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Abstract

This master’s thesis purpose is to develop a coupling interface between a high-order

aerodynamic solver and external structural solvers. Firstly, an actualised state-of-the-art

of the foil bearing technology and its modelling methods is provided to justify the necessity

of such an interface. The implementation of the latter is presented and validated through

a comparative analysis between internal and external structural solvers for multiple test

cases. The impact of the externalisation process has been evaluated for different structural

solvers and a beam finite element method has been implemented to analyse the effects of

top foil modelling on the overall gas foil bearing behaviour.

The development of this interface opens up a lot of possibilities for further analysis and

coupling with higher complexity and/or high-order structural solvers, some of which are

presented in this report.
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Chapter 1

Introduction

1.1 Context

Gas foil bearings (GFBs) are a type of hydrodynamic fluid bearing which uses gas as a

working fluid to separate a rotating shaft from the bearing by a thin film of gas.

Such bearing’s advantages lie in the fact that, once the formation of the gas film has

been achieved, no more wear occurs between the journal and the bearing. It assures

contamination-free operation of the working fluid and it can help reduce noise or be used

in noise-sensitive operations. Moreover, GFBs are oil-free and self-cooling bearings. They

do not require as much maintenance as their counterparts and can also be lighter.

As GFBs can create this hydrodynamic gas film without any outside assistance, their

specific properties above-mentioned make this type of bearing very attractive for many

industrial applications, especially in the turbomachinery domain [1]. GFBs have been

investigated for applications in turbochargers/turbojets [2, 3, 4], turbofan engines [5],

micro gas turbine engines [6, 7], and much more. The GFB’s capacity to sustain very

high rotation speeds and broad power range makes it particularly suitable for micro-small

high-power density turbo machinery [8].
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However, these advantages come with high design and manufacturing complexity. As

a result, a lot of ongoing research is trying to exploit this promising technology [9]. This

research focuses as much on the numerical modelling side as on the experimental side, to

predict the behaviour and deepen the understanding of the gas foil bearing technology

for different kinds of applications in air-cycle machines and high-speed machinery.

1.2 Working Principle

All gas foil bearings rely on the same principles and present the same major components:

on one hand, the bearing casing, which is also named the sleeve, is the rigid external part

of the bearing holding the journal in position and, on the other hand, the compliant

component lies in between the sleeve and the journal. Even though this compliant part

of the bearing can take many different forms, it is often made from the coupling of a

bump-type foil, which generates most of the stiffness and the damping, with a smooth

foil on top of it, i.e. the top foil.

At the start-up, the journal and the top foil are in contact, and the rotation of the shaft

will start drawing in the ambient gas, which is often the air, in the bearing via viscosity

effects. Then, once the liftoff rotation speed of the bearing is reached, this hydrodynamic

gas film will be fully developed and will act as a lubricant between the rotor and the

bearing. This will push back the top foil. At this point, there is no more contact between

the bearing and the journal and no more wear occurs, until the halt of the rotative machine

and thus the journal’s rotation.

A perturbation to the system, which would cause a journal misalignment, increases

locally the pressure in the hydrodynamic gas film and pushes the journal back into its

nominal place. The bearing acts as a controller and provides stiffness and damping to the

system.
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1.3 Objectives and Motivations

The main goal of this master’s thesis is the implementation of a method that allows

ForDGe to be coupled with an external structural solver. ForDGe is the high-order aero-

dynamic solver that is going to be presented in section 3.1. The objective of this imple-

mentation is to be able to represent with high accuracy the coupling of the aerodynamic

forces with the elastic forces present in a working gas foil bearing. The structural model

would compute the stiffness and the deformation of the compliant foils under a pressure

field computed by ForDGe.

Many different structural models representing the compliance of the foils exist for vary-

ing computation performance and physical accuracy. To achieve this coupling in an effi-

cient way, ForDGe must be adapted to be able to receive an external field as input, which

would represent the gap between the top foil and the journal. This external gap could

be computed and delivered to ForDGe by any relevant structural model of the compliant

structure. This would enable ForDGe to receive and use data from any mesh type and

any order of interpolation and to use it as an input parameter.

The purpose of this work is thus to open the way to high-accuracy analysis of different

gas foil bearing configurations or parameters by coupling high-order aerodynamic and

structural solvers.

1.4 Outline of the Thesis

This report is divided into five chapters. In the first chapter, the work and its objectives

are introduced. A brief explanation of the functioning of gas foil bearings is also provided.

In the second chapter, a literature review of the gas foil bearing technology, specifically

on the different GFB configurations and the modelling techniques is established. Chapter

three presents the numerical methodology implemented in the frame of this work and the

inner workings of the iterative process between solvers. It also presents some mathematical
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principles of the discontinuous Galerkin finite element method, which is the basis of

ForDGe. The fourth chapter shows the results and contains their analysis as well as

the validation of the implemented numerical coupling. Finally, chapter five concludes this

master’s thesis and presents some potential future use of the implemented method for

further analysis.
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Chapter 2

Literature Review

Many different types of gas foil bearings exist, and several different numerical models

have been used to characterise them. No scientific consensus has been reached to establish

what bearing type or numerical model of foil structure is the best or the most well suited

to reach the high precision required for static models as well as dynamic ones. The

following tries to compile and provide a recent and updated review of the state-of-the-art

of different GFB types and modelling methods.

2.1 Different Configurations of Gas Foil Bearings

Even though many different configurations and variations of GFBs exist, only two

different bearing types will be extensively reviewed in this work, as they are those being

investigated by Mitis SA. However, the implementation allows for any structural solver

to be coupled with ForDGe. Therefore, any gas foil bearing type could be analysed with

the same method, as long as the bearing’s parameters are well defined or well known.

Such bearing will be briefly presented in subsubsection 2.1.1.3. The main category of

bearings that will be reviewed is "journal gas foil bearings". Thrust bearings are only

briefly mentioned, as they are outside the scope of this work, but could be analysed by

this method under a few modifications.
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2.1.1 Journal Gas Foil Bearings

2.1.1.1 Bump Foil Type Bearing

Bump foil bearings, represented in Figure 2.1, get their compliance from a coupling of

a bump foil with another foil laying on top of it, namely the top foil. At nominal speed,

once the film gas between the journal and the top foil is fully developed, the pressure

will maintain the journal and the foil apart. Increasing eccentricities e during operation

due to various parameters, such as vibrations or response to an external excitation, will

reduce the gap h. However, this will also increase the pressure in the gas film and thus

push back the compliant coupling of the bump and top foil.

These kinds of bearings present some advantages that could be of potential use to the

industry, such as weight reduction from the absence of any oil system, as gas foil bearings

can work with the ambient air and stability at higher working speeds and temperatures

[10, 11]. The application of gas foil bearings leads to less dependency on other components

or subsystems such as cooling systems, lubrication systems, pumps, etc., which reduces

maintenance costs and complexity. Nonetheless, at low rotation speeds, GFBs have a

lower load capacity, as well as modest stiffness and damping values [12].

h

e x

y

C

θ

Bearing case

Top foil
Bump foil

Journal

Figure 2.1: Bump gas foil bearing with a single 360◦ pad.
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Bump configuration type bearings can vary by their number of pads. In Figure 2.1,

only one full 360◦ pad is shown. However, the three 120◦ pads configuration represented

in Figure 2.2 is frequently used in scientific and industrial research for this type of GFBs

as well as for other bearing types.

h

e x

y

C

θ

Bearing case

Top foilBump foil

Journal

120° pad

Figure 2.2: Bump gas foil bearing with three 120◦ pads.

