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ABSTRACT

In the contemporary landscape, power systems are undergoing significant transformations
driven by the imperative need for an energy transition towards a completely decarbonized
energy system. This master thesis, in particular, focuses on how distribution network
operators should plan this transformation considering they have to face both a massive
integration of renewable energy sources (RES) and an increased electrification of mobility,
heating and industrial processes, through the use of low-carbon technologies (LCTs). This
is the so-called distribution network development planning problem (DNDP).

This master thesis lays the foundation for a broader research project whose purpose
is to develop a new framework to solve the DNDP problem based on a co-optimization
approach. This approach distinguishes from previous works as it models the interactions
between the distribution network operator and its users, whose standpoints were previ-
oulsy neglected. We translated our co-optimization framework into a bilevel mathematical
optimization program where the upper-level represents the DNO’s optimization program,
while the lower-level models the aggregation of the optimization programs of all its grid users.

In conclusion, this research not only provides a first bilevel formulation for the DNDP
problem but also establishes a tool for exploring various setups of the bilevel problem. This
tool facilitated the execution of a preliminary sensitivity analysis, the outcomes of which
shed light on the equilibrium dynamics between the strategies of the distribution network
operator and its users.
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C h a p t e r 1
DESCRIPTION
OF THE RESEARCH PROBLEM

1.1 Introduction

In the relentless battle against the ever escalating climate and energy crisis, the urgency to
take decisive actions has reached unprecedented levels. Policies enacted at the European
level have laid the foundation for a transformative vision, pushing nations to adopt rigorous
measures aimed at achieving an ambitious objective: zero net carbon emissions in Europe
by 2050 [1]. To attain carbon neutrality, a myriad of pathways unfold before us. One such
pathway is illustrated in FIGURE 1.4, which underscores the urgent and substantial reductions
in CO2 emissions that are required in sectors, such as power generation, transportation,
industrial processes, and residential heating and cooling.

Figure 1.1. Illustration of a possible trajectory leading
to climate neutrality in Europe, showcasing the net
carbon emissions expressed as a percentage relative to
the 1990 carbon emissions level (taken from [2]).

In the face of this profound chal-
lenge, a momentous shift lies ahead.
As we strive to revolutionize these key
polluting sectors, the widespread adop-
tion of renewable energy sources (RES)
and an increased electrification of mo-
bility, heating and industrial processes,
through the use of low carbon tech-
nologys (LCTs), are emerging as cen-
tral strategies. For instance, Belgium’s
Fitfor55-MIX scenario, as illustrated
in FIGURE 1.2a, necessitates a remark-
able transition in electric passenger vehi-
cle adoption, with the penetration rate
soaring from 1.7% in 2020 to 27% by
2030. Similarly, FIGURE 1.2b displays a parallel trend, revealing the Fitfor55-MIX’s projec-
tion of an 8.6% share for electric heat pumps (EHPs) in the country’s heating demand by
2030.

1



CHAPTER 1. DESCRIPTION OF THE RESEARCH PROBLEM 2

(a)

(b)

Figure 1.2. Expected evolution in Bel-
gium of (a) electric passenger car penetra-
tion until 2050, and (b) share of electric
heat pumps in heating demand until 2050
(from [3]). Four scenarios are compared
in (a) and (b).

Moreover, FIGURE 1.3 provides a glimpse
into the anticipated integration of renewable
energy sources, notably showcasing the Fitfor55-
MIX scenario’s expectation of approximately
11GW of PV capacity. These figures highlights
the critical role that RES and LCTs will play
in reshaping the energy landscape.

This transition will significantly impact elec-
tricity networks, as they will have to cope with
both an increase in production volatility and
an increase in power consumption. The scale
of the transition towards a fully decarbonized
global energy system necessitates substantial
investments in electricity networks. Estimates
indicate that between $92 trillion and $173 tril-
lion of investment will be required between 2020
and 2050. Moreover, every 1% of additional
efficiency in demand during this period could
yield a staggering $1.3 trillion in value [4], un-
derscoring the importance of well-planned and
optimized electricity networks in achieving a
sustainable energy future.

This master thesis proposes a method to build a distribution network development
planning (DNDP) [5] tool, which aims at planning how distribution networks must evolve
in order to achieve an efficient transition towards a decarbonized energy sector. This thesis
adopts a co-optimization approach that considers jointly the interactions between grid
operators and grid users.

Figure 1.3. Range for solar capacity in Belgium (from [3]).
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1.2 State of Art

The swift integration of RES and LCTs into distribution networks can give rise to diverse
technical obstacles, such as line congestions and potential under or over-voltages [6], [7].
In [7], a Monte Carlo analysis was conducted to examine the thermal and voltage effects
resulting from different penetration levels of RES and LCTs into low-voltage distribution
systems. The study revealed that a high penetration of PVs and LCTs (i.e. above 50% of the
households connected to a feeder) can indeed lead to significant issues in the majority of the
examined feeders. An explicit example of this outcome is available in a document authored
by the same researchers [8]. In that document, FIGURE 1.4a depicts the impacts of various
LCTs within a residential network feeder in Great Britain, including the consequences of
shifting households’ heating systems to electric EHPs. In this particular scenario, the figure
reveals a threefold rise in peak current entering the distribution network during the winter
season. Additionally, it can be seen that EVs further increase this peak, although their
impact will likely be seen during nighttime in residential networks. FIGURE 1.4b, from the
same document, illustrates that PV panels, on the other hand, create issues during summer.

(a) (b)

Figure 1.4. Current entering a feeder from a British low-voltage distribution network. This
feeder supplies 55 loads through 1431 m of cables. (a) Comparison for all the winter cases,
i.e. without LCT, with EVs, with EHPs and with µCHPs. (b) Comparison for all the
summer cases, i.e. with and without PVs. Both figures are parts of figures 34 and 35 from
[8].

It is important to acknowledge that different use cases (e.g., a business park) or a similar
setup in a different part of the world, would yield alternative conclusions. This underscores
the necessity for decision-making tools to guide the design and operation of distribution
networks.
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A renowned tool in the literature for identifying strategies to reinforce distribution
networks is the distribution network expansion planning (DNEP) problem. It aims to
establish an optimal and cost-effective plan that includes the enhancement of existing
distribution feeders and substations, as well as the installation of new ones. This plan must
cater to the projected demand over the defined time horizon while adhering to the technical
constraints of the network [9], [10].

Note: Dotted lines represent possible sites for the ex-
pansion of the system. S1-S4 are the substations.
Node 10, 20, 33, 41 and 49 with the dotted cir-
cles are the possible sites for the DG installation.

(a)

(b)

Figure 1.5. Example of DNEP model
simulation results(from [11]). (a) Initial
test network. (b) Expanded network
obtained by the DNEP model in the paper.

The main methods for solving DNEP prob-
lems are analytical, exact optimization, and
heuristic methods [9]. Analytical methods are
limited to simple cases. Among exact opti-
mization methods, reference [12] presents two
exact convex relaxations of DNEP as mixed-
integer conic programming problems. It also
proposes methods to strengthen their contin-
uous relaxations through the introduction of
auxiliary variables and loop elimination con-
straints. Furthermore, the author claims that,
besides providing an optimality guarantee, such
mixed-integer conic programming formulations
solve faster than a mixed-integer nonlinear pro-
gramming (MINLP) formulation. However, the
DNEP model presented in [12] has limitations.
First, it computes reinforcement decisions based
on a single power injection profile for the net-
work, e.g., the worst-case moment of the year.
This moment is not necessarily easy to deter-
mine, especially with the massive integration of
RES and LCTs. Then, it considers a passive
distribution network, meaning that the power
profile of grid users is considered inflexible.

Another way of mitigating issues caused by
RES and LCTs is to use active network man-
agement (ANM) [13], i.e. short-term policies that control the power injected by generators
or withdrawn by loads. Recent research has shown that implementing ANM strategies can
increase the share of RES and reduce significantly reinforcement costs [14].
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In recent years, new DNEP models have emerged to address the limitations of the
method presented in [12]. These models incorporate active network management (ANM),
renewable energy sources (RES), energy storage system (ESS), and low carbon technol-
ogys (LCTs). In [15] and [16], the DNEP is modeled as a MINLP that includes RES
and uncertainties in the planning. In [17], the DNEP problem is enriched by considering
distributed ESSs. Reference [11] goes further by modeling a DNEP problem that considers
ANM schemes, including demand response management, RES curtailment, and dispersed
ESSs. Hence, the DNEP problem is well-established and has already received much attention.

However, a gap has been identified in all these research works as they solely focus on the
distribution network operator (DNO)’s perspective, overlooking the behavior of grid users
resulting from their interactions with the DNO. From the grid users’ standpoint, there is
already a large body of research which aimed at optimizing the sizing and operation of a
microgrid or an energy community (EC), as seen in [18], [19]. Nevertheless, few articles
consider the problems of the grid users and the grid operator as being coupled. For instance,
while it is technically feasible to reinforce the grid to accommodate the demand growth
due to EHPs and EVs, it comes at a significant cost. Knowing this cost, grid users may
change their plan, for instance, reduce their energy needs by shifting to lighter, less energy-
demanding vehicles or installing stationary battery storage to increase their self-consumption.

In this master thesis, we are interested in bilevel programming (BP) as the tool we use
to clear the gap mentioned in the previous paragraph. BP describes a type of optimization
programs well-suited to model co-optimization scenarios, where it involves an upper-level
(leader) optimization problem and one or more lower-level (follower) optimization prob-
lems [20]. This mathematical tool has already been used in previous research works focused
on the DNDP problem [21], [22]. In [21], the study approaches generation and distribution
network development as an upper-level problem, while the lower-level problem concentrates
on demand response. In contrast, [22] sets the upper-level problem to optimize distribution
network development, with the lower-level problems involving RES and demand aggregators.

To conclude, BP is already a recognized tool in the power system research community
for tackling the DNDP problem. Nevertheless, to the best of our knowledge, the DNDP
problem has not been previously modeled using a BP program that incorporates a lower-
level representing the behavior of users as a microgrid optimization problem, where their
investment decisions are directly coupled to the DNO’s policy.
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1.3 Problem Statement

The main objective of this master thesis is to lay the foundations for an innovative framework
dedicated to formulating network development plans within low and medium voltage distri-
bution networks. Given the extensive scope of this problem, which can fluctuate based on the

Figure 1.6. Illustration of the considered
bilevel optimization problem.

geographical location of the network, the local
policies in place at this location, and techno-
logical considerations, the framework will be
designed with the intent to cope with as many
as possible variants of this problem. For in-
stance, these variations could range from devel-
oping plans for a new distribution network in an
underserved region to strategizing for already
established networks. As this master thesis is
part of the initial steps aimed at constructing
this new framework, it will narrow the scope of
this problem by focusing on a specific version
described in detail within this section.

Unlike existing literature tackling this problem, which predominantly focuses on the
distribution network operator (DNO)’s perspective, this work approach considers both the
DNO and the grid users’ viewpoints. In fact, the distribution network development planning
(DNDP) issue is treated as a strategic game involving these two parties, where the decisions
of one actor influence the other’s decisions and vice versa. This results in a two-level problem,
where grid users and the DNO engage in decision-making processes at their respective levels.
In such problem, the upper-level, also called the leader, makes the initial decision, and the
lower-level, or follower, observes and responds accordingly. The solution to this problem
lies therefore in finding an equilibrium between the strategies of both actors. This is pro-
posed to be modelled by a bilevel optimization program, that can be illustrated in FIGURE 1.6.

The upper-level problem of this program models the decision-making process of the
DNO, aiming to reinforce its network when the number of LCTs and RES increases. The
problem considers a long time horizon, e.g. 30 years, corresponding to the investment’s
lifetime and imposes a budget balance constraint, which aims to ensure that the DNO gets
back its investments, plus a certain margin, from network tariffs billed to users. To build the
upper-level problem, this work considers the DNEP models proposed in references [12], [23].
However, they are modified to include multiple time steps and this budget balance constraint.
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The lower-level represents the grid users of the network. They have the option to
purchase grid connection capacity from the DNO, defining the maximum power they can
inject or withdraw from the grid. They can also choose to invest in PV panel installations.
Grid users’ demand is assumed to be known and inflexible, but the analysis considers
various scenarios for the penetration of EVs and EHPs. To remunerate the electricity
injected into the grid when self-consumption is not possible, a feed-in tariff is implemented.
The objective of grid users is therefore to minimize all their investments, e.g. PV panel
installations, and operational costs, e.g. electricity purchased from the grid. Furthermore,
grid users are presumed to be entirely rational and thus, consistently make optimal decisions.

The DNO aims to minimize total reinforcement costs and Joule losses in its network.
They typically recover costs, along with a defined margin, through capacity and energy tariffs
paid by grid users. Tariffs are treated as exogenous parameters, enabling sensitivity analysis.
For instance, high distribution tariffs may lead users to invest in renewable generation,
while the grid operator may improve the network’s hosting capacity with increased budget.
Conversely, low tariffs may encourage users to consume more from the grid, resulting in
potentially higher revenues for the DNO. This close interdependence between tariffs, users,
and operators’ behavior is a crucial aspect this work seeks to capture.

The primary objective of this master thesis was to establish the initial model of the
problem outlined in detail above. This model serves as the foundation for a more compre-
hensive DNDP problem, which will be the subject of my future Ph.D. thesis. To achieve
this, the problem was incrementally constructed, adding complexity as the work progressed.
The approach that was used can be summarized by the following key stages:

1. A first step was to develop a microgrid optimization program representing the base
case for the lower-level problem. In this model, investment in PV systems is allowed,
and restrictions are imposed on the power users can draw from or inject into the grid.

2. Then, the model for the upper-level problem had to be derived. This stage was done
in two iterations. First, we implemented and evaluateed the DNEP models proposed
in [12] and [23]. Then, we took inspiration from these two formulations to create our
own version of the DNEP problem, which introduces multiple time steps, lower-level
variables and include a budget balance constraint. This constraint ensures that the
investments made by the DNO, along with an appropriate margin, are recovered
through network tariffs charged to grid users.

3. Subsequently, a formulation for the bilevel problem was created, combining the
previously mentioned models.
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4. An initial set of tests was conducted on our bilevel optimization program. These tests
were performed with a formulation of the problem that remains unchanged throughout
the tests, only input parameters were modified. These results are submitted to the
IEEE PES ISGT EUROPE 2023 conference [24] in a paper that highlights the initial
outcomes of the research.

5. Lastly, we implemented the bilevel model using a modular code that allows to test
alternative formulations of the model. Some experiments were conducted to gain
valuable insights into the equilibrium reached in diverse configurations of the problem.

1.4 Work Environment

My master thesis took place in the Smart Microgrids team of the Montefiore Institute, the
Electrical Engineering and Computer Science research unit at ULiège. The team’s expertise
lies in developing algorithmic solutions based on mathematical programming and machine
learning to solve problems of planning, operation, and control in power systems.

