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Abstract 

Zoonoses have become an increasing area of concern since the last decades. Landscape 

changes increase the spatial overlap between reservoir hosts and human habitats, thereby 

raising the risk of effective spillover. It is crucial to monitor the emergence patterns of 

zoonoses to reduce their incidence, which can be done in light of environmental epidemiology. 

The Brazilian spotted fever (BSF) is a vector-born disease transmitted by ticks of the 

Amblyomma genus and whose etiological agents are Rickettsia bacteria. Despite low incidence 

of the disease, it has a high annual lethality rate. Moreover, the BSF sylvatic cycle involves 

amplifier hosts that can raise up pathogen prevalence in the environment. The Atlantic Forest 

is a tropical biome that has undergone several landscape changes, especially deforestation for 

pasture and agriculture expansion, and is known to contain most of the BSF incidence. Hence, 

this thesis aims at characterizing the effects of landscape changes on the BSF incidence, and 

in particular, at assessing which landscape features promote high incidence levels. Several 

hypotheses based on the host ecology were tested using different variables of landscape 

structure and configuration. Epidemiologic data of BSF by municipality were downloaded. 

Data on land use and land cover were retrieved from the MapBiomas initiative. Additional 

data on municipalities, hydrography, elevation, and climate were gathered. For each 

municipality, landscape structure and additional data were processed using geographic 

information systems. Landscape configuration metrics were calculated using the FRAGSTATS 

software. Subsequently, the relationships between BSF incidence and landscape features 

were assessed using generalized linear mixed models in RStudio. First, general explanatory 

model using environmental principal component analysis was carried out. Second, competing 

hypotheses regarding the role of specific environmental features were tested using multiple 

Akaike information criterion model selection. The results shows that BSF cases have increased 

over the last two decades and most of them were located in the Atlantic Forest. There was a 

significant correlation between BSF incidence and forest cover, especially riparian forests 

cover immersed in pasture and agriculture landscape matrices. The results are interpreted by 

the ecological requirements of BSF tick vectors and their hosts in the context of landscape 

changes in the Atlantic Forest over the period studied. Finally, applications for an enhanced 

preventive framework of the disease are discussed.  
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Résumé 

Les zoonoses sont devenues un problème majeur de ces dernières décennies. Les 

modifications des paysages augmentent le contact entre les espèces réservoirs et les humains, 

augmentant ainsi le risque de zoonoses. Il est crucial d’étudier leur émergence afin de réduire 

leur incidence, ce qui peut être réalisé à la lumière de l’épidémiologie environnementale. La 

fièvre pourprée des montagnes rocheuses (FPMR) est une maladie à transmission vectorielle 

transmise et maintenue par les tiques appartenant au genre Amblyomma et dont les agents 

pathogènes sont des bactéries Rickettsiales. Malgré la faible incidence de la maladie, elle a un 

taux élevé de mortalité annuel. De plus, la FPMR a un cycle sylvatique impliquant également 

des hôtes amplificateurs de la prévalence des pathogènes dans l’environnement. La Forêt 

Atlantique est un biome tropical qui a subi de nombreuses modifications de ses paysages, 

principalement dues à la déforestation pour étendre le pâturage et l’agriculture. Elle est aussi 

connue pour héberger la FPMR. Delà, ce mémoire a pour but de caractériser les effets des 

modifications du paysage sur l’incidence de la FPMR, et en particulier, évaluer quelles 

caractéristiques favorisent une haute incidence. Plusieurs hypothèses basées sur l’écologie 

des hôtes ont été testées en utilisant différentes variables de structure et de configuration du 

paysage. Les données épidémiologiques de la FPMR par municipalité ont été téléchargées. Les 

données de couverture et d’utilisation des terres ont été récupérées de l’initiative 

MapBiomas. Des données additionnelles sur les municipalités, l’hydrographie, le reliefs et le 

climat ont été rassemblées. Pour chaque municipalité, la structure du paysage et les données 

additionnelles ont été traitées via des systèmes d’information géographique, les mesures de 

configuration du paysage, quant à elles, ont été calculées via FRAGSTATS. Par après, les 

relations entre l’incidence de la FPMR et les caractéristiques du paysage ont été évaluées en 

utilisant des modèles linéaires généralisés mixtes dans RStudio. Premièrement, un modèle 

général exploratoire utilisant des composantes principales environnementales a été réalisé. 

Deuxièmement, des hypothèses investiguant le rôle spécifique de caractéristiques 

environnementales ont été testées les unes contre les autres en utilisant de multiples 

sélections de modèles basées sur le critère d’information d’Akaike. Les résultats montrent que 

les cas de FPMR ont augmenté durant les deux dernières décennies et la majorité d’entre eux 

se localisaient dans la Forêt Atlantique. Il y a corrélation significative entre l’incidence de la 

FPMR et la couverture forestière, en particulier la couverture de forêts ripariennes immergées 

dans une matrice paysagère de pâturage et d’agriculture. Les résultats sont interprétés par les 

besoins écologiques des tiques vecteurs de la FPMR et de leurs hôtes dans le contexte des 

modifications du paysage de la Forêt Atlantique durant la période étudiée. Pour finir, des 

applications pour améliorer le cadre de prévention de la maladie sont discutées. 
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Lexicon 

Epidemiological terms 
 

Zoonosis An animal origin disease that can be transmitted to humans (Biology 
Online, 2021a).   

Incidence The new cases rate of a disease occurring in a specific population over 
specified period. 

Emerging disease A disease, previously known or not, whose incidence is rapidly increasing 
in a population (NIH, 2018). 

Etiological/aetiological 
agent 

A pathogenic microorganism responsible of a given disease (Biology 
Online, 2021b). 

Host An organism that can potentially get infected or fed upon by a parasite 
or a pathogen (Biology Online, 2022a). 

Reservoir host  An organism that can be infected by a pathogen without presenting any 
symptom of illness. A reservoir host is therefore a source of a disease 
(Biology Online, 2022b). 

Vector An organism that ensures the transmission of an etiological agent from 
the reservoir to the host (WHO team, 2020). 

Vector-borne disease A human disease caused by a pathogen agent transmitted by vectors 
(WHO team, 2020). 

Amplifier host In vector-borne diseases, a host that presents a high multiplication rate 
of the infectious agent, providing the vectors an important source of 
infection (Biology Online, 2021c). The amplifier host is susceptible to 
infection but remains asymptomatic (Souza et al., 2009). 

Transovarial 
transmission 

A vertical transmission of an infectious agent from female to offspring 
(Harris et al., 2017). 

Transstadial 
transmission 

A transmission of an infectious agent through different developmental 
stages of a host (Harris et al., 2017). 

Sylvatic/enzootic cycle The cycle of an infectious agent that involves non-human animals and 
vectors (Domingo, 2016). 

Cross-species 
transmission 

The transmission of a disease/pathogen agent between different host 
species (Keesing and Ostfeld, 2021). 

Zoonotic spillover  A cross-species transmission to a potential new host population. 
Frequent spillover events and suitable conditions or adaptations for the 
pathogen can lead a disease to become endemic in the new infected host 
population (Ellwanger and Chies, 2021). 

