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Abstract

The computation of periodic orbits in non-Keplerian dynamics is a critical issue for space missions,
mostly for those around irregular asteroids. The purpose of this thesis is to use a novel, frequency
domain, approach to solve the problem. The approach is based on the Harmonic Balance Method, a
well knownmethod for the analysis of nonlinear vibrations, but never used before in astrodynamics.
In this thesis, it was used the Harmonic Balance Method implemented in ManLab, an interactive
path-following and bifurcation analysis software.
The study starts with a theoretical explanation about the circular restricted three body problem and
about the dynamical problem around asteroids. For the latter, the available gravitational model are
displayed in order to correctly select the one of interest. After this first theoretical introduction,
the classical methods used in the field are briefly discussed, and the theory behind the Harmonic
Balance Method and its ManLab implementation is introduced.
After this preliminary introduction the two problems are analyzed. For the circular restricted three
body problem, the analysis focus on the description of the bifurcations of the families of orbits
around the first Lagrangian point. For the problem around an asteroid a fictitious spherical aster-
oid, for which some periodic orbits were computed and compared with the ones obtained through
time integration and through the classical Harmonic Balance Method.

Keywords: ManLab; Harmonic BalanceMethod; Asteroid dynamics; Gravitationalmodel; Circular
restricted three body problem; Periodic orbits.
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Sommario

Il calcolo di orbite periodiche nella dinamica non-Kepleriana è un problema di estrema impor-
tanza per le missioni spaziali, soprattutto per quelle attorno ad asteroidi dalla forma irregolare.
Lo scopo di questa tesi è quello di usare un nuovo metodo in frequenza per affrontare questo prob-
lema. Questo approccio si basa sul metodo del bilanciamento armonico, un metodo ben conosciuto
nell’ambito delle vibrazioni non lineari, ma mai usato prima in astrodinamica. In questa tesi, è stata
usata l’implementazione del metodo del bilanciamento armonico che è disponibile in ManLab, un
programma interattivo per l’analisi delle biforcazioni di sistemi non lineari.
Lo studio inizia con un introduzione teorica riguardante il problema dei tre corpi ristretto e circo-
lare e riguardante la dinamica attorno agli asteroidi. In particolare, per quest’ultimo, i principali
modelli gravitazionali sono stati introdotti, in modo da poter selezionare il più consono per lo scopo
della tesi. Successivamente, sono brevemente discussi i metodi classici che vengono utilizzati al mo-
mento per affrontare il problema. Sono introdotti inoltre sia il metodo del bilanciamento armonico
classico, sia la sua implementazione in ManLab.
In seguito a questa introduzione i due problemi sono stati analizzati. Per il problema dei tre corpi
ristretto e circolare, l’analisi si focalizza sulla descrizione delle biforcazioni delle famiglie di orbite
attorno al primo punto Lagrangiano del sistema. Per l’analisi del problema attorno ad asteroidi è
stato invece usato un asteroide sferico fittizio, per il quale alcune famiglie di orbite periodiche sono
state calcolate e confrontate con quelle ottenute tramite integrazione nel tempo e tramite il metodo
del bilanciamento armonico classico.

Parole chiave: ManLab; Metodo del Bilanciamento Armonico; Dinamica intorno agli asteroidi;
Modelli gravitazionali; Problema dei tre corpi ristretto e circolare; Orbite periodiche.
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1
Introduction

Since the beginning of the space age, targeting asteroids and comets has long captivated the atten-
tion of the engineering community. These missions are not only of cardinal importance in order to
discover the origin and evolution of our Solar System but also hold the key to the future of space
exploration. In recent times, they have gained notable relevance as crucial for planetary protec-
tion purposes. Moreover, these bodies possess abundant reserves of precious resources, which in
the future could be exploited through mining missions, potentially leading to self-sustaining, long-
duration space expeditions. As a result, international endeavors have been underway since the 80s
to meticulously investigate these minor bodies.

1.1 Motivation and thesis outline
Initially, only missions that had accomplished or were on their way to reach their primary goals
were sent toward asteroids and comets. In particular, the NASA/ESA’s mission International
Cometary Explorer (ICE) was the first spacecraft to ever pass by a comet in 1985, crossing the
tail of the 21P/Giacobini-Zinner comet [1]. This was just the first of many future milestones. The
following year, USSR’s missions Vega 1 and Vega 2 passed by the Halley Comet [2]. They paved
the path which allowed Giotto, the first ESA deep space mission, to accomplish the first close flyby
to the Halley Comet nucleus, coming as close as 600 km to it [3].
Before reaching the next important milestone, namely having the first man-made object to visit an
asteroid, a few years had to pass. In 1991 and in 1993, while on its way to reach the Jovian sys-
tem, ESA’s mission Galileo intercepted the asteroids 951 Gaspra and 243 Ida, discovering the first
moon of an asteroid in the process [4]. The first mission to have an asteroid as primary target was
NASA’s Near Earth Asteroid Rendezvous (NEAR) Shoemaker, targeting 433 Eros. It achieved two
groundbreaking milestones, by not only being the first spacecraft, in the year 2000, to ever orbit an
asteroid, but also being the first to ever land on one’s surface in 2001 [5].
Following this unprecedented fulfillment, the efforts shifted from simple orbiting and flyby mis-
sions to complex missions having the ambitious goal of landing and returning samples from the
surface of these bodies.
The first one of this kind is JAXA’s Hayabusa, which in 2005 was capable of returning samples
from 25143 Itokawa [6]; the following year, NASA’s mission Stardust returned the first cometary
sample, taken from the 81-P Wild comet [7]. ESA’s mission Rosetta was the first spacecraft to orbit
a cometary nucleus - 67P/Churyumov-Gerasimenko -, and later, in 2014, the first to visit the surface
thanks to a lander [8].
Most recent missions were targeting Near-Earth Asteroids (NEAs) in order to collect and return
samples to Earth. In 2020 JAXA’s mission Hayabusa 2 successfully returned samples from the as-
teroid 162173 Ryugu [9], and NASA’s OSIRIS-REx, which landed on 101955 Bennu, is expected to
return samples in 2023 [10].
The first mission that could be classified as for planetary defense is NASA’s Deep impact, which in
2005 became the first spacecraft to ever collide with a comet [11]. However, the interest in these
scopes drastically increased when a good opportunity to scale them up was found in binary aster-
oids. The joint ESA’s andNASA’s mission AIDA is aiming to assess the deflection of the secondary

1



1.1. Motivation and thesis outline 2

body in the 65803 Didymos system as a consequence of the kinetic impact carried out in 2022 with
NASA’s half of the mission: DART [12]. The results will be further assessed by ESA’s part of the
mission - HERA - scheduled to depart in 2024 [13].
Finally, several missions are already ongoing or are planned to be launched in the upcoming years.
Near the end of 2021, NASA’s mission Lucy has been launched and will explore the Trojan aster-
oids [14]. NASA’s mission Psyche is scheduled to be launched at the end of 2023, after one year
delay, in order to study the asteroid 16 Psyche, which will be the first metallic asteroid to be ex-
plored [15]. CNSA’s mission Zheng He is planned for launch in 2024, with the main goal to collect
and return samples from the asteroid 69219 Kamo’oalewa [16]. NASA’s NEO Surveyor, will be sent
in 2027 to seek out Near-Earth Objects (NEOs) [17]. JAXA’s Destiny +, a technology demonstrator
mission for the collection of dust from the asteroid 3200 Phaethon, is scheduled for launch in 2028
[18]. Lastly, ESA’s mission Comet Interceptor, with the revolutionary goal of flying past a comet at
its first approach with the sun, will be launched in 2029 [19].

The computation of periodic orbits in non-Keplerian astrodynamic systems was already a topic
of great interest due to their practical application in the Circular Restricted Three Body Problem
(CR3BP), and due to the seen exponential increase of interest in missions around asteroids, the
topic is acquiring a new wave of interest. However, due to the highly asymmetrical nature of these
bodies, traditional time domain methods can be quite slow and heavy. In order to achieve a faster
and easier resolution of the problem, Leclère [20] faced it with a frequency domain method: the
well-known Harmonic Balance Method (HBM).
In this thesis, the problem is approached through a particular implementation of the method, im-
plemented in the ManLab software. The software, is written to be faster and more efficient than
the classical HBM.
Finally, frequency domain methods have the advantage over time domain methods not only for
their velocity but also for their ability to better uncover the bifurcation dynamics of the system.

The aim of the thesis is to use ManLab in order to compute periodic orbits and analyze their bifur-
cations in the CR3BP and asteroid problem environments. Furthermore, the results will be used
to assess the validity of the HBM implemented by Leclère.

For this purpose, the thesis is organized as follows:

• Chapter 2 presents the state of the art regarding the circular restricted three-body problem
and the problem of the motion around irregular-shaped bodies, emphasizing the issue in gen-
erating periodic orbits in such environments;

• Chapter 3 enumerates the fundamentals and theory regarding the software used in order to
generate families of orbits, including some elementary examples;

• Chapter 4 reports the validation of the selected method for the computation of the gravita-
tional potential, as well as of the software, through the application of the two-body problem;

• Chapter 5 shows the application to the CR3BP and to the asteroid problem.



2
Theoretical background

This chapter provides an overview of the background needed to comprehend at best the topics
presented in this thesis. It will first introduce two non-Keplerian problems: the circular restricted
three-body problem and the problem of a particle around an irregular-shaped rotating body. In-
troducing for the latter different methods for the computation of the gravitational potential. The
chapter will then focus on the techniques used for the generation of periodic orbits, providing a
summary of the traditional techniques and those used within this thesis. The chapter ends with
the introduction of the methods for the computation and analysis of the orbits’ stability.

2.1 Circular restricted three-body problem
The CR3BP is the most widely used particular case to model the Three-Body Problem (3BP), as it
represents one of its most accurate approximations. It describes the motion of a small body whose
dynamics is driven by the attraction given by two principal bodies, with reference to which it is
considered to be massless. These bodies are assumed to rotate around a common center of mass
at a constant rate. Fig. 2.1 shows the representation of the system in the rotating reference frame.
Following the standard convention, the parameters and the equations of motion of the system are
dimensionless.

x

y

m1

m2

m3

(−µ, 1) (1− µ, 1)

rr1 r2

Fig. 2.1: Circular restricted three-body problem system in the rotating reference frame.

