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Chapter 7

Appendix A: LS Dyna Specifications

7.1 Governing equations

It is important to understand which are the equations that the software aims to solve during
the problem [43]. The main equations that govern the physical problem that is here to be
solved are as follows:

• Momemtum equation:
σij,j + ρfi = ρẍi, (7.1)

where σ is the Cauchy stress tensor, ρ is the current density, f is the body force and
ẍ is the acceleration of the body

• Mass conservation:
ρV = ρ0, (7.2)

where ρ0 is the reference density and V = detFij = det ∂xi

∂Xj
is the relative volume

or the determinant of the deformation gradient matrix.

• Energy balance equation:

Ė = V sij ε̇ij − (p+ q)V̇ (7.3)

where sij are the deviatoric stresses and p is the pressure, which can be calculated as
follows,

sij = σij + (p+ q)δij, (7.4)

p = −1

3
σijδij − q = −1

3
σkk − q, (7.5)
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where q is the bulk viscosity, δij is the Kronecker delta, and ε̇ij is the strain rate
tensor.

The solution seeked must also satisfy the following boundary conditions:

• The traction boundary conditions on boundary δb1:

σijnj = ti(t) (7.6)

• The displacement boundary conditions on boundary δb2:

xi (Xa, t) = Di(t) (7.7)

• The contact discontinuity condition on boundary δb3 when x+
i = x−

i :

(
σ+
ij − σ−

ij

)
ni = 0 (7.8)

The integral addition of the equations (7.1), (7.6) and (7.8) can be written placing every
term on the left hand side and integrating them over the correspondant volume and boundary
surfaces, assuming that the variation δxi is equal to zero in all conditions on δb2:

∫
v

(ρẍi − σij,j − ρf) δxidv +

∫
∂b1

(σijnj − ti) δxids+

∫
∂b3

(
σ+
ij − σ−

ij

)
njδxids = 0

(7.9)

Applying the divergence theorem, and noting that (σijδxi),j − σij,jδxi = σijδxi,j , this
leads to the weak form of the equilibrium equation1 which is a statement of the principle
of virtual work, and that is known as δπ:

δπ =

∫
v

ρẍiδxidv +

∫
v

σijδxi,jdv −
∫
v

ρfiδxidv −
∫
∂b1

tiδxids = 0 (7.10)

On another note, the coordinates of the points inside the elements into which the body is
divided, can be written mathematically through the following expression:

xi (Xα, t) = xi (Xα(ξ, η, ζ), t) =
k∑

j=1

Nj(ξ, η, ζ)x
j
i (t), (7.11)

1To develop the finite element equations, the partial differential equations must be restated in an integral
or ”weak” form. A weak form of the differential equations is equivalent to the governing equation and
boundary conditions, i.e. the strong form. In many disciplines, the weak form has specific names; for
example, it is called the principle of virtual work in stress analysis.[21].
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where Nj are the shape functions in the parametric system of coordinates (ξ, η, ζ), k is
the number of nodal points defining the element, and xj

i is the nodal coordinate of the
j th node in the ith direction. Since the body is discretized into n elements, the integral in
(7.10) may be separated using the spatial additively of integration into n terms, one for
each element. Then, the contribution of each element can be assembled back into a system
of equations. Implementing the expression of the coordinate of the points inside the finite
elements interconnected at nodal points on the isoparametric system (7.11) into this final
system of equations yields the most important equation in this model:

n∑
m=1

{∫
vm

ρNT
mNmadv +

∫
vm

BT
mσdv −

∫
vm

ρNT
mbdv −

∫
∂b1

NT
mtds

}
= 0 (7.12)

where N is the interpolation matrix, σT = (σxx, σyy, σzz, σxy, σyz, σzx) is the stress vector,
B is the strain displacement matrix, a is the nodal acceleration vector, b is the body force
loads and t is the traction load.

7.2 Composite Layup Structure

The main element types in LS Dyna that are revelant for the present project, along with
their specific nomenclature, are shown in Tab. 7.1.

Element
Type

Integration
technique Description Nomenclature

Reduced
1-point

Hexahedron, 1 integration
point in the centroid

*SECTION SOLID
ELFORM=1

Solid
Full

Hexahedron, 8 integration
points

*SECTION SOLID
ELFORM=2

Table 7.1: Solid element types description and LS Dyna nomenclature.[31]

7.2.1 Solid Elements

In this part, more characteristics of the solid element with 8 nodes (hexahedron or brick
element) are explained. This is one of the most reliable and robust element type in
numerical analysis, particularly for impact phenomena modelling.

In Fig. 7.1 an eight node solid hexahedron element along with a table indicating the
isoparametric local coordinates of its 8 nodes.
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Figure 7.1: Eight node solid hexahedron element.[43]

There are some important relationships that have been introduced in the previous section
7.1 and that should be particularized for the case of a 8-node hexahedron. The coordinates
of the points inside the element that construct the mesh (7.11), the shape function ϕj and
the interpolation matrix N (3x24) for this type of elements can be expressed as follows:

xi (Xα, t) = xi (Xα(ξ, η, ζ), t) =
8∑

j=1

ϕj(ξ, η, ζ)x
j
i (t) (7.13)

ϕj =
1

8
(1 + ξξj) (1 + ηηj) (1 + ζζj) (7.14)

N(ξ, η, ζ) =

 ϕ1 0 0 ϕ2 0 · · · 0 0

0 ϕ1 0 0 ϕ2 · · · ϕ8 0

0 0 ϕ1 0 0 · · · 0 ϕ8

 , (7.15)

Regarding the resolution of the system of equations of interest (7.12), one must compute
the strain-displacement matrix B for the solid element:

