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Abstract
This Master’s Thesis presents a two-dimensionnal Lagrangian model of the drift of floating objects
on rivers during flood events. Particular attention is paid to the prediction of bridge obstruction by
such debris. It comprises three parts: (1) a literature review aiming to list relevant previous work,
thus establishing the existing theoretical bases and identifying research areas in need of further
investigation; (2) the development of the model used in this thesis, comprising a dynamic model
and a collision model; (3) a validation stage with the aim of reproducing simulations and experi-
ments from the literature, and also simulating real flows.

The literature review identified two main categories of model, one focusing on the fundamen-
tal dynamics of the floating object, the other on real-life applications. These two trends can also be
distinguished in collision models. However, the literature provides neither obstacle nor detection
models. On the other hand, the corrections to be made are often detailed.

A dynamic model and a collision model have been developed. The dynamic model is inspired
by the literature, while the collision model is innovative in terms of obstacle representation and
detection. In particular, the model consists of a rectangular representation of the obstacle. This
enables a systematic study of the different types of collisions and detections existing on such a
shape. An implementation has been carried out to model a single floating cylinder.

Two phases of simulations of floating cylinders were launched. The first was carried out under
hypothetical flow conditions, to verify the basic cases of cylinder behavior. As for collisions, the
typical cases identified by the model were verified, as well as more complex cases of multiple and
simultaneous collisions. The model was then validated by comparison with results from the liter-
ature, and the simulation of collisions was tested on cases from the laboratory.

The study focused on predicting channel obstruction by blocking the cylinder between vari-
ous obstacles. Experiments showed that the code was capable of such predictions, in a variety of
situations. In addition to permanent obstructions, temporary obstructions were also observed in
many configurations.

Finally, the limitations of both the model and the code were analyzed, and prospects for future
work were proposed.
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Résumé
Cette thèse de master propose un modèle Lagrangien bidimensionel de la dérive d’objets flottants
sur des rivières durant des épisodes d’inondations. Une attention particulière est portée sur la
prédiction d’obstruction de pont par ces débris. Elle comprend trois parties : (1) une revue de la
littérature visant à recenser les travaux antérieurs pertinents, établissant ainsi les bases théoriques
existantes et identifiant les lacunes de recherche à approfondir ; (2) le développement du modèle
utilisé dans cette thèse, comprenant un modèle dynamique et un modèle de collision ; (3) une
étape de validation ayant pour but de reproduire des simulations et expériences de la littérature et
aussi de simuler des écoulements réels.

La revue de la littérature a identifié deux grandes familles de modèles, l’une proposant un mod-
èle plus axé sur la dynamique fondamentale de l’objet flottant et l’autre plus axée sur une applica-
tion en cas réel. Ces deux courants se distinguent aussi dans les modèles de collisions. Cependant,
la littérature ne fournit ni modèle d’obstacle, ni modèle de détection. En revanche, les corrections
à apporter sont souvent détaillées.

Un modèle dynamique et un modèle de collision ont ainsi été développés. Le modèle dy-
namique s’inspire de la littérature tandis que le modèle de collision est innovant en termes de
représentation d’obstacles et de détection. En particulier, le modèle consiste en une représenta-
tion rectangulaire de l’obstacle. Cela permet une étude systématique de différents types de col-
lisions et détections existantes sur une telle forme. Une implémentation a été menée, visant la
modélisation d’un unique cylindre flottant.

Deux phases de simulations de cylindres flottants ont été lancées. Une première sous un
écoulement hypothétique, permettant de vérifier les cas de base quant au comportement du cylin-
dre. Quant aux collisions, les cas types identifiés par le modèle ont été vérifiés ainsi que des cas
plus complexes de collisions multiples et simultanées. Ensuite, une confrontation avec les résul-
tats de la littérature a permis de valider le modèle et de tester la simulation de collisions sur des
cas de la laboratoires.

L’étude a été axée sur la prévision d’obstruction du canal par blocage du cylindre entre divers
obstacles. Les résultats ontdémontré la capacité du code à prédire ce phénomène et ce, dans des
situations variées. Outre des obstructions permanentes, des obstructions temporaires ont été re-
marquées dans diverses configurations.

Enfin, les limites du modèle ainsi que du code ont été analysées et des perspectives pour de
futurs travaux ont été proposées.
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Nomenclature

Acronyms

BBO Basset–Boussinesq–Oseen

LW large wood

RK22 Runge-Kutta order 2, 2 iterations

Indices

∥ tangential

⊥ perpendicular

am added mass

c cylinder

CM center of mass

CP center of pressure

d drag

f friction

g gravity

n subpart of the body

s side

tot total / resulting

w water

Mathematical convention

· scalar product

ê unit vector

n̂ normal unit vector

× cross product

q vector quantity q

q scalar quantity q

Physical quantities

α angle of the channel bed with the di-
rection of the channel [°]

β incidence angle of collision [°]

ϵ coefficient of restitution [−]

η dynamic viscosity [kg/ms]

λ wavelength [m]

a acceleration [m/s2]

F force [N]

g gravitational acceleration [m/s2]

u flow velocity [m/s]

v debris velocity [m/s]

ω angular velocity [°/s]

ρ density [kg/m3]

θuv angle between the cylinder’s major
axis and the flow velocity [°]

θx angle between the cylinder’s major
axis and the x-axis [°]

C coefficient [−]

d diameter [m]

Fr Froude number [−]

h water depth [m]

I momentum of inertia [kgm2]

J Impulse momentum [kgm/s]

l length [m]

N Number of sub-parts of the
cylinder [−]

p pressure [Pa]

Re Reynolds number [−]

Rep particulate Reynold number [−]

Sp projection of cross-area of the trunk
in the flow direction [m2]
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Introduction
The World Meteorological Organization, a United Nations agency specialized in meteorology, rec-
ognizes floods as one of the most serious threats posed by natural disasters that affect many re-
gions of the world every year. In recent decades, flood damage has increased at an exponentially
alarming rate. This trend can be attributed to the increasing frequency of intense precipitation
events, changes in upstream land use practices, and the steady increase in the population and
valuable assets moving into flood-prone areas. Around 85% of floods are caused by flash floods,
and they are also responsible for the highest mortality rate. They are among the world’s deadliest
natural disasters, causing over 5,000 deaths every year. In addition, inadequate flood planning and
management practices often exacerbate these dangerous situations (World Meteorological Orga-
nization (WMO), 2023).

This is no exception in Western countries such as Belgium. Indeed, Kundzewicz et al. (2010)
demonstrate a rapid increase in flood risks worldwide and in Europe in recent years. This escala-
tion is mainly due to climate change. In the city of Liege (Belgium), there is a significant flood risk
projected for the time horizon 2100. This risk is primarily attributed to the anticipated high values
of future flood discharges, which are estimated to be approximately 30% higher compared to the
current climate conditions (Dewals et al., 2015).

A particularly common phenomenon during floods is the drifting of floating debris. They often
have the potential to create blockages in certain areas, particularly where it accumulates between
bridge piers and obstructs river flow. This phenomenon can cause a localized alteration in flow
velocity, resulting in erosion and additional damages. Moreover, if the condition for the collapse
of the jam exists, the phenomenon can evolve into a dam break flow that results in an increase in
downstream discharge (Macchione and Lombardo, 2021).

Flooding is an integral part of the natural river cycle. Consequently, flood management and
prediction play a crucial role in protecting people and infrastructure from these devastating events.

Flood risk maps are crucial for flood risk prevention, but there is a need to take into account
the additional risks and damage caused by clogging. Consequently, there is a growing need to
enhance predictions of floating object behavior and the risk of bridge obstruction. Although nu-
merical models of floating debris behavior exist for laboratory situations, they have not yet been
tested on real cases, and the study of obstructions on bridges remains unclear.

The primary objective of this master’s thesis is to enhance the comprehension of the move-
ment of a floating debris (like a tree trunk) in a river in flood conditions. The ultimate aim is to
develop an original two-dimensional numerical model of the dynamics of these objects. In par-
ticular, this model should be able to handle debris-structure collisions and thus predict bridge
obstructions. The addition of physical parameters describing a terrain model should make it pos-
sible to approach more realistic scenarios than those found in laboratories. This algorithm could
then be used to systematically study the behavior of floating debris.

This work is structured in 3 parts. In the first one, a literature review provides an overview
of existing physical models. The second part deals with the model adopted for the algorithm. A
confrontation with the established literature is then be discussed in Part 3.
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Part I

State of the art
The motivation behind this section is to conduct a thorough review of existing literature on the
physics of floating debris in order to provide a comprehensive understanding of the subject. In
particular, this section is divied into two parts : a first one which strictly compares the framework
of the different articles, and a second one that reviews the various mathematical and physical
models of the problem.

1 General overview

In order to carry out a comparison of the literature articles most in agreement with this thesis of
mater, tables are presented with the following convention :

the criterion is covered in the article;

the criterion is not covered in the article at all.

The reference articles chosen are the following. The indicated citation numbers are provided
by Scopus.

▷ (Ghaffarian et al., 2020), cited 3 times

▷ (Ruiz-Villanueva et al., 2014), cited 104 times

▷ (Persi, 2015), cited 32 times

They were selected among others because they offer a representative study of floating debris:
namely, the development of an analytical model, followed by a numerical implementation phase
and experimental validation. In this work, these articles are referred to as ’reference articles’ here-
after. However, other articles are referenced as complements.

(Ghaffarian et al., 2020) represents a study of floating spheres while the other study cylin-
ders. Moreover, a dichotomy emerges between two distinct groups of models for floating debris.
The first group involves models developed within the framework of (Yin et al., 2003) and (Mandø
and Rosendahl, 2010), which are then subjected to simulation and laboratory experimentation by
(Persi, 2015). In contrast, the second group centers around models established by (Haga et al.,
2002) and (Magnaudet and Eames, 2000), followed by their simulation and laboratory examina-
tion by (Ruiz-Villanueva et al., 2014). As the two articles chosen reproduce the models as they
stand from these latter articles, the tables enable a short and effective comparison of the two main
models.

1.1 Flow hypothesis comparison

The columns represent:

▷ Turbulence model: presence or absence of a turbulence model;

▷ Unsteady: variation of fluid velocity with time;

▷ Uniform: no spatial dependence of the velocity field;

▷ Field: consideration of real-life situations in the simulations.
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Models
Flow hypothesis Turbulence

model
Unsteady Field

Ghaffarian et al. (2020)
Ruiz-Villanueva et al. (2014)
Persi et al. (2017)

Table 1: Flow hypothesis comparison.

1.2 Flumes comparison

A attention must be paid to the different channels used. As the channels not only condition the
type of flow, but also imply additional physical phenomena such as collisions or clogging, it is
therefore important to develop a numerical model for the study of clogging at bridge piers.

A schematic representation of the used channels is shown in Fig.(1). Few articles study clogging
phenomena numerically. In fact only (Ruiz-Villanueva et al., 2014) provides two circular bridge
pillars to explicitly study clogging and rising water levels upstream, in both experimental and nu-
merical ways.

Figure 1: Schematic representation of the different flume configurations (not at scale, top view)
and obstacles used in Ghaffarian et al. (2020), Ruiz-Villanueva et al. (2014) and Persi et al. (2017).

1.3 Type of floating debris comparisons

When it comes to large floating debris appearing on the ground during flooding events, the shapes
vary from simple pieces of wood to cars and furniture. When it comes to modeling these objects,
assumptions are made on their shape. These are fairly recurrent and similar between articles.
Tab.(2) shows a comparison of the various drifting shapes studied.
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Models
Drifting shape

Sphere Disk Cylinder

Type of study num exp num exp num exp

Ghaffarian et al. (2020)
Ruiz-Villanueva et al. (2014)
Persi et al. (2017)

Table 2: Drifting shapes studied numerically (noted num) and experimentally (noted exp).

First of all, it should be noted that the typical debris numerically and experimentally studied
consists of an asymmetrical object, such as a cylinder. The use of this shape as a reference debris
offers practical advantages in terms of understanding and comparability for the physical and nu-
merical study of floating debris. Theoretically, it is a simple geometry that allows the study of their
behavior analytically. Experimentally, it is a shape that can be easily reproduced Persi (2015).

In addition, the latter cylindrical shape is often referenced as large wooden debris, abbreviated
LW, when it is longer than 1 [m] and with a diameter larger than 0.1 [m]. In other oterms, when
its aspect ratio higher than 10. This convention appears for the first time in the article Keller and
Swanson (1979) and is repeated implicitly in the articles that follow.

2 Existing mathematical model

This subsection of the literary review focuses on the physical and mathematical models used in
the literature. This is where the physical problem of large floating objects is posed, by listing and
defining the various physical aspects to be taken into account. The model used in this master’s
thesis is justified by the study of this subsection, and is presented in Part II called ’Existing mathe-
matical model’.

2.1 Survey of the mathematical models

First, a general comparison table is given in Tab.(3), and in the following sections, the criteria are
defined in more detail. Afterwards, the entrainment and the dynamics are briefly detailed. The
columns correspond to:

▷ Rotation: whether the yaw rotation of the object is taken into account or not;

▷ Collisions: collisions between different objects;

▷ Clogging: prediction of dam formation;

▷ Added mass: added mass term has added to the equations;

▷ Density cases: whether different density cases have been treated (fully/partially submerged);

▷ Turbulence model1: a model of turbulence;

▷ Entrainment: the entrainment of a tree trunk (typical debris) initially hanging or present on
the ground.

1Even if Tab.(1) already took a turbulence model comparison into account, this criterion is again taken into account
here, to provide a general summary of the physics taken into account.
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Articles
Phenomena

Entrainment Rotation Collisions Clogging
Added
mass

Density
cases

Turbulence
model

Ghaffarian et al. (2020)
Ruiz-Villanueva et al. (2014)
Persi et al. (2017)

Table 3: Physical aspects taken into account.

The entrainment study

In Tab.(3), the only article dealing with tree trunk entrainment is Persi et al. (2017). It is important
to know under what conditions a tree trunk, initially at rest, is carried away by a flow. Into more de-
tails, the article follows the conclusion of two others :Bocchiola et al. (2006) and Braudrick (2000)
which are summarized below.

The transport of solid entities is affected by various factors, such as their properties, dimen-
sions, and orientation, particularly for asymmetric entities (Bocchiola et al., 2006). When the water
level allows for buoyancy, wooden rigid bodies begin to float (Braudrick, 2000). Entrainment can
occur through three primary mechanisms: flotation, rolling, and sliding. Flotation arises when the
upward force exceeds the body’s weight, while rolling and sliding manifest when the body is not
fully buoyant. Specifically, elongated bodies begin to roll when perpendicular to the flow, whereas
sliding happens when rotation is restricted, such as with flow-aligned cylinders.

Survey on the dynamic

As in the previous sections, a very general overview of the dynamics dealt with in the articles is
offered as an introduction. The various models are then described in detail. To begin with, the
definitions of global and local frames need to be clarified. The global reference frame is defined
as the (ex ,ey ) frame fixed to the channel. It belongs to the so-called horizontal plane. The local
reference frame is denoted as (ex ′ ,ey ′). It is fixed to the object and ex ′ is aligned with the relative
velocity while ey ′ is perpendicular to it These definitions are common to every used articles and
are represented in Fig.(2), with a cylinder as the drifting shape.

x

y

x'

y'

x y

x y'

Figure 2: Global and local frames convention.

Then Tab.(4) is presented to examine the nature of motion explored in the articles. The only
exception is the seminal work by (Ghaffarian et al., 2020), which excludes rotation from its study
as it pertains specifically to spheres.
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Models
Mvmt type

translation rotation

Ghaffarian et al. (2020)
Ruiz-Villanueva et al. (2014)
Persi et al. (2017)

Table 4: Type of movement study in the different articles.

Afterwards, a survey of the forces appearing in the force balances of the various reference arti-
cles is carried out. To columns correspond to

▷ Fd : component of the hydrodynamic in the direction of the relative velocity, called the drag
force;

▷ Fs : component of the hydrodynamic force in the perpendicular direction of the relative
velocity, called the side force;

▷ Fg : effective weight of the object in the downstream direction the weight, called the effective
weight;

▷ F f : the friction force between the object and the flume’s bed;

▷ Fp : the force that the fluid would exert on the body if the presence of the body had not
disturbed the flow called the Froude-Krylov force;

▷ Fam : the force related to the additional inertia of the fluid surrounding the object, called the
added mass force.

The Tab.(5) presents the forces comparison.

Models
Forces

Fd Fs Fg F f Fp Fam

Ghaffarian et al. (2020)
Ruiz-Villanueva et al. (2014)
Persi et al. (2017)

Table 5: Force taken into account in the dynamic models according to different articles.

Then, the objective is to present the complete path of model development, more or less com-
mon to the various model references. The transition from one model to another is often omitted in
the literature, and this section aims also to clarify these omissions. To structure the study, the com-
position theorem of movements is recalled. It is stated as "All motion of a non-deformable body is
decomposed into translational and rotational motion" (Batchelor, 1967). The motion of particles,
regardless of their shape (spherical or non-spherical), can be explained by taking into account the
conservation of both linear and angular momentum. In their differential form they write as follows

dr

d t
= v,

m
dv

d t
=∑

i
Fi .

(1)


dθ

d t
=ω,

I
dω

d t
=∑

i
Ti .

(2)

where r is the position vector, v is the body linear velocity, m is the body mass, F the forces
acting on the body, θ a measure of the orientation defined as the angle the principle axis of the
body and the flow direction, ω the body angular velocity, I the body moment of inertia and T the
torque acting on it. The Eq.(1) gives the physics of the position and the linear velocity, while Eq.(2)
allows the study of the orientation and angular velocity of the body.
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The following subsections aim to explain, step by step, the development of models for a large
floating object. Specifically, all notations are standardized according to the conventions used in
this work, and the same applies to coordinate system notations (Cartesian coordinates).

2.2 Models for translation

Initially, the translation models for Eq.(1) are examined in this section. The study starts from the
least general model and progressing towards the more comprehensive one. The writing conven-
tions adopted are those clarified at the start of the work .

2.2.1 Starting point

Although there is no common reference model for writing the force balance acting on a float-
ing (non-symmetric) object, every models of the articles are referred as the generalized Basset-
Boussines-Oseen (BBO) model written as follows.

Model by Basset-Boussinesq-Oseen (Parmar et al., 2011)
By denoting Fs the side force, Fam the added mass force, FB the Basset force, Fp the Froude-
Krylov force and Fg all the other forces acting on the sphere as the gravity, the force balance
writes

ms
dv

d t
= Fs +Fam +FB +Fp +Fg (3)

⇐⇒ ms(1+Cam)
dv

d t
= 6πηr v+Camms

du

d t
+6r 2ρw

p
πη

∫ t

t0

1p
t −τ

d

dτ
(u(τ)−v(τ))dτ

−
∫ ∫

Sw

pnd s − 4

3
πr 3∇p +4πr 2ρg, (4)

with v the linear velocity of the sphere, u the flow velocity, ρw the fluid density, ρ the sphere
density, Sw the wetted surface of the sphere, ms the mass of the sphere, r the radius of the
sphere, p the pressure, η the dynamic viscosity, Cam the added mass coefficient and g the
gravitational acceleration.

The rest of the section describes the basic BBO model step by step. However, its generalization
seems more arbitrary. The reference articles justify the use of their forces and expressions by asso-
ciating their model as "a generalized BBO model". In the following, it is shown that some passages
from the basic BBO model to the generalized model are often omitted while the working hypothe-
ses are drastically different.

The BBO equations provide a mathematical framework to describe the Lagrangian acceleration
of a spherical particle moving within an unsteady flow, where the Reynolds number is less than one
(Parmar et al., 2011). A schematic representation is shown in Fig.(3).
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x

y

Figure 3: Forces acting on a particle in the horizontal plane (x,y) according to according to the
Basset-Boussinesq-Oseen model (Parmar et al., 2011).

