profile, as
predicted by the new model (Eq. 2.44) and as recovered from the RANS look-up table, it
should be emphasised that Eq. 3.13 reduces to

C˚pxq “
∆Tikpx, ycq

1 ` exp p´2 y2c{σ2
˚q

(3.19)

for y “ yc. It is indeed crucial to bear in mind that the amplitude ∆Tik,max predicted by the
new model (Eq. 2.44) differs, by definition, from the C˚ coefficient in Eq. 3.13. Therefore, if the
values of ∆Tik,max and σ˚ are respectively modelled with Eq. 2.44 and Eq. 3.17, the correspond-
ing C˚ coefficient can be computed from Eq. 3.19 and used to generate the two-dimensional
added turbulence intensity profile. Eventually, the evolution of the modelled C˚ coefficient is
compared in Fig. 3.8 to that of the CRANS

˚ coefficient, retrieved from the two-term Gaussian
function fitted to the RANS data. The corresponding relative error is summarized in Tab. 3.2b
under different combinations of flow conditions and downstream distances.

In Fig. 3.8, large fluctuations are observed in the near wake for flow conditions CT “ 0.1
and Ti0k “ 0.3. In this situation, the predictions of the two-term Gaussian function collapse
into two spurious peaks and should therefore be disregarded as already mentioned in the anal-
ysis of Fig. 3.7. From Fig. 3.8 and Tab. 3.2b, it appears that the modelled values of the C˚

coefficient in common operating conditions (CT “ 0.8) are at most marred by a relative error
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Figure 3.8: Comparison of the streamwise evolutions of the C˚ coefficient derived from the
new model Eq. 3.19 and the amplitude CRANS

˚ recovered from the RANS look-up table at hub
height under different flow conditions. The scale of the vertical axis is adapted in each case for
readability.

of about 30%, reached 15D behind the rotor. This error however never exceeds ˘20% for
downstream distances lower than 10D. Similarly to what has been observed for the modelling
of the standard deviation σ˚ in Tab. 3.2a, the largest discrepancies between C˚ and CRANS

˚

are obtained for a thrust coefficient CT “ 0.1, i.e., rarely met in practice. For all the tested
conditions (except the spurious case CT “ 0.1, Ti0k “ 0.30), Fig. 3.8 shows that the model
systematically over-estimates the values of the C˚ coefficient in the first portion of the near
wake. Two different explanations can justify this observation.

First, it should be recalled that the modelled values of the C˚ coefficient depend on the qual-
ity of the one-dimensional model for ∆Tik,max (Eq. 2.44). Since Fig. 2.9 showed that ∆Tik,max

tends to slightly over-estimate the values of ∆TiRANS
k,max in the very near wake for CT “ 0.8, it is

by no mean a surprise to observe the same behavior in Fig. 3.8 under CT “ 0.8. Few, if any,
over-estimation of ∆TiRANS

k,max is however visible in the near wake (Fig. 2.9) for values of CT lower
than 0.8. Hence, this suggests that the positive discrepancies observed between the modelled
values of C˚ and the RANS reference CRANS

˚ in the near wake of Fig. 3.8 must have a different
origin than a simple over-estimation of ∆Tik,max with respect to ∆TiRANS

k,max .

Second, observations of the RANS turbulence intensity field in vertical cuts at different
downstream distances showed that the tendency of C˚ to over-estimate CRANS

˚ is related to the
presence of the boundary layer in the RANS simulations. As will be shown in Sec. 3.2.2, this
phenomenon induces a deviation from the axisymmetric flow assumption made to derive the
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two-dimensional added turbulence intensity profile. In particular, higher levels of turbulence
intensities are generated at the top of the rotor, i.e., where the velocity gradients are more pro-
nounced. As the downstream distance increases, the turbulent kinetic energy diffuses towards
the lower part of the rotor and allows to reduce the relative difference between the maximum
added turbulence intensities, respectively obtained over the whole rotor and at hub height. It
can therefore be concluded that, particularly for small downstream distances, the maximum
value of the added turbulence intensity over the whole rotor is larger than the corresponding
maximum value found at hub height. For that reason, the values of ∆TiRANS

k,max (Eq. 1.24), based
on which the new model for ∆Tik,max was calibrated in Sec. 2.4.1, over-estimate by definition
the values of the maximum recovered from the look-up table at hub height. This eventually
results in the positives discrepancies between C˚ and CRANS

˚ noticed in Fig. 3.8 for small down-
stream distances behind the rotor. Note that attempts have been made to re-calibrate all the
parameters, i.e., ψ (Eq. 2.27), λ (Eq. 2.37) and the look-up table for m (Eq. 2.41) of the new
model for the added turbulence intensity based on the maximum value ∆TiRANS

k,max at hub height.
However, while the maximum over the whole rotor evolves progressively with distance, the one
specifically recovered at hub height fluctuates much more. Therefore, no suitable choice of
parameters ψ, λ and m could be made. Still, one should keep in mind that C˚ significantly
over-estimates CRANS

˚ in a small portion of the near wake only, in which it is beyond dispute
that no downstream wind turbine would ever be placed.

Finally, for larger downstream distances, Fig. 2.9 showed that the modelled added turbulence
intensity ∆Tik,max under-predicts ∆TiRANS

k,max , which in turns leads to the slight under-prediction
of CRANS

˚ observed in Fig. 3.8.

Following the analyses of Fig. 3.7 and Fig. 3.8 for the modelling of σ˚ and C˚ respectively,
the two-dimensional added turbulence intensity profiles (Eq. 3.13) can be plotted in Fig. 3.9 for
a variety of flow conditions. In Fig. 3.7 and Fig. 3.8, both σ˚ and C˚ were seen to be marred
by a modelling error of greater or lesser importance depending on the situation. In order to
distinguish the impact on the profile of both modelling errors, a sensitivity study is carried
out in parallel with the profile analysis. From Eq. 3.13, the total error on ∆Tik due to small
discrepancies dC˚ and dσ˚ can be linearized as:

dp∆Tikq »
d∆Tik
dC˚

dC˚

looooomooooon

S1

`
∆Tik
dσ˚

dσ˚

loooomoooon

S2

. (3.20)

In Eq. 3.20, the S1 and S2 terms respectively account for the impact of a modelling error on the
amplitude (Eq. 3.19) and on the standard deviation (Eq. 3.17). It should be emphasized that
both S1 and S2 depend on CT and Ti0k as well as on the downstream and the lateral distances,
x and y. Hence, for the sake of conciseness, the focus is placed on the sensitivity at the lateral
positions y “ ˘yc and y “ 0. The analytical form of S1 can trivially be derived from Eq. 3.13
and be written as:

S1py “ ˘ycq “

ˆ

1 ` exp

ˆ

´2 y2c
σ2

˚

˙˙

dC˚ and S1py “ 0q “ 2 exp

ˆ

´y2c
2σ2

˚

˙

dC˚ (3.21)
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at the lateral positions of interest. Similarly, the analytical development of S2 leads to the
expression

S2 “ C˚

ˆ

exp

ˆ

´
py ´ ycq

2

2σ2
˚

˙

py ´ ycq
2

σ3
˚

` exp

ˆ

´
py ` ycq

2

2σ2
˚

˙

py ` ycq
2

σ3
˚

˙

dσ˚, (3.22)

from which S2py ˘ ycq and S2py “ 0q read:

S2py “ ˘ycq “ C˚ exp

ˆ

´2 y2c
σ2

˚

˙

4 y2c
σ3

˚

dσ˚ and S2py “ 0q “ C˚ exp

ˆ

´y2c
2σ2

˚

˙

2 y2c
σ3

˚

dσ˚. (3.23)

From Tab. 3.2, it was concluded that both the relative error on σ˚ and on C˚ rarely exceed
˘20% under realistic flow conditions. Therefore, the terms S1py “ ˘ycq , S1py “ 0q (Eq. 3.21)
and S2py “ ˘q, S2py “ 0q (Eq. 3.23) are represented in Fig. 3.9 for dC˚ “ ˘0.2 ˆ C˚ and
dσ˚ “ ˘0.2 ˆ σ˚. Several elements in Fig. 3.9 can then be discussed.

First, it appears that the ˘20% sensitivity interval S2 is barely visible at y “ yc “ D{2,
suggesting that an error introduced by the modelling of σ˚ has only little impact on the edge
values of the predicted two-dimensional profile. On the contrary the sensitivity with respect to
σ˚ is much more pronounced at the center of the wake, as illustrated by the larger sensitivity
interval S2 at y “ 0 in Fig. 3.9a. It can however be observed that the center-line value of
the two-dimensional ∆Tik profile becomes less sensitive to σ˚ as the two separate peaks of the
two-term Gaussian function merge. This can clearly be seen in Fig. 3.9b, for which the large
atmospheric turbulence intensity (Ti0k “ 0.30) enhances the wake recovery and therefore leads
to a single peak profile faster downstream. Indeed, if the velocity deficit quickly recovers behind
the rotor, the strong velocity gradients, i.e. the source of turbulent kinetic energy (TKE) in the
wake, are quickly attenuated, reducing the TKE production accordingly. Without a sufficient
source of turbulent energy, the dissipation mechanism rapidly dominates. For that reason, the
amplitude of the added turbulent intensity profile at x̃ “ 10 in Fig. 3.9b appears weaker than
at the same downstream position in Fig. 3.9a, even though higher levels of added turbulence
intensity are initially observed at x̃ “ 1 in Fig. 3.9b.

In addition, the sensitivity with respect to C˚ does not significantly vary with the down-
stream nor the lateral distances. In other words, a modelling error on C˚ tends to introduce
a regular offset between the modelled profile and the two-term fitted Gaussian. An example
of a constant offset along the lateral distance can be observed at x̃ “ 5 in Fig. 3.9a, for which
Tab.3.2b shows that the error on σ˚ (-2%) is negligible compared to that on C˚ (-12%). Com-
paring Fig. 3.9a and Fig. 3.9b, it can be noticed that both S1 and S2 show little variation
when Ti0k increases. By contrast, when smaller values of the thrust coefficient are considered
(Fig. 3.9c), the amplitude of the added turbulence intensity decreases (Eq. 2.37) and both S1

and S2 decline accordingly. As a result of the sensitivity analysis, one can be convinced that
any small modelling error on σ˚ or C˚ is not significantly amplified by Eq. 3.13 and therefore
does not lead to substantially larger error on the two-dimensional added turbulence intensity
profile.
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(a) CT “ 0.8 and Ti0k “ 0.05 [-]

(b) CT “ 0.8 and Ti0k “ 0.30 [-]

(c) CT “ 0.1 and Ti0k “ 0.05 [-]

Figure 3.9: Streamwise evolution of the two-dimensional added turbulence intensity profile at
hub height under different flow conditions. The predictions of the new model are compared
to the two-term Gaussian curve fitted to the RANS data. The two terms S1 ans S2 of the
sensitivity interval (Eq. 3.20) are shown at y “ 0 and y “ D{2. The wake half-widths r˚

1{2 and
pr˚

1{2q
RANS are represented as dashed lines in the figure.
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Lingkan and Buxton [19] experimentally shows that a two-term Gaussian function is ade-
quate to describe the profile of added turbulence intensity in the case CT » 0.72, Ti0k “ 0.04.
An important result of this section is undoubtedly the evidence that the two-term Gaussian
function suggested by Lingkan and Buxton [19] is also sufficiently modular to describe the pro-
file of added turbulence intensity in a wide variety of cases. This observation is particularly
interesting in a context where the current models implemented in PyWake do not allow a faith-
ful representation of the physics behind the added turbulence intensity profile. By contrast, in
Fig. 3.9, it was shown that the two-term fitted Gaussian is suitable to represent the production
of turbulent kinetic energy localized around the wake perimeter. Moreover, the tendency of the
two peaks to become one from a certain downstream distance, due to turbulent energy diffu-
sion, is naturally modelled by a two-term Gaussian function. The dissipation mechanism also
appeared to be well accounted for as evidenced by the decreasing amplitude shown in Fig. 3.9b.
Eventually, Fig. 3.9 visually demonstrated that introducing a modelling of the parameters σ˚

and C˚ still allows to obtain excellent estimations of the profile in all the tested situations.

3.2.2 Validity of the assumption of an axisymmetric added turbulence
intensity field

Similarly to Sec. 3.1.3, in which the assumption of an axisymmetric velocity deficit field has been
discussed, this section aims at assessing the validity of the axisymmetric assumption applied to
the added turbulence intensity profile. The comparison between the added turbulence intensity
field as predicted by the new model and as generated by EllipSys is shown in Fig. 3.10 for flow
conditions CT “ 0.8 and Ti0k “ 0.05. Overall, it appears that the axisymmetric generalization
of the two-dimensional added turbulence intensity profile provides a good estimate of the cor-
responding RANS data. Still, some elements stand out from Fig. 3.10 and are worth discussing.