Dilution effect (of 
biodiversity) 

Epidemiological concept for zoonoses stating that higher diversity (and 
abundance) of other species reduces the abundance of the host species 
considered, thus the prevalence of the pathogen in the environment and 
the risk of effective zoonotic spillovers (Civitello et al., 2015; Keesing and 
Ostfeld, 2021). 

 
Quantitative parasitology terms 

 
Prevalence The proportion of infected hosts that were examined for a given parasite 

(Reiczigel and Rozsa, 2010). 

Mean intensity The average number of parasite organisms found in infected hosts. The 
uninfected hosts are not included (Reiczigel and Rozsa, 2010). 

Mean abundance The average number of parasite organisms found in all hosts. The 
uninfected hosts are thus included. This measure merges the two 



  

previous ones, prevalence and mean intensity (Reiczigel and Rozsa, 
2010). 

 
Landscape analysis terms 

(Several definitions can be given depending on the study context, the following definitions were 
constructed or chosen for this study based on McGarigal and Marks (1995)) 

 
Patch A patch is a continuous spatial domain of relatively homogenous 

environmental conditions regarding the biotope and the biocenose. 

Landscape A land with mosaic of patches, or cluster of ecosystems interacting. 

Matrix The most extensive and continuous patch within a landscape.  

Landscape context Landscapes are defined with a specific scale and are often arbitrarily 
delimited. Therefore, a landscape is always nested within a larger 
landscape which represents its landscape context. 

Landscape structure Also called landscape composition, the analysis of the patches diversity 
(presence and amount) regardless of their spatial distribution within a 
landscape.  

Landscape configuration The physical distribution and spatial pattern of patches within a 
landscape. 

  
Abbreviations 

 
SF Spotted fever. 

BSF Brazilian spotted fever. 

RMSF Rocky mountain spotted fever. 

SFG Spotted fever group of the Rickettsia genus. 

AF The Brazilian Atlantic Forest. 

LULC Land use and land cover. 

CRS Coordinate Reference Systems (QGIS) 

 



Spotted fever risk on the Brazilian Atlantic Forest   1 
 

1 Introduction 

1.1 Environmental epidemiology 
Today (February 2023), most parts of the world recovered from the COVID-19 pandemic 

(WHO team, 2023a) that cost the lives of almost 7 million of people (WHO team, 2023b) and 

brought significant economic losses. The last 3 years informed lots of people on the risks of 

epidemic and pandemic from zoonotic diseases. Although still uncertain, the most likely 

candidate for the original SARS-COV-2 (the etiological agent of the COVID-19) reservoir species 

is the Horseshoe bat, presumably from the Chinese street markets (mostly wet markets) (Wu 

et al., 2020). Nevertheless, the zoonotic status of the COVID-19 is undiscussed (Boni et al., 

2020; Lytras et al., 2021). This pandemic provided a strong example of the zoonoses exposure 

risk from the close contact between wild animals and humans. As a more recent example, the 

monkey pox disease has been declared emerging in non-endemic countries (WHO team, 

2022). This re-emerging outbreak is also likely to be associated with wild-life and human 

contact (Reynolds et al., 2019). However, as the erosion of the natural habitats of wild animals 

is still ongoing, an increasing overlapping between humans and wild animal habitats is to be 

expected in the future, thus allowing more zoonoses to emerge (Gibb et al., 2020). Indeed, 

deforestation has been associated with multiple outbreaks of zoonotic and vector-borne 

diseases, mostly in intertropical regions whereas opposite patterns occur in temperate 

countries, with a reforestation associated with zoonoses emergence (Morand and Lajaunie, 

2021a). For instance, the Ebola epidemics in Africa (Olivero et al., 2017; Rulli et al., 2017), as 

well as the recent resurgence of malaria in Brazil (MacDonald and Mordecai, 2019), took place 

in a context of deforestation. Land use changes, and in particular, oil palm plantation in 

tropical countries (Morand and Lajaunie, 2021b), which is commonly associated with vector-

borne disease outbreaks (Loh et al., 2015), the agriculture industry, international travel, and 

trading, are the top drivers of zoonotic disease occurrences (Loh et al., 2015). This is a serious 

area of concern as land use changes are likely to increase in the future (Patz et al., 2004). 

Furthermore, deforestation and biodiversity loss favour reservoir and vector populations, 

increasing their contact with humans (Morand and Lajaunie, 2021b). Climate changes, which 

can be exacerbated by forest loss and land use changes, also enhance vector-borne diseases 

transmission by shifting the geographic range of vectors, increasing their reproduction, their 

biting rate, and shortening their incubation period (Patz et al., 2005; Vezzulli et al., 2013). 

Therefore, it is important to ensure monitoring of these diseases, which can be achieved 

in the light of environmental epidemiology. Environmental epidemiology studies the 

distribution and environmental factors of diseases. More precisely, environmental 

epidemiology focuses on the physical, chemical, and biological agents that can affect the 

disease occurrences (Bloom, 2019). In the last two decades, new opportunities in this 

framework have been paving the way to a better understanding of epidemiological situations, 

such as analyses at the ecosystem level. This level includes climate changes, underlying land 

use changes (Dale, 1997), and their impacts on the ecology of pathogens, vectors and hosts, 

and human societies (Pekkanen and Pearce, 2001).  

The present thesis is embedded in the ecosystem level of environmental epidemiology, 

as it characterizes landscape changes as factors of the Brazilian spotted fever risk. Therefore, 
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the thesis contributes to improve our knowledge on the environmental zoonoses risk at a new-

born level of the last decades. 

 

1.2 Febre maculosa: The Brazilian spotted fever 

1.2.1 Spotted fever epidemiology and features 
The spotted fevers (SF) are zoonotic vector-bone diseases distributed in several 

continents: America, Africa, Europe, and Asia. The vectors are hematophagous arthropods 

such as lice, fleas, but mostly tick species (Blanton, 2019; Parola et al., 2013). The Rickettsia 

bacteria genus is the etiological agent of these diseases. Four groups compose the genus and 

three of them display pathogenic species of Rickettsia: the spotted fever group (SFG), the 

typhus group, and the transitional group, which includes organisms with features that are 

intermediate between the two others (Gillespie et al., 2008). Nevertheless, spotted fevers 

refer to the SFG, despite the typhus group and transitional bacteria being sometimes also 

involved in SF studies (Blanton, 2019; Moerbeck et al., 2016; Ogrzewalska et al., 2012). The 

bacteria are gram-negative bacilli, and they are intracellular obligated, as confirmed by their 

important genome reduction. Located in the endothelial host cell cytosol, they transport 

actively amino acids, phosphorylated sugars and adenosine triphosphate from the cell 

(Blanton, 2019). 

