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Abstract

Complex dynamical systems are found across various scientific disciplines, represent-

ing phenomena like atmospheric and oceanic behavior, brain activity, robot state

in its environment, among many others. Due to the challenges that those systems

may address, it is often impractical to observe their complete state, leading to the

collection of partial observations. For instance, weather stations can only measure a

limited number of variables like temperature and pressure, but not the entire state

of the atmosphere. However, despite the limited nature of those observations, we

can still use them to infer and deduce states that are consistent with the gathered

data. By leveraging advanced inference methods, we can make predictions about

the complete state of complex dynamical systems based on these information.

In this thesis, we delve into the realm of simulation-based inference methods ap-

plied to inverse problems in high-dimensional dynamical systems. We discuss how

classical methods can be adapted to our problem and investigate how existing evalu-

ation techniques can be used to assess our estimator’s performances. Unlike classical

simulation-based inference problems, our focus extends to incorporating the tempo-

ral dimension of such systems and scaling consistently existing inference methods

with the size of the problem. Our goal is to infer the posterior density of states

in dynamic systems, using observations to condition the inference process. By ac-

counting for the temporal aspect, we can extend our understanding of the system’s

behavior and make informed predictions about its future states.

Eventually, we show that existing estimation methods can adapt to our problem by

incorporating consistently available information related to both system dynamics

and observation process. We argue that convolutional estimators are needed to

allow good scaling without increasing excessively computational costs. By leveraging

system’s structure, we found diffusion-based estimators being promising to solve

our problem. We also highlight the need of new evaluation techniques that scales

correctly and propose a classifier-based posterior check that fill the lacks of other

classical evaluations at the cost of harder interpretation.



“He believed in the primacy of doubt, not as a blemish upon
our ability to know, but as the essence of knowing. The al-
ternative to uncertainty is authority, against which science
had fought for centuries.”1

James Gleick, Genius: The Life and Science of Richard Feynman

1Quote extracted from the book of Tim Palmer, The Primacy of Doubt, 2022
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1. Introduction

1.1. Problem statement

Complex dynamical systems are pervasive across scientific domains, encompassing

phenomena such as fluid dynamics, atmospheric evolution, neuronal activity, and

more. Models of those systems offer the ability to make predictions about their

behavior, provided they accurately capture the underlying dynamics. However, due

to the inherent chaotic nature of complex systems, making accurate predictions,

especially far in the future, becomes a hard challenge.

In such systems, predictions about their evolution depends on how strong are the

beliefs we have concerning the current state. The only way we can strengthen those

beliefs is by reducing their uncertainty incorporating at best past and present sys-

tem’s related information. Once those beliefs are strong, we can propagate them

through the model to estimate evolution of the system, which is relevant as long

as this model is well-specified. The lower the uncertainty, the longer the prediction

remains valuable.

To address this problem, data assimilation techniques play an important role. Data

assimilation (DA) combines observations with simulations to estimate and improve

our knowledge of the system’s current state and its evolution. By assimilating ob-

served data into dynamical models, we can correct for the state’s trajectory estimate

and update our beliefs. Under a probabilistic point of view, the most natural way

of formulating this problem is through the Baye’s rule

p(state | observations) = p(observations | state)p(state)
p(observations)

(1.1)

which describes how to update beliefs modelled by a density p(state) given evidences

in the form of observations. By accounting how likely are those observations given

our beliefs using the likelihood p(observations | state), we can update them, leading

to what we call the posterior density p(state | observations). This relation highlights
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the importance of having confident beliefs about the state in order to refine them

consistently.

St
at
e

Time

Prior trajectory
Updated trajectory
Observation

Figure 1.1.: Classical point-estimate DA pipeline. A prior forecast is performed
based on previous observations. When fresh data is collected, the tra-
jectory is corrected to better fit the received information.

By integrating observations and simulations through data assimilation, we bridge

the gap between limited observations and the hard to predict chaotic dynamics, ex-

tracting the best of both. This approach acknowledges the inherent chaotic nature

of complex systems via simulation and trades off forward prediction’s accuracy with

the periodic assimilation of fresh observations. It enables us to refine our estimators

and improve predictions value for potential related decision making.

This thesis addresses the challenges of adapting the classical simulation-based infer-

ence framework to state-space models, considering issues of scalability and incorpo-

ration of temporal information. Our objective is to explore how existing methods

can be modified and tailored to effectively handle state-space models. Benefiting

from the advent of deep learning, we focus on modern density estimation techniques

using artificial neural networks.

Through empirical evaluations and comprehensive analysis, this work aims to pro-

vide valuable insights into the effectiveness and limitations of adapting simulation-

based inference techniques to DA. These insights can have significant implications

for practical applications, where the integration of temporal information is crucial

for accurate inference. The proposed method pipeline involves the generation of

2



simulated data, which serves as ground truth, and the subsequent learning of a

posterior model that is coherent with the underlying physics and assimilated ob-

servations. Eventually, the formulation of this problem as a posterior estimation

(1.1) allows uncertainty quantification which is of high interest for practical decision

making tasks related to the evolution of such physical systems.
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2. Background

2.1. Simulation-based inference

This work focuses on the simulation-based inference [1] framework. Specifically, we

use methods called neural posterior, ratio, and score estimation. It is important

to note that these techniques are not exhaustive, and the field of simulation-based

inference continues to evolve rapidly in various directions [2, 3]. It has found ap-

plications in a wide range of domains, including robotics [4], astrophysics [5], and

healthcare [6], among others.

2.1.1. Bayesian inference

Bayesian inference is a statistical methodology that enables the updating of be-

liefs regarding the likelihood of parameters θ based on new observations x. Unlike

other statistical approaches, Bayesian techniques consider all parameters as random

variables. By incorporating prior assumptions p(θ) about the distribution of these

parameters, one can update our beliefs through the likelihood p(x | θ) defined by a

simulator, leading to the posterior p(θ|x). This belief’s update resorts to the Bayes’

rule

p(θ | x∗) =
p(x∗ | θ)p(θ)

p(x∗)
. (2.1)

Here, x∗ is a specific observation drawn from the evidence density p(x). An im-

portant aspect of this rule is its ability to incorporate uncertainty into tests and

analyses. This allows us to directly infer a probability density function over the

parameters, which is often necessary for practical decision-making problems and

various other applications. By considering the underlying uncertainty, we can en-

sure that decisions are made aware.

Traditional Bayesian methods, such as Markov Chain Monte Carlo (MCMC) and

Approximate Bayesian Computation (ABC), have been widely used for estimat-
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ing posterior densities [7–12]. However, these methods often lack amortization for

observations. This means that the whole pipeline must be executed for each new

observations resulting in high computational costs, especially when the system is

expensive to simulate. With the advent of deep learning, neural density estimation

has emerged as a promising approach that has the potential to circumvent many

issues of classical density estimation (DE) methods such as the curse of dimension-

ality and the lack of amortization. The integration of these techniques alongside

simulation has led to the field of simulation-based inference (SBI) [1, 13].

The field of SBI regroups tools for bayesian inference when the likelihood function

is either known (e.g. SLCP [14]), unknown or intractable (likelihood-free inference).

Simulators are only models of real-world systems whose internal dynamics are com-

plex and themselves modelled by unobserved latent variables z. Simulators only

implicitly define the path from parameters θ to observations x through latent space

Z. In many real-world scenarios, obtaining a closed-form expression for the likeli-

hood function is impractical or impossible as it would require to integrate over all

possible trajectories across this latent space as

p(x | θ) =
∫
Z
p(x, z | θ)dz (2.2)

which becomes intractable when the latent space is large, as in most cases. Conse-

quently, traditional inference methods like Maximum Likelihood Estimation (MLE)

[15] or MCMCmay not be directly applicable nor efficient. Furthermore, in scenarios

where the evidence p(x) is not accessible, the latter could be computed using

p(x) =

∫
Θ

p(x | θ)p(θ)dθ. (2.3)

This makes the problem even harder to solve as it would require to compute a double

integral on arbitrarily low to high dimensional spaces Z and Θ. The simulation-

based inference field provides a toolbox of likelihood-free inference (LFI) methods

that can handle such situations and have diverse applications.

2.1.2. Variational inference

Variational inference [16] (VI) is a methodology that approximates a posterior dis-

tribution p(θ | x) by a density estimator qϕ(θ | x) parameterized by ϕ. The approx-

imation takes the form of an optimization problem for which the objective is to fit

ϕ in order to minimize a dissimilarity measure d(p, qϕ) between densities. The most
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common choice for such measure is the reverse Kullback-Leibler [17] (KL) divergence

KL
(
qϕ(θ | x)∥p(θ | x)

)
= Eqϕ(θ|x)

[
log

qϕ(θ | x)
p(θ | x)

]
. (2.4)

In our context, neural networks are used to parameterize density estimators qϕ(θ|x).
Mathematically, the optimal parameters ϕ∗ are the ones that satisfy

ϕ∗ = arg min
ϕ

KL
(
qϕ(θ | x)∥p(θ | x)

)
= arg min

ϕ
Eqϕ(θ|x)

[
log

qϕ(θ | x)
p(θ | x)

]
= arg min

ϕ
Eqϕ(θ|x)

[
log qϕ(θ | x)− log p(θ, x) + log p(x)

]
= arg max

ϕ
Eqϕ(θ|x)

[
log p(θ, x)− log qϕ(θ | x)

]
(2.5)

where we leverage the fact that p(x) is constant with respect to ϕ. The problem

finally turns to the maximization of a quantity (2.5) called the evidence lower bound

objective (ELBO).

2.1.3. Estimation methods

Direct posterior estimation

Despite the difficulty that we can face while computing the posterior, there re-

mains specific cases in which the latter can be properly computed. However, those

techniques are rooted on strong assumptions that are hardly often encountered in

real-world scenarios. The latter being mainly limited to low-dimensional systems

for the reasons explained previously.

In this work, we implement a method that we call the direct posterior estimation

(DPE). It allows to estimate the posterior for a fixed observation x∗ by using (2.1)

under the following assumptions:

1. We have access to the likelihood p(x | θ).
2. We have access to the evidence p(x).

3. We can sample from p(θ).

Hence, given a sufficiently large number of samples θi ∼ p(θ), we can estimate the

posterior using histograms [18]. Indeed, since the posterior is an update of the prior,

it is expected to be contained in the support of the latter. Ensuring that we can
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easily cover the prior domain with sufficient number of samples (third assumption),

we can approximate the posterior by weighting the contribution of each samples

with their associated likelihood-to-evidence (LTE) ratio

r(x, θ) =
p(x | θ)
p(x)

. (2.6)

Following the two first assumptions, we have access to the exact value of this ratio

for any pair (x, θ) as it depends only on known densities. However using histograms

limits the inference capacity of this technique as it suffers from the curse of di-

mensionality, meaning that the number of required samples to produce a consistent

estimation grows exponentially with the dimension of the problem. Moreover, com-

puting the LTE ratio needs to evaluate both the likelihood and evidence densities

for each pair, leading to further computational costs if their evaluation is expensive.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
p( )
p( x * )
r(x * , )

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
N = 1024
N = 4096
N = 16376
p( x * )

Figure 2.1.: DPE for p(θ) = N (0, 0.52) and p(θ|x∗) = N (0.5, 0.252). On the left,
prior and posterior densities are depicted with the associated LTE ra-
tio. On the right, posterior is estimated using DPE based on samples
from the prior and LTE ratio weights. The latter plot illustrates the
importance of sampling (N denotes the number of samples) as much as
possible from the prior to consistently cover the whole support of the
posterior.

The use of this method will be further discussed as it applies only to very restrictive

setups.

Neural posterior estimation

Under the variational inference perspective, neural posterior estimation (NPE) aims

to estimate the posterior directly using neural density estimators, denoted as qϕ(θ|x).
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We notice that (2.5) involves the computation of the expectation of the joint p(θ, x)

w.r.t. the estimated density qϕ(θ|x). In the context of SBI, the joint is typically

unknown analytically. However, it remains obvious to sample from it as

p(x, θ) = p(x | θ)p(θ). (2.7)

Samples from the joint are drawn by sampling from the prior and then from the

likelihood implicitly defined by the simulator.

