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Abstract

This thesis investigates the development and breakdown of a transcritical boundary layer over a zero-
pressure-gradient flat-plate with a heated isothermal wall by solving the full compressible Navier-Stokes
equations using direct numerical simulations. The wall temperature is adjusted to ensure that the
temperature profile varies through the pseudo-critical temperature within the boundary layer to form
a transcritical boundary layer. The discovery of an additional unstable mode in this configuration,
referred to as Mode II, exhibiting a wider and stronger unstable range in comparison to Mode I, has
led to significant interest in comprehending the resulting transitions. The pronounced non-ideality of a
supercritical fluid requires the use of the Van der Waals equation of state. The results of this analysis
reveal that the strong gradient of properties at the Widom line becomes more pronounced as the free-
stream pressure approaches the critical point, thereby complicating the grid analysis. An increase in the
free-stream pressure or a reduction in the Mach number elicits a wider and lower peak within the density
fluctuation profiles, thereby alleviating the restrictions on mesh quality. This study highlights the
pronounced non-ideal behaviour of fluids in the transcritical regime, leading to the generation of higher
harmonics with significant amplitudes and the occurrence of spurious pressure field oscillations. To
mitigate these issues, a new method that uses the shape function derived from the linear stability theory
as the imposed disturbances was implemented but proved unsuccessful in reducing the amplitude of
these additional frequency components. To address the problem of spurious oscillations, modifications
were made to the kinetic-energy and entropy preserving scheme. These modifications ensured discrete
verification of pressure equilibrium for an ideal-gas, leading to a reduction in undesirable oscillations in
the present supercritical fluid. The skin-friction coefficient, which serves as an indicator of transition,
undergoes significant modifications within a transcritical boundary layer. This includes lower values in
both the laminar and turbulent regimes, as well as significantly reduced growth rates and amplitudes
of the overshoot, in comparison to subcritical conditions. This modification has been attributed to
the different breakdown of the coherent structures, such as the Λ−vortices, that are significantly
altered by the variations in quantities such as density, internal energy, and temperature, resulting
in an accelerated interaction along the span. The investigation into various physical parameters has
unveiled a delayed transition phenomenon when the free-stream pressure is increased. This delay is
attributed to the delayed primary and secondary instability, resulting in a slowed growth of distinct
oblique modes and consequently the friction coefficient. The analysis of mean turbulent statistics
highlights a decrease in the amplitude of fluctuations in density, viscosity, and specific heat as the
pressure increases. Consequently, there is a reduction in the deviation of the mean velocity profiles
in the log-law region, in comparison to an ideal-gas scenario, as the pressure is raised. Furthermore,
the decrease in the Eckert number to eliminate compressibility effects leads to a slight delay in the
transition, accompanied by lower amplitude Λ−vortices. However, this decrease does not produce
significant modifications in the turbulent statistics of fully turbulent flows, but it reduces the peak
in the density fluctuation profiles, thereby facilitating its numerical capture. Finally, it has been
demonstrated that increasing the wall temperature in a transcritical boundary layer expands both the
range and strength of the unstable Mode II, resulting in an earlier transition, which contrast to the
observations in a subcritical simulation. Overall, this study provides insights into the breakdown of
supercritical boundary layers and on the influence of thermodynamic variations on flow characteristics
and turbulence statistics.
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Chapter 1

Introduction

The increasing demand for energy, coupled with major events such as the 500% increase in CO2 emission
quotas between 2018 and 2021 [1], as well as the war in Ukraine, has led to a surge in energy prices.
Consequently, there is a constant need for research focused on enhancing the efficiency of existing
energy production systems. In many industrial energy production, fluids are subjected to high Reynolds
numbers such that the flow transition from a laminar to a turbulent state. This transition is attributed
to the amplification of small disturbances within the flow. As the Reynolds number increases, the
inertial forces become more dominant, rendering the flow more susceptible to transition [2]. Predicting
the onset of turbulence is crucial in practical applications because the transition results in a significant
increase in the friction coefficient and heat transfer. Depending on the specific application, it may
be advantageous to either delay or intentionally trigger this transition [3]. Therefore, hydrodynamic
stability is used to identify the conditions that promote the amplification of disturbances, leading
to transition. The types of transition are determined by the specific flow characteristics and the
nature of perturbation [4]. The experiments of Klebanoff et al. [5] and Kovasznay et al. [6] on forced
transition in incompressible flow over a flat-plate attempts to describe theoretically the transition
phenomena. Perturbations were introduced within the boundary layer to artificially induce finite-
amplitude Tollmien-Schlichting waves using the vibrating ribbon technique. The introduction of small
perturbations initiates the interaction of various instability modes, leading to the breakdown of the
laminar flow and resulting in enhanced mixing and increased turbulence intensity. Different works have
been conducted on the transition to turbulence induced by naturally occurring disturbances [7] and [8]).
However, the precise mechanisms underlying the introduction of these disturbances are unknown.
The groundbreaking discovery of the critical point of a substance by Baron Charles Cagniard de la
Tour during his cannon barrel experiments [9] revolutionised the understanding of fluid behaviour. This
discovery introduced the concept of a single supercritical fluid phase, which combines the advantageous
properties of both gases and liquids. The unique combination of gas-like viscosity and diffusivity,
along with liquid-like density, makes supercritical fluids an optimal choice for various applications,
as demonstrated by Brunner [10]. One of the notable advantages is the ability to finely tune the
thermophysical properties of supercritical fluids by adjusting the operating pressure and temperature.
Among the commonly used fluids, carbon dioxide (CO2) stands out due to its relatively low critical
pressure of 7.4 MPa and critical temperature of 31 degrees Celsius, making it a cost-effective option
for achieving the supercritical state as discussed by Haas [11]. Moreover, it is important to emphasise
the low compression ratio of supercritical CO2, which contributes to higher compressor efficiency and
a larger volumetric refrigeration capacity [12]. These characteristics enable the reduction in system
size of a compressor system and the associated costs. The unique heat transfer and refrigeration
properties also make it suitable for various applications, including conductor cooling for achieving
superconductivity effects, cooling of rockets and military aircraft, and cooling of turbine blades.
These industrial applications have led to extensive research to better understand the behaviour and
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CHAPTER 1. INTRODUCTION

the characteristics of a supercritical fluid in laminar and turbulent flows separately. For example,
Sengupta et al. [13] analysed the behaviour of supercritical turbulent flow over a flat-plate, at low
Mach number close to its vapour-liquid critical point, from which they showed that the mean turbulent
statistics are dependent on the location of the transcritical temperature. Later, Kawai [14] studied
the behaviour of a heated transcritical boundary layer at supercritical pressure for parahydrogen. He
showed the abrupt variations of thermodynamic properties through the pseudo-critical temperature.
More specifically, he noticed that the large density fluctuations

√
ρ′ρ′/ρ̄ ≈ 0.4 − 1.0 induced within

the transcritical turbulent boundary layer significantly alter the near-wall turbulence and the resultant
turbulent statistics. These observations challenge Morkovin’s hypothesis [15], which assumes that at
moderate Mach numbers, "the essential dynamics of these shear flows will follow the incompressible
pattern." According to Morkovin’s hypothesis, the impact of density fluctuations on turbulence can be
disregarded if the root mean squared density fluctuations are relatively small compared to the absolute
density i.e.

√
ρ′ρ′/ρ̄ << 1. However, the observations made by Kawai [14] reveal the significant

presence of density fluctuations in a transcritical boundary layer. These findings invalidate Morkovin’s
hypothesis and highlight the importance of considering density fluctuations in such flows.
These direct numerical simulations also reveal some numerical issues associated with the use of a
supercritical fluid. These include the amplification of aliasing errors through nonlinear interactions, as
observed by Coppola [16]. Additionally, other studies by Abgrall [17] and, recently, Shima et al. [18]
have demonstrated that the pressure equilibrium at the interface between gas-like and liquid-like phases
is not maintained when using a classic kinetic-energy entropy preservation scheme, which is employed in
this study. This lack of pressure equilibrium leads to the generation of spurious pressure oscillations,
which affect the flow physics. Furthermore, Schmitt [19] demonstrated in his study of transcritical
fluids that pressure oscillations can result in solution divergence.

1.1 Theoretical review

Hydrodynamic stability is used to gain a better insight into the pathway connecting a purely laminar
flow to a fully turbulent flow. This field of research aims to investigate how a flow responds when
subjected to disturbances of a certain magnitude, which trigger instabilities in the flow field. There
are two possible outcomes: firstly, the instabilities may decay, leading the flow to return to its original
laminar state; secondly, the instabilities may be amplified by the flow, causing a radical change in fluid
movement and leading to a chaotic state known as turbulence. In this study, the focus is directed
towards understanding this second scenario, where the flow undergoes a transition to turbulence. In
Fig 1.1, Morkovin’s research highlighted the various pathways existing for transitioning from laminar
to turbulent flow. Each path represents a distinct route which depends on the initial disturbance
level present in the flow. The first crucial step in all paths involves the generation and receptivity of
perturbations within the boundary layer, which serves as a common basis for all transition routes.

1.1.1 Transition to a turbulent flow

A significant amount of research has been conducted to comprehend the physical mechanisms involved
in transition from a laminar to a turbulent boundary layer. The pioneering work of Morkovin [15] has
provided valuable insights into the different potential mechanisms that contribute to the breakdown
of laminar flow. These different routes are presented in Fig 1.1.

Morkovin’s work emphasises that the specific route to turbulence is influenced by the nature and
characteristics of the initially introduced perturbations in the flow. These disturbances can be trig-
gered by various mechanisms, including external factors such as free-stream turbulence or surface
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Figure 1.1: The various potential pathways from a laminar boundary layer to a turbulent boundary
layer. Inspired from Morkovin [15].

imperfections, as well as internal factors inherent to the flow. The receptivity mechanisms act as the
gateway for these perturbations to enter the laminar flow and initiate the transition process. In this
study, a particular pathway, denoted as A in Fig 1.1, is investigated. This path is associated with a
natural transition process that occurs when the initial disturbance level in the flow is relatively small.
Disturbances in the flow are characterised by different spatial and temporal patterns, which are rep-
resented by various eigenmodes. Each eigenmode corresponds to a specific frequency and wavelength.
For path A, the primary instability occurs first, where 2D modes exhibit an exponential growth in
amplitude over time. Once the amplitude of these disturbances reaches a certain threshold, nonlinear
effects become significant. Specifically, the base flow and the primary instability combine to form a
new periodic stable flow, which can then undergo a second instability, hence its name. The secondary
instability is characterised by a higher growth rate in the amplitude of different oblique modes. The
growth of these modes introduces additional nonlinear effects arising from the interaction between the
fundamental and oblique modes. These nonlinear interactions give rise to the formation of coherent
structures and turbulent spots, as observed by Jimenez and Javier [20].
Conversely, transient growth, which refers to a temporary amplification of perturbation magnitude
within a flow that is linearly stable [21], will not be studied. The bypass transition, labelled as path
E can occur when moderate or high levels of disturbances induce the flow to directly transition to
turbulence, bypassing the growth and interactions of the eigenmodes. This transition pathway does
not rely on the modest growth and interaction of eigenmodes but instead involves a more direct route
to turbulence.

1.1.2 Linear Stability Theory

The Linear Stability Theory (LST), proposed by Rayleigh [22], provides an efficient and cost-effective
approach to accurately predict the linear behaviour of a flow. This tool makes it possible to gain
valuable insights into the growth of modal perturbations during the linear regime, eliminating the

3



CHAPTER 1. INTRODUCTION

need to solve the full compressible Navier-Stokes Equations. Its application to compressible flows over
a flat-plate has been investigated several times and has demonstrated good accuracy when compared
with higher-fidelity or empirical results, as reported by Ozgen [23], Lees [24], and Malik [25]. Different
authors: Gaster [26] and Smith [27], and the present study, have considered a parallel base flow in
their investigations, which neglects the wall-normal velocity and the growth of the boundary layer.
This approximation proves to be valid various practical scenarios where the flow can be approximated
as nearly parallel. All studies agree that the parallel-flow approximation remains accurate when the
excitation frequencies are sufficiently low. On top of that, Fani et al. [28] explained that the LST
neglects higher harmonics as their amplitude are lower than that of the fundamental mode and do not
significantly contribute to the initial growth of disturbances. This basic theory relies on linearising the
NSE by decomposing the flow into small disturbances superimposed on a mean flow. The LST assumes
that the eigenfunction of the perturbations exhibits variation only along the wall-normal direction,
while their amplitude depends on the streamwise and spanwise positions, the spanwise wavenumber,
the angular frequency, and time. The linearised stability equations are obtained by neglecting the
higher-order perturbations, through the small amplitude assumption. The detailed expressions are
found in Ren et al.’s [29].

1.1.3 Secondary instability over a flat-plate

In this study, the amplification of small initial disturbances along a flat-plate, will be analysed, follow-
ing path A depicted in Fig 1.1. The dominant two-dimensional instabilities observed on this geometry
are the Tollmien–Schlichting (TS) waves, which were discovered by Tollmien and Schlichting [30] [31]
and results from the unstable Mode I. If a detached boundary layer is present (although not in the
scope of this study), the instabilities associated with it are commonly referred to as Kelvin-Helmholtz
instabilities. Although the TS waves indicate the first instability in the flow, the breakdown to tur-
bulence is caused by a second instability that, unlike the primary instability, does not saturate in
amplitude. As the amplitude of the second instability grows and approaches the amplitude of the
TS wave, an interaction occurs between them, giving rise to three-dimensional structures known as
coherent structures [32]. In the flat-plate boundary layer case, the early coherent structures are the
Λ-shaped vortices that have been numerically investigated by Rist & Fasel [33]. These vortices evolve
through the boundary layer and eventually form the hairpin-shaped loops, which precede the onset of
turbulence. Extensive studies have been conducted on these vortices to investigate their characteristics
and the formation mechanisms attributed to shear instability (Monkewitz & Chomaz [34], Christensen
& Adrian [35]).
Herbert classifies the second instabilities of the TS wave into three types: fundamental modes, sub-
harmonic modes, and detuned mode. The fundamental mode refers to the interaction of oblique waves
and the fundamental TS wave with the same frequency. This scenario generates successive Λ vortices
that are aligned, as shown in Fig 1.2, it refers to the K-type transition, which has been studied by Saric
& Thomas [36] and observed by Meyer & Rist [33]. The second type occurs when the subharmonic
fluctuation is excited with the frequency of the fundamental TS wave. Those interactions delayed
the transition compared to the fundamental mode, and instead of an aligned pattern of Λ vortices.
Flow visualisation reveals a staggered pattern of Λ vortices as shown Fig 1.2. This second scenario
corresponds to the H-type transition, described by Herbert. This is confirmed by Sayadi [37] which
demonstrated that, under similar disturbance amplitudes, the K-type transition has an earlier onset
compared to the H-type transition. This difference can be attributed to the more rapid formation
of key vortical structures, such as Λ, hairpins, and Ω vortices, resulting from the excitation of both
fundamental and subharmonic frequencies. Bake et al. [38] reveals that each Λ-vortex found in the
staggered pattern during an H-type transition is developed by the same nonlinear mechanisms as the
aligned Λ pattern in the K-type transition. Those two scenarios have been observed experimentally by
Kachanov et al. [39] and numerically by Fasel, Rist & Konzelmann [40]. The last scenario, known as
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the oblique transition was introduced by Schmid & Henningson [41]. It involves a different mechanism
compared to the standard TS-wave scenario. It requires the introduction of two oblique waves with
small amplitudes. Although these oblique waves have small amplitudes, as they propagate, interact,
and amplify, they trigger a transition process similar to bypass transition described in the work by
Elofsson [42].

Figure 1.2: Representation of the arrangement Λ-vortices caused by a fundamental mode (left) and a
subharmonics mode (right). The flow goes from left to right. Figure from Saric & Thomas [43].

The transition from laminar to turbulent flow can be characterised using different indicators, includ-
ing the skin-friction coefficient and the boundary layer thickness, as discussed by Vinuesa et al. [44]. In
this study, the skin-friction coefficient is employed as an indicator. The behaviour of the skin-friction
coefficient in zero-pressure gradient flows over a flat-plate has been extensively investigated in both
numerical and experimental studies ([45],[46],[47],[37] and [48]). This parameter serves as a reliable
indicator of the transition process, making it a subject of significant interest. All of the aforementioned
studies consistently demonstrate a similar behaviour in the skin-friction coefficient for subcritical fluid
flows, such as those of ideal gases. This coefficient decreases in the laminar regime following a reciprocal
square root relationship with the Reynolds number until the onset of transition, which is relatively easy
to detect as it is marked by a sudden increase. However, predicting the location is a more challenging
task as it is dependent on the type of transition and the amplitude of disturbances. Throughout the
transition phase, the skin-friction coefficient continues to rise, reaching a second maximum known as
the overshoot skin-friction, before subsequently decreasing again within the fully turbulent region. The
second indicator, the boundary-layer thickness exhibits a significant change when the flow undergoes
transition, as depicted in Fig 1.1.

1.1.4 Unstable Mode II

The investigation into the influence of non-ideal gas effects in the transition process by Ren et al. [49]
demonstrates the existence of a new unstable mode, referred to as Mode II, within a transcritical
boundary layer. Specifically, their study focused on analysing the stability of the boundary layer in
the proximity of the Widom line for supercritical fluids. The Widom line is a thermodynamic concept
that enables to distinguish the different regions within the supercritical fluid, introduced by Fisher &
Widom [50]. The initial findings of their studies reveal the stabilisation of subcritical or supercritical
flows as a result of the growing influence of non-ideal gas effects close to the pseudo-critical temperature.
Subcritical (resp. supercritical) flow refers to a flow where the temperature profile remains below
(resp. above) the pseudo-critical temperature. Moreover, within the transcritical regime, where the
temperature profile intersects the pseudo-critical line, they identified the presence of an additional
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mode, denoted as Mode II, in addition to Mode I. Note that Mode I corresponds to the primary
instability generating the TS waves in the flat-plate configuration. This additional unstable mode,
solely present within a transcritical boundary layer, is depicted on the stability diagram in Fig 1.3.
The coexistence of these two unstable modes highly destabilised the flow through the combined effects
of both modes. In such a special case, the growth rate of Mode II can become one order of magnitude
larger than that of the usual Mode I. This new unstable mode has been further analysed in the limit
of zero Eckert number by Bugeat et al. [51] to rule out any possible acoustic origin. From an inviscid
analysis, the existence of the Mode II resulting from a large gradient of dynamic viscosity coupled with
a minimum of kinematic viscosity at the Widom line has been confirmed.
Wang [52] studied the possible secondary instabilities related to the new Mode II. This study revealed
the existence of a possible H−type secondary instability, resulting from Mode II, in a transcritical
flat-plate boundary layer. However, significant differences were observed in the amplitudes of higher
harmonics due to nonlinear effects. These effects were negligible in a subcritical boundary layer but
became significant in a transcritical boundary layer.

Figure 1.3: Growth rates of perturbations in the F −Reδ stability diagram with subcritical
free-stream temperatures: T ∗

∞ = 280K for various Eckert numbers. Fig from Ren et al. [49].

1.1.5 Turbulent flow

The appearance of Λ-vortices indicates an increase in turbulence levels within the flow. These coherent
structures exhibit a positive wall-normal velocity at the inlet of their legs and a negative velocity at
the outlet, leading in the formation of a pair of streamwise vortices [53]. Consequently, these vortices
generate regions characterised by high streamwise vorticity. Flow instability and the shear stress
within the boundary layer cause the vortices to stretch and elongate, resulting in the formation of
connections in the spanwise direction between the vortices. Eventually, these connections transform
the Λ−vortices into Ω-shaped structures, as observed by Schmid & Henningson [54]. As the omega
vortices become more prominent and flow instability intensifies, the vortices undergo a transition from
organised to highly irregular and chaotic structures. This transformation leads to the breakdown of
the organised vortical pattern, as discussed by Nishioka et al. [55], which results in the emergence of
smaller-scale vortices and the onset of turbulent flow, characterised by rapid fluctuations and mixing.
As the flow reaches a turbulent state, phenomena begin to occur at smaller length scales, referred as
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the Kolmogorov’s scales. As the Reynolds number increases, turbulence levels intensify, leading to
smaller Kolmogorov length scales, observed by Kolmogorov [56].

1.2 Supercritical fluid

Every substance on Earth can be found in three different states: solid, liquid and gas. A phase
transition, which leads to a change of state, occurs under specific temperature and pressure conditions.
This transition is driven by the phase equilibrium, where the free energies of the phases are equal [57].
In Fig 1.4, the equilibrium between the solid and gaseous phases is represented by a red line. The green
line indicates the separation between the liquid and solid phases, while the blue line represents the
boundary between the liquid and gas phases. The temperature and pressure at the triple point, denoted
by the subscript (·)tp, signify the conditions at which all the three phases coexist in a thermodynamic
equilibrium [58]. This triple point is depicted as a red dot. The critical pressure and temperature,
denoted by the subscript (·)cr, marks the boundary of this equilibrium region at the critical point,
shown as a red light dot. Below this point, different phases can coexist,with distinct boundaries
separating them. However, above the critical point, these phase boundaries disappear, resulting in a
state of matter where there is no clear distinction between the liquid and gas phases. This phenomenon
is attributed to the absence of surface tension, which means that no cohesive force between molecules
at the fluid’s interface exists [59]. This state corresponds to a supercritical fluid (SCF).

Temperature

P
re
s
s
u
re

triple point

critical point

critical pressure

Pcr

critical
temperature
Tcr

solid phase

liquid

phase

gaseous phase

compressible

liquid

Ptp

Ttp

vapour

supercritical fluid

Figure 1.4: The liquid-vapor critical point is depicted on the pressure-temperature phase diagram.
The solid green line represents the typical shape of the phase boundary between the liquid and solid

phases. The dotted green line represents the specific case with water [60].

The behaviour of SCFs is exemplified by Supercritical Carbon dioxide (scCO2), which possesses
the following critical properties taken from the reference fluid thermodynamic properties database
REFPROP [61],

Tcr = 304.1 K Pcr = 7.38 MPa.

The interest of supercritical fluids is the presence of substantial deviations from normal behaviour
near the critical point. Therefore, by varying the pressure and the temperature, the thermodynamic
properties of the fluid can be adjusted depending on the intended use of the fluid. Fisher & Widom
predicted the presence a peak in the specific heat Cp at the Widom line and called it, the pseudo-
critical point. This maximum was observed experimentally by Jones et al. [62]. This steep change of
properties is due to a liquid-like state below the critical point and a vapour-like state above.
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To quantify the deviation from ideal gas in SCFs, the compressibility factor Z, is introduced in the
ideal-gas law. The value of Z, which is the ratio of pressure to the product of density, gas constant,
and temperature, indicates the degree of non-ideal gas effects. A smaller value of Z corresponds to a
greater presence of non-ideal gas behaviour, while Z = 1 signifies an ideal-gas. Fig 1.5 represents the
T − v diagram of CO2 at a supercritical pressure of Pr = 1.08 and shows the compressibility factor in
different regions. The subscript ·r denotes the reduced quantities, where each quantity is normalised
by its corresponding critical value. Non-ideal effects are strongly present in the vicinity of the Widom
line (represented by red stars), where Z decreases below 0.5. The Van der Waals equation of state
is preferred for modelling the physics of supercritical fluids due to its simplicity and computational
efficiency, surpassing alternative models.

Figure 1.5: T − v diagram of CO2 using the Van der Waals equation of state, along with the Widom
line (red starred line), two saturation curves (blue and red lines) and an isobar of Pr = 1.08 (black

line). The shaded area represents the contour of the compressibility factor Z, indicating the degree of
non-ideality.