B =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x


N. (7.16)



7.2. COMPOSITE LAYUP STRUCTURE 131

The terms of this matrix are readily calculated thanks to the use of the Jacobian matrix2:
∂ϕi

∂x
∂ϕi

∂y
∂ϕi

∂z

 = J−1


∂ϕi

∂ξ
∂ϕi

∂η
∂ϕi

∂ζ

 (7.17)

7.2.2 Integration Method

In this part the integration process in solid elements is briefly introduced. To carry out
the volume integration required for the resolution of (7.12) in a solid element, a Gaussian
quadrature is introduced. This means that, being g some function defined over a volume
and n is the number of integration points, the integral can be approximated by:∫

v

gdv =

∫ 1

−1

∫ 1

−1

∫ 1

−1

g|J|dξdηdζ ≈
n∑

j=1

n∑
k=1

n∑
l=1

g(ξj, ηk, ζl) |Jjkl|wjwkwl (7.18)

where wj, wk, wl are the weighting factors, gjkl = g(ξj, ηk, ζl) is the value of the funtion
in the evaluation point and J is the determinant of the Jacobian matrix. The typical option
employed in LS-Dyna, due to its low computational cost and to eliminate the locking
issue experienced by fully integrated elements, is the one-point integration quadrature,
characterized by:

n = 1

wj = wk = wl = 2

ξ1 = η1 = ζ1 = 0

The integration can be performed at the origin of the coordinate system ξ = η = ζ = 0 to
take advantage in the anti-symmetry property of the strain matrix at this point,

∂ϕ1

∂xi

= −∂ϕ7

∂xi

,
∂ϕ3

∂xi

= −∂ϕ5

∂xi

,

∂ϕ2

∂xi

= −∂ϕ8

∂xi

,
∂ϕ4

∂xi

= −∂ϕ6

∂xi

,

(7.19)

thanks to which the effort required to compute this matrix is usually reduced.

2J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


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7.3 Hourglass Control Algorithm

In Tab. 7.2 the different hourglass control algorithms available in LS Dyna are presented,
along with their specific terminology. Note that the relevant options employed in the
present project have been remarked.

Hourglass
/Element Viscous LS Dyna Stiffness LS Dyna

Standard IHQ=1 Flanagan-Belytschko IHQ=4,5
Solid Flanagan-Belytschko IHQ=2,3 More Advanced IHQ=6,7,9

Classical IHQ=4,5,6

Shell Flanagan-Belytschko IHQ=1,2,3
Warping stiffness

formulation
fully integrated shells

IHQ=16

Table 7.2: Hourglass Algorithm description and LS Dyna nomenclature.

7.3.1 Viscous Hourglass Control

The resisting forces are computed based on the nodal velocity vector. The hourglass control
is orthogonal to all modes, except the zero energy hourglass modes and, instead of resisting
components of the bilinear velocity field that are orthogonal to the strain, the algorithm is
designed to resist components of the velocity field that are not part of a fully linear field,
ẋkLIN
i and that belong to the so-called hourglass velocity field, ẋkHG

i .

ẋkHG

i = ẋk
i − ẋkLIN

i , (7.20)

ẋkLIN
i = ˙̄xi + ˙̄xi,j

(
xk
j − x̄j

)
, (7.21)

where x̄i =
1
8

∑8
k=1 x

k
i and ˙̄xi =

1
8

∑8
k=1 ẋ

k
i . The hourglass shape vectors computed

by this algorithm, γαk, can be expressed in terms of the base vectors treated previously,
Γαk as:

γαk = Γαk − ϕk,i

8∑
n=1

xn
i Γαn′. (7.22)

These shape vectors are orthogonal to all the velocities embedded in the linear velocity
field ẋkLIN

i . The product expressed previously in (7.21) is now giα =
∑8

k=1 ẋ
k
i γαk = 0,

and the resisting hourglass forces can be expressed as:

fk
iα = ahgiαγαk, (7.23)

where ah is the constant defined previously in this same section. Moreover, it should
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be noted that LS Dyna includes two integration options when choosing to work with a
stiffness hourglass control. For more information on this please refer to the Theory Manual
[43].

7.3.2 Stiffness Hourglass Control

The stiffness hourglass control types calculates the resisting force vector proportional to
total hourglass deformation. This form of hourglass control allows elements to spring back
and will absorb less energy than the viscous forms. In other words, the hourglass stiffness
is evaluated rather than the viscosity.

The hourglass rates are multiplied by the solution time step to produce increments
of hourglass deformation. The hourglass stiffness is scaled by the element’s maximum
frequency so that stability can be maintained as long as the hourglass scale factor is
sufficiently small.

7.4 Material formulation

In this part, some additional information on the material formulation cards defined in LS
Dyna is given. This section is focused first on explaining the method define the fibre
direction in a composite material. Then, more insight is provided on the specific material
models employed in this present project for both developed models (high and low velocity
impact on composite plates).

7.4.1 Material Direction: AOPT and parameters

The numerical parameter that defines the method to compute direction of the fibers, AOPT,
is given inside the material formulation card. Inside the material card, there are other 14
parameters linked with the directional definition of its properties.

Before entering the different fibre-angle definition methods, the different coordinate
systems present in LS DYNA, shown in Fig. 7.2, need to be described:

• Global coordinate system (X-Y-Z): Default system in LS-DYNA used for geometry,
boundaries and loads.

• Local element coordinate system: Each element has its own coordinate system
determined by the node connectivity. The stress update at the element level is
performed in this local coordinate system.

• Material coordinate system (a-b-c): This is the coordinate system linked with the
material direction-dependent properties.
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• Local user defined coordinate system: The user can specify a local coordinate
systems to be used e.g. with load options etc.