The transmission of SFG bacteria occurs through the skin when an infected tick is 

feeding. Dendritic cells phagocytize the pathogens, which are then transported in the lymph 

to local lymph nodes. After replications in the lymph nodes, they enter the bloodstream and 

spread in the microcirculation where they infect endothelial cells. As the infection progresses, 

damage results, thereby increasing vascular permeability (Mansueto et al., 2011). Finally, 

rashes, eschars (Spolidorio et al., 2010), sometimes lymphadenopathy (Silva et al., 2011), and 

in severe cases, interstitial pneumonia, meningoencephalitis, several organ failures and death, 

can occur (Mansueto et al., 2011). The pathogenicity ranges from seroconversions with no 

symptom to high lethality rate (Figure 1). Most SFG members also induce febrile illnesses 

manifestations such as fever, headache, and myalgia, that are undifferentiable from other 

endemic diseases, especially in tropical regions (Blanton, 2019).  

Although no vaccine exists, treatments are available. For example, the efficiency of 

bacteriostatic tetracyclines (Biggs et al., 2016), doxycycline (Todd et al., 2015), and the new 

macrolides (Azithromycin)(Anton et al., 2016) has been demonstrated. As soon as a SF is 

suspected, preventive administration of antibiotics should be carried out. Yet, physicians 

sometimes fail to diagnose SF diseases in the early stage because their symptoms are similar 

to those of other more prevalent illnesses (Blanton, 2019; Regan et al., 2015). Moreover, some 

serological identification techniques, such as PCR targeting Rickettsia DNA, are ineffective, as 

the bacteria infect endothelial cells, thereby presenting very low level of abundance in the 

host bloodstream (Paris and Dumler, 2016; Souza et al., 2009). PCR can only confirm the SF 

diagnosis at the late stage of infection, when performed on biopsies from the eschars (Morand 

et al., 2018). The early stage diagnosis should be performed by immunofluorescence assay 

(IFA)(Biggs et al., 2016). This technique is effective despite the fact that a large species 
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diversity of Rickettsia exists because the group-specific antigens are cross reactive (Delisle et 

al., 2016). Additionally, investigating historical details of the patient should suggest a potential 

SF infection, for instance, recent travels, recreational activities, and main occupation, in 

relationship to the endemic areas of the SF (Blanton, 2019; Ogrzewalska et al., 2012). 

The main vectors of SFG Rickettsia are ticks. The ubiquitous feature of the SFG is due to 

their ability to infect various tick species worldwide (Parola et al., 2013). For most of the SFG 

rickettsioses, ticks are considered as vectors but also reservoir hosts, as the bacteria can be 

transmitted transovarially and transstadially. However, sustained vertical transmission is not 

common and does not seem to depend on tick species. Hence, the prevalence of Rickettsia 

among ticks is variable (Harris et al., 2017). Moreover, the peaks of SFG rickettsioses are 

intimately linked to the ecology of the main vector tick species, so that most of the peak occur 

during the warm seasons when the ticks are the most active. Nonetheless, few examples show 

rickettsiose peaks during the cold seasons, during which peculiar tick species with different 

ecological features are present (Blanton, 2019). 

The Brazilian spotted fever (BSF), or febre maculosa, is known in the American continent 

as the rocky mountain spotted fever (RMSF)(Souza et al., 2009) because the disease was 

originally described in the Idaho state of the USA (Labruna et al., 2014). The BSF is mainly 

transmitted by Amblyomma tick species. It is known in Brazil since the 1920s (Labruna, 2009). 

Until the 2000s, this rickettsiose was thought to be caused by a sole bacterium, but today, 

several Rickettsia etiological agents are known to be involved in the BSF (Labruna and V, 2011), 

and more recently, an Atlantic rainforest strain was discovered (M. P. J. Szabó et al., 2013). 

Over the years, the number of reported and confirmed BSF cases increased (Figure 1) as this 

disease has to be notified in the disease information system since 2007 (Oliveira et al., 2016) 

and efficient techniques to diagnose it have become increasingly available. However, the 

number of cases is underestimated since the disease is still neglected or sometimes hardly 

distinctive from other tropical febrile illnesses (Biggs et al., 2016). The average BSF case-

fatality rate in Brazil between 2007 and 2015 was 33% (Figure 1). 
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Figure 1 : A. Number of Brazilian spotted fever confirmed cases and death cases per year, 2007 to 2021 (Alcon-

Chino and De-Simone, 2022). B. Annual number of reported, confirmed, and death cases of BSF, with their case-

fatality rate, 2007 to 2015 (Oliveira et al., 2016). 

This severe disease presents the common symptoms of a SF listed previously. More 

rarely, eschars formations, but additional vomiting, nausea, and abdominal pains, were 

reported (Blanton, 2019). The most concerning and lethal SF pathogen in Brazil is Rickettsia 

rickettsii (Walker et al., 2008), with a lethality of 40%, involving pulmonary deficiency, acute 

kidney tubular necrosis, and neurologic troubles (Blanton, 2019). In comparison, the RMSF can 

have lower lethality rate in other countries of the American continent, between <1% in USA 

and 30% in Mexico (Blanton, 2019; Dahlgren et al., 2012; Openshaw et al., 2010), and the 

Mediterranean spotted fever (MSF) has a lethal rate of 2.5%, which is the second most severe 

SF disease (Herrador et al., 2017). 
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1.2.2 BSF eco-epidemiology 

 

Figure 2 : Overview of the main features of the Brazilian spotted fever eco-epidemiology found in the literature. 
Left side represents dense vegetation environments, with riparian features. Right side represents open 
landscapes, mainly pasture and agriculture in the Atlantic Forest. The four main Amblyomma vector species are 
represented in the habitat that is the most associated with them in the literature. The main Rickettsia bacterium 
associated with a tick species is written in purple. The main three BSF amplifier hosts are also represented in 
their main environment. Non amplifier hosts are also represented and can also contribute to the BSF cycle by 
maintaining tick populations or translocating them. 

Today, the main BSF agents known are Rickettsia rickettsii, Rickettsia parkeri (Labruna, 

2009), and the newly discovered Rickettsia sp. Atlantic rainforest strain, which is a R. parkeri-

like bacterium (Spolidorio et al., 2010; M. P. J. Szabó et al., 2013). In Brazil, some patients 

(Ministério da Saúde do Brazil, 1991) suspected of BSF were sometimes found infected with 

Rickettsia bellii (basal group), R. prowazekii and R. typhi (typhus group), and R. felis 

(transitional group), but the pathogenicity of this last one is still discussed and these bacteria 

are not part of the SFG (Blanton, 2019; Labruna, 2009). Each of these bacteria species have 

specific vectors species that, in the case of vector-borne disease, are also their main reservoir 

hosts (Labruna, 2009). Except for R. felis and R. thypi whose vector species are fleas of the 

Ctenocephalides genus and Xenopsylla cheops respectively, and R. prowazekii, which is 

associated with the human body lice, Pediculus humanus corporis, others Rickettsia (SFG) 

spread by tick species, especially the Amblyomma genus in Brazil. The main vectors of R. 

rickettsii are the common tick species Amblyomma cajennense (s.l.) in southern Brazil and A. 

aureolatum, especially in the São Paulo metropolitan area (Labruna, 2009; Ogrzewalska et al., 

2012). Rhipicephalus sanguineus was also observed (Ogrzewalska et al., 2012) and proven in 

laboratory (Piranda et al., 2011) to be a competent vector of this agent. For R. parkeri, the 

main vector is the tick species A. triste (Silveira et al., 2007). Although the fact that A. 

dubitatum is a vector of human diseases is not established, this tick species is frequently 

associated with R. bellii (Sakai et al., 2014). Ultimately, the Atlantic rainforest Rickettsia strain 

is found strongly associated with A. ovale (M. Szabó et al., 2013) (Figure 2). 
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Most etiological agents of BSF also spread by vertical (from female to offspring) and 

horizontal transmissions (between individuals of the same generation) among vector species. 