Gas foil bearings with more than one bump foil have also been studied and are called

multi-decked. As suggested by Heshmat [13], a multi-decked bump type bearing with

additional bump foils leads to an increase in non-linear stiffness. They were studied by

Yu et al. [14] and by Lai et al. [15].

Xu et al. [16] also studied multi-decked GFBs and presented a structural model for

performance analysis of such bearings. They also showed that compared to a simple bump

GFB:

• a multi-decked GFB with a stiffer bump foil could generate a more evenly distributed

gas film for an equivalent loading,

• a multi-decked GFB with a softer bump foil could have better load capacity and

overall stiffness.
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However, it is good to note that a multi-decked GFB’s performances rely heavily on

the foils’ layout and adjustments.

2.1.1.2 Cantilever Foil Bearing

Cantilever foil bearings don’t have a classic bump foil, the latter being replaced by an

etched foil, which allows some parts of it, namely the beams, to extend to the bearing

sleeve and to generate a compliant foil. Such a foil is represented in Figure 2.3. Once the

journal starts rotating, this foil can slide across the bearing case. This action generates

most of the bearing’s damping [12].

Figure 2.3: Cantilever foil from the Feng et al. study [17].

Feng et al. [17] performed a series of static and dynamic load tests to compute the

stiffness and equivalent viscous damping of such a bearing, illustrated in Figure 2.4. The

static tests showed that the static stiffness behaves non-linearly and that the bearing

has good energy dissipation capacities. This allows to reduce wear at the start and stop

phases of its operation. The non-linear static stiffness also prevents large deflection of

the journal. As for the dynamic tests, they demonstrated that the damping and dynamic

stiffness heavily depend on the excitation frequency.
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h

e x

y

C

θ

Bearing case

Top foil

Journal

Cantilever beams

Pad structure

Figure 2.4: Cantilever gas foil bearing.

Obaseki et al. [18] developed a theoretical model to analyse multi-cantilever bearings by

using data from the prototype of Feng et al. [17] to validate and carry out their analysis.

2.1.1.3 Advanced Gas Foil Bearing Configurations

As above-mentioned, a lot more different configurations of GFBs exist. Some of them

will be briefly presented and shown.

Hybrid Gas Foil Bearing

Hybrid gas foil bearings rely on an external supply of gas to strengthen the gas film in

order to increase stability, load capacity, dynamic and static properties of the GFB [19,

20].

Compression Spring Gas Foil Bearing

Compression spring GFBs, represented in Figure 2.5, replace the bump foil by a series

of springs clamped into the bearing sleeve, which allows for a parameterisation of the

stiffness around the bearing by tuning the different springs [12, 21].
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Figure 2.5: Compression springs GFB [21].

Double-arrow Structure Gas Foil Bearing

The very recent and complex novel GFB developed by Feng et al. [22] is made of

double-arrow structures filled with damping materials resulting in a negative Poisson’s

ratio structure to investigate and improve damping and stiffness characteristics of GFBs.

This configuration is shown in Figure 2.6. A finite element model of the top foil was used

in parallel with the Reynolds equation for the fluid film and a model for the double-arrow

structure to develop a numerical model, which was compared to experimental data.
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Figure 2.6: Double-arrow structure GFB configuration [22].

Metal Rubber-bump Foil Gas Journal Bearing

The Metal Rubber-Bump Foil Gas Journal Bearing, shown in Figure 2.7, was created

by Zhang et al. [23]. The particularity of this bearing is that its bump foil is incorporated

with periodic "metal rubber damping elements" in between bumps, with the purpose to

improve the operational stability and load-carrying capacity of the GFB.

Figure 2.7: Metal Rubber-Bump Foil GFB [23].
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2.1.2 Thrust Foil Bearings

Thrust foil bearings present the same advantages and rely on the same working prin-

ciples as the other bearings already discussed. They are made of several pads named

petal equivalent to the top foil for the other bearings. There is a bump foil underneath

each petal, as it was the case for the multi-pads bump gas foil bearing. Any compliant or

equivalent system could be used. The major change compared to journal GFBs is that the

fluid is dragged in the converging channel by the rotation of the thrust runner mounted

on the shaft and parallel to the bearing’s top foil [24, 25]. Such a bearing is represented

in Figure 2.8.

Figure 2.8: Thrust gas foil bearing [24].

2.2 Structural Modelling of the Top and Bump Foils

In his work, Alshikh Saleh Ammar [26] worked on the bump gas foil bearing type and

presented three different models to represent the foil structure.
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2.2.1 Simple Elastic Foundation Model (SEFM)

All three models and most of the literature about compliant modelling use a form of the

simple elastic foundation model (SEFM). The SEFM is based on the hypothesis that the

stiffness of the bumps is uniformly distributed on the bearing’s surface. Formulations of

the SEFM can be differentiated by how the stiffness of the bumps is analytically computed.

2.2.1.1 Wallowit and Anno

The first formulation of the SEFM is the one developed by Wallowit and Anno originally

presented in the work of Heshmat et al. [27]. They pose the hypothesis of a single bump of

constant stiffness and independent of the number of bump deflections. It is also assumed

that the top foil does not sag between bumps and does not have any bending or membrane

stiffness, which is equivalent to ignoring it. This model also ignores the friction by setting

a zero friction coefficient. The deflection of the foil under the acting forces’ effects is only

dependent on the local effects, i.e. on the force acting directly over the specific point.

These structural modelling assumptions combined with the additional hypothesis that

the gas in the fluid film is isothermal and behaves like a perfect gas, give the following

evaluation of the adimensional deflection of the compliant foil h̃:

h̃ = α(p̃− 1), (2.1)

α =
2pasb
CEb

(
lb
tb

)3

(1− ν2
b ), (2.2)

where p̃ is the adimensional pressure applied at the evaluated point, α is the compliance

of the foil, which has been adimensionalised with the clearance of the bearing C and the

ambient pressure pa [26, 27]. Other variables with the subscript "b" refer to the bump foil

material properties and are respectively: sb bump pitch, Eb Young’s modulus, lb bump

length, tb bump thickness, νb Poisson’s ratio.
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With this modelling of the compliant foils, the initial solution, i.e. the pressure field at

the start of the numerical analysis, must be well defined, as a zero pressure field would

lead to a high deflection towards the journal, which is not physically accurate.

However, in the work of Marc Carpino, Lynn A. Medvetz and Jih-Ping Peng [28], which

investigated the effects of membrane stresses in GFBs performance, it was concluded that

membrane stresses present in the top foil are not trivial in case of highly loaded journals,

i.e. with high eccentricities, and that structural models of elastically supported GFBs

must consider membrane stresses to predict accurately GFBs’ performance.