As mentioned in Sec. 3.2.1 and depicted in Fig. 3.10 for x̃ ě 3, the presence of the boundary
layer leads to higher velocity gradients and therefore to an increased production of turbulent
kinetic energy at the top of the rotor. This turbulence is then diffused towards the lower part of
the rotor, as demonstrated by the displacement of the maximum of added turbulence intensity
towards the rotor center. It is important to specify that, in practice, the homogenization of
the added turbulence intensity levels along the azimuthal direction is enhanced by the non-zero
tangential velocity of the flow. Indeed, the rotating component of the flow adds a tangential
convection mechanism to the diffusion of the turbulent kinetic energy. Comparing Fig. 3.10
to Fig. 3.6, it can be observed that the boundary layer introduces more asymmetry into the
added turbulence intensity field than into the velocity deficit field. Based on the observation of
Fig. 3.10 at x̃ “ 5, one could however argue that the boundary layer simultaneously reduces the
gradients in the lower part of the wake, so that the average turbulent kinetic energy produced
over the rotor is close to the average computed under the axisymmetric assumption.

Moreover, two physical characteristics, omitted by the new model for the added turbu-
lence intensity, can be seen at x̃ “ 1 (Fig. 3.10). First, the blockage effect briefly discussed in
Sec. 3.1.3 appears to reinforce the velocity gradients in the lower part of the wake, consequently
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balancing the effect of the boundary layer. As a result, the production of turbulent kinetic en-
ergy is maximum at the bottom of the rotor over the portion of the near wake subjected to
significant blockage, i.e. for x̃ ă 3. Furthermore, irregularities in the RANS added turbulence
intensity field are visible close to the center of the wake at x̃ “ 1. Worth recalling is that the
analysis of the velocity deficit field carried out in Sec. 3.1.3 showed evidence of undisturbed air
flowing through the central section of the force actuator disk. Therefore, the irregularities in
the added turbulence intensity field observed at x̃ “ 1 originate from the effect of the velocity
gradients between this undisturbed air and the rest of the flow through the rotor. This local
source of turbulent kinetic energy however vanishes as soon as the velocity field becomes ho-
mogeneous around the center, i.e. for x̃ ą 1 as shown in Fig. 3.6.

To sum up, Fig. 3.10 in general shows good agreement between the RANS data and the
modelled added turbulence intensity field. However, it is observed that the atmospheric bound-
ary layer introduces significant asymmetry in the turbulence field. As suggested by the works
of Qian and Ishihara [24] and Tian et al. [25], future improvements to the model could include
a weighting term for the velocity profile as a function of the vertical position.
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0.08

0.1
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Figure 3.10: Added turbulence intensity (∆Tik) field in vertical cuts at increasing downstream
distances for CT “ 0.8 and Ti0k “ 0.05. The predictions of the new model (lower row) are
compared to the RANS data generated by EllipSys (upper row). The perimeter and rotor
center are shown in white in the figures.
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Chapter 4

Performance assessment of the new model
in a multiple-wake configuration

4.1 Overview
In this fourth and final chapter, the performance of the new full wake model, i.e. combining
both the velocity deficit (Sec. 3.1.2) and the added turbulence intensity (Sec. 3.2.1) models, are
assessed and discussed. Although both the velocity deficit and the added turbulence intensity
single-wake models have shown promising results over a wide variety of flow conditions, the
reliability of the new wake model predictions is not yet guaranteed in the case of a full wind
farm. Therefore, the main purpose of this section is to investigate whether the wake model
developed through this work can effectively replace the use of the RANS look-up table in a
multiple-wake situation.

In the scope of this work, the analysis is limited to the academic case of a one-dimensional
array of five wind turbines under realistic flow conditions. First, the main features of the
PyWake software are described in Sec. 4.2 and details are addressed on the implementation of
the new wake model. As will be shown later, PyWake is a very modular tool that allows to
study different combinations of velocity deficit and added turbulence intensity models. Among
all the possibilities offered in this software, two are compared to the new full wake model
developed earlier. In each case, the different superposition methods introduced in Sec. 1.2.2 are
examined and the corresponding performances are discussed. In this analysis, the results of a
RANS simulation performed over the whole column of wind turbines are used as the reference
case against which the models are tested.

4.2 Modelling of a one-dimensional array of wind turbines

4.2.1 Tested configuration

This section aims at summarizing the main characteristics of the tested configuration. First
and foremost, the rotor diameter D and the hub height zH of a 15MW generic wind turbine are
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defined and specified in PyWake. Moreover, realistic values of the wind farm inflow conditions,
i.e., the free stream velocity U8 and the level of atmospheric turbulence intensity Ti0k, are
selected. In order to maximize the impact of the upstream turbines on the local inflow conditions
of the next turbine, the wind direction is chosen perfectly aligned with the column of wind
turbines, i.e. =U8 “ 270˝. Worth mentioning is that the actual inflow velocity field in a
wind farm depends on many factors such as the period of the year, the time of the day and
the orientation. In PyWake, it is possible to account for these dependencies by modelling the
probability density function of the wind speed with a Weibull distribution, the parameters of
which depend on the angular sector of interest. In practice, wind turbines in a wind farm are
generally placed at a distance of three to ten diameters from one another. Hence, a moderate
spacing S “ 5D is retained in this case study. A brief summary of the main characteristics
listed above in given in Tab. 4.1.

Table 4.1: Main characteristics of the tested configuration. NbWT stands for the Number of
Wind Turbines in the columnar layout.

Wind turbine Inflow conditions Site
D [m] zH [m] U8 [m/s] Ti0k [-] =U8 [˝] NbWT S [m]
236 150 10 0.05 270 5 5D

(a) Thrust and power coefficients (b) Power

Figure 4.1: Thrust and power coefficients curves (a) and power curve (b) of the tested turbine.
The operating point is marked by a black dot in the figures.