To bypass the computation of the joint expectation, we aim at minimizing the

forward KL divergence KL
(
p(θ | x)∥qϕ(θ | x)

)
. The latter is still minimal when both

densities are identical but, since the KL is not symmetrical, it does not correspond

to (2.4). In addition, we want our estimator to be amortized meaning that we

minimize the expected KL over the observations. This allows to infer posterior for

any observation x∗ without the need of retraining the density estimator. The final

objective is the minimization of

Ep(x)
[
KL

(
p(θ | x)∥qϕ(θ | x)

)]
= Ep(x)Ep(θ|x)

[
log

p(θ | x)
qϕ(θ | x)

]
= Ep(x,θ)

[
log p(θ | x)− log qϕ(θ | x)

]
(2.8)

for which optimal parameters are

ϕ∗ = argmin
ϕ

Ep(x,θ)
[
− log qϕ(θ|x)]. (2.9)

The density estimator thus minimizes its expected negative log-density (NLD) w.r.t.

simulated data. The log posterior density is omitted from the objective as it is

independent of the parameters ϕ. The objective is lower bounded but the minimum

value is not known beforehand since it would require direct access to the posterior,

which is the unknown we are estimating.

Neural ratio estimation

This method takes roots on the estimation of the LTE ratio (2.6) previously defined

in the direct posterior estimation (DPE) section. Whereas DPE computes directly

the LTE ratio, neural ratio estimation (NRE) [19] replace its computation by a neu-

ral estimator rϕ(x, θ). NRE only requires to be able to sample from the joint p(x, θ)

and the marginals p(x), p(θ) for training and only requires access to an explicit prior

density p(θ) for sampling.
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The ratio r(x, θ) can be estimated by training a neural classifier dϕ(x, θ) to dis-

criminate between pairs (x, θ) drawn from the joint p(x, θ) and the product of the

marginals p(x)p(θ). The optimization problem can be formulated using a suitable

loss function, such as the cross-entropy. In this context, the optimization problem

takes the form of

ϕ∗ = arg min
ϕ

Ep(x,θ)
[
− log(dϕ(x, θ)

]
+ Ep(x)p(θ)

[
− log(1− dϕ(x, θ))

]
. (2.10)

Here, dϕ(x, θ) is the classifier that outputs the probability of a given pair (x, θ) to

belong to the joint distribution. As proven by Hermans, Begy, and Louppe [20], the

Bayes optimal classifier for this task, denoted as dϕ∗(x, θ), is

dϕ∗(x, θ) =
p(x, θ)

p(x, θ) + p(x)p(θ)
. (2.11)

Combining (2.6) and (2.11), we have

r(x, θ) =
p(x | θ)
p(x)

=
p(x, θ)

p(x)p(θ)
=

dϕ∗(x, θ)

1− dϕ∗(x, θ)
= rϕ∗(x, θ). (2.12)

Therefore, the Bayes optimal classifier gives access to the true LTE ratio r(x, θ).

Using MCMC sampling procedures like Metropolis-Hastings [21], one can sample

from the estimated posterior distribution p(θ)rϕ(x, θ). In addition, since the classi-

fier gives access to an estimate of the LTE ratio, the density can be approximated

in a similar fashion than the DPE method, by weighting samples of the prior.

The neural ratio estimation method simplifies the problem of posterior approxi-

mation to a binary classification task without imposing constraints on the neural

network architecture. However, it has some limitations, such as the requirement of

MCMC sampling procedures and the need for access to the prior density p(θ)

Neural score estimation

Neural Score Estimation (NSE) [22] is a recent approach grounded in the theory of

Score-Based Models (SBM) [23]. While the mathematical foundations of diffusion

models are not latest discovery [24], their popularity has surged due to recent ad-

vancements, demonstrating their remarkable performance on various tasks [25–29].
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Diffusion model1. The objective of diffusion models is to learn a generative process

that can produce samples from a given distribution using stochastic differential

equations (SDE) as depicted in Figure 2.2. Those models are linked to variational

models through the concept of hierarchical variational auto-encoders [30] (HVAE).

Especially, continuous diffusion model is a degenerate case of HVAE with an infinite

number of hierarchical latents [31].

NoiseData

Forward noising process

Reverse denoising process

Figure 2.2.: Forward continuous diffusion process (blue) and its associated genera-
tive reverse process (red).

Formally, the forward process

dx(τ) = f(τ)x(τ)dτ + g(τ)dw(τ)

defines a continuous mapping between a data distribution p(x) ≈ p(x(0)) and a ref-

erence distribution p(x(1)) (corresponding to pure isotropic Gaussian noise) through

an SDE of parameters f and g. Under the HVAE perspective, the process follows

fixed Gaussian transitions

x(τ) =
√
ατx(τ − δτ) +

√
1− ατN (0, I) (2.13)

scheduled by the diffusion time τ and assuming infinitesimal step δτ . The hyper-

parameter ατ is fixed and characterizes the type of diffusion process. Following [31],

the latter is related to the parameter functions f(τ) and g(τ).

1Much of the theoretical background draws from the Deep Learning course of the Uni-
versity of Liège given by Pr. Gilles Louppe. Link : https://github.com/glouppe/

info8010-deep-learning
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Developing recursively (2.13) down to τ = 0 leads to

x(τ) =
√
ατx(τ − δτ) +

√
1− ατN (0, I)

=
√
ατατ−δτx(τ − 2δτ) +

√
1− ατατ−δτN (0, I)

= ...

=
√

βτx(0) +
√

1− βτN (0, I) (2.14)

with βτ =
∏ τ

δτ
i=0 αiδτ . In the continuous limit δτ → 0, (2.14) defines the diffusion

kernel

p(x(τ) | x(0)) = N (µ(τ)x, σ2(τ)I) (2.15)

where µ(τ) and σ(τ) are generalized continuous diffusion scheduling hyper-parameters

related to the previously defined continuous forward process.

Under the variational inference paradigm, diffusion models aim at estimating the

tractable denoising posteriors p(x(τ − δτ)|x(τ), x). The latter is known analytically

since the whole process follows Gaussian transitions. In this study, we adopt the

score matching interpretation of diffusion models as outlined in [31], which provides

a unified perspective on SBM and diffusion models.

Under the score matching interpretation, the goal is to learn the denoising process

through the reverse SDE, using a neural network sϕ(x(τ), τ) as a score estimator.

The score of p(x(τ) | x) is formally defined as ∇x(τ) log p(x(τ) | x). As depicted in

the aforementioned figure, if one has access to this score, given the forward SDE

parameters f(τ) and g(τ), it becomes possible to simulate the reverse SDE and

sample from an approximate of the true data generating process. Such an estimator

can be optimized by minimizing the denoising score matching loss

E τ∼U [0,1]E p(x(τ),x)

[
λ(τ)∥sϕ(x(τ), τ)−∇x(τ) log p(x(τ) | x)∥22

]
(2.16)

This loss function represents a continuous weighted combination of Fisher diver-

gences. The latter derives directly from the KL objective between the tractable

posterior and the estimate. Due to the Gaussian nature of the process, the KL is

known analytically and resumes to simple mean matching. Complete derivations

can be found in [31].
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Developing for the score of the diffusion kernel, we have

∇x(τ) log p(x(τ) | x) = ∇x(τ) logN (µ(τ)x, σ2(τ)I)

= ∇x(τ) log

[
1

σ(τ)
√
2π

exp

(
−(x(τ)− µ(τ)x)2

2σ2(τ)

)]

= −∇x(τ) log σ(τ)
√
2π −∇x(τ)

(
(x(τ)− µ(τ)x)2

2σ2(τ)

)
=

µ(τ)x− x(τ)

σ2(τ)
. (2.17)

To degrade the data smoothly, we choose a consistent scheduling for µ and σ that

transitions from (µ(0), σ(0)) = (1, 0) to (µ(1), σ(1)) = (0, 1). The specific choice we

made is detailed in Appendix A.1..

A commonly used weighting scheme is λ(τ) = σ2(τ). By incorporating it into (2.16)

and substituting the expression of the target score (2.17), we obtain the following

rescaled score loss

E τ∼U [0,1]E p(x(τ),x)

∥∥∥∥σ(τ)sϕ(x(τ), τ)− µ(τ)x− x(τ)

σ(τ)

∥∥∥∥2

2

. (2.18)

To improve optimization stability, an alternative network parameterization is pro-

posed, introducing rescaled score matching [31]. This involves defining the rescaled

score function as ϵϕ(x(τ), τ) = −σ(τ)sϕ(x(τ), τ). Notably, the rescaled score of the

diffusion kernel follows a standard Gaussian distribution. Thus, the final form of

(2.18) is

E τ∼U [0,1]E p(x)E ϵ∼N (0,I)

∥∥ϵϕ(µ(τ)x+ σ(τ)ϵ, τ)− ϵ
∥∥2

2
. (2.19)

Sampling via the reverse SDE. Once the parameterized score function ϵϕ is

learned, we can sample from the approximate data distribution p(x(0)) by solv-

ing the reverse SDE. This can be achieved using either a classical SDE solver

or by solving the associated probability flow ODE [23]. In this work, we adopt

the exponential-integrator (EI) scheme proposed by Zhang and Chen [32], inspired

by the deterministic DDIM sampling procedure [33]. Specifically, when using the

variance-preserving (VP) SDE, the sampling procedure is given by

x(τ − δτ)← µ(τ − δτ)

µ(τ)
−

(
µ(τ − δτ)

µ(τ)
− σ(τ − δτ)

σ(τ)

)
σ(τ)ϵϕ(x(τ), τ). (2.20)

Diffusion models for SBI. Diffusion models have been introduced generally for
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any distribution of data denoted x. When we use them under the simulation-based

inference framework, the density we are interested in is the posterior p(θ | x). What

we called data in diffusion models corresponds to θ here. As a first approach, diffu-

sion models can be adapted to directly approximate the posterior by incorporating

context into the score network as

sϕ(θ(τ), τ, x) ≈ ∇θ(τ) log p(θ(τ) | x). (2.21)

However, according to the Bayes’ rule (2.1)

∇θ log p(θ | x) = ∇θ log
p(x | θ)p(θ)

p(x)

= ∇θ log p(x | θ) +∇θ log p(θ) (2.22)

where we leverage the fact that the evidence score w.r.t. θ is zero. This leads

to an alternate method allowing for learning marginal score and likelihood score

independently. In practice, we will see that the latter could be approximated for

our problem, simplifying the training only to the marginal score estimation but

trading-off between samples quality and sampling speed.

2.2. Data assimilation

Inverse problems [34] involve identifying likely variables or parameters of a system

given observed data. Belonging to this class of problems, data assimilation [35, 36]

aims to estimate the states of a system based on partial observations. Data assim-

ilation (DA) is commonly used in fields like numerical weather prediction (NWP)

where recent observations are assimilated to refine state estimates and improve the

accuracy of inferred trajectories. In this context, posterior density estimation could

be used to quantify uncertainty and provide a more comprehensive understanding

of the variability of system’s states, unlike classical point estimates. The goal would

then not only to improve accuracy of simulated trajectories but also to reduce un-

certainty we have about them.

13



2.2.1. State-space models

State-space models2 (SSM) are a powerful framework for modeling and analyzing

dynamic systems. They consist of two key components: a transition process that

represents the latent states dynamics of the system, and an observation process that

links the latent states to the observed data. We introduce the following notations

• t is the simulation time, indexing the states and observation through the sys-

tem’s dynamics.

• xt ∈ RN is the state vector of the system at time t.

• yt ∈ RM is the observation vector related to the state at time t.

• M(.) : RN 7→ RN represents p(xt+1 | xt) known as the transition model.

• O(.) : RN 7→ RM is the observation process defining p(yt | xt).
In this work, we focus on deterministic transition models

xt+1 =M(xt)

governed by a system of ordinary differential equations (ODE). On the other hand,

we assume linear Gaussian observation process

O(xt) = N (Atxt, σ
2
yI)

that models uncertainty in the measures. At stands for a linear operator which maps

states to observations whereas σy is a presumed known and shared noise intensity

among observations. To further simplify the problem, we use a fixed observation

process, simplifying the notation of the operator At to A as it will not be indexed

by time. The observation process being time invariant, we will denote it as

p(yt | xt) = p(y | x, t) = p(y | x) = N (Ax, σ2
yI). (2.23)

2.2.2. Posterior estimation formulation

In this work, we shift our focus from traditional maximum a posteriori (MAP)

estimation

MAP (yt) = arg max
xt

p(xt | yt) (2.24)

2This notation is used in the literature mainly for systems with linear dynamics. In this work,
we use it to denote any dynamical system whose dynamics are governed by a set of differential
equations.
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to the direct estimation of the posterior density. This approach enables us to make

probabilistic predictions that quantify the uncertainty associated with state esti-

mates and avoids being trapped in local maxima corresponding to specific modes of

the posterior distribution.

The classical data assimilation framework aims to infer a posterior trajectory based

on a prior assumption on the actual trajectory and new sequence of observations.