µ is a non-dimensional parameter depending only on the two main masses:

µ =
m2

m1 +m2

. (2.1)

With these assumptions, it is possible to write the equations of motions of the third body as:

3
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ẍ = x+ 2ẏ − 1−µ

r31
(x+ µ)− µ

r32
(x− 1 + µ)

ÿ = y − 2ẋ− 1−µ
r31

y − µ
r32
y

z̈ = −1−µ
r31

z − −µ
r32
z

, (2.2)

where r1 and r2 are the relative distances between the third body and two primary ones:

r1 =
√
(x+ µ)2 + y2 + z2 r2 =

√
[x− (1− µ)]2 + y2 + z2. (2.3)

2.1.1 Equilibrium points and zero velocity curves
Useful parameters for the analysis of the dynamical system are the quantities that are conserved
during the motion. In the case of the CR3BP, only one quantity is constant and it is represented
by the Hamiltonian of the equation of motion,

J = 2(T − U), (2.4)

which in literature is known as the Jacobi integral. In this expression, U is the pseudo-potential
function and T the kinetic energy, respectively computed as

U(x, y, z) =
x2 + y2

2
+

1− µ

r1
+

µ

r2
+ µ

1− µ

2
; T =

1

2
(ẋ2 + ẏ2 + ż2). (2.5)

As the Jacobi integral is constant during the motion of the particle, it is defined only by the initial
conditions and can be used to define the Jacobi constant C, where

J + C = 0. (2.6)

This constant describes the relative energy of the particle that is still available for its motion. Ex-
ploiting this definition, it is possible to define the so-called zero velocity curves (ZVC), by consid-
ering the case in which the kinetic energy is zero:

C = 2U. (2.7)

This provides information regarding the possibility for the particle to move in a certain region of
space: different levels of relative energy correspond to different accessible portions of space. In
fact, the inequality

C > 2U (2.8)

denotes the forbidden regions which cannot be accessed by the particle, as it does not have enough
energy to reach them. On the contrary, the inequality

C ≤ 2U (2.9)

denotes regions the particle is able to reach.
Finally, it is important to define the equilibrium points, i.e. particular orbits that remain static in
the rotating frame and which are characterized by a zero acceleration and velocity of the particle.
These points can be computed by setting the quantities in Eq. 2.2 to zero. The CR3BP has five
potential equilibrium points, also known as Lagrangian points, out of which two are stable while
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the remaining three are not.
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Fig. 2.2: ZVC and equilibrium points of Earth-Moon system.

Tab. 2.1 Equilibrium points coordinates and respective Jacobi constant of Earth-Moon system.
Equilibrium point x [-] y [-] z [-] C [-]

1 0.8369 0 0 3.2003
2 1.1557 0 0 3.1842
3 -1.0051 0 0 3.0241
4 0.4878 0.8660 0 3.0000
5 0.4878 -0.8660 0 3.5000

Fig. 2.2 shows the computed ZVC for the Earth-Moon system in which µ = 0.01215, and Tab. 2.1
lists the coordinates of its Lagrangian points along with their Jacobi constant.

2.2 Asteroid case
Asteroids are irregular-shaped bodies with a quite fast period of rotation. Therefore, the classical
two-body problem equation of motions are not well suited in order to adequately describe the
problem. Instead, due to its rotating nature, it resembles the dynamics of the CR3BP.
The dynamics of a massless particle in a rotating frame attached to the asteroid can be described
by the following equation of motion

r̈+ 2Ω× ṙ+Ω× (Ω× r) + Ω̇× r = ∇U (r) (2.10)

where r is the position vector, Ω is the asteroid’s angular velocity vector having magnitude |Ω| =
ωa and∇U (r) is the gradient of the gravitational potential U(r) [21].
In general, the variation of the angular velocity vector in time is non-zero, due to the so-called
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YORP effect [22]. However, as the timescale of interest for spacecraft mission design is typically
contained with respect to the timescale needed to have significant variations in the angular velocity
vector, this variation can be neglected in the first approximation, leading the equation of motion
to be written as

r̈+ 2Ω× ṙ+Ω× (Ω× r) = ∇U (r). (2.11)

For simplicity it is assumed that Ω = ωak̂.

2.2.1 Equilibrium points and zero velocity curves
As for the previous problem, it is necessary to find quantities that are constant during the motion.
With the hypothesis of uniform angular velocity, once again only the Hamiltonian of the system
is conserved, and also in this case it is known as Jacobi integral as it represents the same physical
concept seen before

J =
1

2
ṙ · ṙ− 1

2
(Ω× r) · (Ω× r)− U(r). (2.12)

Eq. 2.12 is divided into kinetic energy and effective potential which represent the combination of
the gravitational and centrifugal potential energy, respectively defined as

T (r) =
1

2
ṙ · ṙ (2.13)

V (r) =
1

2
(Ω× r) · (Ω× r) + U(r). (2.14)

As before the Jacobi constant is an extremely useful quantity and can be defined from the Jacobi
integral as

J + C = 0 (2.15)

and therefore, in combination with the definition of the effective potential showed in Eq. 2.14, the
Jacobi constant can be computed as

C = V (r)− T (r). (2.16)

By exploiting its definition, it is possible to define ZVC also for this system

C = V (r). (2.17)

This equation points out non accessible regions of space if

C > V (r), (2.18)

and accessible ones if

C ≤ V (r). (2.19)

Finally, according to [23], equilibrium points must satisfy the condition

∇V (r) = 0. (2.20)
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Therefore, every combination of shape and angular velocity leads to different equilibrium points,
showing the importance to define these quantities as accurate as possible.
In general, the number of equilibrium points is not known a priori and heavily depends on the
shape of the body. Moreover, one or more points can fall inside it.

Fig. 2.3: ZVC and equilibrium points of 1996 Hw1.

Tab. 2.2 Equilibrium points and Jacobi constant of 1996 Hw1.
Equilibrium point x [m] y [m] z [m] C [m2/s2]

1 -150.18 2807.9 0.25 0.505
2 3212 134.25 -2.64 0.554
3 -181.05 -2826 0.0586 0.5068
4 -3286.6 84.467 -1.347 0.5598
5 452.6 29.1 2.9 1.3389

Fig. 2.3 displays the ZVC for a quite irregular asteroid and it clearly shows the presence of five
equilibrium points, one of which is inside the body. Tab. 2.2 gives the coordinates and the Jacobi
constant of these points.

2.2.2 Gravitational potential
In the surroundings of an asteroid, due to its highly rough shape, the gravitational field is highly
irregular and in proximity to the surface it completely drives the interesting dynamics, making
external disturbances such as solar radiation pressure (SRP) negligible [24]. In order to design reli-
able missions it is extremely important to accurately model the dynamical environment. Therefore,
throughout years a great deal of effort has been put in order to refine the available gravitational
models.
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The first step towards a better understanding of the dynamical behavior around complex shape
bodies was made through analytical models based on regular body shapes. These models were
recently used to study periodic orbits, such as a solid circular ring [25], a homogeneous annulus
disk [26], a homogeneous cube [27], a dumbbell [28], a straight segment [29] and a particle-linkage
[30].
Only in 1958 one of the most efficient models based on triaxial ellipsoid was developed in closed
form [31] and later in 1978 in approximated form with spherical harmonics expansion [32]. How-
ever, these models had divergence problems. These problems were solved in 1996 when the con-
stant density polyhedron model was developed [33] and lastly with the mass concentration model
(mascon) which accounts for the internal density distribution [34].

Tab. 2.3 summarizes the most important advantages and drawbacks of the currently used gravita-
tional models, which together with a general overview, can be used to justify the choices made for
this work.

Tab. 2.3 Gravitational models advantages and drawbacks.
Model Advantages Drawbacks
Spherical Harmonic Expansion - Tends to exact gravity increasing the order

- Low computational cost
- Weakly affected by accuracy level

- Valid only outside of the Brillouin sphere

Constant Density Ellipsoid - Simple implementation
- Good first approximation

- Far from the actual field in surface proximity

Constant Density Polyhedron - Deals with any shape
- Exact gravity field for the given shape
- Gravity field up to the body’s surface
- Laplacian to check the field point position

- Density must be constant
- High computational cost

Mass Concentration - Deals with any shape and density variation
- Deals with non-homogeneous bodies
- Valid up to the body’s surface

- No method for checking field point position
- High computational cost
- Less accurate than harmonic expansion

Spherical Harmonics Expansion

By constructing a set of orthogonal solutions to Laplace’s equation and choosing the coefficients of
the expansion to match with the actual potential function it is possible to model the gravitational
potential.
In particular, Laplace’s equation is solved by a separation of variables in terms of spherical coordi-
nates [22], leading to

U(r, δ, λ) =
µ

r

∞∑
l=0

l∑
m=0

(ro
r

)l

Plm(sin δ)[Clm cosmλ+ Slm sinmλ] (2.21)

where δ is the latitude, λ is the longitude, µ = GM is the body gravitational parameter, ro is the
normalizing radius which is often chosen as either the maximum radius or the mean radius of the
body. Plm are the associated Legendre functions and Clm and Slm are the gravity field harmonic
coefficients, also known as Stokes coefficients.
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However, this approach is not guaranteed to work in all situations. The spherical harmonic expan-
sion in Eq. 2.21 cannot be used when considering the gravitational potential close to an irregular-
shaped small body. In fact, the divergence is severe within the circumscribing sphere of the body
shown in Fig. 2.4, also known as Brillouin sphere, making the gravitational potential worthless for
dynamical computation in this region.

Fig. 2.4: Brillouin sphere of asteroid 1620 Geographos.

Constant Density Ellipsoid

We now consider the ellipsoid shown in Fig. 2.5. It has semi-major axes α ≥ β ≥ γ

α

γ β

Fig. 2.5: Tri-axial ellipsoid.

and it is mathematically defined as(x
α

)2

+

(
y

β

)2

+

(
z

γ

)2

≤ 1 (2.22)

Assuming homogeneous density ρ, it is possible to compute the exterior gravitational potential at
the point r in closed form [35] as follows
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U(r) = − 3µ

2
√

α2 − γ2

{[
1− x2

α2 − β2
+

y2

α2 − β2

]
F (ϕk, k)+

+

[
x2

α2 − β2
− (α2 − γ2)y2

(α2 − β2)(β2 − γ2)
+

z2

β2 − γ2

]
E(ϕk, k)+

+
[
(γ2 + k)y2 − (β2 + k)z2

] √
α2 − γ2

(β2 − γ2)∆(k)

}
.

(2.23)

In Eq. 2.23 µ = 4
3
Gρπαβγ is the gravitational parameter of the ellipsoid, F (ϕk, k) andE(ϕk, k) are

the elliptic integrals of the first and second kind, respectively, and k is the largest root of Eq. 2.24,
which always exist.

x2

α2 + k
+

y2

β2 + k
+

z2

γ2 + k
= 1 (2.24)

and also

∆(k) =
√

(α2 + k) + (β2 + k) + (γ2 + k), (2.25)

k =
α2 − β2

α2 − γ2
, ϕk = sin−1

√
α2 − γ2

α2 + k
. (2.26)

The model is quite simple, however, if the shape of the asteroid under study is too far from the
ellipsoid shape and the analysis is carried in proximity of the surface, the committed error would
be too large.