In general, the evolution of the thrust and power coefficients as a function of wind speed
depends essentially on the design of the blades and the way the turbine is monitored. For
the generic turbine used in this section, the CT and CP curves are shown in Fig. 4.1a and
the corresponding power curve is depicted in Fig. 4.1b. Below the so-called cut-in speed, i.e.
UCI

8 » 4m/s, too little kinetic energy can be harnessed from the wind and the rotation of the
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blades is prevented by hydraulic brakes. For wind speeds larger than UCI
8 , the power coefficient,

and consequently the thrust coefficient, are kept constant by automatically adjusting the pitch
angle or the rotation speed of the blades. The corresponding power thus increases with the
cube of the wind speed in this region, as evidenced by the definition of CP introduced in Sec. 1.1
(Eq. 1.1). Above the rated wind speed (UR

8 » 11m/s), the so-called rated power is reached,
i.e. the maximum power that the generator can handle, and the pitch controller ensures that
this value is not exceeded. In this region, both the thrust and power coefficients decrease as a
result of Eq. 1.1. Note that in practice, a cut-out speed UCO

8 » 22m/s is defined, above which
the blades are feathered for safety reasons. In the configuration of interest, the inflow velocity
U8 “ 10m/s corresponds to a thrust coefficient CT “ 0.8 and a generated power P “ 12MW.
Given that the inflow wind speed is below the rated speed, it can be pointed out from Fig. 4.1a
that all the downstream turbines will also operate at CT “ 0.8 because they always perceive
an incoming velocity slower or equal to U8 “ 10m/s.

4.2.2 PyWake implementation of the new wake model

PyWake [9] is an objected-oriented code implemented in the Python programming language
and designed to offer a powerful tool for wind farm flow modeling and power assessment. The
rapidity and the great versatility of this software are two of its principal assets. The first one
because the vectorized implementation enables to simultaneously consider different wind speeds
and directions, allowing very fast estimations of the annual energy production (AEP) of a whole
wind farm. The second as PyWake offers a multitude of different building blocks that can be
arranged in a large number of combinations. For any of these combinations, it is however crucial
for the user to be aware of the physics represented by the model and the underlying assumptions.

Fig. 4.2 depicts a schematic overview of the main building blocks used in this case study.
Note that in this figure, the elements newly implemented in PyWake in the scope of this work
are marked with an asterisk symbol. In each block, the title corresponds to the name of the
base class implemented in PyWake. The content of the block refers to key elements that are to
be discussed. The objects used to set up the tested configuration are represented in pale green.
The different parameters detailed in Sec. 4.2.1 are given as inputs to these objects. Moreover,
the main blocks involved in the wake superposition process are shown in light blue. Note that in
the SuperpositionModel object, the methods LinearSum, SquaredSum and MaxSum respectively
refer to "Method A", Method B"" and Method "C" introduced in Tab. 1.1a. Similarly for the
AddedTurbSuperpositionModel object, the methods LinearSum, FullSquaredSum and MaxSum
respectively correspond to "Method A", Method "D" and Method "C" shown in Tab. 1.1b. In
addition, the single-wake velocity deficit and added turbulence intensity models are depicted
in grey in Fig. 4.2. This grey rectangle essentially represents the blocks for which each turbine
is considered in a stand-alone configuration. Worth mentioning is that additional options for
single-wake modelling are available in PyWake and could be added to this grey frame. Among
those, the possibility to include the BlockageDeficitModel and DeflectionModel blocks should
be mentioned. While the latter would be of little interest in this case study1, the former is ex-

1There is no misalignment between the direction of the incoming wind and the column of wind turbines.
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Figure 4.2: Summary of the main building blocks implemented in PyWake. New elements
added in the scope of this project are marked with an asterisk symbol.

pected to improve the fidelity of the results and could therefore be investigated in future works.
As can be seen in Fig. 4.2, the core of the simulation is the central EngineeringWindFarmModel
block. In particular, this object features the PropagateDownwind class in which a loop over
the wind turbines indices, denoted by i, is implemented. A very brief insight of the algorithm
used in PyWake is given hereafter.

First, it is important to specify that the variables involved in the flow field computation
are in general four-dimensional vectors. For example, deficit_ijlk and add_turb_ijlk respec-
tively represent the velocity deficit and the added turbulence intensity caused by the ith tur-
bine and computed at each grid point j, for each wind direction l and inflow speed k. At
each iteration i in the loop, deficit_ijlk and add_turb_ijlk are recovered from DeficitModel
and TurbulenceModel. Superpositions methods are then employed in SuperpositionModel and
AddedTurbSuperpositionModel to compute the effective wind speed and the turbulence inten-
sity level at each grid node j in the combined wake of all the upstream turbines. Then, the
RotorAvgModel object identifies the grid points j located right upstream of the pi` 1qth rotor.
The local inflow speed ui`1

0 perceived by this turbine is computed in RotorAvgModel as an
average of the effective velocities found at some of the j points of interest. The local level of
incoming turbulence intensity is recovered similarly. The new inflow conditions being known,
the next iteration begins. Although several rotor averaging methods are available in PyWake,
only the so-called EqGridRotorAvg is considered in this analysis. The rationale behind this
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choice is clarified in Sec. 4.2.3. Eventually, the effective velocity and turbulence intensity in the
combined wakes, respectively denoted Upx, y, zq and Tikpx, y, zq, are obtained at all points of
the three-dimensional domain. In order to facilitate the analysis of the results, an additional
PostProcessing block is implemented. At each downstream position, this block allows to recover
the average over the rotor area of both the velocity field and the turbulence intensity field, i.e.
Uavgpxq and Tik,avgpxq. In addition, the maximum values of U and Tik over the rotor sections
are retrieved and respectively denoted Umaxpxq and Tik,max.

A few additional points can be made with regard to Fig. 4.2. In the DeficitModel block,
the object NiayifarGaussianEff is simply the re-calibrated version of the Niayifar and Porté-
Agel [17] model, following the results of Sec. 3.1.2. In the same block, the LUT_Deficit object
is the RANS look-up table model of the single-wake deficit that is intended to be replaced by
NiayifarGaussianEff. Likewise, LUT_Turb is the RANS look-up table single-wake model of
the added turbulence intensity, of which New model is expected to be an efficient alternative.
Note that in PyWake, New model is referred to as THD2023TurbulenceModel. Attention should
finally be paid to the fact that the PyWake grid differs in general from that used in EllipSys
to generate the look-up table, the two grids being linked by interpolation methods.

4.2.3 Rotor average model

In the previous sections, the error introduced by the single-wake modelling of the velocity deficit
and of the added turbulence intensity has been assessed and discussed. However, superimposing
these single-wake models in PyWake leads to additional sources of error. First of all, it should
be recalled that all the superposition methods are inherently marred by errors as they mainly
rely on mathematical expressions, the physical meaning of which is still disputed. Furthermore,
in PyWake, the inflow speed of a downstream turbine is reduced to a single value, thus erasing
the differences in speed observed at different points on the rotor. The same applies to the
inflow turbulent intensity. As mentioned in section Sec. 4.2.2, this single value is defined as an
average of the speeds (resp. turbulence intensities) calculated at some grid points of interest
encompassed by the downstream rotor. Therefore, it is important to investigate the minimum
number of grid points required to ensure that the inflow conditions of a downstream turbine
are computed in a reliable manner.