The use of supercritical fluids in an industrial processes has been experienced significant growth
in recent years. This has been driven by the growing interest in the development of new technologies
that minimise the environmental impact by reducing the energy consumption. The unique combi-
nation of gas-like viscosity and liquid-like density makes SCF an excellent solvent for mass transfer
processes ([10],[63] and [64]). The application of supercritical fluids in energy generation appeared in
1957 with the world’s first commercial supercritical steam-electric generating unit called Philo 6 [65].
This innovation led to a major breakthrough in the energetic sector as it significantly advanced the
thermal efficiency of power generation and thus decreasing the production costs. At that time, the
average efficiency of the fossil-fuelled power plants was about 30%. The introduction of a steam at
supercritical pressure and temperature led to a new level of thermal efficiency approaching 40%. Three
years later, a second supercritical pressure unit, larger and more efficient, called Eddystone [66], en-
tered the commercial service in the U.S. in 1960. Supercritical plants that are built nowadays are
based on Eddystone. In 2013, the first U.S. ultrasupercritical power plant in operation born with a
power of 600 MW. In 2019, more than 400 supercritical steam power plants were operational in the
USA, Russia and Europe [67].
Moreover, the use of SCF encompasses the objective of improving the efficiency of gas turbines. Specif-
ically, the use of supercritical CO2 as a working fluid is driven by its combination of high density similar
to that of a liquid while retaining the ability to fill containers like a gas [68]. Furthermore, its po-
tential as a supercritical fluid to reduce greenhouse gas emissions, thanks to its low global warming
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potential [69] combined with its moderate critical temperature and pressure, which make it easy to
contain and safe to handle [70], establish scCO2 as an optimal choice. The work of Sengupta et al. [13]
reveals that emplying scCO2 in a closed Brayton cycle enables to reach higher conversion efficiency.
The higher density of scCO2 compared to traditional gases, along with the nearly constant density
during compression, requires a smaller volume change to achieve the desired pressure. This results in
a lower compression ratio and, therefore relatively high compressor efficiency [71]. In addition, various
works (Keller et al. [72] and Samini et al. [73]) have demonstrated that the compactness of SCFs makes
them well suited for applications with spatial constraints, such as micro-gas turbines or portable power
systems. SCFs have also been implemented in the Brayton cycle of nuclear power plants to achieve
efficiencies higher than 50% [74]. Finally, this fluid has also been incorporated into the field of solar
energy as a working fluid in Rankine cycle systems, aiming to increase overall efficiency [75]. The
inherent flexibility of SCFs with respect to their operating temperature and pressure ranges allows for
adaptation to both high-temperature and low-temperature heat sources, thus expanding their potential
applications [76]. In summary, the incorporation of scCO2 in power cycles contributes to improved
energy efficiency and performances.

1.3 Objectives

The objective of this thesis is to investigate the transition process and turbulent statistics of a transcrit-
ical boundary layer along a flat-plate. To achieve this, the fluid will be introduced at a supercritical
pressure and subcritical temperature. The wall temperature will be maintained isothermal and set
higher than the critical temperature to ensure that the flow temperature varies across the pseudo-
critical temperature, thus creating a transcritical boundary layer. Direct Numerical Simulations will
be employed to observe the breakdown phenomenon resulting from the unstable Mode II discovered
in these configurations, allowing the extrapolation of the findings to various industrial applications
involving supercritical fluids over surfaces. The understanding of the H-type transition caused by the
secondary instability of subharmonic oblique waves will be achieved through modal analysis, involving
the observation of growth and interactions of different eigenmodes. The unique properties of super-
critical fluids necessitate a careful analysis to determine the optimal numerical parameters that ensure
simulations free from numerical errors. Once these parameters have been determined, the influence of
various flow parameters such as pressure or Mach number will be varied to assess their impact on the
breakdown process and turbulent statistics.

1.4 Thesis outline

Chapter 1 provides a theoretical review of the transition from laminar to turbulent flow and the
characteristics of supercritical fluids. Chapter 2 introduces to the governing equations and the non-
dimensionalisation used in this study, along with an explanation of the numerical methods employed
to solve these equations. A detailed description of the post-processing techniques is also presented.
Chapter 3 conducts simulations using the ideal-gas law to validate the post-processing tools and in-
troduce the turbulent statistics. Numerical simulations employing a real equation of state are carried
out in Chapter 4. This section includes a parameter analysis study aimed at evaluating the influence
of various numerical parameters. It also addresses specific numerical issues, and their proposed resolu-
tions will be discussed. After reducing the numerical errors to a negligible level, Chapter 5 analyse the
influence of the free-stream pressure, Mach number, and wall temperature on the transition process
and the resulting turbulent statistics.
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Chapter 2

Governing equations and numerical
approaches

In this section, several theoretical aspects related to the governing Navier-Stokes equations and the
equation of state used to accurately model the non-ideal gas effects are introduced. Secondly, a detailed
explanation of the numerical setup is provided, outlining the specific parameters and variables con-
sidered in the direct numerical simulations. This includes informations about the computational grid
used, its resolution, and the numerical schemes implemented. Furthermore, the boundary conditions
imposed on the right-hand side of the Navier-Stokes equations are presented. Lastly, a comprehensive
discussion is provided regarding the computed initial conditions that define the initial state of the fluid
prior to the simulation.

2.1 Governing equations

The Navier-Stokes Equations (NSE) provide a mathematical description of the motion of viscous fluids.
In their non-dimensional form, the Navier-Stokes equations can be expressed as a set of differential
equations that govern the conservation of mass, momentum, and energy as follows

∂ρ

∂t
+
∂ (ρuj)

∂xj
= 0, (2.1.1)

∂ (ρui)

∂t
+
∂ (ρuiuj + pδij − τij)

∂xj
= Fi, (2.1.2)

∂(ρE)

∂t
+
∂ (ρEuj + puj + qj − uiτij)

∂xj
= ujFj , (2.1.3)

where:

• xi = (x, y, z) being the coordinates, respectively, in the streamwise, in the wall-normal and the
spanwise direction;

• ui = (u, v, w) being the velocity components, respectively, in the streamwise, in the wall-normal
and the spanwise direction;

• t being the time;

• ρ being the fluid density;
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• E = e+ uiui/2 and e, respectively, the total and the internal energy;

• Fi being the body force which is set to 0 since the effects of gravity on the development of a
boundary layer over a flat-plate can be neglected [77];

• p being the pressure.

The viscous stress tensor τij , and the heat flux, qj , are given by

τij =
µ

Re

(
∂ui
∂xj

+
∂uj
∂xi

)
+

λ

Re
δij
∂uk
∂xk

, qj = − κ

RePrEc

∂T

∂xj
, (2.1.4)

where:

• µ being the dynamic viscosity;

• λ = µb − 2/3µ being the second viscosity;

• µb being the bulk viscosity;

• κ being the thermal conductivity.

Dimensionless quantities

Non-dimensional values and equations are preferred due to their simplicity and generalised form. By
converting dimensional quantities into non-dimensional ones, the mathematical formulations are simpli-
fied and become more manageable for analysis and computations. To achieve this non-dimensionalisation,
various reference values are employed to scale the dimensional quantities, those are

u =
u∗

u∗∞
, xi =

x∗i
l∗0
, t =

t∗u∗∞
l∗0

, p =
p∗

ρ∗∞u
∗2
∞
, ρ =

ρ∗

ρ∗∞
(2.1.5)

T =
T ∗

T ∗
∞
, E =

E∗

u∗2∞
, µ =

µ∗

µ∗∞
, κ =

κ∗

κ∗∞
. (2.1.6)

The superscript ·∗ refers to the dimensional values, while the subscript ·∞ refers to the free-stream
values. The dimensional length scale is represented by l∗0. The dimensionless parameters characterising
flow conditions are introduced. Firstly, the Reynolds, Re and the Prandtl, Pr number are defined as

Re =
ρ∗∞u

∗
∞l

∗
o

µ∗∞
, P r =

c∗p,∞µ
∗
∞

κ∗∞
, (2.1.7)

where c∗p,∞ being the specific heat capacity. The first dimensionless parameters relates the ratio be-
tween the inertial and viscous forces while the Prandtl number reflects the ratio between the thermal
and the velocity boundary layer [78].

The reference length, l∗0 is chosen to correspond to the Blasius length scale δ∗, which refers to the
boundary layer thickness as

δ∗ =

√
µ∗∞x

∗

u∗∞ρ
∗
∞
.

The related Reynolds numbers based on the Blasius length and the relation with the one based on the
non-dimensional streamwise position, x∗ are

Reδ(x) =
ρ∗∞u

∗
∞δ(x)

∗

µ∗∞
Rex =

ρ∗∞u
∗
∞x

∗

µ∗∞
= Re2δ(x).
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Similarly, the 99th boundary layer thickness, denoted as δ99(x), is defined as the distance from the
wall at which the boundary layer extends to a location where the boundary layer thickness reaches
99% of its maximum value.
Secondly, the dimensionless numbers that provide an overview of the compressibility of the fluid are
the Mach number, M and the Eckert number, Ec as

M =
u∗∞
a∗∞

, Ec =
(u∗∞)2

c∗p,∞T
∗
∞
, (2.1.8)

related by

Ec =M2 (a∗∞)2

c∗p,∞T
∗
∞
, (2.1.9)

where a∗∞ being the speed of sound.

It is common to neglect the compressibility effects for Mach numbers lower than 0.3 [78]. The
Eckert number expresses the relationship between the advective mass transfer and the heat dissipation
potential. It characterises the heat dissipation through viscosity in high-speed flows. When these num-
bers are large, acoustic effects come into play. In this work, the aim is to rule out any compressibility
or acoustic effect. For this purpose, both dimensionless numbers must be decreased. Nevertheless, the
significant change in thermodynamic properties near the critical point causes the speed of sound to
exhibit a large gradient in this area. Different works ([49] and [79]) reveal that the compressibility
effects present in this region are not accurately quantified by fixing the Mach number. Therefore, it is
preferable to impose a low Eckert number and calculate the resulting Mach number.

Equation of state

To accurately model the behaviour of the fluid and to close the NSE, an additional equation, the
Equation of State (EoS), must be added into the NSE. This law establishes a relationship between
pressure, temperature, and density of the fluid, thereby accounting for the effects of compressibility
and variations in fluid properties. Among the numerous existing models, this work employs

• Ideal-gas model, (IG):
The ideal-gas concept obeys a simplified equation of state as

p∗ = ρ∗RgT
∗ (2.1.10)

where Rg being the specific gas constant. This law assumes that the particles composing the
gas do not interact [80]. Nevertheless, at high temperatures or low pressures, the intermolecular
forces between gas molecules become less significant as the average distance between molecules
increases. This allows many real gases, including CO2, to exhibit behaviour that is qualitatively
similar to that of an ideal gas [81]. Given its simplicity, this model is widely used. The transport
properties, µ and κ are calculated using Sutherland’s law [82], where both properties are function
of the temperature. Those are:

µ

µ0
=

(
T

T0

)3/2 T0 + Sµ
T + Sµ

, (2.1.11)

κ

κ0
=

(
T

T0

)3/2 T0 + Sκ
T + Sκ

. (2.1.12)

The Sutherland’s law coefficients and the different constants in Eqs (2.1.10) taken from REF-
PROP [61] are shown in the Appendix A in Tab A.1.
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• Van der Waals law, (VdW):
The low value of the compressibility factor given in Fig 1.5 reveals the presence of strong non-
ideal effects near the pseudo-critical line. To include the interaction between particles, a more
sophisticated model is thus required such that the behaviour of the fluid is better represented
in those specific regions. The cubic relation for the VdW equations taken from the work of
Brunner [83] and Zappoli et al. [84] has been non-dimensionalised using the critical parameter
Tr, pr and νr defines as

Tr =
T ∗

T ∗
c

, pr =
p∗

p∗c
, νr =

ν∗

ν∗c
. (2.1.13)

The derivation of the Van der Waals equation in reduced form is provided in the Appendix A
and gives

Tr =
1

8
(3vr − 1)

[
pr +

3

v2r

]
, Zc =

p∗rν
∗
r

T ∗
rR

∗ =
3

8
, ar = 3, br =

1

3
, and Rr =

1

Zc
, (2.1.14)

where Zc, ar and br being the universal compressibility factor and two constants, respectively.
The reduced equations eliminates the dependence on substance-specific quantities and make
them independent of the particular characteristics of the substance. This universality enables
generalisations since it allows for the analysis of fluid behaviour across different substances using
the same reduced equations. However, it should be noted that the compressibility factor predicted
by the VdW EoS tends to overestimate the observed values found in many gases, where the
critical compressibility factor Zc is typically around 0.28 [85] at the critical point. Despite its
usefulness in qualitatively discussing gas properties, those equations do not accurately reproduce
the experimentally observed critical compression factor. Regarding the dynamic viscosity and
thermal conductivity, the JST model developed by Jossi, Stiel and Thodos [86] is applied.

The variation of different thermodynamic and transport properties of supercritical CO2, using the ideal-
gas law, Van der Waals EoS and REFPROP tables [61] is shown in Fig 2.1. The REFPROP model
incorporates extensive thermodynamic and transport property databases compiled from experimental
measurements and theoretical models, making it the most accurate model. In the vicinity of the pseudo-
critical line, all properties exhibit a large gradient, except of an ideal gas. The peak in amplitude of the
specific heat, given in Fig 2.1(b), corresponds to the pseudo-critical point. Other models, such as Peng-
Robinson or Redlich-Kwong (not shown here), provide significantlt different amplitude estimations,
particularly in determining the peak amplitude and the temperature at which it occurs. Likewise,
all models provide different estimates for the density variation in the liquid-like region. Using an
ideal-gas model is inappropriate due to the highly non-ideal behaviour of the fluid in the temperature
range depicted in Fig 1.5. This highlights the importance of using a real gas EoS when dealing with
supercritical fluids.

It is important to acknowledge that the Van der Waals equation of state, for thermodynamic
conditions close to the critical point, exhibits a violation of the stability law in thermodynamics [87],
which states that pressure P should not increase with volume V . To address this nonphysical behaviour,
the Maxwell construction method is employed by connecting the two points corresponding to the
coexisting phases (gas and liquid) with a horizontal line on the graph, referred to the Maxwell line
(depicted as a dotted line in Fig 2.2). The region below the Maxwell line represents the dissipated
heat energy during the phase transition, while the region above it corresponds to the energy used for
performing work [88]. The construction of the Maxwell line ensures that the area enclosed between
the isotherm curve and the Maxwell line is equal to the area enclosed by the isotherm curve alone.
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(a) ρc and C∗
p . (b) µpc;κpc; νpc and apc.

Figure 2.1: Thermodynamic and transport properties of C02 at pr = 1.08 and pr = 1.5 using different
fluid models. The MPEoS represents REFPROP using the multi-parameters fluid mode, VdW

represents the Van der Waals model, and IG represents an ideal gas model. The distributions of (a)
density ρ and heat capacity at constant pressure Cp, and (b) viscosity µpc, thermal conductivity κpc,
kinematic viscosity νpc, and speed of sound apc are plotted against the pseudo-critical temperature

Tpc. The pentagram denotes the pseudo-critical temperature Tpc in the REFPROP model.

Fig 2.2(a) illustrates the (Pr − νr) diagram coloured by the reduced pressure. Through the correction
of the Van der Waals equation of state, an increase in temperature leads to an increase in pressure or
specific volume.

(a) Contour of Tr. (b) Maxwell construction.

Figure 2.2: (Pr − νr) diagram of CO2 using the Van der Waals equation of state contoured by the
reduced temperature Tr. In (b), the (Pr − νr) diagram showcases various isotherms, with the use of
the Maxwell construction depicted as dotted lines and without its application depicted as solid lines.
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2.2 Numerical setup

The preceding NSE, coupled with the EoS form a system of nonlinear equations that must be solved
numerically. The most commonly used method in industry, called the Reynolds Averaged Navier-
Stokes (RANS), solves the averaged NSE equation. The simplifications employed in this method
render RANS unsuitable for the study of the transition [89]. A second method, called the Large-
Eddy Simulation (LES) resolves the largest turbulent scale that contains the energy while the smallest
ones are modelled [90]. This method remains inadequate to study the transition as it does not solve
the near-wall region with the smallest length scales. The final method, called the Direct-Numerical
simulation (DNS) is the one used in this work: it refers to higher-fidelity techniques that directly
solve the governing Navier–Stokes equations without any turbulence models. DNS is a highly suitable
tool for studying breakdown phenomena as it resolves the entire range of flow scales, including the
physics occurring at small length scales, without any assumptions or simplifications. However, since
all the turbulent structures are resolved, it requires a very expensive computational cost such that only
simple configurations, as a flat-plate, can be simulated. Additionally, the similarity to the experimental
facilities allows for the analysis and comparison of the transition process with experimental results.

2.3 Computational domain

Figure 2.3: Representation of the three-dimensional computational domain that will be used for the
DNS. The light blue colour indicates the presence of the sponge zone, while the red line represents

the disturbance strip. A sponge zone is also positioned at the inlet but not depicted in the figure for
simplification.

For this study, an in-house DNS code written in modern Fortran while the FFT and the results will
be post-processed on modern Fortran and Matlab. Fig 2.3 represents the computational domain with:

• x0 and xe being the initial and final positions along the streamwise direction, respectively;

• y0 and ye being the initial and final positions along the wall-normal direction, respectively;
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• z0 and ze being the initial and final positions along the spanwise direction, respectively;

• Lx = xe − x0 being the length along the streamwise direction;

• Ly = ye − y0 being the length along the wall-normal direction;

• Lz = ze − z0 being the length along the spanwise direction.

The starting point of the computational domain is attributed to a unit boundary layer thickness,
denoted as δDNS

0 = 1, as the flow at low Reynolds numbers is not the focus of this study. Moreover, the
abrupt changes in flow conditions near the starting point due to the no-slip condition can potentially
introduce artificial disturbances or spurious oscillations. Hence, this specific region has been excluded.
The spanwise and wall-normal lengths are prescribed, while the streamwise is computed.

In order to trigger the transition, disturbances will be introduced within the laminar boundary
layer by means of a blowing/suction wave along a disturbance strip whith a length of lpt = x2 −
x1. Additionally, different sponge areas are introduced at the inlet (not present in Fig 2.3), the
outlet and the top boundary to effectively absorb outgoing waves and minimise their reflection. Their
implementation is discussed in Sec 2.3.3.

2.3.1 Mesh generation

The number of grid points in each direction of space is, denoted with nx, ny and nz. The wall-normal
distribution is prescribed using a hyperbolic tangent to correctly capture the boundary layer near the
wall. The distribution is

y(i) = Ly ∗
[
C · η + (1− C) ·

(
1 +

tanh (Sf (η − 1)/2)

tanh (0.5Sf )

)]
(2.3.1)

with

η(i) =
i− 1

ny − 1
, C =

0.8

Reτ

ny − 1

Ly
, Reτ = δ (xstart )

√
ρwall

µwall

dU

dy
. (2.3.2)

The stretching factor, Sf , is used to modify the grid distribution and can be adjusted to increase
the number of points in the near-wall region. The streamwise distribution will be adjusted, alternating
between equidistant and non-equidistant grid spacing when necessary. The non-equidistant grid spacing
allows for a reduction in grid spacing along the disturbance strip and in the turbulent region, where
physics occur at small scale, without affecting the grid spacing in the laminar region. To achieve
this, a new computational streamwise coordinate, ξ, is introduced, and the streamwise distribution is
calculated as follows

z(ξ) = 0.5δ1
(
z+pt − z+max

)
log

[
cosh

(
z1−ξ
δ1

)]
+ 0.5δ2

(
z+max − z+pt

)
log

[
cosh

(
z2−ξ
δ2

)]
0.5δ3

(
z+min − z+max

)
log

[
cosh

(
z3−ξ
δ3

)]
+ 0.5δ4

(
z+max − z+min

)
log

[
cosh

(
z4−ξ
δ4

)]
+ z+maxξ − C

with

C = 0.5δ1
(
z+pt − z+max

)
log

[
cosh

(
z1
δ1

)]
+ 0.5δ2

(
z+max − z+pt

)
log

[
cosh

(
z2
δ2

)]
+0.5δ3

(
z+min − z+max

)
log

[
cosh

(
z3
δ3

)]
+ 0.5δ4

(
z+max − z+min

)
log

[
cosh

(
z4
δ4

)]

z+ = zReτ , Reτ = uτ
ρw
µw
, uτ =

√
τxz
ρw
,

(2.3.3)
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with z+pt being the value inside the disturbance strip, z+min in the turbulent region and z+max in the
laminar region. The parameters z1, z2, z3 and z4 are

z1 = f(start of the disturbance strip), z2 = f(end of the disturbance strip),

z3 = f(start of the turbulent region), z4 = f(end of the turbulent region)

and δi = ziwi, with wi the width of the ith transition bumps.

Finally, the spanwise distribution is maintained equidistant throughout this study.

2.3.2 Numerical scheme

To obtain high-fidelity results, it is important to minimise both dissipation and dispersion errors
through the appropriate selection of numerical schemes. The use of high-order numerical scheme helps
to decrease this dispersion errors [91]. Therefore, in this work, a sixth-order finite difference scheme is
employed for the first-order derivatives, and a fourth-order scheme is used for the second-order deriva-
tives. However, reducing the dissipation errors is more challenging. Some existing methods, used in
this work, prevent any dispersion errors but potentially induces numerical instability [92]. To enhance
numerical stability, Coppola et al. [93] revealed the necessity to use numerical schemes for both primary
and secondary quantities. The primary quantities refer to the mass, momentum and total energy, while
the secondary refers to the kinetic energy and entropy.

The numerical scheme employed in this study for the advection terms is the kinetic energy and
entropy preserving (KEEP). The KEEP scheme ensure excellent entropy preservation, which enhances
the numerical stability. The non-strictly entropy preservation comes from the fact that the entropy
equation is not directly solved. Furthermore, these schemes exhibit improved numerical robustness
compared to existing kinetic energy preservation schemes (KEP) of Jameson [94] or Pirozzoli [95]. The
KEEP scheme developed by Kuya and Kawai [96] is preferred in this work due to its ability to satisfy
analytical relations at the discrete level, which is crucial for accurately solving the energy exchange
([97] and [98]). The discrete pressure-evolution equation for the KEEP scheme is computed based on
the internal energy equation (written using second-order spatial scheme for simplicity) as follows

∂ρe

∂t

∣∣∣∣
(m)

+

Ĩ
∣∣∣
(m+ 1

2)
− Ĩ

∣∣∣
(m− 1

2)

∆x
+ p|(m)

u|(m+1) − u|(m−1)

2∆x
= 0 (2.3.4)

where m denotes the cell index and Ĩ refers to the internal energy flux

Ĩj |(m± 1
2
) =

ρ|(m±1) + ρ|(m)

2

e|(m±1) + e|(m)

2

uj |(m±1) + uj |(m)

2
(2.3.5)

Using the simple ideal-gas relation ρe = p/(γ − 1) into the discrete internal-energy equation and
assuming a constant pressure and velocity distribution, it becomes possible to compute the pressure-
evolution equation as follows

∂p

∂t

∣∣∣∣
(m)

=−
ρ|(m+1)+ρ|(m)

2

u|(m+1)+u|(m)

2

(p/ρ)|(m+1)+(p/ρ)|(m)

2 − ρ|(m−1)+ρ|(m)

2

u|(m−1)+u|(m)

2

(p/ρ)|(m−1)+(p/ρ)|(m)

2

∆x

− (γ − 1)p|(m)

u|(m+1) − u|(m−1)

2∆x
̸= 0.
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The pressure equilibrium is thus not discretely satisfied as the latter equation does not cancel out.
The absence of pressure equilibrium using from this simple law implies the lack of equilibrium when
employing the VdW EoS. Several studies ([99], [17] and [100]) revealed the absence of pressure equi-
librium at interfaces,leading to spurious pressure oscillations that spread the physics of the flow. A
special attention should, thus, be paid to the analysis of the pressure field. Additional information
regarding the pressure-evolution equation is given in Shima’s [18] work.
In terms of temporal integration, this code employs a third-order Runge-Kutta scheme. This scheme
is chosen for its favourable stability properties, which allow for the use of larger time steps, denoted
∆t, compared to lower-order schemes [101]. Throughout the simulation, the Courant–Friedrichs–Lewy
(CFL) number remains constant.