Constant Density Polyhedron

The method is based on two main hypotheses: the asteroid is a polyhedron, and the polyhedron’s
density is constant.
A polyhedron is understood to be a three-dimensional solid body whose surface consists of planar
faces meeting along straight edges or at isolated points called vertices. Exactly two faces meet at
each edge. Three or more edges and a like number of faces meet at each vertex. As the vertex coor-
dinates are insufficient to describe a polyhedron, the connective topology must also be described,
edges connect which vertex pairs and bound which face pairs [33].
After themathematical manipulations, well described in [33], the following expressions to precisely
model the potential U in the field-point location r can be derived:

U(r) =
1

2
Gσ

∑
e∈edges

re · Ee · re Le −
1

2
Gσ

∑
f∈faces

rf · Ff · rf ωf (2.27)

∇U (r) = −Gσ
∑

e∈edges

Ee · re Le +Gσ
∑

f∈faces

Ff · rf ωf (2.28)

∇∇U (r) = Gσ
∑

e∈edges

Ee Le −Gσ
∑

f∈faces

Ff ωf (2.29)

∇2U(r) = −Gσ
∑

f∈faces

ωf . (2.30)
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rf is the vector from the field-point location to a point belonging to the face f and re is the vector
from the field-point location to a point belonging to the edge e.
Symbols G and σ represent the gravitational constant and the polyhedron’s density. Suffixes e and
f indicate edge and face, respectively. Each polyhedron face has an outward-pointing face normal
vector n̂f and a face dyad Ff = n̂f n̂f . Each edge of each face exhibits an outward-pointing edge
normal vector n̂f

e perpendicular to both n̂f and the edge. Fig. 2.6 shows the edge and the faces
connecting vertices P1 and P2. In this case, the edge dyad is E12 = n̂An̂A

12+ n̂Bn̂B
21, while the faces

dyad are F1 = n̂An̂A and F2 = n̂Bn̂B .

P1

P2

face A

face B

n̂A

n̂B

n̂B
21

n̂A
12

commonedge

Fig. 2.6: Schematic of two faces with a common edge and their respective normal [33].

Let ri represent the vector from the variable field-point location to polyhedron vertex Pi, and let
ri = ∥ri∥ be its length. For the polyhedron edge connecting vertices Pi and Pj of constant length
eij , the dimensionless per-edge factor Le is

Le = ln ri + rj + eij
ri + rj − eij

. (2.31)

For a triangular face f bounded by vertices Pi,Pj ,Pk, the dimensionless per-face factor ωf is

ωf = 2 arctan ri · rj × rk
rirjrk + ri(rj · rk) + rj(rk · ri) + rk(ri · rj)

. (2.32)

The polyhedron method comes with many advantages:
• The gravity field is exact for the given shape and density. Errors can be reduced entirely
to errors in the asteroid shape determination and the level of discretization chosen. Since
most asteroid shape determinations have limited shape resolution, this approach provides
gravitational accuracy consistent with the accuracy of the shape determination.

• Polyhedron gravitation is a valid and exact solution up to the surface of the body.
• The Laplacian∇2U(r) is an extremely interesting value, it is useful to determine whether or
not the particle is inside the polyhedron model or not. The sum

∑
ωf vanishes when the

field point is outside the polyhedron, and equals −4π inside.
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• Any body of arbitrary shape can be approximated with a polyhedron having a variable num-
ber of triangular faces.

The polyhedron meshes are mostly provided by NASA and collected in catalogs such as [36], an
example is shown in Fig. 2.7. In general, these meshes have been created exploiting three main
methods: spacecraft imaging, radar imaging and lightcurve inversion.

Fig. 2.7: Polyhedron mesh of the asteroid 1996 Hw1.

Mass Concentration

Conceptually, the so-called mascons approach is one of the simplest model, it uses various point
masses in order to model the body’s mass distribution.
Assuming the asteroid is a polyhedron, it is possible to fill its interior with non-overlapping spheres
which cover the entire volume. These spheres are assigned with a particular mass density and can
be of various or of the same size, with the second option requiring more spheres and therefore
increasing the computation time.

The potential of a body modeled with N mascons is computed as follows [37]

U(r) = −µ
N∑
i=1

m
′
i

|r− ri|
(2.33)

in which ri is the position of the point mass with mass mi and

m
′

i =
mi

m
m =

N∑
i=1

mi. (2.34)

An important advantage of the method is that it is capable of modeling the potential of non-
homogeneous bodies up to their surface by using a suitable distribution of mass values to each
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sphere, however it does not provide any information to understand if the field point is inside the
body. For a given computational effort it is less accurate than the harmonic approach.

In conclusion, in the framework of this thesis was chosen to use the constant density polyhedron
model, as it is comparatively simple to implement, it provides an accuratemodel of the gravitational
potential in close form both near and far from the body’s surface, and finally, because it can be
relatively easily recast in quadratic form as will be shown in Section 5.2.1. This will prove an
important requirement.

2.3 Periodic orbit generation
One of the crucial aspects when dealing with non-Keplerian motion is the ability to generate peri-
odic orbits. In general, numerical methods are the most powerful tool available for the scope. They
implement three fundamental steps in order to achieve such objective, schematically summarised
in Fig. 2.8. The starting point is to generate initial guesses through the use of generation algo-
rithms, which need to be processed by correction algorithms in order to converge to the targeted
solution. This is necessary because the dynamic is strongly non-linear and a small variation in
the initial conditions can lead to very different trajectories. Finally, continuation techniques can
provide new initial guesses starting from the information available on other members of the family.

Initial Guess Correction Periodic Orbit

Continuation

Fig. 2.8: General periodic orbit generation scheme

As well reported in [38], for every step of the scheme various traditional solutions are available
and used within the literature.

Initial Guess

The fastest and easiest way to find an initial guess is to consult a catalogue of periodic solutions
such as [39]. However, catalogues are not yet available for many cases. For all the cases where the
catalogues are not available, a very effective strategy is the use of Poincaré maps. They are defined
as the set of points which intersects the hyperplane Σ, transversal to the n-dimensional flow ϕ of
the dynamical system. Periodic orbits are represented on the map as fixed points. The method had
been extensively used for many studies until computational power was sufficient to afford the use
of grid searching methods [40]. Combined with a hierarchical parametrization, they gave rise to
the well-known and highly used hierarchical grid search method [41].

Correction

The most widely used technique for numerical correction is based on the differential correction
algorithm built on the one proposed by Howell [42]. These methods rely on constraints, typically
one of them is periodicity to ensure that the initial conditions repeat themselves after an amount
of time, and based on free variables as well, which could be modified by the corrector.
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In astrodynamics applications, there are two common differential correction implementations, sin-
gle and multiple shooting. In the case of single-shooting, the initial state is integrated into a single
arc and the trajectory is found whenever it returns at its initial state. By contrast, in the multiple-
shooting case, the initial guess trajectory is discretized in patch points, which are independently
integrated so that the complete solution is made by multiple arcs. In this case, the constraints do
not only include periodicity but continuity as well.
An alternative to differential correction is the use of optimization algorithms as finding periodic
solutions can be seen as solving a boundary value problem.

Continuation

There exist different contiunation approaches, among them the so-called single or multiple param-
eter continuation, consisting in the variation of one or multiple parameters in the initial condition.
Typical parameters are the initial position, the energy or the period. Recently it evolved into the
shape continuation method [37] in which the continuation parameter is the shape of the asteroid
body.
Anothermethod is a particular case of themultiple parameter continuation called pseudo-arclength
continuation, generally being more robust and efficient. In this method, the continuation param-
eters are not chosen a priori, but the free variable vector is instead continued along the tangent
direction to the targeted family.

In his work, Leclère [20], proposed an innovative way of facing the problem, theHBM. In contrary
to the aforementioned classical methods, the HBM targets the problem in the frequency domain.
Being part of the fundamentals of the software used in this thesis, it will be briefly explained in the
following.

2.3.1 The Harmonic Balance Method
The method is very well known in the field of non-linear dynamics, typically used for non-linear
vibrations and aerodynamics. It consists of the approximation of periodic signals with their Fourier
coefficients, becoming the new unknowns of the problem.
The procedure behind the method is well explained in [43] and here summarised.
The general form of the equation of motions for a nonlinear dynamical system is

Mẍ+ Cẋ+ Kx+ fnl (x, ẋ) = fext (ω, t) (2.35)

in whichM, C and K are the mass, damping and stiffness matrix, respectively. Vectors fnl and fext
represent the nonlinear forces and the external forces, where the latter is supposed to be periodic
with frequency ω.
In the particular case of Eq. 2.11, the system has three degrees of freedom, and as it is not ex-
cited, the vector of external forces fext(ω, t) = 0. The corresponding mass, damping, and stiffness
matrices are

M =

1 0 0
0 1 0
0 0 1

 C =

 0 −2ωa 0
2ωa 0 0
0 0 0

 K =

−ω2
a 0 0

0 −ω2
a 0

0 0 0

 (2.36)
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and the nonlinear forces term is fnl = −∇U .
As the solution of the equation of motion and the forcing term are assumed to be periodic, their
signals are approximated by Fourier series truncated to the NH-th harmonic:

x(t) =
cx0√
2
+

NH∑
k=1

sxk sin(kωt) + cxk cos(kωt) (2.37)

f(t) =
cf0√
2
+

NH∑
k=1

sfk sin(kωt) + cfk cos(kωt) (2.38)

where sk and ck represent the vectors of the Fourier coefficients related to the sine and cosine terms,
respectively. The Fourier coefficients of f(t) depend on the Fourier coefficients of the displacement
x(t) building the new unknown of the problem. These coefficients are collected into (2NH+1)n×1
vectors. z for the displacement related and b for the one associated to the force

z =
[
(cx0)

T (sx1)
T (cx1)

T ... (sxNH
)T (cxNH

)T
]

(2.39)

b =
[
(cf0)

T (sf1)
T (cf1)

T ... (sfNH
)T (cfNH

)T
]

(2.40)

Eq. 2.37 and Eq. 2.38 are reduced to a compact form through the Kronecker tensor product (⊗)

x(t) = (Q(t)⊗ In)z (2.41)

f(t) = (Q(t)⊗ In)b (2.42)
where In is the identity matrix of size n and Q(t) is built as follows

Q(t) =
[

1√
2
sin(ωt) cos(ωt) ... sin(NHωt) cos(NHωt)

]
. (2.43)

The vectors of both velocities and accelerations are expressed using Eq. 2.43

ẋ(t) = (Q̇(t)⊗ In)z = (Q(t)∇⊗ In)z (2.44)
and

ẍ(t) = (Q̈(t)⊗ In)z = (Q(t)∇2 ⊗ In)z (2.45)
where

∇ =


0

. . .
∇k

. . .
∇NH

 , ∇2 =


0

. . .
∇2

k
. . .