The master thesis was supervised by Pr. Bertrand Cornélusse, who leads the microgrid
team. Throughout the research, I collaborated closely with my supervisor and Geoffrey
Bailly, a PhD student from the same team. Geoffrey and I divided the objectives outlined
in SECTION 1.3, but a significant part of the work was carried out collaboratively. My main
focus was on formulating the upper-level problem and on implementing a modular code for
the bilevel simulations, whereas Geoffrey mainly focused on the lower-level part. We worked
together on the rest of the research, including the bilevel experiments for the ISGT paper.
Additionally, the ISGT paper results were based on the bilevel model and simulations that
we both implemented. Throughout the process, we received valuable support and guidance
from Pr. Bertrand Cornélusse and Dr. Mevludin Glavic, an experienced researcher in the
field of power systems, who also contributed to the paper’s writing.



C h a p t e r 2
MATHEMATICAL
OPTIMIZATION BACKGROUND

This chapter provides an overview of fundamental mathematical optimization concepts that
are essential for a thorough understanding of the master thesis’s subject matter. The first
sections of the chapter cover fundamental aspects of mathematical optimization, including
the general form of a constrained optimization program, the concept of duality and the
Karush-Kuhn Tucker conditions. Subsequently, a section is dedicated to the different classes
of optimization programs and their properties. Emphasis is placed on classes of optimization
programs that are relevant to the context of this thesis, i.e. linear, convex and mixed-integer
programs. These sections provide concise summaries of the material present in references
[25]–[27] for continuous optimization, and [28]–[30] for discrete optimization. Lastly, the
chapter introduces readers to the field of bilevel programming, which serves as the framework
for formulating our approach to the distribution network development planning problem
(DNDP). This last part is mainly inspired from S. Dempe’s books [31], [32], M. Cerulli’s
Ph.D. thesis [33], and C. Fricke’s slides [34].

2.1 Definition of Mathematical Optimization

Mathematical optimization is a discipline that involves formulating a problem in the form of
an optimization program, then determining its optimal solution from a set of feasible options.
Formally, an optimization program is a mathematical model that seeks to find the vector of
variables x ∈ X that minimizes (or maximizes) the value of an objective function f : X → R
under a set of inequality constraints gi : X → R and equality constraints hi : X → R. All
values of the vector x that respect the constraints of the problem define the feasible set. The
solution, denoted x∗, is a point of the feasible set at which the objective function reaches its
smallest or highest value, depending on the direction of optimization. It is obtained using an
algorithm, called a solution method. In this thesis, the focus is on constrained optimization
programs. The general form of such programs can be written as in PROBLEM 2.1.

9
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General Form of Constrained Optimization Programs

minimize
w.r.t. x

f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . , k

hj(x) = 0 j = 1, 2, . . . ,m

x ∈ X

(2.1)

where X ⊆ Rn represents the set of feasible solutions, k is the number of inequality
constraints and m is the number of equality constraints.

2.2 Duality

Duality considers that optimization programs can be approached from two different per-
spectives: the primal problem and the dual problem. The original problem is referred to
as the primal problem, while the dual problem is derived from the primal by following the
steps outlined below:

1. From PROBLEM 2.1, the Lagrangian L : Rn ×Rk ×Rm → R can be built by combining
the objective function f and the constraints gi and hj into a weighted sum. The
weights λi and νj that are introduced in this sum are called the Lagrange multipliers.

L(x,λ,ν) := f(x) +
k∑

i=1

λigi(x) +
m∑
i=1

νjhj(x) (2.2)

where λ = [λ1, λ2, . . . , λk]
T and ν = [ν1, ν2, . . . , νm]

T .

2. Then, the Lagrange dual function W : Rk × Rm → R can be derived by finding the
minimum value of the Lagrangian.

W(λ,ν) := minx L(x,λ,ν) (2.3)

3. Finally, the dual problem consists in the maximization of the Lagrange dual function
W(λ,ν) subject to dual feasibility constraints.

max
w.r.t. λ,ν

W(λ,ν) subject to λi ≥ 0 i = 1, . . . , k (2.4)
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Consider x∗ and (λ∗,ν∗) as optimal solutions to the primal and dual problems, respec-
tively. Let f ∗ = f(x∗) and W∗ = W(λ∗,ν∗). Assuming that the primal is a minimization
problem, the value of the dual function can be interpreted as a lower bound to the value
f ∗ of the optimal primal objective function. Hence, solving the dual problem amounts to
finding the highest lower bound on f ∗. This comes from the concept of weak duality.

If x̃ and (λ̃, ν̃) are respectively feasible solutions of the primal and dual problems, weak
duality states that the value of the dual objective function is always lower or equal than
the value of the primal objective function when evaluated at those feasible solutions, i.e.
W(λ̃, ν̃) ≤ f(x̃). The minimum deviation f(x̃) − W(λ̃, ν̃) between the primal and the
dual functions is called the duality gap. Strong duality, on the other hand, occurs when
the duality gap is null at optimality, i.e. f ∗ = W∗. While weak duality is valid for any
optimization programs, strong duality only holds in specific cases. Schematically, weak and
strong duality can be illustrated as in FIGURE 2.1.

d

f(x)

W(λ,ν)

f∗ = f (x∗)

W∗ = W (λ∗,ν∗)

(a)

d = 0

f(x)

W(λ,ν)

f∗ = f (x∗)

W∗ = W (λ∗,ν∗)

(b)

Figure 2.1. Illustration of duality in PROBLEM 2.1. (a) Weak duality. In this situation,
the duality gap d is always greater than zero, including at optimality. The optimal objective
function value of the dual W∗ therefore provides a lower bound on the optimal objective function
value of the dual f∗, i.e. W∗ ≤ f∗. (b) Strong duality. This alternative situation shows a
null duality gap d at optimality, i.e. f∗ = W∗.
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2.3 Karush-Kuhn Tucker Conditions

Karush-Kuhn Tucker (KKT) conditions are necessary conditions for optimality in constrained
optimization problems. In simple words, this means that if x̃ is a local optimum for
PROBLEM 2.1, then the KKT conditions must be satisfied at this point. In some specific
cases, the KKT conditions are also sufficient, which guarantees the local optimality of a
point satisfying these conditions. This holds true, for instance, for convex optimization
problems. The KKT conditions are written in EQUATIONS 2.5a to 2.5d :

KKT Conditions

Assuming that f , gi and hj are differentiable, a necessary condition for x̃ ∈ Rn to be
a local minimum for PROBLEM 2.1 is

∇x̃L = 0 : −∇x̃f(x̃) =
∑
i

λi∇x̃gi(x̃) +
∑
j

µj∇x̃hj(x̃) (2.5a)

∇λL = 0 : gi(x̃) ≤ 0 i = 1, 2, . . . , k (2.5b)

∇µL = 0 : hj(x̃) = 0 j = 1, 2, . . . ,m (2.5c)

λigi(x̃) = 0 i = 1, 2, . . . , k (2.5d)

µi ≥ 0 i = 1, 2, . . . , k (2.5e)

where EQUATION 2.5a imposes the gradient of the Lagrangian with respect to x̃ to be
zero, EQUATION 2.5b and EQUATION 2.5c are constraints imposing primal feasibility,
EQUATION 2.5d represents the complementary slackness conditions and EQUATION 2.5b
represents the dual feasibility constraints.

2.4 Classes of Single-Level Optimization Programs

Based on the properties of the functions f , gi, hj, and the set X, PROBLEM 2.1 can fall
into different classes of optimization programs, each with its own methods, properties and
algorithms for finding a solution to the problem. When building an optimization problem,
it is therefore crucial to identify its type to ensure a proper and accurate analysis.

A first approach to categorize a problem is by examining the characteristics of its set
X. When the set X is continuous (e.g. X = Rn), the variables contained in the vector
x can take on an infinite number of values. The field of mathematical optimization that
studies such programs is called continuous optimization. By contrast, discrete optimization
refers to a class of optimization programs wherein the set of feasible points X contains
discrete points. More specifically, an Integer Programming (IP) problem is a type of discrete
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programming problem that arises when the components of x can take on pure integer values
(e.g. X = Zn

+) or binary values (e.g. X = {0, 1}n).
In more general cases, some components of x are not restricted to be integer or binary
values. This implies that the set X contains a combination of continuous and discrete
variables (e.g. X = Zp × Rn−p). The class of optimization programs that involves a set X
with these characteristics is known as Mixed-Integer Programming (MIP).

Figure 2.2. Hierarchical diagram showing the main classes of optimization programs. This
thesis focuses on the classes of programs that are highlighted in red.

In contemporary power system infrastructure planning, MIP assumes a crucial role
as one of the main tools supporting power system operators in making decisions about
infrastructure investments. Indeed, various decisions faced by the network operator, such
as building new power lines, replacing existing ones, expanding substations capacity, or
investing in power production units, can be naturally modelled by integer or binary variables.
In such models, continuous variables typically represent the flows and the generation of power
within the system. In this thesis, we are highly interested by this family of optimization
programs as a program of this type is used to formulate the upper-level of our adapted
version of the DNDP. To effectively delve into MIP programs, gaining knowledge about
continuous programming concepts is essential. This section will therefore concentrate on two
categories of continuous optimization programs: linear and convex programming, followed
by an introduction to MIP programs, including both their linear and non-linear formulations.
These classes of programs are highlighted in red in FIGURE 2.2, which illustrates the main
categories of continuous and discrete optimization problems.
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2.4.1 Linear Programming

The simplest form of optimization programs is linear programming. An optimization
program belongs to the linear programming (LP) class when both the objective function f

and the constraints gi and hj are linear. In standard form, LP programs can be written as

Standard Form of LP Programs

minimize
w.r.t. x

f(x) = cTx

subject to aT
i x = bi i = 1, ...,m

x ∈ Rn
+

(2.6)

where n is the number of variables, m is the number of constraints, ai ∈ Rn is a vector of
coefficients, bi ∈ R is the right-hand-side of constraint i and c ∈ Rn is the objective function
vector.

Figure 2.3. Feasible set of a two-dimensional LP problem (adapted from [27])

In LP programs, the feasible set is a polyhedron. An example of feasible set in the
case of a two-dimensional LP program is illustrated in Figure 2.3. There exist several
methods for solving LP problems, the two best known being the simplex method [35]
and the interior point methods [36]. Although the simplex method has an exponential
worst-case complexity, it demonstrates excellent performance in practice [37]. By contrast,
interior point methods offer a way to solve linear programs with polynomial worst-case
complexity. Another major feature of LP programs is their strong duality property, from
which the complementary slackness conditions are directly derived. Detailed explanations
about duality in LP programs can be found in the lecture on duality given in COURSE [26].
As a consequence, LP programs have very nice properties, making them easy to solve in
practice, even when involving millions of variables.
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2.4.2 Convex Programming

Convex programming refers to a more general class of optimization programs. An optimiza-
tion program, whose general form is written in PROBLEM 2.1, is convex if the objective
function f is convex, the equality constraint functions hj are affine and the inequality
constraint functions gi are convex. LP programs are special cases of convex programs.

f(x)

x

(a)

Local minimum
Global minimum

Legend:
f(x)

x

(b)

Figure 2.4. Illustration of local and global minima in convex and non-convex functions. (a)
Non-convex function. When the function f(x) is non-convex, it contains several local minima
and only one global minimum. (b) Convex function. When f(x) is convex, there is only one
minimum that is global.

FIGURE 2.4 depicts global and local minimina in convex and non-convex functions.
SUBFIGURE 2.4b illustrates a major property of convex functions: any local minimum of the
function is a global minimum. By contrast, SUBFIGURE 2.4a demonstrates that non-convex
functions can have several local minima that are not global. As a result, convex programs
possess a crucial property stating that each of their local minimum x̃ is, in fact, a global
optimal solution x∗. This is not the case for non-convex programs.

Regarding duality, convex programs are generally weak dual. However, there exists a
subcategory of the convex programming class, known as conic programming, that ensures
the strong duality property. Such programs features a linear objective function and con-
straints that define a cone. Notable families of conic programs include Second-Order Cone
Programming (SOCP) and Semi-Definite Programming (SDP).1

In addition, the KKT conditions are necessary and sufficient conditions for optimality
in convex programs. This implies that it is sometimes possible to solve the system of equa-
tions defined by the KKT conditions in order to find the optimal solution of a convex problem.

Due to their nice characteristics, convex programs can be efficiently optimized. In
particular, interior point methods allow the polynomial time resolution of conic programs.
Thus, formulating problems as convex optimization programs is often a desirable objective.

1Refer to [38] for more information about conic programming.
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2.4.3 Mixed-Integer Linear Programming

Mixed-integer linear programming (MILP) refers to a specific case of MIP programs where
both the objective function and the constraints are linear. Applying this definition to
PROBLEM 2.1 requires f , gi and hj to be linear, whereas X must be a set that contains
continuous and discrete values. We consider a general form MILP program in PROBLEM 2.7:

General Form of MILP Programs

minimize
w.r.t. x,y

cTx+ dTy

subject to Ax+Gy ≤ b

x ∈ Zn
+ (or x ∈ {0, 1}n)

y ∈ Rm
+

(2.7)

where c and d denote the coefficients of the objective for variables x and y, A and G are
matrices containing the linear coefficients corresponding to the inequality constraints, x is
the vector of integer (or binary) variables and, finally, y is the vector of continuous variables.

MILPs are more challenging to solve than LPs because there is no polynomial-time
algorithm capable of solving them. This is a result of the fact that MILPs fall into the
category of NP-hard problems. The main idea underlying MILP solution methods is to
generate and refine bounds on the optimal value of the solution. This is indeed the principle
behind the well-known Branch-and-Bound algorithm.

infeasible point

feasible point

Legend:

F

conv(F)

x∗
lp

x2

x1

Figure 2.5. Illustration of the feasible points of a
two-dimensional MILP program along with the feasible
set F of its LP relaxation and its convex hull conv(F).

The latter employs an iterative process
aiming to reduce, at each iteration, the
gap between a primal and a dual bound.
These bounds represent, respectively, an
upper bound and a lower bound to the
minimization problem. When the two
bounds meet, optimality is reached. In
general, the primal bound is derived by
discovering a feasible solution to the prob-
lem, while the lower bound is obtained
by solving its LP relaxation. For PROB-
LEM 2.7, the LP relaxation replaces the
constraint x ∈ Zn

+ by x ∈ Rn
+. In case of binary constraints, it replaces binary constraints

x ∈ {0, 1}n by x ∈ [0, 1]n. A comparison between the feasible set of the MILP program and
the feasible set of its LP relaxation is illustrated in FIGURE 2.5.
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Additionally, this figure also depicts the convex hull, which is the smallest LP polyhedron
that include all the feasible discrete points. A MILP formulation is ideal when the set of
its LP relaxation F is the convex hull conv(F). In this case, solving the associated LP
relaxation allows to find an optimal integer solution.

The branch-and-bound method can be further improved by combining it with a cutting
plane algorithm. This results in the branch-and-cut algorithm. Its objective is to discover
valid inequalities that ”cut” the feasible set of the LP relaxation. Notably, widely used MILP
solvers like Gurobi [39] and CPLEX [40] implement this approach and other sophisticated
techniques, such as heuristics, to further enhance the solving process by finding high-quality
solutions in a time-efficient manner.

2.4.4 Mixed-Integer Nonlinear Programming

Based on the information presented in [30] and [28], the following section serves as a brief
and informative summary, presenting an overview of the class of optimization programs
known as mixed-integer nonlinear programming (MINLP).