Figure 2.4: The computational domain is discretised into power units (PU) in the streamwise and
spanwise directions

The computational domain is partitioned into multiple processing units (PUs) in both the stream-
wise and spanwise directions, as illustrated in Fig 2.4. The code incorporates the use of Message Passing
Interface (MPI) to take advantage of the available computing resources. MPI enables communication
and data exchange among multiple processors, allowing for parallelisation of the computation.

2.3.3 Boundary conditions

Boundary conditions (BC) are required at the different edges of the domain to correctly simulate
the desired type of flow. BCs play a crucial role in defining the interaction between the fluid and its
surroundings and preventing wave reflections. The boundary conditions presented in Tab 2.1 have been
chosen based on the work of Poinsot & Pope [102], where they revealed the importance of generating
inflow profiles that correspond to the desired flow characteristics.

Boundary Inlet Outlet + Top Wall Spanwise boundaries

Inviscid condition
u ̸= 0

ρ = ρ∞
P = P∞

u = 0

T = Tw
Periodic

Viscous condition ∂τxx/∂x = 0

∂τxy/∂x = 0

∂τxz/∂x = 0

∂qx/∂x = 0

/ /

Table 2.1: The different boundary conditions applied at each boundary of the domain to solve the
Direct Numerical Simulation for a viscous flow.
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The characteristic wave boundary condition for non-ideal gas [102] is employed to impose the dif-
ferent BC. This method simulates the behaviour of waves propagating through the flow, accurately
capturing the wave characteristics at the boundaries, including both incoming and outgoing waves.
This method is particularly favoured in DNS as it ensures accurate and realistic simulations by captur-
ing the essential dynamics between waves and boundaries. To accurately represent the flow behaviour
at the boundaries, the convective terms of the NSE are computed using the wave method based on the
work of Okongo & Bellan [103], which evaluates the convective terms, considering the effects of wave
propagation and fluid advection. The computation of characteristic waves involves determining their
amplitudes, denoted as L, and their associated characteristic velocities, denoted as λ. Subsequently,
the conservative variables, including density, momentum, and energy, are computed. The amplitudes
of the incoming waves, L, are determined using the Local One-Dimensional Inviscid (LODI) relations.
These relations allows for estimating the amplitude variations by analysing a locally associated one-
dimensional inviscid problem [102]. The one-dimensional and inviscid flow assumption, used in the
LODI relations, provide an estimate of the variations in incoming wave amplitudes. The present work
involves a subsonic flow throughout the entire computational domain, ensuring that both the inlet
and outlet regions maintain a subsonic nature. As a result, only one characteristic enters the domain
exclusively through the outlet, while all other characteristics enter solely through the inlet.

Furthermore, the unsteadiness of the simulation generates vortices and acoustic waves that prop-
agates through the domain. The capacity to let those waves leave the domain without causing non-
physical reflections is crucial to ensure high-quality results as explained by Hirsch [104]. To address
this, non-reflecting boundary conditions, from the work of Thompson (1987) [105], are implemented.
The study conducted by Christofi [106], demonstrates that the non-reflecting BC implemented in a
2D simulation can effectively reduce those spurious reflections. Non-reflective boundary conditions are
implemented on all boundaries of the domain except in the spanwise direction. Distinct values are
assigned to each boundary:

• Inlet:
At the subsonic inlet, four characteristic waves enter the domain, necessitating the imposition
of four inviscid boundary conditions. Those are the density ρ and the three components on
the velocity vector u, v and w. The density and velocity profiles are prescribed from a laminar
boundary-layer solution, which serves to prescribe the initial condition in Sec 2.3.4. In addition,
the viscous condition imposing that the normal stress in the x direction has zero spatial derivative
∂τxx/∂x = 0 is required to consider the viscosity of the fluid.

• Isothermal flat-plate:
An isothermal flat-plate is modelled by imposing the no slip condition ui = 0 and a constant
wall temperature T (y = 0) = Tw.

• Outlet and top:
The same parameters are imposed on these boundaries because they correspond to locations
where the flow exits the domain. Unlike the inlet, only one wave enters through the domain, so
one inviscid boundary condition is required. Imposing the static pressure to be equal to the free-
stream pressure is sufficient as an inviscid condition. To account for the viscosity, the tangential
and the normal stresses τxy and τxz as well as the normal heat flux qx are imposed to have zero
spatial derivatives along the x direction. The amplitude of the incoming wave, L, is computed
from the prescribed free-stream pressure as follows

L = K(p− p∞), (2.3.6)

K = σBC
(1−Ma2∞) · c

L
, (2.3.7)
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where K and σBC are constants, and L represents the length of the domain in the direction normal
to the boundary. At the outlet, a perfectly non-reflecting boundary condition is achieved by
setting σBC to zero. This condition ensures that the amplitude of the reflected wave is eliminated,
following the approach described by Thompson [105]. Conversely, at the top boundary, a non-zero
value of σBC = 0.25 is imposed.

• Spanwise boundaries:
To hypothetically increase the spanwise length of the computational domain, periodic boundary
conditions are applied along the borders. These periodic boundary conditions ensure that the
flow seamlessly wraps around from one side of the domain to the other, creating a periodic rep-
etition of the flow pattern without increasing the computational cost.

A summary of the value imposed at the different boundaries are given in Tab 2.1.

To mitigate the spurious waves at the inlet, outlet, and top boundaries, a sponge zone is combined
with the non-reflective BC as represented on the computational domain shown in Fig 2.3. In different
studies ([106] and [107]), non-reflective BC alone are insufficient to adequately attenuate spurious
reflections, requiring an additional sponge zone. The sponge treatment has since been widely adopted
for its ease of implementation and use. Each sponge zone has a prescribed length, Lsp,in, Lsp,out and
Lsp,fs, the length at the inlet, the outlet and the top boundaries, respectively, as well as a specified
strength, denoted σ. The research conduct by Mani [107] revealed that bigger sponges outperform
smaller sponges of equal strength by effectively dampening reflections. However, larger sponges require
larger computational domains and incur higher costs, resulting in a trade-off that establishes the ideal
sponge design for each simulation. The inlet and outlet sponge lengths have been adjusted based on
the analysis conducted by Wang [52]. Her findings verify that the numerical sponge is strong enough to
suppress all numerical oscillations without interfering with the results. It remains essential to perform
an analysis of the upper sponge zone.

Periodic blowing and suction waves

The disturbances are numerically represented by prescribing a blowing/suction boundary condition
on the wall for the wall-normal velocity. This model was originally introduced by Huai, Joslin, and
Piomelli [108] as follows

f(x, z, t) = A1fx(x) sin (ω1t) +A2fx(x)gz(z) sin (ω2t) (2.3.8)

A1 and A2 represent the disturbance amplitude of the 2D and oblique waves, respectively, with ω1

and ω2 being their corresponding frequencies. Fasel and Konzelmann [109] defined f(x) and g(z) as

gz(z) = cos (2πz/λ0) = cos(βz)

|fx(x)| = 15.11875ξ5 − 35.4375ξ4 + 20.25ξ3

ξ =


x−x1
xm−x1 for x1 ≤ x ≤ xm

x−x2
xm−x2 for xm ≤ x ≤ x2,

where xm = (x1 + x2)/2 and β = 2π/λ0 being the spanwise wavenumber. To maintain a general
approach regarding the transition, the forcing function will be modified such that additional oblique
modes are excited. As a result, the function g(z) is computed as follows
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gz(z) =

3∑
i=−3

cos(i · 2πz/λ0).

Several studies, such as the research conducted by Sayadi et al. [37], confirmed the validity of
this blowing/suction model. The first term in Eq (2.3.8) initiates the 2D primary instability with
an angular frequency of ω1 and an amplitude of A1. Additional three-dimensional disturbances are
added at lower amplitudes and at an angular frequency of ω2. In this study, the controlled transition
is achieved by setting the amplitude of A1 to be two orders of magnitude greater than that of A2.
The selected frequencies are determined by analysing the stability diagram predicted by the LST. The
dimensionless form is computed as

F = ω∗ µ∗

ρ∗u∗∞
2
=

ω

Re
. (2.3.9)

2.3.4 Initial condition

Using initial conditions that closely approximate the final solution is an effective method to reduce
the computational cost of DNS. To approximate the final solution, the prescribed wall-normal, stream-
wise velocity, and density profiles are obtained by solving the compressible boundary-layer equations
(CBLE). The boundary condition required to solve this system are provided in Tab 2.2 from Pandey
et al. [110].

Velocity Temperature

Wall

y = 0

Free-stream

y −→ ∞

Wall

y = 0

Free-stream

y −→ ∞

u = 0

v = 0

u = 1

v = 0
T = Tw T = 1

Table 2.2: The non-dimensional boundary conditions on the velocity and the temperature specified to
close the compressible boundary-layer equations.

The system is solved numerically by integrating the Ordinary Differential Equations (ODE) with the
Runge-Kutta scheme of 4th-order, together with the Newton-Raphson method to iteratively match the
BC, as explained by Onyeador et al. [111]. The CBLE are initially transformed from the physical space
(x, y) to a computational space (ξ, η), where a self-similar solution is obtained. Self-similar solutions
offer a significant advantages, as the transformed boundary layer that has an identical velocity profile
regardless of the value of ξ, the streamwise position, as represented in Fig 2.5. The self-similar variables
are defined as follows

ξ∗ =

∫ x

0
ρ∗∞u

∗
∞µ

∗
∞dx, η∗ =

u∗∞√
2ξ

∫ y

0
ρ∗∞dy. (2.3.10)

The transformation from the physical space to the computational space, shown in Fig 2.5, is
commonly referred to as the Lees-Dorodnitsyn transformation [112]. Solving the system leads to the
Blasius solution, and subsequently, the inverse Lees-Dorodnitsyn transformation is used to obtain the
solution in the physical domain.
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(a) Physical space. (b) Computational space.

Figure 2.5: Illustration of a self-similar solution of a non-ideal fluid between the physical space (x, y)
(a) and the computational space (η, ζ) (b). The transformation from the physical to the

computational space is achieved from (a) to (b).

2.4 Direct Numerical Simulations post-processing

The results are extracted when the simulations reach a quasi-periodic state. To ensure that any tran-
sient state is suppressed, it is advised ([106] and [52]) to conduct simulations until the first streamwise
disturbance has passed the domain twice. Thus, the verification is conducted by visualising the stream-
wise velocity a specific location within the turbulent region to confirm that the flow has attained a
periodic state.

2.4.1 Examination of the perturbation amplification

After achieving the periodic state, the simulation results will undergo a Fast Fourier Transform (FFT)
in both time and the spanwise direction to determine the amplitude and growth rate of the perturbation.
The FFT requires different input parameters, including the number of disturbance waves and the
number of wave samples required. Once the FFT has been conducted, the perturbations can be
obtained by subtracting the base flow, determined through time and spanwise averaging, from the total
flow. The LST represents the fluctuations as a combination of various modes with a defined frequency
ωn and spanwise wavenumber β. Each mode is denoted by a frequency ω and the spanwise wavenumber
β as (ω, β). One should notice that (ω0, 0), where ω0 is the fundamental frequency, correspond to
the fundamental 2D TS waves. Visualising the amplitude of various eigenmodes at different positions
along the streamwise direction facilitates the understanding of the transition mechanism. Two relevant
parameters are the growth rate −αi and the amplitude of the perturbation A introduced as

−αi =
1

A

dA

dx
|x0, A(x) = A0 · exp(−αi(x) · x), (2.4.1)

where αi represents the imaginary part of the streamwise wave number.

The development of the perturbation can be described in terms of various variables. In particular,
one needs to select a relevant quantity and investigate its behaviour throughout the domain. According
to Wang [52], the best quantity to consider is the streamwise fluctuation u′, which is commonly used
in current scientific research, such as in Sayadi’s [37] and Herbert’s [53] work. It is necessary to employ
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a method that eliminates the dependency in the wall normal-direction. The different existing methods
applied to the streamwise fluctuations are provided in Tab 2.3.

(a)
∫ Ly

0 |u′|2dy

(b) |u′| at a fixed wall normal position

(c) maxy |u′|

Table 2.3: The different existing method to quantify the growth of the perturbations.

The first method requires numerical integration, which may introduce some loss of accuracy but
considers the entire quantity along the wall normal direction, up to a certain limit. The second and
third methods are easier to implement numerically and often used in experimental setups as they re-
quire only one probe. A comparison of those different criteria was conducted on a simple case. The
results given in Appendix B demonstrate that all the criteria provide similar results, assuming that the
input parameters are carefully set. Indeed, the use of the second criterion from Tab 2.3 gives results in
adequacy with the prediction from the LST provided that the fixed wall normal position remains larger
than y = 0.5/δ0. In this work, the default criterion will be the third one, unless otherwise specified.

The modal analysis consists of decomposing the flow field into different modes based on their
frequency and spanwise wavenumber. The required FFT is conducted on two flow periods using 10
samples per period. These parameters have been selected based on the analysis outlined in Appendix B,
which investigates their influence on the results.

2.4.2 Examination of the skin-friction coefficient

In addition to the modal analysis, the robustness of the DNS is assessed by analysing of the skin-friction
coefficient (Cf ). The variation of the skin-friction coefficient in the laminar regime is obtained from the
Blasius solution [113]. For the turbulent region, several empirical relationships have been established.
In the present study, the 1/7 power-law proposed by White [112] is employed for the subcritical
regime. It is important to note that these approximations and empirical relationships are applicable
only to fluids operating in the subcritical regime. The Blasius solution assumes a constant pressure
throughout the boundary layer [113], which is acceptable for an ideal gas but needs to be modified for
non-ideal fluids at supercritical conditions. The mathematical derivation given in Appendix C uses
the theoretical definition of the skin-friction coefficient

Cf =
τw

1
2ρ∞U

2
∞

to provide an alternative formula based on dimensionless variables as follows

Cf =
2f ′′(0)Cw√

Rex
, with Cw =

√
ρwµw
ρµ

. (2.4.2)

The velocity gradient at the wall is denoted as f ′′(0) and Cw the Chapman-Rubesin factor, which
accounts for thermodynamic variations. The evolution of the skin-friction coefficient facilitates the
detection of the transition due to its abrupt increase. Different methods exist for defining the location
of transition, and they do not always agree (Stetson & Kimmel [114]). In this study, the transition
location is determined by identifying the point where Cf reaches its minimum value.
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2.4.3 Visualisation of the coherent structures

The coherent structures, Λ and Ω vortices, are emphasised by the Q-criterion. It is defined as the
second invariant of the velocity gradient tensor and can be expressed as

Q =
1

2
(|Ω2| − |S2|)

where S represents the strain rate tensor and Ω the vorticity tensor. Different studies [115] and
[116] have employed this criterion to identify regions in the flow where vorticity is concentrated. This
criterion enables the differentiation of coherent structures from random fluctuations and background
turbulence.

2.4.4 Examination of a fully-turbulent flow

The chaotic behaviour of a turbulent flow requires the analysis of certain averaged quantities. This
work uses either the Reynolds averaging [2], which separate the mean flow of a generic variable γ as
γ = γ̄ + γ′ or the Favre-averaging as γ = γ̃ + γ′′. In the latter method, the mean flow is computed as
γ̃ = ργ/γ̄.

Two different scaling approaches are employed in this study. The first scaling method uses plus
units, where all quantities are divided by the viscous length scale δν = µw/ρwuτ . Here, uτ =

√
τw/ρw

represents the friction velocity, and µw and ρw denote the viscosity and density at the wall, respectively.
The dimensionless wall coordinate is given by y+ = y/δν . However, the plus unit scaling does not
account for the large gradients in thermodynamic properties. Therefore, a semi-local scaling, which
considers local properties for velocity and the viscous length scale, proposed by Huang et al. [117], is
introduced as

u∗τ =
√
τw/ρ̄ δ∗v = µ̄/ρ̄u∗τ .

The scaled wall distance is defined as y∗ = y/δv.

Among the various turbulent statistics, particular focus will be placed on the analysis and compar-
ison of the mean velocity profile, denoted by u+ = u/uτ , in the turbulent region. This analysis will
include comparing the profile to the theoretical correlation in the log-law region and in the viscous sub-
layer [2]. In the transcritical boundary layer, the mean velocity profile uses an extra scaling technique,
which takes the variation of density into account, known as the Van Driest transformation [118].

u+V.D =

∫ ū

0

√
ρ̄

ρw
du. (2.4.3)

Another important turbulent statistic is the Reynolds stresses, which are computed in wall units,
such that they depend only on y+ as

u′iu
′
j/u

2
τ = u′iu

′
j

+ ≈ f(y+). (2.4.4)

The approximation symbol indicates the absence of a perfect universal scaling, as highlighted
by Hoyas & Jimenez [119]. While this scaling is commonly employed in ideal-gas cases, it becomes
inadequate in transcritical simulations where the influence of density and viscosity profiles becomes
significant. Therefore, the use of the semi-local scaling is required as

ρu′′i u
′′
j /τw = u′′i u

′′
j

∗ ≈ f(y∗, Re∗τ ). (2.4.5)

24



CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL APPROACHES

To determine the amplitude of fluctuations within a transcritical turbulent boundary layer, the
Root Mean Square (RMS) value is employed as it provides a meaningful representation of the average
magnitude of the fluctuations as √

γ′γ′/γ̄. (2.4.6)

These values are commonly employed in fluid mechanics ([120] and [121]).

Finally, the estimation of coherent structures and their characteristic length can be determined
through the two-point correlation analysis of velocity components, as outlined by Moin and Kim [122].
Specifically, they identified a strong correlation between vortical structures and the sharp negative
minimum present in the two-point correlation tensor of normal velocity with spanwise separation. The
correlation function is defined as

Rff (z) =

Nz−1∑
k=1

fkfk+kr , kr = 0, 1, . . . , k − 1, (2.4.7)

where z = kr∆z, f = u′, v′, w′.

All turbulent statistics have been averaged over 100 different files. Note that in the section dis-
cussing turbulent statistics, the superscript ·∗ indicates the semi-local scaling instead of dimensional
properties.
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Chapter 3

Ideal-gas simulations

A direct numerical simulation employing the ideal-gas law will be performed to determine the minimum
averaging periods required to achieve statistical convergence of the skin-friction coefficient. Addition-
ally, a comparison will be made between the obtained results and those predicted by the linear stability
theory (LST) and higher-fidelity data, specifically referencing the work of Herbert [53] and Sayadi et
al. [37]. This comparative analysis aims to validate the post-processing tools used in this study.
Moreover, turbulent flow quantities, encompassing mean flow characteristics and fluctuations, will be
presented to illustrate the progression towards a fully turbulent flow.

The physical and numerical parameters correspond to the case 3D IG in Tab 6.1 with the thermo-
dynamic parameters given in Tab 3.1. The excitation frequencies and amplitudes employed in these
simulations have been adjusted to align with the research conducted by Sayadi. Therefore, only the
oblique modes with a spanwise wavenumber of ±β are excited. The dimensions in the spanwise and
wall-normal directions, along with the number of points in each direction, have been determined based
on the study by Wang [52].

p∗∞ T ∗
∞ Twall Ec

80 Bar 300 K 306 K 0.05

Table 3.1: Thermodynamic parameters used in the ideal-gas simulation.

3.1 Statistical convergence of the skin-friction coefficient

In a turbulent flow, achieving statistical convergence necessitates averaging each quantity over an
adequately long time duration. Specifically focusing on the skin-friction coefficient, it is important to
assess the impact of the number of samples and the amount of flow periods necessary to reach this
statistically converged state.

Influence of the number of periods and samples per period

Fig 3.1(a) presents the skin-friction coefficients obtained by averaging over varying numbers of flow
periods using 10 samples per period. The skin-friction coefficient Cf exhibits consistent behaviour
for all numbers of periods in the laminar region and prior to the skin-friction overshoot, and are in
agreement with the Blasius solution [113] until approximately Rex = 5.75 · 105. The minimum in Cf
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occur at Rex = 4.28 · 105, then the skin-friction rapidly increases and exceeds the value predicted by
the turbulent correlation [123]. This overshoot persists from Rex = 5.7 · 105 until Rex = 8 · 105 after
which Cf matches with the turbulent correlation [123]. However, once the flow becomes chaotic, Cf

starts to oscillate and the results vary with the number of periods used for averaging. Fig 3.1(a) shows
that the statistical convergence is achieved when using 10 periods. Therefore, a 10-period averaging
will be used for the skin-friction coefficient throughout this work.

The influence of the discretisation of the perturbing wave shown in Fig 3.1(b) reveals that increasing
the number of samples slightly reduces the oscillations. A trade-off between computational cost and
accuracy must be made, and in this case, 10 samples seems to be the best compromise as it shows
negligible difference with 20 samples. Therefore, 10 samples will be used throughout this work for.

(a) Influence of the number of periods. (b) Influence of the number of samples.

Figure 3.1: Representation of the evolution of the skin-friction coefficient averaged over the span and
the time with (a) different numbers of periods using 10 samples per period, and (b) different numbers
of samples per period using 10 periods. The black dotted line represents the Blasius solution [113] in
the laminar region and the empirical Prandtl’s one-seventh-power law [123] in the turbulent region.

3.2 Validation of the secondary instability

The validation of the results is performed by recovering the results of Herbert [53] and Sayadi [37]
for H−type secondary instability. The amplitudes of both waves have been carefully established to
replicate the growth patterns of the eigenmodes, observed by Sayadi, with the numerical parameters
corresponding to case IG Sayadi in Tab 6.1.

Fig 3.2(a) represents the evolution of the different FFT modes that were intentionally forced. The
TS wave (ω0, 0) undergoes linear growth across the domain from Rex = 1.72 ·105 to 3.3 ·105, testifying
the primary instability, until reaching a saturation amplitude, where a nonlinear behaviour emerges
which further decrease the amplitude. The linear behaviour of the TS wave is disrupted when the
oblique mode (ω0/2, β) attains a significant amplitude, providing evidence of the secondary instability.
This secondary instability leads to a higher growth rate of the oblique mode after Rex = 3.3 ·105. Prior
to this Reynolds number, the smaller growth rate is attributed to the primary instability. Subsequently,
its interaction with the TS wave occurs around Rex = 4 ·105, which corresponds to the minimum value
of Cf , indicating the onset of transition. Following these interactions, the flow gradually transitions to
a fully turbulent state, indicated by a sudden increase in amplitude of all other oblique modes. Sub-
sequently, at higher Reynolds, all modes start oscillating with the same amplitude. This is indicative
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of a turbulent flow, where all modes are present at the same intensity. A good correlation with the
prediction of the LST of Herbert [53] and with the higher-fidelity data of Sayadi [37] can be observed
for both modes. The variation of the skin-friction coefficient shows a good correlation with the Blasius
and the empirical 1/7 power law. Compared to Sayadi’s, the growth rate and the amplitude of the
overshoot shows negligible difference. However, the location of the transition appears earlier, resulting
from discrepancy in perturbation amplitude and the introduction of two oblique waves with +β and
−β while Sayadi only uses +β.

(a) FFT modes. (b) Cf .

Figure 3.2: (a) Representation of the growth of the fundamental two-dimensional mode (ω0, 0) and
the oblique mode (ω0/2, β). (−o) LST from Herbert [53]; ∗ DNS from Sayadi [37]. The red dotted

line represents the location where Cf reaches its minimum. (b) Evolution of the skin-friction
coefficient; the black dotted line represents the Blasius solution [113] in the laminar region and the

1/7 power law [123] in the turbulent region.