2.2.1.2 Iordanoff

A few years later, in 1998 [29] and in 1999 [30], I. Iordanoff presented a simplified

model in contrast to direct modelling requiring long calculation times. As did Wallowit

and Anno, Iordanoff assumed that the top foil does not sag, follows the bump foil in its

deformation and does not interact with the bump foil. With this set of assumptions, the

deflection is only dependent on the bump foil. As it was shown by Ku and Heshmat [31]

[32], the compliance follows a quasi-linear distribution. For his formulation, Iordanoff

assumed a linear distribution of the compliance starting with the semi-welded bump with

the lowest compliance to the free end bump. The local bump compliance is calculated

by taking into account the coulomb friction forces between the bump foil and the bear-

ing support. However, the interactions between bumps are neglected. Iordanoff showed

that for constant local compliance S, the entrance film thickness H1 is the only varying

parameter.

Iordanoff’s formulations of the compliance for the free end and the semi-welded end of

the bump foils are:
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αf =
6pasbI(θb, µf )

CEB sin3 θb

(
lb
tb

)3

(1− ν2
b ), (2.3)

αw =
12pasbJ(θb, µf )

CEB sin3 θb

(
lb
tb

)3

(1− ν2
b ), (2.4)

where αf is the compliance of the free end bump and αw of the first bump of the pad,

which is semi-welded to the bearing casing. I(θb, µf ) and J(θb, µf ) are two functions

depending on the geometry of the bumps and are developed in Appendix A, θb is the

bump angle and µf is the friction coefficient.

However, Xu et al. [33] theoretically derived and experimentally showed the importance

of top foil sagging on the pressure field of the gas film and the choice of top foil char-

acteristics. Top foil sagging is noteworthy and cannot be ignored for accurate behaviour

predictions. Furthermore, the neglect of any interaction between bumps also induces an

error and a reduction in stiffness that could be modelled by globalised models, such as

finite element methods or the analytical model developed by Lez et al. [34] and presented

in subsection 2.2.2.

2.2.1.3 Larsen and Santos

Finally, the last SEFM structural model is the one from the PhD thesis of Larsen and its

supervisor Santos [10]. This model proposed a novel modelling method with a correction

term added to the SEFM formulation of Wallowit and Anno to account for the top foil

sagging by assuming a periodic bump distribution. However, this hypothesis limits the

model to some cases, e.g. models with an inlet slope or multiple pads.

This correction term accounting for top foil sagging is:

15



αt ≈
pas

4
b(1− ν2)

CEbt3t

(
1

60
− 3

2π4
cos

2πθ̃

sb

)
, (2.5)

where the subscript "t" refers to the top foil parameters. This correction term of the

compliance is then added to the Wallowit and Anno’s compliance α from Equation 2.2 to

compute the total compliance from the coupling of the top and bump foils.

The three above-mentioned models allow for an efficient and rapid estimation of the

stiffness of the bearing, but can lack precision and accuracy, which are required for indus-

trial applications or dynamic analysis. Moreover, the first two of these models completely

neglect the top foil and the last model is restricted to only some GFB configurations.

2.2.2 State-of-the-art of GFB’s Compliant Modelling

Structural models presented up to this point has always ignored the interactions between

bumps, and were all localised model, i.e. models that only consider local effects to compute

the deflection of the foils.

Lez et al. [34] developed a globalised structural modelling of the foils by considering

the foils as a system of bumps interacting with each other. Each bump is modelled

with three degrees of freedom (DOFs) and they are linked to each other with elementary

springs. Each bump has one vertical DOF and two horizontal DOFs, which is the minimum

required for bumps to be linked to each other. Such modelling is represented in Figure 2.9.

The elementary stiffnesses are evaluated and then a global stiffness matrix is computed

so that the static equation can be solved by taking friction into account. This model

estimates stiffer foils compared to previous analytical models, which were ignoring the

interaction between bumps but it still neglects the effect of the top foil.
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Figure 2.9: Three DOFs bump structure for two neighbouring bumps [34].

The model presented by Lez et al. is based on the contact mechanics between the top

foil, the bump foil and the bearing casing. However, Fatu and Arghir [35] demonstrated

that even for simple loading situations, contact between the three above-mentioned ele-

ments is not always ensured and can become loose, which would result in lower stiffness.

Their analysis is based on the introduction of manufacturing errors to evaluate their

impact on the stiffness of foil structures. They also noted that different types of manu-

facturing errors have different impacts, with errors in bump height leading up to 40% of

stiffness.

Finally, Arghir and Benchekroun [36] proposed a modification to Lez et al. [34] model

by taking into account the elasticity of the top foil and three gaps, namely the gap between

the top foil and the journal, the one between the top foil and the bump foil and the one

between the bump foil and the bearing sleeve. Lez et al. model is thus extended by adding

two supplementary DOFs to each bump to model these gaps. The updated modelling is

represented in Figure 2.10. This final model can deal with manufacturing errors and

allows for a swift and pretty accurate modelling compared to a full-scale finite element

modelling.
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Figure 2.10: Update version with 5 DOFs per bump [36].

More recently, in 2023, Heinemann et al. [19] performed a comparative analysis of four

different models for the top foil. In their comparative analysis, the bump foil is every

time modelled using a SEFM and the top foil is:

1. neglected, i.e. standard SEFM,

2. modelled as Euler-Bernoulli(E-B) beam elements,

3. modelled as non-curved shell elements,

4. modelled as curved shell elements.

The model employing curved shell elements is used as the benchmark. At steady state

journal eccentricities, only low discrepancies between the models are observed. Neverthe-

less, despite being a simpler model compared to the non-curved shell elements one, the

E-B beam element model produces better and thus closer results to the benchmark. This

is explained by the fact that the non-curved shell elements model overestimates the axial

coordinate dependency. From a stress analysis, it is concluded that this overestimation

is due to the neglect of the membrane stresses by this model. This confirms the conclu-

sion already made by Marc Carpino, Lynn A. Medvetz and Jih-Ping Peng [28] on the

importance of top foil membrane stresses.

Regarding the time complexity of these four models, the SEFM and the E-B beam

elements use about 25% of the time needed by the curved shell elements according to
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Heinemann et al.’s analysis. The non-curved shell elements model needs 80% more time

than the more complex curved shell elements model. This is most likely caused by the

Reynolds equation converging at a slower rate due to large foil deformation, which results

from the neglect of the increase of resistance to curvature in one direction caused by the

initial curvature of the foil correlated to the membrane stresses.

The compliant foils of novel GFB configurations, such as the ones presented in [22]

and [23], also come with their own definitions of stiffness and damping matrices. The

structural modelling of such foils cannot be reduced to simple SEFM formulation or other

localised solvers. The need for globalised structural solvers is even more important for

the analysis and the design of novel high complexity GFBs, which will continue to appear

to try and improve GFB’s characteristics like load-carrying, stability, damping value, etc.