These equations consider that the second Newton’s law of the particle is written as

ms
dv

d t
= Fs +Fam +FB +Fp +Fg , (5)

where the forces are presented one by one using the nomenclature presented before. In par-
ticular, u denotes the flow velocity and v the sphere velocity.

Fs represents the Stoke’s drag. This force of viscosity can be expressed as follows when it acts
on a small sphere moving through a laminar, viscous and homogeneous fluid (Parmar et al., 2011):

Fs = 6πηr v, (6)

with η the dynamic viscosity and r the radius of the sphere. Into more details, this empirical law
provides an expression for the hydrodynamic force component acting in the direction of the rela-
tive velocity.

Fam represents the added mass (or virtual mass) force (Mandø and Rosendahl, 2010) due to
inviscid effect. It allows to model the physics for the additional inertia of the fluid surrounding the
particle. It is generally expressed as

Fam =Camm
d

d t
(u−v) , (7)

with Cam the added mass coefficient and m the mass of fluid displaced by the sphere. The added
mass coefficient is a dimensionless parameter that quantifies the additional water volume acceler-
ated when the body undergoes acceleration relative to the surrounding flow. It primarily depends
on the body’s shape and orientation ((Batchelor, 1967)). For a sphere, Cam equals 0.5.

FB denotes the Basset force due to viscous-unsteady effects. This Basset history term is a non-
linear component of the equation (if the velocity field is space-dependent), arising from the de-
layed development of the boundary layer due to viscous-unsteady effects. It is the result of inter-
actions between the body and the surrounding fluid, introducing a temporal aspect to the fluid
dynamics. The expression presented by Basset-Boussinesq is

FB = 6r 2ρw
p
πη

∫ t

t0

1p
t −τ

d

dτ
(u(τ)−v(τ))dτ. (8)
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The latter term is often neglected in rigid body models, due to its complexity. Nevertheless,
given its significance in turbulent flows or scenarios involving bed-load transport, some approaches
are proposed to incorporate the Basset history term in computations in (Michaelides, 1992) (Dor-
gan and Loth, 2007).

Fp accounts for the Froude-Krylov force. It is introduced by the unsteady pressure field gen-
erated by undisturbed waves. It is part of the total non-viscous forces acting on a floating body in
regular waves due to the pressure gradient in the undisturbed flow

Fp =−
∫ ∫

Sw

pnd s, (9)

with Sw the wetted surface, and n the normal vector of the body pointing into the water. Assum-
ing the sphere is sufficiently small By considering the body to be small enough that it does not
significantly influence the pressure field caused by an incident wave, Soo (1990) gives

Fp =−4

3
πr 3∇p. (10)

Its generalization is not straightforward and is discussed later.
Eventually, Fg encounters all the other forces acting on the sphere, often including gravity. The

complete model is thus written as in Eq.(11).

ms
dv

d t
= 6πηr v+Camms

d

d t
(u−v)+6r 2ρw

p
πη

∫ t

t0

1p
t −τ

d

dτ
(u(τ)−v(τ))dτ

−
∫ ∫

Sw

pnd s − 4

3
πr 3∇p +4πr 2ρg. (11)

By grouping the body acceleration term, the expression of the BBO of the beginning can be
found back.

2.2.2 Extension to finite and low Reynolds number

This first extension is provided by Ghaffarian et al. (2020) whose model is written as follows.

Model by Ghaffarian et al. (2020)
By denoting Fam the added mass force and Fd the drag force, the force balance writes

m
dv

d t
= Fam +Fd (12)

⇐= m(1+Cam)
dv

d t
= m(1+Cam)

Du

Dt
+ 1

2
ρwCd Sp |u−v|(u−v), (13)

with v the linear velocity, u the fluide velocity, m the mass of the floating object (equals to
the mass of the displaced fluid), Cam the added mass coefficient, Cd the drag coefficient, Sp

the projected area, ρw the fluid density and D
Dt the convective derivative equal to ∂

∂t +u ·∇.
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The forces appearing in the model are represented in Fig.(4) and are described in detail below.

x

y

Figure 4: Force acting on a sphere according to Ghaffarian et al. (2020)’s model.

First, the model only studies the x, y) horizontal plane. Then, the assumption of a spherical
body is retained, as shown in the preceding table Tab.(2). The considered floating object is sup-
posed to be similar to the size of the wood in rivers. The latter implies that capillary effect can be
neglected.

The next step is to generalize the previous model by assuming a low but finite Reynolds num-
ber. The first consequence is that the Stoke Force expressed in the BBO equations is no longer
valid (it requires Re ≪ 1). In this context, another expression of the hydrodynamic force is needed.
Its name is reduced to drag force. A possible model consists in writing the force as a quadratic
expression of the relative velocity. Ghaffarian et al. (2020) suggests the following formulation

Fd = 1

2
ρwCd Sp |u−v|(u−v), (14)

with Cd the drag coefficient and Sp the projection of cross-area of the cylinder in the flow direction.
The writing proposed in the article suggests that these are constant quantities. This is the case only
for S, calculated as 4

3πr 3. For the drag coefficient, it depends on the particle Reynolds number Rep

defined as

Rep = |u−v|d
η

(15)

with d a characteristic size of the object and η the kinematic viscosity (equal to 10−6 [m2/s] for
water at 20°C). In a following a side note, it is explained that the coefficient also depends on the
orientation of the object. As the sphere is perfectly symmetrical, there is no such dependence in
this model. Writing the quadratic dependence in this way allows to take into account the orienta-
tion of the drag force via the term between absolute values.

The second consequence is the disappearance of the term Basset. In the BBO equations, the
low Reynolds number for which the Stokes equations are linear enables a clear distinction to be
made between the quasi-stationary drag force, the added mass contribution and the Basset force.
The opposite is true at finite Reynold’s numbers: the mechanisms for distinguishing between vis-
cous effects (in the historical Basset term) and purely inertial effects (in the added-mass term) are
coupled.

Indeed, in the BBO equations, the low Reynolds number for which the Stokes equations are
linear allows a clear distinction between viscous effects (in the historical Basset term) and purely
inertial effects (in the added mass term). This is why there is a distinction between the quasi-
stationary drag force, the added mass contribution and the Basset force. The reverse is true at
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finite Reynold’s numbers. It is necessary to go back to the work of Mei and Adrian (1992) to under-
stand that the long-time behavior of the Basset force is dictated by inertial effects. Thus, the Basset
force is negligible for this model.

Regarding the weight, the force is not considered in this model, although it was present in the
BBO equations. This can be explained as follows : the authors are studying the 2D motion of the
particle on a flat bottom, which implies that there is no component of this force on the horizontal
plane studied. This (implicit) assumption is very common in the literature.

The transition from BBO equations to models such as this may pose a problem for the reader.
Indeed, the literature gives no explanation about that. A thorough search had to be carried out to
find an explanation. A section "Froude-Krylov force" 2.2.2 is presented to get an overview of its dif-
ferent writings. In any case, the current model presents this force as "the force due to the pressure
gradient and the added mass, both appearing in unsteady and/or non-uniform flows" and writes
it as

Fp = m(1+Cam)
Du

Dt
. (16)

At this stage, the Ghaffarian et al. (2020) model, as presented in the article, is complete. Once
this initial generalization has been made, the authors usually refer to these equations as the "gen-
eralized model of the BBO equations". As it does not reduce only to this formulation, the "gen-
eralized" word must be understood as "generalization to an object of macroscopic size in a finite
Reynolds number flow". The final form of the model is the one presented in the beginning of this
point in Eq.(13).

Froude-Krylov force

The rewriting of the Froude-Krylov force is delicate. The literature provides no explanation for the
passage of this force from the BBO equations to one the generalized model, apart from the notion
of using the "generalized model of the BBO equations", which itself provides no justification. To
understand this, it is necessary to go back to the establishment of the expression of this force.

First, let ones recall how this force is defined in the different models. The formulation of Fp in
the initial BBO model is

Fp =−
∫ ∫

Sw

pnd s =−4

3
πr 3∇p, (17)

remembering that the calculated surface in question is the one of a sphere. For this model, Fp is
defined as the "force due to the pressure gradient in the undisturbed flow, with p(x,t) the undis-
turbed pressure field". The formulation in the other article is

Fp = m
du

d t
, (18)

where m = ms(1+Cam) in Ghaffarian et al. (2020) and m = mc in Persi et al. (2017), while its defi-
nition varies according to the article :

▷ (Ghaffarian et al., 2020)"the force due to the pressure gradient and the added mass, both
appearing in unsteady and/or non-uniform flows";

▷ (Persi et al., 2017) : named after the pressure force and is defined as the "force exerted on a
volume of fluid equal to the body volume in the undisturbed flow".
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A first observation is that the pressure gradient present in the BBO equations no longer exists in
the generalized model. Moreover, the articles do mention the Froude-Krylov force as a pressure
force. In addition, if the Tab.(5) is looked back, it can be seen that the model in Ruiz-Villanueva
et al. (2014) does not include any Fp , but consider the weight. Thus, only flat-bottomed models
make Fp explicit. In other words, either a weight component is taken into account, or the force
Fp . Finally, these forces help to explain the motion of the fluid (in this case, the water). This ob-
servation may be enough to convince the reader that the form of force in the various models is
then correct. However, as it is referred to the Froude-Kylov force, there is an uncertainty that can
be seen as an inconsistency.

Then, to justify the different formulations of this force, it is necessary to go into a little more
detail. Although it may seem counter-intuitive, it is useful to study the "diffraction theory" in hy-
dromechanics Journée and Massie (2001). The following explanation is intended to be succinct
and is not present the proof, which would require notions that is no longer be useful later on.

This theory includes the principle of "superposition of hydromechanical and wave loads",
which is useful for the design and analysis of offshore structures and other floating or submerged
structures subjected to ocean conditions. Hydromechanical loads refer to the forces and moments
acting on a structure due to its interaction with the surrounding fluid (usually water). These loads
can be caused by factors such as currents, tides, and flow. On the other hand, wave loads are
caused by the action of waves on the structure, resulting in dynamic forces. In order to determine
the weight of each component, theory has established regimes depending on the wave length and
other flow characteristics. As the floating-object models considered are aimed at river applica-
tions, there is no such thing as a wave. Taking this into account, and studying the associated
regime, theory indicates that inertial loads are dominant. However, there are two parts to these
loads: the Froude-Krylov force and the added mass effect (Shyamcharan, 1979).

In this decomposition, the theory proposes a more rigorous definition of this force, which the
literature discussed earlier does not specify. This definition would be "the force that the fluid
would exert on the body if the presence of the body had not disturbed the flow". By considering
all of this, it is trivial to obtain the expression of Fp . To do this, it is necessary to consider classical
simplifications of the Navier-Stokes equation for higher Reynolds numbers. This means that

Re = ∥u∇u∥
∥η∆u∥ >> 1, (19)

that implies that inertial advection terms are dominant over viscous diffusion terms. Taking this
into account in the Navier-Stokes equations and considering an horizontal plane (x y), one simpli-
fies them as

ρ

(
∂u

∂t
+u∇u

)
= ρ

�
�gxy −∇p +���η∆u . (20)

In total, one finds back the simple expression

∇p =−ρdu

d t
. (21)

The presence of the added mass term in the Ghaffarian et al. (2020) model stems from the fact
that the added mass effect arises due to the presence of the body, and disturbs locally the fluid by
leading to heightened fluid accelerations.
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In conclusion, realizing that this force Fp models represents a cause of the flow allows to under-
stand the presence of this force in the models. However, the definition associated with it, as well
as the name Froude-Krylov force, does not correspond to the situation that is desired to model.
In order to put to rest the uncertainty that may be perceived as an inconsistency. This term is in-
tended for the original force which, following reasoning on diffraction theory and considerations,
leads to the expression involving the fluid’s local acceleration. But this is not straightforward, and
the lack of justification may lead the reader to believe that the force is badly defined.

2.2.3 Extension to non-spherical objects

Another aspect of the generalization of the previous model may concern the shape of the object.
The new object of study is a cylinder. The simplification of the various forces presented above
do not vary, since this section focuses on the shape and not the size of the object. However, the
way the body deforms the flow is impacted. It is from the removal of this latter assumption that
the final models for large floating objects are derived. However, the various formulations of these
models differ from one article to another. As explained at the very beginning of this section, the
analysis of the literature review resulted in two distinct groups of models. The outcome of these
different models, in terms of numerical and laboratory simulations, are in fact presented in the
two reference articles (Ruiz-Villanueva et al., 2014) and (Persi, 2015). This subsection is therefore
divided into two parts.

Model of Persi (2015)

First, the model by Persi (2015) is presented. It represents the culmination of most floating object
models. Other articles from the literature are referenced for the detailed explanations that require
further investigation.

Model by Persi (2015)
By denoting Fd the drag force, Fs the side force and Fam the added mass force, the force
balance write

mc
dv

d t
= Fd +Fs +Fam (22)

⇐⇒
(
mc + 1

2
Cammw

)
dv

d t
= 1

2
ρwCd Sp (u−v) |u−v|

+ 1

2
ρwCsSp [(u−v) |u−v|]×nz

+ρw

(
1+ 1

2
Cam

)
Vc

Du

Dt
(23)

with v the linear velocity of the cylinder, u the flow velocity, mw the displaced fluid mass,
mc the cylinder mass, Vc its volume, Sp its projected area, ρw the fluid density Cd and Cs

the drag and side coefficients, nz the unit vector normal to the 2D flow plane and D
Dt the

convective derivative equal to ∂
∂t +u ·∇.

The forces acting on the cylinder can be represented as in the Fig.(5) and are described in detail
below.
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Figure 5: Forces acting on a cylinder in the horizontal plane (x,y) according to Persi (2015).

The main difference with the previous model is the appearance of a force called side force.
Eliminating the assumption of a spherical object entails significant implications for the hydrody-
namic forces. The reference rigid body takes the form of a cylinder. In the previous models,it was
modeled with only one contribution called the drag force in the direction of the relative velocity.

The total hydrodynamic force exerted on this body must replicate the effect of flow deflection.
In a first scenario where the cylinder is aligned or perpendicular to the flow, there is no flow de-
flection, resulting in a hydrodynamic force reduced to the drag force. Conversely, if a cylinder is
neither aligned nor perpendicular to the flow, it asymmetrically diverts the streamlines, leading to
an alteration in pressure distribution. This modification in pressure distribution generates a lat-
eral component of the hydrodynamic force, known as the side force (Mandø and Rosendahl, 2010).
Literature is divided on the expression of this force and a note on the side force is given below. In
all cases, the total hydrodynamic force, Fh , is generally given by

Fh = Fs +Fd , (24)

with Fd the drag force which keeps the same expression as before and Fs expressed in this model
as

Fs = 1

2
ρwCsSp [(u−v) |u−v|]×nz . (25)

where nz is the unit vector normal to the 2D flow plane (x,z), allowing compact writing of the
following expressions for the side force directed along ey , denoted F

ey
s , and that directed along ex ,

denoted F ex
s , as

Fex
s = 1

2
ρwCsSp

(
uy −vy

)∣∣uy −vy
∣∣ (26)

F
ey
s = 1

2
ρwCsSp (ux −vx) |ux −vx| (27)

with subscripts x and y indicating the velocity components used.

The origin of these forces is the pressure distribution around the cylinder, necessitating spe-
cial attention to the point of force application. When the cylinder symmetrically distorts the flow,
their point of application corresponds to the object’s center of mass. Conversely, when the pres-
sure field is non-uniform, it is applied at a point known as the center of pressure. This point is
where all the pressure on the cylinder would hypothetically be concentrated. A later section clar-
ifies the concept and modelling of center of pressure in the rotation section, where it holds all its
importance. Fig.(6) provides a qualitative illustration of how the hydrodynamic force components
change based on the cylinder’s orientation.
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Figure 6: Components of the hydrodynamic force on a cylinder according to its orientation to the
flow. CM stands for center of mass and CP for center of pressure.

Model of Ruiz-Villanueva et al. (2014)

Secondly, the model by Ruiz-Villanueva et al. (2014) is presented. A more precise ewplanation is
presented below. Broadly speaking, the current model has been designed for on-field application.

Model by Ruiz-Villanueva et al. (2014) By denoting F f the friction force, Fg the weight and
Fd the drag force, the force balance writes

mc
dv

d t
= F f +Fg +Fd (28)

⇐⇒ mc
dv

d t
=−

(
gρc Sc −gρw Lc Ssub

)(
µbed cosα

)
−

(
gρw Lc Ssub −gρc Sc

)(
sinα

)
+ u2

2
ρwCd

(
Lc sinθ+Ssubcos θu−v

)
, (29)

with v the linear velocity of the cylinder, u the fluid velocity, g the gravitational accelera-
tion, mc the cylinder’s mass, ρc its density, Sc its surface, Ssub its submerged surface, ρw the
fluid density, θu−v the angle bewteen the relative velocity and the major axis of the cylinder,
α the angle of the channel bed in the direction of the flow and µbed the friction coefficient
bewteen the cylinder and the bed.

First of all, one of the biggest difference with the previous model is the absence of side force,
despite the cylinder shape of the object. In fact, they operate under the additional assumption of
a very slightly submerged cylinder, making the side force negligible.

The forces acting on the cylinder can be represented as in the Fig.(7) and are described in detail
below.
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Figure 7: Forces acting on a cylinder in the horizontal plane (x,y) according to Ruiz-Villanueva
et al. (2014)’s model.

Then, this model calculates the gravitational force Fg , a choice substantiated by the represen-
tation of an uneven terrain. By denotingα the angle of the channel bed in the direction of the flow,
the effective weight Fw is computed as

Fg = Fw sin(α). (30)

By defining Sw the area of the cylinder perpendicular to the piece length Lc and Ssub the sub-
merged area of the cylinder perpendicular to Lc , the previous force writes2

Fg =
(
gρc Lc −gρw Lc Ssub

)
sin(α). (31)

This model takes also into account the presence of frictional forces, F f . This force acts in the
opposite direction to the flow is determined by the normal force, noted Fn exerted on the cylinder,
multiplied by the coefficient of friction between the cylinder and the bed denoted µbed :

F f = Fnµbed . (32)

Into more details, the article presents the normal force as equal to

Fn = Fw cos(α), (33)

with α the angle of the channel bed in the direction of the flow. The final expression of the force is
then

F f =
(
gρc Lc Sc −gρw Lc Ssub

)
µbed cos(α). (34)

Finally, the drag force Fd , which is the only force in common between the two models pre-
sented, is written in this article as

Fd =−1

2
ρwCd

(
Lc hsin(θu−v )+Ssubcos(θ)

)
(u−v)2, (35)

with h the flow depth.

2.1.3.a Side force models

Literature is divided on the expression of this force. This note clarifies the problem. For the model
of the side force, Mandø and Rosendahl (2010) suggests to write simply this force as the drag force,
but with the corresponding projected surface Sp and coefficient Cs :

Fs = 1

2
ρwCsSp (u−v)|u−v|. (36)

2The article provides expressions for various surfaces. However, these expressions are not be reproduced here.
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As a reminder, Persi (2015) suggests the following formulation

Fs = 1

2
ρwCsSp (u−v)|(u−v)|×nz, (37)

where nz is the unit vector normal to the 2D flow plane (x,z), allowing the side force expression to
be written as a y-component with only the x-components of the velocities and vice versa. Indeed,
the study being purely plane, all z-components of the cross-product vanish. In the same idea, Yin
et al. (2003) writes

Fs = 1

2
ρwCsSp

ey ′ · (u−v)

|u−v| [ey ′ × (u−v)]× (u−v), (38)

where ey ′ is the axis of the local frame aligned with the cylinder’s major axis.