3.3 Visualisation of the transition

The transition from laminar to turbulent flow is characterised by the emergence of coherent structures,
resulting from the secondary instability, illustrated in Fig 3.3. The presented figure depicts the emer-
gence of Λ-vortices and their staggered alignment, in agreement with the H−type transition and the
experimental observations by Berlin et al. [124]. Moreover, this figure also reveals the formation of the
Ω−vortices in the late stage of transition. Those latter vortices breakdown at x = 420 · δ0, which is
the position of the overshoot in Cf . It can be concluded that the breakdown of these vortices leads to
high shear stress, consistent with the observations of Nishioka [125].
The transition from a laminar to a turbulent flow can also be observed in Fig 3.4, which presents a
snapshot of the streamwise vorticity, velocity, and the skin-friction coefficient in the (y − z) planes at
y ≈ 0.35δ0. The emergence of the Λ-vortices is evident from the formation of pairs of positive-negative
vorticity regions around x = 250δ0 in Fig 3.4(a).

In the fully laminar region, a smooth and controlled flow exhibits zero streamwise vorticity. The
staggered alignment of the Λ-vortices in the streamwise velocity shown in Fig 3.4(b) are in close agree-
ment with the particle image velocimetry measurement of Berlin et al. [124] and the DNS simulation of
Sayadi et al. [37]. It reveals the numerous amounts of vortices whose length increases from x = 250δ0 to
350δ0 before the breakdown to turbulence. Overall, the analysis of the skin-friction coefficient depicted
in Fig 3.4(c) reveals that the presence of Λ-vortices leads to an increase in the friction coefficient. These

28



CHAPTER 3. IDEAL-GAS SIMULATIONS

Figure 3.3: Instantaneous isosurfaces of the second invariant of the velocity gradient tensor, Q,
coloured by the streamwise velocity. The red dotted lines indicate the positions where the

skin-friction coefficient reaches its minimum and maximum values.

vortices are generated in close proximity to the transition location and interact along the span and
eventually break down, promoting enhanced mixing within the flow and resulting in a higher value of
the skin-friction. The higher values of Cf along the span in the transition region correspond to the
region where the Λ-vortices transform into Ω-vortices, characterised by high streamwise and spanwise
vorticity.

3.4 Turbulent statistics of a turbulent flow

The mean velocity profile at different Reynolds numbers, presented in Fig 3.5(a), reveals the devel-
opment from a laminar to a turbulent flow. Previously, the skin-friction coefficient reveals a fully
laminar flow for Rex smaller than 4.5 · 105. The mean profile has therefore the expected laminar flow
shape [126] in those regions. The mean velocity profile at a Reynolds of 5.04 and 5.68 · 105, located
inside the transition region, shows a large decrease in amplitude, indicating a change in the flow be-
haviour. However, the mean velocity profile does not yet exhibit the logarithmic profile testifying a
fully turbulent flow [2]. This logarithmic velocity profile in the log-law region (y+ > 30) is attained
for Rex = 7 · 105 and 8.68 · 105. It should be noted that all profiles match the theoretical correlation
y+ = u+ in the viscous sublayer region (y+ < 5), predicted by Pope [2].
The estimation of the coherent structure’s characteristic length, obtained from the two-point auto-
correlation tensor, shown in Fig 3.5(b), reveals a minimum at ∆z+ = 23.4 for both y = 0.067δ0 and
0.15δ0. This finding is consistent with the size of streamwise vortical structures in the near-wall region,
found by Sayadi [37]. As the wall-normal height increases, ∆z+ increases, indicating the growth of
vortical structures in the wall-normal direction. It is worth mentioning that these curves could appear
smoother with a larger number of samples used for averaging.
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Figure 3.4: The evolution of streamwise vorticity ωx, streamwise velocity u/U∞, and skin-friction
coefficient Cf , along the flat-plate at y ≈ 0.5δ0 is presented. The location where the skin-friction

coefficient reaches its minimum and maximum is indicated by a red line.

(a) u+ − y+. (b) Rvv.

Figure 3.5: (a) Wall-scaled turbulent mean velocity at different Reynolds numbers using the
dimensionless velocity u+. The theoretical mean profile in the log law region and in the viscous

sublayer [2] (have been scaled to correspond to our non-dimensionalisation). Similar behaviour has
been obtained by [37]. (b) Two-point correlations of Rvv computed at Rex = 8.68 · 105 with varying

spanwise separations.

Fig 3.6(b) illustrates the component of the Reynolds stress tensor −u′v′, which represents the
transport of turbulent momentum caused by fluctuations in the streamwise and wall-normal directions.
At the lowest Reynolds number, it was expected to obtain zero stresses as the flow is fully laminar.
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However, these stresses start to grow at Rex = 4.6 · 105, which corresponds to the region where the Λ-
vortices form inside the boundary layer. The increase in mean turbulent quantities between Rex = 4.6
to 5.68 · 105 can be observed in Fig 3.6. Between those Reynolds, the skin-friction coefficient increases
due to the growth of shear stress exerted by the fluid on the surface caused by the breakdown of the
early coherent structure, which increases the turbulence intensity. Rex = 5.68 ·105 is located very close
to the peak overshoot such that it is not abnormal to obtain such high values. As the Reynolds number
increases further downstream, the flow transitions to fully turbulent and the viscous effects start to
reduce. This leads to a decrease in the Cf , also evident in the turbulent intensities, which decrease
between Rex = 5.68 to 8.68 · 105, as the fully turbulent flow is less influenced by viscous effects. The
Reynolds stress distribution at Rex = 8.68 · 105 given Fig 3.6(b) reveals that the energy is produced
by the streamwise velocity fluctuation from the mean flow in the buffer region (peak at y+ = 9).
Moreover, the inhomogeneous nature of the wall-bounded flow results in non-isotropic redistribution
of energy. Specifically, the magnitude of w′w′ is considerably larger than that of v′v′.

(a) u′iu′j
+
. (b) Zoom on u′v′

+
.

Figure 3.6: (a)Distribution of the Reynolds stress at Rex = 8.68 · 105 corresponding to a fully
turbulent region. (b)Evolution of Reynolds shear stress −u′v′ along the flat-plate. The results are

consistent with the results from Sayadi [37].
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Non-ideal gas simulations

The consistency between the results obtained using theoretical correlations and other higher-fidelity
data (Sayadi [37] and Franko [127]) enables to validate our post-processing methods. This simulation
also determines the minimum averaged periods required to ensure statistical convergence of the Cf .
However, the focus on this thesis is to deepen the understanding of the transition in a transcritical
boundary layer, where a real gas equation must be used. The free-stream reduced properties used in
the transcritical simulations are listed in Tab 4.1.

parameter definiton value

pr = p∗∞/p
∗
c Reduced free-stream pressure 1.08

Tr = T ∗
∞/T

∗
c Reduced free-stream temperature 0.92

Twall;r = T ∗
w/T

∗
c Reduced wall temperature 1.08

Twall = T ∗
w/T

∗
∞ Dimensionless wall temperature 1.18

Ec Free-stream Eckert number 0.05

M Free-stream Mach number 0.4

cv/R Specific heat/gas constant proportion 9

Table 4.1: Thermodynamic parameters used in the different transcritical simulations.

The fluid is introduced at a supercritical pressure but subcritical temperature. The reduced pseudo-
critical temperature at this pressure [61], T ∗

pc/T
∗
c = 1.011, can be made dimensionless with respect

to the free-stream temperature, resulting in a dimensionless pseudo-critical temperature of Tpc =
T ∗
pc/T

∗
∞ = 1.1. This implies that when the dimensionless wall temperature exceeds 1.1, as in our case,

a transcritical boundary layer is formed, which may result in the appearance of an additional Mode II,
as discussed in Sec 1.1.

Transcritical skin-friction coefficient

The theoretical Blasius solution [113] has been modified to account for the large variations of properties
across the boundary layer and the different velocity profiles for flows under subcritical or transcritical
conditions. These profiles are represented in dimensionless quantities in Fig 4.1(a), using η = y/δ(x)
and the velocity ratio f ′ = u/u∞. The relative difference between the velocity gradients at the wall
between the two cases is approximately 38%, indicating a fuller velocity profile for the transcritical
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case. However, the Chapman-Rubesin factor takes into account the strong property gradient in a
transcritical fluid, resulting in a higher friction coefficient, as shown in Fig 4.1(b) for a subcritical
boundary layer. This analysis produces a novel theoretical skin-friction coefficient profile for a laminar
transcritical flow.

(a) Velocity profile. (b) Skin-friction coefficient.

Figure 4.1: The different velocity profile for non ideal gas using Van der Waals equation of state for a
transcritical and a subcritical simulation. The subcrtical simulations has been conducted with

Tw/Tcr = 0.95.

4.1 Blowing/suction parameters

The reference amplitudes are selected to be sufficiently large to initiate transition and the secondary
instability, yet still remain low enough to facilitate early linear growth, based on Wang [52], with

A1 = 2.25 · 10−3, A2 = 7.5 · 10−5.

Since this work focuses on the H-type transition, it necessitates the excitation of one fundamental
frequency and its sub-harmonics. The 2D linear stability diagram for the thermodynamic parameters
listed in Tab 4.1, assuming a parallel flow, is depicted in Fig 4.2. Both modes are present in the figure,
with Mode I located inside Mode II exhibiting a lower growth rate and narrower unstable range. The
frequencies should be selected in such a way that only Mode II is excited within the computational
domain, without extending the domain excessively leading to a higher computational costs. Therefore,
a trade-off is made, and the excitation frequencies are chosen as

F1 = 110 · 10−6, F2 =
F1

2
= 55 · 10−6. (4.1.1)

These frequencies generate unstable two-dimensional waves solely from Mode II within the Reynolds
number range of 500 to 1000 and are sufficiently low, considering the errors introduced by the parallel
flow assumption [128].
In the following section, for the sake of simplicity, only the fundamental mode (ω0, 0) and the oblique
mode (ω0/2, β) will be presented. These modes are chosen because the fundamental mode interacts
firstly with this oblique mode. Hence, there is no need to include additional oblique modes in the
figures. Further analysis, as presented in Appendix D.3, conducted on a refined domain that only
excites ±β, demonstrates that the first oblique mode remains unaffected by the presence or absence of
other oblique modes.
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Figure 4.2: F −Reδ stability diagram with the thermodynamic properties from Tab 4.1. The red
dotted line represents the fundamental frequency F1 and the subharmonic is represented by a dashed

line denoted as F2. The pentagram shows the middle of the disturbance strip.

4.2 Parameter sensitivity analysis

This study begins by analysing the impact of different numerical parameters on the eigenmodes and
the skin-friction coefficient. Specifically, the influence of the top boundaries and the sponge zone is
first investigated. This is followed by an examination of the grid quality in all three spatial directions
to ensure a mesh fine enough to capture the steep variations of thermodynamic properties close to the
Widom line and to capture the Kolmogorov’s scale.

4.2.1 Influence of the domain height

To mitigate the blockage effect resulting from the finite height of the domain, which can potentially
influence the results, a sufficiently large domain size is required. When designing the computational
domain, it is crucial to account for the growth of the boundary layer thickness along the flat-plate
and ensure that the domain height remains adequately large to prevent the blockage effect. The grid
spacing in the wall-normal direction is maintained as uniform as possible by adjusting the number of
grid points and the grid stretching between the simulations. Three simulations were conducted with
the numerical and physical parameters corresponding to the case 3D Height Influence in Tab 6.1. To
maintain consistency, the length of the sponge zone on the top boundaries was kept at a ratio of 1/3
with the height of the domain in all simulations, with a constant strength of σ = 1. The subsequent
section demonstrates that this strength is the optimal choice.

Fig 4.3(b) illustrates the skin-friction coefficient, which shows negligible discrepancies among all
simulations in the laminar region and agrees with the theoretical Cf represented as a black dotted
line. The minimum values observed at Rex = 4.58 · 105, Reδ = 676 indicate the onset of transition,
after which the results begin to deviate from each other. A slight delay in Cf can be observed in the
simulation with Ly = 20. However, notable differences become apparent among all simulations after
Rex = 5 · 105, possibly due to an excessively coarse streamwise mesh in those quasi-turbulent regions.

To measure the disparities, the relative error based on the area under the curve is used, as

ε =

∫ Reend
Restart

Cf ;Ref −
∫ Reend
Restart

Cf∫ Reend
Restart

Cf ;Ref

, (4.2.1)

where Cf ;Ref the skin-friction coefficient taken as reference. Note that Eq (4.2.1) can also be adapted
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to compute the relative error for the different FFT modes.
Taking the curves obtained with Ly = 60 as the reference, which should induce the least amount of
reflection, the absolute relative error of the skin-friction coefficient can be computed for the different
domains. The error is about 1.89% for the smallest domain and decreases to 0.14% when using Ly = 40
between Restart = 1 · 105 and Reend = 5.5 · 105.

(a) FFT modes. (b) Cf .

Figure 4.3: (a) Representation of the different eigenmodes (ω0, 0) and (ω0/2, β) corresponding to the
higher, average, and lower modes, respectively, on the figure. (b) Representation of the friction

coefficient for a domain with varying heights, averaged over 10 periods of the disturbing wave. The
black dotted line corresponds to the theoretical skin-friction coefficient. The colour code is indicated

in (b).

The influence on the different eigenmodes can be observed in Fig 4.3(a). The fundamental two-
dimensional mode shows to be almost insensitive to the domain height, with a relative error below
1% between Reδ = 450 to 650 for all simulations. However, the oblique mode (ω0/2, β) appears to be
more affected by the domain height, as oscillations with small wavelengths exhibit varying amplitudes
with respect to the wall-normal height. Increasing the height of the domain, along with the sponge
height, slighlty reduces the magnitude of these oscillations. The remaining non-physical oscillations
arise due to a coarse grid in the streamwise direction. Despite these oscillations, the oblique waves
exhibit similarities until Reδ = 620. However, the growth of these eigenmodes beyond this value differs
as the oblique mode computed with the smallest domain increases, at the same growth rate as the
other modes but, later. This delay is likely due to the blockage effect, which is also responsible for
the delay in the skin-friction coefficient. Therefore, these results support the selection of Ly = 40. An
examination of the boundary layer growth along the domain reveals that the boundary layer thickness
at the outlet of the domain is roughly 3.5 times larger than that at the inlet, resulting in an 11-fold
difference between Ly and δ99outlet.

4.2.2 Influence of the sponge

The sponge region, located at the top, must eliminate any undesired wave reflections caused by the
boundary conditions. Lengthening and/or strengthening the sponge can enhance attenuation, but it
also constrains the computational domain. Based on the previous results, the domain height has been
set to Ly = 40. The influence of sponge length is examined, while keeping the sponge strength constant
at σ = 0.5. Then, the influence of sponge strength will be evaluated by varying σ while maintaining
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Lsponge = 1 Lsponge = 5 Lsponge = 10

ε[%] 12.3 1.9 1.8

Table 4.2: Relative errors in the skin-friction coefficient for different sponge lengths using Cf with
Lsponge = 15 as reference between Rex;start = 1 · 105 and Rex;end = 6 · 105.

a constant sponge length of Lsponge = 10. The physical and numerical parameters correspond to case
3D Sponge Influence as presented in Tab 6.1.

Fig 4.4 illustrates the effect of the sponge on the skin-friction coefficient. A unit sponge length
appears to be inadequate as it accelerates the transition while all curves are very similar to the other
simulations until reaching the overshoot and entering the turbulent state, where the results differ.
These differences arise from either the streamwise grid spacing, an inadequate number of time steps
for averaging, or a combination of both factors. To evaluate the differences, the relative errors based on
the area under the curves, using Lsponge = 15 as a reference, are presented in Tab 4.2. The incremental
improvement in accuracy between Lsponge = 5 and Lsponge = 1 diminishes significantly as the sponge
length increases from Lsponge = 5 to Lsponge = 10, indicating that a sponge length greater than 5 is
necessary. However, the proportional gain does not mandate the use of a larger sponge length.
The Cf for various sponge strength, σ, depicted in Fig 4.4(b), shows good agreement between simu-
lations using σ = 0.5 and σ = 1. However, some differences are observed with σ = 5 because large
strength causes the sponge area to function as a wall rather than a sponge [106]. This study reveals
that the sponge area must be larger than 5 and the strength should not exceed 1.

(a) Cf . (b) Cf .

Figure 4.4: (a) Representation of the skin-friction coefficient for different lengths of the top sponge
with a sponge strength of σ = 0.5, and (b) for different strengths of the sponge with Lsponge = 10.
The wall-normal height is fixed at Ly = 40. The black dotted line corresponds to the theoretical

skin-friction coefficient.

The impact of the sponge length on the FFT modes is shown in Fig 4.5. The oblique mode
responsible for the breakdown (ω0/2, β), exhibits a significant difference when computed with a unit
sponge length. Although noticeable variations are apparent in the oblique modes (ω0/2, β) for sponge
lengths larger than 5 at Reδ ranging from 450 to 650, the growth rate, which serves as evidence of
the secondary instability, remains fairly consistent. Given that the minor differences before Reδ = 650
are inconsequential. This observation is consistent with the friction coefficient depicted in Fig 4.4

36



CHAPTER 4. NON-IDEAL GAS SIMULATIONS

confirming that a unit sponge length is not appropriate.
The presence of non-physical oscillations with small wavelengths seems to be unaffected by the length
of the sponge reinforcing the impact of the streamwise grid spacing rather than any sponge-related
factors. To avoid overburdening the report, the figures illustrating the behaviour of modes (ω0/2, 2β)
and (ω0/2, 0) for various sponge lengths, as well as the modal analysis for different sponge strengths,
are provided in Appendix D.5. These figures lead to similar conclusions. The findings of this study
demonstrate that the sponge length must be larger 5, while the strength should not surpass 1. The
sponge length and strength at the domain’s inlet and outlet were adopted from previous research ([52]
and [106]).

Figure 4.5: Representation of 2D FFT mode (−)(ω0, 0) and one oblique mode (−−)(ω0/2, β) for
different sponge lengths with σsponge = 0.5.

4.3 Effect of the grid resolution

The influence of grid spacing in each spatial direction needs to be evaluated in order to accurately
capture the physics at different length scales and reduce the oscillations present in the oblique modes.
Initially, simulations are conducted with a constant distribution in the streamwise and spanwise di-
rections with the numerical parameters corresponding to case 3D Study-Grid-1 in Tab 6.1 where the
sponge has been fixed based on the previous study.

Fig 4.6 shows notable differences in both the growth of the different eigenmodes and the skin-friction
coefficient after the transition when the streamwise grid spacing is slightly decreased. It appears that
a coarse mesh overestimates the skin-friction coefficient and advances the transition. For instance,
the peak amplitude with ∆x = 0.68 occurs at Rex = 5.62 · 105 with an amplitude of 3.13 · 10−3,
while using ∆x = 0.40 gives the peak at Rex = 6.04 · 105 with an amplitude of 2.72 · 10−3. This
phenomenon can be understood from Fig 4.6(a) as the oblique mode are significantly different between
all simulations. Furthermore, in contrast to previous studies, the fundamental two-dimensional wave
also exhibits significant differences. This is unexpected since the forcing parameters are identical in
all simulations. Since this 2D mode is responsible for driving the secondary instability, and thus the
transition, it is crucial to ensure that the same amplitude is obtained in all simulations.
The reason behind this phenomenon is the insufficient discretisation of the forcing wave. As the number
of points along the disturbance strip is low, it results in poor wave capture. The physical maximum
amplitude of the disturbing wave is not accurately captured, making it impossible to compare the
results since the numerical forcing is not the same. Therefore, it is crucial to investigate the minimum
number of grid points required to accurately capture the waves. Note that increasing the number
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of points decreases the amplitude of the oscillations present in the oblique mode during the primary
instability.

(a) FFT modes. (b) Cf .

Figure 4.6: (a) Representation of the FFT mode (−)(ω0, 0), (−−)(ω0/2, β) with different streamwise
grid spacing. (b) Representation of the skin-friction coefficient for different numbers of points in the
streamwise direction. The black dotted line corresponds to the theoretical skin-friction coefficient.

4.3.1 Capture of the forcing wave

(a) (ω0, 0). (b) (ω0/2, 0).

Figure 4.7: Representation of the FFT modes (ω0, 0) and the subharmonic (ω0/2, 0) for different
numbers of grid points in the disturbance strip.

The determination of the optimal number of points along the disturbance strip, which has a length of
10δ0 will be performed on a smaller domain to accelerate the simulation. The numerical and physical
parameters correspond to case 2D-Resolution in Tab 6.1. Initially, 10 samples per period were used,
and the number of grid points in the streamwise direction was increased to examine the impact on
the different modes. Fig 4.7 reveals that 120 grid points in the disturbance strip begin to discretise
the forcing waves properly, resulting in similar amplitudes of the various modes near the disturbance
zone. The same results were obtained for other modes, presented in Appendix D.5.
However, if 120 points are used in the disturbance strip, maintaining the same level of refinement in
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the other direction would require over 150 million grid points, leading to a computationally expensive
simulation. Therefore, it is essential to find a cost-effective approach to obtain consistent amplitudes
in the forcing zone without increasing too much the computational cost. The impact of the number of
samples employed to discretise the forcing wave is discussed in Appendix D.5. The results indicate that,
for a fixed number of points, increasing the number of samples enhances the amplitude associated with
each mode along the disturbance strip and displays a collapse using 40 samples. However, considering
the computational cost, a choice of 10 samples is retained, which still yields satisfactory outcomes.

4.3.2 Modification of the streamwise distribution

In order to decrease the grid spacing solely along the disturbance strip and in the turbulent region, the
suggested approach involves employing a non-equidistant streamwise distribution. In all subsequent
simulations employing non-equidistant streamwise distribution, 120 points along the disturbance strip
have been used to model the same forcing wave in an efficient way. Based on previous analyses, the
starting point of the transition starts around Reδ ≈ 620, such that the second refinement region starts
at Reδ ≈ 610. To visualise the effect of a smaller grid spacing, the mesh in the turbulent region will
be refined from ∆xturb = 0.25 to 0.05, while the grid spacing in the laminar region is kept constant at
∆x = 0.3, based on Wang [52], to reduce computational cost. The numerical and physical parameters
correspond to case 3D Study-Grid 2 in Tab 6.1.

The growth of the different eigenmodes, shown in Fig 4.8(a), reveals that the fundamental 2D mode
remains insensitive to the refinement in the turbulent region before the interaction with the oblique
mode. On the other hand, the oblique mode is significantly affected by the grid spacing during the
transition region. The growth of the modes computed with ∆xturb = 0.15 and 0.10 starts earlier than
the one obtained with ∆xturb = 0.25, resulting in an earlier transition. This explains the similar de-
crease in amplitude for the 2D mode at Reδ = 685 using ∆xturb = 0.15 and 0.10 which appears later,
at Reδ = 692, with ∆xturb = 0.25. The oblique mode computed with the finest grid ∆xturb = 0.05
has a surprisingly lower growth, leading to an interaction with the 2D modes further downstream.
Despite their similarity in growth rates across all simulations, their distinctive starting points result
in variations in the location of the transition. This variation is evident from the friction coefficient
presented in Fig 4.8(b).

The trend observed by refining the grid is unusual, as the initial refinement accelerates the tran-
sition, but further refinement delays it. There are several possible reasons that can explain this
phenomenon: the use of a grid spacing of 0.05 enables the capture of a phenomenon at smaller length
scales not captured previously, or a numerical issue caused by the strong variation of the grid spacing
near Reδ = 600. It is also important to note that simulations conducted with ∆xturb = 0.10 and 0.05
crashed multiple times, which supports the idea of a numerical issue being responsible for the abnormal
behaviour of the oblique modes. Initially, it was hypothesised that crashes occurring in simulations
conducted with ∆x = 0.10 and 0.05 were due to a large aspect ratio between the streamwise and span-
wise grid spacing. Refining the mesh in the turbulent region creates rectangular cells with very large
aspect ratios, given in Tab 4.3, which can cause numerical errors. Jiménez et al. [129] investigated the
influence of the ratio between the streamwise and spanwise direction, in a subcritical boundary layer,
and found that the use of an aspect ratio smaller than 0.25 results in spurious secondary flows and an
artificially enhanced level of turbulence, which may cause simulation crashes. Regarding the current
thermodynamic properties of the flow, additional investigations are required to assess its suitability
for supercritical flows.
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Aspect ratio: ∆xturb = 0.25 ∆xturb = 0.15 ∆xturb = 0.10 ∆xturb = 0.05

∆xturb/∆z 0.7576 0.4545 0.3030 0.1515

Table 4.3: The aspect ratio between the streamwise and spanwise directions of the grid cells found in
the turbulent region.