However, the highly lethal Rickettsia rickettsii is pathogenic and partially deleterious for its 

Amblyomma vector species; therefore, the pathogen remains in the environment mostly by 

horizontal transmissions rather than vertical transmissions. It is also worth noting that 

although the bacterium is not deleterious for its R. sanguineus vector, this tick species is not 

as aggressive to humans as the A. cajennense vector (M. Szabó et al., 2013). To allow these 

horizontal transmissions to occur and the subsistence of R. rickettsii, amplifier hosts (Lexicon) 

are thus required (Ogrzewalska et al., 2012; Walker et al., 2008). On the other hand, less 

pathogenic Rickettsia (also for humans), such as R. felis and R. parkeri (Labruna, 2009), have 

effective transovarial transmissions. Additionally, one bacterium species infecting a vector 

host can interfere with the transovarial transmission of another Rickettsia species in that same 

host (Sakai et al., 2014). 

Despite vertical transmissions do not always occur, depending on the pathogenicity of 

the Rickettsia species, horizontal transmissions allow the persistence of pathogens in the 

environment as soon as the vectors are able to parasite amplifier hosts (Blanton, 2019). In 

Brazil, and more precisely the Atlantic Forest, the biome studied in the present thesis, several 

candidates were identified as amplifier hosts for the spotted fever. For instance, domestic 

dogs (Moerbeck et al., 2016; Ogrzewalska et al., 2012), horses (Souza et al., 2016), capybaras 

(Hydrochoerus hydrocaeris) (Souza et al., 2009; M. Szabó et al., 2013) have been identified as 

amplifier hosts, and potentially some small rodents (Lopes et al., 2018; M. P. J. Szabó et al., 

2013). The amplifier role of passerine birds is also suspected but there is still no consistent 

data to support this hypothesis (Ogrzewalska and Pinter, 2016). There is also little but not 

strong evidences of coatis (Nasua nasua) implication in the Rickettsiales cycle in the Atlantic 

Forest (Magalhães-Matos et al., 2022). Domestic dogs were found competent amplifier host, 

in association with Amblyomma aureolatum (prevalence of 19.3%, mean intensity of 3.8) and 

Rhipicephalus sanguineus (prevalence of 10.6%, mean intensity of 19.3) tick species, in the 

Atlantic Forest (Ogrzewalska et al., 2012). The amplifier host and epidemiological features of 

a given BSF Rickettsia are a function of the vector species ecology (M. Szabó et al., 2013). For 

example, Amblyomma cajennense (A. sculptum)(Martins et al., 2016), one of the main tick 

vector species of BSF, was shown to be a three-host species (M. Szabó et al., 2013) and to 

present differential vector competence, depending on the tick developmental stages. The 

nymphs of this tick species are also more active and aggressive to humans (Soares et al., 2011) 

during the winter and spring, where BSF is the most prevalent (Pinter et al., 2011). It is also 

now accepted that capybaras play a major role in the BSF infection of R. rickettsii lethal agent, 

with the three stages of A. cajennense tick species by infecting up to 35% of individuals feeding 

on them (Souza et al., 2009) (Figure 2). 

Most of the studies previously cited investigate the BSF occurrence in the south of Brazil, 

especially across the Atlantic Forest municipalities. These highlighted some environmental 

and ecological variables that might trigger BSF outbreaks. Szabó et al. (2009) suggest that 

dense rainforest environments, with a high humidity and darkness, could decrease the 

abundance of A. cajennense (A. sculptum) and A. dubitatum in bushes, since these species 

thrive on degraded and open areas with no primary forest. However, in this study such open 
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environments were near an artificial water body where capybaras were found abundantly, 

which may have confused the relationship with the landscape. In opposition, for A. 

aureolatum and A. ovale, dense vegetation seems to be the areas the most at risk (Szabó et 

al., 2009). Another study shows that temperature seems to drive A. cajennense distribution 

more than humidity. High altitude temperatures may be also deleterious environment for this 

tick species (Estrada-Peña et al., 2004). 

Another important factor accounting for the BSF incidence is the dynamic of amplifier 

host populations. Although their natural habitat are environments close to waterbodies such 

as riparian forest fragments (M. Szabó et al., 2013) or seasonally flooded savanna (Verdade 

and Ferraz, 2006), capybaras are semi-aquatic rodents that can also be adapted to 

anthropogenic ecosystem, where they are found even more abundantly, such as rivers 

crossing cities like São Paulo, agroecosystems like crops not far from water (Verdade and 

Ferraz, 2006) or artificial waterbodies create by dams (M. Szabó et al., 2013; Szabó et al., 

2009). Excepted for riparian forests, forests are usually habitats avoided by them, they show 

higher preference for open areas of grasses or shrubs, especially in human-modified 

landscapes (Dias et al., 2020). Moreover, the landscape changes of the Atlantic Forest also 

tends to promote forest regeneration in high altitudes or steep slopes (Lira et al., 2021). We 

assume that steep slopes may be an additional factor influencing their frequentation, but also 

by humans and domestic dogs. Nonetheless, the recent and important land conversion 

dynamic of pasture lands to crops (such as sugar cane) in the Atlantic forest (Ferraz et al., 

2014; Lira et al., 2021) increases formation of grazing environments for capybaras as well, 

particularly near water streams (Felix et al., 2014; Verdade and Ferraz, 2006). In the last 

decades, increasing capybara populations is suspected to be partially responsible of the 

increasing BSF cases, as they are involved in the sylvatic cycle of R. rickettsii (Souza et al., 2009; 

M. Szabó et al., 2013). However, controlling the capybara populations raises some ethical and 

political issues in Brazil. Dogs are amplifier hosts as well, and sensibilizing the population about 

the risk of unrestrained or wild ownerless dogs that travel through dwellings and wildlife 

areas, or about the ticks themselves (the use of repellent), should be used as preventive 

measures. Furthermore, the BSF risk is multifactorial and complex as it involves several host 

species with different ecological requirements, thus such a risk cannot be attributed only to 

capybaras (Labruna, 2013). Nonetheless, hot-spots of BSF infection frequently correspond to 

areas shared by the tick vectors and capybaras (M. Szabó et al., 2013) and potentially by 

domestic animals that can act as amplifier hosts of this pathogen. Additionally, other non-

amplifier host animals (birds, felines, cattle, etc.) can host secondarily the ticks and thus 

translocate them between areas (de Paula et al., 2022) (Figure 2).  