Figure 7.2: Coordinate Systems LS Dyna. [41]

There are two possible methods to specify the material coordinate system (a, b and c
axis vectors) for solid elements in LS DYNA.

1. Inside the material formulation through the AOPT option. This method is able to
compute the material coordinate system directions by defining different input values.
There are particularly two methods of interest for this work:

• Global orthotropic (AOPT=2): The material system is based on global enti-
ties, a vector a coincident with the material principal direction, and other vector
d. This is the one employed for both constructed models in this present work.

c = a× d (7.24)

b = c× a (7.25)

Easier but also not recommendable for complex geometries.

• Local orthotropic (AOPT=3): The material system definition is based on
local entities, a vector v and an angle β.

a = v × n (7.26)

b = n× a (7.27)

where n is the normal of a midsurface determined by node connectivity. Once
the vectors a and b are computed they are rotated counterclockwise by β. This
option is recommended in complex geometry cases as it is completely based in
local values.

2. Rotating the initially defined material coordinate system in AOPT by an angle
specified in the element formulation.
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• Setting a rotation angle inside the element formulation (*ELEMENT SOLID
ORTHO). The system a-b-c defined inside the material formulation is rotated

by an angle specified in the card (A1).

Another relevant parameter related with the definition of the fiber direction is the one
known as Invariant Node Numbering (INN). This option must be activated to make
direction dependent materials independent of a change in element connectivity (local
coordinate system). For solids, this option defines vectors from the center of one face
to the opposite face. Then, cross products are made from these vectors and dot products
are made between the cross products. Then, the vectors and testing are done to make an
orthogonal system. This is computationally more expensive than for shells.

For both models in this work, due to the simplicity of the geometry the option chosen to
define material coordinate system is based on global entities, AOPT=2. The necessary
input values for this option are, the vector a, which defines the fiber axial direction
(principal direction of the material), and another auxiliar vector d, which in this case
coincides with the perpendicular direction to fibers. The third direction is computed easily
as c = a× d.

7.4.2 Material Formulations Specifications

This section is focused on specifying what are the parameters involved in the definition
of the composite material formulation cards used for the developed models. The main
formulations employed were the enhanced composite damage material (054/055) and
the elastic orthotropic composite (002), which was used for the low velocity sub-model
focused on delamination.

Material model 54: Enhanced Composite Damage

The composite plate is defined in both models, high and low velocity impacts, with the
enhanced composite damage material formulation (*MAT 054 or *MAT ENHANCED
COMPOSITE DAMAGE). A detailed description on the parameters involved in this

formulation was given in section 3.3.3. However, the whole material card and a brief
description on the strength softening parameters, which were not included in the present
developed models, are given here.

The full material card is presented in Fig. 7.3
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Figure 7.3: Material formulation 54 model card in LS Dyna (Enhanced Composite Dam-
age). [44]

Inside this material card, multiple numerical parameters are in charge of degrading the
fiber strengths when matrix failure takes place. These are:

• FBRT: Reduction factor for tensile fiber strength after matrix failure.

X∗
t = Xt · FBRT (7.28)

• YCFAC: Reduction factor for tensile fiber strength after matrix failure.

Y ∗
t = Yt · FBRT (7.29)

• SOFT: Strength reduction factor for crush simulations of the elements immediately
ahead of the crush front to simulate damage propagating from the crush front.

{XT,XC, Y T, Y C} = {XT,XC, Y T, Y C}∗ · SOFT (7.30)

The SOFT parameter is defined between [0-1] and since it cannot be measured
experimentally, it must be calibrated by trial and error for crush simulations.

Note that, these parameters are very difficult to measure through experimental tests
and, thus, should be estimated by trial and error [20].
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7.4.3 Material model 002: Orthotropic Elastic material

This constitutive law is simpler than the previous one as it only models the elastic behaviour
of the composite. This is why a lower number of parameters is needed to define this material
model. The material card is shown in Fig. 7.4.

Figure 7.4: Material formulation 2 model card in LS Dyna (Elastic Orthotropic material
law.)

The difference in the constitutive law of the composite modelled with these two
formulations, are presented in Fig. 7.5, where the fibre stress-strain curves are presented
for the correspondant uniaxial fibre-direction tension tests.

Note that the formulations of interest for this project are represented as: the elastic
orthotropic law (*MAT 002, red curve) and the enhanced composite damage option
(*MAT 054, dark blue curve) along with other LS Dyna formulations.

Figure 7.5: Stress-strain curves in uniaxial tension test in the fiber direction, for different
composite material constitutive laws available in LS Dyna.[34]
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7.5 Contact Algorithm

In this section we give some additional information on the contact modelling techniques
available in LS Dyna. The classification of the multiple contact formulations, a detailed
explanation on the contact search method, and on the penalty-based contact parameters,
are given as complementary information for the section dedicated to the construction of
the contact algorithm. In addition, some extra specifications for the contact models in this
project are given in order to provide enough information to the reader to reproduce this
model entirely on his own.

7.5.1 Classification of contacts

There are two primary ways to distinguish contact algorithms, the method used to search
for penetration and the method of applying contact forces after such penetration is found.

Contact search methods are classified between the node-based search (non-automatic
formulation), the bucket sort approach (automatic formulation), and the segment-based
search. These three methods are further explained in the first part of this section.

As for the contact force calculation methods, there are two relevant methodologies
implemented in LS-Dyna:

• Constraint-based: Based on a kinematic constraint between nodes of one part
and segments of the other. Constraints are imposed on the global equations by a
transformation of the nodal displacement components of the slave nodes along the
contact interface, which consists in eliminating the normal degree of freedom of the
slave nodes.