(a) FFT modes. (b) Cf .

Figure 4.8: (a) Representation of different FFT modes obtained with different mesh refinements in
the turbulent region. (−) represents the mode (ω0, 0), (..) represents the mode (ω0/2, β). The colour

code is given in the skin-friction coefficient. (b) Representation of the skin-friction coefficient
obtained with different mesh refinements in the turbulent region.

4.3.3 Effect of the grid ratio

The influence of the spanwise grid spacing was initially examined on the mesh with the coarsest grid
spacing of ∆xturb = 0.25. The analysis, presented in Appendix D.1, indicates that the ratio of the
streamwise and spanwise grid spacing should be at least 0.75 to ensure the stability of the simulation.
Furthermore, this preliminary investigation shows that the grid aspect ratio has minimal impact on
the growth of the different FFT modes.

Then, additional simulations were performed on a finer mesh with a ratio of ∆xturb/∆z = 1 and 2
to validate these findings. The modal representation, given in Fig 4.9(a), indicates that the impact of
the ratio ∆xturb/∆z on the different FFT modes remains negligible. The friction coefficient, shown in
Fig 4.9(b) indicates that the transition location and the growth of the Cf are very similar, irrespective
of the value of the ratio. However, this observation does not hold for the amplitude of the peak over-
shoot at Rex = 6 · 105, as it varies depending on the aspect ratio, but only for the two coarser grids.
Two important observations were made. Firstly, while the modes obtained with ∆xturb and an aspect
ratio of 1 or 2 are relatively similar in the transition region, there is a noticeable difference in the
amplitude of the overshoot on the friction coefficient. Secondly, the disparity in the starting point at
which the first oblique mode begins to grow, as observed previously, between ∆xturb = 0.25 and 0.10,
is not caused by the spanwise grid spacing.
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(a) FFT modes. (b) Cf .

Figure 4.9: (a) Representation of different FFT modes obtained for different refinement of ∆xturb in
the turbulent region, as well as various refinements in the spanwise direction. (−) Represents the

mode (ω0, 0), (..) represents the mode (ω0/2, β). (b) Representation of the friction coefficient
obtained for different refinements of ∆xturb in the turbulent region and various refinements in the

spanwise direction. The colour code is indicated in (b).

Based on these findings, a ratio of 1 between the streamwise and spanwise grid spacing will be
imposed to ensure stability in the simulations. Increasing the ratio beyond this point would consider-
ably increase the computational costs without significantly improving the quality of the results. This
choice aligns with other studies such as Kim et al. [130]. Nevertheless, the use of a streamwise grid
spacing of ∆x = 0.1, which corresponds to ∆x+ = ∆x · Reτ = 5.4 in wall units is in accordance to
other DNS simulations, such as Sayadi [37] with ∆x+ = 10.3 and Kawai [120] with ∆x+ = 5.1 and
a ratio ∆x/∆z = 1. However, in the transcritical simulation, Kawai [120] used a streamwise grid
spacing of ∆x+ = 3. Therefore, to ensure that all the smallest length scales are accurately captured,
two additional simulations with a streamwise grid spacing of ∆x+ = 4 and 2.6, which correspond to
∆xturb = 0.075 and 0.05, respectively, are conducted.

Remarkably, it has been observed that further grid refinement unexpectedly delays the transition,
as illustrated in Fig 4.10(b). The friction coefficient computed on the two finest grids reaches its
minimum value at Rex = 4.75 · 105, whereas it occurs at Rex = 4.6 · 105 with ∆xturb = 0.1. The
most significant discrepancies are observed in the oblique mode (ω0/2, β), shown in in Fig 4.10(a). In
the laminar region, this mode has a relatively similar shape, although there is an offset in amplitude.
However, close to Reδ = 600, the shape abruptly changes with the presence of a sharp minimum, when
∆xturb = 0.10, not visible on the finer meshes. After this extremum, the oblique mode increases until
it crosses the fundamental 2D mode at Reδ = 695. However, on the finer meshes, this minimum does
not appear, resulting in a delayed increase. Subsequently, the interaction occurs at Reδ ≈ 715 instead
of 695, which explains the delay in the skin-friction coefficient.

The analysis has brought to light a convergence issue. Moreover, due to computational constraints,
it is not feasible to continue increasing the number of points in the streamwise direction. A significant
alteration in the presented oblique mode is observed at around Reδ = 620, which is in close proximity
to the region where the mesh begins to be refined. Consequently, the numerical error is possible, and
in order to eliminate this possibility, three distinct simulations will be performed on a mesh with an
equidistant distribution in the streamwise direction.
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(a) FFT modes. (b) Cf .

Figure 4.10: (a) Representation of different Fast-Fourier transform modes obtained using different
mesh refinements in the turbulent region while maintaining a unit ratio between the streamwise and

spanwise directions. (−) represents the mode (ω0, 0),(−.) represents the mode (ω0/2, 0), (..)
represents the mode (ω0/2, β). (b) Representation of the skin-friction coefficient. The colour code is

indicated in (b).

4.3.4 Validation using equidistant distribution

Three simulations are conducted with a streamwise equidistant distribution with the physical and
numerical parameters corresponding to case 3D Study Grid Equid in Tab 6.1.

(a) FFT modes. (b) Cf .

Figure 4.11: (a) Representation of different Fast-Fourier transform modes obtained using different
equidistant mesh. (−) represents the mode (ω0, 0),(−.) represents the mode (ω0/2, 0), (..) represents

the mode (ω0/2, β), (−−) represents the mode (ω0/2, 2β). (b) Representation of the skin-friction
coefficient computed on different meshes. The colour code is indicated in (b).

The behaviour of the Cf using a non-equidistant mesh, presented in Fig 4.10(b), exhibits a reversal
behaviour compared to the simulations performed on an equidistant mesh in Fig 4.11(b). When using
a non-equidistant mesh shows a delayed transition as the grid spacing decreases. In contrast, when
using a finer equidistant mesh, the transition occurs earlier. For instance, the location of the transition
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using the non-equidistant mesh with ∆xturb = 0.075 occurs at Rex = 4.78 · 105, while the equidistant
mesh with the same grid spacing indicates a transition at Rex = 4.67 · 105. The reason behind this op-
posite behaviour becomes evident from the evolution of the eigenmodes depicted in Fig 4.11(a). On the
equidistant mesh, the mode (ω0/2, β) exhibits a distinct sharp minimum followed by a rapid increase,
resulting in an earlier transition. However, when using the same grid spacing on a non-equidistant
basis (Fig 4.10), this minimum disappears, and a delayed growth similar to the finest non-equidistant
grids is observed. This is counter-intuitive from a numerical standpoint. It appears that there is an
extremely sensitive additional parameter that determines whether the transition path.

To investigate this unusual behaviour and eliminate the possibility of other modes affecting the
transition path, the amplitudes of all modes on two equidistant grids will be presented at different
Reynolds numbers ranging from Reδ = 600 to Reδ = 680, covering the extremum of (ω0/2, β). The
amplitudes of these modes using both the coarser and finest equidistant grids are presented in a matrix
form in Fig D.2 in the Appendix D.2 for space savings. Notably, that the high amplitudes observed for
the harmonics of the 2D waves persist consistently across all Reynolds numbers and for both simula-
tions, suggesting a potential influence on the transition process. These harmonics were present in the
ideal gas simulation but had amplitudes two orders of magnitude lower than that of the fundamental
mode, making them negligible. However, in this study, the non-linearity present in the system due to
the transcritical conditions and the use of the Van der Waals EoS, seems to generate higher-amplitude
harmonics, as represented in Fig 4.12(a). The existence of these harmonics has been previously re-
ported in Lee’s work [131] and Marxen’s study [132]. They discovered that these higher harmonics
can have significant amplitudes for the prediction of the transition. The following section Sec 4.4 will
present an analysis of these harmonics and the introduction of a method aiming to mitigate their
amplitudes.

The amplitude analysis of oblique modes at increasing Reynolds numbers, specifically Reδ = 670
and 690, reveals some surprising behaviour. On the finest grid, two non-excited oblique modes, namely
(3ω0/2, β) and (5ω0/2, β), have significant amplitudes comparable to the excited mode (ω0/2, β), but
solely on the finest grid. This increase in amplitude of these non-excited oblique modes is attributed
to the presence of nonlinearity, which lead to this mode capture. It is worth noting that the mode with
a higher spanwise wavenumber (2β and 3β) shows lower amplitudes in both simulations. The modal
representation of these two oblique modes, (3ω0/2, β) and (5ω0/2, β), shown in Fig 4.12, indicates the
presence of nonlinear interactions. These modes exhibit growth rates comparable to the excited mode
(ω0/2, β). This mode coupling phenomenon is observed on both grids, but it occurs later on the coarser
grid, which explains the difference observed in the matrices. At the highest Reynolds number, it is
expected to observe significant differences between the two grids since the oblique mode on the finer
mesh has already interacted with other modes, resulting in a relatively turbulent flow. It should be
noted that in all simulations with a minimum occurring in the oblique mode (ω0/2, β) at Reδ = 620, a
consistent behaviour is observed. Similarly, simulations that do not demonstrate this minimum exhibit
the opposite behaviour.
At this stage, it remains unclear which parameters influence the path to turbulence. Since both grids
exhibit similar behaviour with respect to the different harmonics, the fundamental mode and three
oblique modes with 1β, it is unlikely that these harmonics alone are responsible for the different
transition. This investigation highlights the nonlinearity that exist in the system. Nonetheless, the
precise mechanism that leads to the modification of the transition remains unclear.
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(a) Harmonic. (b) FFT modes.

Figure 4.12: (a) Representation of different harmonic modes (ω0, 0),(2ω0, 0) and (3ω0, 0) obtained
with different equidistant meshes. (b) Representation of different Fast-Fourier transform modes

obtained with different equidistant meshes. (−) represents the mode (ω0, 0); (..) represents the mode
(ω0/2, β); (−−) represents the mode (3ω0/2, β); (−.) represents the mode (5ω0/2, 0).

In order to gain further insights into the system and understand the differences between the two
simulations, the profiles of the streamwise velocity fluctuations and density fluctuations profiles, for the
fundamental mode (ω0, 0) and two oblique modes (ω0/2, β) and (ω0/2, 2β), will be analysed at various
Reynolds numbers to understand the difference between both simulations. To prevent overloading the
report, only two density profiles at two Reynolds numbers are presented in Fig 4.13, normalised by
the maximum amplitude, while the remaining streamwise velocity and density profiles can be found in
Appendix D.4.

(a) Reδ = 650. (b) Reδ = 670.

Figure 4.13: Representation the density fluctuation profile for the fundamental mode (left) (ω0, 0)
and the oblique modes (middle) (ω0/2, β) and (right) (ω0/2, 2β). The red lines indicate the location

of the pseudo-critical temperature.
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The analysis of the fundamental streamwise velocity and fluctuation profiles reveals negligible dif-
ferences in shape but exhibit significant differences in amplitude across all Reynolds numbers. These
differences in amplitudes are particularly noticeable in the oblique density fluctuation profiles, where a
factors larger than 2 are observed between the simulations at Reδ = 650 and 670. The larger amplitudes
observed on the finest grid may potentially account for their earlier growth. Regarding the wall-normal
discretisation, it appears to accurately capture the different peaks present in the streamwise velocity
fluctuation profiles at all Reynolds numbers. However, the presence of sharp gradients in the density
profiles, close to the Widom line, highlights the limitations of the present discretisation. Indeed, the
numerous peaks present in the oblique modes at lower Reynolds numbers, which decrease across the
domain, are not accurately captured. The resolution used in the simulations could potentially miss
the true maximum of the different eigenmodes, leading to a discrepancy in amplitude between the
two simulations. This discrepancy, in turn, may generate a different pathways to turbulence. This
study reveals the limitations of the wall-normal grid spacing in capturing the different peaks present
in the fluctuating density profiles of the various oblique modes potentially leading to the difference in
amplitude in the other profiles.

The instantaneous vortical structures observed in both grids, shown in Fig 4.14 where the spanwise
length of the computational domain has been replicated three times, reveals the distinct paths taken
to achieve a turbulent flow. The simulation computed with a grid spacing of ∆x = 0.15, reveals
the significance of the second oblique mode (ω0/2, 2β), as indicated by the presence of six complete,
like Ω-vortices during the early stages of transition. The growth of this mode is observed to be
delayed compared to (ω0/2, β), but interacts with the 2D mode at nearly the same. This explains the
visualisation of successive arrangements of six and three Ω-vortices. In contrast, the finer grid is more
influenced by the first oblique mode, resulting in the presence of only three Ω-vortices.

(a) ∆x = 0.075. (b) ∆x = 0.15.

Figure 4.14: Representation of the second invariant of the velocity gradient tensor, Q, coloured by
the streamwise velocity. The spanwise length of the computational domain has been replicated three

times.

4.4 Additional frequency components

The amplitude of the second and third harmonics is at least one order of magnitude smaller than
the amplitude of the fundamental harmonic when using an ideal gas law. However, this difference in
amplitudes is not observed when using the Van der Waals EoS with a transcritical boundary layer,
where the amplitudes of the higher harmonics become comparable to the fundamental harmonic. As
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shown on the stability diagram in Fig 4.15, the higher harmonics F2 = 220 · 10−6 and F3 = 330 · 10−6

excite both Mode I and Mode II in the study area. These harmonics play, thus, a significant role in
the development of turbulence. It is therefore essential to find a method that reduces their amplitudes
to a negligible level.

To investigate the origin of these harmonics and rule out the possibility of numerical parameters
on their nonlinear growth, a comprehensive analysis is conducted. The study examined the impact
of various factors, including the sampling frequency, mesh quality, amplitude of the blowing/suction
wave, and the influence of the sponge area at different boundaries. To expedite computational time,
the analysis of these harmonics will be performed on a two-dimensional domain using the numerical
parameters of case 2D Harmonics Study in Tab 6.1. The complete analysis and convergence study
are presented in Appendix E, with the main results summarised here. Then, an implementation of a
modified method for introducing these disturbances is carried out to determine if the forcing wave is
responsible for the observed high amplitudes.

Figure 4.15: Linear stability curve for the transcritical simulations, where the red lines represent the
fundamental and subharmonics, and the blue lines represent the second and third harmonics.

The analysis indicates that using 10 samples per wave is sufficient to capture the fundamental
harmonic but not the second and third harmonics, while using 15 samples can capture the second
harmonic, and at least 20 samples are required to capture both the second and third harmonics. Since
this study focuses on the first three harmonics, 20 samples will be used. Increasing the number of
samples to capture these harmonics was expected from the Nyquist-Shannon theorem [133].
Similarly, the study of mesh quality reveals that a relatively coarse mesh in the streamwise direction is
sufficient to accurately capture the fundamental harmonics, but as the number of higher harmonics to
be captured increases, the number of grid points must also increase. This is evident, as the frequency
of the phenomenon being studied increases, it becomes necessary to use a grid with smaller spacing
in order to properly capture the higher frequency components. Furthermore, an investigation of the
top sponge area shows that the sponge length and strength have minimal effect on the amplitude of
the second and third harmonics. This finding suggests that the sponge area does not contribute to the
nonlinear growth of these harmonics. The determination of the optimal computational domain with
minimal error resulting from the grid, domain size, and other parameters corresponds to the case 2D
Harmonics in Tab 6.1.
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The amplitude of the forcing wave remains the most crucial parameter in this study. To assess its
effect on the harmonics present in the response, the amplitude is increased from A = 10−8 to 10−2. The
amplitude of the various harmonics using 10−4 and 10−6, normalised by the forcing amplitude depicted
in Fig 4.16, reveals that in the initial region of the domain, the amplitude of the second harmonic is
three orders of magnitude smaller than the fundamental harmonic when using 10−4, whereas it is
five orders of magnitude smaller when using 10−6. However, when the amplitude of the forcing wave
is increased to A = 10−2, the response of the system is highly nonlinear and unsatisfactory. The
large difference, in Fig 4.16, quickly decreases through the domain such that the amplitude of those
harmonics becomes not lower than two orders of magnitude at Reδ = 475 using 10−4 and at Reδ = 650
using 10−6. Further investigation into the impact of the streamwise grid spacing during a transcritical
simulation, while maintaining the same forcing amplitude, would be required as the outcomes obtained
using 10−6 display a noticeable amount of noise, indicating the requirement for a greater number of
points. While reducing the amplitude of the forcing leads to a decrease in the amplitude of the different
harmonics, it necessitates an increase in the number of points and, consequently, computational cost.
Despite this, the harmonics persistently retain their significance even with 10−6 for Reynolds numbers
larger than Reδ = 700.

Figure 4.16: Representation of the first three harmonics present in the response for an amplitude of
10−6 ans 10−4 during a 2D transcritical simulation normalised by the forcing amplitude.

In conclusion, the studies conducted in this analysis reveal that the large amplitude of the different
harmonics is not influenced by the mesh quality or sponge configuration. While the forcing has some
effect on the initial amplitude of these harmonics, they quickly become non-negligible. A recently
discovered technique will be introduced to replace the blowing/suction wave.

Modification of the perturbations

This method, proposed by Wasisto et al. [134], replaces the blowing/suction waves by adding the
eigenfunction of the perturbation, computed from the LST, to the velocity and temperature profiles
at the inflow boundary as represented in Fig 4.17.
For a 2D domain using the parallel flow assumption, the perturbation takes the form

q′(0, y, t) = q̃(y) · ei(αx−ωt),

where α and ω represent the prescribed wavenumber and frequency, respectively. This perturbation
vector is added to the base flow, q̄, as

q = q̄ + εq′
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where ε is a weighting factor which monitors the amplitude of the disturbances induced in the flow.

q(y)

Figure 4.17: Representation of the 2D computational domain with the eigenmode of the perturbation
(in green) introduced in the base flow at the inlet. Note that the scaling is not preserved and that no

sponge is located at the inlet.

The LST, using the physical parameters stated in case 2D Harmonics in Tab 6.1, with Reδ;start =
250 and F1 = 100 · 10−6 gives

α = αr + iαi = 0.075216 + i0.012919.

To determine the optimal amplitude of disturbances in the flow field, the weighting factor ε was
varied. The results are shown in Fig 4.18(a). At low Reynolds numbers, the amplitude of the prescribed
perturbations at the inlet, when ε is set to 10−2, is too high, causing a quicker increase of the second
harmonic. When the value of ε is decreased, a more typical behaviour is observed, with the amplitude
of the second harmonic remaining at least one order of magnitude below that of the fundamental
harmonics. The most promising results were obtained using ε = 10−3, as the relative difference in
amplitude between the fundamental and the second harmonics was found to be the largest.

(a) Influence ε. (b) Comparison forcing.

Figure 4.18: (a) Representation of the first two harmonic for various weighting factors ε, (−)
represents the fundamental harmonics, while (−−) represents the second harmonics. (b) Comparison
of the results obtained using blowing/suction waves with an amplitude of 10−4 compared to the case
using eigenmodes of the perturbation at the inlet. These results have been scaled by their amplitudes

at Reδ = 400.
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Fig 4.18(b) compares the results obtained with ε = 10−3 with those obtained using a blow-
ing/suction wave with an amplitude of 10−4 rescaled by the value at Reδ = 400. Both methods
show negligible differences in the fundamental wave, except minor oscillations present in the blow-
ing/suction wave method. Surprisingly, the amplitude of the second harmonic obtained with the new
technique is very similar to the previous method. The intention was to achieve smaller amplitudes for
the different harmonics. This clearly demonstrates that prescribing the eigenfunction of the perturba-
tion rather than a blowing/suction wave does not achieve the objective.

This investigation revealed the presence of unwanted high harmonics that could potentially influence
the transition process. To determine whether the blowing/suction wave is responsible for generating
these harmonics, the silent inflow condition method was implemented. The results suggest that the
presence of these harmonics is independent of the method used to introduce perturbations in the system.
This observation is corroborated by the fact that modifying the blowing/suction wave to match the
form proposed by Franko & Lele [127] generates harmonics with the same amplitude. However, since
these harmonics were equivalent between the different simulations conducted on an equidistant mesh,
they should not be responsible for the observed differences in the path to transition.

4.5 Presence of spurious oscillation

The previous simulation exhibited spurious oscillations within the transition region, as shown in
Fig 4.19(a). These oscillations have the potential to disrupt the physical transition and contribute
to the observed variations. The presence of the Widom line plays a significant role, as these oscil-
lations were not observed in a subcritical simulation or when an ideal-gas law was employed. The
observed spurious oscillations is believed to be generated as a result of the numerical schemes used, as
explained in Sec 2.3.2, which do not maintain pressure equilibrium ([18] and [17]). Their amplitude de-
creases when simultaneously refining the grid in the wall-normal and streamwise directions, indicating
their nonphysical nature.

Figure 4.19: Snapshot of the pressure, density, and streamwise velocity fields in the (x− z) planes at
y ≈ 0.4δ0

Modification of the numerical scheme

In order to eliminate these spurious oscillations, the numerical KEEP scheme will be modified to
ensure the maintenance of pressure equilibrium. The new proposed KEEP scheme, proposed by Shima
et al. [18], introduces an alternative approach to discretise the numerical flux of internal energy. Instead
of splitting the density ρ and the internal energy e as in Eq 2.3.5, their product is discretised as
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The new discrete pressure-evolution equation, derived by substituting Eq (4.5.1) into Eq (2.3.4),
cancels out using the ideal-gas law and the assumption of constant pressure and velocity distribu-
tion. This new KEEP schemes in a compressible problem using a real-gas EoS, demonstrates superior
numerical stability property without introducing any numerical dissipation compared to the previous
KEEP schem [18]. A more detailed explanation of the proposed KEEP schemes can be found in [18],
which has also demonstrated its efficiency during a 1D advection test under transcritical conditions in
the recent study conducted by Capuano [135]. However, even with the use of the new KEEP scheme,
the fluctuations are not completely eliminated, but their amplitude is significantly reduced, as shown
in Fig ??. Therefore, this updated method is employed for all subsequent simulations.

Figure 4.20: Representation of a snapshot of the pressure field throughout the domain using (a) the
previous KEEP scheme and (b) the new KEEP scheme.

4.6 Modification of the wall-normal distribution

The lack of convergence when refining only the streamwise direction highlights the importance of
analysing the wall-normal distribution. Refining this direction is challenging due to the steep thermo-
dynamic property gradient at the pseudo-critical line, which increases throughout the domain, making
it difficult to maintain a consistent level of refinement. This grid distribution is designed to accurately
capture the Widom line from the inlet to the outlet of the domain. It is worth noting that in a previous
study where a streamwise grid spacing of ∆x = 0.3 was used, a wall-normal grid with ny = 250 points
and a stretching factor of 5.8 was found to be sufficient to converge the FFT modes. However, this
previous study did not consider the effects of a smaller streamwise grid spacing and therefore was not
presented.