Finally, the landscape accounted as a variable of the BSF risk is worthy to study as it 

implies the ecological niches of both vector and host species. A study carried out in the São 

Paulo metropolitan areas (Ogrzewalska et al., 2012) showed that endemic areas of BSF 

harbour smaller forest patches with less connectivity between them (higher nearest 

neighbour distance), and additionally, lower species richness of birds and small mammals than 

non-endemic areas. These endemic areas of BSF have also prevalent young secondary forests 

whereas non-endemic ones are covered by late and intermediate secondary forests. Then, the 

landscape matrix should be considered. For instance, crops (corn, rice, soybeans or sugar 
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cane) and grazing pastures are preferred environment of capybaras according to their feeding 

behaviour (Felix et al., 2014). Moreover, in areas of pasture, implantation of small bushes and 

shrubs provides the questing spots required for ambushed tick species involve in rickettsioses 

cycle (Labruna et al., 2001). For example, A. cajennense (s.l.), one of the main vector species 

of the highly lethal R. rickettsii (Szabó et al., 2009), is favoured by degraded areas or 

landscapes with large amounts of forest edge (M. Szabó et al., 2013). On the other hand, A. 

ovale, the Atlantic rainforest Rickettsia reservoir, is more abundant near trails in dense canopy 

(Szabó et al., 2009). However, the impact of this species on BSF incidence could be less 

significant as the major amplifier host known are not found in abundance under dense canopy. 

The BSF risk is thereby directly correlated with suitable environmental conditions 

associated to the landscape for vector species, but also amplifier host. Unfortunately, these 

landscapes tend to be more present as degradations of the Brazilian Atlantic Forest are still 

ongoing.  

 

1.3 The Brazilian Atlantic Forest 

 

Figure 3 : Overall land use and land cover state of the Brazilian Atlantic Forest (Mata Atlântica) for the year 2021 

(MapBiomas Brasil, 2021). A. Annual evolution of the major land cover and land use of the biome between 1985 

and 2021. B. Perspective of the land use categories for the whole Brazil. C. Percentage of Brazilian land cover of 

the biome. D. Proportion of urban area encountered in the biome. E. Land use and land cover of the biome. F. 

Native vegetation cover. G. Increase in agricultural cover between 1985 and 2021. H. Land use and Land cover 

transition between 1985 and 2021 in millions of hectares. 

Most of the prior studies on Febre maculosa evaluated the risk of infection in specific 

states of Brazil. This study takes place in the Brazilian Atlantic Forest (AF) municipalities. The 

Atlantic Forest (Mata Atlântica) is a tropical hotspot of biodiversity that crosses south-eastern 



Spotted fever risk on the Brazilian Atlantic Forest   9 
 

municipalities of Brazil and their coasts within multiple states. The biome is composed of 

several ecosystems which raise important levels of endemism and species richness (Ribeiro et 

al., 2011). The AF is a relevant biome to study the emergence of tropical zoonotic diseases as 

it underwent several land use and land cover conversion during the last decades (Box 1). 

Forest fragmentation Indeed, forest degradation is the major threat of the AF. Pastures 

were the main land use 30 years ago, followed by native forest land cover. While the 

agriculture has increased, pasture has decreased, partially because of pastures conversion to 

agriculture lands, and especially with the expansion of sugarcane and Eucalyptus plantations 

(Lira et al., 2021; Ribeiro et al., 2011). Pasture and agriculture are now the principal occupation 

of the territory (Figure 3A and 3H). However, with the agricultural mechanisation some areas 

were let to regenerate, such as in steep slopes and riparian zones (Ferraz et al., 2014; Teixeira 

et al., 2009). This passive regeneration, or sometimes active, has increased the last decades 

(Crouzeilles et al., 2019). Over the last decade, the AF was at 28% of its original native forest 

cover extent (Figure 3E, see also appendix Figure A1). Yet, as the deforestation still occurs 

concurrently with the forest regeneration, the old primary native forests are thus replaced by 

young secondary forests (Ferraz et al., 2014; Teixeira et al., 2009). As a consequence, the 

mitigation services of zoonotic diseases among several others ecosystem services provided by 

the AF are weakened, as secondary forests were shown to provide services of lesser quality 

(Ferraz et al., 2014)(Box 1). This diseases mitigation service was also suggested to occur with 

the BSF in the AF (Claudia Araujo Scinachi, 2022; M. Szabó et al., 2013). The importance of 

primary forest conservation has been many times highlighted as well (Calaboni et al., 2018; 

Ferraz et al., 2014). 

Today, the AF are fragmented landscapes with mainly agricultural and pasture matrix 

(Figure 3A, 3E, 3H). Most of the forest fragments are smaller than 5 hectares (Lira et al., 2021). 

This landscape configuration threatens the biodiversity. Then, high biodiversity ecosystems 

when threatened are directly correlated with the risk of new emerging zoonoses (Allen et al., 

2017; Keesing and Ostfeld, 2021). The zoonoses mitigation service of biodiversity through a 

dilution effect is now quite accepted in the scientific community. This dilution effect implies 

that biodiversity loss gives opportunities to reservoir species to increase in abundance, thus 

increasing the risk of an effective zoonotic spillover in human populations (Keesing and 

Ostfeld, 2021). Investing more efforts on the restoration and conservation of functional 

landscapes (for example, with bigger forest patches) can provide efficient mitigation of 

zoonoses (Ferraz et al., 2014). 
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Box 1 : Summary of historical land use and land cover changes and current stage of the Brazilian 

Atlantic Forest (AF).  

As the Portuguese arrived in south America in 1500, the exploitation of the Brazilwood tree 

(Paubrasilia echinate) started for dyes then instruments manufacturing (Lira et al., 2021) and its 

overexploitation led the species to be threaten today (Martinelli and Moraes, 2013). Between the 18th and 

the middle of the 20th century, the AF went through important cycles of degradation caused by sugarcane 

agriculture, pasture, gold mining, coffee plantation, araucaria trees (Araucaria angustifolia) logging, that 

after being gone, were replaced by forestry of Eucalyptus and Pinus spp. In 1985, pastures were the main 

land use in the AF biome but in the following 3 decades they were progressively replaced by agriculture 

areas. This land use conversion has resulted in a reduction of 25% of pastures and a double increase in 

agriculture areas from 1985 to 2021 (Figure 3A and 3H). During the last 50 years, sugarcane plantation has 

expanded especially for ethanol production (Lira et al., 2021). Additionally, the construction of multiple 

hydroelectric dams (Lira et al., 2021) and the expansion of urban areas (especially country houses for leisure) 

have also contributed to the forest cover lost (Teixeira et al., 2009). Forestry with short rotation cycles has 

also increased by 200% (Ribeiro et al., 2011; Teixeira et al., 2009). Over the last decade, this biome counted 

28% of remaining native forest (Figure 3E, see also appendix Figure A1) including 9% in strictly protected 

areas (IUCN categories I-IV) (Rezende et al., 2018). Forest degradation is the current major threat of these 

ecosystems in Brazil, especially due to agricultural expansion, mostly sugarcane crops and Eucalyptus 

plantations (Ribeiro et al., 2011). 