Besides, the PostProcessing block shown in Fig. 4.2 also involves the averaging of the quan-
tities Upx, y, zq and Tikpx, y, zq over the rotor area at any downstream position x. In order to
allow a fair comparison between the output values, Uavgpxq and Tik,avgpxq, and the correspond-
ing results of the full RANS simulation of the whole array, the averaging methods used in both
cases should be similar. The velocity and turbulence intensity fields generated by EllipSys are
treated in Matlab and the results of the full RANS simulation are averaged over the sampled
points shown in red in Fig. 4.3a. These results are referred to as the "Reference" quantities
in the rest of this work. The grid used in EllipSys, both to generate the RANS look-up table
and to simulate the whole array, is depicted in dotted lines in Fig. 4.3a. Note that, given the
variable spacing of the grid, a weighted average is used to compute the reference values for
velocity and turbulent intensity.
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(a) EllipSys (b) PyWake

Figure 4.3: Sampled points over the rotor area in EllipSys (a) and in PyWake for EqGridRo-
torAvg(N = 7) (b). For each case, the calculation grid is shown in the figure.

In PyWake, defining a grid identical to the one used by EllipSys is certainly the most nat-
ural way to ensure that the rotor is sampled in the same manner in both approaches. The
large number of sampling points (Fig. 4.3a) however resulted in unmet memory requirements,
causing this option to be discarded. Hence, a coarser mesh is selected in PyWake, together with
an informed choice of averaging method. Among the existing options, the Circular Gauss Inte-
gration [39] method and the Polar Grid method sample the rotor cross-section uniformly and
therefore seem recommendable. In the scope of this project, the cartesian averaging method
EqGridRotorAvg is however preferred to faciliate the implementation of the PostProcessing
block (Fig. 4.2). This approach defines a set of N ˆ N equidistant cartesian points over the
rotor section and discards those outside this area as shown in Fig. 4.3b for EqGridRotorAvg(N
= 7). It is interesting to notice that, in general, these local N ˆ N grid points do not need
to coincide with the points of the three-dimensional domain over which the flow is visualized.
This feature offers the user the possibility to create smooth flow maps over highly refined grids
while maintaining a reasonable number of sampling points over the rotor sections. Still, in
this analysis, given that the LUT_Deficit and LUT_Turb single-wake models can only be
used over a coarse grid to satisfy the memory requirements, the decision was made to use the
same spacing for the NˆN local averaging grid and the three-dimensional grid over the domain.

In light of the previous paragraph, the question as to which value of N must be selected
should be addressed. In order to answer this question, a convergence analysis of the N param-
eter is carried out for a stand-alone wind turbine. First, the weighted averages of ∆UEpS and
∆TiEpS

k are computed over the EllipSys grid (Fig. 4.3a) at x̃ “ 5. The resulting scalar values
are denoted ∆UEpS

avg and TiEpS
k,avg, respectively. Then, the corresponding PyWake quantities, i.e.

using LUT_Deficit and LUT_Turb over the NˆN grid (Fig. 4.3b), are recovered and denoted
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∆UPyW
avg and TiPyW

k,avg. A wide range of values of N is tested and the relative errors ϵ∆U [%] and
ϵ∆Ti [%] are computed in each case:

ϵ∆U “ 100 ˆ
∆UPyW

avg ´ ∆UEpS
avg

∆UEpS
avg

and ϵ∆Ti “ 100 ˆ
∆TiPyW

k,avg ´ ∆TiEpS
k,avg

∆TiEpS
k,avg

. (4.1)

The evolution of the relative errors with N is shown in Fig. 4.4a. Note that only the cases of
interest are studied here, i.e. CT “ 0.8 with Ti0k “ 0.05, Ti0k “ 0.15 and Ti0k “ 0.30. Three
representative values of the inflow turbulence intensity are considered so as to assess the qual-
ity of the rotor averaging method in the event of high turbulence intensity levels caused by
the upstream turbines. Eventually, the discussion is enriched with the analysis of Fig. 4.4b,
showing the evolution of the ratio of the sampled area AS over the actual rotor area AR. In
this figure, the sampled area corresponds to the cartesian area, i.e. the sum of all the square
cells, strictly encompassed by the rotor.

(a) Relative errors (b) Area ratio

Figure 4.4: Convergence analysis in terms of the relative errors ϵ∆U , ϵ∆Ti for three levels of
inflow turbulence intensity (a) and in terms of the area ratio (b).

As could have been expected, both ϵ∆U and ϵ∆Ti drastically decrease as N increases. All
the curves in Fig. 4.4a essentially flatten after N “ 7, with the exception of minor fluctuations.
In the lower figure of Fig. 4.4a, it can be seen that the added turbulence intensity computed
over the N ˆ N PyWake grid overestimates more the value of ∆TiEpS

k,avg at larger Ti0k values.
The exact opposite observation can be made in the upper figure of Fig. 4.4a, for which ∆UPyW

overestimates ∆UEpS more for smaller values of Ti0k. In the same figure, a persistent error
remains, even for finely discretized PyWake grids.
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The explanation behind these observations can be clarified in light of Fig. 4.4b. From this
figure, it appears clear that substantial discrepancies remain between the sampled area and the
actual rotor area, whatever the degree of refinement of the PyWake grid. Logically enough, the
non-sampled portions of the disk are always located close to the rotor edges, especially at the
topmost, bottommost, leftmost and rightmost parts as shown in Fig. 4.3b. It can therefore be
concluded that the EqGridRotorAverage tends to disregard the values of ∆UPyW and ∆TiPyW

k

located in these regions when computing the rotor averages, ∆UPyW
avg and ∆TiPyW

k,avg. As a result
of the Gaussian-like distribution of the velocity deficit over the rotor section, EqGridRotorAv-
erage filters out the regions of low velocity deficits, consequently overestimating the value of the
rotor average, i.e., ϵ∆U ą 0. As shown in Fig. 4.4a, this effect is reduced for partially recovered
velocity deficit profiles, i.e. for large values of Ti0k. The relative error on the deficit however
never reaches zero as the velocity deficit profile retains a Gaussian shape at x̃ “ 5, in all the
tested conditions.