Fig 4.21(a) illustrates the position of the pseudo-critical temperature along the flat-plate, nor-
malised by the boundary layer thickness at the inlet δ0 or the 99th thickness. As the flow progresses
through the domain, the location of the pseudo-critical temperature increases with a maximum at
Reδ = 700. However, when the flow transitions to turbulence due to increased mixing, the location
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of the pseudo-critical temperature sharply decreases. It is interesting to note that the growth of the
pseudo-critical temperature is smaller than the growth of the 99th boundary layer, as evidenced by the
negative slope.
Fig 4.21 (b) presents the grid spacing close to the pseudo-critical temperature at different Reynolds
numbers using both the previous and the proposed wall-normal distribution. The previous mesh, with
250 points and a stretching factor of 5.8 showed that the grid spacing increased through the domain.
For instance, at Reδ = 400, a grid spacing of ∆y = 0.020 was used, whereas it increased to 0.024
for Reδ = 700. A new proposed mesh with 420 points and a stretching factor of 10 was suggested,
effectively doubling the number of points in the near-wall region (below y/δ0 = 1). This distribu-
tion ensured the accurate capture of the pseudo-critical line, maintaining a uniform grid spacing of
∆y = 0.01 across the entire domain. To address the previously encountered issue, various simulations
will be conducted using equidistant grids of 0.15, 0.10, and 0.075 with the numerical and physical
parameters of case 3D Study Wall normal in Tab 6.1.

(a) Pseudo-critical temperature. (b) ny −∆y.

Figure 4.21: (a) Evolution of the position of the pseudo-critical temperature in the wall-normal
direction normalised by δ0 or δ99(x). (b) Representation of the grid spacing in the wall-normal

direction for the two wall-normal distribution (3D Study Grid Equid and 3D Study Wall normal) in
Tab 6.1. The dotted lines correspond to the position of Tpc along the wall-normal distribution for the

specified Reynolds numbers.

Fig 4.22 illustrates the development of various eigenmodes and their corresponding skin-friction
coefficients using both the previous and the new wall-normal distributions. The additional refinement,
which ensures having 100 grid points within y/δ0 < 1, accelerates the increase of the oblique mode
for both meshes with ∆x = 0.15 and 0.10. The similarity in the results is further confirmed by
the close match observed in the Cf computed on those meshes. The friction coefficient is almost
identical regarding the location of the transition, the growth rate and the amplitude of the overshoot.
These findings indicate that the additional near-wall refinement has a significant impact on the oblique
modes. However, further refinement with a grid spacing of ∆x = 0.075 leads, once again, to abnormal
behaviour as the closest match is observed with 50 points in the near-wall region compared to 100. It
is very intriguing that the results with the finer meshes in all directions give similar results as the two
coarser meshes in the wall-normal direction.
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(a) FFT modes. (b) Cf .

Figure 4.22: (a) Representation of the fundamental 2D mode (ω0, 0) and the oblique mode (ω0/2, β).
(b) Representation of the corresponding skin-friction coefficient.

4.7 Modifications solving the convergence issue

Due to the limited available computational resources, further refinement of the grid in all spatial direc-
tions is not feasible. As a result, alternative approaches need to be explored to bypass the convergence
issue. Either increasing the reduced pressure to mitigate the significant gradients in thermodynamic
properties at the pseudo-critical point or decreasing the Mach number to eliminate any impacts arising
from acoustics of compressibility effects.

4.7.1 Increase of the pressure

The variation of the thermodynamic properties reveals a smoother gradient in the vicinity of the pseudo-
critical temperature when the pressure increases, as shown in Fig A.2. The convergence analysis will
be performed using the thermodynamic quantities corresponding to case Transcritical 1 in Tab 4.4.

Figure 4.23: Representation of the linear stability curve for the reduced pressure Pr = 1.1. The red
dotted line in the linear stability curves represents the fundamental frequency F1 = 110 and the

subharmonic frequency F2 = 55. The pentagram shows the middle of the disturbance strip.
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Additionally, modifying the reduced pressure leads to a change in the pseudo-critical tempera-
ture. At p∗/p∗c = 1.1, the pseudo-critical temperature is T ∗

pc/T
∗
c = Tpc = 1.014 [61]. After non-

dimensionalisation by T ∗
∞, it reveals that the wall temperature must exceed Tpc = 1.102, to obtain a

transcritical boundary layer, which is the case. The increase in the free-stream reduced pressure results
in a modification of the stability curve, shown in Fig 4.23. The main difference is the introduction
of perturbations (represented by the green pentagrams) located in a stable region. Additionally, us-
ing this pressure while keeping the same fundamental and subharmonic frequencies enables exclusive
excitation of Mode II across the entire domain.

parameter Transcritical 1

pr =
p∗∞
p∗c

1.1

Tr =
T ∗
∞
T ∗
c

0.92

Tw;r =
T ∗
w

T ∗
c

1.08

Tw = T ∗
w

T ∗
∞

1.18

Table 4.4: Thermodynamic parameters used in
the different transcritical simulations with an

increasing reduced pressure. Figure 4.24: The position of the pseudo-critical
temperature in the wall-normal direction for

various reduced pressures and the grid spacing
used at those positions at different Reynolds.

The positions of the pseudo-critical temperatures in the wall-normal direction are shown in Fig 4.24.
With the higher reduced pressure, the slope exhibits a prolonged growth, indicating a delayed onset
of the unstable region. Consequently, the transition to turbulence will occur further downstream.
Fig 4.24(b) demonstrates that the same wall-normal distribution is sufficient to accurately capture the
Widom lines, even for the maximum located at Reδ = 820. A brief investigation will be carried out
to examine the impact of different streamwise grid spacings (∆x = 0.25, 0.15, and 0.075) using an
equidistant distribution. The simulations will be conducted with the numerical and physical parameters
specified in case 3D Pr1 1 in Tab 6.1.

∆x ε [%] (ω0, 0) ε [%] (ω0/2, β) ε [%] (ω0/2, 2β)

0.25 0.19 4.7 6.9

0.15 0.02 0.05 0.72

Table 4.5: Relative errors of the different FFT modes for Reδ ranging from 450 to 850.

The obtained FFT modes, depicted in Fig 4.25, reveal the convergence of the two finest equidistant
grids by the overlap of all modes. To confirm the convergence, the relative errors of the fundamental
and two oblique modes were calculated with respect to the finest grid, and the results are presented
in Tab 4.5. The significant decrease in relative error observed for both oblique modes when using
∆x = 0.25 to ∆x = 0.15 indicates that convergence has been achieved. Subsequently, the skin-
friction coefficient in Fig 4.25 exhibits a nearly perfect collapse for the transition location, the growth
rate, and the amplitude of the overshoot. Through this study, it is revealed that increasing the free-
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stream pressure smoothes the gradients in thermodynamic quantities, which, in turn, leads to improved
convergence in the simulations.

(a) FFT modes. (b) Cf .

Figure 4.25: (a) Representation of different FFT modes obtained with different streamwise mesh
refinements. (−) represents the mode (ω0, 0), (..) represents the mode (ω0/2, β), (−−) represents the

mode (ω0/2, 2β). (b) Representation of the skin-friction coefficient.

4.7.2 Decrease of the Mach number

To ensure that the convergence issue with the use of Pr = 1.08, is not resulting from compressibility or
acoustic effects, the free stream Mach number will be reduced to 0.1, resulting in an Eckert number of
2.8×10−3. Previous studies have shown that employing a small Mach number enhances the numerical
stability of simulations, leading to accurate and dependable results [136]. The same grid analysis used
for the case referred to as 3D Study Wall normal will be employed. Also, note that decreasing the
Mach number does not lead to a modification of the temperature, density or viscosity profile. Note
that, when the free-stream Mach number is decreased, it becomes necessary to reduce the time step in
order to maintain compliance with the CFL condition [137].

(a) FFT modes. (b) Cf .

Figure 4.26: (a) Representation of different FFY modes obtained with different mesh refined in the
streamwise direction. (−−) represents the mode (ω0, 0)(−) represents the mode (ω0/2, β). (b)

Representation of the skin-friction coefficient.
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The different FFT modes for various refinements in the streamwise direction are shown in Fig 4.26(a).
By reducing the free stream Mach number, it becomes possible to achieve a collapse of the oblique
mode in the two finer meshes, which was not attainable with M = 0.4. The coarser mesh exhibits slight
variations in the location where the oblique mode initiates growth. However, this mesh is inadequate,
as evidenced by the presence of oscillations in this low amplitude mode. To highlight the convergence
of the mesh, the relative errors for both excited modes with respect to the finer grid are presented
in Tab 4.6. The reduction of the error on the oblique mode from 3% to 0.3% indicates convergence.
The skin-friction coefficient presented in Fig 4.26(b), exhibits, therefore, a similar behaviour for all
meshes. They all predict a transition at Rex = 5 · 105 with an equal growth rate for the Cf (which
comes from an equal growth rate of (ω0/2, β)). Minor differences in the amplitude of the overshoot can
be observed, along with the presence of oscillations in the curves as the flow intermittency increases.
These discrepancies are attributed to the averaging process conducted over only five periods, whereas
it appears that a larger number of periods is necessary for a more accurate representation.

∆x ε [%] (ω0, 0) ε [%] (ω0/2, β)

0.25 0.33 3.12

0.15 0.2 0.34

Table 4.6: Relative errors of the different FFT modes computed on a mesh refined in the streamwise
direction for Mach = 0.1. The errors are computed with respect to the finest grid for Reδ ranging

from 400 to 650.

4.8 Numerical settings

The sensitivity analysis of the parameters reveals the challenges in achieving a simulation that is
entirely free from numerical errors. The lack of convergence observed when using a reduced pressure
of Pr = 1.08 necessitates either increasing the free-stream pressure or decreasing the Mach number.
The final numerical settings, which will be utilised in the subsequent section analysing the influence
of various physical parameters, are provided in Tab 4.7.

Lsp;inlet Lsp;outlet Lsp;top σ Lz ∆z Ly Sf ny ∆x

20 20 13.33 1 9.63 0.15 40 10 420 0.15

Table 4.7: Values of the numerical parameters, determined from the parameter analysis, used in
Chapter 5.
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Chapter 5

Investigation of flow conditions on the
breakdown

The preceding chapter provides the means to identify the optimal numerical parameters that guarantee
a simulation with negligible numerical errors when employing a free-stream reduced pressure of 1.1 or a
Mach number of 0.1. The numerical parameters determined in Tab 4.7 will be employed throughout this
chapter to analyse the influence exerted by various physical parameters on the transition behaviour and
turbulent statistics of a boundary layer. These parameters include the wall temperature, free-stream
pressure, and Mach number.

5.1 Subcritical and transcritical boundary layer

To analyse the difference between a transcritical and subcritical boundary layer transition, three sim-
ulations are performed using the numerical and physical parameters corresponding to case 3D Grid
Study Grid Equid in Tab 6.1 and the thermodynamic properties given in Tab 5.1. In the simulation
labelled as sub 1, the fluid experiences cooling from the plate. In contrast, the simulation sub 2 has a
wall temperature similar to the free-stream, while the third one, transcritical, has a wall temperature to
generate a transcritical boundary layer. The mean density profile in the laminar region is represented
in Fig 5.1. This figure reveals the small density gradients in a subcritical boundary layer compared
to the transcritical simulation. It should be noted that the mean density ρ̄, calculated using a wall
temperature equal to the dimensionless free-stream temperature, does not remain exactly equal to 1
due to the higher Mach number and the resulting compression of the flow.

The different linear stability curves shown in Fig 5.2 reveal that the perturbations are introduced
within the unstable regions for all simulations but with a different growth rate, which is of the order of
10−4 in the transcritical simulation. The two stability curves observed in both subcritical simulations
show that the unstable Mode I is stronger and broader for a lower wall temperature. In particular,
for the fundamental frequency, the unstable range is slightly broader using a cold wall, spanning from
Reδ = 380 to 680 compared to Reδ = 400 to 660 for Tw = Tcr. The LST predicted a delayed
transition for the subcritical boundary layer as the wall temperature increased. It is important to
note that the presented linear stability curve is 2D, but an instability curve computed in 3D would
have shown a similar curve. The growth of different FFT modes, presented in Fig 5.3, supports this
prediction. For Reynolds numbers between 500 and 600, the (ω0, 0) mode exhibits a mean growth rate
of −αi = 3.8 · 10−3 for Tw/T∞ = 0.95 and 3.3 · 10−3 for Tw/T∞ = 1. This growth rate, during the
primary instability, increases to −αi = 7.7 · 10−3 when it results from Mode II.
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sub 1 sub 2 transcritical

pr =
p∗∞
p∗c

1.08 1.08 1.08

Tr =
T ∗
∞
T ∗
c

0.92 0.92 0.92

Twall;r =
T ∗
w

T ∗
c

0.87 0.92 1.08

Twall =
T ∗
w

T ∗
∞

0.95 1 1.18

Table 5.1: Thermodynamic parameters used in
the different simulations.

Figure 5.1: Evolution of the mean density
along the wall-normal direction for various wall

temperatures.
This observation confirms the stronger instability of Mode II, but it occurs at higher Reynolds

numbers as a plateau is first observed ranging from Reδ = 420 to 500. These different growth rates of
the fundamental mode result in a delayed secondary instability. Specifically, the oblique modes start
to exhibit the highest growth at Reynolds numbers of 575, 580, and 610 for Tw/T∞ = 0.95, 1, and
1.18, respectively. This analysis reveals that increasing the wall temperature delays the transition, as
observed in the work of Ren et al. [138]. Notably, the slope in the exponential growth of this mode
during the secondary instability exhibits a comparable pattern to that of the fundamental mode, with a
decrease observed in the subharmonic simulation. Specifically, the values decrease from 0.0633 to 0.054
for Tw/T∞ = 0.95 and Tw/T∞ = 1, respectively. While, the rate increases to 0.097 in the transcritical
simulation.

(a) Tw/T∞ = 0.95. (b) Tw/T∞ = 1. (c) Tw/T∞ = 1.18.

Figure 5.2: Representation of the linear stability curve for different wall temperature. The red dotted
lines show the fundamental frequency F1 = 110 · 10−6 and the subharmonics frequency

F2 = F1/2 = 55 · 10−6. The green pentagram represents the middle of the disturbance strip.

The evolution of the skin-friction coefficient, shown in Fig 5.4, shows a good correlation between
the results of the subcritical simulations and the Blasius solution [113] in the laminar region, and
with 1/7 power law in the turbulent region. Furthermore, the skin-friction coefficient resulting from
the transcritical simulation also demonstrates good agreement with the theoretical correlation. The
transition location, indicated by a dashed line in Fig 5.3, represents the position where the amplitude
of the oblique mode reaches a critical threshold triggering spanwise interaction. The ratio between
these amplitudes at this position ranges from 15% to 20% for all simulations. This ratio signifies a
critical point where the shear stress at the wall begins to increase due to the breakdown of coherent
structures. The growth rate of the skin-friction coefficient in the transition region decreases from
∆Cf/∆Rex = 3.95 · 10¯8 to 1.95 · 10−8 for Tw/T∞ = 0.95 and Tw/T∞ = 1.18, respectively. However,
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Figure 5.3: Representation of the FFT modes (ω0, 0) and (ω0/2, β). The red dotted line represents
the position where the Cf reaches the minimum value.

despite the larger growth rate for the fundamental and oblique modes, the growth rate of the skin-
friction coefficient is much smaller in a transcritical boundary layer. This disparity in growth rates is
believed to be the cause of the reduced overshoot observed in the transcritical simulation, in contrast
to the prominent overshoot observed in a subcritical boundary layer. It is worth noting that the slope
of Cf in the turbulent region remains similar with respect to a given factor.

Figure 5.4: Representation of the skin-friction for the subcritical simulations with thermodynamic
quantities given in Tab 5.1. The theoretical and empirical correlation for the ideal-gas correspond to

the Blasius and 1/7 power law. The correlation for the transcritical simulations is explained
Sec C.0.7.

A comparison of the streamwise velocity and density fluctuation profiles, shown in Fig 5.5 and
Fig 5.6, extracted at various Reynolds numbers is conducted to highlight the differences between the
profiles resulting from Mode I and Mode II. These Reynolds numbers are adjusted to ensure consistency
between the subcritical and transcritical simulations. The first profile is taken before the subharmonic
mode becomes unstable, at Reδ = 500 for all simulations. Subsequently, profiles are extracted at
Reδ = 600 in the subcritical simulations and Reδ = 660 in the transcritical simulation, where the
subharmonic modes exhibit the highest growth rate. Finally, the profiles are extracted close to the
interaction of both modes, specifically Reδ = 650 for the subcritical case and Reδ = 700 for the
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transcritical case.
The profiles taken at Reδ = 500 demonstrate the differences between the fundamental profiles resulting
from the primary instability of Mode I or Mode II. The main disparities are observed in the peak
positions and the width of the profiles. At the lowest Reynolds number, the profiles extracted from
the transcritical simulation exhibit a maximum close to the wall, at y/δ99 = 0.17, whereas in the
subcritical cases, the peaks occur at y/δ99 = 0.24 and y/δ99 = 0.26, for Tw/T∞ values of 0.95 and
1, respectively. The fuller fluctuation profiles in a transcritical boundary layer result from the fuller
mean velocity profiles. Another difference is the broader peak observed in the subcritical profiles,
characterised by a constant decreasing slope until reaching the minimum at y/δ99 = 0.9 and 0.92. In
contrast, the profile obtained from the transcritical simulations is much sharper and exhibits a change
in the slope, as observed by Wang [52]. This profile shows a shift from a high to low slopes but reaches
zero fluctuations at approximately the same location, y/δ99 = 0.88, as the other profiles.

(a) Reδ;sub = 500;Reδ;trans = 500. (b) Reδ;sub = 600;Reδ;trans = 660. (c) Reδ;sub = 650;Reδ;trans = 700.

Figure 5.5: Representation of the streamwise velocity fluctuation profiles of the 2D fundamental
eigenmode (ω0, 0) (left) and the oblique mode (ω0/2, β) (right) at various Reynolds numbers. All

these profiles have been normalised by their maximum values.

(a) Reδ;sub = 500;Reδ;trans = 500. (b) Reδ;sub = 600;Reδ;trans = 660. (c) Reδ;sub = 650;Reδ;trans = 700.

Figure 5.6: Representation of the density fluctuation profiles of the 2D fundamental eigenmode
(ω0, 0) (left) and the oblique mode (ω0/2, β) (right) at various Reynolds numbers. All these profiles

have been divided by the maximum value in the transcritical boundary layer.

During the secondary instability, in Fig 5.5(b), the position of the maxima in the subharmonic
profiles, initially around y/δ99 = 0.5, decreases considerably. However, the width of the peak remains
broader in a subcritical boundary layer. These differences are believed to result from the sharper
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peak observed in the density fluctuation profiles, shown in Fig 5.6, close to the pseudo-critical tem-
perature (red dotted lines), for both modes in the transcritical simulation. It is believed that these
density fluctuations influence the streamwise velocity profiles, resulting in peaks with a narrower width.
Moreover, it is interesting to note that the density fluctuation profiles in the transcritical case show
earlier modifications compared to the streamwise velocity profiles. The profiles extracted during the
secondary instability at Reδ = 600/660 have already undergone significant changes compared to the
profiles taken during the primary instability at Reδ = 500. This suggests that the density undergoes an
earlier interaction. The streamwise velocity profiles computed near the modal interactions, shown in
Fig 5.5(c), show the modification of those profiles due to their interaction. These include the absence
of a zero velocity in the near-wall regions and significantly more undulations in the profile. On the
other hand, it can be inferred that the simulations with Tw = T∞ do not exhibit a transition at this
higher Reynolds number, which is consistent with the modal analysis in Fig 5.3.

Fig 5.7 shows instantaneous snapshots of the density in a wall-parallel plane at y∗ ≈ 10. As an-
ticipated based on the Cf and the eigenmodes, the formation of Λ-vortices, indicating the onset of
transition, takes place near x = 300δ0, corresponding to Rex = 3.9 × 105, where Cf is minimal, in
the subcritical boundary layer. In contrast, in the transcritical boundary layer, the first vortices are
observed closer to x = 550δ0. The formation of these vortices is thus responsible for the growth of
the skin-friction coefficient. The breakdown of the Λ-vortices, which arises from spanwise interactions,
seems to occur quicker in the subcritical simulation. In this case, the interaction between vortices,
accompanied by their shape deformation, takes approximately 70/δ0 to reach a fully turbulent flow.
Conversely, under transcritical conditions, the interaction that leads to the transition into fully turbu-
lent flow takes place around 120δ0. This discrepancy is likely the cause of the smaller growth of the
skin-friction coefficient.

Figure 5.7: Representation of the density fields in the subcritical boundary layer with Tw/Tcr = 1
(top) and the transcritical boundary layer (bottom).

The density patterns within the transition region, specifically between x = [600 − 670]δ0 in the
transcritical case and [360 − 430]δ0 in the subcritical case, exhibit notable differences. The variation
of density in the spanwise direction is relatively important as it ranges from 1 to 0.3 within the
transcritical boundary layer. At x = 600δ0 and y = 10δ0, a triangular structure becomes apparent,
with a leading edge exhibiting a region of high density (depicted in red). This structure subsequently
undergoes breakdown, resulting in the emergence of two high-density regions at y = 5δ0 and y = 15δ0,
where the fluid exhibits liquid-like behaviour. These regions are separated by a zone of extremely low
density at x = 650δ0, where the fluid exhibits gas-like behaviour. A similar structure is observed in the
ideal-gas simulation, appearing at x = 300δ0 and at y = 5δ0 and y = 15δ0. However, the leading edge
of this structure exhibits a less pronounced separation between the higher and lower density regions,
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and its breakdown occurs more quickly.
Analysing the streamwise velocity fields in the Appendix D.6 reveals that the regions of high density
correspond to zones of high streamwise velocity and their breakdown generates two regions of high
velocity. These streaks persist for approximately 100δ0 before reaching a fully turbulent flow in the
transcritical boundary layer. In contrast, in the ideal-gas case, their separation is maintained for only
about 25δ0, highlighting the much faster transition to a turbulent flow when the spanwise interaction
begins to occur.

A cross view (y − z) plane representation of the streamwise velocity, density, and temperature
fields, along with their respective fluctuations at x = 650δ0, at the same time as Fig 5.7, is provided
in Fig 5.8.

Figure 5.8: Instantaneous cross-view (y-z plane) snapshots of the heated transcritical turbulent
boundary layer at x = 650δ0 in the region of 0 < y/δ0 < 3 and 0 < z/δ0 < 19.2. (a) Streamwise

velocity and the fluctuations, (b) density and the fluctuations , (c) temperature and the fluctuations,
(d) wall-normal velocity and streamwise vorticity.

In the flow fields, areas of high density correspond to regions of low temperature, indicating a
liquid-like behaviour of the flow, and vice versa. The coherent structures can be visualised in the
streamwise velocity fields, where regions of lower velocity compared to the surroundings at z = 10δ0
and y = 2.5δ0 represent the Ω-vortices. The center of these vortices is associated with zero streamwise
vorticity but a high spanwise vorticity, as predicted by theory [2]. The wall-normal velocity fields reveal
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the presence of four maxima at z = 4, 6, 14, and 13δ0, which correspond to the positions where the
two legs of each Λ-vortex lift up. These regions are characterised by a high amplitude of streamwise
vorticity, as shown in Fig 5.8(d), attributed to the large velocity gradient around their legs.

The two streaks corresponding to a region of high density and low temperature at z = 5δ0 and 15δ0
shown in Fig 5.7, exhibit significant fluctuations in temperature and density along the wall-normal
direction. These fluctuations result from the spanwise interactions, which enhance the mixing of the
flow. However, there is a zone of zero fluctuations located between the two streaks at z = 10δ0, which
separates them. This zone is characterised by a higher temperature and wall-normal velocity compared
to its surroundings, but a lower streamwise velocity, as it corresponds to the lifting of the Ω-vortices.
From each part of this area, a specific pattern can be observed with positive and negative fluctuations
of temperature and density, respectively. In the fluctuation temperature profile, this pattern is charac-
terised by a negative fluctuation amplitude and a two-legged structure. In those legs, the amplitude of
the fluctuations increases as one gets closer to the wall. This is due to the large gradient of properties
at the pseudo-critical temperature, which is observed in the mean profiles. The combination of the
high streamwise vorticity structures, the Λ-vortices, along with the interactions between near-wall tur-
bulence and the Widom line, appears to increase the amplitude of the fluctuations. This phenomenon
leads to enhanced flow mixing. These high fluctuations and patterns were not observed in the ideal-gas
simulations [139].