These three formulations appear to describe differently the side force. Indeed, using the rel-
ative velocity norm as proposed in Eq.(36) or Eq.(38) seems appropriate to attribute a negative
direction to the side force when the object is faster than the flow, contrary to the Eq.(37) for this
force often found in the literature. In addition, the Eq.(37) and Eq.(38) have the advantage of being
more rigorous in terms of the velocity components required for force calculation. The difference
is the speeds taken in the norm. It would seem appropriate to use the expression of Eq.(38). This
final expression, while seemingly intricate, effectively captures the underlying physics of the force.
This formulation takes into account the fact that the side force is perpendicular to the relative ve-
locity (u−v) and lies within the plane defined by the direction of the particle’s major axis (ey′) and
the relative velocity (u−v). Additionally, it ensures that the side remains unchanged when the par-
ticle’s major axis (ey′) undergoes a 180-degree rotation and becomes null when the parameter the
inclination angle θu−v equals 0 or 180[◦].

Lastly, it is crucial to precise that the parameters notation in the three formulations can be
confusing. In fact, these are not constant parameters. The projected surface Sp is influenced by
the angle θu−v and similarly, the side coefficient depends on it, in addition to its correlation with
the particulate Reynolds number.

2.1.3.b Projected areas models

The literature does not typically specify that the projected surface is dependent on the orientation
of the cylinder. However, it is crucial to explicitly address this dependence. In the case of a cylinder
that is not aligned with the flow, the projected area needs to be computed. According to Saucier
(2016), the projected area Sp (θu−v ) is given by

Sp (θu−v ) = Lc dc |sinθu−v |+ π

4
d 2

c |cosθu−v | (39)

where θu−v is the angle between the cylinder major axis and the relative velocity, Lc the cylinder’s
length and dc its diameter. The two peculiar cases can be found back. Indeed, at 0[◦], the projected
area is that of the base of the cylinder, and at 90[◦] that of the total lateral half-area.

Although such formulas do exist, they are not always used in practice. Indeed, the calibration
of hydrodynamic coefficients, which is be the subject of the following section, is carried out based
on the drag area defined as

Sd (θu−v ,Rep ) =Cd (θu−v ,Rep )Sp (40)

As a result, this kind of calibration is sufficient for accounting for the dependence of the projected
area on the cylinder’s orientation.
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2.1.3.c Hydrodynamic coefficients models

Hydrodynamic coefficients provide insights into how a fluid exerts forces and torques on a cylin-
der. While these coefficients are well-established for simple shapes (e.g., spheres) or hypotheti-
cal cases (e.g., infinitely long cylinders), determining these hydrodynamic coefficients for a finite
cylinder requires experimental approaches.

First of all, comprehending the parameters that influence these coefficients is crucial. Mandø
and Rosendahl (2010) have addressed this challenge by attempting to establish correlations be-
tween known coefficients for spheres and those desired for cylinders. The article subsequently
characterizes the drag coefficient, Cd , as a function of the particle Reynolds number and the
sphericity ψ (used to quantify the shape), such as:

Cd =Cd (Rep ,ψ), (41)

with the particle Reynolds number defined as previously

Rep = |u−v|d
η

(42)

with d a characteristic size of the object and η the kinematic viscosity. The characteristic curves
of the drag coefficient as a function of Reynolds number exhibit three distinct regimes. Firstly, the
Stokes regime where Cd can be approximated as

Cd = 24/Rep (43)

Secondly, a Newtonian regime where the coefficient becomes constant with respect to Rep , and
finally, the drag crisis where the coefficient drops sharply, corresponding to the sudden detach-
ment of the air boundary layer from a moving surface, leading to a drastic decrease in its value
Rosendahl (2000a). Such curves are reported in Fig.(8).

Figure 8: Drag coeffients of spheres, ellipsoids and cylinders of different aspect ratios (Rosendahl,
2000a).
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Studies on the correlations in question are unsuccessful for cylinders. This is why Persi (2015)
devotes part of his thesis to such a study. Specifically, their work involves the measurement of drag
and side coefficients for cylinders, contributing essential data for integration into 2D numerical
simulations of trunk transportation. The conclusions are that the coefficient also depends on the
orientation of the cylinder such that

Cd =Cd (Rep ,θu−v ). (44)

Several scenarios are simulated in the laboratory. The data for the hydrodynamic coefficient
calibrated on semi-submerged cylinders are shown in Fig. where a cubic interpolation has been
processed.

Figure 9: Cubic interpolation of the experimental data for semi-submerged cylinder, for the drag
coefficient (left) and the side coefficient (right) (Persi, 2015).

Regarding drag, two maxima (1.122[-]) are observed at 90 and 180 degrees, angles at which drag
is maximized. It can be noted that for the side coefficient, negligible values are present at multiples
of 90 degrees (positions of stable and unstable equilibria), while more significant values occur in
between. The side force is non-negligible in this semi-submerged case, as the coefficients rise up
to 0.622[-].
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2.3 Models for rotation

This new subsection focuses on the model of Eq. (2). The focus is on the rotation of the object.
More specifically, the term rotation used hereafter exclusively refers to yaw. Indeed, there are
various possible rotational movements for the body. The rotation about the axis extending from
front to back is referred to as roll. Then, the rotation about the axis extending from side to side is
termed pitch. Finally, rotation about the vertical axis is denoted as yaw. Fig.(10) represents them.
For this type of rotation, (Ghaffarian et al., 2020) odes not study it, as is uses spherical objects (see
Tab.(2)). Once again, this part is separated into two : one for each type of models.

Figure 10: Yaw, pitch and roll representation with a cylinder.

2.3.1 First model

A first model of yaw rotation is presented below. Moire details are given afterwards.

Model by Persi (2015) By denoting Toffset the offset torque and Tresistance the resistance torque,
the torque balance writes

Ic
dωc

d t
= Toffset +Tresistance

⇐⇒ Ic
dωc

d t
=

[
−dCP y

(1

2
ρwCd Sp (ux − vx)|u−v|+ 1

2
ρwCsSp (uy − vy )|u−v|

+ρw

(
1+ 1

2
Cam

)
Vc

Dux

Dt

)
+dCPxρw

(1

2
Cd Sp (uy − vy )|u−v|+ 1

2
CsSp (ux − vx)|u−v|

+ρw

(
1+ 1

2
Cam

)
Vc

Dux

Dt

)]
+

[1

8
ρwCresL2

cV (ωw −ωc )|ωw −ωc |
]

, (45)

with ωc and ωw the angular velocity of the cylinder and the water, v linear velocity of
the cylinder, Ic its momentum of inertia, Sp its projected area, Lc its length, Vc its volume,
Cd , Cs , Cr es and Cam the drag, side, resistance and added mass coefficients, dCP the distance
between the center of pressure and the center of mass of the cylinder, ρw the fluid density
and the subscript x and y for the x-component and the y-component.

This model involves the computation of two torques: an offset torque and a resistance torque.
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To grasp the concept of the offset torque, denoted as Toffset, it is essential to recall the no-
tion of the center of pressure. As briefly elucidated in the translation section, the inclination of
a non-symmetric object in a flow leads to a displacement of the center of pressure due to a var-
ied pressure distribution around the object. Since this point corresponds to the application point
of hydrodynamic forces, it induces a torque. Indeed, a lever arm, dCP, exists between the center
of mass (center of rotation) and the center of pressure (point of force application). This is more
detailed in 2.3.3. The most often used model for dCP is the one proposed by Yin et al. (2003) that
states

dC P

Lc
=

∣∣∣0.25cos3(θu−v )
∣∣∣. (46)

Indeed, this expression allows for extrema (which consequently lead to equilibrium positions)
for cylinders aligned or perpendicular to the flow. A specific section is provided below to elaborate
on the center of pressure theory.

Regardless, the torque resulting from this displacement of the point of force application is the
Toffset. In light of the discussion about the drag and side force model, it is evident that if the com-
ponents in the ex and ey directions of dCP are designated as dCP x and dCP y, applying the torque
definition to the translation equation Eq.(23) yields the expression stated in the model.

The second type of torque experienced by the cylinder is more subtle. The resistance torque,
Tres is defined by Mandø and Rosendahl (2010) as the integral of the friction caused by the rotation
itself between the cylinder and the water (over the length of the cylinder). Its definition is then

Tres = 2
∫ LC /2

0

1

2
Fres dl , (47)

= 2
∫ LC /2

0

1

2
ρwCd Sp (ωw−ωc)|ωw−ωc|l 2 dl , (48)

where Fres denotes the resistance force, generated by the friction between the cylinder and the wa-
ter.

The model by Persi (2015) aims to maintain simplicity and linearity. As an initial step, it an
adjusted coefficient, Cres, requiring calibration. Its writing implies the use of the cylinder’s volume
Vc . It allows to write

Tres = 2
∫ LC /2

0

1

2
ρwCresVc (ωw−ωc)|ωw−ωc|l 2 dl . (49)

This requires to consider the resistance torque independent from the drag force. Carrying out
the integral of the previous equation, it comes the final expression

Tres = 1

8
ρwCresVc (ωw−ωc)|ωw−ωc|L2

c . (50)

At this stage, the stated model is derivable. However, it would not be entirely accurate to rely
solely on these explanations. Rigorously, a third type of torque exists, involving cross-terms in the
calculation of angular moments and moments of inertia. Nevertheless, since only rotation around
the ez axis (given by the vector product of the vectors in the previously presented global frame) is
considered, and cross angular velocities are assumed to be zero, this term can be disregarded.
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2.3.2 Second model

Once again, the model proposed by Ruiz-Villanueva et al. (2014) stands in stark contrast to the one
of Persi (2015).

Model by Ruiz-Villanueva et al. (2014)

If the relative position r of the cylinder edges (numeroted 1 and 2) writes r(1,2) = (x(1,2), y (1,2))
(with respect to the cylinder center), the new value of the cylinder orientation is computed
through

θ′u−v = arctan
( y ′(2) − y ′(1)

x ′(2) −x ′(1)

)
(51)

with r′(1,2) = r(1,2)+hu1,2 where h is the time step and u1,2 the flow velocity at each ends, θu−v

the angle bewteen the relative velocity and the major axis of the cylinder.

This model deviates from the mechanics of rotation. Indeed, it simply states that when one
end of a cylinder moves faster than the other, it rotates to align more parallel with the flow. To
model these changes, velocities at both edges of each cylinder are taken from the flow model. This
implies an adiabatic rotation of the cylinder with respect to the flow (no resistance, no inertia).

2.3.3 Center of pressure and the equilibria

The center of pressure refers to the location where the cumulative effect of a pressure distribution
on a body results in a net force being applied through that specific point. It is therefore of prime
importance to model the distance between the center of mass and the center of pressure, noted
dC P . As a reminder, the cylinder is assumed to rotate around its center of mass. The distance dC P

then represents the lever arm required to calculate the torques. Reference articles choose Yin et al.
(2003)’s formula, but this is not the only model available, although it is the least dated reference.
In the following, θu−v must be expressed in degrees.

The most frequently cited laws are the following. One of the oldest models is the one of Rayleigh
(1876), reported in Eq.(52). Initially, the model was computed for an infinite flat plate. It writes

dC P

Lc
=

∣∣∣ 0.75 sin(θu−v )

4+πcos(θu−v )

∣∣∣. (52)

Then, the work of Marchildon et al. (1964) consisted in approximating linearly the previous law
to to predict the center of pressure of a cylinder Eq.(53). However, the authors have established
the applicability of this statement for angles of inclination greater than θu−v = 15[◦], attributing its
validity to the consistent uniformity of the pressure distribution beyond this specific angle. The
equation writes

dC P

Lc
=

∣∣∣ (90−θu−v )

480

∣∣∣. (53)

Afterwards, Rosendahl (2000b) worked on the expression reported in Eq.(54).

dC P

Lc
=

∣∣∣0.25
(
1− sin3(θu−v )

)∣∣∣. (54)

Finally, the one of Yin et al. (2003) is reminded and expressed as

dC P

Lc
=

∣∣∣0.25cos3(θu−v )
∣∣∣. (55)
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These equations are initially defined within the range of 0 to 90 degrees, and their extension
to cover the entire range of 0 to 360 degrees involves replicating their patterns, as represented in
Fig.(11).

Figure 11: The different model of distance between the center of mass and the center of pressure
(normalized with the cylinder’s length).

The consideration of the sign remains a necessary step. Indeed, the expressions must remain
stated in absolute values to represent a positively signed distance. This sign and the direction of
the hydrodynamic forces as discussed in the translation section, result in a torque that force the
cylinder to align itself with the flow direction. Fig.(12) illustrates the outcome of this sign analy-
sis. A consistent trend is observed across all models regarding extrema. Experiments in the field
of aeronautics have shown that the maximum of these functions occurs at a quarter of the total
length of the studied object Mandø and Rosendahl (2010).

The laws of Rosendahl (2000b) and Yin et al. (2003) appear to be the most appropriate. Given
the information from the previous paragraph and the fact that stable equilibrium is achieved at 0[◦]
and unstable at 90[◦], it indeed seems prudent to favor the Yin et al. (2003)’s law. In this law, the
maxima are encompassed by smaller angular intervals (the peaks of the maxima are "narrower")
than those of the minima, in contrast to Rosendahl (2000b). The reverse reasoning holds true for
the minima. Since stable equilibrium is at 180[◦] (±180[◦]), it can be advantageous to have small
values of dC P (which represents the lever arm) around these angles, aiming to minimize torque
and prevent excessive rotation of the cylinder.
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CP

CP

Figure 12: Illustration of the position of the center of pressure and the direction of hydrodynamic
forces resulting in a torque forcing the cylinder to align itself with the flow.

As a final remark, the literature often reports the law without specifying the angle in question,
which can lead to misinterpretation. Indeed, some articles such as Persi et al. (2020) and Mandø
and Rosendahl (2010) refer to the θuv angle with a 90[◦] shift. For these articles in particular, the
angles shown in the laws are those measured in relation to the vertical y (corresponding to the
width of the channel).

2.4 Collisions

The two models of the reference article are presented below. The study is divided into two parts:
detection and correction.

2.4.1 First model

As before, the first model to be described is the model of Persi (2015).

Detection

The model gives no information on the practical aspects of detecting a collision between the cylin-
der and an obstacle. On the other hand, the model is well documented for collisions between two
cylinders., although this is not relevant to the present work.

Correction

Persi (2015)’s collision model is based entirely on Hecker (1997)’s model. Even if this model is
intended to be general, the latter is referenced to as a cylinder in view of the present context of
application. The element on which the cylinder collides is defined as an obstacle.
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Model by Hecker (1997)
Let denote by an apostrophe (·′) the quantity corrected and ϵ the restitution coefficient. If a

collision between the cylinder and an obstacle occurs, then

vx
′ = vx + J

nx

mc
,

vy
′ = vy + J

ny

mc
,

ω′
c =ωc+ J

r×n

Ic
,

(56)

where J the impulse momentum [kg ms−1] is computed as

J =−(1+ϵ)v ·n
(

1

mc
+ (r ·n)2

Ic

)−1

, (57)

with n the obstacle unit vector (n = (nx,ny)), r the vector from the center of mass of the cylin-
der and the point of impact, v the linear velocity of the cylinder, ωc its angular velocity and
Ic the moment of inertia of the cylinder.

To obtain the previous model, the hypothesis of rigid, infinitely heavy obstacle is made. As
mentioned earlier, only object-obstacle collisions are considered. Afterwards, the “Newton’s law of
restitution for instantaneous collisions with no friction", detailed by (Hecker, 1997), is employed.

The notion of impulse must be introduced. In order to prevent the cylinder from penetrating
the obstacle, it is essential to bring about an immediate alteration. As force cannot instantaneously
change velocity due to the time it takes, this situation gives rise to the need of a concept: the im-
pulse Hecker (1997). Introducing this notion leads to disruptions in both the linear and angular
velocities of the object. In addition to the previously assumed hypothesis of an undeformable and
unbreakable object, the assumption that there is no friction at the point of collision is made. This
implies that the collision impulse is entirely normal, with no tangential component Hecker (1997).

The expression in Eq.(57) of the impulse J requires the definition of the restitution coefficient
ϵ. The latter is defined as

ϵ= |v′c|
|vc|

, (58)

where v′c (resp. vc) is the cylinder’s velocity after (resp. before) the collision. This non-dimensional
number can vary between 0 (perfectly inelastic collision) and 1 (perfectly elastic collision). In a
perfectly inelastic collision, the colliding objects remain together after the collision, whereas in
a perfectly elastic collision, the objects rebound without any loss of kinetic energy. Persi (2015)
studied the coefficient of restitution for wooden cylinders, neglecting friction, and found a value
of 0.1 for them.

Howerver, Persi et al. (2017) writes the expression of J as in Eq.(59)

J =−(1+ϵ)v ·n
(

1

mc
+ (r×n)2

Ic

)−1

. (59)
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The difference between Eq.(57) and Eq.(59) is the nature of the product indicated in red. It may
be a writing error. Indeed, as J must be a scalar to preserve the vectorial nature of the velocities in
Eq.(56). Thus, the scalar product in Eq.(57) seems to be correct.

The calculations in Eq.(56) are fairly straightforward, except for the scalar product, which re-
quires knowledge of the angle between r and the normals n in the preceding equations.

2.4.2 Second model

Now, Ruiz-Villanueva et al. (2014)’s model is described in terms of detection and corrections.

2.4.3 Detection

Unlike the previous model, this one has a specific collision detection capability. Firstly, collisions
are classified. According to the model, there are three types: anchoring, sliding and bouncing.
There are no criteria for anchoring, but the criteria for the other two cases are presented below.

Criterion for sliding and bouncing collisions

Let β define the incidence angle between the cylinder and obstacle.

If the object goes beyond the limits of the obstacle walls and β is less than βlim, then the
collision is of the sliding type.

If the object goes beyond the limits of the obstacle walls and β is greater than βlim, then
the collision is of the boucing type.

Unlike the previous model, this one has a specific collision detection capability. Firstly, colli-
sions are classified. According to the model, there are three types: anchoring, sliding and bounc-
ing.

Anchoring refers to the situation where the cylinder collides with the wall and remains at-
tached. This is the case, for example, with tree trunks whose branches are stuck in a bush. In
the scenario where the cylinder becomes anchored (as depicted in Fig.(13)), the driving forces di-
minish due to the reduction in submerged area. The so called effective driving force is therefore
calculated as if it were acting on the part of the cylinder that does not exceed the wall limit. The
initial motion conditions are recalculated based on these modified circumstances. However, the
article does not give any criteria for determining whether a collision is of this type.

Figure 13: Anchoring case, with the identification of effective driving forces.

The remaining two scenarios refer to collisions as such. If the object does not fall within the
aforementioned scenario, it can exhibit two behaviors upon encountering the obstacle: either slid-
ing over it, referred to as sliding, or rebounding off it, defined as bouncing. The distinction between
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the two cases is made via an angleβlim. If the incidence angle is denotecβ, then the model predicts
that it will bounce beyond the limit angle and vice versa. This model proposes a limit angle of 45[◦],
based on observations from laboratory experiments. Fig.14) gives a visual summary of the distinc-
tion between the two cases, where the cylinder collides with a horizontal obstacle in bouncing way.

Figure 14: Distinction between sliding and bouncing for a 45[◦] angle limit, with an example of a
cylinder in a bouncing collision.

2.4.4 Corrections

In addition to detection, corrections must be made to respect the physics involved. To do this, this
model proposes a two-stage correction: a purely geometric correction of the cylinder’s orientation
and position, and a correction of its velocities. Moreover, this model suggests correcting only the
linear velocities as in Eq.(60).

Model by Ruiz-Villanueva et al. (2014)
Let denote by ·′ the quantity · corrected and ϵ the restitution coefficient. If a sliding or

bouncing collision occurs between the cylinder and an obstacles, then

v′c =−ϵvc, (60)

with vc the linear velocity of the cylinder. In addition, geometrical corrections are brought.

In contrast to the previous model, the Newton’s law of restitution is not applied. Instead of
that, the correction applied is calculated as if the cylinder collided perpendicularly with the ob-
stacle. In this model, elastic collisions are considered, so that ϵ = 1. Moreover, no correction is
directly brought to the angular velocity, nor the orientation of the cylinder. Instead of that, geo-
metrical corrections are applied as explained below.
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To closely simulate the sliding behavior, a geometric correction is employed by using the non-
colliding edge of the cylinder as the pivot point for a rotation by an angle λ such that the final
position of the colliding edge aligns with the wall. The purpose of Fig.(15) is presented to elucidate
this process through a diagram. The pivot point is indicated in red, as well as the rotation.

u-v

u-v

Figure 15: Geometrical sliding correction (in red).