2.3 Modelling of the Fluid Film

In the context of this work, the fluid film is modelled by using the implementation and

mathematical derivation of the steady-state, isothermal Reynolds equation implemented

by Alshikh Saleh in the context of his master’s thesis in 2021-2022 [26], in the ForDGe

solver presented in section 3.1. The Reynolds equation can be solved in 1D or 2D in the

incompressible or compressible case for various boundary conditions and is presented in

more detail in subsection 3.1.3.

2.4 Conclusion

In conclusion, simpler structural models can be used to gain computation time for

preliminary steady-state analysis without losing too much precision, especially for the

E-B beam elements which showed promising behaviour.
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Nonetheless, for a transient response case, vibration analysis, or in more complex cases,

e.g. when using gas injection in the bearing to improve its stability or taking into ac-

count the evolution of the top foil from the start-up to liftoff [37], the higher degree of

simplification models show some deviations from the curved shell elements model results.

Furthermore, the emergence of various and novel configurations of different GFBs, which

can be more and more complex, leads to the development of new structural analysis tools

being developed for these new GFBs. The separation of the two solvers, the aerody-

namic and the structural ones, offers more flexibility and can allow an easier comparative

numerical analysis of different bearing parameters and configurations. Such high-order

aerodynamic solvers, like ForDGe, would only require the deformation of the GFB’s top

foil with respect to the journal as input from the structural solver to compute the pressure

field.

Lastly, until now, only localised structural solvers have been linked with ForDGe. Lo-

calised models ignore the dependencies between elements, which can lead to inaccuracies,

especially for more complex geometries or configurations. Henceforth, coupling with global

structural solvers is further needed to perform accurate complex dynamic modelling and

this can be more easily achieved if such coupling can be done through a simple Python

interface.
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Chapter 3

Numerical Modelling

As mentioned in section 1.3, the objective of this thesis is to implement methods and

routines in the ForDGe solver to enable its use for GFBs analysis for every kind of bearing

or structural modelling for the bearing’s foils behaviour. To achieve this, the separation

and coupling between the two types of solvers must be well defined.

3.1 ForDGe Solver

3.1.1 General Overview

ForDGe is a discontinuous Galerkin finite element method (DG-FEM) solver developed

in the Aerospace and Mechanical Engineering Department of the University of Liège.

This method is a combination of a discontinuous interpolation and a Galerkin vari-

ational formulation. The interpolation space is said to be "broken" since its elements

consisting of vector functions are fully continuous on each mesh element, but not neces-

sarily across elements. The choice of interpolation basis is thus important and broader

than classic continuous finite element method, which imposes that the shape functions

are at least once continuously defined across all elements [38].
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DG-FEM also presents some advantages over other more common methods such as the

finite volume (FV) and the finite difference (FD) ones.

• As above-mentioned, since the continuity across elements is not mandatory, DG-

FEM offers more flexibility regarding the choice of shape functions and interpolation

orders. This allows for a localised, element-by-element, variable choice of order of

interpolation, e.g. the implementation of various subcell methods and blending of

different order operators.

• Thanks to its unstructured grid, DG-FEM can manage complex geometries very

well.

• DG-FEM satisfies the conservation of conservative variables at the element level,

i.e. locally.

All these advantages make the DG-FEM a well-suited choice to handle high-order multi-

physics problems and problems involving conservation laws requiring high accuracy and

high precision.

3.1.2 Mesh Definition

The following development is heavily based on [38]. DG-FEM employs a broken space

with no continuity constraints. Therefore, in such unstructured meshes, no element is

perfectly aligned to the set of chosen coordinates. To avoid unnecessary complexity when

evaluating the volume and boundary integrals, a mapping from the parametric to the

physical coordinates is used. This mapping allows a transformation between the para-

metric coordinates ξ defined in the reference element to the Cartesian coordinates x in

the physical element. This Cartesian mesh is, in most cases, defined by the geometry of

the element under study. Such a mapping is shown in Figure 3.1.
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Figure 3.1: Mapping between the reference element and the physical one

To be able to express the solution as a function of the physical coordinates, the solution

has to be mapped back to the Cartesian mesh. The existence of the inverse mapping is

mandatory and assured by the condition that the mapping Jacobian J cannot be equal

to zero, as the inverse mapping Jacobian I, which defines the inverse mapping, is simply

the inverse of J .

J e
ij =

∂xi

∂ξj
(3.1)

|J | > 0 (3.2)

Ie = (J e)−1 (3.3)

The solution u(ξ) is expressed and computed in terms of parametric coordinates for

each element. The physical derivatives of a function f , such as the solution, are obtained

from the parametric system by simply applying the chain rule and as for the integration

over the element, it only requires J .

f

∂xk
=

∂f

∂ξl
=

∂ξl

∂xk
(3.4)∫

e

f(x)dx =

∫
e

f(ξ)|J e|dξ (3.5)
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3.1.3 Gas Film Modelling

The gas film is modelled by the implementation of the Reynolds equation in ForDGe. The

following developments are based on Saleh’s work in which he applied the DG-FEM to

the steady-state, two-dimensional Reynolds equation for an isothermal, isoviscous ideal

and compressible gas in ForDGe [26]. In vector form, this equation is written:

∇ · (−p̃h̃3∇p̃) +∇ · (p̃h̃)s = 0, (3.6)

where s is the advection vector s = {Λ, 0} and Λ = 6µω
pa(R/C)2

is the compressibility, with ω

the rotation speed, µ the gas’ viscosity and R the journal radius. The following summarises

Reynolds equation formulation for different cases:

• Incompressible case:

1D:
∂

∂θ

(
−h̃3∂p̃

∂θ

)
+

∂

∂θ
(Λh̃) = 0, (3.7)

2D: ∇ · (−h̃3∇p̃) +∇ · h̃s = 0. (3.8)

• Compressible case:

1D:
∂

∂θ

(
−p̃h̃3∂p̃

∂θ

)
+

∂

∂θ
(Λp̃h̃) = 0, (3.9)

2D: ∇ · (−p̃h̃3∇p̃) +∇ · (p̃h̃)s = 0. (3.10)

The application of the DG-FEM to this equation requires the computation of the vol-

ume and interface fluxes as well as the computation of the source terms. The numerical

fluxes are computed using the upwind flux scheme. More detailed explanations and math-

ematical developments can be found in [26].
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As for the boundary conditions (BC), in most cases, Dirichlet’s BCs are imposed at

the leading and trailing edges of each pad. In this case, the pressure is forced to be equal

to the ambient pressure, i.e. p̃ = 1. In two-dimensional cases, the pressure is once again

fixed equal to the ambient pressure at the edges of the bearing. But the implementation

also allows for the use of Neumman and periodic BCs.

3.1.4 Solution Evaluation

In the DG-FEM, as in any finite element method, the space is discretised with a mesh as

support. The major particularity of the DG-FEM is that its function space does not need

to be continuously defined across elements, but only to a single element. Shape functions

ϕi, which are the basis of the function space, can therefore be specialised to belonging

only to a given element ϕe
i .