∇2
NH

 (2.46)

with

∇k =

[
0 −kω
kω 0

]
, ∇2

k =

[
−(kω)2 0

0 −(kω)2

]
. (2.47)
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These new expressions of the displacements velocities and accelerations can consequently be sub-
stituted in Eq. 2.35 yielding

M((Q(t)∇2)⊗ In)z+ C((Q(t)∇)⊗ In)z+ K(Q(t)⊗ In)z = (Q(t)⊗ In)b. (2.48)

Thanks to the mixed-product property of the Kronecker tensor product (A⊗B)(C⊗D) = (AC)⊗
(BD), Eq. 2.48 can be rewritten as

((Q(t)∇2)⊗M)z+ ((Q(t)∇)⊗ C)z+ (Q(t)⊗ K) = (Q(t)⊗ In)b. (2.49)

In order to remove the time dependency and to obtain an expression relating the different Fourier
coefficients, a Galerkin procedure projects Eq. 2.49 on the orthogonal trigonometric basis Q(t),
eventually obtaining the equation of motion expressed in the frequency domain

(∇2 ⊗M)z+ (∇⊗ C)z+ (I2NH
⊗K)z = (I2NH

⊗ In)b, (2.50)

or, in a compact form:

h(z, ω) = A(ω)z− b(z) = 0. (2.51)

A is the (2NH + 1)n× (2NH + 1)n matrix describing the linear dynamics

A = ∇2 ⊗M+∇⊗ C+ I2NH+1 ⊗ K

=



K
K− ω2M −ωC

ωC K− ω2M
. . .

K− (NHω)
2M −NHωC

NHωC K− (NHω)
2M


.

(2.52)

Eq. 2.51 is nonlinear and can be solved iteratively using a Newton-Raphson development in order
to find a periodic orbit associated with a frequency ω. The procedure is as follows:

1. Use an initial guess for the first iteration z(0).
2. Update the current iteration.

z(k+1) = z(k) − h(z, ω)
hz(z, ω)

, (2.53)

where hz = ∂h/∂z is the Jacobian matrix, whose computation is not reported here but well sum-
marised in [43], until Eq. 2.51 is satisfied up to a given tolerance.

Continuation

Theapproach is based on tangent prediction followed by corrections. At a solution y(i) =
[
zT(i) ω(i)

]T
the tangent vector t(i) is searched through[

J(yi)
tT(i−1)

]
t(i) =

[
0
1

]
(2.54)
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with

J(yi) = [hz(y(i)) hω(y(i))], (2.55)

where hω = ∂h/∂ω. The last row in Eq. 2.54 prevents the continuation from turning back and, for
the first iteration is replaced by a line of ones. Doing so, the sum of the tangent’s components is
forced to be 1. The predictions of y(1)

(i+1) are then built as

y(1)
(i+1) = y(i) + s(i)t(i) (2.56)

where s(i) is the predictor step size. Then the second stage uses Newton’s method for the correction
of the prediction.

2.4 Stability
The stability of the periodic solutions obtained through the HBM is assessed by means of the Flo-
quet multipliers σ̃, or equivalently via the Floquet exponents λ̃, which are related through the
exponential function

σ̃i = eλ̃iT , i = 1, ..., 2n. (2.57)

If there exist at least one Floquet multiplier with a magnitude higher than 1 or, through Eq. 2.57,
at least one Floquet exponent with real part higher than 0, then the computed periodic solution is
unstable. Otherwise, it is stable.
In general, the Floquet exponents and multipliers are depicted in the complex plane and compared
to the unit circle or to the imaginary axis, respectively [44].
In the traditional time domain approach, the multipliers are obtained through the use of the mon-
odromy matrix. While in frequency domain, a variety of methods are available, in this case, Hill’s
method was applied, as it is well adapted to work with the HBM.

The general idea of Hill’s method is to introduce a periodic perturbation s(t) multiplied by an
exponential decay to a periodic orbit x∗(t), as in Eq. 2.58:

p(t) = x∗(t) + eλT s(t) (2.58)

which fulfills Eq. 2.11 [45].
This perturbed solution is then introduced in the equation of motion, obtaining

Mẍ∗ + Cẋ∗ + Kx∗ +
[
λ2Ms+ λ (2Mṡ+ Cs) +Ms̈+ Cṡ+ Ks

]
eλT = f(p, ṗ, ω, t). (2.59)

Eq. 2.59 can be solved similarly to the unperturbed one. First, both the periodic solution x∗(t) and
the perturbation s(t) are approximated by Fourier series truncated at the NH-th order. Second the
Galerkin procedure is applied to obtain

Az∗ +
(
∆2λ

2 +∆1λ+ A
)
eλtu = b

(
z∗ + eλtu

)
(2.60)

in which

∆1 = ∇⊗ 2M+ I2NH+1 ⊗ C, ∆2 = I2NH+1 ⊗M. (2.61)
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Thus, the right-hand side of this equation is evaluated through a Taylor series expansion around
the solution z∗:

b
(
z∗ + eλtu

)
= b(z∗) +

∂b
∂z

∣∣∣
z=z∗

(eλtu). (2.62)

Given that Az∗ − b(z∗) = 0 by definition and that A− ∂b
∂z

∣∣∣
z=z∗

= hz, replacing Eq. 2.62 in Eq. 2.60
leads to

(∆2λ
2 +∆1λ+ hz)e

λtu = 0. (2.63)

As a result, Hill’s coefficients λ are the solutions of the quadratic eigenvalue problem:

(∆2λ
2 +∆1λ+ hz)u = 0. (2.64)

Among the complete set of λ, only the 2nwith the smallest imaginary part in modulus approximate
the Floquet exponents λ̃ of the solution x∗(t) [46].

Due to the autonomous nature of the set of equations of motion, two Floquet exponents are null,
this could affect the bifurcation detection. In order to solve the issue [47] proposed to shift twice
the quadratic eigenvalue problem.

The obtained Floquet exponents, not only provide information about the stability of the periodic
solution; they can also be used for the detection of bifurcations, particular points of the branch in
which the stability of the system change. For periodic orbits around celestial bodies, four different
types of bifurcations based on the Floquet theory can be classified [48]: tangent bifurcations, period-
doubling bifurcations, real saddle bifurcations and Neimark-Sacker bifurcations.

Tangent bifurcations

A tangent bifurcation occurs when the orbit has characteristic multipliers that cross 1, and the
motion of the characteristic multipliers causes them to leave the unit circle for the real axis, or
contrarily from the real axis to the unit circle. There exist two types of tangent bifurcations; the
fold bifurcation and the branchpoint. The former is characterized by the collision of two stable and
unstable solutions, while the latter is identified by a change of stability followed by the creation
of new branches. The uniqueness of the solution is lost and two types of branchpoints can occur.
Either the curve of the solution loops back on itself, categorized as transcritical bifurcation, or the
symmetry of the system is broken and a new branch, symmetric to the main one, is created.

Period-doubling bifurcations

This type of bifurcation occurs when the orbit has characteristic multipliers that cross −1, and
the motion of the characteristic multipliers causes them to leave the unit circle for the real axis,
or contrarily from the real axis to the unit circle. From this bifurcation, a new branch of solution
emerges, featuring periodic solutions but with a doubled period with respect to the solution of the
initial branch.
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Neimark-Sacker bifurcations

This type of bifurcation takes place when the orbits have two complex conjugate characteristic
multipliers, and the motion of the characteristic multipliers causes them to leave the unit circle,
or contrarily to be limited on the unit circle. This class of bifurcations induces the generation of
a new branch of quasi-periodic solutions. Quasi-periodic solutions are described by two different
frequencies, a main one ω1 and a secondary one ω2, which ratio is irrational. In the vicinity of the
bifurcation, the pulsation ω2 can be approximated by the imaginary part in the absolute value of
the pair of Floquet exponents.

Real saddle bifurcations

This kind of bifurcation appears when the orbits have characteristic multipliers that cross the real
axis, and the motion of the characteristic multipliers causes them to leave the real axis, or contrar-
ily to be limited on the real axis.

A graphical representation of the behaviors of the Floquet multipliers for the discussed bifurcations
is shown in Fig. 2.9.

Period doubling
Tangent
Neimark-Sacker
Real-saddle

Fig. 2.9: Floquet multipliers evolution on the complex plane during the various bifurcations.



3
ManLab

ManLab was used within the framework of this thesis for its efficient alternative application of
theHBM and for its efficient continuation scheme. This chapter briefly provides the general ideas
behind the algorithms used by the software. Furthermore, it contains a short analysis of two ele-
mentary examples in order to comprehend and showcase at best the recast and the initialization
procedures.

3.1 Introduction
Since its first release, the package was used several times for various applications belonging to
different engineering fields. One of its first applications aimed to analyze the radial responses
of free encapsulated microbubbles excited by an ultrasonic plane wave [49]. The package was
mostly used for the analysis of structural systems, and in some cases as verification method for
original models. In particular, within this field it was exploited in order to study the dynamics
of highly flexible slender structures [50] modeled via finite elements, to investigate the dynamics
of bolted flange joints [51] in presence of large amplitude vibrations which induces complex non-
linear behaviours due to the discontinuous nature of the joint and finally to investigate non-linear
energy exchange in chains of non-linear oscillators [52] in which it was studied how branch points
makes possible to transfer energy between non linear modes and howNeimark-Sacker bifurcations
can lead to chaotic behaviours.
Furthermore, ManLab had been used for the automotive industry, in which it was firstly exploited
with the aim of investigating quasi-static simulations of an assembly of flexible cables [53] modeled
through a geometrically exact beammodel. In particular, it was used for assessing the stability [54]
as well as to propose new design guidelines [55] for centrifugal pendulum vibration absorbers.

3.2 Theory
ManLab [56] is a MATLAB [57] package, freely available for scientific use, for interactive continu-
ation and bifurcation analysis of non linear system of equations of the form

R(U) = 0. (3.1)

R is a vector of n smooth equations and U a vector of n+ 1 unknowns.
The software provides algorithms for continuation, stability and bifurcation analysis of periodic
orbits of a given dynamical system, using the harmonic balance method (HBM).
The continuation is based on the Asymptotic Numerical Method (ANM) [58]. At each continuation
step, the branch solutions are given by a power series expansion with respect to the pseudo-arc
length parameter. The main advantage of this method is that these series contain many useful in-
formation, making the continuation and the detection of bifurcation is extremely robust [59] and
significantly easier than with classical predictor-corrector algorithms. The stability computation is
based on the computation of the Floquet exponents in the frequency domain with a Hill eigenvalue
problem.