The bouncing geometrical correction consists in a simple translation, in the normal direction
of the obstacle, so that the colliding edge is brought back on the wall of the obstacle. In this way,
the cylinder’s integrity is preserved as depicted in Fig.(16).

u-v

u-v

Figure 16: Geometrical bouncing correction (in red).
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2.5 Subdivision procedure

The model by Persi (2015) suggest a rewriting to enable a more accurate assessment of forces
through a method called subdivision. This model is presented below and subsequently described.

Model by Persi (2015) rewritten with subdivision

Translation model

(
ρcVc +CamρwVw

) dv

d t
=

N∑
n=1

1

2
ρwCD S(n)

p (u(n) −v(n))|u−v|

+
N∑

n=1

1

2
ρCSS(n)

p (u(n) −v(n))|u−v|×nz

+ρw

(
1+ 1

2
Cam

) N∑
n=i

Du(n)

Dt
. (61)

Rotation model

I
dωc

d t
=

[
−

N∑
n=1

d (n)
CP y

(1

2
ρwC (n)

d S(n)
p (u(n)

x − v (n)
x )|u(n) −v(n)|

+ 1

2
ρwC (n)

s S(n)
p (u(n)

y − v (n)
y )|u(n) −v(n)|

)

+
N∑

n=1
dCPxρw

(1

2
C (n)

D S(n)
p (u(n)

y − v (n)
y )|u(n) −v(n)|

+ 1

2
C (n)

s S(n)
p (u(n)

x − v (n)
x )|u(n) −v(n)|

)]

+
[1

8
ρwCresL2

c

N∑
n=1

V (n)(ωw −ω(n)
c )|ωw −ω(n)

c |
]

. (62)

with N the number of subdivided parts, ωc and ωw the angular velocity of the cylinder and
the water, v linear velocity of the cylinder, Ic its momentum of inertia, Sp its projected area,
Lc its length, Vc its volume, Cd , Cs , Cr es and Cam the drag, side, resistance and added mass
coefficients, dCP the distance between the center of pressure and the center of mass of the
cylinder, ρw the fluid density and the subscript x and y for the x-component and the y-
component.

When considering large objects, as the cylinders in this work, the evaluation of the force as
a real challenge. Indeed, in scenarios involving non-uniform flow and a relatively larger object
compared to flow fluctuations, discrepant velocities in distinct sections of the object can emerge.
Calculating forces exclusively at the object’s center of mass may inadequately represent the actual
force distribution. As the Lagrangian approach is based on the force balance and that they depend
on the flow velocity, it is of prime importance to find a model to evaluate the force precisely. To
address this challenge, a proposed solution by Persi et al. (2017) involves implementing a subdivi-
sion procedure.
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The proposed method involves dividing the cylinder N parts, as depicted in Fig.(17) for N = 1,3
and 4.

Figure 17: Subdivision of the cylinder for N =1,2 and 3.

The equivalent properties of the sub-cylinders are then computed. In each of these parts, the
various forces are evaluated separately using the flow speed at the local center of mass. Then, the
total force is evaluated by summing the sums of these different parts. Fig.(18) represents the two
previous steps. The intensities are arbitrarily shown different for each sub-section to schematically
show the impact that the fluid velocity field might have. On the left, the force evaluation locally
and the on the right the total force computed and acting in the center of pressure of the whole
body. Particularly for torques, they are evaluated via the local lever arm, i.e. the distance between
the local center of mass and the local center of pressure. Finally, linear and angular acceleration
are calculated as before.

u-v

Figure 18: Evaluation of the total force through the subdivision procedure.
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Part II

Developed physical model
The goal of Part II is to present the model developed in this thesis, which aims to capture the
dynamics of floating objects, handle collisions, and be adaptable for laboratory scenarios, while
remaining potentially applicable to real-world cases. This description is divided into two parts:
the dynamic model and the collision model. Each part is elaborated both theoretically and nu-
merically, providing a comprehensive understanding of the model’s principles, its practical imple-
mentation and first results. In particular, the simulations that are presented are performed under
the assumption of a uniform and stationary field. Indeed, the generation of more complex flows
in line with reality requires an Eulerian study and is addressed in the following section.

1 Introduction to the model

1.1 Overall description of the model

As an introduction to the model, the overall structure of the implemented algorithm is outlined.
The code development enables a hierarchical organization of necessary calculations and the pro-
gressive evolution of computations to predict the behavior of a floating object. This approach is
chosen due to its ability to facilitate the prediction of floating object dynamics effectively. The
Fig.(19) summarizes the general structure of the code.

i+ 1/2

i+ 1

Figure 19: Diagram description of the Python algorithm.

Damien Sansen - 42 - Master’s Thesis



Whether examined from a numerical or theoretical perspective, the modeling process requires
a set of input data, such as terrain knowledge (wall configuration), calibration of coefficients, and
most importantly, initial conditions. Once these aspects are defined, a unique solution can be
computed from the equations. From a purely implementation point of view, the preprocessing
needs the definitions of the functions needed, the treatment of the data flow and an interpola-
tion of the hydrodynamics coefficients found in literature.

After establishing the initial state, the formulation of equations governing the evolution of key
variables, namely linear and angular velocity and the inclination angle, is conducted. These equa-
tions encompass the necessary forces for constructing force balances (fundamental dynamic’s
law). They must describe the object’s dynamics in terms of both rotation and translation. Subse-
quently, this system of differential equations is resolved over time. To accomplish this, a second-
order Runge-Kutta 22 method (order 2, two iterations) is employed.

During the resolution process, collision detection and correction is studied at each sub-time
step, in order to improve accuracy. Considering the simulation of a single wooden trunk, the model
examines object-wall or object-obstacle collision scenarios. In the absence of detected collisions,
the Runge-Kutta resolution continues without interruption. However, if a collision is detected,
adjustments are made to closely approximate the underlying physics of the collision event. At
the end of the second Runge-Kutta step, solutions for the next time step are derived, owing to
the method’s explicit nature. This loop persists until the final simulation time is reached. Upon
completion, the linear and angular velocity and the object’s orientation, enable the calculation of
its trajectory and visualization within the studied configuration.

1.2 Comparison of the model with the literature

The points of comparison in Part 1 are applied to the current model, to highlight the differences
and similarities that exist. As a reminder, the elements of comparison and sub-elements of com-
parison are explained below. The convention is similar to Part 1: blue means the criterion is cov-
ered and white the opposite.

Flow hypothesis

▷ Turbulence model: presence or absence of a turbulence model;

▷ Unsteady: variation of fluid velocity with time;

▷ Uniform: no spatial dependence of the velocity field;

▷ Field: consideration of real-life situations in the simulations.

Drifting shape

The simulated drifting object (spheres, disks or cylinders).

Data

The source of the data used (from experiments or simulations).

Phenomena

▷ Added mass: added mass term has added to the equations;

▷ Density cases: whether different density cases have been treated (fully/partially submerged);
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▷ Entrainment: the entrainment of a tree trunk (typical debris) initially hanging or present on
the ground.

Motion

Component of the motion (translation or yaw rotation) studied.

Forces

▷ Fd : component of the hydrodynamic in the direction of the relative velocity, called the drag
force;

▷ Fs : component of the hydrodynamic force in the perpendicular direction of the relative
velocity, called the side force;

▷ Fg : effective weight of the object in the downstream direction the weight, called the effective
weight;

▷ F f : the friction force between the object and the flume’s bed;

▷ Fp : the force that the fluid would exert on the body if the presence of the body had not
disturbed the flow called the Froude-Krylov force;

▷ Fam : the force related to the additional inertia of the fluid surrounding the object, called the
added mass force.

Collision

▷ detection : detection model elaborated and available;

▷ geometrical correction : correction model based on geometrical correction;

▷ dynamic correction : correction model based on dynamic correction;

▷ obstacle model : debris representation model elaborated and available;

▷ clogging prediction : model able to simulate and detect clogging;

▷ clogging experimental : laboratory clogging experiment;

▷ clogging simulation : numerically simulated clogging event.

The comparative table is given in the Tab.(6). The main differences are as follows. The model
developed is less general in terms of flow than the literature. Indeed, it is limited to hypothetical
flows (uniform and unsteady) and real flows (unsteady). It represents the simplest shape closed to
a tree trunk, typical debris in flood events. Experimental data from Ruiz-Villanueva et al. (2014)
are be simulated, even if the experiments were not carried out as part of this work. About the phe-
nomena, the presence of the debris is assumed and its density is fixed, allowing us to get rid of the
different cases of density (e.g. in terms of coefficient). For the force model, Persi (2015)’s model
is followed, with the addition of certain forces taken into account by Ruiz-Villanueva et al. (2014).
The developed models brings new elements breaks new ground when it comes to collisions. It sat-
isfies all the sub-components of the comparison except the clogging experiment, since this work
is limited to simulation. All these choices are justified throughout this part 2.
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Elements of
comparison

Sub-
elements of
comparison

(Ghaffarian
et al., 2020)

(Ruiz-
Villanueva
et al., 2014)

(Persi, 2015) The
developed

model
(Part II)

Flow turbulence
model

hypothesis unsteady
field

Drifting sphere
shape disk

cylinder

Data experimental
simulated

Phenomena entrainement
added mass

density cases

Motion translation
yaw rotation

Forces Fd

Fs

Fg

F f

Fp

Fam

Collision detection
geometrical
correction
dynamic

correction
obstacle
model

clogging
prediction

clogging ex-
perimental

clogging
simulation

Table 6: General comparison between the literature and the developed model.
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2 Dynamic model

A Lagrangian description studies the motion of a body by focusing on the individual trajectory
of each particle making up that body. It offers a powerful approach to analyzing the behavior of
floating debris in rivers, providing detailed information on its trajectory, velocity, acceleration and
interaction with the surrounding fluid.

Adopting a Lagrangian perspective, each piece of floating debris is considered as a separate
entity, and its evolution over time is tracked using coordinates relative to its own position and
that of the surrounding fluid. The global and local frames are the same as the one defined in the
literature, represented previously in Fig.(2).The adopted dynamic model is described below.

2.1 Floating object and flow hypothesis

The object of interest in this work are cylinders. Indeed, as studied in the literature review, the
cylinder is the most studied object in the study of debris drift. In addition, the model operates
under some assumptions. The cylinder is assumed to be perfectly rigid, homogeneous and un-
breakable. In addition, ihe initiation of debris motion is extensively studied in litterature Persi
(2015). As the model aims to be used during intense rainfall events, the necessary conditions to
carry away debris are supposed met.

For all the simulations of this section, the geometric and physical characteristics shown in
Tab.(7) have been applied. They have been implemented in the function type_macro in the al-
gorithm. In particular, a semi-floating cylinder is simulated to closely adhere to the assumptions
found in the literature, especially for the calibration of the drag and side coefficients Persi (2015).

rc [m] Lc [m] ρc [kg/m3] ρw [kg/m3]
0.25 3 500 1000

Table 7: Properties of the wooden cylinder utilized in the simulations of section II.

In terms of flow, only unsteady flows are considered. In the first simulation phase, uniform
fields are used, and then non-uniform fields taken from literature experiments are simulated.

2.2 Movement equations

The basic model used is the one of Persi (2015) in Eq.(61). This choice is based on the desire to
work with a model close to a classic mechanical description of the floating debris.
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2.2.1 Translation

Under the hypothesis of this work, Eq.(61) rewrites as Eq.(63).

Developed model for translation, adapted from Persi (2015)

(
ρcVc +CamρwVw

) dv

d t
=

N∑
n=1

1

2
ρwCD S(n)

p (u(n) −v(n))|u−v|

+
N∑

n=1

1

2
ρCSS(n)

p (u(n) −v(n))|u−v|×nz

+ρw

(
1+ 1

2
Cam

) N∑
n=i

Du(n)

Dt
. (63)

with N the number of subdivided parts, v the linear velocity of the cylinder, u the flow
velocity, mw the displaced fluid mass, mc the cylinder mass, Vc its volume, Sp its projected
area, ρw the fluid density Cd and Cs the drag and side coefficients, nz the unit vector normal
to the 2D flow plane and D

Dt the convective derivative equal to ∂
∂t +u ·∇.

The model with the subdivision was chosen, as one of the aims of this work is to develop an
algorithm capable of handling real flow data. For this reason, the cylinder was previously assumed
to be homogeneous.

The hydrodynamic coefficient used are the one presented in the sub-subsection 2.2.3, cali-
brated by Persi (2015). However, a model for its dependence in the particle Reynolds number
must be developed. As a reminder, three regimes were identified : the Stokes’, the Newtonian’s and
the drag crisis’ regime.

The developed function is defined by part and is designed to take physical phenomena into
account. Thus, for the Stokes Regime, the law proposed in the literature 24/Rep is applied with-
out modification. Then, in the Newtonian regime, experiments show that the coefficient depends
only on theta, so the function becomes constant over this interval. It is in this regime that the
coefficient is equal to the one experimented by Persi (2015) and previously represented in Fig.(9).
Finally, the third regime represents the drag crisis, where the coefficient is again constant but with
a much lower value of 0.01 Singh and Mittal (2005).

In addition to reflecting physical phenomena, the law is intended to be continuous. Thus,
the transitions between regimes have been adjusted. To this end, the first transition between the
Stokes and Newton regimes is calculated as an inverse function 1/Rep that tends to the constant
value of the Newtonian regime. For the second transition between the Newtonian regime and the
drag crisis, a more rapidly decaying function was chosen. For this reason, a function as 1/Re2

p is
selected and adjusted to tend to the selected value of 0.01.

The developed model is presented in the graph of Fig.(20). The latter shows the experimental
data of Rosendahl (2000a) which were presented in Fig.(8).
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Figure 20: Comparaison of experimental data for the drag coefficient of a cylinder according to
Rosendahl (2000a) and the developed model for θ = 90[◦]. exp stand for experimental.

The Tab.(8) shows the selected intervals.

function
regimes

Stokes regimes Newtonian regime Drag crisis

chosen intervals [0, 10[ [10, 1.5 1e5[ [1.5 1e5, ∞[

developed law
Cd(θu−v ,Rep ) = Cd(Rep )

Cd(Rep ) = 24/Rep

Cd(θu−v ,Rep ) = Cd(θ)
Persi (2015)

Cd(θu−v ,Rep ) = Cd(θ)
Cd(θ) = 0.01

Table 8: Developed function for the drag coefficient i, function of Rep .

An error analysis is performed to evaluate the accuracy of the approximation. To do so, the
relative mean square error (RMSE) is used. It is defined as the square root of the average of the
squares of differences between two sets of values ai and bi , so that

RMS =
√√√√ 1

No

No∑
i=1

(ai −bi )2 (64)

where No the number of data in a and b.

Analysis of this error for the approximation is given in the available data range (no in the drag
crisis regime). The RMS error equals 30.27 for the Stokes regime. Since experimental coefficients
are of the order of a hundred in this regime, the approximation is acceptable. In the transition
between the latter regime and the Newtonian one, the RMS error equals 0.5. The level of approx-
imation can be considered moderate since the experimental coefficients are roughly at the unit
scale for this interval. Lastly, within the Newtonian regime, the RMS error becomes 0.11. The qual-
ity of approximation improves significantly here, given that the experimental coefficients remain
constant at 0.6.
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2.2.2 Rotation

Then, the model for the rotation is the one Persi (2015) given in Eq.(62) adapted with the hypoth-
esis of the model.

Developed model for yaw rotation, adapted from Persi (2015)

I
dωc

d t
=

[
−

N∑
n=1

d (n)
CP y

(1

2
ρwC (n)

d S(n)
p (u(n)

x − v (n)
x )|u(n) −v(n)|

+ 1

2
ρwC (n)

s S(n)
p (u(n)

y − v (n)
y )|u(n) −v(n)|

)

+
N∑

n=1
dCPxρw

(1

2
C (n)

D S(n)
p (u(n)

y − v (n)
y )|u(n) −v(n)|

+ 1

2
C (n)

s S(n)
p (u(n)

x − v (n)
x )|u(n) −v(n)|

)]

+
[1

8
ρwCresL2

c

N∑
n=1

V (n)(ωw −ω(n)
c )|ωw −ω(n)

c |
]

. (65)

with N the number of subdivided parts, ωc and ωw the angular velocity of the cylinder and
the water, v linear velocity of the cylinder, Ic its momentum of inertia, Sp its projected area,
Lc its length, Vc its volume, Cd , Cs , Cr es and Cam the drag, side, resistance and added mass
coefficients, dCP the distance between the center of pressure and the center of mass of the
cylinder, ρw the fluid density and the subscript x and y for the x-component and the y-
component.

The adopted model is applied under the following hypothesis. First, the cylinder’s rotation is
limited to the yaw, described earlier in Fig(10). Next, the cylinder’s center of rotation is assumed
to be its center of mass.

Among the various laws modelling the distance dCP between the center of mass and the cen-
ter of pressure, Yin et al. (2003)’s model is adopted in view of the reasoning made in the sub-
subsection 2.3.3.

2.2.3 Subdivision procedure justification

The chosen model are based on Persi (2015)’s models, rewritten under a subdivision model. In-
deed, two phases of simulations are planned. The first phase involves a hypothetical unsteady
uniform flow that does not require this procedure, and the second phase involves an unsteady
and non-uniform real flow. In order capture the most representative flow velocity, this method is
necessary to account for spatial variations in velocity along the cylinder. In practice, the spatial
domain is discretized, and the flow velocity values at the center of mass of each sub-cylinder (u(n))
is bilinearly interpolated with the velocity values from the nearest cells. Appendix A.3 provides a
detailed definition and implementation of this interpolation.
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3 Validation for hypothetic flows

The ultimate objective of this section within this segment is the scrutiny of validation instances.
To accomplish this, two test are performed : one to check the immobility of the cylinder and the
other to verify the robustness of the simulations to flow orientation.

3.1 Temporal resolution and performance

The aim of this short subsection is to briefly explain the code’s performance in terms of equation
resolution. First of all, for solving the equations, a Runge-Kutta order 2, 2 iterations scheme has
been chosen and described in Appendix A.2. Since the focus of this work is not centered around
code optimization, but rather on modeling the object, analyzing its collisions, and so forth, this
section is intended to be concise. Several simulations with different time steps were performed.
These simulations give similar results for time steps of less than 0.01[s].The simulation of this sub-
section is conducted under the parameters given in Tab.(9).

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
N

[−]
tphys

[s]

uniform and stationary
u = (2,0)

(0,0) 0 75 (2,7.5) 1 120

Table 9: Parameters used for the algorithm perfomance tests.

As the algorithm is not optimized, the computation time C T is quite bad, as shown in Fig.(21).
What is more, this data is taken without any collision simulations, which slows down code execu-
tion even more, given the conditions to be checked. It decreases in an exponential way with the
time step h. With this second reason, the value of h=0.01 seems to be a wise choice.

Figure 21: Computation time C T [s] in function of the time step h[s] for 120[s] of physical simula-
tion.
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3.2 Object immobility in an inert fluid

This rather straightforward test is of significant importance. It verifies the immobility of an ob-
ject residing in an inert fluid. The objective here is the detection of any prospective numerical
anomalies that might yet instigate movement in the object. The simulation parameters are given
in Tab.(10).

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
N

[−]
h

[s]
tphys

[s]

inert
u = (0,0)

(0,0) 0 15 (2,7.5) 1 0.01 30

Table 10: Parameters used for the "immobility" validation test.

The results are shown in Fig.(22). The quantities remain fixed at their prescribed initial condi-
tions throughout the simulation. This validates the test.

Figure 22: Test for the object immobility in an inert fluid.