In this context, the target posterior is given by

p(xt−T :t | yt−T :t) =
p(yt−T :t | xt−T :t)p(xt−T :t)

p(yt−T :t)
(2.25)

with T − 1 equal to the assimilation window width. Equation (2.25) resorts to the

Bayes rule (2.1). The likelihood is implicitly defined by the observation process O(.)
whereas p(xt−T :t) is defined by the simulator whose transitions are modelled byM(.).

In this work, we focus on the filtering task. The latter is defined as the assimilation

of previous observations yt−T :t to update our belief of the current state xt. Therefore,

our objective is to approximate the posterior density p(xt|yt−T :t) with an estimator

qϕ(xt|yt−T :t). This objective is not always suitable for practical data assimilation

problems since it does not explicitly take into account the evolution of the system.

The posterior approximation only targets a single time step rather than a sub-

trajectory. In this work, single step assimilation (T = 0) will act as a baseline,

which can be viewed as learning a stochastic inverse observer indexed by time. On

the other hand, the same problem with a window of size 10 (T = 9) will be studied.

It is expected that the second problem will yield sharper posterior, as the wider

context incorporates information about the underlying dynamics of the states.

2.2.3. Related work

One widely used approach in data assimilation is the Kalman filter [37], which pro-

vides an optimal estimate of the system state by recursively updating the state

prediction based on observations and dynamical model. The optimality holds for

linear dynamics and observations perturbed by Gaussian noise. However, many

real-world systems exhibit nonlinear and non-Gaussian behaviors, which motivates

the use of more advanced techniques. As a consequence, non-linear methods such

as the extended Kalman filter and particle filter [38] have emerged as powerful tools

for data assimilation in more general settings.
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Another class of data assimilation techniques is based on variational methods [39],

such as the 4D-Var and 3D-Var [40, 41] methods. Variational methods provide a

computationally efficient approach to estimate the state of the system and can han-

dle nonlinearity and non-Gaussianity to some extent.

4D-Var (Four-Dimensional Variational Data Assimilation) is a widely used technique

that aims to estimate the system state by finding the best fit (maximum a posteriori

(MAP)) between model predictions and observations over a specific time window,

typically referred to as the assimilation window. It is particularly suited for systems

with strong temporal dependencies, such as weather and ocean models. Such method

is the keystone of current used techniques at the European Centre for Medium-Range

Weather Forecasts (ECMWF) for 25 years [42, 43]. The main idea behind 4D-Var is

to formulate data assimilation as an optimization problem. The goal is to minimize

the cost function

J(x0) = (x0 − xb)TB−1(x0 − xb) +
T∑
t=0

(Axt − yt)
TΣ−1

y (Axt − yt) (2.26)

to fit the initial state x0 to xb (called the background, with its associated covariance

matrix B) and the collected observations yt over a time window of width T . By sim-

ulating forward via the transition modelM starting from x0, the objective aims at

reducing the assumed Gaussian error between reconstructed observations Axt and

corresponding collected yt. Indeed, (2.26) is equivalent to a maximum likelihood

estimation under Gaussian assumptions, leading to a sum of squared errors.

While such method provides unique estimate of the state, often targeting the one

that maximizes the posterior density, it is not always sufficient. Conversely, esti-

mating the whole posterior allows for criticizing the inference by quantifying how

uncertain we might be about any point estimate. The former sometimes leads to

easier estimation process but the latter is way more valuable for practical decision

making. It is even more crucial when the decision can have dramatic consequences

as in autonomous driving to name just one among many.

Nowadays, machine learning techniques have also been applied to data assimilation

problems, leveraging the power of neural networks to learn complex relationships

between observations and system states. These data-driven approaches have shown

promising results in improving the accuracy and efficiency of data assimilation.

Frerix et al. [44] reformulates (2.26) in the state space by learning an inverse ob-

servation process that maps yt to an estimate of the corresponding state xt. Mack
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et al. [45] and Amendola et al. [46] suggest to formulate the optimization problem in

the latent space of a learned variational auto-encoder allowing for faster optimiza-

tion at the cost of loss of physical guarantee for the reconstructed states. Rozet et

al. [47] address the data assimilation problem under the formalism of score-based

models. By leveraging the Markovian structure of dynamical systems, they propose

a method that allows for zero-shot trajectory posterior sampling applicable to any

known differentiable observation process A. As data assimilation techniques are

primarily used for forecasting purposes, with meteorology being a prominent field

of application, it is worth mentioning the work of Ravuri et al. [48] and Lam et al.

[49].

Overall, estimation techniques in the data assimilation field play a crucial role in

combining observational data with models to estimate the state of complex systems.

The choice of the appropriate method depends on the system characteristics, avail-

ability of data, and computational resources. Advancements in this field continue

to enhance our ability to make accurate predictions in various scientific disciplines.

2.3. Estimators

2.3.1. Conditional normalizing flows

Normalizing flows [50] (NF) are a family of neural density estimators that leverage

the change of variable formula in probability theory

z = f(x)

p(x) = p(z)

∣∣∣∣ det ∂f(x)∂x

∣∣∣∣. (2.27)

By selecting a simple base distribution p(z) that is easy to sample from, and choosing

a suitable learnable transformation function f : X 7→ Z parameterized by a network

of parameters ϕ, one can estimate any distribution with sufficient capacity in the

neural network. Normalizing flows are recognized as universal density estimators [51]

provided that their transforms are not uniquely affine. However, the main challenge

lies in determining the appropriate form of the transformation function f . To enable

sampling an estimate of p(x), it is necessary to define a mapping g : Z 7→ X . Since
NF uses transformations throughout which dimension is preserved, a straightforward
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loss-less mapping is given by

x = g(z) = g(f(x)) = f−1(f(x)) = x

which implies that g is the inverse of f .

Figure 2.3.: Example of bijective transform from a base distribution p(z) = N (0, 1).

The function f can be any complex bijective function. With neural networks, we can

construct invertible layers that allow f to be expressed as a composition of simple

bijective functions fi
f = fN ◦ fN−1 ◦ ... ◦ f2 ◦ f1.

Each fi represents a transformation that maps latents zi−1 to zi, where z0 = x and

zi = fi(zi−1). The Jacobian ∂f
∂x

can be computed by the chain rule as the product

of the Jacobian of each individual transforms

∂f

∂x
=

N∏
i=1

∂fi(zi−1)

∂zi−1

. (2.28)

The determinant of the Jacobian of this composed transform is obtained by taking

the product of the determinants of the Jacobians of the successive sub-transforms

fi. This formulation allows us to express the log density of our estimator, using
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(2.27)

log p(x) ≈ log qϕ(x) = log p(z) +
N∑
i=1

log

∣∣∣∣ det ∂fi(zi−1, ϕ)

∂zi−1

∣∣∣∣. (2.29)

In summary, NF offer several advantages and drawbacks. On one hand, they pro-

vide direct access to the estimated density, they allow sampling in a single inverse

pass (starting from latent z ∼ p(z) and reconstructing through g) and they are

recognized as universal density estimators. On the other hand, they require tailored

bijective transforms with restrictive constraints, those transforms are all defined in

the data dimension which makes scaling hard and the NLD optimum is not known

beforehand.

Eventually, in order to implement a conditional normalizing flow to estimate condi-

tional densities, one must adapt (2.29) by making the transforms context-dependent.

This is easily achieved by introducing the context as an input of the neural network

that parameterize each transform. While it is also possible to make the base density

p(z) context-dependent using, for example, z ∼ N (µϕ(yt−T :t, t),Σϕ(yt−T :t, t)), we

will not incorporate this in our work.

Masked auto-regressive flows

The baseline model that we will consider is a Masked Auto-regressive Flow (MAF)

with an embedding network. Masked Autoregressive Flows were introduced by Pa-

pamakarios, Pavlakou, and Murray [52] and belong to the category of autoregressive

flows. Autoregressive refers to a transformation from an input vector x to a latent

representation z of the form

zi = f(xi, x<i)

with x<i denoting every element of x that have a smaller index than i. This trans-

formation is based on the concept that any joint distribution of variables x ∈ RN

can be expressed as p(x) =
∏N

i=1 p(xi|x1:i−1). In practice, a masked auto-regressive

transform is an affine transformation of the form

f(xi, x<i) =
xi − µi(x<i)

σi(x<i)

where µi and σi are unconstrained parameterized functions of x<i. The functions µi
and σi are implemented by masking a simple feed-forward network, which involves

setting the connections between µi, σi and x≥i to 0.
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Figure 2.4.: Example of auto-regressive transform for a state of size 4. Since z1 = x1,
one can easily inverse the transform by reverting the horizontal arrows
direction since f(xi, x<i) is affine w.r.t xi.

To enhance the expressivity of the flow, multiple autoregressive transforms are

stacked together, and the inner latent representations zk are internally permuted

before each subsequent layer to allow for variable mixing along the transforms.

In practice, we need to condition our transforms in order to approximate the poste-

rior distribution. In order to estimate the posterior, we condition each transform by

directly incorporating an embedding of the context into the parameterized functions

µi and σi, making the transforms both auto-regressive and context-dependent.

Convolutional flows

Our convolutional flow architecture is inspired by classical convolutional normaliz-

ing flows [53–55], where the main component is a series of blocks with convolutional

transforms. As discussed in the theoretical part, the transforms within our flow

should be easily invertible, with simple log absolute Jacobian determinant compu-

tations. To achieve this, we combine ideas from Glow [54], Emerging [55], and CInC

flows [56]3. However, designing invertible convolutions presents its challenges.

Convolution layers differ from traditional linear layers as they involve weight sharing

between features. However, a single convolution kernel can still be unrolled into a

matrix multiplication with the flattened input. The resulting convolution matrix

corresponds to a sparse Toeplitz circulant matrix [58] characterized by the associated

kernel. Hence, we can express a convolution as

y = Ux (2.30)

3In this work, we have not implemented the recently proposed faster-to-invert convolutional flows
[57].

20



where y is the flattened layer’s output, U the convolution matrix and x the flattened

input.

Starting from (2.30), our goal is to design a learnable kernel K such that the cor-

responding matrix U is invertible. Additionally, computing the determinant of U

should be straightforward since it will be equal to the Jacobian determinant of the

convolutional transform. In normalizing flows, it is crucial to preserve the dimen-

sion of the state throughout the transforms. For convolutional transforms, this

necessitates padding the input to maintain the dimension. To address this, [56]

proposed padding the input x in a way that U is always triangular (or at least

block-triangular), as shown in Figure 2.5.

Lower-right Upper-right Upper-left Lower-left

Figure 2.5.: Example of convolution matrix for the four padding orientations pro-
posed by [56]. Convolution kernel K is applied to padded state x with
a stride of 1.

Triangular Jacobian transforms are commonly used in normalizing flows because

their determinant is easy to compute and is equal to the product of the diagonal ele-

ments. The padding procedure described above allows us to have a block-triangular

matrix. The determinant of a block-triangular matrix is equal to the product of the

determinants of the diagonal blocks which are themselves triangular. Therefore, we

have a transform with an easy-to-compute Jacobian determinant, regardless of the

selected padding orientation. However, ensuring the invertibility of our transform

requires the existence of U−1. A square matrix is not singular if and only if its

determinant is non-zero. From Figure 2.5, we observe that

• When the matrices are triangular, the diagonal elements are all the same.

Thus, the determinant is the red kernel element r to the power N (N being

the size of the vector x).

• When the matrices are block-triangular, the diagonal blocks are themselves tri-

angular, with the diagonal elements consisting solely of the red kernel element.
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Hence, the determinant is also rN .

We’ve intentionally placed the red kernel element in the corresponding location

of the state in the padded input. Therefore, if we ensure that the red element

corresponding to the selected padding mode is non-zero, the determinant of U will

be non-zero, U−1 will exist, and the determinant of the associated Jacobian will be

rN . We subsequently mask our kernels such that r = 1, resulting in

log |det(Jf )| = log |det(U)| = N log r = 0.

In conclusion, we have a suitable convolutional transform for normalizing flows with

the only constraint being the presence of a fixed element in the kernel, while the

remaining elements are learned. During training, we compute the forward pass

using the standard convolution module with the appropriate masked kernel. For

sampling, we compute the inverse by deducing the convolutional matrix U from the

learned masked kernel, as depicted in Figure 2.5. Our convolutional flow architecture

consists of a main block called the multi-scale convolutional transform, as shown in

2.6. The transform is composed of separate blocks, which are detailed in Appendix

A.4..
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Figure 2.6.: Full multi-scale convolutional transform.
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Similar to MAF, these blocks are stacked, and the latent variable z is permuted after

each block. The context is incorporated into the convolutional blocks through the 4-

conv and coupling transforms. The 4-conv block uses context-dependent convolution

kernels, while the coupling functions take the context as input.