Mixed-integer nonlinear programming (MINLP) is a subfield of MIP dedicated to study
optimization problems featuring nonlinear objective functions and constraints. Going back
to the general form of an optimization program written in PROBLEM 2.1, a MINLP requires
a nonlinear objective function f or the functions gi and hj to define a nonlinear feasible set.
MINLP is probably one of the broadest field in mathematical optimization as it couples
the complex worlds of Nonlinear Programming (NLP) and Mixed-Integer Programming
(MIP). In fact, many real-life applications can be modeled as MILNP. Indeed, modeling
real-world problems often necessitates the representation of both decision-making processes
and physical phenomena, which are rarely linear.

From SUBSECTION 2.4.3, we know that solving a MILP, being the simplest form of MIP,
is already an NP-hard problem to solve. Therefore, adding non-linearity to the problem
can only further increase its complexity. Besides being NP-hard, MINLP programs are also
incomputable, which means that there exists no algorithm that is able to solve any problem
belonging to the MINLP family. This makes this family of programs excessively challenging
to solve. Nevertherless, certain specific categories of MINLP programs do have available
solution methods. This applies to convex MINLP, which is also known as mixed-integer
convex programming (MICP).
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To say that a MIP program is convex is an abuse of language since the introduction of
discrete variables make them nonconvex by nature. MICP programs therefore describe a
subclass of MINLP programs for which a relaxation of the integrality constraints results
in a convex feasible set. In PROBLEM 2.1, this arises when the function f is convex, the
inequality constraint function gi is convex for all i and the equality constraint function hj is
affine for all j. As for convex optimization programs, it is also possible to define a subclass
of MICP that focuses on programs having SOCP constraints. They are called Mixed-Integer
Second-Order Conic Programming (MISOCP).

The approach to solving MINLP problems follows the same principle as for MILP
problems: the objective is to bound the optimal solution. However, the primary distinction
lies in how dual bounds are generated. In MINLP, dual bounds are obtained by solving
relaxations of the problem, which are non-linear and require NLP solving methods. For
MICPs, efficient algorithms can successfully solve the convex relaxations, resulting in some
cases in global optimal solutions. The assurance of finding global optima ensures the
convergence of methods like Branch-And-Bound to a global solution. Among the algorithms
used to solve MICPs, notable examples include the NLP-based Branch-And-Bound, the
Outer Approximation, the Generalized Benders Decomposition, and the Extended Cutting
Plane.

To conclude, MINLP continues to be a highly active area of research because there exists
a considerable number of MINLPs that remain challenging to solve efficiently. Thanks to
their nice properties, it is common to attempt approximating a MINLP by expressing it in
the form of MILP or MICP approximations. This precise approach will be pursued in this
master thesis, focusing on problem formulations centered around MICP or MILP.

2.5 Bilevel Programming

Bilevel programming (BP) describes a branch of mathematical optimization that studies
mathematical programs containing an optimization problem in their constraints [41]. The
roots of Bilevel Programming theory date back to 1934, when the German economist von
Stackelberg introduced a game theory framework, now known as the Stackelberg game,
where two players interact with each other in turns [42]. In this game, the player that makes
the first move is called the leader, whereas the follower denotes the player who responds to
the leader’s actions. Therefore, a hierarchy exists among the players, and exchanging the
roles of the two players can lead to a substantially different game solution. An illustration of
a leader-follower game is provided in FIGURE 2.6. This result in game theory was therefore
naturally extended to the mathematical programming world.
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In this work, BP is used to model our “one-leader multi-follower” approach to the
distribution network development planning (DNDP) problem. Thus, this section aims to
introduce the fundamental concepts of the BP theory.

Figure 2.6. Interactions between the leader and the
follower in a Stackelberg game

It begins by defining a bilevel optimiza-
tion program in SUBSECTION 2.5.1. In
SUBSECTION 2.5.2, we then explore how
such programs can be reformulated as
single-level programs and present various
solution methods. Furthermore, SUBSEC-
TION 2.5.3 provides a comparison between
the fields of multi-objective optimization
and bilevel optimization. This compari-
son is illustrated using a simple toy exam-
ple, justifying the interest in using bilevel
programming to model the interaction be-
tween the distribution network operator
and its users. The content of this section is primarily derived from the books of S. Dempe [31],
[32], M. Cerulli’s Ph.D. thesis [33], and C. Fricke’s slides [34].

2.5.1 Definition of a Bilevel Program

According to Dempe [31], a bilevel program refers to an optimization problem where the set
of variables is divided into two vectors, namely, x and y. The specificity of this type of
program lies in x, which is determined as an optimal solution of a secondary mathematical
programming problem that depends on the variable y. In simpler terms, a bilevel program is
an optimization program that includes another optimization program within its constraints.
The latter enforces some of the variables of the bilevel to be determined by its optimal solution.
The outer optimization program is called the upper-level problem and the optimization
program that belongs to the constraints is called the lower-level problem. The general form
of a bilevel program can be expressed as follows:

General Form of a Bilevel Program

minimize
w.r.t. x

F (x,y)

subject to Gi(x,y) ≤ 0 i = 1, 2, . . . , k

y ∈ argmin
y∈Y

{f(x,y) | gj(x,y) ≤ 0, j = 1, 2, . . . ,m}

x ∈ X

(2.8)
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where x is the vector of upper-level variables, y is the vector of lower-level variables, F
is the upper-level objective function, f is the lower-level objective function, Gi are the
upper-level constraints and gi are the lower-level constraints.

The bilevel problem can be interpreted as a hierarchical Stackelberg game between two
decision-makers: the leader and the follower. In this context, the leader and the follower
corresponds to the upper-level and lower-level problems, repectively. As can be shown in
FIGURE 2.6, the leader is the first actor to decide, it tries to find the action that minimizes
its objective function F , having full knowledge of the follower’s problem. The follower, on its
side, observes the leader’s actions and optimizes its own objective function f consequently.
In PROBLEM 2.8, the follower corresponds to the following minimization problem:

H(x) = y ∈ argmin
y∈Y

{f(x,y) | gj(x,y) ≤ 0, j = 1, 2, . . . ,m} (2.9)

where H(x) represents the set of optimal solutions of the lower-level problem.

In scenarios where the lower-level problem has multiple solutions, there can be several
optimal strategies to choose from. In such cases, two assumptions can be made: either the
follower selects the most favorable solution in alignment with the leader’s strategy, known as
the optimistic approach, or it chooses the solution opposing the leader’s strategy, called the
pessimistic approach. For the purpose of this study, the optimistic approach is employed,
as demonstrated in a previous work [43] to generally present an easier problem to solve
compared to the pessimistic bilevel problem. To elaborate further, most techniques for
addressing the optimistic scenario simplify the complex bilevel optimization problem into a
single-level problem. However, it is worth noting that the optimistic assumption is frequently
not verified in practice, particularly when considering grid users as the followers and the
Distribution Network Operator (DNO) as the leader. Indeed, grid users do not always select
strategies that also benefit the DNO. In [44], the authors underscore the distinction between
these two variations when the lower-level problems correspond to electricity consumers and
the leader corresponds to their electricity retailer.

Furthermore, bilevel programming exhibits several significant properties [33], [34]:

· There is no guarantee to find a solution to a bilevel problem, even when the functions
F , G, f and g are restricted to be continuous and bounded.

· The order in which the decisions are made is crucial : there is non-interchangeability
of leader and follower roles.

· Bilevel programming is proven to be NP-hard, even in their linear formulation.



CHAPTER 2. MATHEMATICAL OPTIMIZATION BACKGROUND 21

Due to these properties, programs of this class often become intractable. Consequently, it is
essential to exercise caution and strive to maintain a simple formulation of the problem,
especially concerning the lower-level formulation.

2.5.2 Solving Bilevel Programming Problems

To tackle a bilevel program, a common and straightforward approach is to transform it into
a single-level problem. When dealing with optimistic bilevel problems featuring a convex
lower level, there exist two main methods to carry out the single-level reformulation:

· Replacing the lower-level by its KKT conditions or,

· Applying the strong duality reformulation.

In the first case, the lower-level problem is replaced with its KKT conditions. This is only
feasible for convex programs since the KKT conditions need to be necessary and sufficient
for this reformulation to be effective. This transformation gives rise to a problem known as
mathematical problem with equilibrium constraints (MPEC) [45]. Solving MPECs becomes
challenging due to their nonlinearity caused by the introduction of complementary slackness
conditions. To address this difficulty, the most common approach found in the literature
involves utilizing MILP techniques to linearize the KKT complementarity conditions. On
the other hand, the strong duality reformulation leverages the insight that at optimality, the
objective function values of the primal and the dual are equal. Consequently, the principle
is to introduce constraints that enforce strong duality between the primal and the dual.

The nature of the solution algorithms that are used to solve the reformulation heavily
relies on the methods employed to address the complementarity conditions. For instance,
when MILP technique are employed to reformulate these conditions, famous MILP solvers
provided by Gurobi [39] or CPLEX [40] can be used. However, alternative reformulations,
such as special ordered sets, also come with their own dedicated resolution algorithms [46].

2.5.3 Comparison Between Multi-Objective Optimization and Bilevel Optimization

The objective of this section is to compare the theories of multi-objective optimization and
bilevel optimization. To illustrate their distinctions, a simplified ”toy” bilevel program is
presented and compared with its multi-objective optimization counterpart. The intention is
to demonstrate to readers why employing bilevel programming seems like a good choice
when modeling the interactions between the DNO and its network users. This section draws
significant inspiration from Chapter 3.4 in the book [31] and from the slides [34].



CHAPTER 2. MATHEMATICAL OPTIMIZATION BACKGROUND 22

In various real-world applications, we frequently encounter problems involving multiple
objective functions that need to be optimized. For instance, when selecting a smartphone,
we might strive to find one that excels in photo quality while also being available at an
optimal price. In Mathematical programming, it is the Multi-Objective optimization (MO)
field that specifically deals with this kind of problems. In MO programs, the objective
functions are considered simultaneously, and the goal is to identify the best trade-off among
all the objectives. To assess the quality of a feasible solution of a MO program, the notion
of domination is introduced. From [34], we get the following definition.

Domination in Multi-Objective Optimization

A feasible solution A is said to dominate a feasible solution B if:

· B is at least as good as A with respect to every objective,

· B strictly better than A with respect to at least one objective.

The set of all non-dominated solutions is called the Pareto Front. It is one’s role to select the
point in the Pareto front that represents the best trade-off with respect to the application.
One solution to find a Pareto optimal point is to combine the multiple objective functions
into a weighted sum. The main difficulty of this approach is the selection of the weights. To
readers who want to know more about MO optimization, we recommand this reference [47].

The key difference between bilevel optimization and multi-objective optimization lies in
how they treat the objectives: while bilevel optimization considers the objectives sequentially,
multi-objective optimization treat them simultaneoulsy. On one hand, multi-objective opti-
mization offers several optimal solutions along a trade-off curve known as the Pareto front.
All points on this curve satisfy the same set of constraints, which remains independent of the
values of the objectives. On the other hand, the objective in a bilevel program is to optimize
a function F (x,y) over a set defined, in part, by the lower-level optimization problem H(x),
parametrized by the upper-level variables x. Unlike multi-objective optimization, there is
no trade-off involved in a bilevel program. The lower-level optimization merely restricts the
feasible region from which the upper-level can select its unique optimal solution.

According to [31], a solution from the Pareto front in multi-objective optimization is
generally not feasible for the bilevel programming problem. Conversely, the optimal solution
of a bilevel program is not necessarily a Pareto optimal solution. Now, let’s illustrate these
key differences using a small toy example:
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Definition of the toy example

min
x

F (x, y) = 2y + 1
3
x

s.t. 1 ≤ x ≤ 5

x ∈ R+

min
y

f(x, y) = −y

y + 1
2
x ≤ 7

4y − x ≥ 5

2y − x <= 10

y ∈ R+

(2.10)

min
x,y

F (x, y) = 2y + 1
3
x (w1)

min
x,y

f(x, y) = −y (w2)

s.t. 1 ≤ x ≤ 5

y + 1
2
x ≤ 7

4y − x ≥ 5

2y − x <= 10

x ∈ R+, y ∈ R+

(2.11)

where PROBLEM 2.10 is a linear bilevel problem, PROBLEM 2.11 is a multi-objective program
adapted from PROBLEM 2.10, w1 and w2 are the weights of the two objective functions when
the weighted-s um method is used to find a solution of the multi-objective PROBLEM 2.11.

y

x

Figure 2.7. Representation of the set S of shared constraints between the upper and lower levels
of PROBLEM 2.10. In this figure, the bilevel optimal solution is denoted (x∗, y∗) and it belongs
to the bilevel feasible set, also called inducible region. The area colored in red corresponds to a
region of S where points are dominant to the optimal bilevel solution in terms of multi-objective
optimization.
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FIGURE 2.7 represents the shared constraint set S, which is the polyhedron resulting
from the upper-level and lower-level contraints of PROBLEM 2.10. Due to the constraints
imposed by the lower-level problem, the optimal solution (x∗, y∗) of PROBLEM 2.10 must
belong to the bilevel feasible set, or inducible region. This region is the region that minimizes
f(x, y) = −y for a given x. The area colored in red corresponds to a region of S where
points are dominant to the solution (x∗, y∗) in terms of multi-objective optimization. This
indicates that the solution obtained from the bilevel program does not strike a favorable
trade-off when simultaneously considering the lower-level and upper-level objective functions.
Furthermore, FIGURE 2.8 shows the Pareto Front of PROBLEM 2.11. It demonstrates that the
optimal solution of the bilevel program is not on the Pareto front. Furthermore, this figure
demonstrates that solving PROBLEM 2.11 using the weighted-sum method with two sets
of weights results in significantly distinct solutions compared to solving a bilevel program.
However, it should be noted that in certain instances, the bilevel solution might coincide
with a Pareto optimal solution, but this is more of an exceptional case that arises under
very specific conditions.

Figure 2.8. Pareto front of the multi-objective program of PROBLEM 2.11 represented in the
objective space. Additionally, this figure shows the bilevel optimal solution of PROBLEM 2.10 and
two Pareto optimal solutions obtained with a weighted-sum method to solve the multi-objective
problem

.



C h a p t e r 3
A STORY OF DATA

This chapter aims to introduce to the input data required for the implementation of our
bilevel DNDP model.

3.1 Load Profiles

In order to devise strategies for the reinforcement of distribution networks, it is of paramount
importance to develop a means of generating long-term electricity load forecasts across the
planning horizon, typically ranging from 10 to 30 years. This task can be very challenging
due to the complex nature of electricity load time series. These time series contain daily,
weekly, and seasonal fluctuations, along with stochastic components linked, for instance, to
grid users’ electricity consumption patterns, the time of the year, the LCTs used, etc.