3.3 "4-flumes" validation

The "4-flumes" numerical test is a crucial procedure in the verification of this type of simulation
code. This methodology aims to guarantee the accuracy of the implementation by assessing the
robustness of the model under different conditions. By simulating translation and rotation scenar-
ios in a channel, this approach takes a close look at the object’s reactions to hydrodynamic forces
and flow-induced torques.

The 4-channel numerical test is developed by running 4 different simulations. For easy visu-
alization of the test, the Fig.(23) shows the 4 possible global frame configurations. These config-
urations are : bottom-top, top-bottom, left-to-right and right-to-left. However, in the following,
the graphs are given in the local frame. This process reveals any potential inconsistencies or sign
errors in forces, angles and other parameters influencing the trajectory of the floating object. This
test demonstrates the fidelity of the numerical model.
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Figure 23: "4-flumes" test configurations in global frames, with uniform stationary flow. Used
abbreviations : flow from top to bottom "TB", bottom to top "BT", right to left "RL" and left to
right "LR".

In practice, this test is performed under the simulation parameters presented in Tab.(11), given
in the local frame. As before, the number of sub-parts N in the cylinder equals 1, since the flow is
uniform.

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
N

[−]
h

[s]
tphys

[s]

uniform and stationnary
u = (2,0)

(0,0) 0 45 1 0.01 90

Table 11: Parameters used for the "4-flumes" validation test (local frame).

Graphs of the solutions (v, ωc and θuv ) are presented in Figs.(24, 25), as well as the trajectory
of the center of mass in Fig.(26).

Linear velocities

Linear velocity solutions are given in Fig.(24). One value out of 30 is plotted for greater visibility.
This initial test is successful as the 4 different simulations give the same results in local frame.

Figure 24: Linear velocity (x-component at the top and y-component at the bottom) of the cylin-
der versus time for the "4-flumes" test.
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Angular velocities and orientation

The test concerning the angular velocity of the cylinder and he evolution of the angle between the
major axis of the cylinder and the flow velocity (θuv ) is plotted in Fig.(25). Similar to the previous
graph, a value every 30 is plotted to enhance visibility. No data manipulation is performed for
this test, as the same convention is employed throughout this work3. The curves align perfectly,
indicating similar torque signs among the different simulations, as expected to pass the test.

Figure 25: Angular velocity of the cylinder (left) and angle between the major axis of the cylinder
and the flow velocity (θuv ) (right) versus time for the "4-flumes" test.

Center of mass trajectory

Lastly, the ultimate test involves comparing the trajectory of the cylinder’s center of mass. As trans-
lational and rotational motions are coupled through the dependence of forces on velocity and ori-
entation, revealing that the curves exhibit a ’mirroring’ effect. Thus, the test is deemed successful.

Figure 26: Trajectory comparison of the cylinder’s center of mass for the "4-flumes" test.

Discussion

The tests conducted shows the code consistently predicts the dynamics of the floating cylinder
across different configurations. This underscores the code’s capacity to effectively handle such
intricate manipulations, affirming its reliability.

3As a reminder, the angular velocity is positive in the trigonometric sense.
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3.3.1 Equilibrium verification

The aim is to verify the cylinder’s stable (aligned with the flow) and unstable (perpendicular to the
flow) equilibrium. The simulations are performed under the parameters of Tab.(12).

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
(x0, y0)

[m]
N

[−]
h

[s]
tphys

[s]

uniform and stationnary
u = (2,0)

(9,9) 0 (9,9) 1 0.01 120

Table 12: Parameters used for the equilibrium validation test (local frame).

Four simulations are performed, with the initial angle set at 90[◦], 95[◦], 5[◦] and 0[◦] as variable
parameters. Figs.(27) show the results of angle and angular velocity evolution, sufficient for this
study. It can be seen that the angular velocity remains zero for the initial angles of 0[◦] and 90[◦],
showing the character of equilibrium positions.

The hypothetical flow allows to visualize it even for the perpendicular case. This would be
impossible with a real flow in which the cylinder undergoes orientation perturbations Mandø and
Rosendahl (2010). To force this perturbation, the other two simulations are performed with initial
angles equal to 5[◦] and 95[◦]. It can be seen that for 95[◦], angular velocity has a peak at the
beginning of the simulation. This is because the torque is maximum, given the position of the
center of pressure and the forces acting on it. In fact, the coefficients shown in Fig.(9) combined
with the Eq.(55) center-of-pressure law show that the cylinder undergoes maximum torque. This
angular velocity tends towards 0 [◦/s] as the angle tends towards 180 [◦], demonstrating the nature
of unstable equilibrium at 95[◦] and stable equilibrium at 0[◦]. The simulation with an initial angle
of 5[◦] is less explicit. Indeed, it seems to indicate a zero angular velocity and a constant evolution
of theta. In practice, this is not the case. For performance reasons, the simulation stops after
150[s], but it would take longer for the cylinder to return to its equilibrium position. In fact, using
Eq.(55) allows excessively low torque around 0[◦], especially for 5[◦].

(a) Temporal evolution of ωC (local frame). (b) Temporal evolution of θu−v (local frame).

Figure 27: Evolution of the angular velocity ωC and of the angle θu−v for different initial orienta-
tion (local frame).
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3.3.2 Subdivision verification

Now that the basic dynamics of the floating object have been verified, it is of prime importance
to verify that the subdivision has no impact on the object’s dynamics for the hypothetical flow.
In fact, the same parameters are used as before (Tab.(12)), in which a uniform, stationary flow is
used. Thus, each sub-section of the cylinder is surrounded by a same value of the flow velocity.
The subdivision and the resulting bilinear interpolation must keep this reality. To do so, the same
simulation as before is performed for different number of subdivisions N (1, 2, 5 and 10). First, the
Fig.(28) shows the evolution of the angular velocity and the relative angle θuv . The curves overlap
perfectly

(a) Angular velocity ωc. (b) Relative angle θu−v .

Figure 28: Evolution of the angular velocity ωC and of the angle θu−v for different number of sub-
parts of the cylinder N .

Finally, the same analysis for the linear velocities are given in Fig.(29). Once again, the curves
overlap.

(a) x-component of the linear velocity. (b) y-component of the linear velocity.

Figure 29: Evolution of the linear velocities v for different number of sub-parts of the cylinder N .
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4 Collisions

Within the dynamic modeling of floating objects the incorporation of a collision model is an im-
perative necessity. The underlying objective is to accurately anticipate clogging phenomena, a
major issue in water resource management.

In this section, the focus is on collision mechanics. These encompass the fundamental interac-
tions between floating objects and their immediate environment, whether river walls or obstacles.
The impact of these collisions on debris movement is of crucial importance in refining predictions.
Through a rigorous analysis of these collisions, the aim is to enrich the global dynamics model.

In more detail, the section is structured as follows. First, particular attention is paid to the
model description, highlighting obstacle modeling and the identification of various collision types.
The focus then turns to the detection model, followed by an examination of the adjustments re-
quired in the event of collisions. The numerical implementation of the model is then detailed,
paving the way for the first numerical simulations that incorporate a variety of obstacle and colli-
sion types. Emphasis is placed on the model’s ability to predict and rectify collisions, while exam-
ining its limitations and opportunities for improvement.

4.1 Description

The objective is to build a general model capable of reflecting as much of the physics of collisions
as possible. This requires a model for the obstacles themselves and for the collisions and their cor-
rections. Additionally, the model must be capable of handling multiple collisions simultaneously
to address cases of blockage. Finally, it is crucial for the model to be sufficiently versatile to align
with real-world simulations and input datasets.

In the following explanations, an original model of detection is presented and the application
of the “Newton’s law of restitution for instantaneous collisions with no friction" (Hecker, 1997) is
used.

4.1.1 Obstacles model and type of collisions

In order to determine ’collision types’, it is first necessary to define a model for the obstacles. First,
there are collisions with the flume walls. These are defined as main walls, up (resp. down) for the
top (resp. bottom) wall4. When it comes to modeling other obstacles, such as chicanes, bridge
piers or other obstacles of any shape in the channel, it has been decided to model them using
rectangles. The walls that make up objects is defined as sub-walls. In obvious notation, there exist
sub-walls up, down, left and right. Fig.(30) illustrates the various definitions.

4Please note that bottom refers to the lowest part of the obstacle in the global reference frame (x, y). This is not the
floor of the channel, since the model only studies the horizontal.
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Figure 30: Collision models with the channel (main wall), on the left, or with rectangular obstacles
(sub-wall), on the right.

In addition to the advantage of a straightforward implementation of obstacle geometry, this
allows the program to take as input a mapping of channels defined as such. For example, the
software WOLF (ULiège, HECE) is capable of generating such mappings. The ultimate aim is to
discretize any shape into a set of cells, in order to apply the resulting model to more complex
shapes, as represented for a circle in Fig.(31).

Figure 31: Discretization of a circular obstacle with the basic rectangles of the model, for a number
of subdivisions equal (from left to right) to 1, 3 and 9.

The main advantage of this simple rectangle model is the ability to classify collisions into just
3 main types. The first type is a so-called horizontal collision, for collisions between the object
and the top and bottom walls. The second is vertical collisions between the object and the left
and right walls. The last case, never mentioned in the literature, is corner. This is a mixed case,
between a vertical and horizontal collision when the object collides at the corner of the rectangle.
These three types are all equally important and, for collisions with obstacles, are rarely of just one
type.

4.1.2 Collision detection

Collision detection is trivially based on the position of the cylinder. It is very important to specifi-
cally define each part of the cylinder, the obstacle and the type of collision to successfully identify
collisions and their hierarchy.

A first assumption is required. The domain in which the cylinder moves is assumed to be pos-
itive (x > 0, y > 0). A second assumption is to approximate the cylinder as a straight line with the
same physical properties. This line is aligned with its major axis (the line that connects the two
centers of the circular bases and is perpendicular to them). As a third assumption, the cylinder
is considered rigid, undeformable and therefore unbreakable. Thus, its geometric properties (e.g.
shape and size) and intrinsic physical properties (e.g. mass and coefficients) are preserved, what-
ever the collision it undergoes. The fourth assumption consists in considering the obstacle to be
larger than the cylinder. By breaking down collisions into three types. Thus, it can be considered
that horizontal and vertical collisions are caused by the edges of the cylinder only. The edge likely
to collide have components denominated (xhit, yhit) and the other (xother, yother). On the other
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hand, the determination of hit and other edges for collisions no longer makes sense, since this
type of collision occur somewhere on the cylinder and not necessarily on an edge.

The key idea is to determine which extremity is the hit one and which is the other one. Instead
of calculating distance, as suggested in the literature, it was decided to take advantage of knowl-
edge of the configuration, and more specifically of the position of obstacles. Although it requires
a comprehensive study of all possible cases and sub-cases, this step eventually enables a fairly
effective detection model.

Horizontal collisions

A horizontal collision can appear on a vertical wall. The criterion defined in this model is as fol-
lows, and is presented in detail below.

Criterion for horizontal collisions

By using the subscript sub-wall bottom (resp.sub-wall top) to denote the coordinate of
the bottom (resp. top) edge of the obstacle, the criteria write as follows.

Let the subscript hit denote the coordinates of the rightmost edge of the cylinder and
other the one of the other edge. If xhit > xvertical wall left and yhit ∈ [ysub-wall bottom, ysub-wall top],
then there exists a horizontal collision with the vertical left sub-wall of the obstacle.

Let the subscript hit denote the coordinates of the leftmost edge of the cylinder and other
the one of the other edge. If xhit < xvertical wall left and yhit ∈ [ysub-wall bottom, ysub-wall top], then
there exists a horizontal collision with the vertical right sub-wall of the obstacle.

For this kind of wall, two sub-cases are possible: right and left. For a left sub-wall, the right-
hand edge is decisive, and vice versa. This situation is represented in Fig.(32).

hit hit

other other

hit hit

other other

Figure 32: Determination of the hit and other edges for horizontal collision, with vertical left (de-
picted on the left) and right (depicted on the right) sub-walls.

Once the positions of the cylinder edges have been identified as hit and other, the next step is
to check for collisions. For the hit edge, the criterion obviously checks whether its horizontal posi-
tion (xhit) goes over the wall or not, and whether the vertical position (yhit) is in the interval where
the wall exists. The subscript ’sub-wall’ is used because the main wall is defined as horizontal, and
any other wall refers to ’sub-walls’.

Finally, the Fig.(33) represents the criterion. The figures on the left (Fig.(33)a, 33)b)) refer to
the criterion for collision with a left wall and the figures on the right (Fig.(33)c, 33)d)) refer to

Damien Sansen - 58 - Master’s Thesis



the criterion for a collision with a right wall. It can be observed that in Figs.(33a) and (33c), the
criterion is not filled while Figs.(33c) and (33d) show the contrary.

sub-wall top

hit hit

other other

vertical wall left

sub-wall botom

vertical wall right

sub-wall top

hit hit

other other

vertical wall left

sub-wall botom

vertical wall right

sub-wall top
hit hit

other other

vertical wall left

sub-wall botom

vertical wall right

sub-wall top
hit hit

other other

vertical wall left

sub-wall botom

vertical wall right

Figure 33: Determination of the collision condition for horizontal collision with vertical walls.

Vertical collisions

A vertical collision can appear on a horizontal wall. The criterion defined in this model is as fol-
lows, and is presented in detail below.

Criterion for vertical collisions

By denoting the left (resp. right) coordinates of the obstacle by the subscript left (resp.
right), the criteria write as follows.

Let the subscript hit denote the coordinates of the bottommostst edge of the cylinder and
other the one of the other edge. If yhit < yvertical wall top and xhit ∈ [xleft , xright], then there exists
a vertical collision with the horizontal top sub-wall of the obstacle.

Let the subscript hit denote the coordinates of the top-most edge of the cylinder and
other the one of the other edge. If yhit > yvertical wall bottom and xhit ∈ [xleft , xright], then there
exists a vertical collision with the horizontal bottom sub-wall of the obstacle.

For this kind of wall, two sub-cases are possible: top and down. For a wall up, the lowest edge
is decisive, and vice versa. This situation is represented in Fig.(34).
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hit hit

other other

hit hit

other other

Figure 34: Determination of the hit and other edges for vertical collision, with horizontal top (de-
picted on the left) and bottom (depicted on the right) sub-walls.

The next step is to check for collisions. For the hit edge, the criterion obviously checks whether
its vertical position (yhit) goes over the wall or not, and whether the horizontal position (xhit) is in
the interval where the wall exists. The following red box summarizes the criterion’s for vertical col-
lisions. The Fig.(35) represents this criterion. In particular, figures on the left (Figs.(35a,35b)) rep-
resent the criterion for a collision with the top sub-wall, while figures on the right (Figs.(35c,35d))
represent it for a sub-wall. The criterion is fullfilled for Figs.(35b,35d).

sub-wall top

hit hit

other other

vertical wall left

sub-wall botom

vertical wall right

sub-wall top

sub-wall botom

vertical wall left vertical wall right

hit hit

other other

sub-wall top

hit hit

other other

vertical wall left

sub-wall botom

vertical wall right

sub-wall top hit hit

vertical wall left

sub-wall botom

vertical wall right

other other

Figure 35: Determination of the collision condition for vertical collision with horizontal walls.

Damien Sansen - 60 - Master’s Thesis



Corner collisions

A corner collision occurs when part of the object passes both a vertical and horizontal subwall, i.e.
one of the obstacle’s corners. The criterion defined in this model is as follows, and is presented in
detail below.

Criterion for corner collision

By denoting yc (xc ) as the Cartesian function of the major axis of the cylinder and using
the subscript left (resp. right) for the left (resp. right) vertical wall of the obstacle, the criteria
write as follows.

Let the subscript hit denote the coordinates of the rightmost edge of the cylinder, other
the one of the other edge and (xP , yP ) be the coordinates of the corner up left. If xhit ∈
[xleft, xright] and xother < xleft and if yP > yc (xc ), then there exists a collision with the corner
up left.

Let the subscript hit denote the coordinates of the rightmost edge of the cylinder, other
the one of the other edge and (xP , yP ) be the coordinates of the corner down left. If xhit ∈
[xleft, xright] and xother < xleft and if yP < yc (xc ), then there exists a collision with the corner
down left.

Let the subscript hit denote the coordinates of the leftmost edge of the cylinder, other
the one of the other edge and (xP , yP ) be the coordinates of the corner up right. If xhit ∈
[xleft, xright] and xother > xright and if yP > yc (xc ), then there exists a collision with the corner
up right.

Let the subscript hit denote the coordinates of the leftmost edge of the cylinder, other
the one of the other edge and (xP , yP ) be the coordinates of the corner down right. If xhit ∈
[xleft, xright] and xother > xright and if yP < yc (xc ), then there exists a collision with the corner
down right.

As already mentioned, this collision does not always take place on the hit edge, but somewhere
along the cylinder. However, the names hit and other are kept to distinguish the two ends of the
cylinder.

There are four sub-cases here, since a rectangle has four corners: up left, up right, down left and
down right. Each of these has a different collision criterion. For the up and down corners on the
left, the edge hit is defined as the rightmost edge and vice versa. This consideration is represented
in Fig.(36). The up left corner is depicted on the top left, the up right corner on the top right, the
down left corner on the bottom left and the down right corner on the bottom right.
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hit hit

other other

hit hit

other other

hit hit

other other

hit hit

other other

Figure 36: Different types of corner collision, with the definition of hit and other edges of the
cylinder in each cases.

A first condition is that xhit ∈ [xleft, xright]). In other words, the cylinder must be on either side
of the corner. The following reasoning applies to the corner up left case, and the results for the
other corners are given directly. The corner is assumed to be at point P with known (xP , yP ) coor-
dinates. In view of the third assumption made in the preamble to this sub-section, the cylinder is
considered to be a straight line. Since the coordinates of its extremities are known, it is possible
to obtain its Cartesian equation via the basic equations Eq.(66) with m the slope, p the y-intercept
and xc and yc the coordinate of the cylinder :

yc (xc ) = mxc +p,

m = yhit − yother

xhit −xother
,

p = yhit −mxhit.

(66)

Then, the second condition consists in evaluating the function at the xP point and check
whether the cylinder protrudes from the corner, i.e. whether yP > yc (xc ). The Fig.(37) illus-
trates the criterion. In both depicted situations, the condition on x is met (xhit ∈ [xleft, xright] and
xother < xleft). On the left, yP < yc (xc ) implies that there is no collision. On the right, yP > yc (xc )
and a corner up left collision is detected.
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P

c

P

hit hit

other other

other other

hit hit

P = c= leftP = c= left right right

c

Figure 37: Determination of the collision condition for corner up left collision.

The reasoning can be replicated for the other corners, giving the corner collision criterion
stated at the beginning.

4.1.3 Correction

For the correction part, whose aim is to calculate the impact of the collision on the object’s dy-
namics, the results from the literature review in Eq.(56) are used. More specifically, the “Newton’s
Law of Restitution for Instantaneous Collisions with No Friction", detailed by Hecker (1997), is
employed. That is why a frictionless assumption is applied. The strength of this correction model
is that it is general, so it can be applied to any type of collision.

The application of the Eq.(56) is straightforward if the normal at the point of impact is known.
Applied to this model, this gives Fig.(38).

° °

° °

Figure 38: Definition of obstacle normals according to Hecker (1997) applied to selected obstacles.

The components of the presented normal vectors are reported in Tab.(13), note that the normal
vector for the main walls top and down are the same as those of the sub-wall top and bottom.
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normal components (x,y)
nsub top (0,1)
nsub bottom (0,-1)
nsub right (1,0)
nsub left (-1,0)
ncorner up left (-

p
2/2,

p
2/2)

ncorner up right (
p

2/2,
p

2/2)
ncorner down left (-

p
2/2,-

p
2/2)

ncorner down right (
p

2/2, -
p

2/2)

Table 13: Components of the different normal vectors of the obstacles.

4.2 Recommended numerical approach

This subsection present the implementation nuances. Into more details, appendix A describes
some very specific parts of the code.