In FEM, the solution U is approximated by the finite element space Uh, where h denotes

the mesh size:

lim
h→0

Uh = U . (3.11)

The approximate solution is then computed as the expansion of the shape functions:

ue
h(x) =

N∑
i=1

ue
iϕ

e
i (x), (3.12)

in ForDGe, the shape function basis chosen is the Lagrange polynomials, their use in

DG-FEM is mainly motivated by a reduced operation count during computation since

the continuity does not need to be enforced [38].
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Consequently, the shape functions are:

ϕk(x) = Lk(x) =
N∏
i=0
i ̸=k

x− xi

xk − xi

, (3.13)

where xi are the interpolation points and k ∈ [0, 1, . . . , n]. In ForDGe, Lagrange inter-

polants can either be based upon equidistant points or upon the Gauss-Lobatto-Lengendre

(GLL) control points, the GLL control points are represented in Figure 3.2, as they are

chosen over the equidistant ones in the frame of this work since they provide an optimal

set of interpolation points for high order of interpolation [26].

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.2
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0.2

0.4

0.6

0.8

1.0

Gauss-Lobatto-Legendre Points

Figure 3.2: 6th order Lagrange polynomials and their associated GLL control points.

3.2 Coupling of Solvers

In such multi-physics problems, one of the most important points is the way how both

solvers are coupled. Given that the structural solver could be led to change a lot depending

on the GFB or the choice of modelling of the bump or top foils, the coupling should

remain flexible, while still being straightforward. Consequently, the choice to use the

adimensional gap h̃ = h
C

as the communicating parameter is made. This gap is fed to

ForDGe to compute the adimensional pressure field p̃ = p
pa

. Subsequently, the pressure
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field would be given to the structural model, which would compute the deflections of the

bearing’s foils due to the pressure field and so on.

This type of coupling is naturally an iterative process. Before the startup, the bearing

is tightened on the journal, the gas pressure is non-existent inside the bearing and the

gap is equal to zero. Numerically, it would be very complex to dynamically compute the

liftoff transition of a GFB. Thus, a way to avoid such a problem is to assume an initial

non-zero gas film pressure field, with the idea that the static equilibrium operation point

would be reached iteratively, whatever the initial conditions are.

Indeed, the action of the pressure on the foils and their deformation in response to it

acts as a feedback loop. If the pressure is too high, the gas film will push back on the top

foil deflecting it and thus reducing the pressure. The opposite also stands true, as a low

pressure would allow the compliant foil to deflect back and reduce the gas film volume,

consequently increasing the pressure. One can intuitively guess that there exists a stable

equilibrium between the foil deflection and the pressure field.

3.3 Structural Solver Externalisation

Some simple structural solvers were already implemented in ForDGe, as discussed and

presented in chapter 2. However, it would be difficult to implement and adapt the inner

workings of ForDGe to each structural model that could be used. This is another reason

why structural solvers need to be extracted out of ForDGe.

This externalisation requires data communication between the solvers and a process

handling this transfer of information. The communication has been designed to be handled

by a Python interface. ForDGe’s pressure field is passed to this interface, which receives

the data and sends it back to any structural solver. The structural solver can compute

the deflections of the bump foil and/or top foil from the pressure field it got. It then sends
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them back to the Python interface for the next iteration so that ForDGe can update the

pressure field.

However, both solvers could, and most likely would, use different meshes, mesh types or

even different orders of interpolation. It is important to avoid losing accuracy during the

manipulation of the data and their modification from the source mesh to the target one. To

ensure that the data stay relevant despite these modifications, the Python interface gives

ForDGe the data point of the field at which the pressure will be needed by the structural

solver, such that ForDGe can compute the exact pressure values at these points instead of

an approximation. This computation is made by using directly ForDGe’s shape functions

and computing the pressure field by transforming the external coordinates to the local,

element-wise, coordinates. Once the solution, i.e. the pressure field, has been evaluated

in the parametric coordinate system, it can be computed back on the physical one as

described in subsection 3.1.2.

As for the gap h̃, it is computed by the structural solver on its own mesh, i.e. the above-

mentioned data points or external coordinates, and passed as such to ForDGe. Hence,

interpolation is required between both meshes to allow the gap to be read by the aerody-

namic solver. This process is done by a bilinear interpolation. This choice of interpolation

is made to benefit from the advantages of such a method. The bilinear interpolation is

time efficient for a reasonable accuracy, which is useful as the gap interpolation will be

required each time the Reynolds equation is solved.
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3.4 Structural Solvers

3.4.1 General Requirements

The only requirement for any structural solver to be linked with ForDGe is to be able to:

• communicate with a Python interface,

• provide it with its mesh information,

• receive the pressure field as an input from this interface,

• and send it the resulting deformation of the compliant foil(s).

As the objective is to externalise the structural solvers from ForDGe, the three simpler

models, i.e. the SEFM formulations of Wallowit and Anno, the one of Iordanoff and

the one of Larsen and Santos, all three have been implemented in Python to verify the

validity of the methodology and to assess its accuracy. Furthermore, a simple beam finite

element model (FEM) has been implemented in Python as well to compute and evaluate

the impact of the top foil modelling, which had been ignored until now with the exception

of Larsen and Santos’ model, even though the latter also had its limitations. These results

and validation will be presented and discussed in chapter 4.

3.4.2 Beam Element Modelling

In the context of this work, a beam FEM model has been implemented to further

validate the externalisation process of the structural solvers. This implementation is based

on the mathematical derivations found in [19, 39]. The top foil is discretised in a series of

Ne elements of length le. The pressure acting on each of the elements is received from the

coupling interface to express it as the load vector. Nevertheless, as only a static analysis

is performed, only the globalised stiffness matrix construction procedure is required, since

the equation of motion of a beam in static analysis is reduced to:
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Kx = f , (3.14)

which is a simple linear system including the globalised stiffness matrix K, the degrees of

freedom (DOFs) x load vector f . The globalised stiffness matrix can be built directly by

summing each elemental stiffness matrix Ke:

Ke =
EtIt
l3e



12 6le −12 6le

6le 4l2e −6le 2l2e

−12 −6le 12 −6le

6le 2l2e −6le 4l2e


, (3.15)

K =
Ne∑
e

Ke, (3.16)

where It is the bending inertia of the top foil.

Each node between the elements is attributed two DOFs, the vertical displacement

of the node as well as its rotation. Once the globalised matrix K is computed, various

boundary conditions can be applied to the beam by constraining some specific DOFs.

The two cases discussed in section 4.2 are the cantilever beam and the periodic BCs. For

two-dimensional analysis, this model averages the pressure in the axial direction. The

model could be extended to a plate FEM to avoid this reduction.

3.5 Iterative Process

In this section, the iterative process of the coupling will be discussed and explained in

more detail. The algorithm is represented in Figure 3.3.
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The first step is to estimate an initial solution of the pressure field p̃F to avoid the

transition period between the startup and the liftoff. The simplest choice is to assume a

constant pressure field of ambient pressure, which is a reasonable assumption as the pres-

sure outside the bearing is the atmospheric pressure and the pressure inside the bearing

should not exceed nor fall behind this value by much.

This pressure field p̃F is interpolated on the structural solver’s mesh by the process

described in section 3.3. This interpolated pressure p̃struct is sent to the structural solver,

which can now compute the deflection of the foils h̃struct that is sent back to ForDGe.