By contrast, the added turbulence intensity profile at x̃ “ 5 resembles a two-term Gaussian
function for low values of Ti0k as shown in Fig. 3.9a. If the average is performed with N “ 1
sampling point under Ti0k “ 0.05, only the central value of the added turbulence intensity profile
is accounted for, thus under-estimating the value of ∆TiEpS

k,avg. For higher values of the inflow
turbulence intensity at x̃ “ 5, Fig. 3.9b indicates that the maximum occurs at the rotor center,
leading to an over-prediction of the average and a positive relative error ϵ∆Ti. Eventually, the
value N “ 7, for which the grid is depicted in Fig. 4.3b, is retained. This choice indeed allows
to limit both relative errors (Eq. 4.1) while maintaining reasonable memory requirements. Even
though the relative error on the deficit is only slightly less than 20%, it should be recalled that
the corresponding relative error on the total velocity field is significantly lower. As a matter
of fact, this value has been estimated to be less than 3% of the wake velocity, confirming the
choice N “ 7.

4.3 Results and discussion
The objective of this last section is twofold. First, it aims at assessing the quality of the
new wake model used as an alternative to the RANS look-up table model in a multiple-
wake situation. To do so, the predictions of the new wake model (NiayifarGaussianEff +
THD2023TurbulenceModel) are compared to that of the RANS look-up table model (LUT_Deficit
+ LUT_Turb) for the test configuration described in Sec. 4.2.1. The second purpose is more
general, and concerns the identification of relevant superposition methods in the case of a
columnar configuration of wind turbines. To this end, the RANS look-up table wake model
is compared to the Reference values obtained with the full RANS simulation of the whole ar-
ray. A summary of the tested combinations of velocity deficit and added turbulence intensity
models in given in Tab. 4.2. In this table, the new wake model and the RANS look-up table
model are respectively referred to as "Model 1" and "Model 3". An additional option, denoted
"Model 2", is also considered and consists in an in-between solution. In this wake model, the
memory intensive RANS look-up table is only used for the velocity deficit, together with the
newly developed added turbulence intensity model.
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Table 4.2: Summary of the tested combinations of single-wake velocity deficit and added tur-
bulence models.

Name Deficit model Added turbulence model

Model 3 LUT_Deficit LUT_Turb

Model 2 LUT_Deficit THD2023TurbulenceModel

Model 1 NiayifarGaussianEff THD2023TurbulenceModel

Reference Full RANS simulation

In the rest of this section, several superposition methods are tested, both for the velocity
deficit and the added turbulence intensity. Among those introduced in Tab. 1.1 (Sec. 1.2.2),
all except "Method E" are discussed. This method is indeed expected to give similar results
to "Method C" and is therefore not studied any further. Tab. 4.3 shows the correspondence
between the methods defined in Tab. 1.1 and the names used in the current section to refer to
them.

Table 4.3: Correspondence between the superposition methods introduced in Tab. 1.1 and their
given names in the current analysis.

(a) Velocity deficit

Method in Tab. 1.1a Name

A LinearSum(U)

B SquaredSum(U)

C MaxSum(U)

(b) Added turbulence intensity

Method in Tab. 1.1b Name

A LinearSum(Ti)

B SquaredSum(Ti)

C MaxSum(Ti)

D FullSquaredSum(Ti)

4.3.1 Superposition methods for added turbulence intensity

In the first part of this case study, the focus is on the analysis of the added turbulence intensity
superposition methods. A key element to bear in mind is that the velocity deficit superposition
methods have an impact on the turbulence intensity field only through varying the thrust
coefficient CT . Given that all the turbines in the array operate in their constant CT region
(Sec. 4.2.1), the selected deficit superposition method has no effect on the turbulence intensity
field, such that the turbulence superposition methods in Tab. 4.3b are all tested in parallel to
the LinearSum(U) method. The corresponding results are shown in Fig. 4.5 for the average and
the maximum turbulence intensity in the combined wake, i.e. Tik,avg and Tik,max respectively.
As mentioned earlier in Sec. 4.2.3, the average of the Reference turbulence intensity is computed
over the EllipSys grid while that of Model 1, Model 2 and Model 3 (Tab. 4.2) are recovered
from the PostProcessing block (Fig. 4.2) with N “ 7.
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(a) LinearSum(Ti) (b) SquaredSum(Ti)

(c) FullSquaredSum(Ti) (d) MaxSum(Ti)

Figure 4.5: Comparison of the four turbulence superposition methods listed in Tab. 4.3b in
terms of the maximum and averaged values of the wake turbulence intensity. LinearSum(U)
is the velocity deficit superposition method used in each case. The position of each of the five
turbines in the array is indicated by a black vertical dotted line.

First and foremost, the excellent agreement observed between Model 2 and Model 3 for all
the superposition methods must be highlighted. This shows evidence that the errors introduced
during the single-wake modelling step do not drastically increase as a result of the superposi-
tion process. Note that in Fig. 4.5, the curves of Model 2 overlap that of Model 1 since the
turbulence field does not depend, in the case studied, on the velocity deficit model employed.
From Fig. 4.5a, it appears clear that using a linear superposition method to compute the tur-
bulence intensity field leads to a considerable overestimation of the Reference values, both
for Tik,avg and Tik,max. This overestimation can be halved by selecting the SquaredSum(Ti)
method, as shown in Fig. 4.5b. Further reduction of the discrepancies between the modelled
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and the Reference values can be obtained with the FullSquaredSum(Ti) (Fig. 4.5c). This is
an important result of this section, as it seems to support the hypothesis that the turbulent
kinetic energies add up in a combined wake (Eq. 1.13). In view of the definition chosen in
Sec. 1.2.2 for the added turbulence intensity (Eq. 1.12), it is also not surprising to observe a
better fit with FullSquaredSum(Ti) than with SquaredSum(Ti). Note that the axes scale is
modified in Fig. 4.5c and Fig. 4.5d for readability. In Fig. 4.5c, Model 2 seems to provide a
slightly better approximation of the Reference curve for Tik,max than for Tik,avg. This may be
due to the fact that the new turbulence model has been precisely calibrated on the basis of
the maximum added turbulence intensity values over the rotor section, as explained in Sec. 3.2.1.