However, there are passive and active ongoing processes of restoration that have increased over the 

last decades (Crouzeilles et al., 2019). As agriculture and forestry expansion also rely on heavy mechanisation 

(Calaboni et al., 2018) and the international market demand, some areas with low productivity such as those 

in steep slopes and riparian zones were allowed to regenerate passively, and in some cases, underwent active 

restoration (Ferraz et al., 2014; Teixeira et al., 2009). The guidance of the active regeneration can be carried 

out by organisation such the Atlantic Forest restoration pact. It is a national organism that gather private 

institutions, governments, and scientific actors, among others, interested in restoring the forest. The main 

purpose of this pact is to restore 15 million hectares by the year 2050 (Pact for the Restoration of the Atlantic 

Forest, 2023) to comply with the Brazilian environmental legislation (Ribeiro et al., 2011). In Brazil, there is a 

native vegetation proctection low (NVPL) which was instored in 2012 (TJDFT, 2015). This NVPL includes the 

legislation of areas in permanent preservation (APP). These legislation implies areas bodering any river 

streams, natural water bodies and artificial ones when these are created by dams, and also some areas under 

specific conditions of topography. In such areas, the land owners must preserve the vegetation regardless of 

the presence of native vegetation or not. The alteration or degradation of the native vegetation is restricted 

to cases of public utility, social interest or low environmental impact. Since 2008, landowners must favorised 

the regeneration in case of unauthorized degradations. The APP not only preserve the landsacapes of 

riparian environments, but also insure geological and soil stability, and biodiversity conservation by acting as 

ecological corridors (TJDFT, 2015). Although APP can be opportunities for the native vegetation to regrowth, 

most remaining vegetation of the Atlantic Forest is located in non protected rural properties (Rezende et al., 

2018). Thereof, the current vegetation proctection laws may present a lack in conservation of the native 

primary forests, promoting younger secondary forest formations (Teixeira et al., 2009).  Additionnaly, a study 

by Molin et al. (2018) shows that in the AF a scenario of forest regeneration solely focusing on riparian areas 

may not be the most cost-effective strategy. The most cost-effective scenario would take into account the 

main drivers of natural regeneration opportunities to save efforts invested in active regeneration. Distance 

to water streams and distance to forest remnants are the main keys of this natural passive regeneration, 

steep slopes also but depending of the main land use type in the landscape (Molin et al., 2018). Therefore, 

areas with important cover of forest remnants are more suitable for regeneration as they are a direct source 

of seeds, hence the importance of their conservation (Calaboni et al., 2018).  

Restoring this threatened forest is crucial since it provides several support, regulation, and cultural 

ecosystem services. For example, the AF biome provides 50% of the freshwater for the coastal populations, 
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1.4 Objectives and hypotheses 
This master thesis aims to understand the effects of the landscape dynamics over the 

number of humans cases of the Brazilian spotted fever in the Atlantic Forest municipalities, 

over the last 2 decades. Underlying more specific objectives such as (1) creating a temporal 

database of forest cover and configuration in the studied areas based on land use and land 

cover data available from the MapBiomas initiative, (2) assessing land use changes in the 

Atlantic Forest by conducting analyses in geographic information system environment, (3) 

collecting and organizing data on BSF occurrence in each municipality, and finally (4) analysing 

the relationship between landscape changes and BSF occurrences using generalized linear 

mixed models.  

Several hypotheses can already be stated about the epidemiological risk of BSF across 

the Atlantic Forest based on the current literature: 

mostly in the Rio de Janeiro and São Paulo cities, and a significant contribution to the global carbon balance 

(Ribeiro et al., 2011). Furthermore, prior studies pointed out the mitigation service on the transmission risk 

of zoonotic diseases such as those caused by hantaviruses (Prist et al., 2021), and others suggested the same 

effect of tropical forests on the BSF (Claudia Araujo Scinachi, 2022; M. Szabó et al., 2013). Nevertheless, the 

fast anthropogenic landscape changes can provide new opportunities of tick-host relationships by offering 

suitable habitats for vectors and hosts or disturb existing relationships, thus facilitating the emergence of 

this tick-borne diseases (M. Szabó et al., 2013). Besides restoration, conservation of the primary forests is 

also important for the provisioning of ecosystems services with higher quality (Ferraz et al., 2014).  

Today the forest cover of the Atlantic Forest has been increasing. However, the biome faces an 

important turnover of its old native pristine vegetation by young secondary forests as deforestation still 

occurs simultaneously with restoration (Ferraz et al., 2014; Teixeira et al., 2009). Moreover, studies pointed 

out that these regenerated forests tend not to persist in tropical regions (Piffer et al., 2022a, 2022b; Reid et 

al., 2018). Therefore, despite the forest cover has increased, its quality has decreased (Ferraz et al., 2014). 

Some studies highligthed this phenomenon as an hidden destruction of the old native forests (Rosa et al., 

2021). The forest covers of the AF are fragmented landscapes whose main matrix types are now pasture and 

agriculture (Figure 3A, 3E, 3H). The forest fragments larger than 10.000 ha represent 0.03% of the total, when 

more than 80% are smaller than 5 ha. The distance edge-to-edge between forest fragments is less than 250 

m in 73% of the cases and the mean distance between forest fragments is 1440 m but the role of small ones 

(<50 ha) is important in increasing the connectivity (Lira et al., 2021). This landscapes configuration is a threat 

for the biodiversity. Indeed, only 5% of the extent of the Atlantic forest reach the minimum amount of forest 

to preserve high levels of biodiversity (Tambosi et al., 2014) when most of the biome is below that threshold 

(Banks-Leite et al., 2014). Additionally, as a consequence of forest fragmentation, a consequent part of the 

forest is under an edge effect process which provokes changes in abiotic conditions (Laurance et al., 2002), 

providing unsuitable habitats for many forest-dependent species (Oliveira et al., 2004; Pfeifer et al., 2017). 

The matrix type also plays a significant role in the forest fragment connectivity and thereby in the biodiversity 

integrity by mitigating or increasing the edge effect. For instance, when small forest fragments are 

surrounded by a more permeable matrix type (with forest-like vegetation structure), it decreases the 

intensity of the edge effect and it allows more biological flow (Boesing et al., 2018a, 2018b). Moreover, the 

small forest fragments of the Atlantic Forest are more likely to undergo a “secondarization” process. This is 

a retrogressive succession where shade-tolerant species of old growth forests are replaced by sets of pioneer 

fast-growing species (Oliveira et al., 2004). Secondarization processes were also shown to be driver of 

defaunation (Canale et al., 2012). Overall, all these processes disturb the functionality of the AF ecosystems.  
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(1) Forest amount and regeneration hypothesis: We hypothesise that high amount of 

forest cover could reduce the transmission risk of spotted fever. However, some ticks 

species are also favoured by forest cover and municipalities with high level of 

secondary regenerated forests can also increase the risk of BSF. 

 

(2) Landscapes configuration hypothesis: Higher number of BSF cases are expected to be 

found in landscapes with an increased number of forest fragment, and thus forest 

edge effect, with low connectivity between them and immersed in a human modified 

landscape matrix especially pasture and agriculture. This landscape scenario would be 

the most at risk because open degraded areas gather the ecological features of some 

tick species but, above all, the major amplifier hosts. 