2.3.2. Conditional score estimators

Score-based models provide flexibility in choosing the network architecture for es-

timating the score. While UNet-like backbones [59] are commonly used, recent

advancements, such as Diffusion transformers (DiT) [60], based on the transformer

architecture [61], have also shown promising results.

In our work, we adopt an Attention UNet [62] architecture, which incorporates an

additive attention mechanism into the skip connections (Figure 2.8) of the classical

UNet. To ensure the score-based models are indexed by the diffusion time τ , we

incorporate time encoding at each scale of the extraction branch. This encoding

aligns the extracted features with the desired diffusion time. The overall architecture

is illustrated in Figure 2.7.

Attention gate

Encoded time

Figure 2.7.: Abstract schematic of the Attention-UNet architecture with diffusion
time encoding

It is important to note that Figure 2.7 does not exhibit the context. However, this

schematic is applicable for marginal score estimation. In the case of learning the

posterior score, the embedded context is concatenated with the input of the network,

allowing for the use of the same base architecture for both PS and CS where CS is

a degenerated case where the context consists only of t.
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Figure 2.8.: Attention mechanism implemented in skip-connections and proposed by
Oktay et al. [62]. The attention mask, applied to current scale data xl

is computed using signal g at coarser scale (previous stage in the UNet).
Both are embedded to fit dimensions and then added. Computed im-
portance map is passed through a sigmöıd, ensuring that each pixel of
the original data is weighted by an individual attention gate ∈ [0, 1].
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3. Inference in state-space models

Simulation-based inference (SBI) methods have demonstrated their effectiveness in

various scientific domains. However, their application to dynamical systems has

not been explored yet. Classical SBI focuses on inferring fixed parameters of a

simulator, whereas data assimilation deals with continuously evolving states in a

state-space model. To establish a connection between classical SBI and state-space

model problems, we can consider the task of filtering as a posterior estimation.

Table 3.1 illustrates the mapping between the naming conventions in SBI and data

assimilation for state-space models (SSM).

SBI DA in SSM Meaning

x y Observation(s)

θ x Parameter(s)/State(s)

\ t Time

Table 3.1.: Correspondence between naming conventions in SBI and DA

In classical SBI, the goal is to approximate the posterior distribution of parameters

given observations, denoted as p(θ|x) whereas the filtering objective is to estimate

the time-varying posterior distribution of states given observations p(xt|yt−T :t) that
we will denote as p(x|yt−T :t, t).

In the following sections, we address three key differences between classical SBI and

SBI for state-space models: the time-varying posterior, problem scaling, and evalu-

ation methods. Our adaptations aim to enhance the applicability and effectiveness

of SBI techniques for SSM.

Time-varying prior

In the context of inferring states from dynamical systems, it is essential to consider

the time-varying nature of the state marginal density, denoted as p(xt) or p(x | t).
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Since

p(xt|yt) =
p(xt, yt)

p(yt)
=

p(yt|xt)p(xt)∫
p(yt|xt)p(xt)dxt

,

the posterior is therefore likewise time-dependent. Unlike classical SBI, which as-

sumes fixed parameters throughout the simulation, our estimator need to be indexed

by time to accurately estimate the posterior distribution at each time step. Our pos-

terior estimators are denoted qϕ(x | yt−T :t, t).

Problem scaling

Traditional SBI methods are often not well-suited for high-dimensional posterior

estimation. We have already mentioned that NPE relies on normalizing flows that

model a series of transforms in the dimension which could become computationally

expensive at high dimension. State-space models, with their inherent structural

complexity, can quickly lead to high-dimensional states. To address this challenge,

we make use of specific architectures such as convolutional networks. We want to

extract meaningful features from the state structure. By incorporating structure

in our networks, we ensure that our estimator can efficiently handle the increasing

dimensionality of the problem while maintaining expressive and scalable represen-

tations.

Evaluation

Endowed with a multitude of evaluation and diagnostic methods, the field of SBI

already offers valuable tools [63]. However, given the challenges posed by time-

varying posteriors and high-dimensional state-space models, conventional evaluation

techniques may not always be appropriate. Therefore, we propose a classifier-based

evaluation method that takes into account the specification of the problem and the

observation process. This approach allows us to accurately assess the performance

of our generative models within the context of SSM.

3.1. Direct posterior estimation

Adapting previously introduced DPE technique to our problem, we target the pos-

terior

p(x | yt−T :t, t) =
p(yt−T :t | x, t)
p(yt−T :t | t)

p(x | t) = r(x, yt−T :t, t)p(x | t) (3.1)
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As a reminder, we aim at approximating the posterior by weighting the contribution

of samples from the marginal p(x | t) with the corresponding LTE ratio we assumed

known. The hypotheses we made to compute this ratio must adapt to our problem.

1. We have access to the likelihood. In our setup, the likelihood is p(yt−T :t | x, t).
The latter is known analytically (2.23) for T = 0 which corresponds to the

one-step assimilation problem.

2. We have access to the evidence. In the DA posterior formulation, the evidence

is p(yt−T :t | t) that we can approximate with histograms when the problem is

not too big and when we can easily sample window of observations.

3. We can sample from the prior. The latter corresponds to p(x | t) from which

it is straightforward to sample via simulation.

In a nutshell, this technique will only be used for small problems where the evidence

approximation is faithful. In addition, we will limit to single step assimilation since

the likelihood is well defined in this case.

3.2. Neural posterior estimation

Adapting the NPE objective (2.8) to our targeted posterior, we have the optimal

parameters of the estimator qϕ(x | yt−T :t, t)

ϕ∗ = argmin
ϕ

Ep(x,yt−T :t|t)
[
− log qϕ(x | yt−T :t, t)] (3.2)

such that qϕ∗(.) ≈ p(x | yt−T :t, t) as defined in (3.1). The expectation over the joint

is estimated by Monte-Carlo leveraging

p(x, yt−T :t | t) = p(yt−T :t | x, t)p(x | t).

This corresponds to sampling from the simulated marginal p(x | t) and then the

associated observation process. In practice, commonly used density estimators qϕ
are normalizing flows. To incorporate the context (yt−T :t, t) into the normalizing

flow, we construct a conditional normalizing flow [64]. This is achieved by making

the transforms context-dependent. The final formulation of the objective (2.29) for

state posterior estimation with conditional normalizing flows is

log p(x | yt−T :t, t) ≈ log qϕ(x | yt−T :t, t)

= log p(z) +
N∑
i=1

log

∣∣∣∣ det ∂fi(zi−1, ϕ, yt−T :t, t)

∂zi−1

∣∣∣∣. (3.3)
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3.3. Neural ratio estimation

Adapting (2.12) to our problem, we have

r(x, yt−T :t, t) =
p(yt−T :t | x, t)
p(yt−T :t | t)

≈ rϕ(x, yt−T :t, t) (3.4)

as in DPE (3.1). Then, we have to learn a classifier network that will provide an

estimate of the LTE ratio via (2.11).

One condition for sampling from the estimated posterior is to have access to the

prior p(x | t). Nevertheless, the latter is not known analytically in our setup since

it would require to propagate the initial state prior p(x | t = 0) along the simu-

lation which depends on complex non-linear dynamics. In practice, we can use a

density estimator for the marginal (with histograms for example) and use NRE for

posterior estimation. Nevertheless, this would mean that we depend on another

approximation that could make the posterior estimation worse. Moreover, as for

the evidence in DPE, histograms struggle at estimating higher dimensional densi-

ties as it would require an exorbitant number of samples to cover sufficiently the

state space. Regarding those limitations, we decided to not use this technique in

our work.

3.4. Neural score estimation

Returning to (2.21) and (2.22), our objective is to estimate the perturbed posterior

score in order to sample from the estimated posterior p(x(0) | yt−T :t, t) that we

generally denote as qϕ(x | yt−T :t, t). In this thesis, our focus is on learning the score

function

sϕ(t, yt−T :t, x(τ), τ) ≈ ∇x(τ) log p(x(τ)|yt−T :t, t). (3.5)
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This allows us to sample from the approximated posterior qϕ(x|yt−T :t, t) using the

reverse SDE sampling procedure described in (2.20). Developing (3.5), we have

∇x(τ) log p(x(τ)|yt−T :t, t) = ∇x(τ) log
p(x(τ), yt−T :t, t)

p(yt−T :t, t)

= ∇x(τ) log
p(x(τ)|t)
p(x(τ)|t)

p(x(τ), yt−T :t, t)

p(yt−T :t, t)

= ∇x(τ) log p(x(τ)|t)
p(t)p(x(τ), yt−T :t, t)

p(x(τ), t)p(yt−T :t, t)

= ∇x(τ) log p(x(τ)|t)
p(yt−T :t|x(τ), t)

p(yt−T :t|t)
= ∇x(τ) log p(x(τ)|t) +∇x(τ) log p(yt−T :t|x(τ), t). (3.6)

Equations (3.5) and (3.6) are adaptation of (2.21) and (2.22) to our assimilation

problem. We therefore have two methods to approximate the perturbed posterior

score, each with their advantages and drawbacks.

3.4.1. Posterior score learning

To learn the conditional score of the perturbed posterior (3.5), we follow a similar

approach as in [65]. The estimator network sϕ(.) takes inputs composed of the per-

turbed state x(τ), the diffusion time τ , the context window yt−T :t, and the context

time t. The estimated scores at each diffusion time τ ∈ [0, 1] are conditioned on the

complete posterior context (yt−T :t, t).

Once the conditional score estimator is learned, we can sample from the approx-

imate posterior using the reverse SDE sampling procedure (2.20). However, this

method relies on the observation process and lacks flexibility in incorporating new

observations. The contribution of the context is expected to decrease as τ increases,

reflecting the diffusion of the perturbed state into independent noise.

3.4.2. Composed score learning

The second method explores the decomposition (3.6) of the conditional score into the

marginal score and the perturbed likelihood score (PLS). By leveraging the Bayes’

rule and the fact that the evidence score with respect to x(τ) is zero, the posterior

score can be expressed as the sum of the marginal score and the PLS. We then face

a two-fold task. Firstly, we need to learn the marginal score, which can be done

using score matching theory and a suitable network. Secondly, we need to address
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the estimation or approximation of the PLS.

Learning the PLS directly using score matching does not offer significant advantages

over learning the posterior score directly. It requires training a new score estimator

network when the observation process changes, which can introduce instability in

the estimation. Alternatively, some have proposed guided score learning [66, 67], but

those techniques are not well-suited for our problem as they may assume categorical

likelihood density. Hence, we explore other approaches to address the challenge of

learning the PLS.

To approximate the PLS without relying on an additional estimator network, we

adopt the approach proposed in [68]. This approach assumes knowledge of the

observation process p(yt−T :t|x, t), which takes the form of

yt−T :t = At(x) + η. (3.7)

Here, At represents a differentiable operator mapping the state x to the observation

window yt−T :t at time t, and η is an independent additive Gaussian noise whose

density is N (0, σ2
yI). As explained in (2.23), the observation process for a single

step is known to be linear and time invariant. We then get rid of time indexing and

use the notation A.

Since A is defined for a single step, we do not have access to the mapping between

a state and a window of previous observations as it would require to simulate back-

ward in time. Therefore, the following technique is only used for the single-step

assimilation problem (T = 0), where the observation process is well-defined. In

future developments related to this method, we will use yt−0:t = yt = y. Combining

the assumptions made previously, we obtain the likelihood function

p(y|x) = N (A(x), σ2
yI). (3.8)

To approximate the PLS, Chung et al. [68] proposed the expression

p(y|x(τ)) ≈ N (A(x̂(x(τ))), σ2
yI) (3.9)

for the perturbed likelihood. Here, x̂(x(τ)) represents the denoising posterior mean,

given by the Tweedie’s formula

x̂(x(τ)) =
x(τ) + σ2(τ)∇x(τ) log p(x(τ))

µ(τ)
. (3.10)
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The derivation and explanation of the Tweedie’s formula can be found inAppendix

A.2..

Using the analytical expression for the score of a Gaussian distribution, the approx-

imation for the PLS is expressed as

∇x(τ) log p(y|x(τ)) ≈ ∇x(τ) logN (A(x̂(x(τ))), σ2
yI)

= − 1

2σ2
y

∇x(τ)

(
y −A(x̂(x(τ)))

)2
. (3.11)

Since the approximation (3.10) can be obtained by replacing the noisy marginal

score with our score network, the entire PLS can be approximated by following

(3.11) and backpropagating through the network.

Nevertheless, there are some remaining issues with the previous approximations.

When the ratio σ(τ)/µ(τ) is large, the stability of the approximations (3.10) and

(3.11) is compromised. Rozet and Louppe [47] argue that this instability arises due

to the significant variance of p(x|x(τ)), which should be taken into account in (3.9).