• Penalty-based: The method consists of placing normal interface artificial springs
between the penetrating nodes and the contact surface master segments. There are
three possible ways of implementing the contact algorithm:

– Standard Penalty Formulation (SOFT=0): Detects penetration of nodes into
segments and applies penalty forces to the penetrating node and the segment
nodes. The penalty stiffness is calculated based on the material properties.

– Soft Constraint Penalty Formulation (SOFT=1): Option implemented to
treat contact between bodies with dissimilar material properties (e.g. steel-
foam), as the penalty stiffness and its update during the simulation is not based
on the material.

– Segment-based Penalty Formulation (SOFT=2): Detects penetration of one
segment into another segment and then applies penalty forces to nodes of
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both segments. The calculation of the penalty stiffness is similar to the Soft
Constraint formulation.

7.5.2 Contact Search

In LS-DYNA, a contact is defined by identifying what locations are to be checked for
potential penetration of a slave entity (node or segment) through a master segment. A
search for penetrations, using any of a number of different algorithms is made every time
step. The penetration search methods can be classified between:

• ‘Old’ Node-based: Non-automatic contacts search for penetration. This algorithm
finds for each slave node its nearest point on the master surface (perpendicular
direction). This method is not good for disjoint or irregular meshes and requires of
correct orientation of segments.

• Bucket Sort Approach: This approach is the most commonly used by automatic
contacts (always preferred over non-automatic contacts), as it is more adequate for
non-continuous surfaces. The idea is to locate the nearest segment to the slave node.
The idea behind a bucket sort is to perform some grouping of the nodes, so that the
sort operation needs only to calculate the distance of the nodes in the nearest groups.
In a direct search of N nodes, to search for the nearest node the total number of
distance comparisons is N · (N − 1). In bucket search, we consider a partitioning of
the surface as the one shown in Fig. 7.6. With this partitioning the nearest node will,
either reside in the same bucket, or in one of the two adjoining buckets, so the total
number of distance operations is reduced to,

N · (3N
a

− 1) for 1D cases, (7.31)

N

(
9N

ab
− 1

)
for 2D cases, (7.32)

N

(
27N

abc
− 1

)
for 3D cases, (7.33)

where a, b and c are the number of partitions along the partitioning dimensions. It
should be also noted that for this search technique, the orientation of the segments is
not important, which means that contact is searched from both sides of a shell, as
opposed to the based node-search.
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Figure 7.6: 1D and 2D bucket sorting. [43]

• Segment-based: Searches for penetration between segments. In other words, a
segment A is deemed to have penetrated another segment B when at least one node
of segment A has penetrated each of the five planes associated with segment B. It
should be noted that it is not necessary that the same node of segment A penetrates
each of the five planes, which consist of the plane containing the segment plus the
four edge planes3 of the segment [43]. Segment-based contact is a good option if
contact surface is not smooth, perhaps having sharp corners or edges.

Concerning the search method employed, the contact options can also be divided
between one or two way contacts. In the one-way option, only the slave nodes are checked
for penetration. While in the two-way contacts, the masters and slaves are reversed and
contact checked both ways. Typically, if the name of the contact does not specify it, the
contact is two-way.

7.5.3 Penalty-based Contact

The physics behind the penalty contact problem are explained in this section. Considering
the following system:

3An edge plane is defined as being perpendicular to the segment and containing one edge of the segment.
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Figure 7.7: Location of contact point when slave node lies above master segment. [43]

The penalty problem starts with a slave node ns penetrating its corresponding master
segment which has a thickness offset value t. The penetration is detected and its depth l is
calculated,

l = ni × [t− r (ξc, ηc)] < 0 (7.34)

To counteract this penetration, an interface force, fs, is applied to the degrees of freedom
corresponding to the slave node (ns),

fs = −l · ki · ni if l < 0. (7.35)

The slave node is projected back up to the surface of the master segment. Finally, a reaction
force f i

m, is applied to the master segment nodes, such that the total force on the master
nodes equals the applied slave node force. Note that, ni is the unit normal to the master
segment at the contact point, ki is the stiffness of the numerical (artificial) contact spring
and l the penetration depth.

In Fig. 7.8, a more visual description of the penalty method and its parameters is
shown.

Figure 7.8: Penalty Based Theory of Contact.
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Note that, the left graph represents the slave node (green dot) penetration through the
master segment (dotted line). The penetration is detected when the slave node surpasses
the contact thickness, t, assigned to the master segment. Once the penetration is detected,
the penalty forces, fs are applied to the slave node. The right plot, presents the evolution
of the penalty force applied through the artificial ”contact spring” as a function of the
distance, d, coordinate.

As it was already explained, the penalty-based contact is based on different parameters.
The contact thickness (t) which determines the thickness offsets in contact and that can
be classified in:

• Shell thickness: Specified in the specifications of the shell element. This thickness
affects the mass and stiffness of the element.

• Contact thickness: The default value is normally, either the shell thickness or 40%
of the element edge. This value is set in the specifications of the contact algorithm
and does not affect the stiffness or mass of the shell but the maximum penetration
depth allowed for the contact before the slave nodes are set free.

The second parameter is the penalty stiffness (ki) of the artificial springs introduced to
simulate the penalty contact. This value can be computed through different methodologies:

1. Default penalty formulation (SOFT=0), suited for contact between similar stiff
materials. The stiffness is calculated as follows:

ki =
fsiKiA

2
i

Vi

for solid elements (7.36)

ki =
fsiKiAi

max(shell diagonal)
for shell elements (7.37)

where, fsi is the penalty factor (SFS and SFM in LS Dyna), Ai refers to the area
of the contact segment, Ki is the bulk modulus of the material established for the
contacted element K = E

1−2·ν . In LS-DYNA, a number of options are available
for setting the penalty stiffness value. This is often an issue since the materials in
contact may have drastically different bulk modulii. The default option that LS Dyna
selects for the the stiffness is the minimum between the master segment and the
slave node. However, there are other possibilities (PENOPT) and it should be noted
that for a contact between shell and a solid element segments, the shell determines
the stiffness always.