Although each collision type is defined independently, special attention must be given to their
hierarchy, specifically the order in which they are considered. Indeed, the correction of one type
of collision should not replace another. A good practice revealed by this work is to treat first hori-
zontal collisions (with a vertical wall), Achieving a precise geometric correction after the dynamic
correction is essential to completely resolve the collision within a single case and to avoid the risk
of unfortunate numerical calculation errors leading to additional collision detection for the same
time step.

In addition, it is crucial to implement a smooth identification of hit and other edges to facil-
itate multiple corrections in scenarios where multiple edges collide with one or more obstacles.
Furthermore, this approach should account for cases where resolving one obstacle collision might
trigger the need for subsequent corrections in other obstacles.

Furthermore, collisions affect the entire dynamics of the moving object, through its position,
linear and angular velocity and orientation. It is therefore crucial not to overlook a collision. That
explains why it is essential to keep in mind that an appropriate timestep must be chosen to pre-
vent object penetrations and to avoid situations where an object pass through an obstacle.

Finally, the practical way the obstacles are implemented is explained in the appendix A.4. How-
ever, the Fig.(39) shows simple obstacles creation as baffles or squared bridge piers and more com-
plex discretized obstacles as a circle.
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a) Baffles configuration. b) Piers configuration.

c) Discretized circle Nr = 1 d) Discretized circle Nr = 5

e) Discretized circle Nr = 15 f) Discretized circle Nr = 30

Figure 39: Examples of different obstacles creation through the code.
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4.3 Simulations

Each type of collision presented above is forced into a numerical simulation and the results are
presented here. In particular for sub-walls collisions, the results are presented in detail for the
collisions on the left and more briefly for those on the right, since they represent the same physics
in the local frame, even if in the global frame the type of collision is different (e.g. horizontal
collision with a left sub-wall or horizontal collision with a right sub-wall). The change has more to
do with the practical side of how the code should detect the type of collision.

4.3.1 Vertical collisions

Main wall vertical collisions

First, collisions with main walls are presented. In particular, the study of a vertical collision with
the top main wall is presented, and the equivalent results for the bottom main wall is given in
the appendices. The cylinder type is based on the physical and geometric characteristics used
previously, reported in Tab.(7). The simulation is run with the parameters of Tab.(14). In particular,
uniform and stationary flow velocities with a positive vertical component was implemented to
force the desired collision. About the configuration, no obstacles are implemented and only the
two horizontal walls of the channel are set to y = 0 for the bottom wall and y=6 for the top wall.

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
ϵ

[−]
N

[−]
h

[s]
tphys

[s]

uniform
stationnary

u = (2,1)
(0,0) 0 60 (3,2) 0.1 1 0.01 15

Table 14: Parameters used for the simulation of vertical collisions with a top main wall.

For the following description, the model implemented without collisions is compared to the
one with collisions. A direct way to visualize the impact of the model is to observe the cylinder’s tra-
jectory. Fig.(40) shows a simulation without collision model Fig.(40a) and with the model Fig.(40a).
It seems the code is able to detect and physically correct the collisions (first of them at 10.5[m]).
Vertical collisions with a top main wall appears to have been detected and corrected. The red
dotted line is the trajectory of the center of mass, while the cylinder is represented by the brown
straight segments. In the collision type classification reported by Ruiz-Villanueva et al. (2014), this
is a sliding collision (cf. 2.4.3). Although the specific geometrical corrections of the latter model
have not been followed, it is interesting to note that Hecker (1997)’s model is sufficient in itself.
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(a) Simulation without collisions.

(b) Simulation with collisions.

Figure 40: Comparison of trajectories of floating cylinder with and without collision model.

It is necessary to ensure that the correction is not only geometric, but also based on the object’s
dynamics. To this end, the graphs of linear velocity, angular velocity and inclination of the cylinder
with respect to the horizontal are shown below.

First of all, about the linear velocity in Fig.(41), it can be observed that the graph without any
corrections (top graph) shows the convergence expected and presented in the previous section. On
the other hand, the graph with the correction clearly shows discontinuities from 4.1[s], time that
corresponds to the first collision. This is due to the introduction of the J impulse into the model,
whose purpose is to instantaneously modify dynamic quantities (velocities). Overall, the velocity
of the hypothetical flow being u = (2,1) forces the cylinder to crash against the wall and move only
towards positive x. In particular, an initial collision is observed that decreases velocity along x
and y . Into more details, the linear velocity along x of the cylinder tends towards that of the flow,
despite some corrections. The vertical component of the velocity cancels out with each collision,
thus instantaneously halting the cylinder’s vertical progression. The intensity with which velocities
are modified depends on the restitution coefficient, set at 0.1 for these simulations. This results in
collisions with a significant loss of kinetic energy on each impact. Since the impulse is calculated
on the basis of linear velocities, it is understandable that the corrections gradually decrease. The
fact that the cylinder progressively aligns with the wall also contributes to this reduction, since the
collision angle appears in the impulse formula. Physically, this implies that the collision is less
and less "violent" as the cylinder aligns with the wall. The impact of the value of the restitution
coefficient is studied in detail at the end of this section.
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Figure 41: Linear velocity of the cylinder as a function of time, without (resp. with) collision model
on the top (resp. bottom) figure, for vertical collisions with a top main wall.

To complete the study of the behavior after the first collision, the angular velocity must be
studied (Fig.(42)). The first collision occurs at 4.1[s] before several others. This implies a change
of orientation, giving rise to further collisions in the sequence. In addition, angular velocity cor-
rection allows to understand the change in cylinder orientation and how this dynamic correction
affects its geometric correction.

Figure 42: Angular velocity of the cylinder as a function of time, without (resp. with) collision
model on the top (resp. bottom) figure, for vertical collisions with a top main wall.

To quantify the fact that the cylinder has a correction on its angle of inclination, the graphs in
Fig.(43) are presented. The first collision appears at 4.1[s]. After a while, the cylinder is aligned
with the horizontal wall. Indeed, the angle initially converging to an angle of 180[◦] with the flow
(corresponding for this flow to an angle of 26.46[◦] with respect to x ) tends towards 0[◦] with the
collision correction, corresponding to the alignment of the cylinder with the wall observed at the
beginning of the sub-section. As the angle of inclination of the cylinder is the derivative of the
angular velocity, the behavior of the angle is directly understandable in view of the preceding ex-
planations.

Damien Sansen - 68 - Master’s Thesis



Figure 43: Angle of the cylinder inclination to horizontal as a function of time, without (resp. with)
collision model on the top (resp. bottom) figure, for vertical collisions with a top main wall.

Sub wall vertical collisions

To show the results of code simulations for collisions with the horizontal walls of the obstacle, the
top sub-wall case is presented (the other case, bottom sub-wall) is in the appendix). The analysis
of collision dynamics is the same as above. The detailed study is no longer presented. However,
the correction graphs is shown to check that the corrections made are only applied at impact. To
do this, the channel is widened (the top wall is now at y=10[m]), and a rectangular obstacle (4
×2.5[m]) is placed in the channel (corner up left at (4,7) [m]). The initial position and orientation
of the cylinder is changed and imposed as indicated in Fig.(15).

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
ϵ

[−]
N

[−]
h

[s]
tphys

[s]

uniform
stationnary

u = (2,1)
(0,0) 0 100 (3,2) 0.1 1 0.01 15

Table 15: Parameters used for the simulation of vertical collisions with a bottom sub-wall.

The collision model produces the trajectory shown in Fig.(44). It can be seen that corrections
are made, allowing the cylinder not to cross the obstacle and to return to its path once it has passed
the obstacle. In addition, the correction with the top main wall that follows is still ensured.

Figure 44: Trajectory of floating cylinder in horizontal plane (x, y). The red dotted line is the tra-
jectory of the center of mass, while the cylinder is represented by the brown straight segments.

Damien Sansen - 69 - Master’s Thesis



The interpretation of the graphs in Figs.(45) is similar to the discussion of the main wall and
the trajectory. For each of the graphs, collisions with the obstacle are between 1.6 and 3.5[s] and
collisions with the main wall after 9.6[s]. Between the two collision intervals, the cylinder reverts
to the classic behavior studied for translation and rotation in the previous sections. Thus vertical
collisions with a bottom sub wall appears to be detected and corrected.

a) Linear velocities.

b) Angular velocity.

c) Angle of inclination (global frame)

Figure 45: Linear velocities, angular velocity and inclination angle of the cylinder as a function of
time.
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4.3.2 Horizontal collisions

As explained above, horizontal collisions refer to collisions with sub-walls. Emphasis is placed on
the left-hand edge of the obstacle, while the right-hand edge is reserved for the appendix. With the
imposed conditions of the simulations, this type of collision is often followed by corner collisions.
That is why the flow velocity is here fixed to (2,0). Once again, this is a non-real-life situation, used
only to check the effectiveness of the correction on a sub-wall collision with a pure left sub-wall.
The used parameter are indicated in the Tab.(16). The main walls are placed y = 0 and y = 10 as
before and the obstacle (4 × 5 [m]) is centered at (11.5, 3.5)[m].

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
ϵ

[−]
N

[−]
h

[s]
tphys

[s]

uniform
stationnary

u = (2,0)
(0,0) 0 20 (3,5) 0.1 1 0.01 15

Table 16: Parameters used for the simulation of vertical collisions with a left sub-wall.

Once again, the study begins on the trajectory shown in Fig.(46).

Figure 46: Trajectory of floating cylinder in horizontal plane (x, y) in a horizontal collisions with
the left sub-wall. The red dotted line is the trajectory of the center of mass, while the cylinder is
represented by the brown straight segments.

The interpretation of the graphs in Figs.(47, 48) is here again the same as before. For each of the
graphs, collisions with the obstacle start at 4[s]. It is observed that the cylinder seems to rotate with
its point of impact as a fixed point. As a result, its angular velocity varies greatly (positively, imply-
ing anti-clockwise rotation). This has an impact on its linear velocity, since hydrodynamic forces
are modified by its change of orientation. Then, the linear velocity at x tends towards 0. However,
an error of around 0.03[m/s] remains, even though physically the object should be stopped (as-
suming the flow is correct). This is not due to the restitution coefficient, since the error remains
over the long term. One hypothesis would be that this is a numerical error, small enough to be
neglected. What is more, it is enough to consider the correction acceptable, since in real-life sim-
ulations, the flow has re-circulations enabling the object not to be stopped as in this hypothetical
case. Finally, as regards the very rapid oscillation in long-term post-collision behavior, this is ex-
plained by a succession of detection and correction. The hypothetical flow does not stop, forcing
the object perpetually collide the obstacle and be corrected.
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Figure 47: Linear and angular velocities of the cylinder as a function of time for horizontal colli-
sions with the left sub-wall.

Figure 48: Angle of the cylinder inclination to horizontal as a function of time for horizontal colli-
sions with the left sub-wall.

4.3.3 Corner collisions

Once again, only one of the cases referring to this same family is presented here, and that is the
corner up left case. The associated appendix presents the corner down right case (only). As men-
tioned above, this type of collision is often linked to others. In this case, a simulation featuring
a wall-left collision followed by a corner collision is presented. In simulations with real flows,
this type of collision is the most common. The parameters used for this simulation are shown in
Tab.(17) The geometry used is the same as before (rectangle of 4 × 2.5 [m2] centered at (6, 4.25)).

flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
ϵ

[−]
N

[−]
h

[s]
tphys

[s]

uniform
stationnary

u = (2,0)
(0,0) 0 70 (2,6) 0.1 1 0.01 15

Table 17: Parameters used for the simulation of corner up left collisions.

The trajectory calculated for this situation is shown in Fig(49). By analyzing the center of mass
(whose trajectory is dotted in red) it can be seen that it goes around the corner. For the entire
cylinder, it is observed that it rotates so that the corner represents a fixed point of rotation.
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Figure 49: Trajectory of floating cylinder in horizontal plane (x, y) in the case of corner up left col-
lisions. The red dotted line is the trajectory of the center of mass, while the cylinder is represented
by the brown straight segments.

The interpretation of the graphs in Figs.(50) is here again the same as before. The collisions
with the obstacle start at 2.3[s]. Linear velocities are affected over a shorter time interval. The
angular velocity correction here is negative, implying rotation in the clockwise direction, as im-
plied by the collision. Once again, the cylinder returns to a stable equilibrium position after its
collisions.

a) linear velocities. b) angular velocities.

c) inclination angle.

Figure 50: Linear velocities, angular velocity and inclination angle of the cylinder as a function of
time for corner up left collisions.
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4.3.4 Multiple collisions (clogging prediction)

In addition to testing collision types, it is necessary to check that the code is capable of generating
multiple collisions. This concerns collisions where several points on the cylinder collide with an
obstacle. This is very important, for example, if the cylinder is blocked by two different obstacles.
For this reason, a first simple case is shown. In the following, the focus is on trajectory graphs.

First example

The first example is the simplest case. The idea is to simulate clogging caused by two obstacles.
First, a clogging resulting from the same type of collision (horizontal) is simulated. To do this, a
purely horizontal flow is simulated (u = (2,0)), with a cylinder oriented perpendicular to the flow.
Its inital position is (x0, y0)=(2,5). Two square-shaped obstacles (3 × 3 [m2]) spaced at medium
intervals (2 [m]) are placed in the flume. The simulation shown in Fig.(51) shows that clogging is
predicted.

Figure 51: Trajectory of floating cylinder in horizontal plane (x, y), with two square-shaped obsta-
cles (2 × 2 [m2]) aligned and spaced vertically at medium intervals (2 [m]) in the flume.

Second example

As a second example, two square-shaped obstacles (3 × 3 [m2]) spaced at medium intervals (1.5
[m]) are placed in the channel, one centered at (7.5,7.5) [m] and the other at (12, 3.5)[m]. Other
parameters are reported in Tab.(18).
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flow
[m/s]

v0

[m/s]
ω0

[◦/s]
θu−v

[◦]
(x0, y0)

[m]
ϵ

[−]
N

[−]
h

[s]
tphys

[s]

uniform
stationnary

u = (2,0)
(0,0) 0 135 (6,2.5) 0.1 1 0.01 15

Table 18: Parameters used for the simulation of the second example of multiple collisions.

The cylinder trajectory calculated by the code is shown in Fig.(52). It can be seen that the cylin-
der remains trapped between the two obstacles for a short time lapse (about 6.5[s]). Two different
ends of the cylinder collide with the obstacles during the same time step, and the code is able to
take this into account.

Figure 52: Trajectory of floating cylinder in horizontal plane (x, y), with two square-shaped obsta-
cles (3 × 3 [m2]) spaced at medium intervals (1.5 [m]) in the flume.

This effect is an important one to take into account in this master’s thesis. Actually, when sev-
eral floating objects are in this situation, their interaction can lead to a clogging.

It is possible to simulate, under the same conditions, the case where the cylinder strikes each
obstacle at the same speed. The result is given in Fig.(53). This is a special case, but it demon-
strates the code’s ability to handle multiple collisions and predict clogging. For this purpose, a
cylinder oriented at 45[◦] to the horizontal is simulated. Unlike the previous example, the cylin-
der is permanently wedged between the two obstacles. This is a hypothetical case, given the flow
under consideration (unsteady and uniform despite the obstacles). However, it is unlikely that
simulations result in this type of clogging, given the difficulty of implementing it.
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Figure 53: Trajectory of floating cylinder in horizontal plane (x, y), with two square-shaped obsta-
cles.

Third example

The same concept as before is applied to a discretization involving two circular obstacles divided
into 7 rectangles (Fig.(54)). In this simulation, achieving the cylinder’s complete halt between the
two obstacles proves even more challenging. The cylinder’s edges consistently slide along either
wall. Nevertheless, as previously indicated, the interaction between the cylinder and the two ob-
stacles could potentially lead to clogging when multiple pieces of wood are considered.

Figure 54: Trajectory of floating cylinder in horizontal plane (x, y), with two discretized circled
obstacles.
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4.3.5 Limitations and special cases

The purpose of this sub-subsection is to set out the limitations of the collision model, in terms of
obstacles, their detection and correction.

Obstacles limits

When multiple obstacles are assembled together, sharing a boundary (e.g., two squares placed
edge-to-edge) in a linear fashion (e.g., two squares placed at their corners), the object can some-
times be stuck on this boundary or pass through it if it is perfectly aligned. To address this issue, it
is sufficient to introduce a small overlap between the created obstacles.

Time step and obstacle size

A significant constraint of the proposed collision detection model is related to the time step. If the
time step is chosen too large, it may result in insufficient collision detection, leading to a situa-
tion where the cylinder appears to "cross" the obstacle. This situation is clearly unacceptable in
a realistic dynamic model. Consequently, when the obstacle size is very small, accurate collision
detection becomes impossible with a reasonable time step. An example of a collision with an ob-
ject of reasonable size and another of smaller size is shown in the Figs.(55). It is observed for the
small obstacle that the cylinder crosses the obstacle after a few first collisions. This is due to the
fact that it gains velocity (linear and angular) as previously studied, but that the time step remains
too small to correctly apply the detection criteria.

This problem also calls into question the generalization of the model, which is intended to be
applicable to a variety of shapes (discretization into rectangles). Indeed, the more complex the
shape to be discretized, the greater the number of rectangles required for accurate discretization,
and consequently the smaller their size. This is particularly illustrated in Fig.(56). The correct
resolution of collisions hinges upon the preservation of adequately sized sub-sections within the
circles. This ensures that interactions are accurately managed. The top figure illustrates this con-
cept, demonstrating a circle discretized into 21 segments. Similarly, the bottom figure shows the
scenario with 7 segments. These visual representations emphasize the significance of maintaining
a suitable granularity in circle discretization to achieve precise collision handling. In this simula-
tion, collision corrections bring the cylinder to the other side of the obstacle, due to detection of
the wrong type of collision, leading to a chain to a total mis-correction. With the current model
(which has not improved on this problem) there is a balance between the accuracy of the dis-
cretization and the accuracy of the collision detection.

To remedy this, the implementation of a variable time step seems to be an unavoidable solu-
tion. This would enable the model to work reliably with a variety of obstacle sizes, while guaran-
teeing accurate collision detection.

However, this limitation is not be problematic for specific simulations of baffles in laboratory
channels, which are the main focus of the current collision model. These simulations aim to re-
produce the experimental conditions found in the literature, and this limitation has therefore no
impact on the results of the Master’s Thesis.
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(a) Collision with medium obstacle compared to the cylinder.

(b) Collision with very small obstacle compared to the cylinder.

Figure 55: Trajectory of floating cylinder in horizontal plane (x, y) with a collision with a smaller
obstacle.
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Figure 56: Trajectory of floating cylinder in horizontal plane (x, y) with a collision with a discretized
circle Nr = 7 and 21).
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Part III

Confrontation with established literature
This section encompasses several objectives. Firstly, it aims to demonstrate the code’s capability to
accommodate more complex flow input data than the steady flows used in the preceding sections.
The second goal, which is crucial to this master’s thesis, involves the comparison of simulation
outcomes with laboratory experiments documented in the literature. This allows a validation of
the model. Additionally, a comprehensive error analysis is undertaken.

1 Introduction to the validation

The algorithm simulates the flume experiences at scale 1:1.

2 Reproduction of laboratory experiments

The laboratory experiments of Ruiz-Villanueva et al. (2014) are chosen for this validation phase.
The study encompassed a range of scenarios, involving five different cylinder sizes, three distinct
initial dowel densities, three varied initial orientations, and five diverse channel geometries. In
this section, the different geometries adopted, the resulting hydraulic and flow conditions, and
the different cylinder types are presented.

2.1 Floating objects

The type of object used in the Ruiz-Villanueva et al. (2014) experiments are wooden cylinders.
More specifically, the article uses 5 different types of object, the characteristics of which are re-
ported in Tab.(19).The cylinder size plays a central role in the forthcoming study, given that the
channel size used remains constant (with the exception of obstacle size, which varies according to
geometry, as explained in the next section).