The likelihood should have a decreasing contribution as τ approaches 1, indicating

the transformation of the perturbed data into pure noise. To address this, they

propose an adaptation of (3.9) as

p(y|x(τ)) ≈ N
(
A(x̂(x(τ))), (σ2

y + γ
σ2(τ)

µ2(τ)
)I
)

In this revised approximation, the variance of the perturbed likelihood changes over

diffusion time. The parameter γ controls the importance of the noising process in

the likelihood score and is set to 10−2 in this work. The effect of this additional

term along diffusion time is discussed in Appendix A.1..

These approximations may generate low-quality samples if the estimated score devi-

ates significantly from the true score, leading the approximated reverse SDE (2.20)

to follow a trajectory that deviates from the desired distribution. To address this,

a correction inspired by Predictor-Corrector (PC) sampling is applied between each

prediction step, using one step of Langevin Monte Carlo (LMC) [23]. The LMC
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correction step is given by

ε ∼ N (0, I)

λ = ∥sϕ(x(τ), τ)∥22

x′(τ) = x(τ) +
κ

λ
sϕ(x(τ), τ) +

√
2
κ

λ
ε (3.12)

The parameter κ and the number of predictions and corrections are not discussed

in this work, but their values are set to κ = 0.5, 100 predictions, and 1 correction,

respectively.
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4. Experiments

We conduct a series of experiments that can be categorized into different groups, as

depicted in Figure 4.1. We consider two distinct problems that are detailed in the

Simulators and Observers sections. The code used to perform those experiments

is available at https://github.com/gerome-andry/dasbi.git.

For each problem, we train estimators for two tasks. The one-step task with T = 0

serves as a baseline where temporal information is not available. The window assim-

ilation task with T = 9, which involves ingesting observations that provide spatio-

temporal information about the state is more akin to a classical assimilation problem.

It is expected to yield sharper posteriors due to the additional contextual informa-

tion it ingests compared to the baseline task.

1D 2D

ASSIMSTEP STEP ASSIM

MAF ConvNF PS CS

Figure 4.1.: Implemented estimators for each problem and method. The STEP task
stands for T = 0 and the ASSIM one for T = 9.

We consider four types of estimators, each with its own specific applications.

• Normalizing flows

– MAF : Masked autoregressive flow

– ConvNF : Convolutional normalizing flow
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• Score-based estimators

– PS : Posterior score estimator

– CS : Composed score estimator

4.1. Simulators

We consider two models in this work, the one-dimensional Lorenz 96 [69] and two-

dimensional turbulent flow models. The choice of these SSM have been inspired

by [44, 47] works. We have chosen these systems for their chaotic dynamics, which

make them suitable for studying methods on complex problems. They offer a cheaper

simulation cost compared to global climate models [70] (GCMs) and are commonly

used for validating data assimilation techniques.

4.1.1. Lorenz-96

The one-dimensional Lorenz 96 model is described by a system of ODEs given by:

dxi

dt
= −xi−1(xi−2 − xi+1)− xi + F i ∈ {1, 2, ..., N}

This system represents an advection-diffusion process with external forcing F . The

state x consists ofN points arranged on a circular domain as illustrated in Figure 4.2.

The value of the forcing term F is set to 8, which is a commonly used value known

to induce chaotic behavior. Further details about the experiments and problem sizes

can be found in the Appendix B.1..

Figure 4.2.: Lorenz96 problem’s domain for N = 8.
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Since the Lorenz 96 system is one-dimensional, directly looking at a state x can be

difficult to interpret. In addition to the circular representation shown in Figure 4.2,

we can also use Hovmöller diagrams [71], which are widely deployed in meteorology

to visualize the evolution of a state over time (see Figure 4.3).
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Figure 4.3.: Hovmöller diagrams for two simulations over 100 steps for t ∈ [0, 5],
N = 64, x0 ∼ N (0, IN×N).

Data for training are generated on-the-fly using the torchode package [72] for ODE

solver since the Lorenz 96 system is computationally inexpensive to simulate.

4.1.2. Two-dimensional turbulent flows

The two-dimensional Kolmogorov turbulent flow system is governed by the following

equations

∂u

∂t
= −(u.∇)u+ ν∇2u− 1

ρ
∇p+ F

0 = ∇.u .

Here, u represents the velocity field, with components ux and uy. Other variables

include ν (fluid viscosity), ρ (fluid density), p (pressure field), and F (Kolmogorov

forcing with linear damping).

Visualizing the velocity field directly is not suitable, so we focus on visualizing the

vorticity of the velocity field instead, as shown in Figure 4.4. The vorticity, denoted

by ω, is computed as the curl of the velocity field

ω
∆
=

(
∂uy
∂x
− ∂ux

∂y

)
. (4.1)
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Figure 4.4.: Velocity field projections ux, uy, and corresponding vorticity (from left
to right) for state’s domain of size 256x256 coarsened to 64x64.

For this system, we gather data from [47], which corresponds to simulations of

spatial size 256x256. After collection, we coarsen the states spatially to a size of

32x32 to lighten the problem in terms of computational expenses at the cost of a

loss of resolution in the simulation.

4.2. Observation process

In this work, we build what we call a 2D-stations observer (2SO) to generate observa-

tions for assimilation. The 2SO is inspired by meteorology and represents a network

of stations placed within the state’s domain. Each station is randomly located in

sub-regions of size m × n, with axial minimal distances of dx and dy between each

of them. The sensing capability of each station is modeled using a two-dimensional

Gaussian kernel centered at the station’s location. This kernel is truncated in both

directions (by sx and sy units of the domain), limiting the region of the state that

the station can sense. The power of sensing in each direction is controlled by param-

eters lx and ly, which correspond to the directed standard deviation of the Gaussian

kernel.
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Figure 4.5.: Gaussian kernel (left) with power of sensing lx = ly = 2.5 and field of
view sx = sy = 10. Random positioned stations (center) in a domain of
size 64x64 in sub-regions of size 5x5 with a minimal separating distance
dx = dy = 1. Corresponding importance map (right) of each state’s
points in the observation when the kernel is applied to each station.

The application of multiple Gaussian kernels to the state can be viewed as a linear

operator A applied to the flattened state vector x. In practice, Gaussian noise is

independently added to each measurement to account for uncertainty of the stations.

This results in observations y ∼ N (Ax, σoI), where σo represents the intensity of

the measurement noise, which is shared across all stations. It is worth noting that

the 2SO is differentiable with respect to the state x, and the operator A is a specific

case of operator A in Equation (3.9). Furthermore, we have σy ≡ σo.

Figure 4.6.: Example of a station observer linear operator AT , mapping a flattened
state of 1024 points to an observation of size 256.

4.3. Architectures

This section aims at reviewing used architectures for each method we investigate in

this work. The implementation of normalizing flows are greatly inspired from the
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zuko, lampe and nflows [73] packages 1. For score-based methods, we adapted the

implementation of Rozet and Louppe [47] to our task.

The main approach is to initially use a masked auto-regressive flow (MAF) as a base-

line. In this naive implementation, the inputs are flattened and processed through

masked feed-forward networks, resulting in a large number of parameters to learn.

This serves as a reference for comparison. To further explore NF and SBM meth-

ods, we consider convolutional architectures [74], taking advantage of the structural

properties of the SSM. Indeed, it is worth noting that SSM often exhibit local and

multi-scale interactions between different parts of the state. Conversely to the base-

line flow, we aim to limit the number of parameters in those architectures to main-

tain reasonable computational and training times while still generating challenging

results. Hopefully, convolutional networks allow for weight sharing across spatial

dimensions, reducing the number of parameters while preserving expressiveness.

In general, we use an embedding network for the context (yT , t) which is structured

similarly across all methods. In our problem, it is of interest to discriminate be-

tween nodes in a state. So it is crucial to encode the positions within the state,

as convolutions are translation equivariant. Spatial encoding is incorporated to en-

able the networks to preserve spatial information, and a station mask related to the

observation process is also included. The embedding network is fully convolutional

and maps the context to an embedding with multiple channels, matching the spatial

shape of the state.

Additionally, we take advantage of the periodic nature of the state’s domains by

using circular padding where applicable. This approach ensures that the convolu-

tions operate seamlessly across the boundaries of the state, preserving their inherent

periodicity.

By incorporating these design choices, we introduce inductive biases that align with

the underlying structure of the selected models, enabling our estimators to better

capture the relationships and patterns within the data, which supposedly lead to

improved generalization and performances.

1zuko : https://zuko.readthedocs.io/en/stable/
lampe : https://lampe.readthedocs.io/en/stable/
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Classifier architecture

Implementing a classifier in our context can be useful for NRE, if we had used the

method, but also for the proposed evaluation technique detailed in the following

section. The classifier architecture we will use for the posterior evaluation draws

inspiration from classical convolutional architectures such as LeNet [75], AlexNet

[76], and VGG [77], among others. The architecture, depicted in Figure 4.7, is made

of

1. A double CNN block that extracts features from the sample and its context

separately.

2. A shared CNN that combines the extracted features from the previous stage

and reduces the dimension using pooling layers2.

3. A final feed-forward block that recombines the low-scale features to output

the class probability vector for the discriminator.
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Figure 4.7.: Classifier abstract architecture for posterior check. Activation functions
as well as encoding layers for time t are omitted for simplicity

4.4. Protocol

4.4.1. Training process

In our experimental setup, we use the 1D system as a toy problem to facilitate the

comparison of different techniques. The size of the system scales geometrically from

8 to 256 nodes by powers of 2. On the other hand, the 2D system is designed to

2In practice, to maximize expressivity of our networks, pooling layers are implemented via strided
convolutional layers.
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challenge the limits of certain techniques and assess their performance at higher

dimensions. In this bigger system, the states are of size 32 × 32 and consist of 2

channels, resulting in states with a dimension of 2048 points.

During the training process, the capacity of each model is adjusted proportionally

to the size of the problem. To ensure fair comparisons between methods, we aim

to maintain a relatively similar number of parameters for each model, except for

the MAF baseline (see Appendix B.2.). However, it is important to note that the

number of parameters alone is not sufficient for conducting fair comparisons between

models. While we adhere to this criterion in our experiments, we acknowledge the

need to assess models based on their complexity in time, sampling efficiency, train-

ing speed, and other relevant factors.

In practice, we exercise Weights and Biases3 for managing the runs. Hyperpa-

rameters are not extensively fine-tuned for each method due to the computational

cost of performing numerous runs. Each model is optimized based on its respective

loss function and validation set, which is independent from the training set to pre-

vent overfitting. The model selected at the end of training is the one that achieves

the lowest validation loss. Additionally, it is worth mentioning that we conduct 5

independent training runs for each method and problem to assess the variability of

their performance. Consequently, the presented results are averaged over these runs

and accompanied by their respective standard deviation.

4.4.2. Evaluation methods

This section explores evaluation methods of simulation-based inference in the con-

text of data assimilation and proposes a new diagnostic approach. We address the

limitations of traditional evaluation procedures due to state size and temporal con-

siderations. We present the advantages and drawbacks of each method.

Loss function

The loss function for flows estimators is the negative log-density (NLD) (3.2), while

for the score-based models, it is the rescaled denoising score matching (RDSM) loss

(2.18). It is not possible to directly compare the loss values between different mod-

els, as they are based on different objectives. The NLD loss is task-dependent and

cannot be compared across different problem scales. The RDSM loss can potentially

3Link : https://wandb.ai/gandry/dasbi?workspace=user-gandry
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reach a minimum of 0, no matter the considered problem.

In brief, the NLD loss will be comparable for a given problem (fixed scale, simulator,

and observer) between NF methods (MAF and ConvNF). The RDSM loss will be

comparable only for score-related methods (PS and CS), but it is expected to be

larger for composed score estimation as it is related to the marginal state density for

which wee have less information. Despite this lack of comparison between methods,

it is important to mention that we can compute the log-likelihood of the samples gen-

erated from score-based models. While this does not directly apply to our methods,

as we use a discretized sampling procedure, an approach is presented in Appendix

A.3. to bridge the gap between normalizing flows and diffusion models.

Corner plot

A corner plot is a common visualization tool used in SBI to display the marginal

density along paired joint distributions of each state’s node. It is often used to com-

pare approximated densities with MCMC estimations or known targets. However,

in the context of state-space models, corner plots have limitations.

1. SSM scale and dimension : As the scale of the state increases, generating

and interpreting histograms in the corner plot becomes computationally ex-

pensive and challenging to read. Furthermore those plots are designed for 1D

data, while data assimilation problems generally involves higher-dimensional

data. Using this tool for SSM may lack spatial expressiveness since states are

considered as flat vectors.