5.2 Fluctuations of thermodynamic quantities

The evolution of the Root Mean Square (RMS) value of various thermodynamic quantities in a tran-
scritical boundary layer along the flat-plate is presented in Fig 5.9. An increase in the different
quantities is observed along the domain, reaching their maximum amplitude at Rex = 5.9 · 105, which
coincides with the transition region and corresponds to the skin-friction coefficient becomes larger, in
Fig 4.22(b). Those fluctuations were negligible ≈ 2% in the subcritical boundary layer and thus not
presented. Subsequently, The maximum amplitudes decrease but remain constant in the fully turbu-
lent flow at Rex = 8.1 and 9.2 · 105 respectively. The maximum RMS values for density and kinematic
viscosity are approximately

√
ρ′ρ′/ρ̄ and

√
µ′µ′/µ̄ ≈ 30. Regarding specific heat Cp, the variations

are even larger and exceed 80%, while the variations in thermal conductivity are negligible, remaining
below 10%. These findings highlight the significant fluctuations in these thermodynamic quantities in
the transition of a transcritical boundary layer. These fluctuations in density, viscosity, and specific
heat are thought to be the cause of the convergence problem. Additionally, the non-negligible density
fluctuations invalidate Morkovin’s hypothesis [15]. Consequently, the effects of these fluctuations on
the log-law and turbulent statistics will be further investigated.

5.3 Influence of the pressure

This section focuses on investigating the influence of free-stream pressure on the transition behaviour
of a supercritical boundary layer. Three simulations were conducted, varying the free-stream pressure
at values of Pr = 1.08, 1.1, and 1.15, while referring to the corresponding wall temperatures specified
in Tab 4.4. One should note that the simulation conducted with a free-stream pressure of Pr = 1.15
necessitates the modification of various parameters. The linear stability curve shows that this increase
of pressure leads to a delay and weakening of the unstable Mode II, and the complete separation of
the two modes. Mode I manifest at higher frequencies and lower Reynolds numbers, while Mode II
is observed at higher Reynolds numbers and lower frequencies. Consequently, adjustments have been
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Figure 5.9: Variance of thermodynamic properties in heated transcritical turbulent boundary layers
at a supercritical pressure of pr = 1.08.

made to the domain range and excitation frequencies, while maintaining consistent grid spacing in each
direction. A detailed explanation and the modal analysis can be found in Appendix F. The numerical
parameters used for these simulations are denoted as 3D case Grid wall normal, 3D Pr 1.1, and 3D
Pr 1.5, based on Tab 4.7. The primary focus of this analysis is to evaluate the impact of free-stream
pressure on fluctuation profiles and the skin-friction coefficient. Furthermore, the study aims to quan-
tify the influence of pressure on root mean square values and their subsequent effects on the mean
statistics of a fully turbulent flow.

To ensure consistency among the various fluctuation profiles, the profiles were extracted at dif-
ferent Reynolds numbers. Specifically, these profiles were obtained at Reδ = 550 for Pr = 1.08 or
1.1, and Reδ = 1350 for the higher pressure case. This selection ensures that each profile is obtained
at a position where the amplitude of the oblique mode remains small and negligible compared to
the fundamental mode. The fundamental profiles are depicted in Fig 5.10(a), the subharmonic profiles
in Fig 5.10(b), and a comparison of the amplitude of the density fluctuation is presented in Fig 5.10(c).

An increase in the free-stream pressure leads to in a broader and elevated position of the peak. For
instance, in the fundamental density profile the maximum occurs at y/δ99 = 0.22 for Pr = 1.1, while for
Pr = 1.15, it is located at y/δ99 = 0.37. This indicates a ratio of 1.6 between the two, which also holds
true for the oblique profile. The increase in the maximum position along the wall-normal direction is
associated with the rise in the location of the pseudo-critical temperature (depicted with the dotted
line) as the simulations conducted with Pr = 1.15 operate at larger Reynolds numbers. Furthermore,
Fig 5.10(c), where the profiles are normalised by the maximum amplitude using Pr = 1.08, reveals
that the amplitude of the peak decreases with increasing pressure. In summary, increasing the reduced
pressure leads to a decrease in the sharpness and amplitude of the peak. The increased width and
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amplitude of the peak can be attributed to smoother variations in property distribution along the
wall-normal direction, as illustrated in Fig 2.1. It should also be noted that the peaks differ with
the position of the pseudo-critical temperature, and these differences become more pronounced with
increasing pressure. When examining the fundamental streamwise velocity fluctuations, it becomes
evident that increasing the reduced pressure results in a broader profile. In fact, when Pr = 1.15, the
minima disappear from the near-wall region below y = 3δ99(x). However, the maxima are relatively
unaffected by this modification. The interpretation of the oblique modes shown in Fig 5.10 is more
challenging due to the varying Reynolds numbers. Nevertheless, it is clear that a wider peak is present
in these modes as the reduced pressure increases.

(a) (ω0, 0). (b) (ω0/2, β). (c) (ω0, 0) |ρ′|/ρ′max(Pr;1.08).

Figure 5.10: Representation of the fundamental (ω0, 0) and oblique (ω0/2, β) streamwise velocity and
density fluctuation profiles at various Reynolds numbers. (a) and (b) are normalised by their

maximum value while (c) is normalised by the maximum value using Pr = 1.08. The dotted line
represents the position of the pseudo-critical temperature.

The delayed transition resulting from an increase in pressure, predicted from the linear stability
curves, can be observed in the skin-friction coefficient, as shown in Fig 5.11, as well as in the snapshot
of the streamwise velocity in Fig 5.12. The overshoot of the skin-friction coefficient for Pr = 1.08
and Pr = 1.1 is very similar, with a difference of less than 1%, although slightly higher for Pr = 1.1.
Both simulations reach their maximum skin-friction coefficient with a relative difference in amplitude
of 2%. However, at higher pressures, the growth rate becomes significantly smaller, exhibiting a
relative difference of 30% compared to Pr = 1.1. Consequently, the amplitude of the overshoot in the
skin-friction coefficient is much smaller, with a difference of 12%. This overshoot is, however, small
compared to the one obtained during the transition of a subcritical boundary layer. Physically, the
increase of the pressure induces the compaction of the fluid, making it more challenging for small
perturbations to destabilise and requiring a higher amount of energy.

The formation of Λ-vortices, which are pairs of positive and negative streamwise vorticity, serves as
an indicator of the transition process, and their appearance is noticeably delayed with increasing free-
stream pressure. For the two presented pressures, the streamwise velocity fields exhibit similarities in
terms of the shorter distance it takes for the vortices to interact along the span and undergo breakdown,
resulting in a higher level of turbulence within the flow. The amplitude of streamwise vorticity within
the Λ-vortices demonstrates similar magnitudes, and the length of these vortices is also relatively
comparable, leading to the same flow pattern. For example, a triangular structure is observed twice in
the case of Pr = 1.08 at x/δ0 = 425, and once in the case of Pr = 1.1 at x/δ0 = 600. These structures
have been previously analysed and found to correspond to a region characterised by high density but
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Figure 5.11: Representation of the skin-friction coefficient for different free-stream reduced pressures.

low internal energy, exhibiting behaviour similar to that of a liquid surrounded by a gas-like flow. The
result for the highest pressure is not presented as it undergoes transition much later. This observation
highlights that as the pressure increases, the flow follows a similar path towards transition, with the
same structures appearing. The main difference lies in the position at which the perturbations become
unstable and trigger the transition process.

Figure 5.12: Snapshots of the streamwise velocity throughout the domain for various reduced
pressures.

Mean turbulent statistics at different pressure

The smoothing effect observed in the sharpness of property variations at the Widom line causes the
root mean squared amplitude of density fluctuations to decrease with reduced pressure, as illustrated
in Fig 5.13. The maximal value of 0.26 obtained at the lower pressure drops to 0.2 using Pr = 1.15.
Therefore, higher pressure serves to attenuate these fluctuations. Notably, when using the ideal gas law,
the amplitude of density fluctuations becomes negligible. This observation aligns with the expectation
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that ideal gas behaviour leads to minimal density fluctuations. The influence of these non-negligible
density fluctuations, which render Morkovin’s hypothesis [15] ineffective, on the mean velocity profile
is shown in Fig 5.13(b) using Van Driest scaling. All profiles exhibit a collapse with the theoretical
correlation u+ = y+ in the viscous sublayer, which highlights the minimal impact of fluctuations in this
region. The deviation with the log-law profile, represented by the IG curve, starts from the pseudo-
critical temperature (indicated by the dotted lines). In the log-law region (y∗ > 30), increasing the
reduced pressure tends to collapse with the log-law profile of the ideal-gas case. The smaller reduced
pressure gives the biggest difference compared to the ideal-gas case, and it tends to increase the log-law
region. This can be explained as an increase of the reduced pressure tends to decrease the density
fluctuations, it is understandable to tend to the reference case as fluctuations decrease. Moreover, this
is interesting as both mean profiles do not exhibit important differences compared to the IG while Van
Driest scaling only accounts for the mean density variation within the boundary layer but still works
for a transcritical boundary layer where the effect of density fluctuations is not negligible.

(a)
√
ρ′ρ′/ρ̄. (b) u+V.D − y+.

Figure 5.13: (a) Evolution of the root mean squared density fluctuations along the wall-normal
direction for various free-stream reduced pressures. (b) Evolution of the mean velocity profile using
the Van Driest scaling. The dotted lines represent the location of the pseudo-critical temperature.

All profiles have been taken from a fully turbulent flow.

The decomposition of the total mean stress into the viscous stress µ∂u/∂y and the Reynolds
stress −ρ̄ũ′′v′′ normalised by the wall shear stress is represented in Fig 5.14. In all cases, the viscous
stress collapses well in the log-law region but some non-negligible differences are noticed in the viscous
sublayer and buffer layer where the strong variations of properties appear. Similar to the mean velocity
profiles, the stress profiles also exhibit a tendency to collapse towards the reference curve computed
with the IG model as the pressure increases.

The Reynolds stress reveals an increase in amplitude with reduced pressure, indicating a difference
in peak amplitude and position that suggests the absence of universal scaling, as explained by Wu et
al. [140]. From a zoom in the near-wall region (y∗ < 15) in Fig 5.14(b), it can be observed that the
amplitude of the Reynolds stress in the viscous sublayer (y∗ < 4) is similar for all pressures, but devi-
ates from the case employing the ideal-gas law. This deviation is caused by the presence of significant
density fluctuations at these wall-normal locations, which have similar amplitudes regardless of the
pressure but are much larger than those computed with the IG law. Subsequently, this later stress is
reduced with the pressure at higher y∗. The opposite behaviour occurs regarding viscous stress. The
position where both stresses intersect is located at higher y∗ for lower pressure, indicating that the
viscous stress becomes more important using higher reduced pressure. This shows that the dynamics
of the momentum field are primarily governed by the molecular components for y∗ < 6 and by the
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(a) Reδ;sub = Reδ;trans = 440. (b) Reδ;sub = 620;Reδ;trans = 680.

Figure 5.14: (a) Decomposition of the total momentum stress into the viscous stress µ∂u/∂y and the
Reynolds stress ρ̄ũ′′v′′. All cases are normalised by the viscous stress at the cold wall. (b) Zoom-in

the near-wall region.

turbulent components for y∗ > 20. These results indicate that the density fluctuations in the heated
transcritical turbulent boundary layers do have a significant impact on the Reynolds shear stress and
the mean velocity profiles.

5.4 Influence of the Mach number

To assess the influence of the free-stream Mach number and the associated compressibility effects
on the transition of a transcritical boundary layer, two different simulations are conducted with the
thermodynamic parameters of Tab 5.2, while the numerical parameters are specified in Tab 6.1 for the
case labelled as 3D Pr 1.1.

Simulation pr =
p∗∞
p∗c

Tr =
T ∗
∞
T ∗
c

Tw;r =
T ∗
w

T ∗
c

M Ec

1 1.1 0.92 1.08 0.4 0.05

2 1.1 0.92 1.08 0.1 2.89 · 10−3

Table 5.2: Thermodynamic parameters used in the different transcritical simulations with different
free-stream Mach number.

The linear stability curves corresponding to the thermodynamic parameters presented in Tab 5.2
are shown in Fig 5.15. These figures demonstrate that only Mode II is excited within the computational
domain used. The introduction of perturbations occurs within a stable region for both simulations, but
the instability develops more rapidly with M = 0.4 at Reδ = 470, compared to M = 0.1 at Reδ = 510.
Physically, a lower free-stream Mach number corresponds to lower velocity magnitudes, which result in
less energy available to excite the perturbations in the flow. It is important to note that the excitation
of second harmonics could potentially activate Mode I with the smaller Mach number.

The modal representation depicted in Fig 5.16(a) confirms that the instability of (ω0, 0) is delayed
when using a smaller free-stream Mach number. This delayed growth has an impact on the development
of the oblique mode. Even though a delayed transition of the fundamental mode occurs with M = 0.1,
the transition takes place at approximately the same Reynolds number for both M = 0.4 and M = 0.1,
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(a) M = 0.1. (b) M = 0.4.

Figure 5.15: Representation of the stability diagram for various Mach number using a reduced
pressure of Pr = 1.1 with a wall temperature fixed at Tw/Tcr = 1.08.

(a) FFT modes. (b) Cf .

Figure 5.16: Representation of different FFT modes obtained with different Mach numbers. (full
lines) represents the mode (ω0, 0), (:) represents the mode (ω0/2, β). The black dotted lines represents
the position where the profiles will be extracted. (b) Representation of the skin-friction coefficient.

namely at 850 and 865 respectively, as observed in the friction coefficient shown in Fig 5.16(b). This
similarity in the transition position can be attributed to the growth rate of the oblique mode, which
used M = 0.4 is computed to be 65% of the growth rate observed at a smaller Mach number between
Re = 780 and 830. However, the growth of the skin-friction coefficient in the transition region is very
similar, except for the slight delay, as well as the amplitude of the overshoot. This figure highlights
the significant changes in the oblique mode for different Mach numbers, suggesting that they are likely
influenced by the compressibility effects.

The snapshot of the streamwise velocity in the (x−z) planes at y∗ ≈ 10 in Fig 5.17 reveals a similar
pattern in the early Λ-vortices, with a maximum value located at their heads. The vortices start to
appear at x = 575δ0 for both cases, but the main difference lies in the location where the flow becomes
turbulent. At the lower Mach number, the growth of the complete triangular vortices is relatively
limited compared to M = 0.4. As a result, the breakdown, which occurs due to spanwise interactions,
progresses more rapidly, and the recognisable Λ pattern disappears after x = 600δ0, whereas it remains
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visible until x = 650δ0 at lower Mach numbers. The streamwise velocity fields reveal a modification in
the length and strength of the Λ-vortices as the Mach number varies. It can be observed that the length
of these vortices decreases as the Mach number increases. At the same time, the velocity decreases,
indicating a compression and concentration of the Λ-vortices. This behaviour can be attributed to the
lower energy levels associated with lower Mach numbers. As the Mach number decreases, the vortical
structures weaken, leading to a slower increase in turbulence levels within the flow.
It should be noted that the maximum skin-friction coefficient along the spanwise direction occurs at
z = 5δ0 and 15δ0, the locations where the Ω-vortices lift up and breakdown, as revealed by the Q-
criterion in Fig 5.18. These representations use a spanwise direction of length 30δ0 and are very similar
for both Mach numbers.

Figure 5.17: Instantaneous snapshot of the streamwise velocity in the (x− z) planes at y∗ ≈ 10 in the
transition region.

(a) M = 0.1. (b) M = 0.4.

Figure 5.18: Instantaneous isosurfaces of the second invariant of the velocity gradient tensor, Q,
coloured by streamwise velocity for various Mach numbers. A video of the transcritical breakdown at

M = 0.1 is provided at https://youtu.be/ujm5_8kEuEk.
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The streamwise velocity fluctuation profiles extracted at various Reynolds numbers, specifically
Reδ = 500, 650, and 750, indicated by black dotted lines in Fig 5.16(a), are presented in Fig 5.19.
These profiles reveal that the Mach number does not significantly affect the overall shape of the
fundamental profile, except for the location of its maximum value, which is positioned closer to the
wall for lower Mach numbers. Furthermore, an additional observation is the presence of a smoother
peak in the oblique profiles when using a lower free-stream Mach number. This suggests that reducing
the Mach number of the incoming flow results in a more gradual variation of the oblique profiles,
in contrast to the sharper peak observed at higher Mach numbers. The presence of a broader peak
in the velocity fluctuation profiles at lower Mach numbers makes it easier to capture and can be a
contributing factor to the easier convergence observed in simulations with lower Mach numbers.

Figure 5.19: Evolution of the streamwise velocity fluctuation profile for the fundamental mode (left)
and the subharmonics (ω0/2, β) (right) for (a)Reδ = 500, (b)Reδ = 650 and (c) Reδ = 750.

The visualisation of the fluctuation density pro-
file, normalised by the maximum amplitude us-
ing M = 0.4, of the fundamental and oblique
mode at a Reynolds number of Reδ = 650, il-
lustrated in Fig 5.20, demonstrates a reduction
in amplitude as the Mach number decreases. A
ratio of 55% in terms of amplitude exists in the
fundamental profile, this ratio. Analogous to the
fluctuation velocity profile, lowering the Mach
number brings the peak closer to the wall. This
figure provides insight into the underlying cause
for the broader peak in the streamwise velocity
profiles and the improved convergence of simu-
lations when using a smaller Mach number.

Figure 5.20: Fundamental and subharmonic
density fluctuation profiles at Reδ = 650 for
both free-stream Mach numbers. The red
dotted line represent the position of the

pseudo-critical temperature.

Mean turbulent statistics for different mach number

Interestingly, it is observed that the free-stream Mach number has a minimal impact on the RMS value
of the density, dynamic viscosity, and specific heat fluctuations in the turbulent region, as shown in
Fig 5.21. Therefore, the Mach number and acoustic effects do not exert a substantial influence on the
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mean and fluctuation properties in a transcritical turbulent boundary layer.

The deviation of the mean velocity profiles from the reference profile, as observed in the log-law
region (10 < y+ < 120) using Van Driest scaling, remains consistent regardless of the Mach number.
This confirms that the deviation is primarily caused by the significant variation in density. The high
RMS values of the different thermodynamic quantities, as shown in Fig 5.21, support this attribution,
as well as the study of Guo [141]. Although the Mach number is reduced, it does not necessarily lead to
a reduction in the RMS value of the density fluctuation. However, it is noteworthy that the maximum
fluctuations of density occur at y+ ≈ 6, while the mean profiles still closely match the reference profile
within this region. This reveals the influence of those fluctuations primarily outside the buffer layer,
suggesting a limited impact on the flow dynamics within the viscous sublayer since all the profiles
match the relationship u+ = y+, scaled with δ0, below y+ = 5.

Figure 5.21: Profiles for RMS quantities for (a) dynamic viscosity µ, (b) constant pressure specific
heat cp and (c) density ρ. All profiles are normalised by Reynolds-averaged mean quantities.

(a) u+V.D − y+. (b) Rvv(z)/Rvv(0).

Figure 5.22: (a) Representation of the mean velocity profile in the turbulent region using the Van
Driest scaling for various Mach numbers. (b) Representation of the autocorrelation tensor for the

wall-normal velocity along the spanwise dimension measured in wall units.

The characteristic length of the coherent structures, indicated by the sharp minimum in the two-
point correlation of the wall normal velocity components, demonstrates an apparent increase for lower
Mach numbers. For Mach = 0.4, the length is approximately ∆z+ = 20, whereas for lower Mach
numbers, it measures around ∆z+ = 24. The latter length is more in line with the characteristic length
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computed using the ideal-gas model. Nevertheless, it should be noted that the spanwise discretisation
is relatively coarse, and enhancing the results could be achieved by increasing the number of points
and averaging over multiple periods. These findings provide valuable insights into the behaviour of
vortical structures and turbulence in relation to the Mach number.

5.5 Influence of the wall temperature

The effect of the position of the pseudo-critical temperature on the transition and RMS quantities in
a fully turbulent flow will be analysed by modifying the wall temperature. Three simulations will be
conducted using the thermodynamic parameters specified in Tab 5.3 and the numerical parameters
corresponding to case 3D Pr 1.1 in Tab 6.1. It is important to note that the wall temperatures
have been selected in such a way that the dimensionless wall temperature Tw = T ∗

w/T
∗
∞ exceeds the

dimensionless pseudo-critical temperature of T ∗
pc/T

∗
∞ = 1.102. This ensures that all boundary layers

are in a transcritical condition.

Simulation pr =
p∗∞
p∗c

Tr =
T ∗
∞
T ∗
c

Twall;r =
T ∗
w

T ∗
c

Twall =
T ∗
w

T ∗
∞

Ec

1 1.1 0.92 1.04 1.1.3 0.05

2 1.1 0.92 1.08 1.18 0.05

3 1.1 0.92 1.12 1.21 0.05

Table 5.3: Thermodynamic parameters used in the different simulations.

(a) δDNS(x). (b) Pseudo-critical temperature.

Figure 5.23: (a) Evolution of the δ99(x) boundary layer thickness along the flat-plate for various wall
temperatures. (b) Position of the pseudo-critical temperature in the wall-normal direction

throughout the domain for various wall temperatures.

The increase in the position of the Widom line, as a function of wall temperature, can be observed
in Fig 5.23(b), which shows the location of the pseudo-critical temperature in the wall-normal direction.
This indicates that reducing the wall temperature leads to a decrease in the position of the Widom
line. However, the growth of the boundary layer thickness, as shown in Fig 5.23(a), suggests that
the wall temperature has no influence in the laminar region. Interestingly, the two temperatures that
are farthest apart exhibit an earlier transition, indicated by a sudden change, compared to the case
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computed with Tw/Tcr = 1.08. This contrasts with the results obtained in a subcritical boundary layer
in Sec 5.1, where an increase in wall temperature resulted in a delayed transition.

Surprisingly, the stability curves obtained with the lower wall temperature, presented in Fig 5.24,
only show the presence of Mode I. This mode can be identified by its significantly lower growth rate
compared to Mode II. As the wall temperature increases, the presence of Mode I decreases, almost
disappearing when using Tw/Tcr = 1.08, and completely vanishing within the observed frequency range
when using Tw/Tcr = 1.12. However, higher wall temperatures show the appearance of Mode II, which
exhibits significant variation with the wall temperature. This causes the initial perturbations (indi-
cated by the green pentagram) to fall outside the unstable range when Tw/Tcr = 1.08, and inside the
unstable range when Tw/Tcr = 1.12. It is worth noting that the perturbations also fall within the
unstable region of Mode I. This difference and its consequences can be observed in the modal repre-
sentation and the corresponding skin-friction coefficient shown in Fig 5.25.

Figure 5.24: Zoom on the stability diagram computed with the properties in Tab 5.3. The left plot is
computed with Tw/Tcr = 1.04, the middle plot is computed with Tw/Tcr = 1.08 and the right plot
computed with Tw/Tcr = 1.12. The red dotted lines represent the fundamental and subharmonics

frequencies. The green pentagram represents the middle of the disturbance strip.