Properties
Type

1 2 3 4 5

Lc [m] 0.1 0.2 0.2 0.5 0.2
rc [m] 0.010 0.008 0.012 0.010 0.018

ρc [kg/m3] 720 720 720 720 720

Table 19: Description of the five types of cylinder used in the experiments and simulations.

2.2 Eulerian flow field

WOLF5 software, created by the HECE research group (ULiège), is used to generate the different
velocity fields from experiments conducted in the literature. WOLF encompasses a comprehensive
suite of numerical models (finite volume approach) designed for simulating both free surface and
pressurized flows.

5More detailed description available at https://www.uee.uliege.be/cms/c_2383459/fr/wolf
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The WOLF simulations were generated and supplied by Clément Delhez (ULiège). The spatial
domain was discretized via a mesh of quadrangular elements.

Temporal resolution was achieved using a Runge-Kutta 21 scheme. The simulation was carried
out in constant reconstruction until a stationary flow without turbulence model was obtained.
This stationary flow was recorded as the initial condition for the flow with turbulence model. Sub-
sequently, a turbulence model (k-epsilon model) is employed for simulation, using the previously
explained initial conditions within a linear reconstruction framework. The outcomes are derived
from stabilizing this latter flow configuration.

The different velocity data fields are reported in the following sub-subsections. It can be seen
that the baffles disrupt the flow, causing variations in velocity across the channel. This non-
uniformity in the velocity distribution is a direct result of the deflection and interaction of the
fluid with the alternating baffles.

2.2.1 The spacial meshes

Since various geometries are being generated and simulated flow data as well as real flow data are
utilized, encompassing various hydraulic conditions, a spatial mesh is needed. The following table
(Tab.(20)) shows the different meshes used for each of the geometries presented above. As previ-
ously mentioned, a quadrangular element mesh is used. The spacing between two nodes along x
(resp. y) is denoted d x (resp. d y). The number of elements along x (resp. y) is denoted nbx (resp.
nby).

Geom
Charact

dx [m] dy [m] nbx [-] nby [-]

1 0.01 0.01 1006 66
2 0.02 0.02 1008 36
3 0.02 0.02 1008 36

Table 20: Description of the three different meshes used. Geom stands for the geometry type and
Charact for the characteristics of the mesh.

2.2.2 The geometries and flow fields

Different geometries are tested in the above-mentioned laboratory experiments. The addition
of baffles of different sizes for each type of geometry makes it possible to create distinct two-
dimensional velocity patterns. The different geometries are discussed below. The experimental
setup utilized a flume measuring 0.6 meters in width and 20 meters in length. This flume featured
a horizontal slope, which remained consistent across all investigated geometries. However, only
the initial 6 meters upstream were employed for conducting the experiments.

Before describing the geometries in detail, the Tab.(21) shows the performed hydraulic condi-
tions.

Damien Sansen - 81 - Master’s Thesis



Geom
H.C. inlet discharge

[Ls−1]

outlet boundary condition
(Weir height)

[cm]

water depth
(max-min)

[cm]

1 18 5.8 16-10
2 18 5.8 20-8
3 12 9.7 18-13

Table 21: Description of the hydraulic conditions for the three different geometries (in specific
units indicated in square brackets). H.C. stands for hydraulic conditions and Geom for the different
geometries.

The following descriptions present the different geometries. The appendix A.4 gives informa-
tion about their implementation. In addition, a bilinear interpolation has to be made, as specified
in 2.2.3. Its implementation and definition is given in appendix A.3

Geometry 1

The flume is 0.6[m] wide and 10[m] long, the obstacles dimension are 0.15[m] long and 0.2[m]
width. They alternate periodically with an offset of the positions of the bottom obstacles, as shown
in Fig.(57).

Figure 57: Flume and obstacles dimensions (in [m]) of the experiments in Ruiz-Villanueva et al.
(2014) for geometry 1.

The fluid velocity field generated by WOLF with the mesh describe in the Tab.(20) and the con-
ditions of the Tab.(21) is reported in Fig.(58). The white rectangles are the fixed baffles deflecting
the flow.

Figure 58: WOLF simulation of the flow velocity field from experiments of Ruiz-Villanueva et al.
(2014) for geometry 1.
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Geometry 2

The flume is 0.6[m] wide and 10[m] long, the obstacles dimension are 0.3[m] long and 0.12[m]
width. They alternate periodically, with an offset between two on the bottom and top walls, as
shown in Fig.(59).

Figure 59: Flume and obstacles dimensions (in [m]) of the experiments in Ruiz-Villanueva et al.
(2014) for geometry 2.

The fluid velocity field generated by WOLF with the mesh describe in the Tab.(20) and the con-
ditions of the Tab.(21) is reported in Fig.(60). The white rectangles are the fixed baffles deflecting
the flow.

Figure 60: WOLF simulation of the flow velocity field from experiments of Ruiz-Villanueva et al.
(2014) for geometry 2.

Geometry 3

The flume is 0.6[m] wide and 10[m] long, the obstacles dimension are 0.15[m] long and 0.4[m]
width. They alternate periodically, with an offset between two on the bottom and top walls, as
shown in Fig.(61).

Figure 61: Flume and obstacles dimensions (in [m]) of the experiments in Ruiz-Villanueva et al.
(2014) for geometry 3.

The fluid velocity field generated by WOLF with the mesh describe in the Tab.(20) and the con-
ditions of the Tab.(21) is reported in Fig.(62). The white rectangles are the fixed baffles deflecting
the flow.
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Figure 62: WOLF simulation of the flow velocity field from experiments of Ruiz-Villanueva et al.
(2014) for geometry 3.

2.3 Numerical replication of experimental results

In this section, the experimental studies conducted by Ruiz-Villanueva et al. (2014) and confirmed
by Persi (2015) are replicated. The choice of cylinder subdivision level is initially justified. Subse-
quent simulation tests are carried out to closely mimic the selected experiments, and a rigorous
comparison of the results is conducted to quantify the level of agreement achieved. Through this
assessment, a comprehensive evaluation of the computational model’s ability to capture the float-
ing cylinder dynamic is provided.

2.3.1 Choice of the parameters

This section presents the fixed parameters of the simulations. In particular, the choice of the num-
ber of cylinder subdisvision is studied.

Choice of N

Firstly, the choice of the cylinder subdivision count is crucial. To achieve this, a calibration based
on literature results are performed. The trajectory of a cylinder type 26 within the geometry 1 is
simulated and compared against the findings of Ruiz-Villanueva et al. (2014) and Persi (2015). A
convergence of the trajectory is expected as N increases. Moreover, the error is anticipated to de-
crease as a decreasing function of N , since this parameter enables a more accurate assessment of
the surrounding fluid. Finally, a balance must be found between the minimum error and the com-
putation time needed to run the code within a respectable timeframe. First of all, the trajectories
for different value of N are reported in the Fig.(63).

Figure 63: Computation time in function of the number of sub-parts.

6As a reminder, Lc = 0.2[m], rc = 0.008[m] and ρc =720[kg/m3]
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To provide an additional criterion for selecting the number N , the calculation time is plotted
as a function of this number in Fig.(64). It can be seen that favoring a large subdivision is more
time-consuming.

Figure 64: Computation time in function of the number of sub-parts. The more the cylinder is
divided, the longer the calculation time.

Persi (2015), who suggests this subdivision method, advises choosing N equal to 4. This may
seem a good choice, since the trajectory simulation seems to record the other cases of N and still
keep the computation time reasonable.

Other parameters

Then, the coefficient of restitution ϵ is set at 0.1[-] for every simulations, in line with the value
calibrated experimentally by Persi (2015). A sensitivity study of this parameter is presented later in
the subsection 3. The, the time step is set to 0.01[1] for the same reasons as for Part 2. Finally, other
parameters as the geometry, the geometrical and physical properties of the cylinders vary and are
specified for each simulation.

2.3.2 Alignment validation

The initial validation tests were conducted to assess the accuracy of the simulation in the cylinder
motion, encompassing both translational and rotational aspects. The trajectory is studied to see if
cylinder alignment is well predicted. Then, for each case, a comparison with the simulated model
of Ruiz-Villanueva et al. (2014) is performed. Finally, a RMS error analysis in the y-direction is
provided. To do so, a cylinder was introduced in the flume, with various orientations : 45, 90
and 180 degrees. The initial position of the center of mass is set to (0.675,0.450)[m]. The trunks
should tend towards their equilibrium position, i.e. the position parallel to the direction of flow. In
addition, the trajectory is expected to follow the maximum velocity Ruiz-Villanueva et al. (2014).
This test is performed with geometry 3 and a type 1 cylinder, discretized in 4 sub-parts.
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Maximum initial alignment case

First of all, the cylinder is placed with no inclination to the flow. The obtained the trajectory is
given in Fig.(65).

Figure 65: Trajectory in the (x,y) plane of a type 1 cylinder, in geometry 3, oriented initially at 180°.

By superimposing the velocity field on the trajectory, it can be confirmed that the cylinder
does indeed follow the higher velocity streamlines. In particular, cylinder rotation is greater in
higher-speed areas, since the torque applied to the cylinder is greater. For example, after 5[m] in
x-direction (except in recirculation zones, far from the last obstacle), it is clear that good align-
ment is taking place. In addition, the cylinder, initially at rest, is driven away quite smoothly, since
collisions only occur at the third obstacle.

By comparing these data to the study conducted by Ruiz-Villanueva et al. (2014), the graphs
in Fig.(66) are computed. Overall, the trajectory has the same characteristics, with the exception
of a greater vertical motion, where the cylinder is carried to higher positions. In addition, the
RMS error in the y-direction has been estimated at 0.0095, confirming the differences between the
simulations (order of magnitudes of 0.1 in the y-direction). These differences could arise from the
flow, which appears to exhibit variations compared to the literature.

Figure 66: Comparison with the results of Ruiz-Villanueva et al. (2014) of the trajectory in the (x,y)
plane of a type 1 cylinder, in geometry 3, oriented initially at 180°.

Damien Sansen - 86 - Master’s Thesis



Minimum initial alignment case

Secondly, the same study was carried out for a cylinder initially perpendicular to the flow. The
Fig.(67) shows that, unlike the previous case, the cylinder rotates quite fast on the first meter with-
out reaching an equilibrium position. In fact, 90° corresponds to an unstable equilibrium, and the
cylinder quickly begins to undergo an important torque, leading it to 180°. As it approaches 3[m]
in x-direction, it reaches a position of equilibrium, which it maintains despite variations in flow
velocity, as in the previous simulation.

Figure 67: Trajectory simulated for the motion validation through the study of the trajectory in the
(x,y) plane of a type 1 cylinder, in geometry 3, oriented initially at 90°.

Next, graphs equivalent to the first simulation are plotted in Fig.(68) to compare the simulated
trajectory with that of the simulations of Ruiz-Villanueva et al. (2014). The RMS error in this case
(in the y-direction) is 0.0182. The error is higher than before, probably because the motion is less
stable, since the cylinder has to rotate more than in the previous case.

Figure 68: Motion validation through the study of the trajectory in the (x,y) plane of a type 1 cylin-
der, in geometry 3, oriented initially at 90°. Comparison with the results of Ruiz-Villanueva et al.
(2014).

Intermediate alignment case

Finally, the same study was carried out for a cylinder initially oriented at 45° to the flow. The
Fig.(69) shows the cylinder quickly begins to undergo torque as it is not initially at its stable equi-
librium position. As it is less exposed to the flow than at 90°, the torque it undergoes is of lower
intensity.
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Figure 69: Trajectory simulated for the motion validation through the study of the trajectory in the
(x,y) plane of a type 1 cylinder, in geometry 3, oriented initially at 45°.

A comparison with the Ruiz-Villanueva et al. (2014)’s simulation is shown in Fig.70. The cal-
culated RMS error (in the y-direction) is 0.0112. The error is lower than that observed for the 90°
scenario but greater than that for the 180° scenario. This outcome is reasonable, given that this
represents the intermediary case where the cylinder necessitates a relatively intricate rotational
adjustment to align with the flow, albeit to a lesser degree than in the 90° scenario.

Figure 70: Motion validation through the study of the trajectory in the (x,y) plane of a type 1 cylin-
der, in geometry 3, oriented initially at 45°. Comparison with the results of Ruiz-Villanueva et al.
(2014).

Conclusion

In all scenarios, the cylinder follows the line of maximum flow velocity. Cylinders positioned par-
allel to the flow direction maintain an equilibrium position more easily at the beginning of the
motion than in other cases. In the latter case, the cylinder must first undergo torque to rotate un-
til it eventually reaches its stability. Once equilibrium is attained, the cylinder tends to remain in
that position, except during transitions (meanders) where torques disrupt its balance. Stability is
regained when it enters a zone of maximum velocity. In conclusion, this test has confirmed that
cylinder alignment is still well-managed, despite the introduction of more complex flow patterns.

Damien Sansen - 88 - Master’s Thesis



2.3.3 Kinetics validation

The trajectory is studied again in this section, with an additional focus on time dependency. The
aim of this test is to assess whether the object moves not according to the same trajectory, but
within a time interval close to the literature. Geometry 1 and 2 are employed individually, with the
utilization of cylinder type 2.

Geometry 1

First of all, the trajectory calculated in the previous section for N=4 is compared with Persi (2015)’s
simulations and Ruiz-Villanueva et al. (2014)’s experiments and simulations. Fig.(71) shows the
superposition of different trajectory predictions.

Figure 71: Comparison of the trajectories for geometry 1 with Persi (2015)’s simulations and Ruiz-
Villanueva et al. (2014)’s experiments and simulations.

It can be observed that the trajectory calculated by the code seems to follow the one computed
by Persi (2015)’s predictions, unlike a collision with the first obstacle of the bottom, which gives
the simulated cylinder a different dynamic after 2[m]. Directly after this first collision, the code
is closer to Ruiz’s prediction. However, the consequence of the collision fades and joins the pre-
dictions of Persi (2015) again. Tab.(22) shows a study of the error in the y-direction, by using the
definition given previously in Eq.(64). The code curve deviates most from the experimental curve,
but the order of magnitude of the RMS error is acceptable. By way of comparison, the difference
between the simulated model and Ruiz-Villanueva et al. (2014)’s experiments is 0.096.

Comparison C-P C-R lab C-R sim
RMS 0.0111 0.0106 0.0005

Table 22: Root mean square error (RMSE) in the y-direction for the trajectory for geometry 1 pre-
dicted by the code (C), Ruiz-Villanueva et al. (2014)’s experiments (R lab) and simulations (R sim)
and Persi (2015)’s simulation (P).

Then, the graphs of vertical position versus time can be compared. For this comparison, Persi
(2015)’s data are not available. The comparison is shown in Fig.(72). A temporal shift is noticed
at the end. The code simulates the cylinder taking more time to traverse the entire length of the
channel compared to what is reported in the article. A plausible explanation would be the presence
of a collision, visible at the sudden change of trajectory, that slows the object down when it is partly
blocked by one of the obstacles. This problem is investigated when the second geometry is studied.
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Figure 72: Comparison of the vertical position for geometry 1 in function of time with Ruiz-
Villanueva et al. (2014)’s experiments and simulations. A time lag is noticeable.

Geometry 2

Secondly, the same tests are performed with the geometry 2. For this geometry, Persi (2015) does
not perform any tests.

Figure 73: Comparison of the trajectories for geometry 2 with Ruiz-Villanueva et al. (2014)’s exper-
iments and simulations.

The trajectory simulated by the code is fairly close to the laboratory experiments and simula-
tions one. Once again, the RMSE in the y-direction is computed in Tab.(23).

Comparison C-R lab C-R sim
RMS 0.0090 0.0017

Table 23: Root mean square error (RMSE) in the y-direction for the trajectory predicted by the
code (C), Ruiz-Villanueva et al. (2014)’s experiments (R lab) and simulations (R sim) for geometry
2.

As with geometry 1, the graphs in Fig.(74) are plotted. A time lag is once again noticeable. This
observation is therefore common to both sets of available data and is investigated in the following
discussion section.
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Figure 74: Comparison of the vertical position in function of time with Ruiz-Villanueva et al.
(2014)’s experiments and simulations for geometry 2.

Discussion and hypothesis

The predicted trajectories generated by the code exhibit a certain resemblance to the curves doc-
umented in the literature. However, it is worth noting that divergences have emerged, notably due
to the anticipation of additional collisions. These extra collisions have an impact on the total time
required for the cylinder to traverse the channel.

These observations suggest that these divergences could be attributed to an approximate as-
sessment of the forces at play. Specifically, this estimation of forces could suffer from a bias, either
underestimating or overestimating their intensity. In the case of underestimation, the driving force
applied to the object might be insufficient, leading to inadequate speed convergence and thus
slower-than-expected displacement. Conversely, in the case of overestimation, collisions could
occur more frequently compared to the comparative models. Based on the collisions observed in
the trajectories, the second option appears to be the most plausible one. Indeed, the repeated col-
lisions encountered along the trajectory seem to indicate an excessive estimation of forces, which
would contribute to the observed differences compared to other reference models.

The source of this poor estimation could arise from the drag and side coefficients used. In
fact, the literature lacks of documentation on these coefficients. Those from Persi (2015) were
employed, assuming a semi-submerged object. This assumption was made to align with the co-
efficient sets of the latter article. They encompass coefficients for fully submerged objects (both
deep and shallow) as well as semi-submerged ones. The chosen cylinder density was 720 [kg/m3],
rendering this assumption plausible. However, since the article does not provide a temporal study,
it is impossible to verify its predictive consistency. The following section studies the impact of such
coefficients.

However, an area of investigation concerns collisions detection. Given that the trajectory largely
mirrors those in the literature, it’s conceivable that post-collision adjustments overly affect the ob-
ject’s dynamics. The following section also studies the effect of the coefficient of restitution pa-
rameter, in order to explore this hypothesis in greater detail.
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3 Original studies

The aim of this section is to study some parameters such as the cylinder’s coefficient of restitution,
its size or its coefficients.

3.1 Study of the restitution coefficient

This subsection aims to make an analysis of the restitution coefficient. To investigate this, the co-
efficient of restitution ϵ, set at 0.1 as in Persi (2015), is altered to 0.1, 0.25, 0.5, 0.75 and 1 to assess
its impact. First, the impact of the temporal aspect of the object’s drift is sought. To quantify it, the
Tab.(24) is provided, indicating the time required for the cylinder to cover a distance of 6.03[m] in
the x-direction (corresponding to the end of the last obstacle), denoted tx=6.03. The largest discrep-
ancy concerns the value of 0.1, which corresponds to the value chosen in the models. However,
the deviations are of the order of a second, which doesn’t seem to have too much impact on the
temporality of the drift.

ϵ [-] 0.1 0.25 0.5 0.75 1
tx=6.03 [s] 19.21 23.07 21.62 21.69 21.31

Table 24: Time required for a type 2 cylinder to cover the distance une the last obstacle (6.03[m])
in the x-direction in geometry 2.

Then, the trajectory graphs are shown in Fig.(75).

Figure 75: Trajectory in the (x, y) place of a cylinder type 2, in geometry 2 during 25[s].

Here, the trajectory is really affected by the coefficient of restitution. In particular, it has been
observed that the more elastic the collision, the more the object bounces off obstacles and the
more its trajectory is modified. In particular, the collision with the first obstacle changes drasti-
cally for ϵ = 0.1. Another example is the collision at 3[m] in the x-direction. With ϵ = 1 the object
bounces off and then collides at a corner with the obstacle, whereas other values of ϵ avoid the
corner collision by simply sliding.

In summary, it is evident that that the restitution coefficient has an impact on the object’s dy-
namics, its trajectory and, to a lesser extent, its temporality. The larger the coefficient of restitution,
the greater the deviation of the cylinder. Increasing the value of this coefficient has an impact on
its temporality of the order of a second for this simulation. As the observed discrepancy in the
preceding section within the Figs.(72, 74) were in the order of the order of ten seconds, this cannot
be attributed to the coefficient of restitution.
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3.2 Effect of the cylinder’s size

From the outset, the size of the cylinder has never been studied. In Part II, it was set at Lc =3[m]
and rc =0.25[m]. In Part 3, only Ruiz-Villanueva et al. (2014)’s types 1 and 2 were used. In this
subsection, a study of cylinder size is carried out. First, the trajectories of the five different types of
cylinder are simulated in geometry 1. Then, the largest cylinder (type 4) used by Ruiz-Villanueva
et al. (2014) is simulated.