2. Time-varying posterior : The posterior in SSM problems is varying over

simulation time. Analyzing consistency requires evaluating a corner plot at

every simulation time which is impractical.

3. Sampling requirements : Corner plots rely on histograms and require a

large number of samples to show approximated densities. With the non-

negligible state size in our setup, generating enough samples can be time-

consuming.

Since we lack access to the target posterior, we will analyze our estimators along

DPE results for the simplest problem. Indeed, both corner plots and DPE technique

have limitations regarding our setup which makes the analysis hard and costly. As

a consequence, corner plots will only be displayed for the 1D problem of smallest

size N = 8 at a random picked simulation time.
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Qualitative inspection

The qualitative inspection involves visually comparing samples from our generative

models with ground truth data to assess coherence and physical consistency. While

it does not provide quantitative metrics, it is a crucial step in evaluating the samples.

For the 1D problem, samples at given simulation time are compared to the ground

truth that led to the conditioning context, focusing on problem of size 32. This

allows us to check the coherence between the ground truth and the samples. We

delegate inspection of larger problems to other evaluation techniques.

For the 2D problem, a few samples are examined alongside the ground truth.

Although the limited number of samples may not cover a sufficient region of the

posterior, this visual examination provides insights into physical consistency. Mean

and standard deviation of the samples could also be considered to understand the

variation of the estimated states.

Qualitative inspection provides valuable insights into the coherence of samples with

physics and observations. However, further evaluation techniques are necessary for

quantifying performances of our generative models.

Discriminator network

The discriminator network evaluation is inspired by GANs [78]. It consists in train-

ing a classifier to distinguish between real data and artificial states sampled from

our estimators. The underlying idea is that, the better the classifier discriminates,

the less plausible are the generator samples.

In this approach, the task is reduced to a binary classification problem. To evaluate

the performance of the classifier, we use the area under the curve (AUC) metric,

which represents the area under the receiver-operating curve [79] (ROC) of the clas-

sifier. The AUC is interpreted as the probability that a positive sample (simulated

data) will be assigned by the classifier a higher probability of being positive than

negative (sample from the estimated posterior). The AUC metric provides a quanti-

tative measure of the classifier’s ability to distinguish between real and artificial data.

The ROC curve (shown in Figure 4.8) opposes the true positive rate (TPR) against

the false positive rate (FPR) for the decision function modeled by our classifier dψ. It
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is constructed by evaluating the classifier’s confusion matrix (Table 4.1) at different

decision thresholds.

Predicted positive (PP) Predicted negative (PN)

Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

Table 4.1.: Confusion matrix

TPR =
TP

TP + FN

FPR =
FP

TN + FP
.

The TPR represents the proportion of correctly classified positive samples (true

positives) over all actual positive samples, while the FPR represents the proportion

of incorrectly classified negative samples (false positives) out of all actual negative

samples.

To construct the ROC curve, we assign predicted labels to the samples based on

a given threshold pth ∈ [0, 1]. If the decision function value for a provided sample

exceeds the threshold, it is labeled as positive (P), otherwise as negative (N). By

varying the threshold, we obtain different TPR and FPR values, which are used

to plot the ROC curve. In our evaluation, we approximate the ROC curve using

the trapezoidal rule, integrating over 1000 points corresponding to uniformly spaced

thresholds in the range [0,1].
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Figure 4.8.: ROC curve for different types of classifier. The orange ROC character-
izes a perfect classifier (AUC = 1) whereas the blue curve represents
the ROC of a random classifier (AUC = 0.5). Any classifier than per-
forms better than a random classification is expected to have a ROC
comprised between those two extreme cases, as for the green ROC.

As explained, the AUC is interpreted as a probability value that ranges from 0 to 1.

A perfect classifier would have an AUC of 1, indicating that it can accurately dis-

tinguish between real data and samples from the estimated posterior. On the other

hand, a random classifier would have an AUC of 0.5, implying that the classification

is not better than random labelling as depicted in Figure 4.8.

In this work, we aim for the classifier to achieve an AUC close to 0.5. This indicates

that the classifier cannot distinguish between the real data and the samples from

the estimated posterior, which is a desirable outcome. To evaluate the performance

of our models, we will conduct two types of posterior checks.

1 - Posterior check

The posterior check involves sampling pairs (x, yt−T :t) | t from both the simulated

and estimated state-observations joint.

• Positive samples (P) : (x, yt−T :t)|t ∼ p(x, yt−T :t|t) = p(yt−T :t|x, t)p(x|t).
• Negative samples (N) : (x̃, yt−T :t)|t ∼ p̃(x, yt−T :t|t) = qϕ(x|yt−T :t, t)p(yt−T :t|t).

Positive samples are generated by simulating the state trajectory up to time t and

sampling from the observation process conditioned on the generated state x. On the

other hand, negative samples are obtained by sampling from the marginal distribu-

tion of the observations and the conditioned estimated posterior. This posterior

check allows us to assess the physical consistency of the generated states and their
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plausibility with respect to the true observations yt−T :t.

2 - Posterior predictive check

The idea is similar, we sample pairs (y′0, yt−T :t)|t from the simulated and estimated

predictive-observations joint.

• P : (y′0, yt−T :t)|t ∼ p(y′0, yt−T :t|t) =
∫
p(y′0|x, yt−T :t, t)p(yt−T :t|x, t)p(x|t)dx.

• N : (ỹ′0, yt−T :t)|t ∼ p̃(y′0, yt−T :t|t) =
∫
p(y′0|x, yt−T :t, t)qϕ(x|yt−T :t, t)p(yt−T :t|t)dx.

In practice, the integral is approximated by averaging over multiple samples drawn

from p(x | t). Here, y′0 represents a one-step observation drawn from the observation

process after sampling a state x from either the simulator or the generative model.

Posterior predictive check allows us to evaluate the coherence of the generated states

when passed through the observation process and their plausibility with respect to

the received observations yt−T :t.

Both of the presented check methods are comprehensive as they assess the quality of

the generated samples based on the system’s dynamics and the observation process.

However, we can relax the analysis to focus either on the consistency of the states

or the predictive capacity by marginalizing over the observations yt−T :t to perform

checks on p(x | t) (or p(y′0 | t)). In this work, we’ve decided to perform only posterior

checks, as they provide more penalizing evaluations.

This method is powerful as it allows for quantifying the quality of the estimated

posterior over time, observations, and states. However, it does not provide visual

inspection of the success or failure of our estimators. We cannot locate nor charac-

terize where/how the estimators fails at estimating the state. Moreover, it requires

sampling from the generative models, training an additional neural network for the

classifier, and access to additional simulated data that are independent from the

generator’s training to avoid bias. Fortunately, this method scales well, as it only

requires increasing the capacity of the classifier, which is easy to do if we use convo-

lutional architectures. While simulating from the forward model may not be costly,

the sampling time of our generative models could become a limiting factor.
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4.5. Results

4.5.1. Remarks

During the training and evaluation process, we encountered several challenges that

may impact the quality of our results.

1. All evaluation procedures were conducted on 1D problems. As previously

mentioned, the evaluation of 2D problems was limited to qualitative inspection

only.

2. Qualitative displayed results are samples of a unique model for each considered

methods. Variability in those models are taken into account only for losses

reporting and AUC measures.

3. When attempting to apply convolutional normalizing flows to the 2D problem,

we were unable to generate samples. The issue arose from certain aspects of

the designed flow lacking sufficient restrictiveness, resulting in the loss function

exploding. Initially reconstructed samples exhibited extremely low likelihoods,

causing the log probability to explode and resulting in extremely large Jacobian

determinant values for some transformation steps.

4. Sampling time for score-based models is not insignificant and increases with

the size of the problem. Consequently, training classifiers on samples became

prohibitively time-consuming for larger problems (1D of size 128 and 256).

Therefore, the training of classifiers for these larger problems was occasionally

terminated prematurely. Hopefully, the loss was in most cases on a plateau.

5. The available dataset for the 2D problem was quite limited. As a consequence,

our models tended to overfit the training set relatively quickly. We selected the

best-performing model based on minimizing the validation loss prior to over-

fitting. However, score-based models typically require longer training periods

to generate smooth results across the entire manifold of samples. This limita-

tion could potentially impact the quality of our generated samples. Moreover,

the validation and testing sets were also quite limited, further hindering the

evaluation of posterior checks.
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4.5.2. Performances

Losses

Detailed training and validation loss can be found on W&B4. In this section, we

will report the best reached validation loss on every considered problems for each

methods. As a reminder, the loss for flows is the Negative log-density (3.3) and the

one of score-based models is the rescaled denoising score matching loss (2.19). Both

must be minimized and cannot be compared between each other.

1D

Size N 8 16 32 64 128 256

MAF (T = 0) 3.266 ± 0.056 8.596 ± 0.789 17.866 ± 0.399 39.137 ± 0.536 85.970 ± 1.574 183.770 ± 5.956

MAF (T = 9) -4.444 ± 0.188 -4.465 ± 0.240 -3.841 ± 0.416 -0.575 ± 0.275 21.318 ± 0.380 69.634 ± 2.505

ConvNF (T = 0) 2.491 ± 0.066 8.717 ± 0.109 18.123 ± 0.331 36.275 ± 2.587 70.333 ± 3.334 135.685 ± 2.453

ConvNF (T = 9) -5.469 ± 0.081 -2.257 ± 0.115 -1.836 ± 1.246 -11.931 ± 0.933 -20.719 ± 1.285 -33.674 ± 1.479

PS (T = 0) 0.226 ± 0.002 0.231 ± 0.003 0.228 ± 0.001 0.222 ± 0.002 0.218 ± 0.002 0.216 ± 0.001

PS (T = 9) 0.107 ± 0.001 0.126 ± 0.002 0.120 ± 0.001 0.103 ± 0.003 0.098 ± 0.001 0.094 ± 0.002

CS (T = 0) 0.300 ± 0.002 0.302 ± 0.003 0.301 ± 0.002 0.297 ± 0.001 0.296 ± 0.002 0.293 ± 0.002

Table 4.2.: Best validation losses for 1D problems for each method.

2D

Size N 2048

MAF (T = 0) 1095.204 ± 53.896

MAF (T = 9) 1184.298 ± 29.542

PS (T = 0) 0.044 ± 0.002

PS (T = 9) 0.042 ± 0.002

CS (T = 0) 0.050 ± 0.002

Table 4.3.: Best validation losses for 2D problem for each method.

As mentioned, it is hard to draw conclusion based on reached validation loss. In-

deed, all problems are different (varying size and observation process). Nevertheless,

we can compare flow-based methods between each other and score-based as well.

In the 1D problem, we clearly observe that additional information always lead to a

loss decrease (from T = 0 to T = 9) which is expected since posterior are sharper.

For NF, convolutional estimators seem to better decrease the loss while being less

impacted by problem scale increment. Indeed, MAF loss increases significantly with

the problem size, even for T = 9. We cannot say that our estimators are better

when the assimilation window is higher just because of the lower loss since the NLD

depends on the posterior density which depends itself on the problem. About SBM,

4https://wandb.ai/gandry/dasbi
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we observe that CS is always higher than PS no matter the assimilation window.

We argue this is due to the fact that CS leverages an approximation for the like-

lihood score and learns only the marginal score which is less constrained than the

posterior one in PS. It then could be harder to learn the score related to a wider

density. In addition, we observe that models perform a little bit better when the

scale increases. This justifies even more the use of convolutional architectures and

highlights the ability of those methods to learn spatial correlation between state’s

nodes even at higher dimension.

For the 2D problem, MAF terribly performs as the NLD remains very high and

no more decreases when the window is wider. On the other side, SBM shine while

maintaining very low RDSM losses. One can compare the scale of the RDSM for

1D and 2D problem. The latter is about one order of magnitude lower. We explain

this huge difference by the underlying spatial information of the system. Indeed,

flat Lorenz96 states have less local/global correlation between nodes than 2D Kol-

mogorov flows, making the task harder for convolutional architectures. Finally, we

can observe that the gap between PS and CS method decreases when the problem

size increases. This suggests that bigger problems could be harder to handle and

CS is a solution to alleviate this issue by approximating part of the posterior score

independently from learning phase.

Corner plots

In this section, we present the corner plots for each of the considered methods. It is

important to note that we only focus on the smallest problem size to ensure read-

ability of the plots. The following figures depict the generated corner plots for the

estimated posterior of a Lorenz 96 system with 8 nodes. The nodes are arranged

from top to bottom and left to right. Plots represents estimated state’s posterior

for both the single-step and assimilation tasks. However, it should be noted that

the CS method can only be applied to the single-step setup.