20
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3.2.1 Quadratic formulation of the Harmonic Balance Method
ManLab considers an autonomous system in the form

Ẏ = f(Y, λ) (3.2)

in which λ is a real parameter. It is assumed that the system has branches of periodic solutions
when it varies.
Additionally, in order to provide a very simple and systematic algebra for the HBM application, it
is based on the idea of recasting the original equations into a new system where the non-linearities
are at most quadratic polynomials. This procedure was proven in [60] to be possible for a large class
of systems with smooth equations, and extended to the case of non-polynomial nonlinearities in
[61]. Therefore, the system will be written as follow:

m(Ż) = c+ l(Z) + q(Z,Z). (3.3)

Z (of size Ne) is the vector of unknowns containing the original components of the vector Y and
some new variables which are added to obtain a quadratic form, c is a constant vector with respect
to Z , l(.) and m(.) are a linear operator and q(., .) is a quadratic operator.
By introducing the expansion of Z computed as shown in Eq. 2.38 into the set of Eq. 3.3, collecting
the terms of the same harmonic index, and neglecting the higher order harmonics, one obtains a
large system of (2NH + 1)×Ne equations for the unknown vector U :

ωM(U) = C+ L(U) + Q(U,U). (3.4)

The new operatorsM(.), C(.) and Q(., .) depends only on the operatorsm(.), c, l(.) and q(., .) and
on the number of harmonics NH and are reported in [60].
This final system contains (2NH + 1) × Ne equations for the (2NH + 1) × Ne unknowns U plus
the angular frequency ω and the continuation parameter λ.

3.2.2 Asymptotic Numerical Method
The Asymptotic Numerical Method (ANM) relies on a high-order Taylor series representation of
the solution branch. Its efficiency was already demonstrated for many engineering application
[62], mechanics [63] and acoustic. In ManLab, a quadratic workframe is available, as it was shown
in the previous section. Therefore, the implementation is based on a quadratic formulation of the
method. It is explained in detail in [64] and briefly reported in the following.

Taking into account the algebraic system

R(u, λ) = 0, (3.5)

the technique to compute a continuation step is implemented as follows:
defining U0 = (u0, λ0) to be a regular solution of Eq. 3.5, it follows that the rank of the Jacobian
matrix in the point U0

∂R

∂U
=

[
∂R

∂u
,
∂R

∂λ

]
(3.6)
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is Neq . U0 is taken as starting point of the continuation step. Defining U1 = (u1, λ1) as an unitary
tangent vector at point U0 and a = (u − u0) · u1 + (λ − λ0) · λ1 = (U − U0) · U1 as the pseudo-
arc length parameter, which is used as a closing equation for the system in Eq. 3.5. The analytic
implicit function theorem allows to search the solution branch of the system aroundU0 as a Taylor
series expansion with respect to a

U(a) = U0 + aU1 + a2U2 + a3U3 + ..., (3.7)

ensuring that λ is developed as a series of the path parameter a as well. The series are truncated
at an arbitrary order p, which in general is set to 20. Consequently, U is replaced in Eq. 3.5 by its
series expansion, giving the development of R(U(a))

R(U(a)) = R(U(0)) + aR1 + a2R2 + a3R3 + ... (3.8)

in which

R1 =
dR
da

∣∣∣
a=0

=
∂R

∂U
U1

R2 =
1

2

d2R
da2

∣∣∣
a=0

=
∂R

∂U
U2 − F2(U1)

R3 =
1

3!

d3R
da3

∣∣∣
a=0

=
∂R

∂U
U3 − F3(U1, U2)

... ... ...

Rp =
1

p!

dpR
dap

∣∣∣
a=0

=
∂R

∂U
Up − Fp(U1, ..., Up−1).

(3.9)

Fk are functions that only depend on the already computed terms of the series, leading the system
in Eq. 3.5 to be written as: Rk = 0, ∀k ≤ p.
The domain of utility [0, amax] is determined when the series in Eq. 3.7 is computed up to order p.
The maximum increase of the residue in Eq. 3.5 is set to a small value ϵ1, such that ∥R(U(a)) −
R(U(0))∥ < ϵ1 for all a ∈ [0, amax]. Using the approximation R(U(a)) − R(U(0)) = ap+1Rp+1

yields

amax =

(
ϵ1

∥Rp+1∥

) 1
p+1

. (3.10)

The ending point of the continuation step U(amax) is computed and used as the starting point of
the next continuation step, leading to a continuous representation of the solution branch.
The ANM has the following advantages:

• The branch of solution is known analytically, section by section.
• Since all the linear systems to be solved have the same Jacobian matrix, the computational
cost of the series in Eq. 3.7 is low.

• The range of validity is computed automatically and without tuning parameter through
Eq. 3.10. Both ϵ1 and p do not alter the convergence, but only the accuracy, unlike to what
happens in predictor-corrector method.

• The ANM benefits from the same robustness as the arc-length method even for sharp turns,
due to the use of a pseudo arc-length measure as path parameter. Furthermore, for smooth
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nonlinearities, it is rare to see a residue greater than 10ϵ1 [65]. Even in the case of non-
polynomial nonlinearities, a Newton-Raphson type correction step can be easily coupled
with the metod.

• The ANM has the ability to follow a branch even when a bifurcation occurs, allowing to
achieve a complete description of the bifurcation diagram. A solution to switch from a branch
to another is to perturb the initial problem as explained in [60].

3.2.3 Quadratic formulation of the Floquet-Hill stability
The Floquet-Hill method is implemented in ManLab , formulated for a quadratic workframe, as
stated in [66] and summarised in the following.
Floquet theory states that the linear stability of a periodic solution x0(t) can be studied by super-
imposing a small disturbance y such that x(t) = x0(t) + y(t), satisfying the linearized system

ẏ = J(t)y(t) (3.11)

where J is the Jacobian matrix of the system computed at a specific point.
The Hill’s method is a frequency domain approach of the Floquet theory to solve Eq. 3.11. The
analyzed system is recast in the quadratic form, with Na auxiliary variables, and written in the
frequency domain by expanding it on real Fourier basis of order NH as seen in Section 3.2.1{

ωM = G(X,Xa)

0 = Ga(X,Xa)
(3.12)

with {
G(X,Xa) = C+ L(Xf ) + Q(Xf ,Xf )

Ga(X,Xa) = Ca + La(Xf ) + Qa(Xf ,Xf )
. (3.13)

In combination with the Floquet’s form reported in [66], Eq. 3.13 yields{
ωM(P) + λ̃ = L(Pf ) + Q(Xf0,Pf ) + Q(Pf ,Xf0)

0 = La(Pf ) + Qa(Xf0,Pf ) + Qa(Pf ,Xf0)
, (3.14)

which, as being linear in P and Pa, can be written as{
ωM(P) + λ̃P = ∂G

∂XP+ ∂G
∂Xa

Pa

0 = ∂Ga

∂X P+ ∂Ga

∂Xa
Pa

. (3.15)

The second line of Eq. 3.15 allows to write Pa as a function of P. Replacing this expression in the
first line of the equation, one obtains the following eigenvalue problem

(H− λ̃IN(2NH+1))P = 0 (3.16)

which is the system in Eq. 3.11 projected on the Floquet forms in the frequency domain, and where
H is the Hill matrix:

H =
∂G
∂X

− ∂G
∂Xa

[
∂Ga

∂Xa

]−1
∂Ga

∂X
− ωM. (3.17)
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The Floquet multipliers are then obtained computing the eigenvalues of the Hill matrix.

3.3 Application on elementary examples
In order to understand how to set the equations of motion of a problem within the software, two
simple examples are given. These examples will be used to demonstrate how to correctly set both
a forced and, most importantly, an autonomous system. The quadratic recast procedure will be
briefly clarified as well, as it represents the most difficult step of the analysis in many applications.

3.3.1 Initial conditions
Before starting with the examples and showing the recasting procedure, it is useful to clarify how to
properly set the initial conditions, as this can be cumbersome in the most complex problem where
the recast needs a high number of auxiliary variables.
The software requires three inputs from the user:

• The equation of the system, to be written in quadratic form in the @equations.m file.
• The starting value for λ and ω.
• The starting value for Z0.

The following expression is used:

Z0 = [v1 v2 ... vn], (3.18)

in which v1 ... vn are vectors containing the coefficients coming from the real Fourier decompo-
sition for every variable v1 ... vn of the system under study. They are computed as

v1(t) = c0 +

NH∑
k=1

ck cos kωt+ sk sin kωt

...

vn(t) = c0 +

NH∑
k=1

ck cos kωt+ sk sin kωt

(3.19)

and, therefore,

v1 = [c0 c1 ... cNH
s1 ... sNH

]T

...
vn = [c0 c1 ... cNH

s1 ... sNH
]T

. (3.20)

In simpler cases, such as the examples showed in this section, this Z0 matrix contains random
values close to zero, with a magnitude that can be proportional to 10−7 ÷ 10−10. In these cases,
Newton-Raphson initial iterations can be used to correct this guess in order to find a first periodic
orbit from which the continuation starts.
However, in more complex cases, as the ones considered in this thesis, it is necessary that Z0

contains the coefficients of an already known periodic orbit, otherwise the Newton-Raphson initial
iterations will never converge to a physical periodic orbit.
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3.3.2 Forced Van der Pol oscillator
The forced Van der Pol oscillator is a simple problem, useful to grasp the concept of the quadratic
recast. It is governed by the following equation of motion

ẍ− µ1ẋ+ µ2xẋ+ µ3x
2ẋ+ a1x = f cosλt (3.21)

which, in the case where µ1 = µ2 = 0.1, f = µ3 = a1 = 1 shows periodic solutions. Defining a
supplementary variable and an auxiliary one

y(t) = ẋ
z = x2 , (3.22)

it is possible to recast Eq. 3.21 in the following quadratic differential-algebraic system
ẋ = y

ẏ = f cosλt+ µ1y − a1x− µ2xy − µ3yz

0 = z − x2

. (3.23)

In order to be correctly interpreted, Eq. 3.23 must be written as following within the@equations.m
file, making sure to correctly insert in the correspondent vector the main part, the auxiliary part
and the applied external force:

0 = y − ẋ

0 = f cosλt+ µ1y − a1x− µ2xy − µ3yz − ẏ

0 = z − x2

. (3.24)

By adding a further equation in the @launch.m file, stating that λ = ω, it is possible to set the
pulsation of the external force as the continuation parameter. The starting point of the continuation
is set by stating the initial value of λ, which in this case is set to zero.
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Fig. 3.1: Evolution on the complex plane of the Floquet
multipliers during the continuation of the solution branch.
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Fig. 3.2: L2 Norm of the x variable.

Fig. 3.1 displays the evolution of the floquet multipliers on the complex plane during the continu-
ation of the solution. The star icon shows the position of the detected Neimark-Sacker bifurcation.
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The position of the bifurcation is also exhibit in Fig. 3.2, it is shown as the solution passes from
stable (continuous line) to unstable (dashed line). The bifurcation takes place when λ = 1.804.
It is finally possible to visualise the orbits produced in the phase space as illustrated in Fig. 3.3.

Fig. 3.3: Van der pol phase space evolution during the continuation.