3.2.1 Study of different sizes

For this study, Geometry 1 is maintained throughout, and the trajectories of all cylinder types listed
in Table (19) is depicted in Fig.(76). The simulation encompasses a time span of 25[s]. As intu-
itively anticipated, for a given flow and geometry, the size of the cylinder yields markedly distinct
trajectories. Particularly noteworthy is that type 2 exhibits the longest travel distance, while type 5
becomes trapped near the obstacle at 3.5[m] in the x-direction. The largest cylinder, type 4, covers
approximately the same distance as its neighboring types, despite more frequent collisions. Addi-
tionally, some trajectories reach lower heights than others. This can be explained either by the fact
that, for instance, type 1 more readily floats, whereas for type 4, its size prevents its center of mass
from reaching the boundary.

Figure 76: Trajectories of type 1,2,3,4 and 5 in geometry 1 during 25[s]. T stands for type. Given a
specific flow and geometry, the cylinder’s size results in significantly varied trajectories.

3.2.2 Study of a larger cylinder

In practice, the initial position of the cylinder’s center of mass is always set to (0.85,0.3), at rest
and inclined at 45°. The simulations lasts 25[s]. The first geometry gives the Fig.(77). It can be
observed that length, greater than half the width of the flume, implies particularly numerous col-
lisions. Its trajectory is constantly impacted by these. This observation never applied to smaller
cylinder types.

Figure 77: Simulation of geometry 1 for a larger type of cylinder (type 4). Its trajectory is entirely
dictated by the correction of its collisions.
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For the geometry 2, the trajectory is depicted in Fig.(78). For the first time using Ruiz-Villanueva
et al. (2014)’s geometries, the object is unable to navigate through the obstacles. It is entrapped
within the fluid recirculations and repeatedly collides.

Figure 78: Simulation of geometry 2 for a larger type of cylinder (type 4). Its trajectory is entirely
dictated by the correction of its collisions.

The third geometry, simulating even larger obstacles, seems an interesting one to study in view
of the simulation on geometry two. The calculated trajectory is shown in Fig.(79). The observa-
tion here is markedly distinct. The object becomes wedged between the fluid propelling it and the
obstacle restraining it. Indeed, its position dictates an upward and rightward push, while in its
path lies the obstacle. This represents the first and sole simulated instance of clogging using the
geometries from the article.

Figure 79: Simulation of geometry 3 for a larger type of cylinder (type 4). Its trajectory is entirely
dictated by the correction of its collisions.

4 Conclusion and future prospects

A comparison of the simulation by the developed code with simulated and experimental results
from the literature was carried out. Similarities between the results were highlighted, with an error
analysis showing a fairly reliable model. Cylinder orientation could not be directly compared, due
to a lack of data in the literature. However, the fundamental results of the dynamics of a floating
cylinder were found, such as the fact that it generally follows the current lines at higher speeds
and aligns itself with the flow. This confirms the effectiveness of the dynamic model, including the
discretization of the spatial domain for procedure subdivision.

In addition, this comparison made it possible to simulate the collision model on a real flow.
All collisions appear to be detected and corrected, thus impacting the object dynamics. A study
was carried out to see the impact of these collisions on the object’s dynamics, both spatially and
temporally, as well as on the effect of certain parameters such as the coefficient of restitution.
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The simulated laboratory experiments were not specifically designed to simulate clogging.
Therefore, additional simulations were performed using a longer cylinder, for example. The re-
sults showed pure clogging situations, where the cylinder gets stuck between two obstacles, but
also situations where it perpetually collides and is caught in the fluid’s recirculation cells, making
it impossible to pass certain obstacles.

These latest results are encouraging for the prospects of globalizing the code to model several
cylinders. Indeed, clogging is most often caused by the accumulation of several pieces of floating
debris (Ruiz-Villanueva et al., 2014). So it is optimistic to think that results where the cylinder is
slowed down in its overall motion, trapped before an obstacle or simply stuck, could lead to real-
istic clogging simulations with multiple cylinders.

However, the code still operates under important assumptions such as unaccounted turbu-
lence and stationary flows. Removing these assumptions could in future give the code the oppor-
tunity to get closer to reality.
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Conclusion
In conclusion, this master’s thesis constitutes an initial contribution to the two-dimensional nu-
merical modeling of the drift of large floating objects on rivers. The fundamental objective of this
study was to investigate the involved physical phenomena and to develop a model incorporating
them. Particular attention was paid to predict clogging due to the object being blocked by various
obstacles.

The study was divided into three parts. The first involved a review of the literature, allowing to
study the various existing models and justifying the hypothesis of the model to develop. The latter
was presented in the second part, both for object dynamics and collisions. This part presented
complete original approach for representing obstacles, as well as for detecting collisions and sim-
ulating them. Finally, the third part validated the model and studied the behavior of a floating
cylinder under numerically reproduced laboratory conditions.

Two simulation phases were performed. The first phase concerned simulations under a hy-
pothetical flow to study the object’s dynamics, before and after collisions. The second aimed to
simulate flows from laboratory experiments. They have shown multiple results. First, clogging
situations were analyzed in both phases. Then, the simulations showed that the algorithm re-
produces experimental results and literature simulations with fidelity. In addition to validating
the object dynamics, this part showed the effectiveness of the code in handling collisions, despite
more complex geometries and flows.

As a final application, collision simulations were used to study clogging. The simulations have
demonstrated the code’s ability to handle multiple collisions with various obstacles, which is a key
result for clogging simulation. This event was studies under different flows and geometries but
also with different cylinders. In particular, relationship between the geometry through which the
flow passes and the size of the object is a key factor for obstructions. In addition to direct clogging,
simulations with multiple obstacle geometries have shown temporary blocking of the object.

With regard to the model’s limitations, the code’s performance could be improved. Indeed, this
limits the collision detection model, which would require a variable time step for greater accuracy.
It also severely limits the model’s generality in generating obstacles of complex shapes dicretized
through the developed obstacle model. Another limitation is concerns the collision model that
requires precise knowledge of the terrain, limiting applications of the code to a local scope.

In terms of future prospects, a generalization of the code to the simulation of several floating
objects could be a direct further study. Indeed, clogging situations occur more often when several
floating objects interact with each other, as shown by the experiments in Ruiz-Villanueva et al.
(2014). It is quite optimistic to expect that this kind of clogging will be possible to simulate. In-
deed, the code is already capable of simulating temporary clogging. Ultimately, application to real
flooding scenarios could be sought, in particular for a systematic study of clogging around bridges.

Extending the study may require the use of laboratory simulations, for which data are rarely
available in the literature. Indeed, while the study of floating object’s drift has been explored by
different research teams, such as (Ruiz-Villanueva et al., 2014), (Mandø and Rosendahl, 2010) and
(Persi, 2015), it still lacks an exhaustive collection of experimental data.

Continuing to explore these research paths, accounting for current limitations and identified
areas of improvement, this study could potentially represent a first step towards a code capable of
aiding the management of scenarios involving the drift of floating objects in real and potentially
hazardous environments.
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Appendix

A Algorithm overview

The aim of this small section is to present the structure of the code provided. It follows the general
outline shown in Fig.(19) in the introduction, and requires a hierarchy in the steps presented. The
programming language used is Python7.

A.1 Algorithm modules overview

Each of the files created and its specific features is detailed here. The code was built around 5 files.
Each of them is presented briefly.

The definition files

This refers to the part of the code that processes the data and defines functions for the processing
part. In this code, it includes definitions_functions.py and Read_Wolf_results.py.

definitions_functions.py encodes all functions and definitions relating to the cylinder’s ge-
ometric (e.g L,rc ) and physical properties (e.g ρc , Ic ,Sd ). It also includes the definitions of the
different flumes (macroscopic one and Ruiz-Villanueva et al. (2014)’s experiment flume) and ob-
stacles (e.g baffles, circles and square obstacles). Finally, it gives all the definitions of force, torque
and equations required for the model. In particular, it writes the right-hand members to be solved
via RK2.

Read_Wolf_results.py It extracts and processes data simulated by WOLF from the actual veloc-
ity field of the flow from Ruiz-Villanueva et al. (2014) experiments. It returns the stationary field
data in a three-dimensional array.

collision.py takes as input the cylinder’s position and orientation and its dynamic variables
(e.g. linear and angular velocities). It then applies collision detection and corrections if necessary.
It returns its updated input parameters.

The processing

Processing refers to the file that performs the actual calculations. It is called main.py. It calls on all
the other files to provide it with the parameters and functions it needs to function. It then solves
the model equations via RK22 within the specified time interval, and saves the parameters to be
processed in postprocessing.

The postprocessing

Postprocessing refers to the treatment of data acquired by processing. It’s simply the plots.py file
that gathers the functions of the desired plots and GIFS.

7This choice is not driven by any particular reason other than the opportunity to learn and explore this language
through this Master’s thesis
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A.2 RK22 implementation

This subsection present the Runge-Kutta order 2, 2 iterions method used for the time resolution
of the equations. Using the following simplified writing, where RHST (resp. RHSF ) stands for
right-hand-side of Eq.(2) (resp.Eq.(1)), the system rewrites as in Eq.(67).

dθ

d t
=ω,

d 2θ

d t 2
= dω

d t
= RSHT (v,ω,θ),

dv

d t
= RSHF (v,θ).

(67)

By denoting the time step h and tphys the physical time (time at which the code must stop
solving the equation), each RSH is evaluated at the initial time as

kθ1 = h ·ω, (68)

kω
1 = h ·RSHT (v,ω,θ), (69)

kv
1 = h ·RSHF (v,θ). (70)

This correspond to the evaluation of the initial slopes. Then, the intermediate values are computed
as

θinter = θi +wkθ1 , (71)

ωinter =ωi +wkω
1 , (72)

vinter = vi +wkv
1 , (73)

to allow the computation of the second evaluation

kθ2 = h ·ωinter, (74)

kω
2 = h ·RSHT (v,ωinter,θinter), (75)

kv
2 = h ·RSHF (v,θinter). (76)

The solution at the next time step is thus given by

θi+1 = θi +wk1θ+ (1−w)kθ2 , (77)

ωi+1 =ωi +wk1ω+ (1−w)kω
2 , (78)

vi+1 = vi +kv
2 , (79)

where indices i and i +1 refer to the current and next time steps, respectively, which gives the
method its explicit characterization.

The implemented algorithm uses w = 0 to retain the RK22 method and keep superior precision
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A.3 Bilinear interpolation

Interpolation

A bilinear interpolation is used to interpolate a velocity field (ux ,uy ) at a given position (xC M , yC M ).
As a reminder, the mesh uses quadrangular elements. The spacing between two nodes along x
(resp. y) is denoted d x (resp. d y). The number of elements along x (resp. y) is denoted nbx (resp.
nby).

The first step consists in finding neighboring node indices i and j by using the Eq.(80). If the
operation int(·) truncates the result to unity, one has

i = int
(xC M

d x

)
, j = int

(
yC M

d y

)
. (80)

Then, the Eq.(81) ensures that the indices stay within the valid range by constraining :

i = max(0,min(i ,nbx−1)), j = max(0,min( j ,nby−1)). (81)

The second step computes the interpolation weights w for each neighboring node based on the
inverse of the distances dNk . The distance is trivially computed through the Eq.(82). By denoting
trough Nk the k-th node, one has

dk =
√

(xC M −xNk )2 + (yC M − yNk )2. (82)

Then, the Eq.(83) computes the weight w for the interpolation. By denoting by τ a small thresh-
old value to avoid division by zero for very small distances, one has

wk =
{

1
dk

, if dk ≥ τ
0, otherwise.

(83)

The third step is given by the Eq.(84) that normalizes the weights as
w (1)

k = wk

wtot

wtot =
∑
k

wk .
(84)

Finally, the interpolated velocity components (ux,interp,uy,interp) is computed in Eq.(85) as a
weighted sum of the velocity components at neighboring nodes. If (ux,N ,uy,N ) the velocity com-
ponents at node N one has


ux,interp =∑

k
(w (1)

k ·ux,N ),

uy,interp =∑
k

(w (1)
k ·uy,N ).

(85)
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A.4 Implementation of the geometries

The validation phase required additional specificities.

First of all, a function type_Ruiz5(rho_w) was created in the file param_cylinder.py to
output the geometric and physical characteristics of the trunks used in the experiment (density,
volume, length, diameter). Next, the channel configuration was created in the definitions_
functions.py file as a wall_obstacle_RUIZ_geomN function (where N is replaced by the num-
ber of the desired geometry). Finally, the trajectory graphs presented in this section superimposes
the trajectory graphs calculated by the code and the velocity profile representation.

Finally, the main difference with previous simulations is the way flow velocity is selected. In-
deed, in view of the subdivision method, it is necessary to have as input data the flow velocity at
the center of mass of each of the cylinder’s sub-parts. As the domain has been discretized, the ve-
locity field is finite. So a function bilinear_interpolation_velocity was created to bilinearly
interpolate the velocity field at the desired points, at each time step.

There were a few subtleties to put the previous facts into practice. In fact, the data provided for
the flow was slightly offset. There is, in fact, a null-value frame around the velocity matrix provided.
For this reason, particular care had to be taken to ensure that the data and the various reference
points were perfectly superimposed, both when reading the data and when creating the geometry
and plots. An effective test to verify proper superimposition is to disable collision detection and
correction, and to place the cylinder within an obstacle (including edges). Indeed, in that position
the flow velocity is zero. If the cylinder does not move, the test is passed.
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B Collision simulations

The purpose of this appendix is to present the implementation of the obstacles and to extend the
presentation of numerical collision simulations to other cases. There are no different conclusions,
the corrections are applied ’in mirror’ between ’right’ or ’left’ collisons, or ’up’ or ’down’.

B.1 Obstacles and flume configurations implementation

A key point is the implementation of the channel configuration with its various obstacles. As men-
tioned in the description of the model, the code must be able to store obstacle positions in an
efficient way, allowing simple use of the data. As a reminder, the collision model requires the use
of coordinates for corners, sub-walls, and main walls.

For the main walls, the y-coordinate of the 2 main walls are stored in a 1D array y_wall_updown
[k], where k=0 stores the bottom main wall and k=1 the top main wall. For the sub-walls, a three-
dimensional array has been adopted and implemented as geom[n][i][j]. Its first dimension [n]
refers to the index of the obstacle and goes from 0 to N_obstacle-1, where N_obstacle is the total
number of obstacles. Thereafter, the order in which the obstacles are numbered is of no impor-
tance. The second dimension [i] refers to the coordinate with i=0,1. [0] stands for y and [1]
for x. The third dimension [j] is defined for j=0,1. geom[n][0][0] indicates the y-coordinate of
the top sub-wall of the obstacle n and geom[n][0][1] the y-coordinate of the bottom sub-wall.
Then, geom[n][1][0] gives the x-coordinate of the left-sub-wall and geom[n][1][1] of the right
sub-wall. Finally, a function wall_obstacle is created. It does not take anything as input, and
has geom, y_wall_updown and N_obstacle as output. Fig.(39) shows some examples of the chan-
nel and obstacle created. Seven different pre-encoded configurations lie in the IC_config.py
file, distinguished by letter A to G as wall_configurationA until wall_configurationG. More
specifically, the function that allows the discretization according to the desired parameters (e.g.
sizes, number of sub-parts) is the function code in the configuration wall_configurationD (one
circle) and wall_configurationE (two circles).

B.2 Supplement to section 4.3.1

The section presented before vertical collisions with the top main wall. In the following, collisions
with the bottom main wall will be presented. First of all, the simulation parameters are kept the
same as in Tab.(14) with the exception of the flow velocity, which is set at u = (2,−1). The cylinder’s
trajectory is reported in Fig.(80) shows that the model is able to detect and physically correct the
collisions (first of them at 3.4[m]).
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Figure 80: Trajectory of floating cylinder in horizontal plane (x, y), without (resp. with) collision
model on the top (resp. bottom) figure. Vertical collisions with a bottom main wall appears to have
been detected and corrected. The red dotted line is the trajectory of the center of mass, while the
cylinder is represented by the brown straight lines.

The linear velocity is plotted in Fig.(41), the angular velocity on Fig.(42) and the angle inclina-
tion of the cylinder in Fig.(83).

Figure 81: Linear velocity of cylinder as a function of time, without (resp. with) collision model
on the top (resp. bottom) figure. Vertical collisions with a bottom main wall appears to have been
detected and corrected (first collision at 2.2[s]).
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Figure 82: Angular velocity of cylinder as a function of time, without (resp. with) collision model
on the top (resp. bottom) figure. Vertical collisions with a bottom main wall appears to have been
detected and corrected (first collision at 2.2[s]).

Figure 83: Angle of cylinder inclination to horizontal as a function of time, without (resp. with) col-
lision model on the top (resp. bottom) figure. Vertical collisions with a bottom main wall appears
to have been detected and corrected (first collision at 2.2[s]). After a while, the cylinder is aligned
with the horizontal wall.

B.3 Supplement to section 4.3.1

In addition, this appendix shows the results for the case of vertical collision with a top sub-wall.
The parameters of the sub-subsection 4.3.1 remains the same, except the initial position of center
of mass of the cylinder (placed at (3,7.5)[m]) and the position of the obstacle (same size, but Corner
down right placed at (4,5.5)[m]) The collision model produces the trajectory shown in Fig.(84).
Same observation as for the top cas can be made.

Damien Sansen - 103 - Master’s Thesis



Figure 84: Trajectory of floating cylinder in horizontal plane (x, y), without (resp. with) collision
model on the top (resp. bottom) figure. Vertical collisions with a top sub wall appears to have
been detected and corrected. The red dotted line is the trajectory of the center of mass, while the
cylinder is represented by the brown straight segments.

In view of the discussion of the main wall and the trajectory above, the interpretation of the
graphs in Figs.(85, 86) is obvious. For each of the graphs, collisions with the obstacle are between
2.6 and 3.4[s] and collisions with the main wall after 11.4[s]. Between the two collision intervals,
the cylinder reverts to the classic behavior studied for translation and rotation in the previous
sections.

Figure 85: Linear velocity of cylinder as a function of time. Vertical collisions with a top sub-wall
appears to have been detected and corrected (first collision at 2.6[s]).
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Figure 86: Angular velocity (on the left) and Angle of inclination to horizontal (on the right) of
cylinder as a function of time. Vertical collisions with a top sub-wall appears to have been detected
and corrected (first collision at 2.6[s]).

B.4 Supplement to section 4.3.3

To complement the section on corner collision results, an example of a down-right collision will
be shown. First of all, the simulation parameters are presented in Tab.(25).

flow
[m/s]

v0

[m/s]
ω0[

deg /s
] θu−v[

deg
] (x0, y0)

[m]
ϵ

[−]
N

[−]
h

[s]
tphys

[s]

constant
stationnary
u = (−2,0)

(0,0) 0 70 (16,5) 0.1 1 0.01 8.5

Table 25: Parameters used for the the simulation of Corner down right collisions.

The trajectory calculated for this situation is shown in Fig(87).

Figure 87: Trajectory of floating cylinder in horizontal plane (x, y). Corner down right collisions
appear to have been detected and corrected. The red dotted line is the trajectory of the center of
mass, while the cylinder is represented by the brown straight segments.

Damien Sansen - 105 - Master’s Thesis



The interpretation of the graphs in Figs.(88, 89) is here again the same as in the section about
corner collisions.

Figure 88: Linear velocity of cylinder as a function of time. Corner down right collisions appear to
have been detected and corrected (first collision at 4.94[s]).

Figure 89: Angular velocity and angle of inclination to horizontal of cylinder as a function of time.
Corner down right collisions appear to have been detected and corrected (first collision at 4.94[s]).
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