The reported posteriors correspond to a simulation time of t = 2.5 seconds. The

corresponding predictive posteriors can be found in Appendix C.1.. In the corner

plots, the marked points represent the simulated state that generated the observa-

tion on which the estimators are conditioned. It is expected that this ground truth

state belongs to the estimated posterior distribution. DPE is supposed to be a con-

sistent estimate of the true posterior for this problem size. The computed posterior

with this method is displayed in order to assess the coherence of our estimators in

this setup. However, DPE performances already decreases significantly for bigger
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assimilation task. We then have chosen to compare estimated posterior still with the

one-step case, showing that we discriminate the posterior of the simpler task. For

DPE, we draw 64 000 samples from the prior that we weight with the corresponding

estimate LTE ratio. Regarding estimator’s samples, we drawn them in a quantity

of 2048 in order to cover a sufficient region of the posterior support.

Figures 4.9 and 4.10 oppose flow architectures results with score-based ones. We

clearly observe that generated posteriors are coherent with the DPE. However, the

shape of the marginals is not very complex as marginals are mainly unimodal. It

could be interesting to study by how much the posterior discriminates over the prior

as well as the posterior allure at other simulation times.

In general, all methods seem consistent and able to capture more complex correla-

tions (as between x1 and x2). The estimation seems successful, especially for the

assimilation with T = 9 where sharper posteriors are totally in accordance with the

ground-truth state despite the very narrow region it covers.
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Figure 4.9.: Flows estimated posteriors along single-step DPE.
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Figure 4.10.: Score-based estimated posteriors along single-step DPE.

Qualitative - Lorenz-96

For qualitative analysis, we are in the same setup than the previous evaluation

method except that we consider a problem with 32 nodes. The latter is supposed

harder than the previous smaller one. Since the size is already notable, DPE is not

considered as a good approximation. Moreover, the latter method allow to estimate

the posterior shape (suitable for corner plots) but not to sample from the posterior

without relying on additional techniques as for NRE.

Considering a bigger problem allows to draw posterior predictives along the pos-

terior states samples to check both coherence with conditioning ground-truth and

observation process. Optimizing in the observation space is a problem of lower di-

mension which is expected to be much more easier than the posterior state task.

Indeed, it is easy to identify a set of samples that produce coherent observations,

but the latter must also be physically consistent.

In order to properly read the following plots, here are further details. Each node

of the state is displayed in a polar coordinate plot. For readability, the origin

(xi = 0) corresponds to the orange dashed line. Nodes inside this circle corresponds

to negative values and the other way around outside. Green dashed lines represents

the nodes at which stations are placed. Eventually, blue sample is the conditioning

ground-truth whereas grey thin lines represents estimate posterior’s samples. We
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already perceive the limitation of such an evaluation method as the readability is

poor regarding the samples. In practice, only 512 samples of our estimators are

displayed.

MAF ConvNF PS CS

Figure 4.11.: One step assimilation estimated posterior samples for considered meth-
ods. States (UP) along predictives (DOWN).

MAF ConvNF PS

Figure 4.12.: Ten step assimilation estimated posterior samples for considered meth-
ods.

Since we lack access to the targeted posterior or an estimate of it, the relevance of

drawn samples is very hard to assess. However, we can better analyze physical and

observation coherence and compare between methods.
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Mass of samples seems coherent with conditioning ground-truth and predictives are

good for each considered estimators. This first observation bolster us about the

relevance of our estimators. As before, bigger assimilation window still leads to

sharper posteriors which implies a more concentrated mass of samples. However, we

see some artifacts for the convolutional flow architecture that is even more visible

in predictive plot. We argue that this is inherent to the choice we made about per-

mutations between transforms and splitting inside some transforms as we observed

that big artifacts were mainly present at the first and the middle node. Globally,

samples of every methods are in accordance with each other. Finally, we can note a

general sharper posterior around more observed zones (conversely, more uncertainty

in regions where observations are more scattered). This behavior is even more visible

for the ten steps assimilation task.

Qualitative - Kolmogorov flows

For this problem, we sample from our models at a time index of 50 over 64 time steps.

As explained, states are of size 2x32x32 and corresponding observations 2x6x6. In

the following, vorticity (4.1) of both states and observations are shown. For each

estimator, we display (from left to right) the conditioning ground-truth and then 3

samples of the estimated posterior along one corresponding posterior predictive.

In contrast with the 1D problem, only few samples are displayed as sampling in high

dimension is much more costly and a lot of samples is hard to visualize. In order to

give a glimpse of the variability of the estimated posterior, we have depicted mean

and standard deviation over 128 samples of each method in Appendix C.2..

MAF (T = 0) MAF (T = 9)
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PS (T = 0) PS (T = 9)

CS (T = 0)

Figure 4.13.: Turbulent flows conditioning ground truth (left) along three samples
of a posterior estimation for each method (right). Vorticity of the state
(up) is displayed with a corresponding posterior predictive (down).

Samples from the MAF architecture seems to be poorly physically coherent although

corresponding predictives are plausible regarding the ground-truth. We observe that

some blobs are roughly recovered by the estimator (light blue and red regions) but

the latter struggles at producing smooth spatially correlated samples. Unfortunately,

we lack the ConvNF results for comparison but we reasonably assign the failure of

the MAF method to the non-convolutional nature of the underlying architecture.

Score models are without debate much more coherent. We observe that one step

PS sometimes struggles a bit to generate smooth sample but additional information

(when T = 9) highly solves this problem. Though samples are physically coher-

ent. On the other side, CS is surprisingly very good even if it applies only for the

one-step task. Learning only the score related to underlying physics of the system

by learning the marginal state’s score and leveraging the likelihood approximation

seems to orient very well sample generation at the cost of a decrease in time efficiency.

We have to be cautious with those observations. The dataset used for this task
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was very limited and our estimators quickly overfitted. We argue that performances

comparison must be tested on bigger set that unlock longer training for both methods

in order to compare them at the top of their performances. It remains valuable to

notice that, despite this limitation, SBM produce satisfactory results probably due

to their inherent architecture and their other strengths.

Posterior discriminator

As introduced earlier, this method provides a metric of estimator’s quality that al-

lows for comparison between methods and problems no matter their scale. Moreover

this method assess the overall performances of the estimators through the whole sim-

ulation timeline. As bigger problem could be harder, we expect our estimators to

struggle more with the task when the state’s size increases even if we managed to

scale our network capacity accordingly. We saw in the previous section that MAF

method works poorly on a big problem whereas SBM were still visually consistent.

We then expect to recover this disparity in our results. We also expect the posterior

predictive check to be better than the posterior check as the latter concerns higher

dimension.

Even tough bigger assimilation window showed better performances in previous

evaluations, we argue that this will be more challenging with this evaluation criteria.

Indeed, as detailed in Figure 4.7, the whole context is provided to the classifier which

discriminates between simulated and artificial samples. As a result, the latter is also

able to capture more structure in the context and better discriminate samples. This

method seems to discriminate fairly between problems, taking into account data

that was available for the estimator. Following figures display the classifier AUC for

different scales considered in the 1D problem.
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Figure 4.14.: AUC measure for each scale of the 1D problem considered and each
estimation technique. AUC for posterior check are displayed along
posterior predictive check.

Figure 4.14 confirms our expectations. Predictive check are better than direct poste-

rior checks. Furthermore, score models clearly outperform flows estimators. Score-

based methods seems more consistent with different test we performed whereas flows

estimator’s performances are entangled. We expected our estimator with wider as-

similation window to behave slightly better (if they correctly make use of the given

context, as explained) and the predictive check to be easier.

MAF seems coherent with this assumption but performances finally drop with the

problem size. Moreover, the AUC presents considerable variation, which could de-

pend on the considered architecture. ConvNF, on the other hand, struggles much

more when T = 9. Indeed, our expectations are not encountered as bigger window

seems to worsen the estimation. More care must be taken in the flow architecture

concerning the transforms conditioning. MAF reasonable performances indicate

that context embedding can be sufficient at first but the transforms of ConvNF

must be better conditioned in order to achieve similar performances. Despite that,

both flow-based methods struggle at handling bigger problems.

Concerning PS and CS, results are much more satisfying. We still have an overall

decrease in performances with the problem size. However, the latter is less critical

than for NF methods. Leveraging the likelihood score estimation in CS greatly en-

sures predictive coherence. We can see that posterior predictive performances are

maintained no matter the problem scale which suggest that the PLS approxima-

tion is very strong to ensure state generation that lead to coherent observations.

55



Unfortunately, posterior check still worsen with problem size which indicates that

our estimators produce samples that stay consistent with the observation process

but which become less and less physically coherent with the SSM dynamics. As

for flows, we suggest that increasing the network capacity would lead to challenging

results.
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5. Discussion

5.1. Limitations

Our study of adapting the SBI framework to assimilation problems as well as the

methods that we used have some limitations. Many of them have been discussed

or mentioned in appropriate sections. We will highlight in this section the major

limitations of this work.

We have limited our training procedure to simulations bounded in time. We have

not analyzed how our methods generalize outside of the distribution, at further

simulation time. This could have been relaxed if considered SSM were statistically

stationary as we could get rid of the time dependence of our estimated posterior

similar to [47].

The networks we used are not fine tuned for our problems. Comparing methods

at different scales is even stronger when networks scales correctly to have sufficient

capacity for the task. We get use of convolutional architectures to avoid exponential

growth of network’s parameters. However, we did not ensure that capacity of each

method at each scale is fairly comparable in every way.

The proposed classifier-based diagnostic method is very powerful at the cost of sam-

pling requirement. As explained, to train the classifier, we need to generate a big

dataset composed of half simulated and artificial (estimator’s samples) data. Best

methods we found in this work are SBM which still needs improvement on sampling

speed despite their astonishing sample’s quality. In addition, PS and CS sampling

parameters are fixed. Varying them could have led to better but longer to obtain

samples.

Finally, we faced several technical issues such as the failure at training ConvNF for

the 2D problem, the need of early training shutdown of classifier for CS method, ...
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5.2. Conclusion and future work

We showed that the SBI framework can adapt to data assimilation problems when

care is taken regarding both domain differences. Especially, incorporating time into

the estimation is theoretically mandatory to amortize inference for time and obser-

vations. For the latter, we saw that it is crucial to extract as much information

as we can to increase estimator performances. It is nothing new in the DA field,

but incorporating bigger window of observation helps a lot as it means estimating

sharper posterior. Furthermore, importance must be carried on embedding of all

this context.

Considered systems often have inherent structure that we must take into account

for neural networks design. Along that, we often have important information about

the state and the observation process. This bunch of information must be incor-

porated to the estimator as much as possible (e.g. state’s node positions, station’s

location mask, ...). Convolutional architectures are well-suited for general SSM. In-

ference is very challenging for high dimensional data and systems. Most of the time,

they require estimators with high capacity that could lead to slow sampling. This

observation further emphasizes the need of appropriate architectures that trade-off

the number of parameters with forward speed by leveraging the structure of the data.

Evaluating SBI methods adapted to SSM problems is challenging. Classical evalua-

tion provides valuable insights for estimator quality but are very limited. Aggregat-

ing observations of different evaluations allow to identify an estimator to be able to

learn correctly the underlying process or not. However, stronger quality assessment

must be conducted to ensure consistent performances through time at the cost of

training an additional classifier network in our case.

To tackle some of our limitations, we could have conducted further experiments.

Time embedding effect in estimator networks could be studied and one must analyze

if the latter is sufficient to handle time consistently and maybe generalize correctly

outside the training domain. However, the time embedding is not expected to bring

so much importance in chaotic systems as the variability of the states is very high,

no matter the time (exception near the initial state, where chaos gradually takes

places and states are less diverse).

Score-based models have shown promising results to adapt SBI to assimilation. In

spite of their sampling speed being the main limiting factor, the latter are very
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powerful. CS has the main advantage of enabling zero-shot inverse problem by only

specifying the differentiable observation process A at inference time. Sample quality

could be further tuned by conducting longer training and tuning reverse SDE solver

parameters. It is of interest to investigate novel methods that further increase the

sampling speed such as consistency models [80] but this method still needs more

investigation about the trade-off it imposes between inference speed and quality.

In further work, it could also be valuable to analyze the impact of the observation

window width on the assimilation quality as well as the embedding network effect.

We could push our estimators to their limits. A good experiment to conduct would

be to push each method at their maximum for a big problem (such as 2D turbulent

flows). And after reaching desirable level of performances, criticize about the num-

ber of parameters of each method, their inference speed and their application field.