The color map in the figure shows at which step of the continuation the orbit belongs to, colors
towards blue belong to earlier steps while red colors belong to latest steps. It can clearly be seen
that the shape of the family suddenly changes after the Neimark-Sacker bifurcation.

3.3.3 Free nonlinear pendulum
As the problems of interest of this thesis are autonomous, it is important to understand how to
properly set them in the software.
Defining θ as the angle between the present position of the pendulum and its lower rest position,
the equation of motion of the free pendulum, neglecting the coefficients, is

θ̈ + sin θ = 0. (3.25)
In general periodic orbits of conservative Hamiltonian systems belong to an one dimensional family
of periodic solutions, having as parameter the value of the first integral. This parameter is not
explicit in the system, as shown in [67]. Therefore, in order to compute the family of periodic
solutions, in the standard continuation framework presented in this chapter, it is necessary to
perturb the equation by adding a damping term, also called unfolding term,

θ̈ + λθ̇ + sin θ = 0, (3.26)
where λ is a free parameter of the continuation. The periodic orbits of the perturbed system are
exactly the same as the ones of the unperturbed system if and only if λ = 0. Doing so, the parameter
λ allows to compute the periodic orbits of the conservative system by using the classical framework
for dissipative systems which possess an explicit control parameter.
Using the three supplementary variables

y(t) = θ̇
s(t) = sin θ
c(t) = cos θ

(3.27)
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the last two lines being auxiliary, it is possible to recast Eq. 3.26 into the following quadratic,
differential-algebraic system: 

0 = y − θ̇

0 = −s− λy − ẏ

0 = cy − ṡ

0 = −sy − ċ

. (3.28)

As the non-linearity is non-algebraic, in addition this system needs the following initial conditions,
to fall back to the case of a quadratic recast as explained in [61]{

s(0) = sin θ(0)
c(0) = cos θ(0)

. (3.29)

Using Eq. 3.28 in the software, following the same treatment of the previous case, with the corre-
sponding initial conditions, and starting from a first point having λ = 10−9 and ω = 1, it is possible
to obtain the results presented in Fig. 3.4 and in Fig. 3.5.
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Fig. 3.4: Evolution on the complex plane of the Floquet
multipliers during the continuation of the solution branch.
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Fig. 3.5: θmax for each pulsation value.

The Floquet multipliers are fixed in the complex plane. Therefore, as expected the system always
remains stable during the continuation. Fig. 3.5 shows that the maximum angle of the pendulum
decrease while the pulsation increase, which physically means that for larger amplitudes of the
oscillation the period increases, as expected from practical experience.
In order to better visualise the results also the phase space is displayed in Fig. 3.6,
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Fig. 3.6: Free pendulum phase space evolution during the continuation.

showing the orbits correspondent to each step of the continuation. It can be seen how the orbits
start from a small oscillation around the rest position and while the pulsation decrease they asymp-
totically tend to the orbit in which the maximum angle is reached.



4
Validation

This chapter concern the validation of the selected method for the computation of the gravitational
potential presented in Section 2.2.2, as well as the validation of ManLab.

4.1 Gravitational potential model
The validation of the gravitational potential computation is of drastic importance, as it is the fun-
damental building block of the study. Therefore, in order to attest its validity it will be tested both
comparing it to the Earth gravitational potential and most importantly by comparing the results
around irregular-shaped bodies.

4.1.1 Earth gravity
The first part of the validation of the Earth gravitational field is carried by comparing its gravita-
tional acceleration computed both analytically with Eq. 4.1 and through the polyhedron method
using Eq. 4.2:

g =
GM⊕

r2
. (4.1)

G is the universal gravitational constant, M⊕ is the Earth’s mass and r is the distance from its
center, and

g = |∇U |, (4.2)

where∇U is computed using Eq. 2.28.
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Fig. 4.1 shows in red the analytical value of the gravitational acceleration at sea level, while its
values computed using a polyhedron with respectively 12, 42, 162, 642, 2562 and 10242 vertices are
displayed in blue and green.
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Fig. 4.3: Computation time to perform the calculation to polyhedron with different number of vertices.

Fig. 4.3 shows the computational time taken by for each polyhedronmodel to compute the gradient
of the gravitational potential in one point, displaying how the order of magnitude quickly rises
with the number of vertices. Therefore, a trade-off between the committed percentual error and
the computational time leads to the choice of the polyhedral model having 2562 vertices for the
next step of the validation. This consist of computing the error between Eq. 4.1 and Eq. 4.2 for a
polyhedron having 2562 vertices at different altitudes from the Earth’s surface.
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Fig. 4.4: Analytical and polyhedral gravitational
acceleration comparison at different altitudes.
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Fig. 4.4 presents the gravitational attraction computed analytically in red and in blue by using the
polyhedral model. As shown by Fig. 4.5, the error always stays below 10−4 %, reaching a plateau
above an altitude of 8000 km.
The final validation test for the polyhedral model on the Earth is performed by comparing the time
integration of the analytical classical two-body problem

r̈ = − µ

r3
r, (4.3)

and the time integration of the two-body polyhedral model

r̈ = ∇U (r), (4.4)

propagating the ISS orbit, having the initial Keplerian elements presented in Tab. 4.1.

Tab. 4.1 Two body problem validation orbit initial keplerain elements.
a [m] e [−] i [◦] Ω [◦] ω [◦] θ [◦]

6699812 0.000357 51.6432 92.1296 315.04 0

The results for a propagation lasting 16 periods are presented in Fig. 4.6 to Fig. 4.11.
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Fig. 4.6: Semi-major axis computed from the analytical
and the polyhedral propagation and their relative error.
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Fig. 4.7: Eccentricity computed from the analytical and
the polyhedral propagation and their relative error.
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Fig. 4.8: Inclination computed from the analytical and
the polyhedral propagation and their relative error.
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Fig. 4.9: Pericenter argument computed from the
analytical and the polyhedral propagation and their

relative error.
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Fig. 4.10: Right ascensions of the ascending node
computed from the analytical and the polyhedral

propagation and their relative error.
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Fig. 4.11: True anomaly computed from the analytical
and the polyhedral propagation and their relative error.

As shown, the error on all the Keplerian elements is contained, and the result of the method used
to generate the mesh of the sphere, which was generated starting from an icosphere. The resulting
periodic oscillations are similar to the oscillation that would result when the J2 perturbation is
accounted for.

4.1.2 Asteroid potential
With the propagation of an orbit around Earth, the gravitational potential was validated only for
symmetrical bodies. However, it is also necessary to validate it for irregular-shaped bodies, as most
of the known asteroids are not symmetrical and as symmetrical bodies could filter out errors that
takes place in symmetrical point of the body.
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As stated by Eq. 2.20, the position of the equilibrium points is the direct result of the gravitational
potential around the body. It follows that two asteroids having the same equilibrium points and the
same shape also have the same gravitational field. This property can be exploited for the validation,
taking as reference the results presented in [68] for the asteroid 1996 Hw1, being one of the most
irregular-shaped body available in the study. In order to provide a larger pool for the control 4769
Castalia and 6489 Golevka are also taken into account.

Tab. 4.2 Reference and computed equilibrium points of 1996 Hw1 and their absolute error.
Pe xref [m] x [m] yref [m] y [m] zref [m] z [m] ϵx [m] ϵy [m] ϵz [m]
1 3211.970 3211.993 133.831 134.251 -2.327 -2.642 0.023 0.420 0.315
2 -150.078 -150.186 2807.890 2807.946 0.515 0.249 0.108 0.056 0.265
3 -3268.660 -3268.624 84.143 84.467 -1.032 -1.347 0.035 0.324 0.314
4 -181.051 -181.056 -2826.050 -2825.985 0.146 0.058 0.005 0.064 0.087
5 452.595 452.643 -29.186 -29.075 3.020 2.934 0.048 0.111 0.085

Tab. 4.3 Reference and computed equilibrium points of 4769 Castalia and their absolute error.
Pe xref [m] x [m] yref [m] y [m] zref [m] z [m] ϵx [m] ϵy [m] ϵz [m]
1 910.109 910.031 22.864 22.645 34.592 34.448 0.077 0.219 0.143
2 -42.781 -42.610 736.033 735.912 3.128 3.010 0.170 0.120 0.118
3 -953.021 -952.843 128.707 128.996 30.065 30.036 0.178 0.289 0.028
4 -39.953 -40.215 -744.131 -743.967 8.762 8.599 0.261 0.163 0.162
5 157.955 158.146 -1.448 -1.449 -12.941 -13.087 0.191 0.001 0.145

Tab. 4.4 Reference and computed equilibrium points of 6489 Golevka and their absolute error.
Pe xref [m] x [m] yref [m] y [m] zref [m] z [m] ϵx [m] ϵy [m] ϵz [m]
1 -23.416 -22.528 -564.128 -564.150 -2.882 -3.002 0.887 0.022 0.120
2 35.808 36.218 571.527 571.515 -6.081 -6.214 0.410 0.011 0.133
3 537.470 537.508 21.647 21.546 -1.060 -1.269 0.038 0.100 0.209
4 -546.646 -546.632 26.365 26.039 -0.182 -0.364 0.013 0.325 0.182
5 -3.329 -3.284 -2.330 -2.311 2.198 2.075 0.044 0.018 0.122

As shown in Tab. 4.2 to Tab. 4.4, the absolute error between the coordinates of the equilibrium
points, computed by implementing the polyhedral gravitational model and the coordinates taken
from the reference is well below 1m for every asteroid taken into account. It is possible to conclude
that the gravitational potential is valid and it can be used within ManLab.

4.2 ManLab
Once again the classical two body problem reported in Eq. 4.3 is considered for the validation
of the software, as it also represents a preliminary proof that it will be able to deal with more
complex autonomous systems. First, the system must be written in quadratic form, and, for a
better convergence, it is also necessary to re-scale the equations, yielding

¨̃r = −T 2
0

L3
0

µ

r̃3
r̃, (4.5)
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where the characteristic unit of length and of time are L0 = Re and T0 =
√

L3
0

µ
respectively.

Consequently, T 2
0

L3
0
µ = 1, therefore, by using r instead of r̃ for an easier notation, and including the

unfolding term as shown in Section 3.3.3, the following equation to be recast is obtained

r̈ = − r
r3

− λṙ. (4.6)

By using four auxiliary variables 
v1 = x2 + y2 + z2

v2 =
√
v1

v3 = v1v2

v4 =
1
v3

, (4.7)

the system of equations can be written as

0 = u− ẋ

0 = v − ẏ

0 = w − ż

0 = −λu− v4x− u̇

0 = −λv − v4y − v̇

0 = −λw − v4z − ẇ

0 = v1 − x2 − y2 − z2

0 = v1 − v22
0 = v3 − v1v2

0 = 1− v4v3

. (4.8)

Having recast the equations, is now possible to set the orbit that have the Keplerian parameters
reported in Tab. 4.5 and shown in Fig. 4.12, as initial condition of the continuation procedure
applying the method explained in Section 3.3.1.