Within the context of the DNDP problem, numerous approaches exist for considering
the electricity load forecasts on which the network reinforcement decisions will be based.
One potential approach involves taking into account a single power injection profile, e.g.
the worst-case moment of the year. This method is adopted in the DNEP formulations
presented in [12] and [23]. This solution might lack accuracy as it is difficult to select the
worst-case moment of the year, especially with the massive integration of RES and LCT.
An alternative strategy involves selecting a set of representative daily load profiles that
aim to capture diverse situations throughout a year. These profiles could correspond to
typical weekdays, weekend days, winter days, summer days, and more. They are generally
generated through the use of machine learning techniques. For instance, a method based on
the K-means algorithm to generate representative days for expansion decisions in power
systems is proposed in [48]. Although this approach accounts for a broader number of
scenarios and thus enhances long-term load forecasting accuracy, the task of finding a large
number of representative days over a long planning horizon remains complex.
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For this reason, this master thesis considers only two representative days: one
occurring in the summer and the other in winter. We are aware that this choice is limiting as
those days won’t be able to capture the weekly fluctuations of the electricity consumption as
well as the consumption habits during autumn and spring. In the future, it will therefore be
necessary to expand the number of representative days to achieve more accurate results with
our DNDP model. In this work, the electricity load data is drawn from reference [8], which
provides a dataset of load profiles for each of the two representative days. Every dataset is
stored in an Excel file, containing 100 columns that correspond to distinct residential daily
load profiles, and spanning 288 rows to account for the number of 5-minute time steps in a
day. It is also essential to add that the loads are assumed to have an inductive power factor
equals to 0.95. These profiles are derived from a computational model developed by CREST
(Centre for Renewable Energy Systems Technology) at Loughborough University [49], which
builds profiles based on variables such as the number of occupants in a household, the
type of day, the month, and the uses of the appliances [8]. Moreover, the profiles within
each dataset are chosen in a way that reflects the UK statistics on household composition.

(a)

(b)

Figure 3.1. Daily load profiles in summer: (a)
three individual profiles from the dataset, (b)he mean
aggregated profile of the dataset (from [8]).

This means maintaining in the dataset the
same proportions of profiles from single-
person households (29%), two-person
households (35%), three-person house-
holds (16%), and households with four
or more occupants (20%) as found in the
UK population.

FIGURE 3.1 illustrates the daily load
profiles that are contained in the dataset
focused on the summer scenario. Specif-
ically, FIGURE 3.1a presents three exam-
ples of profiles from the dataset collection.
This figure highlights the variability in
peak consumption times across the day,
along with disparities in peak consump-
tion magnitudes among the diverse load
profiles. Besides, FIGURE 3.1b displays
the collective trend that emerges from ag-
gregating all load profiles, indicating a
common trend of high consumption dur-
ing both the morning hours (i.e. approximately between 6 AM and 8 AM) and the evening
hours (i.e. approximately between 8 PM and 10 PM).
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On the other hand, FIGURE 3.2 depicts the daily load profiles contained in the dataset
centered around the winter scenario. Similar conclusions to those drawn during the summer
period can be made while examining FIGURE 3.2, with the exception that the peak value of
the aggregated profile seen in FIGURE 3.2b is roughly 15% higher compared to the summer
case. Furthermore, the time at which the evening peak consumption begins shifts earlier
(i.e. around 5 PM) in contrast to the summer scenario (i.e. around 8 PM).

(a) (b)

Figure 3.2. Daily load profiles in winter: (a) three individual profiles from the dataset, (b)he
mean aggregated profile of the dataset (from [8]).

3.2 Low Carbon Technologies Profiles

To investigate the impact of LCTs on distribution network planning, acquiring profiles
for these technologies is essential. In this work, we have opted to integrate the option of
incorporating two categories of LCT profiles into users’ daily consumption profiles: electric
vehicles (EVs) and electric heat pumps (EHPs) profiles. These profiles are available in
the EHP and EV profile datasets sourced from the same reference as the load profiles
datasets [8]. Those datasets share the same shape as the load profiles datasets described in
SECTION 3.1. Besides, a unit power factor is assumed for both datasets. A single dataset
is available for each LCT technology, as these profiles are only defined for the winter day.
To account for the use of these profiles during the summer day, this thesis introduces a
summer/winter scaling factor, denoted σ x

s/w ∈ [0, 1], where x represents a profile to scale.
This factor allows to define the summer profile of a LCT as being a scaled version of its
worst-case winter profile. In this study, σEHP

s/w is set to zero for EHP profiles, meaning they
are only used for heating during the winter period. Additionally, for EV, σEV

s/w is set to 1,
implying that grid users possessing an EV maintain the same usage pattern for their vehicle
in both winter and summer seasons.
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(a) (b)

(c) (d)

Figure 3.3. Daily LCTs profiles in winter: (a) three individual profiles from the EHPs dataset,
(b) the mean aggregated profile of the EHPs dataset (from [8]), (c) three individual profiles
from the EVs dataset (d) the mean aggregated profile of the EVs dataset (from [8]).

FIGURE 3.3 illustrates individual and aggregated LCTs profiles contained in the two
datasets from [8]. Specifically, FIGURES 3.3a and 3.3b present the power consumption
profile of three distinct EHP units and the aggregated mean profile of the dataset 100 EHP
units, respectively. This aggregated EHP profile, as depicted in Figure 3.3b, exhibits an
average peak demand of approximately 2 kW. Concerning EV profiles, Figures 3.3c and 3.3d
demonstrate the charging power profiles of three individual EV units and the mean profile of
the dataset 100 EV units, respectively. Notably, Figure 3.3c reveals a charging capacity of 3
kW. Additionnally, Figure 3.3d indicates that high charging powers predominantly occur
during the nighttime hours, with a peak charging power value of around 1.2 kW occurring
at approximately 11 PM.
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3.3 PV Profiles

In this work, we limit our analysis to residential PV installations for evaluating the effects
of RES on distribution networks. While various RES options, such as wind power gen-
eration or larger PV installations, can impact distribution networks, our primary focus
remains on RES installations feasible within households. Profiles representing PV power
production during a representative summer day are available in a dataset provided by [8].

Figure 3.4. Normalized daily PV production profile ex-
pressed as a percentage of the maximum power capacity of
the PV installation (from [8]).

This dataset shares the same num-
ber of profiles and time granularity
as the datasets described in SEC-
TIONS 3.1 and 3.2. All 100 daily
PV production profiles from the
dataset are based on the same so-
lar irradiance data but exhibit vari-
ations proportional to the PV in-
stallation capacity. This is a conse-
quence of the fact that in distribu-
tion networks, the users are often
located within a same restricted ge-
ographical area. Only one dataset for PV production profiles is accessible, containing profiles
for optimal summer conditions. In this thesis, we derive winter PV production profiles
from the best-case summer profiles by employing a scaling factor σ,PV

w/s ∈ [0, 1]. We set this
factor to 0.1, translating a 90% reduction in winter PV production compared to summer
PV production.

3.4 Profiles Summary

The purpose of this section is to provide a summary table of the power demand and
production time-series described in SECTIONS 3.1 to 3.3. This summary table corresponds
to TABLE 3.1. In this table, #profiles denotes the count of distinct profiles within a dataset,
∆t is the dataset time granularity, cos(φ) represents the considered power factor, and σ

represents the scaling factor between summer and winter profiles when only one dataset is
available for either of these seasons.
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Dataset #profiles [–] ∆t [min.] cos(φ) [–] σ [–]

Summer Loads 100 5 0.95 (inductive) —

Winter Loads 100 5 0.95 (inductive) —

Winter EHPs 100 5 1.0 σEHP
s/w = 0

Winter EVs 100 5 1.0 σEV
s/w = 1

Summer PV 100 5 — σ PV
w/s = 0.1

Table 3.1. Characteristics of the load profiles, LCTs profiles and PV profiles datasets.

3.5 Test Network
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Figure 3.5. Test network with bus ids.
The possible line routes are represented by
dashed lines, the possible substation locations
by squares and the grid users buses by circles.

When building DNDP models, it is crucial
to verify our formulation with test networks
before applying it to real-world network in-
stances. In this master thesis, the 23-node test
network of [50] is employed for this purpose.
This network is a balanced 34.5kV medium
voltage network that contains 23 buses and
34 possible line routes, as illustrated in FIG-
URE 3.5. Among the buses, there are two pos-
sible substations and 21 nodes with loads that
we consider independent users of the network.
For each line routes, four types of conductors
can be used when it is built. The characteris-
tics of these conductors are listed in TABLE 3.2.
The load data of TABLE VI in [50] is used for
testing the DNEP models proposed in [12]
and [23]. For the simulations presented in this
master thesis, the load and generation profiles
at buses of the network are the ones described in section 3.1 to 3.3. The load profiles are
however scaled so that the peak of the total consumption is equal to 7 MVA on a five-minute
time scale, as in TABLE VI in [50]. This results in a total energy consumed in the network
of 16440 MWh/year.
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Code word q [mm2] r [Ω/km] xl [Ω/km] imax [kA] cost [k€/km]

Poppy 53.50 0.5502 0.429 0.23 10

Oxlip 107.3 0.2747 0.402 0.34 12

Daisy 135.3 0.2180 0.394 0.46 15

Tulip 170.6 0.1732 0.381 0.53 20

Table 3.2. All Aluminum Conductors (data from [51]).



C h a p t e r 4
MICROGRID OPTIMIZATION

4.1 Description of the problem

The lower-level problem of our bilevel approach is obtained by combining the optimization
programs solved by the users of a distribution grid. Specifically, each user’s optimization
program is an instance of the widely studied microgrid optimization problem, aimed at
finding the optimal investment decisions in generating (and storage) units as well as the
optimal energy usage decisions over a defined planning horizon. This problem is assumed
to be single-stage as the investment decisions related to generating (and storage) units are
taken at the beginning of the planning horizon and have, thereby, influence on this entire
horizon.

As we want to optimize simultaneoulsy the strategies of several grid users, the lower-level
can be classified as a multi-objective (MO) optimization program, with distinct objective
functions corresponding to each user’s optimization objectives. Since this study excludes
local energy communities, grid users are independent of each other as there is no energy
exchange opportunity. As a result, the problem can be presented either individually for
each user or collectively as a unified problem. This unified problem can be achieved through
the aggregation of user-specific objective functions using a weighted-sum methodology. In
our formulation of the lower-level problem, we employ the latter methodology to shape the
objective function.

Moreover, our intention is for the upper-level formulation to be based on two assumptions
that simplify the representation of our model:

· Users are modeled as perfectly rational agents, capable of optimizing their investment
decisions and energy consumption considering factors like equipment costs and grid
connection capacity. This rationality extends to them having complete knowledge of
the future.

· User demand is fixed. This assumption exludes the possibility of demand-side flexibility
in the distribution network.
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4.2 The Lower-Level Optimization Program
This section describes the optimization program designed for addressing the MO microgrid
optimization problem described in the previous section. In this section, the sets, indices,
parameters, and variables that compose our formulation are precisely defined. Subsequently,
the MO microgrid optimization problem is formalized as a LP program. As explained in
SECTION 2.5, we seek to achieve a LP formulation for the lower-level problem because it
allows the single-level reformulation of the BP program through the utilization of the KKT
conditions and, therefore, reduces the computational burden of our BP model.

Notations

Sets and indices
t index of a time period
T number of time periods
T set of time periods, with T = {1, 2, . . . , T}
i index of a grid user
nu number of grid users
BU set of grid users, with BU = {1, 2, . . . , nu}

Parameters
pDi, t active power demand of user i at time period t,

in kW
qDi, t reactive power demand of user i at time period t,

in kVar
PPV

i, t shape of the forecast power generation profile of the
PV installation of user i at time period t, in [0, 1]

∆t duration of a time period, in hours
γ PV C amortization period of a power converter,

in years
γ PV amortization period of a PV installation,

in years
α scaling factor of the simulation,

such that α = d year/d rep

d rep number of representative days
d year number of days in a year
π PV C unitary cost for converter capacity, in €/kW
π PV unitary cost for installed PV peak power

capacity in €/kWp
πGC unitary cost for grid connection capacity,

in €/kW
πEI unit price of energy imported from the grid

at time period t, in €/kWh
πEE unit price of energy exported to the grid

at time period t, in €/kWh
ΠEI grid tariff imposed by the DNO on the energy

imported from the grid at time period t, in €/kWh
ΠEE grid tariff imposed by the DNO on the energy

exported to the grid at time period t, in €/kWh

Variables
cPV
i total PV investement costs of user i, in €
c grid
i total grid capacity costs of user i, in €
c grid
i, t grid tariff costs of user i at time period t, in €
c imp
i, t total cost of user i for the energy imported

from the grid at time t, in €
c exp
i, t total revenue of user i for the energy exported

to the grid at time period t, in €
sPV C
i maximum power capacity of the PV converter of

user i, in kW
pPV
i peak power capacity of the PV installation of

user i, in kW
s grid
i grid connection capacity of user i, in kVA
p imp
i, t active power imported from the grid for user i

at time period t, in kW
q imp
i, t reactive power imported from the grid for user i

at time period t, in kVar
p exp
i, t active power exported to the grid by user i

at time period t, in kW
q exp
i, t reactive power exported to the grid by user i

at time period t, in kW
pPV
i, t active power produced by the PV installation

of user i at time period t, in kW
q PV
i, t reactive power produced by the PV installation

of user i at time period t, in kW
P PV
i, t polyhedron defining the PV installation

PQ diagram of user i at time period t
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Formulation

The LP optimization program proposed as the lower-level problem of our bilevel approach
is the following:

Lower-Level Formulation

min
∑
i∈Bu

(cPV
i + c gridi ) +

∑
i∈Bu

α
∑
t∈T

(c imp
i, t − c expi, t + c gridi, t ) (4.1a)

s.t.: cPV
i = 1/γ PV C · (sPV C

i · π PV C) + 1/γ PV ·
(
pPV
i · π PV

)
∀i ∈ BU (4.1b)

c gridi = s grid
i · πGC ∀i ∈ BU (4.1c)

c gridi, t =
(
p imp
i, t ·ΠEI + p exp

i, t ·ΠEE
)
·∆t ∀i ∈ BU , ∀t ∈ T (4.1d)

c imp
i, t = p imp

i, t · πEI ·∆t ∀i ∈ BU , ∀t ∈ T (4.1e)

c expi, t = p exp
i, t · πEE ·∆t ∀i ∈ BU , ∀t ∈ T (4.1f)

p imp
i, t − p exp

i, t = pD
i, t − pPV

i, t ∀i ∈ BU , ∀t ∈ T (4.1g)

q imp
i, t − q exp

i, t = qD
i, t − q PV

i, t ∀i ∈ BU , ∀t ∈ T (4.1h)

p imp
i, t ≤ s grid

i ∀i ∈ BU , ∀t ∈ T (4.1i)

q imp
i, t ≤ s grid

i ∀i ∈ BU , ∀t ∈ T (4.1j)

p exp
i, t ≤ s grid

i ∀i ∈ BU , ∀t ∈ T (4.1k)

q exp
i, t ≤ s grid

i ∀i ∈ BU , ∀t ∈ T (4.1l)

pPV
i, t ≤ sPV C

i ∀i ∈ BU , ∀t ∈ T (4.1m)

p exp
i, t ≤ pPV

i, t ∀i ∈ BU , ∀t ∈ T (4.1n)(
pPV
i, t , q PV

i, t

)
∈ P PV

i, t ∀i ∈ BU , ∀t ∈ T (4.1o)

( + storage constraintst ∀t ∈ T ) (4.1p)
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In this formulation, the objective function is built by aggregating the investment costs
and energy usage costs of all users of the distribution grid. Specifically, the objective
function in EQUATION (4.1a ) sums the total expenditures on local generation investments,
i.e.