 

(3) Riparian forest hypothesis: Municipalities with low forest cover but large amount of 

riparian forests, and consequently of forest edge, within agricultural matrices would 

increase the transmission risk.  

 

(4) Land conversion hypothesis: Municipalities where a high rate of land conversion 

occurred in the past could present higher BSF incidence. 

 

(5) Topography hypothesis: Presence of steep slopes and high-altitude mounts in 

municipalities may reduce the BSF incidence. 

 

This study will contribute to the outcomes of the scientific community engaged in the 

restoration pact (Box 1) and will provide knowledges to help the management of the Atlantic 

Forest. It will also inform on the landscapes presenting higher risk of BSF infection within the 

AF, thereby helping physician diagnoses to suspect this disease and propose the suitable 

treatment. Finally, It will help suggest improvement of the overall one-health (FAO, OIE, WHO, 

UNEP, 2021) of the Brazilian people and the environment. 
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2 Material and methods 

2.1 Data collection 

 

Figure 4 : Summary of the data used for the present thesis and the period covered by each. Raster: Land use and 

Land cover (LULC) (2001 to 2021), Primary and secondary vegetations data (2001 to 2019), and digital elevation 

model (DEM) (2000). Shapefiles: Hydrography of Brazilian states within the Atlantic Forest biome (2015), 

municipalities of Brazil (2022). Dataset: climatic data of temperature and precipitation (2000 to 2021), BSF cases 

per year (2001 to 2022), table of LULC transitions (2001 to 2021). 

 

2.1.1 Brazilian spotted fever data 
Brazilian spotted fever data were collected on the mandatory notifiable diseases 

information system (SINAN) from the Brazilian health ministry web site (Ministério da Saúde 

do Brazil, 1991). Data on BSF confirmed cases per year of notification and per municipality of 

residence were retrieved within tabNet. Reported cases were extracted from the TabWin 

database. Confirmed cases were defined as mentioned by the ministry of health (Ministério 

da Saúde, 2021). Cases concerning patients not residing in Brazil were excluded from the 

dataset available. Because any case of BSF has to be notified since 2007 (Oliveira et al., 2016) 

and a few confirmed cases were notified before this year, BSF data covering the period from 

2001 to 2022 were available and thus collected for these years. The numbers of autochthon 

cases, for which probable place of infection is the residence municipality, among confirmed 

cases per year were collected on the same platform. Besides, data were gathered on the 

probable place of infection between the following categories: workplace, leisure, home, 

others, and unknown. The probable place of infection, reported, autochthon, and death cases, 

were not available before 2007, and 2022 data are still preliminary. The estimate numbers of 

inhabitants per municipalities were also collected (2000 to 2021 - Preliminary estimates by 

the Ministry of Health (Brazil)/SVSA/DAENT/CGIAE). Then, BSF incidence per municipalities 

per 100.000 inhabitants were calculated (BSF incidence = (BSF confirmed cases/number of 

inhabitants) * 100.000) as  carried out in a similar study (Vassari-Pereira et al., 2022). The 

period available for studying BSF incidences is thus reduced to the years from 2001 to 2021 

because of the demographic data availability. BSF cumulative incidences per municipalities for 
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this period were also calculated. Tabulation and calculation were performed using R software 

(version 4.1.2)(R Core Team, 2021). 

 

2.1.2 Land use and land cover data 
Annual raster data on the land use and land cover (LULC) of the whole Brazil from the 

MapBiomas initiative (collection 7)(MapBiomas Project, 2022a) were downloaded on the 

MapBiomas Brazil website, for the 1985 to 2021 period. See the appendices for the LULC 

classes details (Table A1, Table A3). From the same collection, raster data on the deforestation 

and secondary vegetation were retrieved. These rasters contain information on the 

persistence or deforestation through time of the primary and secondary vegetation classes 

(MapBiomas Project, 2022b). Only data until 2019 were available, thus these rasters were 

collected from 2001 to 2019 as no BSF data were available before 2001. Landsat satellite 

images are used by MapBiomas to develop the LULC rasters for each biome of Brazil with a 30 

m resolution (MapBiomas Project, 2015). Moreover, the table of transitions over the years 

between the different LULC categories of the collection 7.1 was acquired (number of hectares 

for each municipality). The Atlantic Forest biome delimitation was downloaded from 

MapBiomas. A vector layer of the Brazilian municipalities (2022) was also downloaded from 

the Brazilian institute of geography and statistic website (Instituto Brasileiro de Geografia e 

Estatística - IBGE, 2022), this shapefile includes municipality names and their identification 

code, superficies, and the abbreviation letters of their respective federal unit (states of Brazil).  

 

2.1.3 Others abiotic data 
The hydrography shapefiles per Brazilian states of the AF were downloaded from the 

project of high-resolution biome mapping of the Brazilian foundation for sustainable 

development (FBDS, 2015). The detailed hydrography includes rivers less than 10 m wide, river 

more than 10 m wide, and waterbodies (>10 m). Per these previous categories, each 

hydrography shapefiles of the AF states were merged.  

Furthermore, climatic data on the monthly mean temperature and total precipitation 

were gathered for each municipality (average value across the extent) of the studied zone (See 

section 2.2.2) and for the period considered. The gridded land surface temperature data are 

provided by the National Centers for Environmental Prediction (NOAA NCEP). These data are 

combined data from GHCN and CAMS stations at a 0.5° spatial resolution (Fan and van den 

Dool, 2008, 2004). The precipitation data are supplied by the University of California Santa 

Barbara, using the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) 

dataset of the 10-day averages precipitation, with a 0.05° resolution (Funk et al., 2014). Both 

climate datasets were retrieved using the Data Library (IRI, 2023, 2020) of the International 

Research Institute for Climate and Society (IRI).  

Digital elevation model scenes for a broader region of the AF were retrieved from the 

NASA SRTM 1-Arc Second Global mission (2000)(approximately 30 m resolution)(Farr et al., 



Spotted fever risk on the Brazilian Atlantic Forest   15 
 

2007; NASA JPL, 2013), using Google Earth Engine (Earth Engine, 2013). Then, all the scenes 

were merged. All shapefile and raster manipulations were carried out in the QGIS software. 

 

2.2 Analysis 

2.2.1 Exploratory analyses of BSF data 
Number of spotted fever cases, death cases, and case-fatality rate per year were 

plotted. The number of suspected cases from the reported cases were established according 

to the definitions provided by the ministry of health of Brazil (Ministério da Saúde, 2021) and 

inspired by Oliveira et al. (2016). The annual case-fatality rate was calculated with the absolute 

number of deaths caused by SF and the confirmed SF cases. The average case-fatality rate was 

calculated for the period of data availability. Moreover, the global proportion per year of BSF 

cases that are autochthon of the municipality of residence were assessed. Because this feature 

of the cases was not notified before the year 2007, the proportion of autochthon cases per 

municipalities per year were not evaluated for the further analyses. Solely the percentage of 

autochthon BSF cases per year was plotted and the estimated average percentage for the 

whole period was calculated (assuming a Student distribution) to provide an overview on the 

proportion of cases incidence that can be related to the municipality landscape. Additionally, 

the total percentages of probable place of infection were rendered. These results were plotted 

using Microsoft Excel. 