2. Soft Constraint Penalty (SOFT=1), better suited for soft materials. The contact
between soft and stiff materials results in an undesired effect on the contact stiffness,
lowering its value and ultimately causing excessive penetration. By choosing this
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option, an additional stiffness is calculated. This stiffness is based on the Courant’s
criterion or in the stability of the local system, comprised of two masses (segments)
connected by a spring:

kcs(t) = 0.5 · SOFSCL ·m∗ ·
(

1

∆tc(t)

)2

, (7.38)

where SOFSCL is the scale factor, m∗ is a function of the mass of the slave node and
of the master nodes, δt is set to the initial solution timestep. If the solution time step
grows, δtc is reset to the current time step to prevent unstable behavior. This type of
contact is normally used for contact between parts with dissimilar material properties,
or dissimilar mesh densities, like the one studied in this work. A comparative check
against the contact stiffness calculated with the traditional penalty formulation is
done, and the maximum value is chosen.

3. Segment-Based Penalty formulation (SOFT=2), well-suited for dissimilar material
interactions like the previous option, but in this case with a segment to segment
search approach. As for the penalty stiffness calculation method, it is similar to
SOFT=1. The penalty force is applied to both segments involved in the contact:

kcs(t) = 0.5 · SLSFAC ·


SFS

or

SFM


(

m1m2

m1 +m2

)(
1

∆tc(t)

)2

(7.39)

In this case, segment masses (m1 and m2)4 are used rather than nodal masses.

Another special feature of this option is that initial penetrations are ignored by default
without the need of any additional parameters. That is, there is no perturbation of
the geometry to alleviate initial penetrations. However, the penetrations are not
completely deleted from the problem, but for each segment pair they are stored
and subtracted from the current penetration before calculating penalty forces. The
purpose of this logic is that a segment that penetrates undetected for a brief period is
not shot out by a large penalty force once detected.

Finally, two of the specific field parameters of this option should be mentioned.
First, SBOPT which is in charge of determining the penetation check methodology.
The recommended SBOPT is always the warped segment option (SBOPT=3), as
it accurately checks for penetration of warped surfaces. The second parameter
is related to the search depth for nodal penetrations through the closest contact

4The segment mass is equal to the element mass for shell segments and half the element mass for solid
element segments.
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segments, DEPTH. The recommended value is DEPTH=5 when using SOFT=2, as
both surface penetrations and edge-to-edge penetrations are checked.

7.5.4 Contacts Additional Specifications

Projectile-Plies Contact

The contact formulation for this interaction in both models (high and low velocity impact)
was *CONTACT AUTOMATIC ERODING SURFACE TO SURFACE. Some more
additional specifications of this contact are included in this section.

The AUTOMATIC keyword indicates that a two-way contact formulation is em-
ployed, which means that the master and slave distinction is not important.

The ERODING keyword allows the contact surface to be updated as elements on
the free surface are deleted due to material failure criteria. As slave nodes become
unattached/free due to element deletion, those nodes may optionally continue to be consid-
ered in the contact or removed from the problem by the parameter ENMASS. The eroding
contact used in this case is the *CONTACT ERODING SURFACE TO SURFACE, in
which the slave and the master sides are defined through parts or part sets. There are also
other possibilities:

• *... NODES TO SURFACE: The slave side of the contact is a node set containing
all the nodes of the slave side part(s). A bucket sort is performed after each time step
in which an element is deleted. This type is recommended for bird-to-blade contact
in bird strike simulations.

• *... SINGLE SURFACE: It is based on the single surface contact algorithm, which
includes all the contact sides as slave parts. This option does not only allows
for erosion representation in the projectile-plies contact interface, but also on all
the contact interfaces between plies and in the plies self-contact. This model is
way too complex to introduce this contact option, since it introduces much larger
computational efforts and instabilities in the contact calculations.

Interply Contact

This contact interaction employs the *CONTACT AUTOMATIC SINGLE SURFACE LS
Dyna option, and is introduced whenever the eroding contact explained previously is also
used in the models. This contact is defined between all the plies of the plate , which are
all part of the slave side, and is active when ply elements get deleted and non-subsequent
plies come into contact, or when there is compressive buckling (self-contact) present in the
plies.
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The most relevant characteristic is that, since the contact occurs between plies with
similar materials and mesh sizes, the penalty stiffness is calculated with the default
formulation SOFT=0, unlike in the previous case.

Delamination Contact

The third contact interaction defined in both models actually aims to represent, not only
the contact between subsequent plies, but also the possible delamination between dif-
ferent fibre-oriented plies. For this purpose the LS Dyna formulation *CONTACT
TIEBREAK SURFACE TO SURFACE is used. This contact is already explained in

detail in the manuscript, so only a few additional notes are made on the tying conditions
and on the theoretical basis of the OPTION=9’s tiebreak delamination method.

First, the criteria for tying a slave node to a master segment should be described.
Note that, if the criteria are not met, the node is not tied and a warning is issued during
the simulation. It is highly recommended to specify only the nodes or segments you want
to be considered for tying (node sets or segment sets rather than parts or part sets). With
this tip, undetection of tied conditions can be avoided. The tying conditions in tiebreak
contacts are:

1. The slave node lies within the orthogonal projection of a master segment.

2. The gap between the slave node and its master segment is less than a specific value
based on element dimensions. The tolerance can usually be overridden, e.g., by
specifiying a negative contact thickness.