∑
i∈Bu

cPV
i , the grid connection capacity expenses, i.e.

∑
i∈Bu

c gridi , the electricity import
costs, i.e.

∑
i∈Bu

α
∑

t∈T cimp
i, t and the energy grid tariffs imposed by the DNO to users

that use its network, i.e.
∑

i∈Bu
α
∑

t∈T c gridi, t . This sum is then diminished by the revenues
derived from electricity injected into the grid, i.e.

∑
i∈Bu

α
∑

t∈T c expi,,t . The definition of the
costs constituting the objective function are available in CONSTRAINTS (4.1b ) to (4.1f ).
Moreover, the factor α in the objective function expression represents the scaling factor
that allows to recover the yearly values of the costs from a simulation with a number d rep

of representative days.

The primary decision variables of this model consist of the grid connection capacity
(s grid

i ), the PV installation size (pPV
i ), and the active and reactive power exchanges (p imp

i, t ,
q imp
i, t , p

exp
i, t , q

exp
i, t ) with the grid at each time step.

Regarding constraints, CONSTRAINTS (4.1g ) and (4.1h ) correspond to the bus ac-
tive and reactive power balances for all time steps, respectively. CONSTRAINTS (4.1i )
and (4.1j ) bound the apparent power imported from the grid at each time step, whereas
CONSTRAINTS (4.1k ) and (4.1l ) bound the apparent power injected to the grid at each
time step. Together, CONSTRAINTS (4.1i ) to (4.1m ) therefore define the grid connection
capacity. Furthermore, CONSTRAINT (4.1m ) restricts the active power generated by the
PV plant at each time step and CONSTRAINT (4.1n ) imposes that the power exported
by a grid user must be lower than its PV plant production at each time step. Finally,
CONSTRAINT (4.1o ) specifies that the active and reactive power operating points of a PV
plant must fall within its PQ diagram at every time step. We want the PQ diagram to be
defined by linear relationships which implies that it needs to be a polyhedron. In this thesis,
we do not include the PQ diagram in our formulation, as the decision was made to disregard
the reactive power associated with a PV plant, i.e. q PV

i, t . At present, this assumption seems
to be valid in practice due to the absence of configuration in PV converters for managing
reactive power to regulate voltage at an electric bus. Indeed, when bus voltage exceeds
the acceptable operational limits, PV converters are promptly deactivated, resulting in the
complete loss of PV power generation. Given these considerations, CONSTRAINT (4.1o ) is
simplified to:

pPV
i, t ≤ pPV

i · P PV
i, t ∀i ∈ BU , ∀t ∈ T (4.2)

EQUATION (4.2) thus constrains the PV power generation of user i’s PV installation to be
bounded at each time step t by the PV generation forecast at that same time step t.
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4.3 Adding Storage

The microgrid optimization problem can be enhanced by introducing the possibility for
grid users to use storage devices. This is highlighted in PROBLEM 4.1 with CONSTRAINT
(4.1p ). In order to introduce storage in this optimization program, the active power balance
written in EQUATION (4.1g ) must be adapted to integrate the charging power p stc

i, t and the
discharging power p sts

i, t of the storage unit of user i at time period t. Both variables are
expressed in kW. This results in the following power balance:

p imp
i, t − p exp

i, t = pD
i, t − pPV

i, t + p stc
i, t − p std

i, t ∀t ∈ T , ∀i ∈ BU (4.3)

Furthermore, it is necessary to augment the problem formulation with equations that
characterize the battery’s charging and discharging dynamics. To achieve this, it is imperative
to integrate an equation that updates the state of charge, i.e. SOCi, t, based on its previous
state and the charging and discharging powers of user i’s storage unit at time period t. Such
equation requires to know two additional parameters: the charging efficiency, i.e. ε stc, and
the discharging efficiency, i.e. ε std. These efficiencies are considered as constant regardless
of the storage unit’s state of charge and take values within the [0, 1] interval. Besides, it
is essential to note that our optimization program time frame, i.e. T , integrates multiple
representative days. To decorrelate the distinct representative days, we suggest a boundary
condition wherein storage units initial state of charge are established at the beginning of
each representative day. Additionally, we introduce a constraint that ensures storage units
state of charge remain below their storage capacity. Let T 1 and T end denote the set of
initial time periods and final time periods across all representative days, respectively. The
storage dynamics is subsequently represented by the following linear constraints:

SOCi, t = est,initi · esti ∀i ∈ BU , ∀t ∈ T 1 (4.4a)

SOCi, t = SOCi, t−1 + (εstc · p stc
i, t − 1/εstd · p std

i, t ) ·∆t ∀i ∈ BU , ∀t ∈ T \ (T 1 ∪ T end) (4.4b)

SOCi, t ≤ esti ∀i ∈ BU , ∀t ∈ T (4.4c)

where esti represents the energy storage capacity of a storage unit, expressed in kWh,
est,initi ∈ [0, 1] is a parameter that sets the initial state of a storage unit as being a proportion
of its energy capacity.

To conclude, adding storage to the lower-level model described in SECTION (4.2) intro-
duces four additional variables, i.e. est, SOC, p stc and p std, and three additional parameters,
i.e. ε stc, ε stc and est, initi , to the model in SECTION (4.2). It also requires the addition of
CONSTRAINTS (4.4a ) to (4.4c ). Furthermore, adding storage maintains the LP property of
the optimization program.



C h a p t e r 5
DISTRIBUTION NETWORK
EXPANSION PLANNING

This chapter begins by recalling the objectives of the DNDP bilevel optimization program that
we aim to establish in this master thesis. Subsequently, it explains the modular implementation
in Julia [52] used for evaluating various configurations of the bilevel formulation. Finally, two
sensitivity analyses are carried out. The first analysis is performed without making changes
to the model formulation, whereas the second analysis utilizes the modular implementation
to explore additional configurations.

5.1 Description of the Problem

As explained in SECTION 1.3, we want to derive the upper-level problem, or leader, of
our bilevel model from the well-known distribution network expansion planning (DNEP)
problem. The instance of the DNEP problem that we want to solve in our upper-level
problem corresponds to the optimization problem that is solved by the distribution network
operator (DNO) that seeks the following objectives:

1. The DNO aims to identify the optimal investment decisions for conductors and
substations within a specified planning horizon, typically spanning from 10 to 30
years. Optimal decisions correspond to strategies that reduce both the initial capital
expenditure (CAPEX) associated with investments in conductors and substations, as
well as the continuous operational costs (OPEX), represented by the cost of losses in
the network.

2. The distribution network topology resulting from these choices should ensure the
connection of all grid users to a substation. Mathematically, this requirement translates
to seeking a distribution network graph that is radial.

3. The distribution network must have the capacity to accommodate the predicted
electricity demand from users throughout the entire planning period.
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4. The distribution network needs to have a high reliability, which implies satisfying the
operational constraints on bus voltages and line currents.

5. The money invested by the DNO, plus a margin to remunerate its activities has to be
recovered through the network tariffs applied to the grid users. This is the so-called
budget-balance constraint.

Moreover, a series of assumptions are introduced to simplify the formulation of our
upper-level model:

· We approach our problem as if we are creating an entirely new distribution network.
However, our model can be easily adapted to model an already existing network.

· As for the lower-level problem described in CHAPTER 4, the upper-level problem is
single-stage. This implies that the DNO makes investment decisions only once, at the
beginning of the planning period.

· A single-phase equivalent network is considered, assuming a balanced three phase
regime. Nevertherless, especially in the context of distribution networks, an unbalanced
three-phase representation is often more suitable. Investigating this aspect should be
a focus of future research.

5.2 The AC Power Flow Equations

To be able to satisfy the third and fourth objectives described in SECTION 5.1, the DNO must
be able to forecast the state of its network throughout the whole planning horizon. This is
done by introducing in the DNEP problem the well-know AC power flow equations. These
equations allow to determine the active and reactive power flows through the network from
input data such as the topology of the network as well as the power injections and voltage
at nodes of the network. For a more detailed explanation of the AC power flow equations,
we recommend the following reference [53]. These equations form the key constraints in
the DNEP problem as much of the complexity of the optimization program resulting from
this problem depends on the formulation of the AC power flow equations that is used. In
their exact formulation, this set of constraints introduce nonlinear relationships between
the voltage phasors and the power injection at buses of a power system. When the exact
formulation is used, the DNEP problem therefore results in a mixed-integer nonlinear
program (MINLP), which, as described in SUBSECTION 2.4.4 of CHAPTER 2, is both NP-hard
to solve and incomputable. In other words, there is no guarantee that an efficient solution
method exists for addressing such problems, and moreover, no existing method is capable of
solving every type of MINLP problem.
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This results in the need to simplify the DNEP formulation to have an optimization
program that becomes more tractable to solve. In the literature, there exist approximation
and convex relaxation methods that are aimed to simplify the AC power flow equations
formulation. The two concepts are illustrated in FIGURE 5.1 found in the book by Daniel K.
Molzahn and Ian A. Hiskens [54].

(a) (b)

Figure 5.1. Conceptual illustrations showing a convex relaxation (blue region on SUBFIGURE
(a)) and an approximation (red region on SUBFIGURE (b)) for the gray non-convex space (figure
taken from [54]).

This master thesis focuses on employing convex relaxations of AC power flow equations
to incorporate into our upper-level problem, as they can allow, if some sufficient conditions
are satisfied, to provide the global optimal solution for certain classes of optimization
programs. We provide a concise overview of the theory behind these relaxations in this
section, drawing information from the reference book [54].

5.2.1 Power Flow Convex Relaxations
Jabr’s relaxation

Jabr’s relaxation provides a second-order cone programming (SOCP) relaxation for the AC
power flow equations in the context of a radial balanced, single-phase equivalent network
representation. This relaxation technique was introduced by Jabr in his paper titled “Radial
distribution load flow using conic programming” [55]. It is based on the bus-injection model
(BIM) of the power flow equations, which is a representation of the power flow equations
that relate the electrical quantities at each bus. We refer the readers to the SUBSECTION
2.1.1 in CHAPTER 2 of [54] for a detailed presentation of the mathematical formulations
of power flow equations in the context of BIM representations. Based on this power flow
equations representation, Jabr’s relaxation then transforms an equality into inequality to
establish a rotated SOCP constraint. In [54], it is stated that Jabr’s relaxation accurately
captures radial networks, but does not inherently ensure consistent angles around cycles in
mesh networks.
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The Branch-Flow Relaxation

The Branch-Flow relaxation provides also a second-order conic programming (SOCP) re-
laxation for the AC power flow equations in the context of a radial balanced, single-phase
equivalent network representation. The primary differentiation from Jabr’s approach lies in
the representation of the AC power flow equations on which the relaxation is constructed.
Indeed, as its name indicates, the Branch-Flow relaxation is based on the Branch-Flow
Model (BFM) representation of the power flow equations in a radial network, also called
the DistFlow Equations [56]. In contrast to the BIM representation which formulates power
flow equations in relation to quantities at individual buses, the DistFlow equations focus
on the quantities flowing through the lines of the network. We refer the readers to the
SUBSECTION 2.1.2 in CHAPTER 2 of [54] for a detailed presentation of the mathematical
formulations of power flow equations in the context of BFM representations. According
to [54], this relaxation has the same tightness as Jabr’s relaxation and also neglects the
voltage phase angles.

In [54], it is stated that the BFM relaxation is stronger than the Jabr’s relaxation in
terms of numerical convergence charateristics because it avoids the existence of variables
that share the same values. In particular, the authors of the book state that the numerical
superiority of the BFM is further enhanced when considering three-phase power flow models
and large-scale single-phase systems.

5.3 The Radiality Constraints

The second objective of the DNO that is stated in SECTION 5.1 amounts to finding a
topology of the distribution network that is such that the graph G = {B, E} describing the
distribution network is radial. In this graph, the nodes B correspond to electrical buses and
edges E are routes between buses where conductors can be placed to develop the distribution
network. Some electrical buses are candidate substations where the distribution network
under consideration can connect to a higher-voltage network, which is assumed already
developed, and withdraw or inject power. Buses are indexed as 1, 2, ..., n and the candidate
substations buses Bs are the first ns < n indices. Users can connect to the distribution
network at buses that are not candidate substations, that is, buses Bu = B \ Bs. The radial
topology that we are looking consists in finding one or several distribution networks out of
G such that all users are connected to a substation. Each distribution network must contain
only one substation and have a radial structure to be coherent with the usual distribution
network operation rules. Mathematically, we want the optimal topology G? =

⋃
Gi(Bi, Ei),

B =
⋃

Bi,
⋂

Bi = ∅,
⋃

Ei ⊆ E , where Ei contains selected routes that form a spanning tree
of Bi, ∀i,

⋂
Ei = ∅, and each Bi contains one substation node.
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The network graph G must therefore be defined by one or several spanning trees. Such
graph is called a spanning forest or a κ-tree where κ represents the number of susbtations
nodes [57]. Examples of spanning tree and spanning forest are depicted in FIGURE 5.2 taken
from [57].

(a) (b)

Figure 5.2. (a) A spanning tree, (a) A spanning forest. In this figure, open branches indicate
potential locations for line routes in the distribution network where lines are not built, while
closed branches correspond to locations where lines are built (figure taken from [57]).

To achieve this purpose, the DNEP models in [12] and [23] propose a simple radiality
constraint formulation that amounts to say that the number of lines built in the network
should be equal to the number of load buses nu. This constraint is however not sufficient
when we integrate distributed generation (DG) units in the distribution network, which is
the case in our bilevel optimization program. For this reason, it is required to introduce
loop elimination constraints in our upper-level formulation. We decided to test the three
loop elimination proposed in [12]:

· single-commodity flow constraints,

· multi-commodity flow constraints and,

· spanning tree constraints.
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5.4 Examples of DNEP Models from the Literature

Before deriving the formulation for the upper-level of our bilevel model, two versions of the
DNEP problem available in the literature were studied. The first DNEP model, proposed
in [12], consists in a MISOCP optimization program based on Jabr’s SOCP relaxation of
the power flow equations. On the other hand, [23] proposes a MISOCP model based on a
BFM convex relaxation. The two models possess nearly identical objective functions and
share a substantial number of constraints. Consequently, their differentiation lies primarily
in the type of convex relaxation employed for the power flow equations.

The implementation of MISOCP formulations was carried out to facilitate a comparison
between Jabr’s convex relaxation and the BFM relaxation when integrated into a DNEP
model. For our testing, we utilized the 23-node test network described in SECTION 3.5 of
CHAPTER 3. The load data utilized corresponds to the dataset provided in TABLE VI in [50],
which yields a total peak demand of 7.04 MVA. We allowed the selection from four conductor
types for constructing line routes. The physical characteristics of these four conductors are
provided in TABLE 3.2 from CHAPTER 3. Additionally, we assumed a substation construction
cost of 1000 k€/MVA, a substation operation cost of 0.0001 k€/kVA2, a power factor cos(φ)
of 0.95, a time step length ∆t of one hour, a line loss factor of 0.35, an interest rate of 0.1
for both substations and circuits, and a loss cost of 0.05 €/kWh. We considered maximum
and minimim voltage limits of respectively 0.95 per unit and 1.05 per unit, respectively.
Substations that are built are assigned a voltage magnitude of 1 per unit.