One of the main aspects of this externalisation of the structural solvers from ForDGe

is the transfer of data between ForDGe and the coupling interface. Whether it is for

the transfer of the pressure field from ForDGe to the coupling interface or of the gap

after its computation by the structural solver, this data communication is handled by

the software Simplified Wrapper and Interface Generator SWIG. ForDGe is implemented

in C++, while the coupling interface is in Python to facilitate the accessibility of the

interface. In the frame of this work, structural solvers are also implemented in Python.

The data must be shared while maintaining as much accuracy as possible, yet the

solvers work with different data formats each defined by their own implementation archi-

tectures. SWIG allows defining a pairing mechanism for each data type from different

programming languages to match different variables from the interface and the solvers.

It also enables the definition and use of Python routines from the interface to be called

by ForDGe. A more detailed presentation of this mechanism and its implementation is

shown in Appendix B.
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Figure 3.3: Flowchart of the iterative coupling of solvers. The indice "struct" refers to
the mesh of the external solver and "F" to the mesh of ForDGe. Blue blocks represent
the new steps implemented in the frame of this work.
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The h̃struct is then bilinearly interpolated back to ForDGe’s mesh. This field h̃F can be

used to solve the Reynolds equation. The equation is solved by using a classical Newton-

Raphson approach and evaluating the residual, which can be computed in three steps.

First of all, the variable(s) and their parametric gradients must be interpreted from the

interpolation points to the quadrature ones. Secondly, source terms, volume and interface

fluxes must be computed at the quadrature points. Finally, a return from the interpolation

points from the quadrature ones is performed. More detail about this procedure and the

mathematical derivations are presented in [26, 38, 40].

Finally, the convergence is considered reached once the relative error of the solution

between two iterations is smaller than a tolerance factor, i.e. when the following criterion

is validated: ∣∣∣∣pj−1 − pj
pj

∣∣∣∣ ≤ tol. (3.17)

As for p̃struct, it is updated each time the residual is computed to avoid having to compute

it each time the h̃F is required, i.e. at each flux or source term computation.
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Chapter 4

Computation Analysis and Validation

4.1 Validation of the Externalisation

The validation of the externalisation methods is performed by comparing results ob-

tained with the structural solvers intrinsic to ForDGe with the same one externalised and

implemented in Python, namely Wallowit and Anno, Iordanoff and Larsen and Santos

models. The results will be shown for a bump type GFB with a single 360◦ pad.

4.1.1 Comparative Analysis

In this subsection, the externalised models will be compared to their mirror selves

present within ForDGe.

The first model to be compared is Wallowit and Anno’s one. The test case is a one

dimension mesh with 50 elements for the structural solver and 30 for ForDGe’s mesh.

The Reynolds equation is solved in the compressible scenario and Dirichlet’s boundary

conditions have been applied at both ends of the pad. For each solver, external and

intrinsic, the pressure field is computed for four different journal eccentricity ratios ε =

e/C. The pressure field is represented in Figure 4.1. The dashed and black lines refer to

the externalised solver and the continuous lines to the intrinsic solver.
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Figure 4.1: Steady-state pressure field at 300◦K and 120, 000 RPM.

The difference between the intrinsic and externalised structural solvers is highlighted in

Figure 4.2. As it can be seen, the externalised Wallowit and Anno’s model follows pretty

well its counterpart present in ForDGe. The difference between the two models has been

computed and is graphically represented in Figure 4.3.
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(c) Inflection point of pressure field
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Figure 4.2: Highlighted differences of Figure 4.1, where the dashed black lines represent
the externalised solver’s solutions.
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Figure 4.3: Difference between external and intrinsic solvers’ pressure fields, where
∆p̃ = p̃− p̃ext, with p̃ referring to the pressure field of the internal structural solver
and the subscript "ext" denotes the solution with the external solver.
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The biggest difference between the models occurs for the highest eccentricity ratio. This

is most likely due to the linear interpolation of the pressure field. Indeed, the higher the

eccentricity ratio is, the higher the pressure field maximum and the steeper the slope of

the field will be. Thus, in these conditions, the interpolation will introduce the biggest

errors near the maxima, as the linear assumption between neighbouring points of such

interpolation is not exactly accurate. To measure the difference between the different

solvers, the relative errors at the maxima will be computed. The relative error at the

maximum pressure is only of
∣∣∣ p̃ext max−p̃max

p̃max

∣∣∣ = 9.952e−5 and of
∣∣∣ p̃ext min−p̃min

p̃min

∣∣∣ = 3.206e−5 at

the minimum pressure.

The same results are expected and seen for the adimensional gap h̃, represented in

Figure 4.4 and Figure 4.5, where the dashed lines are barely visible at the minimum gap.

The biggest relative error at the minimum gap is
∣∣∣ h̃ext min−h̃min

h̃min

∣∣∣ = 1.782e−4.
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Figure 4.4: Steady-state gap field at 300◦K and 120, 000 RPM.
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Figure 4.5: Minimum gap for the highest eccentricity ratio of Figure 4.4.

As small as they are, these differences confirm that both models are equivalent, even

though one of them is across a Python interface data transfer and a double interpola-

tion, one following the mathematical process presented in subsection 3.1.4 and one linear

interpolation, for the 1D case.

Similar behaviour is observed for Iordanoff’s model implementation. This result could

be expected, as Iordanoff’s formulation is simply another way to compute the compliance

of a SEFM. The pressure field for the same eccentricity ratios as Wallowit and Anno’s

model is shown in Figure 4.6, with the maximum discrepancy between the internalised

and externalised version being
∣∣∣ p̃ext max−p̃max

p̃max

∣∣∣ = 9.952e−5 and
∣∣∣ p̃ext min−p̃min

p̃min

∣∣∣ = 3.206e−5.
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Figure 4.6: Steady-state pressure field at 300◦K and 120, 000 RPM for Iordanoff’s struc-
tural solvers.

The same observation can be made for the gap field, but will not be shown here to avoid

too much redundancy. However, it is good to note that the biggest discrepancy between

models leads to
∣∣∣ h̃ext min−h̃min

h̃min

∣∣∣ = 1.782e−4.

It comes out of the comparative analysis of the two above-mentioned solvers that, for a

simple SEFM, no matter its absolute accuracy, the error introduced by the externalisation

of a SEFM solver for a specific test case can be found by computing the error between the

two versions of a same solver. Moreover, it can be highlighted that these errors remain

very close for pretty similar solvers such as the Wallowit and Anno’s and Iordanoff’s

models. The errors are equal up to the e−10 order, which is the order of precision of

the pressure field convergence of the numerical aerodynamic solver, i.e. tol = e−10 from

section 3.5. The error introduced by the externalisation can be quite well estimated for

SEFM models.
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As for Larsen and Santos’ model, the correction term used to model the top foil has a

too small effect on the steady-state analysis, which leads this model to be very similar to

Wallowit and Anno’s in terms of error due to its externalisation.

The bearing’s and the test case’s parameters that were used for this comparative anal-

ysis are displayed in Table 4.1.