Fig. 4.12: Initial two body problem orbit for the ManLab validation.
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Tab. 4.5 Initial two body problem orbit for the ManLab validation.
a [m] e [−] i [◦] Ω [◦] ω [◦]

10000000 0.3 30 0 0

By applying the continuation for 30 steps and using only the first 30 harmonics of the Fourier
development, it is observed that Newton-Raphson iterations are not necessary to keep a residual
proportional to 10−10. This means that the recast is correct, and the results presented in Fig. 4.13
and Fig. 4.14 can be obtained.

Fig. 4.13: Two body problem ManLab continuation.
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Fig. 4.14: Evolution on the complex plane of the Floquet
multipliers during the continuation of the solution branch.

As expected, the family of orbits remains always stable, also shown by the Floquet multipliers evo-
lution reported in Fig. 4.14, which shows that themultipliers are located at +1 and stay fixed during
the continuation. Moreover, the shape of the orbit remains the same. This is due to the fact that
during the continuation, only the energy and, therefore the semi-major axis, is increasing.

For every orbit of the family, a point is selected and propagated in time for an entire period. After
this propagation, the Keplerian elements computed from the ManLab results are compared to the
ones computed from the last point of the time integration in order to assess the correctness of the
software. The results are presented in Fig. 4.15 to Fig. 4.19.
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Fig. 4.15: Semi-major axis computed from ManLab and
time integration and their relative error.
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Fig. 4.16: Eccentricity computed from ManLab and time
integration and their relative error.
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Fig. 4.17: Inclination computed from ManLab and time
integration and their relative error.
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Fig. 4.18: Right ascension of the ascending node
computed from ManLab and time integration and their
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Fig. 4.19: Pericenter argument computed from ManLab and time integration and their relative error.

These figures show the trend of the Keplerian parameters along the continuation at every value of
the orbit pulsation.
Once again, confirm that the semi-major axis is the only changing parameter, while the other
parameters only see a negligible variation. Moreover, the percentual relative error between the
parameters computed starting from ManLab and the one computed starting from time integration
is at worse proportional to 10−10%. Therefore, it is possible to prove that the orbits computed by
ManLab coincide with the ones computed through time integration.



5
Application

In this chapter ManLab is finally applied to the CR3BP and to the asteroid problem. A detailed
procedure for the recast of the equations is included fr both problems, as it is complex for these two
cases. Finally for the CR3BP the family of orbits around the L1 equilibrium point are analyzed.
While the asteroid problem analysis is more focused on the comparison to time integration and to
the HBM.

5.1 Circular restricted three body problem
For this problem the most interesting families of orbits are the ones around the three collinear
Lagrangian points. The analysis of this thesis focus mainly on the L1 family and its bifurcations.
However, before it is necessary to introduce in detail the quadratic recast procedure.

5.1.1 Recast
Starting from the system of equations given in Eq. 2.2, the procedure is similar to the one applied to
the two body problem in Section 4.2. The only difference is that the problem was already re-scaled.
Adding the unfolding term λ to the fourth, fifth and sixth equations in Eq. 5.2, and the following
eight auxiliary variables 

v1 = (x+ µ)2 + y2 + z2

v2 = [x− (1− µ)]2 + y2 + z2

v3 =
√
v1

v4 =
√
v2

v5 = v1v3

v6 = v2v4

v7 =
1
v5

v8 =
1
v6

(5.1)

,
the set of equations describing the final recast system are

38
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0 = u− ẋ

0 = v − ẏ

0 = w − ż

0 = −λu+ x+ 2v − (1− µ)µv7 + (µ− µ2)v8 − (1− µ)v7x− µv8x− u̇

0 = −λv + y − 2u− (1− µ)v7y − µv8y − v̇

0 = −λw − (1− µ)v7z − µv8z − ẇ

0 = v1 − (x+ µ)2 − y2 − z2

0 = v2 − [x− (1− µ)]2 − y2 − z2

0 = v1 − v23
0 = v2 − v24
0 = v5 − v1v3

0 = v6 − v2v4

0 = 1− v5v7

0 = 1− v6v8

. (5.2)

In order to better analyse the results, the attention will be set on the families of orbits around the
first Lagrangian point L1, while families around the L2 and L3 points are reported in the appendix.

5.1.2 Families around L1 Lagrange point

Lyapunov

The continuation of the L1 family, truncating the Fourier series to account for the contribution of
only the first 30 harmonics, leads to the results depicted in Fig. 5.1 reporting the shape of the orbits.
Fig. 5.2 represents the value of the Jacobi constant at each frequency of the continuation.

Fig. 5.1: L1 family computed through ManLab
accounting 30 harmonics.
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Fig. 5.2: Jacobi constant vs orbit frequency along the
continuation.

As shown in Fig. 5.2 and in Fig. 5.3, during the continuation, from high to low frequencies, two
bifurcations were detected with the respective orbits reported in black in Fig. 5.1.
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Fig. 5.3: Evolution on the complex plane of the Floquet multipliers during the continuation of the L1 family.

The Floquet multipliers provide important information. The family is unstable, as one multiplier
is not located within the unit circle. The first bifurcation at ω = 2.29 is a tangent bifurcation,
therefore, the multipliers join the unit circle through +1. Further in the continuation, the second
bifurcation takes place at ω = 1.59 and, in this case, the multipliers move along the unit circle,
eventually merging at -1 and corresponding to a period-doubling bifurcation.
Unfortunately, it was not possible to detect this last bifurcation, as 30 harmonics were only enough
to approximate the dynamics up to the second bifurcation. However, by increasing the number of
harmonics, it is possible to compute the whole family at the cost of a much higher computation
time.
Indeed, when accounting for 200 harmonics, it was possible to obtain the results shown in Fig. 5.4
and in Fig. 5.5, depicting the whole family and its Jacobi constant, for which the computation of
the stability was not computed as too heavy for the used computation system.

Fig. 5.4: L1 family computed through ManLab
accounting for 200 harmonics.
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Fig. 5.5: Jacobi constant vs orbit frequency along the
continuation.
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Halo

The H1 family is obtained following the branch emerging from the first L1 bifurcation. Once
again, the continuation is performed accounting only the first 30 harmonics to ease the stability
computation, obtaining the results presented in Fig. 5.6 and Fig. 5.7.

Fig. 5.6: H1 family computed through ManLab
accounting 30 harmonics.
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Fig. 5.7: Jacobi constant vs orbit frequency along the
continuation.
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Fig. 5.8: Evolution on the complex plane of the Floquet multipliers during the continuation of the H1 family.

The evolution of the multipliers in Fig. 5.8 shows that the family is unstable at the starting point.
With the multipliers travelling on the unit circle starting from +1 towards -1, the unstable multi-
pliers re-joins the circle at +1 when the tangent bifurcation is detected at ω = 2.81. After this
bifurcation, due to the number of harmonics, the continuation follows a different family of orbits
around the second mass. Once again, to compute the whole family, it was necessary to increase to
200 the number of harmonics. The result is presented in Fig. 5.9.
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Fig. 5.9: H1 family computed through ManLab
accounting for 200 harmonics.
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Fig. 5.10: Jacobi constant vs orbit frequency along the
continuation.

Some interesting features can be deduced from Fig. 5.10. The frequency of the orbits is increased
towards the resonant ratio 2:1, meaning that the period of these orbits is twice the period of the
system. After this, the frequency decreases towards the 3:1 resonant ratio, with a strong decrease
in the associated energy.

Axial

The A1 family emerges from the second bifurcation of the L1 family. Unlikely to the previous two
families, 30 harmonics were enough for a good representation of the dynamics of this family. An
ulterior difference with the other families is that theA1 family is quite short. It just consists of two
branching points, the first where it emerges from the L1 and the second where the V1 emerges
from it. The results of the continuation are presented in Fig. 5.11 and in Fig. 5.12.

Fig. 5.11: A1 family computed through ManLab
accounting 30 harmonics.

1.545 1.55 1.555 1.56 1.565 1.57 1.575 1.58 1.585 1.59

3

3.005

3.01

3.015

3.02

3.025

3.03

3.035

Fig. 5.12: Jacobi constant vs orbit frequency along the
continuation.
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Fig. 5.13: Evolution on the complex plane of the Floquet multipliers during the continuation of the A1 family.

All the orbits are unstable, as also shown in Fig. 5.13. It can be observed that the multipliers move
towards and cross the +1 unit circle without stopping on it, with the tangent bifurcation taking
place during this cross at ω = 1.54.

Vertical

The V1 family is the last one taking place around the L1 Lagrange point and, as shown previously,
it bifurcates from the A1 family. Also in this case, taking only 30 harmonics into account was
enough to compute the whole family and its the stability. The results are reported in Fig. 5.14 and
Fig. 5.15.

Fig. 5.14: V1 family computed through ManLab
accounting 30 harmonics.
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Fig. 5.15: Jacobi constant vs orbit frequency along the
continuation.
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Fig. 5.16: Evolution on the complex plane of the Floquet multipliers during the continuation of the V1 family.

As implied by the name of the family, it primarily grows in the z direction. Fig. 5.16 shows how
all the orbits are unstable due to the fact that at least one multiplier is always outside of the unit
circle, and it shows no bifurcations had been detected.

With all the families around the first Lagrangian point being computed, it is now possible, in order
to have a better visualisation, to present the complete connection diagram between these branches
in Fig. 5.17.
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Fig. 5.17: Connection between the different family branches around the first Lagrange point.

The blue line in the graph represents the branch of Lyapunov orbits, from witch the Halo in green
and the Axial in red bifurcates. Finally, the Vertical family bifurcates from the Axial family and is
reported in cyan in the graph.
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5.2 Asteroid problem
5.2.1 Recast
The first step to approach the asteroid problem is to re-scale the equations of motion. Eq. 2.11 can
be easily re-scaled through the use of the characteristic units of length and time defined as

L0 = 2

(
3V

4π

) 1
3

, T0 =
2π

ωa

, (5.3)

where V is the volume of the polyhedral mesh and ωa is the angular velocity of the asteroid. In
combination to the addition of the unfolding term and making the equation to be a system of first
order ode leads to 

ẋ = u

ẏ = v

ż = w

u̇ = −λu+ 2ωaT0v + ω2
aT

2
0 x+

T 2
0

L0
U/x

v̇ = −λv − 2ωaT0u+ ω2
aT

2
0 y +

T 2
0

L0
U/y

ẇ = −λw +
T 2
0

L0
U/z

. (5.4)

The second step consists in the recasting of the gravitational potential gradient, since Eq. 2.28
shows the presence of non-linearities in theLe and ωf terms. In order to achieve an easier recasting
method, the gravitational potential gradient can be written as

∇U = M1L−M2L⊗ r+M32ω −M42ω ⊗ r, (5.5)

in which L contains all the Le terms from every edge, ω all the ωf

2
terms from every face. M1 is a

matrix whose columns are the results of Eermpe where rmpe is the medium point of the edge,M2 is
a matrix built by arranging in line all the Ee matrices. M3 a matrix whose column are the results
of Ffrbf where rbf is the barycentre of the face, and finally,M4 is obtained by arranging all the Ff

matrices in line.