We limited the planning horizon to one year, specifically for the purpose of comparing
the two models. Both models were implemented in the Julia programming language [52],
utilizing the JuMP library [58], and solved with the Gurobi [39] MIP solver. The results of
our experiment are presented in TABLE 5.1 and the resulting networks in FIGURE 5.3.

Model Objective Gap Solve Time # binary # continuous # constraints # quad. constraints
[k€/year] [%] [sec.] [-] [-] [-] [-]

Jabr 1286.0 0 131.1 172 4716 2944 138
BFM 1285.0 0 0.4977 206 738 1809 36

Table 5.1. Results of the implementation of the MISCOP programs proposed in [12] and [23]

where “Gap” denotes the MIP gap in the solution provided by the Gurobi solver “Objective”
denotes the objective function value at optimality, “# binary” indicates the count of binary
variables in the model, “# continuous” indicates the count of continuous variables in the
model, “# constraints” represents the total quantity of constraints, and finally, “# quad.
constraints” represents the number of quadratic constraints.
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Figure 5.3. Resulting networks from the implementation of (a) the DNEP model in [12] and
(b) the DNEP model in [23].

As anticipated in accordance with the theoretical findings elucidated in SUBSECTION 5.2.1,
the DNEP model based on the BFM relaxation introduces a smaller number of variables
and constraints, leading to more efficient problem-solving. Specifically, it is solved in 0.4977
seconds, in contrast to the 131.1 seconds required by Jabr’s model.

An additional observation emerges from the relaxation based on Jabr’s approach, as it
fails to accurately model the square magnitude of currents flowing through line routes. We
observed that these currents turn negative when no constraint is imposed to ensure their
positivity, and become zero when such constraints are applied. Since our aim is to model the
square magnitude of currents in order to directly constrain this value within the model, it
appears rational that for modeling branch quantities, a relaxation based on a BFM (Branch
Flow Model) would be more suitable. The absence of knowledge regarding the current
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value within the model necessitates the establishment of operational limits on power flows
rather than currents. This approach is less in line with the current practices of power sys-
tem management, where both line overloading and voltage levels are managed independently.

Furthermore, we observed situations in which both formulations yielded inaccurate
outcomes regarding the apparent power supplied by the substations. In certain cases, this
quantity fell below the aggregate sum of all load demands. To rectify this issue, a load
oversatisfaction constraint was introduced. This constraint guarantees that the power sup-
plied within the network always maintains a value greater or equal than the power consumed.

To conclude, considering both resolution efficiency and the inability of Jabr’s model
to model the square magnitude of currents correctly, we have opted to adopt the BFM
relaxation to represent the power flow equations in our upper-level problem.
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5.5 The Upper-Level Optimization Program

In this section, we present the MISOCP upper-level optimization program we derived by
following the objectives stated in SECTION 5.1. Taking into account the discussions in
previous sections, our decision has been to adopt an upper-level problem formulation rooted
in the BFM SOCP relaxation of power flow equations. This formulation incorporates loop
elimination constraints, guaranteeing the radial nature of the distribution network graph
when distributed generation (DG) units are integrated into the network. Our resulting
formulation is written as PROBLEM 5.1.

The optimization problem spans a number of time steps over a planning horizon T ,
which is discretized in a finite number of equal steps of size ∆t. In PROBLEM (5.1), the
objective function (5.1a ) represents the goal of the DNO to minimize the sum of (5.1b
), i.e. the costs of new conductors C cond, and (5.1c ), i.e. the cost of substations C sub.
Added to this are the yearly values of (5.1d ), i.e. α

∑
t∈T C loss

t , and yearly values of (5.1e
), capturing the penalty for violations of current constraints as α

∑
t∈T ωI · ΦI

t . Moreover,
investment costs, i.e. C cond +C sub, are scaled by the amortization period Γ in order for the
objective function to be expressed in a yearly basis.

CONSTRAINT (5.1f ) represents the so-called budget-balance discussed in SECTION (5.1).
CONSTRAINTS (5.1g ) to (5.1i ) simply define branch physical quantities. CONSTRAINTS (5.1j
) and (5.1l ) represent active and reactive power balances at substation nodes of the network,
whereas CONSTRAINTS (5.1m ) and (5.1n ) consider the lower-level variables p imp and p exp

to write the active and reactive power balances at grid users’ nodes. Regarding power flow
constraints, the BFM relaxation of power flow constraints is adapted in CONSTRAINTS (5.1o
) to (5.1q ) to take into account conductor choices. Specifically, CONSTRAINT (5.1q ) is the
rotated SOCP constraint which provides a guarantee for optimality when it is tight.

CONSTRAINTS (5.1r ) to (5.1t ) model the decision of building a substation by introducing
the binary variables βi. In these constraints, S

sub

i represents the allocated substation
capacity. Reference voltages are set to 1 pu at substation nodes through the introduction of
CONSTRAINTS (5.1u ) and (5.1v ). CONSTRAINTS (5.1w ) to (5.1y ) impose a null active
and reactive power flow when conductor k is not selected for the line ij. This is done by
considering the binary variable λij, k that is equal to one when conductor k is selected for
line ij, and 0 otherwise. The relaxation of the current limit is expressed by introducing in
CONSTRAINT (5.1z ) the slack variable hij, k, t. CONSTRAINTS (5.1aa ) introduces the binary
variable I lim

ij, k, t equal to one when the current limit constraint is violated. The binary variable
Λij is introduced in CONSTRAINT (5.1bb ). Finally, the radiality constraints comprise the
simple radiality constraint (5.1cc ) and the loop elimination constraints (5.1dd ).
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Notations

Sets and indices
t index of a time period
T number of time periods
T set of time periods, with T = {1, 2, . . . , T}
i/j index of an electrical bus
n number of electrical buses
ns number of substation buses
nu number of grid users’ buses
B set of electrical buses
Bs set of substation buses, with Bs = {1, . . . , ns}
Bu set of grid users’ buses, with Bu = {ns + 1, . . . , n}
ij index of a line route connecting the sending bus

i to the receiving bus j
l index of a line route
L number of possible line routes
L set of possible line routes, with |L| = L

K number of conductor choices
K set of possible conductor choices,

with K = {1, . . . ,K}

Upper-Level Parameters
τ interest rate of the DNO, in [0, 1]

∆t duration of a time period, in hours
Γ amortization period of investments for new line

routes and substations, in years
α scaling factor of the simulation,

such that α = d year/d rep

d rep number of representative days
d year number of days in a year
ω I unit cost for violating a current operational

constraint, in k€
Π cond

ij, k unit cost for building the new line route ij
with conductor k, in k€

Π sub unit cost for a new substation, in k€/MVA
Π loss unit cost of losses, in k€/MWh
Rij, k resistance of the line route ij when built

with conductor k, in Ω

Xij, k reactance of the line route ij when built
with conductor k, in Ω

M big M constant used in CONSTRAINTS 5.1m
and 5.1n

S
sub,max
i maximum allowed susbtation capacity at node i,

with i ∈ Bs, in MVA
V i maximum voltage magnitude allowed

at bus i, with i ∈ B, in kV

Vi minimum voltage magnitude allowed
at bus i, with i ∈ B, in kV

Iij, k maximum current magnitude allowed in
line ij with conductor k, in kA

Upper-Level Variables

C cond total DNO conductor investement costs of, in k€
C sub total DNO substation investement costs of, in k€
C loss

t total DNO loss costs at time period t, in k€
ΦI

t amount of overloaded lines at time t
λij, k binary variable equal to 1 when the conductor k

is selected for line ij, and 0 otherwise
Λij binary variable equal to 1 when the line route ij

is built, and 0 otherwise
S

sub
i substation power capacity at bus i, with i ∈ Bs,

in MVA
S sub
i apparent power supplied by the substation at bus i,

with i ∈ Bs, in MVA
P sub
i, t active power supplied by substation i at time t,

with i ∈ Bs, in MW
Q sub

i, t reactive power supplied by substation i at time t,
with i ∈ Bs, in MVar

βi binary variable equal to 1 if the substation
at bus i is built, and 0 otherwise, with i ∈ Bs

I2ij, k, t square magnitude of the current in line ij at
time period t when the conductor k is selected,
in (kA)2

I2ij, t square magnitude of the current in line ij
at time period t, in (kA)2

I lim
ij, k, t binary variable equal to 1 when the current

in line ij at time period t when the conductor k
is selected violates the current operational limits,
and 0 otherwise.

hij, k, t slack variable of current CONSTRAINT 5.1aa
Pij, k, t active power flow at sending bus i in line ij

at time period t when conductor k is selected,
in MW

Pij, t active power flow at sending bus i in line ij
at time period t, in MW

Qij, k, t reactive power flow at sending bus i in line ij
at time period t when conductor k is selected,
in MVar

Qij, t reactive power flow at sending bus i in line ij
at time period t, in MVar

V 2
i, t square magnitude of the voltage at bus i,

at time period t, with i ∈ B, in (kV)2
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Notations (cont’d)

Lower-Level Variables
c grid
i total grid capacity costs of user i, in €
c grid
i, t grid tariff costs of user i at time period t, in k€
p imp
i, t active power imported from the grid for user i

at time period t, in MW
q imp
i, t reactive power imported from the grid for user i

at time period t, in MVar
p exp
i, t active power exported to the grid by user i

at time period t, in MW
q exp
i, t reactive power exported to the grid by user i

at time period t, in MW
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The Formulation

Upper-Level Formulation

min 1/Γ ·
(
C cond + C sub

)
+ α

∑
t∈T

(
C loss

t + ωIΦI
t

)
(5.1a)

s.t.: C cond =
∑
ij∈L

∑
k∈K

λij, k ·Πcond
ij, k (5.1b)

C sub =
∑
i∈Bs

S
sub ·Π sub (5.1c)

C loss
t =

∑
ij∈L

∑
k∈K

(Rij, k · I2ij, k) ·∆t ·Π loss ∀t ∈ T (5.1d)

ΦI
t =

∑
ij∈L

∑
k∈K

I lim
ij, k, t ∀t ∈ T (5.1e)

(1+τ )Γ ·
(
C sub+C cond

)
+Γ ·α

∑∑∑
t∈T

C loss
t ≤ Γ

∑∑∑
i∈Bu

(
c grid
i +α

∑∑∑
t∈T

c grid
i

)
(5.1f)

Pij, t =
∑
k∈K

Pij, k, t ∀ij ∈ L, ∀t ∈ T (5.1g)

Qij, t =
∑
k∈K

Qij, k, t ∀ij ∈ L, ∀t ∈ T (5.1h)

I2ij, t =
∑
k∈K

I2ij, k, t ∀ij ∈ L, ∀t ∈ T (5.1i)

−P sub
i, t =

∑∑∑
k∈K

Pmi, k, t −Rmi, k · I2
mi, k, t −

∑∑∑
k∈K

Pij, k, t ∀i ∈ Bs, ∀t ∈ T (5.1j)

−Q sub
i, t =

∑∑∑
k∈K

Qmi, k, t −Xmi, k · I2
mi, k, t −

∑∑∑
k∈K

Qij, k, t ∀i ∈ Bs, ∀t ∈ T (5.1k)

p imp
i, t − p exp

i, t =
∑∑∑
k∈K

Pmi, k, t −Rmi, k · I2
mi, k, t −

∑∑∑
k∈K

Pij, k, t ∀i ∈ Bu, ∀t ∈ T (5.1l)

q imp
i, t − q exp

i, t =
∑∑∑
k∈K

Qmi, k, t −Xmi, k · I2
mi, k, t −

∑∑∑
k∈K

Qij, k, t ∀i ∈ Bu, ∀t ∈ T (5.1m)

V 2
j, t − V 2

i, t ≤
∑∑∑
k∈K

(− 2 · (Rij, k · Pij, k, t+Xij, k ·Qij, k, t)

+
(
R2

ij, k+X2
ij, k

)
· I2

ij, k, t)+M · (1−Λij) ∀ij ∈ L,∀t ∈ T (5.1n)

V 2
j, t − V 2

i, t ≥
∑∑∑
k∈K

(− 2 · (Rij, k · Pij, k t+Xij, k ·Qij, k t)

+
(
R2

ij, k+X2
ij, k

)
· I2

ij, k, t)−M · (1−Λij) ∀ij ∈ L,∀t ∈ T (5.1o)

V 2
i, t · I2

ij, t ≥ P 2
ij, t+Q2

ij, t ∀ij ∈ L,∀t ∈ T (5.1p)

(S sub
i, t )2 ≥ (P sub

i, t )2 + (Q sub
i, t )2 ∀i ∈ Bs, ∀t ∈ T (5.1q)
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S sub
i, t ≤ S

sub
i ∀i ∈ Bs, ∀t ∈ T (5.1r)

S
sub
i ≤ βi · S

sub,max
i ∀i ∈ Bs (5.1s)

V 2
i, t − 1 ≤

(
V

2 − 1
)
· (1− βi) ∀i ∈ Bs (5.1t)

V 2
i, t − 1 ≥

(
V2 − 1

)
· (1− βi) ∀i ∈ Bs (5.1u)

Pij, k, t ≤ λij, k · Iij, k · V ∀ij ∈ L, ∀k ∈ K, ∀t ∈ T (5.1v)

Pij, k, t ≥ −λij, k · Iij, k · V ∀ij ∈ L, ∀k ∈ K, ∀t ∈ T (5.1w)

Qij, k, t ≤ λij, k · Iij, k · V ∀ij ∈ L, ∀k ∈ K, ∀t ∈ T (5.1x)

Qij, k, t ≥ −λij, k · Iij, k · V ∀ij ∈ L, ∀k ∈ K, ∀t ∈ T (5.1y)

hij, k, t ≤
(
Iij, k

)2 · I lim
ij, k, t ∀ij ∈ L, ∀k ∈ K, ∀t ∈ T (5.1z)

I2ij, k, t − hij, k, t ≤
(
Iij, k

)2 · λij, k ∀ij ∈ L, ∀k ∈ K, ∀t ∈ T (5.1aa)∑
k∈K

λij, k = Λij ∀ij ∈ L (5.1bb)

∑
ij∈L

Λij = nu ∀t ∈ T (5.1cc)

+ radiality constraints (5.1dd)



C h a p t e r 6
THE LEADER-FOLLOWER PROBLEM

6.1 Description of the Problem

As a recall of SECTION 1.3, the objective of this master thesis consisted in developing a first
bilevel programming (BP) approach for developing distribution network development plans.
This bilevel problem introduces two players:

· The upper-level, also referred to as the leader, is the optimization program solved
by the distribution network operator (DNO). Its objective is to discover an ideal
configuration of the distribution network that minimizes both CAPEX and OPEX
costs, all while effectively addressing the needs of grid users. This topology should also
simultaneoulsy ensure a sufficiently high reliability, imposed as operational constraints
on grid voltages and line currents in the problem. Additionally, the DNO intends
to fulfill a budget balance constraint. This constraint reflects the DNO’s ability to
recoup its investment, alongside an allocated margin, through the grid tariffs imposed
on users of the network. This actor considers a sufficiently large planning horizon
to cover representative system conditions. A more comprehensive description of this
problem is available in CHAPTER 5.