D < 0.6 ∗ (master thickness + slave thickness) (7.40)

Inside the tiebreak contact model, there are different options to model delamination.
The choice of which option to use depends on the requirements of the model and of the
allowable parameters, which requires for standard ATSM material tests to be carried out.

These options can be classified depending on the damage law employed to model the
evolution of delamination through the composite plate. This was already explained in
detail in section 3.3.4, where it was clearly indicated that OPTION=7 is the simplest
approach without any damage model, OPTION=6 is intermediate as it uses a linear law
for delamination growth, and finally, OPTION=9 is the most complex case with a bilinear
damage law with possibility of representing a mixed-mode loading condition.

In this section, the objective is to provide a more detailed explanation of the most
complex delamination modelling option (OPTION=9) used in this work. This option is
similar to using cohesive elements, which features a bilinear traction-separation law, mixed
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mode delamination, and peak tractions as function of element size. The two modes of
delamination described are opening (I), shear (II) and a third mode known as tear (III)
which is going to be inside the second mode. The peak tractions (S,T), which note the
onset of damage for each mode, can be defined as functions of characteristic element
length (square root of master segment area) using load curves. With these options, nearly
the same global responses (for instance, load-displacement curve) can be obtained with
coarse meshes compared to fine meshes. The only limitation of choosing this method to
model delamination is the need of the adequate the material parameters.

The model is graphically represented in Fig. 7.9

Figure 7.9: Mixed-mode traction separation law. [32]

For the individual modes I and II, the onset of delamination takes place at the following
values of the relative displacements:

δI0 =
σn

kI
(7.41)

δII0 =
σs

kII
(7.42)

Correspondingly the failure or ultimate relative displacements occur when,

δIm =
2GIc

kIδI0
(7.43)

δIIm =
2GIIc

kIIδII0
(7.44)

For the mixed mode, the relative displacement can be approximated by a quadratic interac-
tion between the two modes,

δ =

√
⟨δI⟩2 + δ2II , (7.45)

where, δII accounts for both the shear and the tear fracture modes, δII =
√

δ2shear + δ2tear .

Besides, the delamination onset relative displacement this mixed mode crack opening
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condition can be expressed as follows,

δ0 = δI0δII0

√
1 + β2

(δII0)
2 + (βδI0)

2 (7.46)

where β is a variable that represents the mode mixity and it is calculated β = max
(
0, δII

δI

)
.

On the evolution of delamination, the following power law is employed,(
GI

GIc

)α

+

(
GII

GIIc

)α

= 1 (7.47)

If this power law is translated in terms of the relative displacements following the equations
(7.46), the evolution of this phenomenon can be described as

δm =


1 + β2

δ0

[(
kI
GIc

)α

+

(
kIIβ

2

GIIc

)α]− 1
α

⇐= δI > 0

δIIm ⇐= δI ≤ 0

(7.48)

To finalize the description of this model, one should note that the damage law can then
be represented in terms of relative displacements as:

d =
δm (δ − δ0)

δ (δm − δ0)
(7.49)

A final note is given on the common values employed for the damage evolution
parameter α. Normally, for carbon-fibre epoxy composites one can represent the mixed
mode data using 1 ≤ α ≤ 2.

For a better understanding, Tab. 7.3 includes the description of every parameter and
its correspondance between a cohesive element and a tiebreak contact formulation in LS
Dyna.
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Model Parameters
Cohesive element

(*MAT 138)
Tiebreak contact

(OPTION=9)
Normal peak

traction (T or σn) [MPa] T NFLS

Shear peak
traction (S or σs) [MPa] S SFLS

Exponent mixed
mode criteria (α) XMU PARAM

Energy release rate
for mode I (GIC) [MPa ·mm] GIC ERATEN

Energy release rate
for mode II (GIIC) [MPA ·mm] GIIC ERATES

Ratio between the
normal and in-plane stiffness ( kI

kII
) ET/EN CT2CN

Stiffness normal to
cohesive element mid plane

(kI) [MPa/mm]
EN CN

Ultimate displacements
(σIm, σIIm) [mm] UND, UTD n/a

Table 7.3: Cohesive element and tiebreak contact option 9 parameters. Bilinear traction
separation mixed mode law.



Chapter 8

Appendix B: Material Properties

This Appendix collects the material properties of the composite plates of the high and low
velocity impact models. Besides, the material testing procedures carried out in previous
studies to characterize the behaviour of the composite materials of interest are explained.
These experimental data has been borrowed as an input for the present models.

8.1 High Velocity Model

The material parameters were obtained from two studies linked with the reference numeri-
cal model [6] and ballistic impact tests [39] employed as a basis in the construction of the
present high velocity model.

The first resource was carried out by Kay et.al in [27], and is a characterization
procedure of BMS8-212 during penetration. The second study focuses on the delamination
modelling of BMS8-212,mconducted by Powell et.al in [49].

8.1.1 Composite Plate: BMS8-212

BMS8-212: Ply characterization

The mechanical properties of BMS8-212 composite are shown in Tab. 8.1. Note that a
denotes the fiber direction, X is the fiber direction strength, b is the transverse direction (Y
is the transverse strength) and c is the normal direction (Z is the normal direction strength).
The fiber direction strengths were was assumed to be is rate insensitive.