Eventually, it would be very useful to study the adaptation of those techniques in

practice. After getting valuable information about the impact of each parameters

in simulations, the next challenge would be to tailor those methods to real world

scenarios. How could we define the observation operator in practice ? How do we

model the uncertainty in measurement process ? What are the clues we have access

to, that can be incorporated to our estimators ? A lot of questions that need answers

for practical deployment of those methods.

59



Bibliography

[1] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. “The frontier of simulation-

based inference”. In: Proceedings of the National Academy of Sciences 117.48

(Dec. 2020), pp. 30055–30062.

[2] Arnaud Delaunoy et al. Towards Reliable Simulation-Based Inference with Bal-

anced Neural Ratio Estimation. Aug. 2022.

[3] François Rozet and Gilles Louppe. Arbitrary Marginal Neural Ratio Estimation

for Simulation-based Inference. Nov. 2021.
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[72] Marten Lienen and Stephan Günnemann. torchode: A Parallel ODE Solver

for PyTorch. Jan. 2023.

[73] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. nflows:

normalizing flows in PyTorch. Version v0.14. Nov. 2020.

[74] Zhuang Liu et al. A ConvNet for the 2020s. Mar. 2022.

[75] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning

applied to document recognition”. In: Proceedings of the IEEE 86.11 (Nov.

1998), pp. 2278–2324.

[76] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-

fication with Deep Convolutional Neural Networks”. In: Advances in Neural

Information Processing Systems. Vol. 25. Curran Associates, Inc., 2012.

[77] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. Apr. 2015.

64



[78] Ian J. Goodfellow et al. Generative Adversarial Networks. June 2014.

[79] Tom Fawcett. “An introduction to ROC analysis”. en. In: Pattern Recognition

Letters. ROC Analysis in Pattern Recognition 27.8 (June 2006), pp. 861–874.

[80] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency

Models. 2023.

[81] Yaron Lipman et al. Flow Matching for Generative Modeling. 2023.

[82] Will Grathwohl et al. FFJORD: Free-form Continuous Dynamics for Scalable

Reversible Generative Models. Oct. 2018.

65



Appendix

66



A. Mathematical background

A.1. On the diffusion scheduling and its effect on

the PLS
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Figure A.1.: Scheduling of the diffusion kernel mean (µ), standard deviation (σ) and
their effect on the PLS variance along diffusion time τ

For diffusion kernel scheduling, we followed parameters choice of [47]. This involves

µ(τ) = cos2(arccos(
√
χ)τ)

σ(τ) =
√
1− µ2(τ) + χ2

Here, χ = 10−3 and prevent instability at τ = 0 for the score estimator and at τ = 1

for the PLS. This choice alter the scheduling conditions detailed earlier. We have

(µ(0), σ(0)) = (1, χ) and (µ(1), σ(1)) = (χ, 1).

This choice allows to prevent from division by 0. However, it is accompanied by

necessary counterparts.
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1. Data distribution estimate p(x(0)) ̸= p(x). Indeed, this distribution represents

hardly perturbed states. If χ is chosen sufficiently small, p(x(0)) ≈ p(x) is

reasonable.

2. When sampling, we have to start from x(1) ∼ N (χ, I) and not N (0, I). But

this is not a problem if χ is small enough and fixed.

Eventually, this scheduling choice impacts the PLS as it affects the variance of the

perturbed likelihood. We observe in Figure A.1 that the closer to τ = 1, the bigger

the variance increase. As a result, PLS has initially few importance on the sampling

guidance since an huge variance implies a negligible PLS (3.11). As we approach

τ = 0, PLS importance will start to increase smoothly as its variance decreases.

A.2. Tweedie’s formula for the approximated

likelihood

This section is mainly based on developments made in [31]. For a Gaussian variable

x ∼ N (µ,Σ), Tweedie’s formula states that

Ep(µ|x)(µ) = x+ Σ∇x log p(x) (A.1)

With regards to the defined diffusion kernel (2.15) and (A.1). The expected mean

of the noisy state x(τ) is given by:

µx(τ) = x(τ) + σ2(τ)∇x(τ) log p(x(τ)) = µ(τ)x (A.2)

Hence, the expected state x denoted x̂(x(τ)) from which the noisy state is generated

is

x̂(x(τ)) =
x(τ) + σ2(τ)∇x(τ) log p(x(τ))

µ(τ)
(A.3)

A.3. Bridge the gap between normalizing flows

and score-based models

SBM could be assimilated to continuous normalizing flows [81]. As detailed in [23],

one can express a probability flow ODE that shares the same marginal densities

than the reverse SDE based only on the diffusion parameters µ(τ), σ(τ) and the

estimated score sϕ(.). We denote this ODE fϕ(.). Similarly to (2.27), we can express

the diffusion process as a transformation from the base density p(x(1)) = N (0, I) to
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the estimated data density p(x(0)) via the instantaneous change of variable formula

log p(x) ≈ log p(x(0)) = log p(x(1)) +

∫ 1

0

∇.fϕ(.)dτ. (A.4)

This links diffusion models to continuous normalizing flows. However, computing

∇.fϕ(.) is often cumbersome. An alternate way to compute this quantity is by using,

as in [82] the Hutchinson unbiased estimate

∇.fϕ(.) = Ep(ϵ)
[
ϵT∇fϕϵ

]
(A.5)

which holds as long as E[ϵ] = 0 and Cov[ϵ] = I.

As a result, one can approximate the log-density of the estimator as in NF. This

estimation can be arbitrarily close to the exact log-density by averaging over a large

number of samples. This allows then to compare directly SBM and NF perfor-

mances.

A.4. Convolutional normalizing flow transforms

• Squeeze

This transform consists in splitting in four spatially the input. This means

that the input of size C×H×W is reshaped in an output of size 4C× H
2
× W

2
.

Since this transform can be seen as a permutation of the input (if we flatten

back both input and outputs as in Figure A.2), the log absolute determinant

of the Jacobian is zero. Indeed, the determinant of a permutation matrix is

equal to 1.

6 8

5 7
1 2 3 4

5 6 7 8 2 4

1 3

Flatten

1 2 3 4 5 6 7 8 1 3 2 4 5 7 6 8

Figure A.2.: Example of Squeeze transform.
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In the above example, the permutation matrix is given by

P =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


.

The inverse transform is straightforward to compute by applying the inverse

permutation.

• Actnorm

This transform, similarly to MAF, consists in an affine transformation of the

input x

z =
x− α

β

where α and β are learnable vectors of parameters. Contrary to MAF, those

parameters are not functions of the input. Furthermore, they are initialized

at first forward pass such that z corresponds to x normalized.

The Jacobian of this transform is

Jf = diag

(
1

β

)
for which the determinant is trivial to compute.

The inverse transform is given by

x = βz + α.

• 4-Conv

All the theory about this block of transforms has been introduced when we

defined the convolutional invertible transform. This block only consists in 4

consecutive convolution transforms, each implementing one of the four padding

orientations possible.

Computing the Jacobian is done by composition of transforms and inverting
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this block is done sequentially by inverting each convolution in reverse order.

For visualisation of those blocks, one can go back to Figure 2.5.

• Coupling

Since this transform is putted after the Squeeze transform, one ensures that

the number of channels of the input is a multiple of 4. By leveraging that,

we implement quad-coupling transform as in [56]. The latter follows the same

principle than in MAF. We transform autoregressively the input by splitting it

along in four equivalent patches along the channels. One could refer to Figure

2.4 for visual illustration, replacing xi by each fourth of the input.

For inversion and Jacobian computation, this transform follows the same prin-

ciples than classical auto-regressive transforms. They leverage the lower tri-

angular form of the Jacobian to compute its determinant as the sum of the

diagonal elements.

• Split

This transform is nothing more complex than an identity transform except that

output is split to pass into other sub-transforms of the flow independently. In

implemented ConvNF, we ensure that the input given to this transform has

4n channels (because of a previous Squeeze transform in the flow). We then

output the n first channels to the following Merge transform and the other 3n

channels are fed to another whole block of transforms as depicted in Figure 2.6.

Determinant of the Jacobian is simply 0 as the latter is the identity matrix.

Inverting the transform consists in concatenating both input along the channel

dimension.

• Merge

The latter is opposed to the split transform. Once every split block outputs

their corresponding data, the merge block concatenate them into a single block

and reshape the resulting tensor consistently in order for z to have the same

dimension than the input of the whole multi-scale convolution block. Once

again, this corresponds to a permutation transform for which the Jacobian

and inverse is easy to compute.
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B. Networks and training

parameters

B.1. Training parameters and datasets

As explained earlier, simulations are performed with several parameters fixed for

each simulator. First of all, Lorenz96 forcing F is fixed to 8 to ensure chaotic

dynamics of the system. Then, Kolmogorov flows parameters (ρ, ν, ...) follow the

specifications of [47] as data has been borrowed from this paper.

Regarding the observation process, stations are placed such that the observation

size is a fourth of the state’s size for the 1D problem. For the 2D one, stations are

placed such that the resulting observation is of size 2x6x6. Additional noise follow

a normal density N (0, 0.52) for both problems.

Concerning the training, every network is optimized with the AdamW optimizer

with a linear scheduling for the learning rate and small weight decay of 10−4. The

number of batch per epochs and the size of those batches for the 1D (resp. 2D)

problem are 128 (resp. 512) and 512 (resp. 32). The initial learning rates are 10−3

for every methods excepts for SBM applied to the 2D problem where it has been set

to 10−4.

For Lorenz96, we simulated 1024 (resp. 256) trajectories of 1024 times steps uni-

formly spaced ∈ [0, 50] for training (resp. validation). For the 2D problem, once

again, following the original paper, we have access to 819 (resp. 102) trajectories

of 64 time steps for training (resp. validation) which is very limited and caused the

overfitting of our networks.
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B.2. Architectures parameters

The following section presents architectures parameters that changes from default

setup for each considered methods. The list of parameters is not exhaustive as

architecture are very modular. For a complete overview of each method composition,

the attentive reader is invited to have a look at the source code. The following

tables display parameters for both tasks T = 0 and T = 9. However, final number

of parameters is related to T = 0. For the bigger assimilation window, the number

of parameters increases a little bit due to the embedding network’s first layer but

reported values are good indicators.

MAF Hidden layers Transforms Embedding C. Embedding lay. Number param.

N = 8 (64-64-64-64) 3 11 3 128,469

N = 16 (128-128-128-128) 3 11 3 304,389

N = 32 (160-160-160-160) 3 11 3 516,837

N = 64 (256-256-256-256) 3 11 3 1,350,693

N = 128 (352-352-352-352) 3 11 3 3,081,765

N = 256 (512-512-512-512) 4 11 3 10,565,285

N = 2048 (1024-2048-2048-1024) 4 20 3 142,716,894

ConvNF N ms-modules Kernel N conv. Width Embedding C. Embedding lay. Number param.

N = 8 2 2 2 1 11 3 207,225

N = 16 2 2 2 1 11 3 213,053

N = 32 2 2 2 1 11 3 222,717

N = 64 3 2 2 2 11 3 589,794

N = 128 3 2 2 3 11 3 1,054,053

N = 256 4 2 2 4 11 3 2,860,761

N = 2048 / / / / / / /

PS Depth Input C. N conv. Embedding C. Embedding lay. Number param.

N = 8 2 48 3 11 3 203,324

N = 16 2 49 3 11 3 208,810

N = 32 2 50 3 11 3 214,458

N = 64 3 51 3 11 3 734,347

N = 128 3 52 3 11 3 760,492

N = 256 4 53 3 11 3 2,998,458

N = 2048 3 64 4 20 3 3,956,284

The CS parameters are not reported as they match with the PS method except for

the input block channels (Input C.) that are adapted in order to roughly match the

final number of parameters of PS as CS does not have embedded context comprised

in the input.

73



One can notice that number of parameters of convolutional methods are tuned in

order to be as more comparable as possible while maintaining good scaling with the

problem size. On the opposite, MAF parameters number increases exponentially

as the problem size. This was required in order to maintain good expressivity of

the network due to its linear structure (compared with convolutional ones). We

tried to allocate the same parameter budget than other methods for MAF, bu the

latter failed as expressivity was too poor because layers were too small regarding

the input.
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C. Additional figures

C.1. Corner plots for posterior predictive
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Figure C.1.: Flows estimated posteriors predictives along single-step DPE.
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Figure C.2.: Score-based estimated posteriors predictives along single-step DPE.

C.2. Variability of 2D problem estimated

posterior

Following figures are ordered by methods (rows), window size (T = 0 left and T = 9

right except for CS) and conditioning sample (first of three sub-images), estimator’s

mean over 128 samples (middle) and standard deviation (right).
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Figure C.3.: MAF
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Figure C.4.: PS
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Figure C.5.: CS
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