Parameter Value Unit

Rotation speed 120 · 103 RPM

Temperature 300 °K

Journal radius 12 mm

Clearance 50 µm

Bump foil length 852 mm

Bump foil pitch 2.17 mm

Bump foil thickness 101.6 mm

Bump angle 1.5386 rad

Bump foil Young’s modulus 185 GPa

Bump foil Poisson’s ratio 0.29 [-]

Bump foil friction coefficient 0.05 [-]

Top foil thickness 101.6 mm

Top foil Young’s modulus 196 GPa

Top foil Poisson’s ratio 0.3 [-]

Table 4.1: Bearing’s parameters for the test case.

4.1.2 Two-dimensional Case

The structural solver’s externalisation has been implemented to support two-dimensional

analysis. Validation of two-dimensional models will be presented in the following. The

test case for this particular analysis has the same bearing parameters as the one displayed

in Table 4.1. The radial direction is modelled as it was in the previous subsection, i.e.

in 30 elements for ForDGe’s mesh and 50 elements for the externalised structural solver’s
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mesh. The axial direction is modelled by using 20 elements and 30 for ForDGe and for

the external solver respectively. The boundary conditions of the test case force the pres-

sure field to be equal to the ambient pressure pa at the extremities of the bearing and at

the ends of the foils, as it was for the 1D test case. The pressure field is represented in

Figure 4.7 and Figure 4.8. In the second one, the solution from the external solver has

thicker lines to show good matching, otherwise only one of the colours is seen.
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Figure 4.7: Two-dimensional pressure field for ε = 0.08.
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Figure 4.8: Thickened pressure field of Figure 4.7.

Iordanoff’s model has been used for both of these representations. The biggest discrep-

ancy between the models occurs at the maximum and minimum values of the pressure

field, as it was the case for the 1D analysis. Thus, the differences between the maximum

and minimum values of the pressure field have been computed to evaluate the relative

error introduced by the externalisation of the structural solver for two-dimensional cases.

The relative error at the minimum of the pressure field is
∣∣∣ p̃ext min−p̃min

p̃min

∣∣∣ = 9.98e−6 and

for the maximum
∣∣∣ p̃ext max−p̃max

p̃max

∣∣∣ = 1.007e−5. The corresponding gap field is shown in

Figure 4.9.
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Figure 4.9: Two-dimensional gap field for ε = 0.08

It can be noted that the displacement (Figure 4.9) is constant along the axial direction

of the bearing but that the pressure field (Figure 4.7) varies both in the radial and in the

axial directions. This is due to the boundary conditions of the test case, which impose the

pressure field, i.e. the solution, to be equal to the ambient pressure pa on the extremities

of the bearing as well as the welded and free ends of the foils. The other reason explaining

this numerical result is that, as of now, every structural model that has been coupled with

ForDGe averages the pressure in the axial direction, which is another reason motivating

this externalisation interface for coupling with higher accuracy structural models.

The same conclusion as the one-dimensional test case can be drawn. The relative errors

are of the same order and don’t seem to be influenced much by the extension to a second

dimension of the multi-physics problem. The biggest difference between external and

internal models occurs at the maxima, as it was for the one-dimensional analysis. This is

most likely due to the bilinear interpolation of the pressure field.

43



4.1.3 Other Test Cases

The validity of the externalisation has also been insured for different cases, such as

the incompressible case, the no foil case, other rotation speeds and different temperature

values. Relative errors between external and internal solvers remain somewhat constant,

with the exception of increasing pressure amplitude. If the parameters of the test run lead

to higher/lower maximum/minimum pressure values, the overshoot/undershoot of the

interpolation will cause increasing relative errors for the same reasons mentioned in the

above subsections. For instance, when evaluating GFB behaviour under high eccentricity

ratios it would be good practice to take the interpolation-induced error into account.

4.1.4 Structured Mesh Convergence Analysis

This analysis has been made to evaluate the effect of the refinement of the structural

solver’s mesh on the pressure field computation. The convergence analysis is based on

Sommerfeld analytical expression for an incompressible case, for a periodic 360◦ journal

bearing with infinite journal length. These assumptions lead to a skew-symmetric pressure

distribution [41].

This study is based on the squared relative error of the numerical solution compared to

the analytical one computed at each circumferential coordinate and for different numbers

of elements Ne for the structured mesh. The parameters of the numerical solution are

the ones listed in Table 4.1 and the eccentricity ratio is ε = 0.08. The test case is the 1D

incompressible solution with one 360◦ pad and with 30 elements for ForDGe’s mesh. The

results of this analysis are shown in Figure 4.10.
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Figure 4.10: Squared relative error of numerical solution compared to Sommerfeld’s ana-
lytical solution.

It comes out of these results that the number of elements of the structural solver’s mesh

does have an impact on the accuracy of the solution. However, as soon as Ne tends to or

even exceeds the number of elements of ForDGe’s mesh, this relative error tends to zero.

Consequently, it would be good practice to use a structural mesh at least as refined as

ForDGe’s input IJK mesh to reduce the coupling induced error as much as possible.

4.2 Effect of Top Foil Modelling

Two models including top foil modelling have been coupled with ForDGe. The first one

is Larsen and Santos’ model, which is just the addition of a correction term to Wallowit

and Anno’s SEFM compliance formulation. This term is based on the assumption of

a periodic top foil, which can be somewhat limiting in its accuracy to model higher

complexity GFB configurations. The other model implemented is the modelling of the

top foil by a beam finite element method (FEM). This model has only been implemented
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externally to ForDGe.

In the following, both methods will be compared to each other and to a benchmark,

which is simply Wallowit and Anno’s model. The comparative analysis is based on a test

case with the same parameters as the previous sections found in Table 4.1. Furthermore,

for every solver, the computations have been performed with the external version of the

solvers to put them on equal ground. Also, only one eccentricity ratio ε = 0.08 will be

used for clarity. The gap h̃ and the pressure field p̃ are respectively shown in Figure 4.11

and Figure 4.12.
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Figure 4.11: Gap field h̃ with top foil modelling.
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Figure 4.12: Pressure field p̃ with top foil modelling.

For both models, the bump foil is modelled using Wallowit and Anno’s model. The

difference between the two models lies in the definition of the top foil modelling for the

two models. In Larsen and Santos’ model, the top foil is modelled by simply including a

correction term based on the assumption of a continuous periodic top foil. This correction

term is applied to the compliance of the SEFM, which is then used to compute the gap

h̃. For the beam FEM top foil modelling, the top foil’s deflection under the action of the

pressure field is computed, adimensionalised and then finally added to the overall gap h̃.

The loss of circumferential symmetry in the gap field h̃ can be noticed from Figure 4.11.

This could be expected as the beam FEM modelling of the top foil assumes that the 360◦

top foil behaves as a cantilever. The welded end of the foil is considered clamped and

stays in its initial position, while the free end is free to move.

If the boundary conditions of the beam FEM modelling are adapted to represent a peri-

odic top foil layer to match the assumption of the Larsen and Santos’ model, both models
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produce very similar results. These results are shown in Figure 4.13 and Figure 4.14.