Eventually, Fig. 4.5d shows that the closest match can be achieved for both Tik,avg and
Tik,max using MaxSum(Ti). In the wake of the first upstream wind turbine, MaxSum(Ti) how-
ever reduces to LinearSum(Ti), leading to the significant overestimation observed in Fig. 4.5d
for x̃ ď 5. A path worth exploring would be to enrich the analysis with Method E (Tab. 1.1b),
for which FullSquaredSum(Ti) is recovered below x̃ “ 5. In the scope of this study, it is dis-
putable as to which of the FullSquaredSum(Ti) method or the MaxSum(Ti) method should be
retained. As introduced in Sec. 1.2.3, it is shown in Lingkan and Buxton [19] that the most
upstream turbine seems to have dominant effects for spacings as large as x̃ “ 5. The same
study however demonstrates that FullSquaredSum(Ti) leads to fewer discrepancies if the spac-
ing is reduced to x̃ “ 3. In light of these results, future works could tackle the investigation of
the minimum spacing below which the effect of all the upstream turbines must be accounted
for. This study could then be used to determine a hybrid superposition method, consisting of
FullSquaredSum(Ti) below the critical distance and MaxSum(Ti) above it.

4.3.2 Superposition methods for velocity deficit

Contrary to Sec. 4.3.1, in which the velocity field had no influence of the turbulence intensity
field, the analysis of the velocity deficit superposition methods also depends on the turbulence
superposition method used. Indeed, Tik affects the wake expansion coefficient k (Eq. 3.2) and
therefore impacts the recovery of the velocity deficit in the wake. For that reason, the velocity
deficit superposition methods listed in Tab. 4.3a are tested together with FullSquaredSum(Ti)
and MaxSum(Ti). The resulting values of Uavg are depicted in Fig. 4.6 for each single-wake
models summarized in Tab. 4.2.

Fig. 4.6 clearly shows that, although minor differences can be noticed between the ve-
locity fields computed with different turbulence superposition methods, the choice of the
velocity deficit superposition method is much more decisive. Similarly, the choice of the
single-wake velocity deficit model (either NiayifarGaussianEff or LUT_Deficit) has more im-
pact on the total velocity field than the choice of the single-wake added turbulence model
(THD2023TurbulenceModel or LUT_Turb). For that reason, Model 2 and Model 3 are barely
distinguishable from one another. In Fig. 4.6, the LinearSum(U) method clearly stands out
(Fig. 4.6a and Fig. 4.6b). Combined with either FullSquaredSum(Ti) or MaxSum(Ti), the
LinearSum(U) method indeed allows to recover excellent estimations of the Reference veloc-
ity field. The corresponding discrepancies are observed to be significantly smaller than for
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Fig. 4.6c, Fig. 4.6d, Fig. 4.6e and Fig. 4.6f. As mentioned in Sec. 1.2.3, Lissaman [31] suggests
that LinearSum(U) can be seen as a first order approximation of the conservation of momen-
tum. Additionally, the accurate modelling of the turbulence intensity field allows to reliably
account for the recovery of the velocity deficit. Therefore, no negative flow velocities occur,
contrary to what could have been anticipated from Crespo et al. [32].

It is interesting to note that, while MaxSum(Ti) gives good estimates of the turbulence
intensity field, the same conclusion cannot be drawn with MaxSum(U), as demonstrated by
Fig. 4.6e and Fig. 4.6f. Moreover the induction zone, i.e. the region upstream of a turbine sub-
ject to blockage effects, is visible for the Reference curve in all the sub-figures of Fig. 4.6. This
slight velocity decrease, particularly observable upstream of the first turbine, is symptomatic
of the blockage effect. As this effect is not taken into account by any of the models studied
here, the velocity field predicted by Model 1, Model 2 and Model 3 falls sharply after each new
downstream turbine.

In Fig. 4.6a and Fig. 4.6b, Model 1 can be seen to repeatedly under- and over-estimate Model
3 and the Reference curve. Therefore, the decision whether or not to replace LUT_Deficit with
NiayifarGaussianEff depends on the margin of error allowed in the given situation. Since the
predicted power evolves as the cube of the wind speed (Eq. 1.1), it seems reasonable to retain
the LUT_Deficit single-wake model over NiayifarGaussianEff in the scope of this work.

To conclude, the analysis carried out in Sec. 4.3.1 and continued in this section has shown
that the turbulence superposition methods FullSquaredSum(Ti) and MaxSum(Ti) led to little
errors with respect to the Reference values. Moreover, the possibility to use the new added
turbulence intensity model, THD2023TurbulenceModel, as a reliable alternative to LUT_Turb
has been demonstrated. In this section, the LinearSum(U) velocity deficit superposition method
was found to outperform the two other tested methods. Eventually, emphasis was placed on
the substantial error introduced by the NiayifarGaussianEff single-wake deficit model. Hence,
it can be concluded that Model 2, although not as memory-efficient as Model 1, appears to
be a promising way of reducing by half the memory requirements of the initial RANS look-up
table model, without affecting the quality of the predicted Tik and U values.
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(a) LinearSum(U) & FullSquaredSum(Ti) (b) LinearSum(U) & MaxSum(Ti)

(c) SquaredSum(U) & FullSquaredSum(Ti) (d) SquaredSum(U) & MaxSum(Ti)

(e) MaxSum(U) & FullSquaredSum(Ti) (f) MaxSum(U) & MaxSum(Ti)

Figure 4.6: Comparison of the three velocity deficit superposition methods listed in Tab. 4.3a
in terms of the averaged velocity. FullSquaredSum(Ti) is used in (a), (c) and (e). MaxSum(Ti)
is used in (b), (d) and (f). The position of each of the five turbines in the array is indicated by
a black vertical dotted line.
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Chapter 5

Conclusion

5.1 Summary
This final section provides a brief summary of the issues addressed in this work and the main
results obtained in each part. Primarily, the first chapter outlines the main objectives of this
work and examines the physics of the flow in a wind farm. The notions of velocity deficit
∆U , added turbulence intensity ∆Tik as well as the concepts of wake recovery and blockage
effects are introduced. This is followed by a in-depth review of the current velocity deficit and
added turbulence intensity models. The superposition methods currently used to model wind
farm flows are discussed, along with their physical interpretations. The differences between the
existing definitions of the added turbulence intensity are highlighted and clarified.