These properties come from the study carried out by Kay et al. [27] where they per-
formed the characterization during penetration of a BMS8-212 composite panel. The
elastic properties and fiber direction strengths were provided by Boeing, the main supplier
of this fibre reinforced composite panels for aerospace applications, and from communica-
tions with Steve DeTeresa. The matrix dominated compressive strengths were measured at

149
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LLNL, and the tensile matrix properties were estimated.

Mechanical
Properties

BMS 8-212

ρ
(kg/m3)

Ea

(GPa)
Eb

(GPa)
Ec

(GPa) νab νca νcb
Gab

(GPa)
Gbc

(GPa)

1548 117.9 8.825 8.825 0.025 0.025 0.3 5.51 2.53
Failure

Parameters
XT

(GPa)
XC

(GPa)
YT

(GPa)
YC

(GPa)
SC

(GPa) ϵT ϵC ϵM ϵS

1.103 1.034 0.055 0.25 0.07 9.35e-3 -8.77e-3 0.028 0.03

Table 8.1: Mechanical properties and failure parameters for material model, BMS8-212
carbon fiber-epoxy composite. [27]

BMS8-212: Delamination characterization

To determine the interlaminar toughness parameters for the high velocity model, the study
developed by Powell et al. [49] was used as a reference.

This work was carried out to aid the computational modelling of airplane fragment-
shielding systems. By conducting the necessary material tests, the mode I interlaminar
fracture toughness of unidirectional composite samples of BMS 8-212 was determined. In
the experiments presented in this study, tests were performed on five 26-ply coupons with
nominal thickness of 5 mm, designed to permit fracture toughness determination according
to ASTM Standard D5528-01 [3].

On another note, this study included too few tests at each loading rate to determine
whether there is any rate sensitivity for the fracture toughness. In the end, it was assumed
that strain rate does not have an effect on the opening energy release rate.

Loading was applied using a screw driven machine and measurements were taken
on the force and crack-opening displacement. These data was then used to calculate the
fracture toughness of the composites using the three methods provided in ASTM Standard
D5528-01 [3]:

• Modified Beam Theory (MBT): This method treats the composite sample as a
double cantilever beam, with each beam originating at the origin of the crack, leading
to the expression for fracture toughness:

GB
Ic =

3Pδ

2ba
. (8.1)

However, a correction to the original model is implemented to prevent the overes-
timation of GIc. This correction consists in considering the crack length slightly
longer than the observed length a, so the crack length is modified by a+∆, and the
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corrected expression for the energy release rate is:

GMBT
Ic =

3Pδ

2b(a+ |∆|)
(8.2)

It should be noted that, ∆ is calculated from experimental data under the assumption
that the beam compliance C = δ/P varies as the cube of the crack length.

• Compliance Calibration (CC): The fracture toughness using this method is com-
puted as:

GCC
Ic =

nPδ

2ba
(8.3)

where the power n, is the slope of the least-squares best fit line to a log-log a plot of
the compliance (C) against the crack length (a). This method is based on the power
law dependence between the compliance and the crack length as:

C = αan. (8.4)

• Modified Compliance Calibration (MCC): This method eliminates the use of
the crack length a in the direct calculation of the fracture toughness through an
identification of a parameter named A1 similar to α, which appeared on the previous
method. The fracture toughness using this method is then,

GMCC
Ic =

3P 2C2/3

2A1bh
. (8.5)

where h is the thickness of the specimen. Specifically, the MCC method identifies
the parameter appearing in the expression:

a

h
= A1C

1/3. (8.6)

The results shown in the study [49] proof consistency on fracture toughness calculation
between the three techniques throughout the test. This agreement between methods is
similar to that reported in ASTM Standard D5528-01 [3].

Finally, and considering the values at crack lengths of δ = 58mm and beyond, after
determining the resistance curves (R-curves) of the five delamination coupons, the average
steady-state fracture toughness is considered to be GIc = 135J/m2. This is the final value
that was used in the high velocity model.

The rest of the properties tiebreak contact are shown in Tab. 8.2.
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Tiebreak Parameters Description Value

NFLS
Normal stress

(σn) [MPa] 1357

SFLS
Shear stress
(σn) [MPa] 10590

PARAM
Friction angle

(ϕ) [rad] 0

ERATEN
Mode I fracture toughness

(GIC) [J/m2] 135

ERATES
Mode II fracture toughness

(GIIC) [J/m2] 400

Table 8.2: Tiebreak contact parameters implemented in high velocity impact on composite
plate. [6, 39, 49]

8.1.2 Elasto-Plastic Projectile: Steel

The mechanical properties of the steel projectile are shown in Tab. 8.3.

Mechanical
Properties

Steel

ρ
(kg/m3)

E
(GPa) ν

7857 206.7 0.3

Table 8.3: Mechanical properties steel impactor high velocity impact model. [39]

8.2 Low Velocity Model

8.2.1 Composite Plate: T800/M21

The mechanical properties of the T8000S/M21 composite material used for the plate of the
low velocity impact model are shown in Tab. 8.4.

Mechanical
Properties

T800S/M21

ρ
(kg/m3)

Ea

(GPa)
Eb

(GPa)
Ec

(GPa) νab νca νbc
Gab

(GPa)
Gbc

(GPa)

1550 157 8.5 8.5 0.35 0.35 0.53 4.2 2.2
Failure

Parameters
XT

(GPa)
XC

(GPa)
YT

(GPa)
YC

(GPa) SC

2.2 1.2 0.045 0.28 0.045

Table 8.4: Mechanical properties of composite failure model for T800S/M21. [25]
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T800/M21: Ply Characterization

The material for the low velocity impact model was characterized thanks to the exper-
imental tests carried out in the reference study [25], which served as the basis for the
construction of this model. The material model in this work was calibrated using the results
of these experiments.