· The lower-level, also called the follower, embodies the optimization efforts of all grid
users within the leader’s network. Each individual user can choose between several
options to satisfy their energy requirements. They can buy from the DNO some
capacity to withdraw or inject into the distribution network. They can also decide to
invest in generation and storage. The total cost of a user is minimizing is the addition
of these investments and operational costs, such as the electricity purchased from the
public grid. A more detailed version of the description of this problem is provided in
CHAPTER 4.

Our aim is to assess the influence of the alternatives of the users and the DNO on the
equilibrium state of the overall system. In other words, we seek to understand the extent of
necessary investments by both the DNO in its network and users in their personal generation
and storage resources.

50
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6.2 The Optimization Program

The bilevel programming (BP) optimization program we derived is built by introducing the
lower-level problem defined in PROBLEM 4.1 in the constraints of the upper-level problem
defined in PROBLEM 5.1. Insights into the methodologies employed to derive these two
optimization programs can be found in CHAPTERS 4 and 5. This leads to an optimistic BP
program, where the upper-level is formulated as a MISOCP program, while the lower-level
adopts a linear programming (LP) structure. As elaborated upon in SECTION 2.5, solving
this program is NP-hard. Nevertherless, the optimistic approach, coupled with the simplicity
of the lower-level problem, allows its transformation into a single-level formulation through
the application of KKT conditions. Therefore, we can write the general form our bilevel
optimization program as in PROBLEM 6.1:

The Bilevel Optimization Program

min Upper-Level Objective Function 5.1a (6.1a)

s.t. : Upper-Level Constraints 5.1b to 5.1dd (6.1b)

(p imp, p exp, q imp, q exp, c grid) ∈ argmin {4.1a | s.t.: 4.1b to 4.1o } (6.1c)

In this formulation, the objective function (6.1a ) and CONSTRAINT (6.1b ) define the
upper-level optimization program. On the other hand, CONSTRAINT (6.1c ) corresponds to
the lower-level optimization program. The lower-level variables p imp, p exp, q imp, q exp, c grid

are shared with the upper-level. These variables are constrained to align with the optimal
solutions of the lower-level problem, consequently delimiting the range of feasible options
accessible for the upper-level problem to explore in its pursuit of a solution.

6.3 Sensitivity Analysis Performed for the ISGT Conference Paper

An initial sensitivity analysis was conducted on key parameters to acquire a deeper under-
standing of how equilibrium evolves within our bilevel model. This analysis was explained in
the paper called “A one-leader multi-follower approach to distribution network development
planning”, co-authored by Pr. Bertrand Cornélusse, Dr. Mevludin Glavìc, Geoffrey Bailly,
and myself, which was has been accepted to present during the IEEE PES ISGT EUROPE
2023 conference [24]. The purpose of this section is to explain the analysis presented in the
aforementioned paper.
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Methodology

To capture the impact of key parameters on the outcomes of some bilevel model simulations,
we conducted this analysis by establishing a base case scenario, whose characteristics are
highlighted in grey in TABLE 6.1. Subsequently, except for the worst-case scenario, the
key parameters were altered one by one, relative to this base case scenario. As a result,
each simulation involved a single change in parameter value. Although we recognize the
limitations inherent in this approach, considering the bilevel model high complexity, we
sought to enhance our understanding before delving further into a more complete analysis
that consider, for instance, the correlation between the different parameters. The six
resulting test cases we chose to present are described TAB 6.1.

EV: add electric vehicles’ consumption, HP: add heat pumps’ consumption, MPV: Maximum PV capacity per bus (MVA), EIP: energy
import price (k€/MWh), GT: grid tariff (k€/MWh), EEP: energy export price (k€/MWh), GCC: grid connection cost (k€/MVA/y).
False (F), true (T).

Case EV HP MPV EIP GT EEP GCC

Base F F 0.4 0.3 0.1 0.1 80
Worst T T 0 0.3 0.1 0.1 80
Best F F 0.8 0.3 0.1 0.1 80

EIP inc. F F 0.4 0.6 0.1 0.1 80
GT inc. F F 0.4 0.3 0.2 0.1 80
EEP inc. F F 0.4 0.3 0.1 0.2 80
GCC inc. F F 0.4 0.3 0.1 0.1 120

Table 6.1. Description of test cases used for the ISGT sensitivity analysis.

Input data

The input data for load and PV generation profiles as well as the test network used in our
simulations are described in CHAPTER 3. In the base case, the aggregated demand profile
is scaled so that the peak load is 7 MVA on a five-minute time scale, pro-rata of the load
data in TABLE VI of [50]. As for the available conductors, they are listed in TABLE 3.2. The
amortization periods are 50 years for the DNO investment, 30 years for the PV panels, and
ten years for the PV inverters. The other relevant parameters are summarized in Table 6.3,
where the grey row in the base case.

KPIs results

We decide to assess the results of our different scenarios based on several key performance
indicators (KPIs). Each test case is then compared to the Base case based on the KPIs
values. These results are available in TABLE 6.2.
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#LCi: Number of lines built with conductor i, ISC: Installed substation capacity (MVA), CAPEX: DSO annual amortized cost of
investments (M€/y), OPEX: DSO cost of losses (M€/y), UPVC: Users’ PV annual amortized cost of investments(M€/y), UGCC: Users’
annual grid connection cost (M€/y), UNEEC: Users’ net annual electricity exchange cost (M€/y), USS: Users’ average self-sufficiency
(%), USC: Users’ average self-consumption (%).

Case
Network topology KPIs

#LC1 #LC2 #LC3 #LC4 ISC CAPEX OPEX UPVC UGCC UNEEC USS USC

Base 21 0 0 0 5.66 0.116 0.138 0.240 2.14 3.44 42.7 72.3
Worst 13 1 5 2 19.18 0.388 1.575 0 7.38 15.91 0 0
Best 18 1 0 2 5.64 0.117 0.125 0.405 2.16 2.96 49.4 69.2

EIP inc. 17 3 1 0 5.68 0.117 0.343 0.240 2.17 7.09 42.7 72.3
GT inc. 21 0 0 0 5.65 0.116 0.081 0.240 3.13 3.68 42.7 72.3
EEP inc. 21 0 0 0 5.88 0.121 0.134 0.302 2.73 2.06 42.7 72.3
GCC inc. 21 0 0 0 5.66 0.116 0.128 0.240 2.29 3.64 42.7 72.3

Table 6.2. Results obtained with the bilevel model for the ISGT sensitivity analysis.

In the most extreme scenario, i.e. the Worst case, the demand is very high because
of heat pumps and electric vehicles, and we assumed no PV can be installed. While this
scenario lacks practical realism since grid users typically don’t adopt heat pumps and EVs
without PV panels, it serves as a kind of ”apocalyptic” case that offers insights into the
worst possible impacts on the system. The main consequence of this case is, as expected, a
great increase in the DSO CAPEX and OPEX expenses. Approximately half of the lines
necessitate upgrades, and both substations require significant reinforcement. Meanwhile,
users experience an almost fivefold rise in costs, even though the energy demand has merely
tripled. Specifically, the peak load has reached 18.85 MVA, with an annual total energy
consumption of 53,110 MWh.

In the Best case, users can double their PV installation, resulting in reduced user costs
and increased self-sufficiency by nearly 50%. DNO costs do not see a significant increase
in this scenario. In the EIP inc. case, where energy import prices double, user costs rise,
similar to the GT inc. scenario where grid tariffs are increased. This is expected since the
base case’s budget balance is already satisfied. Consequently, an elevation in the network
tariff corresponds, in essence, to an augmentation in the commodity price from the user’s
standpoint, thereby eliminating the requirement for further DNO investments. In the EEP
inc. case, users install more PV capacity, exporting excess generation to the grid. This
leads to slight impacts on DSO costs and generates user revenues, causing a decrease in the
net electricity expenses (UNEEC). Finally, in the GCC inc. case, where grid connection
costs increase, the results remain largely unaffected.
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6.4 Implementation of the Model

The BP optimization program from PROBLEM 6.1 was implemented using the Julia program-
ming language [52] with the JuMP package [58]. More specifically, we used an extension
of the JuMP package, known as BilevelJuMP [46], that offers an interface to write BP
programs in Julia. Besides providing an interface, it also offers methods to reformulate BP
programs as single-level problems, such as replacing the lower-level by its KKT conditions
or applying the strong duality reformulation. In this master thesis, we used the strong
duality method for the reformulation of our bilevel problem. Additionally, Gurobi [39] was
employed as the MIP solver to tackle the single-level reformulation of the BP program,
featuring the following parameters:

· The MIP gap is equal to 0.01%. According to the Gurobi website [39], it is computed
with the following formula:

| ObjBound − ObjVal |
| ObjVal |

· The time limit for solving the model is set to 1200 seconds.

· The MIP focus parameter is set to 1, a choice that prioritizes swiftly obtaining a
feasible solution.

Moreover, since the main focus of this master thesis revolved around devising a bilevel
formulation, it was essential to explore diverse configurations of the bilevel formulation.
This exploration aimed to identify the configuration that best aligns with our expecta-
tions regarding tractability. This led to the implementation of a modular code, called
Bilevel.jl. The structure of the Bilevel.jl module, which was implemented to enable
the creation of various bilevel model formulations, is depicted in FIGURE 6.1. The figure
also displays the array of alternative formulations available within this module, situated
in the Formulation section. These options include, among others, the experimentation
with two convex relaxation formulations for power flow equations, the relaxation of current
and voltage constraints, the introduction of network reconfiguration possibilities over the
temporal horizon, and the exploration of multiple loop elimination constraints.

This module marks an initial attempt to furnish a tool for DNOs to devise distribution
network development plans that are fit to their specific requirements. Its modular nature sets
the stage for easy extensions to incorporate additional formulation alternatives. In addition
to offering the Bilevel.jl module, this code was also crafted with an implementation
organized into data structures. This organizational structure is depicted in FIGURE 6.2.



CHAPTER 6. THE LEADER-FOLLOWER PROBLEM 55

FORMULATION

PowerFlow

Radiality

Jabr relaxation  

Distflow relaxation  

Single-Commodity Flow

Multi-Commodity Flow

Spanning Tree

Convexity
NonConvex

Convex

Topology
OneConfig

ReconfigAllowed

TypeGraph
Directed

Undirected

Voltage  

Soft Constraints

Hard Constraints

Current
Soft Constraints

Hard Constraints

BILEVEL.JL

build_model.jl

read_network_data.jl

plot_results.jl

profiles.jl

structs.jl

FORMULATION

variables.jl

objective.jl

constraints.jl

structs.jl

Contains the variables, constraints and
objective function building blocks to
build a BP formulation.

Assembles the building blocks to create
a formulation of the BP problem.

Reads the data from .XLSX files and
creates network structures.

Computes the KPIs and creates
network illustrations.

Creates load and PV profiles from
several daily profiles of representative
days.

Defines the network, costs and
simulation structures.

DESCRIPTION

Figure 6.1. The Bilevel.jl module implemented for the purpose of this master thesis. It
allows to build different formulations of our bilevel framework for the DNDP problem.
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v

NETWORK

buses : Vector{Bus}

lines : Vector{Line}

conductors : Conductor

nb_substations : Int

nb_loads : Int

nb_conductors : Int

pu_basis : PU_BASIS

NETWORK TOPOLOGY

nodes : Vector{Node}

edges : Vector{Edge}

sending_lines : Vector{Int}

receiving_lines : Vector{Int}

NODE

id : Int

coord : COORD

https://github.com
/ManCorUlg/Bilev

el_DNEP

Figure 6.2. Data types in the Julia implementation of the Bilevel.jl module
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6.5 Sensitivity Analysis performed with the Bilevel.jl module

A second sensitivity analysis was conducted to elucidate the dynamics of equilibrium within
our bilevel model. This secondary analysis had two main objectives. Firstly, it aimed to
reproduce certain findings from SECTION 6.3 by utilizing the newly-developed Bilevel.jl
module, thereby validating its reliability. Secondly, it sought to extend beyond the previous
analysis by incorporating storage units in the lower-level problem. Additionally, it also
added the bilevel model against its reformulation as a multi-objective optimization program
and also evaluated the impact of allowing the network to operate radially. This means that
while the topology need not be radial at all times, the lines utilized during each time step
of a simulation should compose a radial topology. Finally, we also sought in this part of the
work to compare the three loop elimination constraints formulations described in 5.3.

SID: Simulation ID, EV: add electric vehicles’ consumption, EHP: add heat pumps’ consumption, ST: add storage devices, STC:
storage cost (k€/MWh), NR: allow network reconfiguration, BLV: Bilevel formulation, MPV: Maximum PV capacity per bus (MVA),
PVC: PV cost (k€/MWp), GT: grid tariff (k€/MWh), EIP: energy import price (k€/MWh), EEP: energy export price (k€/MWh),
GCC: grid connection cost (k€/MVA/y), WI: weight of the current constraint violation in the objective. F: False, T: True.

SID
EV EHP ST STC NR BLV MPV PVC EIP EEP GT GCC WI
[–] [–] [–] [k€/MWh] [–] [—-] [MVA] [k€/MWp] [k€/MWh] [k€/MWh] [k€/MWh] [k€/MVA/y] [k€]

0 F F F – F T 0.4 500 0.3 0.1 0.1 80 0.01
1 T F F – F T 0.4 500 0.3 0.1 0.1 80 0.01
2 F T F – F T 0.4 500 0.3 0.1 0.1 80 0.01
3 F F T 500 F T 0.4 500 0.3 0.1 0.1 80 0.01
4 F F T 300 F T 0.4 500 0.3 0.1 0.1 80 0.01
5 F F T 600 F T 0.4 500 0.3 0.1 0.1 80 0.01
6 F F F – T T 0.4 500 0.3 0.1 0.1 80 0.01
7 F F F – F F 0.4 500 0.3 0.1 0.1 80 0.01
8 F F F – F T 0.0 500 0.3 0.1 0.1 80 0.01
9 F F F – F T 0.8 500 0.3 0.1 0.1 80 0.01
10 F F F – F T 1.6 500 0.3 0.1 0.1 80 0.01
11 F F F – F T 0.4 300 0.3 0.1 0.1 80 0.01
12 F F F – F T 0.4 600 0.3 0.1 0.1 80 0.01
13 F F F – F T 0.4 500 0.6 0.1 0.1 80 0.01
14 F F F – F T 0.4 500 0.9 0.1 0.1 80 0.01
15 F F F – F T 0.4 500 0.3 0.2 0.1 80 0.01
16 F F F – F T 0.4 500 0.3 0.3 0.1 80 0.01
17 F F F – F T 0.4 500 0.3 0.1 0.2 80 0.01
18 F F F – F T 0.4 500 0.3 0.1 0.3 80 0.01
19 F F F – F T 0.4 500 0.3 0.1 0.1 120 0.01
20 F F F – F T 0.4 500 0.3 0.1 0.1 160 0.01
21 F F F – F T 0.4 500 0.3 0.1 0.1 80 0.001
22 F F F – F T 0.4 500 0.3 0.1 0.1 80 0.1

Table 6.3. Description of test cases used in the sensitivity analysis. In this table, the row
colored in grey highlights the base case scenario
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Methodology

The simulations were conducted using the Bilevel.jl module. To capture the impact
of key parameters on the outcomes of the bilevel model simulations, we used the same
methodology as in SECTION 6.3. The description of the 23 cases tested in our sensitivity
analysis are presented in TABLE 6.3, in which the base case scenario (highlighted in grey in
the table) is the same as in SECTION 6.3. Moreover, the 23 test cases were tested each with
the three types of loop eliminitation constraints. This resulted in 69 simulations.