In the second chapter of this work, the decomposition of the Reynolds stress lead to the
theoretical determination of two suitable scalings of the added turbulence intensity. Subse-
quently, a comparison between the RANS data generated by EllipSys and the existing models
enables to identify which of these models offer the most accurate representation of the RANS
database. Each of the two theoretical scalings is then used to define a corresponding new added
turbulence intensity model. In both cases, a product of three functions is employed to model
the evolution of ∆Tik with thrust coefficient CT , downstream distance x and inflow turbulence
Ti0k. However, by comparison with the RANS database, no clear trend stands out for the de-
pendence on Ti0k, which therefore remains undetermined. This leads to the development of a
hybrid model based on the two scalings, designed to more reliably represent the evolution of
∆Ti with x. Despite a local improvement around x “ 1D, this method appears still insufficient
to fully establish a new added turbulence model. Nevertheless, an important result obtained in
this section is the analytical expression for the position x̃max of the added turbulence intensity
peak ∆Tik,absmax. In light of this last result, a new ∆Tik model is written using a self-similar
function fN . A relation is proposed for ∆Tik,absmax, the modelling complexity of which is de-
duced to be strongly related to the definition used for ∆Tik. In addition, the Rayleigh function
suggested by Scott et al. [35] is replaced by a modified Weibull law for fN , thus introducing an
additional parameter and greater flexibility into the model. Overall, the resulting ∆Tik model
shows good agreement with the RANS database and, in general, leads to lower error than the
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traditional models. Eventually, an analytical sensitivity study provides a more in-depth view
of the model.

The third chapter tackles the determination of a two-dimensional single-wake model for
both the turbulence and the velocity field. To do so, a re-calibration of the velocity deficit
model proposed by Niayifar and Porté-Agel [17] is performed and enriched with a sensitivity
analysis. Overall, the re-calibrated model for the deficit shows encouraging results and is gener-
alized in three-dimension under the axisymmetric wake assumption. Similarly, an axisymmetric
profile of added turbulence is studied and represented by a Gaussian two-term, the amplitude
of which is determined by ∆Tik. The sensitivity to amplitude and wake width modeling errors
is discussed in parallel. Although excellent results are obtained for the two-dimensional added
turbulence intensity model, the extrapolation of this profile to a three-dimensional axisymmet-
ric model is seen to be more disputable than for the deficit.

In the fourth chapter, the focus is placed on the testing of the new model in a multiple-wake
situation. In particular, the configuration consists in a row of five wind turbines operating in
common flow conditions. The PyWake software is introduced, together with the key elements
related to the implementation of the new wake model. Particular attention is paid to the de-
velopment of a reliable averaging method of the flow quantities. In this section, the results of
a RANS simulation of the whole array are used as a reference, against which the superposition
of different combinations of ∆U and Tik models are tested. This allows to investigate both the
superposition methods themselves and the degree to which the new wake model can effectively
replace the RANS look-up table model. For ∆Tik, the study reveals a close correspondence
between the new model and the initial RANS look-up table model, whatever the superposi-
tion method used. Moreover, two superposition methods lead to substantial reductions of the
discrepancies with respect to the RANS simulation of the whole array. The former is con-
sistent with the assumption of the additive nature of the turbulent kinetic energy, while the
latter assumes that only the wake of the most upstream turbine should be considered. This
analysis therefore reveals a close link between the definition chosen for ∆Tik and the suitable
superposition method. The study of the velocity deficit in the merged wake clearly indicates
that the linear approach is the most appropriate. Eventually, the large discrepancies obtained
with the new wake velocity deficit model suggest the use of an hybrid model. This in-between
solution, relying on the new added turbulence intensity model in parallel to the RANS look-up
table modelling of the velocity deficit, is a promising first step towards a more efficient RANS
modelling of the wake.

5.2 Future perspectives
Throughout this work, several avenues for improvements have been suggested. To conclude, a
few points that could be the topic of future projects are addressed. Subject to certain assump-
tions, a theoretical analysis has allowed to obtain a rough idea of the evolution of turbulence
in the wake. In order to overcome the empiricism of the models developed in this project, the
theoretical analysis could be pursued further to build more physically-based models. It has also
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been explicitly shown that the data in the RANS look-up table are intrinsically flawed. There-
fore, the methodology followed in this work could be applied to a higher fidelity database, for
example resulting from LES simulations. In addition, some improvements to the method itself
can be pointed out. A better representation of the turbulent wake growth could be studied
by combining the new model with the wake expansion equation recommended by Nygaard [10]
(Sec. 3.2.1). In addition, a correction term could be applied to the two-dimensional profile to
reduce the large deviations arising from the axisymmetric wake assumption (Sec. 3.2.2). The
study of the merged wake considered in Chapter 4 is limited to a single row of wind turbines
and could therefore be pursued in a more complex configuration. In addition, as suggested in
Sec. 4.3.1, the impact of the rotor spacing on the suitable superposition methods could be anal-
ysed in a specific study. Finally, the PyWake software could be further exploited to study the
performances of the new added turbulence intensity model in the case of significant blockage
effects.
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Appendix 1

Figure 5.1: Comparison of ∆Tk,maxpx{Dq as computed by the RANS simulations and as pre-
dicted by the existing models for Tik0 “ 0.15 and different values of CT . Data are normalized by
the maximal value of the RANS added turbulence intensity over the 3D domain (∆TiRANS

k,absmax).

Figure 5.2: Comparison of the relative cumulative error ε (Eq. 2.14) for each existing model
under Tik0 “ 0.15 and different CT conditions.
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Figure 5.3: Comparison of ∆Tk,maxpx{Dq as computed by the RANS simulations and as pre-
dicted by the existing models for Tik0 “ 0.30 and different values of CT . Data are normalized by
the maximal value of the RANS added turbulence intensity over the 3D domain (∆TiRANS

k,absmax).

Figure 5.4: Comparison of the relative cumulative error ε (Eq. 2.14) for each existing model
under Tik0 “ 0.30 and different CT conditions.
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Appendix 2

Ti0k 0.04 0.047 0.05 0.1 0.15 0.2 0.30 0.4
CT “ 0.1 0.296 0.2765 0.2695 0.0820 0.0450 0.0485 0.0505 0.0460
CT “ 0.2 0.3515 0.3130 0.3015 0.1080 0.0595 0.0550 0.0485 0.0405
CT “ 0.3 0.3960 0.3530 0.3350 0.1295 0.0750 0.0650 0.0530 0.0435
CT “ 0.4 0.4225 0.3775 0.3595 0.1450 0.0900 0.0740 0.0580 0.0460
CT “ 0.5 0.4240 0.3920 0.3785 0.1720 0.1055 0.0835 0.0625 0.0485
CT “ 0.6 0.3975 0.3495 0.2800 0.1805 0.1130 0.0845 0.0670 0.0510
CT “ 0.7 0.3650 0.3275 0.3170 0.1895 0.1290 0.0935 0.0715 0.0535
CT “ 0.8 0.3300 0.3055 0.2930 0.1505 0.1350 0.1030 0.0760 0.0560

Table 5.1: Look-up table for the values of the m parameter
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