Thanks to this new expression,and the re-scaling accordingly to the introduced constants, it is
possible to split the gravitational potential gradient into the edges component

∇U e = M1L−M2L⊗ r, (5.6)

and into the faces component

∇U f = M32ω −M42ω ⊗ r (5.7)

of which the recast is simpler.

Edges auxiliary variables

For the recast of the edges component, it is necessary to introduce the following auxiliary variables
for each edge of the mesh
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v1e =
√ri · ri

v2e =
√rj · rj

v3e =
v1e+v2e+eij
v1e+v2e−eij

v4e = ln(v3e)
v5e =

1
v3e

. (5.8)

Moreover, as the non-linearity is non-polynomial, it is also necessary to introduce the differential
of the 4th variable, which enables to threat the non-linearity as a quadratic one

dv4e = v5edv3e. (5.9)
The edges component will introduce 5ne auxiliary variables, where ne is the total number of edges.

Faces auxiliary variables

The recasting of this component will add a large number of auxiliary variables, in fact, for every
face it is necessary to introduce the following auxiliary variables:

v1f =
√ri · ri

v2f =
√rj · rj

v3f =
√rk · rk

v4f = rj · rk
v5f = rk · ri
v6f = ri · rj
v7f = (rj × rk)x
v8f = (rj × rk)y
v9f = (rj × rk)z
v10f = v1fv2f

v11f = v10fv3f + v1fv4f + v2fv5f + v3f + v6f

v12f =
rixv7f+riyv8f+rizv9f

v11f

v13f = arctan(v12f )
v14f = 1 + v212f
v15f = 1

v14f

. (5.10)

As for the edges component case, the non-linearity is non-polynomial and there is the necessity to
introduce the differential form of the 13th variable

dv13f = v15fdv12f . (5.11)
In total, the faces component recasting would add a total of 15nf auxiliary variables, where nf is
the total number of faces present in the polyhedron mesh.

Therefore, the recasting of the asteroid problem, due to the complex nature of the gravitational
potential gradient expression, requires a total number of 5ne + 15nf auxiliary variables.
In many cases, asteroid meshes can have a high number of edges and faces, as shown inTab. 5.1.
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Tab. 5.1 Necessary auxiliary variables for asteroid meshes.
Asteroid ne nf naux

1996 Hw1 4170 2780 62550
4769 Castalia 6138 4092 92070
6489 Golevka 6138 4092 92070
433 Eros 2562 1708 38430

For this reason an ordinary computer doesn’t have access to enough memory to handle such prob-
lems or to find solutions in a reasonable amount of time.
Therefore, in order to check if the software works for this problem as well, the computation in this
section was performed on an icosphere mesh having 30 edges and 20 faces.

5.2.2 Icosphere
The mesh under study has a density ρ = 2700 Kg/m3 and an angular velocity ωa = 1.99 · 10−4

rad/s, and it is shownin Fig. 5.18 along with the starting periodic orbit obtained with the HBM.

Fig. 5.18: Icosphere mesh and starting periodic orbit.

By applying the continuation procedure for a total of 35 steps, and taking into account only 30 har-
monics contributions for the Fourier development, it was possible to obtain the orbit family shown
in Fig. 5.19. It is important to note that the residue managed to converge to a value of R = 10−8

at the first step of the continuation by means of 10 Newton-Raphson corrections iterations. How-
ever, for every remaining step the correction was not performed as the residue naturally remained
within the 10−8 range.
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Fig. 5.19: Icosphere orbit family computed through
ManLab.
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Fig. 5.20: Jacobi constant vs orbit frequency along the
continuation.
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Fig. 5.21: Evolution on the complex plane of the Floquet multipliers.

Fig. 5.21 shows that a tangent bifurcation, with change of stability from unstable to stable was
detected. The position of the bifurcation is reported as well in Fig. 5.20, from which can be easily
seen that it occured rather early during the continuation at ω = 6.0657. After this bifurcations,
the multipliers moved along the circumference towards the -1 point.

In order to check the if those orbits correspond to the real ones, it is useful to compare them with
orbits obtained by integrating in time the initial conditions taken from the ManLab orbits, as it was
done before for the two-body problem.



5.2. Asteroid problem 49

Fig. 5.22: Trajectory x component computed through
time integration and through ManLab.

Fig. 5.23: Percentage relative error on the x component
between the two methods.

Fig. 5.24: Trajectory y component computed through
time integration and through ManLab.

Fig. 5.25: Percentage relative error on the y component
between the two methods.
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Fig. 5.26: Trajectory z component computed through
time integration and through ManLab.

Fig. 5.27: Percentage relative error on the z component
between the two methods.

Interestingly, figures from Fig. 5.22 to Fig. 5.25 show that the x and y component of the trajectory
almost coincide for both methods. Furthermore, Fig. 5.26 and Fig. 5.27 demonstrate how the error
becomes important if the component of interest is small. In fact in this case, the higher frequency
components of the dynamics that were truncated became more significant. This error can be easily
lowered by considering more frequency contributions in the Fourier decomposition.

It is finally possible to assess the difference between the results obtained through ManLab and
through the HBM as described in Section 2.3.1.
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Fig. 5.28: Trajectory x component computed through
HBM and through ManLab.
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Fig. 5.29: Percentage relative error on the x component
between the two methods.
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Fig. 5.30: Trajectory y component computed through
HBM and through ManLab.
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Fig. 5.31: Percentage relative error on the y component
between the two methods.
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Fig. 5.32: Trajectory z component computed through
HBM and through ManLab.
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Fig. 5.33: Percentage relative error on the z component
between the two methods.

Figures from Fig. 5.28 to Fig. 5.33 show that the trajectories computed with the two frequency
methods are almost coinciding, with the relative error being contained for almost all the period
duration and with the maximum difference happening at the extreme points for the x and y com-
ponents of the trajectories. Instead, for the z components, the HBM was able to get closer to zero,
therefore the relative error gets relatively high.

The here presented comparison between the time integration and the HBM gives sufficient evi-
dence to confirm that the software is computing corrects orbits.

Branching solutions

As ManLab is capable to automatically detect bifurcation points, it is possible to follow different
branches of the solution by imposing these as starting points of the following continuation steps.
By setting a stricter tolerance on the residue (R = 10−11) to the family in Fig. 5.19 and applying
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Newton-Raphson correction at each step, it was possible to detect another tangent bifurcation at
ω = 3.143, shown in Fig. 5.35.

Fig. 5.34: Icosphere orbit family computed through
ManLab.
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Fig. 5.35: Jacobi constant vs orbit frequency along the
continuation.

Fig. 5.34 reports a representation of the family belonging to the main branch and of the family
emerging from it. Orbits represented by a continuous line are stable while the ones represented
with a dashed line are unstable. Finally, orbits in black is where a change of stability or a branching
point is detected.
It can not only be seen that the main family is stable and the emerging one is unstable, but also
that the family has a constant frequency with a decreasing Jacobi constant.

Therefore, by selecting appropriate tolerances and Newton-Raphson corrections, it is possible not
only to detect branches points but also to follow them instead of the main branch, without the ne-
cessity of restarting the computations and without any re-initialisation. This is a strong advantage
of the method, it make possible to study in a more efficient way the complete bifurcation diagram
of the orbits around an irregular body.



6
Conclusions and future development

In this work, the open source ManLab was adopted to compute and continue periodic orbits in the
circular restricted three body problem environment and in the environment around irregularly-
shaped uniform-rotating asteroids. The work aimed to assess the validity of the well knownHBM
when being applied to a novel problem for the algorithm. Unlikely to the currently used method,
the HBM approaches the problem in the frequency domain, representing a more powerful and
efficient method with respect to the other commonly used methods.
To accomplish the objective, the dynamics within the aforementioned environments were stud-
ied, particularly focus on the choice of the appropriate model to compute the gravity field around
irregular-shaped bodies.
The theory behind both the HBM and its quadratic implementation in ManLab was documented.
Two simple examples consisting in a forced Van der Pol oscillator and in a free pendulum were
examined in order to demonstrate the initialisation step for the continuation within the software
and to show quadratic recast of the equations of motion, since these two are the most cumbersome
passages for achieving good results and that could take the most time of the analysis. Furthermore,
the Keplerian two body problemmotion was used in order to assess the validity of the gravitational
potential, as well as the correctness of the computations of the software. In addition, it served to
check if the initialisation and quadratic recast procedures works for a more complex problem as
well.
Therefore, through the analysis of the orbit families around the L1 Lagrangian point and using an
appropriate number of harmonics in the truncated Fourier development, it could be concluded that
the method is well suited for the resolution of the circular restricted three body problem.
It was finally found that the method, after an adequate recast, is well capable of solving the problem
around irregular-shaped bodies as well. However to demonstrate this a fictitious body was used
to carry out the computation, as real existing bodies require computational power well beyond the
available one in an ordinary computer. Using this body, it was possible to assess the equivalency
of the results computed through ManLab, time integration and the HBM. Furthermore, the possi-
bility to follow other branches was also proven for this case.

This work provides a proof of concept and builds the bases for further developments such as: the
analysis of periodic and quasi-periodic motion for both real asteroids and the CR3BP by using a
computer having more available computational power. Moreover, in order to compute faster the
results the method can be integrated for parallel computation and non-linear reduction methods
can be applied to the equations of motion of the problem of interest.
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A
Families around L2 and L3 Lagrange Point

A.1 Families around L2

Fig. A.1: L2 family computed through ManLab
accounting 200 harmonics.

Fig. A.2: H2 family computed through ManLab
accounting 200 harmonics.

Fig. A.3: A2 family computed through ManLab
accounting 200 harmonics.

Fig. A.4: V2 family computed through ManLab
accounting 200 harmonics.
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Fig. A.5: Connection between the different family branches around the second Lagrange point.

Fig. A.5 shows the connection between the branches of the orbits around the second Lagrange
point. Lyapunov family is shown in blue, Halo in green, Axial in red and Vertical in cyan.

A.2 Families around L3

Fig. A.6: L2 family computed through ManLab
accounting 200 harmonics.

Fig. A.7: H3 family computed through ManLab
accounting 200 harmonics.
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Fig. A.8: A3 family computed through ManLab
accounting 250 harmonics.

Fig. A.9: V3 family computed through ManLab
accounting 200 harmonics.
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Fig. A.10: Connection between the different family branches around the third Lagrange point.

Fig. A.10 shows the connection between the branches of the orbits around the second Lagrange
point. Lyapunov family is shown in blue, Halo in green, Axial in red and Vertical in cyan.