Input data

The same input data as for the ISGT conference analysis from SECTION 6.3 was used for
this analysis.

Results of the simulations

The results of the 69 test case simulations are described in this section.

Solve Time and MIP Gap

This part discusses the results of the 23 test cases, tested each on the three types of loop
eliminitation constraints. The aim is to determine which constraint formulation yields
the most favorable computational results. The different loop elimination constraints are
compared based on their MIP gap at optimality and solution time, as presented in TABLE 6.4.

The data in TABLE 6.4 indicates that nearly every simulation was prematurely terminated
due to the imposed time limit of 1200 seconds. This observation underscores the potential
need to extend this time limit or simplify the complexity of the bilevel model. Additionally,
the spanning tree constraints deliver the most favorable results in terms of MIP gap across
a majority of test cases.

One of the main conclusion that can be drawn from this table is that none of the
simulations that introduced storage in the bilevel formulation resulted in a feasible solution.
This highlights a potential issue in the formulation or a too high complexity for the resulting
bilevel model to be solved. Another interesting result is the fact that network reconfiguration,
i.e. the 6th case, and reformulating the problem under the form of a multi-objective (MO)
program, i.e. the 7th case, gave the best results in terms of convergence. While this outcome
was anticipated for the MO program due to its simpler formulation, it is particularly
interesting for the 7th case, which still involves a bilevel structure. This implies that
granting the DNO greater flexibility in selecting network topologies renders the bilevel
problem more computationally tractable. In subsequent sections, our focus narrows down
to the results of simulations conducted using the loop elimination constraints that exhibited
the most favorable MIP gap. These simulations are highlighted in blue in TABLE 6.4.
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SID
Single-Commodity Flow Multi-Commodity Flow Spanning Tree
MIP Gap Solve Time MIP Gap Solve Time MIP Gap Solve Time

[%] [sec.] [%] [sec.] [%] [sec.]

0 3.592 1200 3.759 1200 5.236 1200
1 97.79 1200 17.93 1200 - -
2 - - - - - -
3 - - - - - -
4 - - - - - -
5 - - - - - -
6 0.7676 705.9 1.213 1200 0.7723 418.6
7 0.1266 919.7 0.1386 128.8 0.1119 58.25
8 2.821 1200 2.716 1200 2.657 1200
9 3.344 1200 4.836 1200 78.45 1200
10 2.243 1200 2.38 1200 3.964 1200
11 2.528 1200 98.87 1200 2.6 1200
12 4.727 1200 - - 2.29 1200
13 - - - - 5.479 1200
14 92.73 1200 - - 5.472 1200
15 98.87 1200 3.352 1200 3.293 1200
16 98.67 1200 97.3 1200 2.835 1200
17 5.927 1200 3.59 1200 2.29 1200
18 99.04 1200 99.05 1200 2.285 1200
19 3.244 1200 2.605 1200 2.086 1200
20 3.921 1200 2.396 1200 2.451 1200
21 5.012 1200 3.65 1200 2.73 1200
22 99.88 1200 3.553 1200 2.303 1200

Table 6.4. Solve Time and MIP Gap of the BP program for every radiality constraint
formulation across all 23 simulation configurations. A dash in the table denotes simulations
that were unable to find a feasible solution within the allocated time.

Resulting Network

The results regarding the DNO’s network topology for simulations with the best MIP gap
are presented in TABLE 6.5. The DNO allocates the substation capacity across the two
substations solely in the 6th scenario, which enables network reconfiguration. In this very
scenario, it is shown that allowing reconfiguration maintains the same line count, but a
reduction in the quantity of larger conductors. Considering that TABLE 6.4 indicates a
lower MIP gap when network reconfiguration is allowed, this option brings us closer to
the optimal solution compared to the base case. This probably explains the lower number
of large conductors in the optimal network topology. Besides, the 7th case, which tests a
multi-objective optimization program based on the bilevel optimization, converges towards
a different solution in terms of network topology.
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As expected, the 9th and 10th scenario result in a high allocated PV capacity as the PV
capacity limit is increased at each network node in both cases. Besides, FIGURES 6.3 and 6.4
illustrates two examples of resulting network configurations at specific time periods of the
base case simulation. FIGURE 6.3 shows that, during a summer day with the best condition
for PV productions, grid users injecr the surplus PV generation in the grid network that
reinject power also at the level of its substation. During a winter day at night, FIGURE 6.4
outlines the situation wiht very high electricity demand.

SID
ISC1 ISC2 #LC1 #LC2 #LC3 #LC4 PVCA
[MVA] [MVA] [-] [-] [-] [-] [MVA]

0 0 5.711 15 0 2 4 8.4
1 0 11.57 19 2 0 0 8.4
2 - - - - - - -
3 - - - - - - -
4 - - - - - - -
5 - - - - - - -
6 4.174 1.524 18 0 1 2 8.4
7 0 5.72 20 1 0 0 8.4
8 0 5.731 15 0 0 6 0.0
9 0 5.689 16 1 2 2 16.02
10 0 5.647 15 0 2 4 28.27
11 0 5.707 16 0 1 4 8.4
12 0 5.706 10 7 0 4 8.354
13 0 5.709 14 0 0 7 8.4
14 0 5.706 13 2 1 5 8.4
15 0 5.884 14 1 2 4 8.4
16 0 7.045 14 1 1 5 8.4
17 0 5.706 15 1 2 3 8.4
18 0 5.706 15 0 2 4 8.4
19 0 5.706 16 1 1 3 8.4
20 0 5.706 14 2 0 5 8.4
21 0 5.708 16 1 3 1 8.4
22 0 5.707 16 0 3 2 8.4

Table 6.5. Characteristics of the resulting network in the 23 test cases. A dash in the table
denotes simulations that were unable to find a feasible solution within the allocated time.
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Figure 6.3. Resulting network from a simulation of our bilevel model at noon during the
summer day with the base case configuration for the input parameters.
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Figure 6.4. Resulting network from a simulation of our bilevel model at night during the
winter day with the base case configuration for the input parameters.
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Resulting KPIs In evaluating the strategies of both players in our bilevel programming
approach, we opted to compute various key performance indicators (KPIs) based on the
outcomes of our simulations. These results are illustrated in FIGURE 6.5.

Among the primary insights gained from these results is the observation that incor-
porating EVs profiles alongside the base consumption profiles nearly doubles the DNO’s
investments in terms of Capital Expenditure (CAPEX) compared to the base case. Ad-
ditionally, this trend exhibits a marginal inclination to encourage users to enhance their
PV investments for charging their EVs. This inclination is depicted by a higher User PV
capacity (UPVC) KPI in the second simulation compared to the base case. Correspondingly,
the User Grid Connection Costs (UGCC) also double to accommodate the heightened
electricity demand. The user energy exchange costs (EEC) rise because they have a limited
PV capacity that constrain them to consume electricity from the network. In this situation,
it could be interesting to enhance the PV capacity at each node. The average self-sufficiency
of users, which represents the percentage of their electricity demand met by their PV
systems, diminishes in comparison to the base case. This decline is attributed to the increase
in electricity consumption, while PV production remains nearly constant, mirroring the
conditions of the base case.

Enabling network reconfiguration in the 6th test case results in the lowest lost costs
among all scenarios, as indicated by the OPEX KPI. This results in an approximate 75%
reduction compared to the base case scenario. In the context of the multi-objective program
scenario, specifically the 7th simulation, the OPEX costs for the DNO experience an almost
twofold increase. Nevertheless, the outcomes align with those obtained from the bilevel
approach concerning the strategies adopted by grid users. This observation potentially
underscores a situation where the weight assigned to grid users’ objectives within the multi-
objective function surpasses the weight allocated to the DNO’s objective. Consequently,
this leads to a Pareto optimal solution that tends to favor the preferences of grid users.

The other dynamics are very similar to the ones explained in SECTION 6.3.
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Figure 6.5. Simulation results acquired from a sensitivity analysis of the bilevel model.
The analysis comprehensively assesses all 23 configurations specified in TABLE ??, employ-
ing a formulation that takes into account the radiality constraints formulation that
have the smallest MIP gap. The results are presented through 8 KPIs: the LCOE grid
(k€/MWh), CAPEX (M€/year), OPEX (k€/year), UPVC (M€/year), UGCC (M€/year),
UNEEC (M€/year), USS (%) and USC (%).



C h a p t e r 7
CONCLUSION AND PERSPECTIVES

7.1 Summary of Results

The objective of this master thesis consisted in devising a bilevel programming (BP) model
for developing distribution network development plans (DNDP). The primary aim of this co-
optimization approach was to capture the interplay between two key actors: the distribution
network operator (DNO), considered as the leader, who aims to minimize its investment and
operational costs and the grid users, considered as the followers, aiming to make optimal
investment decisions concerning photovoltaic (PV) installations and storage solutions. This
approach is innovative from prior DNDP frameworks as it allows to consider the grid users’
perspective. This consideration becomes indeed crucial, given the rising involvement of grid
users in the energy transition.

This master thesis was a first step in the development of a broader project whose
objective would be to eventually develop decision-making tools for DNOs that seek to
optimize in an smart manner their investments in their network. Indeed, we managed to
provide a first formulation of the bilevel programming approach with a MISOCP upper-level
program and a LP lower-level program. We were able to test several configurations of this
formulation using the Bilevel.jl module. This module was implemented with the aim to
be extended and to facilitate the integration of new formulation alternatives. In its actual
form, the module is able to integrate, among others, storage in the BP program, several
AC power flow equations relaxations and network reconfiguration, which states that the
network should be radial in operation.

Two sensitivity analysis were provided at the end of this work in order to gain insights
in the equilibrium that is reached by our bilevel program. The first analysis was jointly
conducted with the research team involved in this study, aiming to contribute to the ISGT
paper. It underscored, among various observations, that raising the energy import price or
the grid tariffs resulted in similar outcomes and that the key performance indicators (KPIs)
are almost unaltered when grid connection capacity price increases.
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In the second sensitivity analysis, 69 test cases were simulated. This analysis initially
emphasized that none of the test cases managed to find a feasible solution when storage
was incorporated into the bilevel model. This could be attributed to either an inadequately
formulated approach or the introduction of excessive complexity due to the inclusion of
additional grid users’ choices. Furthermore, it highlighted that among the radiality con-
straints, the spanning tree constraints exhibited superior overall convergence. Lastly, some
of the most interesting findings emerged during the examination of a formulation for the
bilevel model allowing the DNO to identify a network configuration that operates radially
without requiring radial topology for every time step. This particular bilevel formulation
yielded the most favorable convergence outcomes.

The conclusions derived from these two analyses, however, were not particularly in-
sightful, as the approach of systematically altering a single key parameter at a time didn’t
significantly challenge the equilibrium and yielded largely comparable KPIs across nearly
all scenarios. Nevertherless, this method was essential to begin with as the high complexity
of the bilevel model makes it challenging to comprehend the outcomes when multiple
parameters are simultaneously modified.

This has outlined the necessity to perfom more in-depth analyses of the correlations
between several input parameters. Furthermore, it has been shown that the 1200-second
limit fixed for finding a solution of the bilevel program was too low as the model never
reaches optimality within this timeframe. This limit must therefore be increased. Another
solution would be to find a more computationally-efficient formulation of our bilevel program.
For instance, we could replace the AC power flow equations convex relaxation with a linear
relaxation.

To conclude, my personal contribution lies in having participated, wiht Geoffrey Bailly,
in the formulation of the bilevel optimization program. Specifically, I made the formulation
for the upper-level problem based on two papers from the literature [12] and [23]. I
also came up with a modular implementation of our bilevel framework that allows to
test several configurations of the formulation. This code could set the path to a more
comprehensive decision-making tool that would be able to simulate various configurations
of the co-optimization distribution network development planning problem.
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7.2 Discussion and Future Work

As previoulsy explained, this master thesis is part of a broader research project aimed
at creating a entirely novel bilevel framework, designed to empower DNOs in enhancing
their distribution network development strategies. The formulation represents an initial
attempt at a bilevel program that addresses the research project. However, there remains
considerable potential for enhancing the model formulation. The following list outlines a
few possibilities:

· Regarding input data, we could incorporate a broader range of representative days
into the simulations of the bilevel program. This approach would enable the inclusion
of a wider spectrum of scenarios that occur throughout the year, resulting in more
accurate and realistic insights.

· The Bilevel.jl module could integrate linear relaxations of the power flow equations.
This enhancement would enable the exploration of more computationally-tractable
formulations within our bilevel framework.

· Furthermore, there is a need for deeper exploration of storage solutions. It’s acknowl-
edged that due to time constraints, we couldn’t thoroughly examine the formulation
of the storage dynamics within our model. This limitation could potentially account
for the unfavorable results observed in our analysis when storage was incorporated.

· In this thesis, we introduced certain robust assumptions for the sake of simplicity.
For instance, we assumed users to exhibit perfectly rational behavior. Additionally,
when users encounter multiple optimal solutions, they select the one that suits the
most the DNO’s objective function. This comes from the optimistic approach in
bilevel programming. However, it’s essential to recognize that both these assumptions
deviate from reality. To be more realistice, we could investigate the concept of bounded
rationality for the grid users’ optimization programs.

· Another suggested consideration from the paper is to investigate the influence of
climate change on the distribution network. This could involve implementing a
constraint that places limits on the greenhouse gas emissions related to equipment
construction and operation.

This list is by no means exhaustive, given that the problem is inherently complex,
intertwining physical, economic, and behavioral constraints.
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Appendix A: KPIs results
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Figure 7.1. Simulation results acquired from a sensitivity analysis of the bilevel model. The
analysis comprehensively assesses all 23 configurations specified in TABLE ??, employing a
formulation that takes into account single commodity radiality constraints. The results
are presented through of 8 KPIs: the LCOE grid (k€/MWh), CAPEX (M€/year), OPEX
(k€/year), UPVC (M€/year), UGCC (M€/year), UNEEC (M€/year), USS (%) and USC (%).
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Figure 7.2. Simulation results acquired from a sensitivity analysis of the bilevel model. The
analysis comprehensively assesses all 23 configurations specified in TABLE ??, employing a
formulation that takes into account multi commodity radiality constraints. The results are
presented through 8 KPIs: the LCOE grid (k€/MWh), CAPEX (M€/year), OPEX (k€/year),
UPVC (M€/year), UGCC (M€/year), UNEEC (M€/year), USS (%) and USC (%).
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Figure 7.3. Simulation results acquired from a sensitivity analysis of the bilevel model. The
analysis comprehensively assesses all 23 configurations specified in TABLE ??, employing a
formulation that takes into account spanning tree radiality constraints. The results are
presented through 8 KPIs: the LCOE grid (k€/MWh), CAPEX (M€/year), OPEX (k€/year),
UPVC (M€/year), UGCC (M€/year), UNEEC (M€/year), USS (%) and USC (%).
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