Hence, both top foil representations can be considered somewhat equivalent, with the

exception that the beam FEM modelling allows for the representation of various BCs and

thus for a broader analysis range.
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Figure 4.13: Gap field h̃ with top foil periodicity BC.
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Figure 4.14: Pressure field p̃ with top foil periodicity BC.

4.3 Limitations of Beam FEM Top Foil Modelling

The implementation of this model was done with the purpose of showing the good

behaviour of the externalisation of the structural solver and showing that new solvers

could be introduced and coupled with ForDGe without any issue. This is especially true

for globalised structural models, which would be difficult to implement in ForDGe by

direct coupling. Nevertheless, the beam FEM is not the best model for the top foil in

terms of accuracy and numerical precision. Moreover, as only steady-state static analysis

has been performed, the FEM employs a linear system that could potentially be directly

implemented inside of ForDGe, but, once again, future dynamic and transient behaviour

analysis will require more complex modelling that cannot be merged inside of ForDGe.

The beam finite element method presents some limitations regarding the top foil of

GFBs modelling. Actually, the top foil of a GFB cannot be assumed to be equivalent to
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a beam for various reasons. The top foil could be made of layers of different materials for

thermal or startup wear protection motivations. These different layers and specific ma-

terials could have varying properties during the operation phase. That would be ignored

by the beam assumption. Also, some top foils could have more sophisticated geometries

not well modelled by the beam hypothesis.

The beam FEM assumes that the load acting on the top foil is distributed, which is not

the case regarding the pressure field. The pressure field can vary due to many factors, such

as non-linear behaviour from dynamic effects, operation point, temperature and journal

rotation speed.

Finally, the contact between the foils is ignored and the friction forces that would

also generate some stiffness are also ignored. The coupling between foils is completely

neglected and it is assumed that both of their contributions simply add up.
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Chapter 5

Conclusion and Perspectives

5.1 Conclusion

This work established a recent review of the current state of the gas foil bearing tech-

nology from a design point of view as well as from a modelling point of view. It stands

out from this literature review that the technology is in constant evolution and that novel

gas foil bearing configurations keep being developed. Every new design is created with

the purpose of improving the performances and characteristics of gas foil bearings, such

as load capacity, stability, energy dissipation, static and dynamic characteristics.

These novel GFBs come with an increasing order of complexity in their design and thus

in their modelling methods, which confirms the necessity for reliable and easy coupling

of high order structural and aerodynamic solvers to precisely assess and analyse GFBs’

properties. This coupling of high order solvers could not be efficiently implemented in-

ternally to ForDGe for each GFB type and modelling technique. This is particularly true

for globalised structural solvers.

Then, the implementation of the coupling principle and the iterative process of this cou-

pling to ForDGe as well as the externalisation process of structural solvers from ForDGe

and the requirements for any structural solver to be coupled with it were presented.
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Finally, the external coupling was validated through comparative analysis with struc-

tural solvers implemented both inside and outside of ForDGe. Furthermore, a beam finite

element method was implemented to show the good behaviour of ForDGe coupling with

a globalised structural solver. Then, it was compared to another GFB top foil model and

showed the importance of boundary conditions definition.

5.2 Perspectives

Now that external coupling with ForDGe is functional, further analysis of different

GFB configurations and different parameter values can be achieved to deepen the under-

standing of the technology and to facilitate the industrial applications of GFBs. Thanks

to the external coupling interface implemented in the frame of this work, these analyses

could be easily carried out with high-order structural solvers to achieve high modelling

accuracy. Structural solvers that could be of interest are, of course, complete modelling

by finite element analysis, e.g. with curved shell elements or globalised models like the

one developed by Arghir and Benchekroun [36] presented in subsection 2.2.2.

Higher order interpolation methods could be introduced instead of the (bi)linear inter-

polation to measure effects in terms of accuracy and computation time and to try to limit

the externalisation induced error.

Lastly, ForDGe could be linked with other solvers and modelling of rotor dynamics

to perform dynamic analysis, which requires high multi-physics precision. Naturally, the

latter is facilitated by the external coupling of the solvers.
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Appendix A

Iordanoff’s Formulation Geometric

Functions

The geometric functions of Iordanoff’s compliance formulation are:

I(θb, µf ) =

(
A2 +

1 + µ2
f

2

)
θb −

(1− µ2
f ) sin 2θb

4
(A.1)

− µf (cos 2θb − 1)

2
− 2A(1− cos θb + µf sin θb), (A.2)

A = sin θb + µf cos θb. (A.3)

and

J = ya

[
(cos θb − 1)A+

µf (1− cos 2θb)

4

]
+ (1− ya)

(
θb
2
− sin 2θb

4

)
, (A.4)

ya =
−
(
3 sin 2θb

4
− θb

2
− sin θb

)
2θb sin θbA− 2µf sin

2 θb + θb − sin 2θb
2

. (A.5)

Iordanoff’s formula to compute the compliance both at the free end and at the welded

end of a bump foil considers Coulomb friction forces with the bearing sleeve.



Appendix B

Python Interface and Classes

Implementation

Hereafter are presented the classes implemented or modified in the context of this work,

the Python interface, and a simple test case is described.

• discretisation

– FDGField.hpp

– FDGSolutionField.cpp/.hpp

– FExternalFieldPython.hpp

– FExternalIJK.cpp/.hpp

– FField.hpp

• modules

– ExternalFieldPython.py

• swigInterface

– fordge.i

• mesh

– [...]

Each file’s purpose is briefly described:

1. FDGField.hpp, FDGSolutionField.cpp/.hpp and FField.hpp have all been imple-
mented to support the update of the solution field and its evaluation each time the
residual is computed.



2. FExternalIJK.cpp/.hpp is the class that supports the interpolations of the solution
field and the structural gap. It is initialized at the solver’s creation if ForDGe is
coupled with an externalised structural solver.

3. FExternalFieldPython.hpp defines to ForDGe the routines of the Python interface.

4. ExternalFieldPython.py is the implementation of the Python interface.

5. fordge.i is the SWIG file that ensures good communication between ForDGe and
the Python interface.

6. Finally, a few modifications have been performed in the mesh folder of ForDGe to
handle the evaluation of the solution field on the structural solver’s mesh.

The procedure to initiate a simple test case employing the external beam FEM and
Wallowit and Anno’s SEFM formulation for the bump foil takes place as follow:

1. The test case parameters must be defined in the corresponding .json file, in which
the parameter top_foil_modelling must be set equal to True to enable the beam
FEM modelling.

2. The structural solver’s discretisation parameters must also be defined, as well as the
modelling choices, i.e. Model = ’External’ and Ext_model = ’Wallowit’.

3. Then, in a test file, such as any test/gasFoilBearing/ParametricStudyXXX.py,
the Python interface must be initiated by creating the relevant Python object, e.g.
externalIJK = ExternalFieldPython(**params).

4. Finally, in the test file, after ForDGe’s solver has been created and before it is run,
the Python interface object must be set, i.e. its address must be given to ForDGe.
The setting routine is implemented in ForDGe/FSolver.hpp and can be used in the
test case file by the Python instruction solver.setExternalIJK(externalIJK).
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