The growth of the fundamental mode, which directly starts after the introduction of the pertur-
bations, is observed for both Tw/Tcr = 1.04 and Tw/Tcr = 1.12 cases, with mean growth rates in the
primary instability region of approximately −αi = 2.5 · 10−3 and 8 · 10−3, respectively. This differ-
ence results from the presence of either the unstable Mode I or the unstable Mode II, which exhibit
different levels of instability. The secondary instabilities for both simulations occur at approximately
Rex = 3.3 ·105. However, due to the presence of Mode II, the growth rate of the oblique mode is higher
for Tw/Tcr = 1.12, resulting in an earlier interaction at Rex = 5 · 105, compared to Rex = 5.5 · 105 and
thus Cf increases earlier.
In the simulation with a wall temperature of Tw/Tcr = 1.08, the introduction of perturbations in the
stable region leads to a decrease in the amplitude of the fundamental mode until it crosses the stability
diagram at Rex = 2.4 · 105. Then, the growth rate of this mode resulting from the primary instability
is about −αi = 3.2 · 10−3, which falls between the mean growth rates of the previous simulations.
This result is consistent with the stability diagram, which predicted a larger growth rate for Mode
II that increases with temperature. As a result, the secondary instability and transition occur later
for this temperature, as observed from the friction coefficient and the boundary layer thickness. It is
observed that when only Mode II is excited, increasing the wall temperature results in a broader and
stronger unstable Mode II, leading to an earlier transition. This behaviour is in contrast to what is
typically observed in a subcritical boundary layer, as an increase in wall temperature tends to delay
the transition.
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The absence of a distinct overshoot in the skin-friction coefficient, shown in Fig 5.25, for the
two boundary layers transitioning from Mode II was previously observed in Sec 5.1. While the wall
temperature has a negligible influence on the maximum value of the overshoot, with a maximum of
2.8 · 10−3 and 2.7 · 10−3 for Tw/Tcr = 1.08 and Tw/Tcr = 1.12 respectively, this discrepancy may
also be attributed to the averaging over a too small number of samples. However, in the case of
a transcritical boundary layer transitioning solely due to the unstable Mode I, a distinct overshoot
appears with a significantly larger amplitude of 4.1× 10−3, which is a 35% increase, compared to the
other simulations. Therefore, the previous discussion regarding the friction coefficient can be adjusted,
as the lack of overshoot is not due to the thermodynamic properties of the flow but rather to the
unstable Mode II.

Figure 5.25: Representation of the growth of the two-dimensional mode (ω0, 0) and the oblique mode
(ω0/2, β), and the corresponding skin-friction coefficient for various wall temperature. The black

dotted line indicates the location from which the fluctuation profiles are extracted.

The influence of the wall temperature on the streamwise velocity and density fluctuation profiles,
given in Fig 5.27 and 5.26, is observed at various Reynolds numbers, depicted by black dotted lines on
the modal representation in Fig 5.25. These Reynolds are Reδ = 450, 550 and 680. At Tw/Tcr = 1.04,
both the fundamental and subharmonic velocity profiles exhibit the characteristic shape associated
with Mode I, which is typically observed in a subcritical boundary layer (as discussed in Sec 5.1). The
main difference compared to the subcritical profiles is the presence of a small peak in the fluctuation
profiles, which results from the pseudo-critical temperature (indicated by the blue dotted line).

The influence of wall temperature on the density profiles, shown in Fig 5.26, is evident. Each
profile has been divided by the maximum amplitude of the profiles computed with the higher wall
temperature, which is expected to produce larger peaks. The fundamental and subharmonic profiles
extracted at the first two locations reveal the presence of a sharper and higher peak as the wall temper-
ature increases. The higher position of the peak is consistent with the location of the pseudo-critical
temperature. However, it should be noted that the peak location does not exactly match with the
position of the pseudo-critical temperature, although this difference decreases with increasing wall
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temperature. Moreover, the difference in amplitude for the fundamental fluctuation profiles becomes
more pronounced as the Reynolds number increases. The last profiles extracted at Reδ = 680 show the
earlier transition of the two simulations conducted with Tw/Tcr = 1.04 and Tw/Tcr = 1.12, evidenced
from the deviation of the profiles from the reference profile. Increasing the wall temperature leads to
larger density fluctuations, which in turn increases the influence of non-ideal gas effects.
The analysis of the effects of those fluctuations on the streamwise velocity profiles resulting from Mode
II is given in Fig 5.27. The fundamental profiles during the primary instability show relatively similar
characteristics, with discrepancies in the maximum locations attributed to local flow conditions. How-
ever, the oblique modes appear to be significantly altered by the wall temperature and the amplitude
of the fluctuation, as a broader and higher peak is observed as the temperature decreases. For instance,
at Reynolds numbers of 550 and 650, the peak is observed at y/δ99 = 0.4 for Tw/Tcr = 1.12 and at
y/δ99 = 0.2 for Tw/Tcr = 1.08. The decreasing slope is more pronounced at the lower temperature,
which is probably a result of the lower fluctuation in density. This leads to the appearance of a min-
imum close to 1 for the latter temperature and close to 1.4 for the higher wall temperature. The
profiles taken at higher Reynolds numbers reveal the earlier transition in the simulations conducted
with Tw/Tcr = 1.04 and 1.12, as indicated by the absence of clear patterns and the presence of a wavy
shape in the profiles.

(a) Reδ = 450 (b) Reδ = 550 (c) Reδ = 680

Figure 5.26: Representation of the density fluctuation profiles for the 2D fundamental eigenmode
(ω0, 0) (left) and the oblique mode (ω0/2, β) (right) at various Reynolds numbers. (a) Reδ = 450; (b)
Reδ = 550; (c) Reδ = 680. All these profiles have been normalised by the maximum value of the

simulation conducted with Tw/Tcr = 1.12 .

The root mean square amplitudes of the specific heat at constant pressure, dynamic viscosity, and
density in a fully turbulent flow, depicted in Fig 5.28, indicate a reduction in the magnitude of these
perturbations for lower wall temperatures, with the maximum amplitude becoming closer to the wall.
These results are consistent with the fluctuation profiles previously analysed, indicating that the wall
temperature has a significant influence not only on the transition region but also on the turbulent
statistics. A notable observation is a sudden decrease in amplitude for all quantities when using
Tw/Tcr = 1.04, while the maximum amplitude remains fairly similar, with

√
ρ′ρ′/ρ̄ ≈ 0.25, for the two

highest temperatures. These large density fluctuations result in significantly higher non-ideal effects
compared to the simulation conducted with Tw/Tcr = 1.04, as observed. The other mean statistics
are not presented here because the same conclusion can be drawn. As the fluctuations increase in
amplitude, the different mean statistics deviate from the ideal gas reference.
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(a) (b) (c)

Figure 5.27: Representation of the streamwise velocity fluctuation profiles for the 2D fundamental
eigenmode (ω0, 0) (left) and the oblique mode (ω0/2, β) (right) at various Reynolds numbers. (a)

Reδ = 450; (b) Reδ = 550; (c) Reδ = 680. All these profiles have been normalised by their maximum
values.

Figure 5.28: Profiles for RMS quantities for (a) dynamic viscosity µ, (b) constant pressure specific
heat cp and (c) density ρ. All profiles are normalised by Reynolds-averaged mean quantities
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Conclusion

6.1 Summary

Zero-pressure gradient flat-plate boundary layers, perturbed in the laminar region, with heated isother-
mal walls at supercritical pressure, have been studied using direct numerical simulations solving the
full compressible Navier-Stokes equations.
The primary objective was to investigate the robustness of the DNS code in analysing the transition
of a transcritical boundary layer, which poses challenges due to strong nonlinear non-ideal effects near
the pseudo-critical line. To ensure accurate and reliable simulations, a cautious analysis of the domain
size and numerical grid was conducted. The grid analysis determined the optimal grid spacing in each
direction, considering the need for capturing all flow physics, while maintaining high computational
efficiency. This study highlights the importance of accurately discretising the disturbance strip to
effectively capture disturbance waves. It was observed that refining the grid in only one direction
was insufficient for accurate transition predictions. Furthermore, grid refinement in all directions was
necessary to avoid unphysical simulations, and reduce the amplitude of spurious oscillations caused by
the combined effect of the Widom line and the transition to a turbulent flow. The analysis revealed a
significant challenge in achieving numerical convergence when using a free-stream reduced pressure of
Pr = 1.08. The large density fluctuations near the pseudo-critical point hindered convergence due to
limited computational power, resulting in an abnormal growth of the excited oblique mode (ω0/2, β)
and its interaction with the other excited mode, two-dimensional, at different streamwise locations.
In addition, the investigation showed two possible modal behaviours concerning the growth of the
oblique mode, raising questions about the sensitivity of those modes. Thus, two solutions have been
proposed. Firstly, an increase of free-stream pressure away from the critical point yielded a reduction
of the spurious fluctuations, facilitating convergence. Secondly, the free-stream Mach number has been
reduced to minimise acoustic effects, which results in broader and lower density fluctuation peaks,
leading to faster convergence. More specifically, the analysis revealed abrupt density variations across
the Widom line, with

√
ρ′ρ′/ρ̄ approximately equal to 0.25 when using Pr = 1.08 and decreasing to

0.2 with Pr = 1.15.
The second objective of this study was to compare the breakdown mechanisms between of a trans-
critical boundary layer with a subcritical one. A distinct behaviour of the skin-friction coefficient was
observed, showing a significantly lower overshoot-amplitude in thetranscritical case. Moreover, no-
table differences in the length and strength of the coherent structures were identified, attributed to the
substantial density variation caused by the Widom line. It was found that large density fluctuations
invalidate Morkovin’s hypothesis, and significantly alter the near-wall turbulence and the resulting
turbulence statistics.
The final objective of this work was to investigate the influence on the transition at a higher free-stream
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reduced pressure and lower Mach number. It was observed that a pressure increase led to a delayed
transition, although similar transition patterns were observed. Nevertheless, increasing the pressure
did not have any noticeable impact on the Cf -overshoot in the turbulent region. On the other side,
a the Mach-number reduction, in order to minimise acoustic effects, resulted in root mean squared
values of turbulent thermodynamic quantities with the same amplitude as those computed at higher
Mach numbers. This final modification led to more accurate density fluctuation profiles, ensuring
faster computational times and improved numerical convergence.

6.2 Future work

Overall, this thesis provides valuable insights into the breakdown mechanisms of transitional boundary
layers at supercritical pressure, emphasising the importance of a careful numerical discretisation of the
strong nonlinear non-ideal effects. In future works, there are several potential areas of investigation,
which are based on the results of this work. Discovering a different perturbation method, or providing
a physical explanation for the occurrence of large disturbance harmonics during the laminar flow ex-
citation would be advantageous for a smoother transition, unaffected by high frequency components.
Secondly, the investigation of the wall heat transfer between the isothermal flat-plate and the trans-
critical flow could have significant implications for various industrial applications. Additionally, the
analysis of the turbulent kinetic budget equation could also shed light on how the fluid motion are
affected by the presence of the Widom line. These potential future research directions would contribute
to a deeper understanding of the behaviour of laminar-turbulent transition in supercritical boundary
layers.
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Appendix A

Supercritical fluid

Sutherland’s law coefficients for CO2

µ0 [Kg/m.s] T0 [K] Sµ [K] κ0 [W/m.K] Sκ [K]

CO2 1.37 · 10−5 273 222 0.0146 1800

Table A.1: Sutherland’s law coefficients for CO2.

Constant value for the supercritical CO2

M Rg dof ω Tcrit pcrit vcrit

Kg/mol J/(Kg.K) - - K bar Kg/m3

0.0440098 188.9 9 0.224 304.13 0.00208

Table A.2: Constant value for the supercritical CO2 taken from the Refprop [61].

Derivation of the reduced Van der Waals equation

The dimensional Van der Waals equation of state(
p+

a

V 2

)
(V − b) = RT (A.0.1)

can be rewritten in terms of dimensionless variables using the critical parameters Tr, pr and νr. At
the critical point one has

∂p

∂ν
|T=Tc = 0, and

∂p2

∂ν2
|T=Tc = 0

leading to Vc = 3b, pc = a
27b2

and Tc = 8a
27bR . This lead to

ar =
a∗

p∗cν
∗
c
2 = 3

, br = b∗/ν∗c =
1

3
, Rr =

1

Zc
. (A.0.2)

Introducing those equations in the Van der Waals EoS leads to
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APPENDIX A. SUPERCRITICAL FLUID

(
prpc +

a

(νrνc)
2

)
(νrνc − b) = RTrTc,⇒

(
pra

27b2
+

a

(3b)2ν2r

)
(3bνr − b) = RTr ·

8a

27bR
(A.0.3)

(
pr +

3

ν2r

)
(3νr − 1) = 8Tr (A.0.4)
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Appendix B

Validation 2D simulation

The simulation has been realised with the parameters corresponding to case 2D Validation in Tab 6.1.

B.1 Comparison criteria

As revealed Sec 2.4, different possible criteria can be used to post-process the results obtained from
the direct numerical simulation. Fig B.1 compares the results obtained with the different criterion.
It turns out that the criteria based on the kinetic energy give the worst results and the strongest
oscillations in the growth rates curve. Nevertheless, these criteria should be more precise as it takes
the whole wall-normal direction into account. This could be caused by a too-coarse mesh far away
from the wall. The two other criteria based on a single point give results closer to the LST one. To
easily compared with experiments, criteria based

(a) Amplitude . (b) Growth rate .

Figure B.1: Validation of the results using different criteria with two periods. The amplitude of each
result has been normalised by the amplitude at Redelta(x) = 800.

B.2 Influence number of periods

Note that all the presented results have been computed by criterion yfixed = 0.25. The influence of
the number of periods to conduct the Fast Fourier Transform seems negligible when we use more than
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2 periods as revealed Fig B.2.

(a) Amplitude.

$
-\

a
lp

h
a

_
i

(b) Growth rate.

Figure B.2: Validation of the results using the yfixed criterion at a value of y = 0.25 using different
number of periods. The amplitude of each result has been normalised by the amplitude at

Reδ(x) = 800.

B.3 Influence wall-normal position

Then, the fixed position using y criterion must also be validated using different values. It turns out
that they both give similar results after Reδ = 600 except for the higher position, y = 0.5 which
causes more oscillations and underestimates the amplitude of the perturbations at the beginning of
the domain.

(a) Amplitude . (b) Growth rate .

Figure B.3: Validation of the results using the yfixed criterion at different value of y = 0.25 using two
periods. The amplitude of each result has been normalised by the amplitude at Reδ(x) = 800.
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Appendix C

Derivation of the skin-friction coefficient

The theoretical formulae for the skin-friction coefficient Cf given as

Cf =
τw

1
2ρ∞U

2
∞
, with τw = µw

∂u

∂y
, (C.0.1)

where τw being the wall shear stress. The self-similar variables ψ and f are introduced as

η =
y

δ(x)
, f ′ =

u

U∞
. (C.0.2)

The evaluation of the velocity gradient at the wall become

∂u

∂y
|w = U∞

∂f ′

∂y
= U∞(

∂f ′

∂η
|w
∂η

∂y
) = U∞f

′′(0)/δ(x). (C.0.3)

Introducing that δ(x) =
√

2µwx
U∞ρw

leads to a wall shear stress of

τw = µwU∞

√
U∞ρw
2µwx

f ′′(0) (C.0.4)

The skin-friction coefficient becomes

Cf =
µwU∞

√
U∞ρw
2µwx f

′′(0)

1
2ρ∞U

2
∞

(C.0.5)

Cf =
U2
∞f

′′(0)
√
µw

√
ρw

√
2
2 ρ∞U

2
∞ ·

√
U∞x

. (C.0.6)

The Reynolds number Rex = U∞xρ
µ can be introduced such that

Cf =

√
µwρw
µρ

2f ′′(0)√
2 ·

√
Rex

=
√
2f ′′(0) · C1/2

w Re−1/2
x (C.0.7)

Blasius solution for an incompressible laminar fluid recovers that f ′′(0) = 0.4695.
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Appendix D

Non-ideal gas simulations

D.1 Effect of the grid ratio

The influence of the spanwise grid spacing is conducted using ∆xturb = 0.25. The growth of the modes,
in Fig D.1 and the relative errors in Tab D.1, reveals the minimal influence of this ratio.

∆xturb/∆z ε [%] (ω0, 0) ε [%] (ω0/2, β)

078 2 1.8

1 1.29 0.98

1.5 0.44 0.4

Table D.1: The relative errors of the different
FFT modes computed on a mesh refined in the

streamwise direction with a grid spacing of
∆xturb = 0.25. The errors are computed with
respect to the finest grid for Reδ ranging from

400 to 700.

Figure D.1: Representation of the different
FFT modes obtained with ∆xturb = 0.25 and
various refinements in the spanwise direction.
(−) represents the mode (ω0, 0), (..) represents

the mode (ω0/2, β).
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D.2 Amplitude of FFT modes in a matrix form
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(f) ∆x = 0.15.
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Figure D.2: Representation of the amplitude of different modes at Reδ = 620, 650, 670 and 690.
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Figure D.3: Representation of FFT modes obtained exciting 7 (red) and 2 (blue) oblique modes.(−)
represents the mode (ω0, 0), (−.−) represents (ω0/2, 0), (−−) represents (ω0/2, β), (..) represents

(ω0/2, 2β).

D.3 Influence different oblique modes

Two different simulations were conducted using the physical and numerical parameters corresponding
to case 3D Study-Grid 3. In the first simulation, seven different oblique modes ranging from −3β to
3β were excited, while in the second simulation, only two modes, −β and β, were excited. The growth
of all oblique modes is shown in Fig D.3. Remarkably, it is observed that the path followed by the first
oblique mode (ω0/2, β), which is responsible for the transition, remains unchanged regardless of the
number of excited oblique modes. Consequently, based on this figure, it can be concluded that exciting
the remaining modes are useless as they do not alter the turbulence development process. The same
conclusion can be drawn from the Cf .

D.4 Fluctuation profiles on two equidistant meshes

The streamwise velocity and fluctuations profiles conducting with the same physical parameters on
two meshes refined differently in the streamwise direction are presented in Fig D.5.
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(a) Reδ = 620. (b) Reδ = 620

(c) Reδ = 650. (d) Reδ = 650.

(e) Reδ = 670. (f) Reδ = 670.
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(a) Reδ = 690. (b) Reδ = 690.

Figure D.5: Representation of both the density fluctuation profile and the streamwise velocity
fluctuation profile for the fundamental mode (left) (ω0, 0) and the oblique modes (middle) (ω0/2, β)
and (right) (ω0/2, 2β) at different Reynolds. The red lines indicate the location of the pseudo-critical

temperature.

D.5 Influence top boundary

The evolution of different modes as a function of the top sponge configurations.

Fig D.6 reveals that the subharmonic mode (ω0/2, 0) is highly affected by the modification of the
sponge but the present oscillations are inside the laminar region. Both figures reveal the necessity to
use a sponge length larger than 5. Fig ?? shows that the sponge strength must be larger than 0.5 but
not larger than 5.

(a) (ω0/2, 0). (b) (ω0/2, 2β).

Figure D.6: Evolution of (a) the two-dimensional subharmonics mode (ω0/2, 0) and (b) the oblique
mode (ω0/2, 2β) for different sponge length at the top of the domain.
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(a) (ω0, 0). (b) (ω0/2, 0).

(c) (ω0/2, β). (d) (ω0/2, 2β).

Figure D.7: Evolution of FFT modes for different sponge strength at the top of the domain.

Discretisations of the forcing wave

The influence of the number of points used in the disturbance strip on the different eigenmodes is given
in Fig D.8. The same conclusion made on the 2D modes can be drawn namely that using more than
120 points on the disturbance strip with a length of 10 seems to be enough to converge.
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(a) (ω0/2, β). (b) (ω0/2, 2β).

Figure D.8: Representation of the oblique modes (ω0/2, β) and (ω0/2, 2β) inside the disturbance strip
for various number of points used to discretize the forcing area.

The influence of the number of samples per period in Fig D.9 shows that a larger number of samples
increase the accuracy of the results. The amplitude of the different modes almost collapse using more
than 20 samples bu doubling the number of samples requires to double the number of files, such that
10 samples will be kept.

(a) (ω0, 0). (b) (ω0/2, 0).

Figure D.9: Representation of the FFT modes (ω0, 0) and the subharmonic (ω0/2, 0) for using 60
points on the disturbance strip with different numbers of samples per period. The mode computed

with 120 points in the disturbance strip is used as reference.

D.6 Streamwise velocity fields in a subcritical and transcritical bound-
ary layer
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Figure D.10: Representation of the streamwise velocity fields in the subcritical boundary layer with
Tw/Tcr = 1 (top) and the transcritical boundary layer (bottom)
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Appendix E

Higher frequency components

The amplitude of the different harmonics will be analysed as a function of various numerical parameters
on a 2D case.

E.1 Influence of the grid

Fig E.1 reveals that using nx = 1000 enables to capture correctly the fundamental harmonics but is
clearly not sufficient to capture the second harmonics. From those figures, it turns out that using 2nx
which is 2000 points in the streamwise direction is necessary to capture the second harmonics. Note
also that the same mesh enables to accurate capture the third harmonics.

E.2 Influence of number of samples

Fig E.2 represents the amplitude of the first two harmonics computed with different numbers of samples
per period. Using 5 and 10 samples per period doesn’t allow to capture the second harmonics properly,
while 15 does. In the same way, 15 samples don’t capture the third harmonics. In this study, the focus
is put on the first 3 harmonics and therefore, 20 samples will be chosen.

(a) 1st harmonic . (b) 2nd harmonic.

Figure E.2: Representation of the first two harmonic for different numbers of samples per period.
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(a) A = 10−4. (b) A = 10−6 .

Figure E.1: Representation of the first two harmonic, normalised by the forcing amplitude, with A =
10−6 and 10¯4 in 2D simulations.

E.3 Influence sponge

Figure E.3: Representation of the first two harmonics, non-dimensionalised by the forcing amplitude
of 10¯6, present in the response of a 2D transcritical simulation for various top-sponge configuration.

Fig E.3 shows the small impact on the top sponge length and strength on the first two harmonics using
a forcing amplitude of 10−6.

E.4 Influence top height

Fig E.4 reveals the very low impact of the domain height on the amplitude of the different harmonic.
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Figure E.4: Representation of the first two harmonic for different wall normal dimension.
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Appendix F

Transcritical simulation with higher
pressure

The simulations conducted with Pr = 1.15 is conducted with the thermodynamic quantities corre-
sponding to Transcritical 2 in Tab 4.4. It is worth noting that increasing the pressure once again
results in the smoothing of sharp property gradients, rendering further grid analysis unnecessary. The
linear stability curve shown in Fig F.1(a) demonstrates that increasing the pressure delays the transi-
tion, consistent with the observations made with Pr = 1.1. Using these parameters, the two unstable
modes become distinctly separated. Mode I is located at a higher frequency and lower Reynolds
number, while Mode II is positioned at high Reynolds numbers and low frequencies. However, the
same physical parameters as before would become inadequate as a frequency of 110× 10−6 would not
excite Mode II. The location of the disturbance strip, as well as the fundamental and subharmonic
frequencies, has been modified to achieve the desired H-type transition as

Rept = 1300, F1 = 40 · 10−6 and F2 = 20 · 10−6. (F.0.1)

Significant modifications have been made to the physical and numerical parameters of the simula-
tion, in case 3D Pr = 1.16 in Tab 6.1. These modifications were implemented while keeping the grid
spacing unchanged in each direction. The modal representation, given in Fig F.1(b), reveals the im-
portance of both oblique modes (ω0/2, β) and (ω/2, 2β) in the transition process as they intersect the
fundamental mode at approximately the same Reynolds number. Consistent with the use of Pr = 1.08
and 1.1, as well as the LST diagram, the growth of the fundamental mode (ω0, 0) decreases with in-
creasing pressure. For example, it demonstrates a growth rate of −αi = 0.0038 when Pr = 1.1 after
Reδ = 720, whereas this growth rate is −αi = 0.0029 when Pr = 1.15 for Reynolds above 1350.
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(a) Linear stability diagram. (b) FFT modes.

Figure F.1: (a) Representation of the linear stability diagram with the corresponding thermodynamic
properties for Transcritical 2. The red dotted line represents the fundamental and subharmonic

frequencies and the green pentagram the middle of the disturbance strip. (b) Representation of the
fundamental mode and three different excited oblique modes.
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