The material characterization tests are presented in this section. Basically, quasi-static
(tensile tests) and dynamic (Split Hopkinson’s Pressure Bars, SHPB) tests were conducted
to obtain mechanical properties of unidirectional composite material T800S/M21.

First, the quasi-static tensile and shear tensile tests in the different fibre directions
were performed to the T800/M21 specimen. The results from the reference study [25]
were borrowed to obtain the characteristics for the strain to failure parameters. The results
of the tensile tests conducted in the samples of T800/M21 with stacking sequences [0 deg]4
and [90 deg]8 are shown in Fig. 8.1.

Figure 8.1: Tensile testing of T800S/M21 on samples [0 deg]4 and [90 deg]8. [25]

The results of the shear tensile tests performed on the sample with [±45]2s are shown
in Fig. 8.2:

Figure 8.2: Shear tensile testing of T800S/M21 [±45]2s.[25]
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The final results from the tensile tests performed on the laminates were:

• Tensile testing [0]4: Failure stress σr
11 = 2698 MPa and failure strain ϵr11 = 1.557%.

• Tensile testing [90]8: Failure stress σr
22 = 48 MPa and failure strain ϵr22 = 0.6%.

• Shear tensile testing [±45]2s: Failure stress σr
12 = 64 MPa and failure strain

ϵr12 = 2%.

Secondly, the dynamic compression tests or SHPB were performed in different
samples to characterize the strain rate effect on the mechanical behavior of T800S/M21
samples. The strain rate effect is not a part of the present study so, the experimental tests
have been only employed to obtain the failure stresses and strains as in the quasi-static
case, for the compressive loading mode.

In this case, the stress-to-strain curves are not shown, since they provide much more
information than the one that was actually needed, but all the results can be checked in the
reference study [25].

The experimental tests employed for the calibration of the strain to failure parameters
of T800/M21 were:

• Compression of specimen [0]16: At a strain rate range ϵ̇ = 234− 855s−1, failure
stress vary between σc

11 = 960− 1080 MPa the failure strains ϵc11 = 0.0105− 0.015.

The compressive failure of carbon fiber plies is usually attributed to micro-buckling
of fibers. This may explain the reduction in modulus and increase in failure strain, as
the failure is no more pure compression of fibers but a mixed mode failure of fibers
and matrix.

• Compression of specimen [90]16: At a strain rate range ϵ̇ = 250 − 730s−1, the
failure stress varies between σc

22 = 290 − 390 MPa and the failure strain ϵc22 =

0.033− 0.036.

• Compression of specimen ±[45]3s: At a strain rate range ϵ̇ = 420−1100s−1, failure
stress varies between σc

x = 190− 295 MPa and failure strain ϵcx = 0.07− 0.095.

The final values employed in the material card of the composite in the low velocity model
were already shown in the manuscript but have also been included in this section Tab. 8.5.

T800/M21: Delamination Characterization

For the delamination characterization, the necessary experimental tests were also carried
out in the reference study [25]. The process followed is explained on this part to give some
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Failure ϵ /
Ply Angle Description ±45 deg 90 deg 0 deg

ϵfT
DFAILT (%)

Fibre
tension 2 0.6 1.557

ϵfC
DFAILC (%)

Fibre
compression -7 -3.3 -1.05

ϵfM
DFAILM (%)

Matrix tension/
compression -7 3.3 1.05

ϵfS
DFAILS (%)

Shear 3.5 0 0

Table 8.5: Strains to failure parameters inside material formulation.

more detail on the experimental and numerical procedures that are necessary to compute
these fracture mechanics parameters.

For the first delamination mode I (opening) the quasi-static double cantilever beam
(DCB) tests were carried out according to ISO–15024 standard. Some crack gages were
used to measure the variation in voltage when a crack propagates through them. The crack
length, a, as a function of load point opening displacement σ is computed (5 to 15 mm).
Then, an R-curve which shows the evolution of the energy release rate (fracture toughness)
GIc as a function of the size of the crack a, thorough the DCB test is computed. Finally,
for T800S/M21, one can consider that at a size of a = 40 − 50 mm the crack initiation
occurs. The computed energy fracture toughness for mode I is GIc = 765J/m2, the value
used for numerical simulation of DCB and impact simulations of T800S/M21.

The second delamination mode II (shear) parameters were obtained from the end
loaded split (ELS) tests carried out on a screw driven tension-compression machine. The
R-curve for ELS tests is computed through the test results and a final value mode II
toughness is reched GIIc = 1250J/m2. This value can be used for numerical simulations
of impact problems.

The rest of the parameters involved in the tiebreak contact modelling are shown in the
following table Tab. 8.6.
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Contact Tiebreak
Option/Parameters Description OPTION=7 OPTION=6 OPTION=9

NFLS
Normal failure
stress (MPa) 60 60 60

SFLS
Shear failure
stress (MPa) 60 60 60

PARAM

Friction angle, ϕ (rad)
Critical distance,

CCRIT (mm)
Damage model

exponent, α

0 0.025 1

ERATEN
Normal energy

release rate (J/m2) 765 765 765

ERATES
Shear energy

release rate (J/m2) 1250 1250 1250

CT2CN
Ratio tangential

to normal stiffness n/a n/a 1

CN
Normal stiffness

(kN/mm3) n/a n/a 100

Table 8.6: Tiebreak contact options parameters definition and values implemented in the
numerical model [25].

8.2.2 Rigid Projectile: Steel

The mechanical properties of the rigid steel projectile are shown in Tab. 8.7.

Mechanical
Properties

Steel

ρ
(kg/m3)

E
(GPa) ν

7857 206.7 0.3

Table 8.7: Mechanical properties steel impactor high velocity impact model. [39]