 

2.2.2 Zone studied 
The BSF incidence data for each year and the cumulative cases incidence were 

thereafter merged with their respective municipalities according to their code, and then 

mapped. Considering the distribution of the municipalities with BSF incidences in Brazil, see 

results section (Figure 8), we decided that the zone studied would comprise all the 

municipalities that intercept the AF biome and the municipalities with BSF incidences that 

intercept a 100 km buffer around the AF (see the extent of the studied zone in the appendices, 

Figure A2). From this selection, the 2 municipalities included in the AF (Fernando de Noronha 

and Vitória) but composed solely of islands further than 100 km from the continent were 

excluded because no LULC data are available for them. In total, 3121 municipalities are thus 

considered in the present study. All the operations were conducted within the QGIS software 

(version 3.26.3)(QGIS Development Team, 2022). 

 

2.2.3 Land use and Land cover processing 
First, considering the hypotheses stated above, a reclassification of the 27 classes of 

LULC (Table A1) from the 7th collection of MapBiomas rasters were carried out in QGIS. Indeed, 

the present study only used 9 classes which are: native forest, non-forest native formation 

(wetland, grassland, others), pasture, agriculture, mosaic of uses (pasture and agriculture), 

silviculture, non-vegetated area (sand spot, mining, others), urban area, and water, for more 

details see the appendices (Table A2). A special attention was taken for the savanna 
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formation: this class gathers savannas from the wooded savannas at the borders and within 

the AF biome to the grassy savannas of the Cerrado. Because of their lower and variable 

canopy cover, savannas are not expected to have the deleterious effect of the rainforest on 

the tick species that thrive in open areas such as A. cajennense (s.l) (Matias Pablo Juan Szabó 

et al., 2007; Veronez et al., 2010). Moreover, savannas are found in important proportion of 

the landscape in a few municipalities with incidence of BSF. Thereof, savanna formation was 

reclassified in the non-forest native formation class because of its features are closer to open 

areas than dense rainforests. Landscapes metrics and variables for each hypothesis (Table 1) 

were selected based on literature research about landscape studies and species involved in 

the BSF epidemiology. See lexicon at the beginning for terms used here relating to landscape 

analysis.  

Landscapes structure and configuration metrics were chosen in the FRAGSTATS manual, 

a spatial pattern analysis and quantifying landscape structure software (McGarigal and Marks, 

1995), in the “class metrics” section as our interest is focused solely on forest patches 

configuration. Class area (CA), percentage of landscape cover (%LAND), patch density (PD), 

mean nearest neighbour distance (MNN), nearest neighbour standard deviation (NNSD), 

nearest neighbour coefficient of variation (NNCV), mean proximity index (MPI), total edge 

(TE), edge density (ED), and main matrix type, were the landscape metrics calculated per 

municipalities as described in the Table 1, using FRAGSTATS. Connectivity between forest 

patches were assessed with the MNN, which accounts for the mean nearest edge-to-edge 

distance between forest patches thus their aggregation level, and the NNSD, which stands for 

characterizing the distribution of the patches. The NNSD assumes a normal distribution of the 

nearest neighbour distance. These two measures are complementary and cannot be 

considered separately to overview the spatial distribution pattern presented by the patches, 

and thereby their connectivity. NNCV is also an interesting landscape metric to compare 

spatial pattern variability among landscapes. However, its interpretation must be taken with 

caution when the patch density is not known. Two landscapes may present the same NNCV, 

but one with a smaller PD than the other, and therefore with a lesser connectivity between 

the patches. Additionally, to these connectivity metrics, the mean proximity index (MPI) was 

also considered. MPI evaluates the global size of neighbouring patches within a specified 

radius around a focal patch of the same type and their relative proximity of it. The MPI radius 

was set at 800 meters (McGarigal and Marks, 1995). To compute every metrics for each 

municipality on FRAGSTATS in batch process, the vector layer of the municipalities restrained 

and the LULC rasters were reprojected in a meter unit CRS (South America Albers Equal Area 

Conic - ESRI:102033). Then, the municipalities were split into several vector files and the LULC 

rasters were cut by each municipality extent, forcing the pixels size to 30 meters. 

Next, the relevance of use for this study of the secondary forest age data from the 

collection 7.1 were briefly investigated. This was performed based on a distribution of the 

canopy height through time evaluated in secondary forests in the AF (Becknell et al., 2018). It 

is expected that only after 25-35 years the mean height of the canopy of secondary 

regenerated forests can overcome the approximate 15 meters observed in the secondary 

forests that prevailed in the non-endemic BSF areas of São Paulo (forests in intermediate and 

late stage)(Ogrzewalska et al., 2012). Secondary forest age rasters were downloaded for 3 
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different years within the period studied. By subtracting the corresponding raster of 

secondary forests with the raster of secondary vegetation ages and applying a raster layer 

unique values report (QGIS), it was calculated that: in 2001, approximately 11% of the 

secondary forest in the entire AF biome were older than 16 years; In 2005, approximately 4% 

of the secondary were older than 20 years; and in 2019, approximately 7% of the secondary 

forest were older than 34 years. These data are consistent with Piffer et al. (2022b) which 

showed that in the AF approximately 15% of secondary forests lasted more than 25 years 

between 1985 and 2019. Therefore, a lesser proportion of the secondary forests are in 

intermediate and late stage, evaluating the BSF incidence as a function of forest ages would 

probably not bring significant explanation at this scale of the AF biome. Proportion of 

secondary forests can thus be used as a proxy of young forest in the context of this study. The 

proportion of primary forest was also calculated. 

History of land conversion of pasture to agriculture in municipalities was investigated 

with the total area (ha) and the proportion of superficies (%) that became agriculture each 

year compared to the previous one in the entire period studied. Moreover, riparian forest 

pixel status was assessed using a 500 m buffer from water streams and permanent water 

bodies. This distance from the water is where 95% of the capybaras observed by 

radiotelemetry were found in some studies reviewed (Campos Krauer et al., 2014), beyond 

this range the probability to encounter a capybara became low (Dias et al., 2020). Percentage 

of riparian forests (<500m) were calculated per municipalities, once considering the whole 

hydrography (small and major rivers, with waterbodies) and then considering only the main 

streams hydrography (major rivers and waterbodies only). Secondarily, the proportion of 

riparian non-forest vegetation, pasture, Agriculture, and mosaic of uses were retained to 

include in the further model selection process. 

The hydrographical data were not covering 11 municipalities present in the studied 

zone. For these, the water streams were extracted from the DEM in the r.watershed function 

of the QGIS GRASS package using a 250 and 100.000 watershed size parameter for the 

comprehensive hydrography and the main streams hydrography respectively. Then, the 500 

meters buffer were also performed for those streams. 

 

2.2.4 Other abiotic data processing 
The DEM raster of the AF was reclassified within 5 categories (Table 1). The altitude 

categories were instituted as: anthropic land use is expected to occur mainly in the 2 first 

categories, most of the remaining forest in the AF is located between the category 2 and 4, 

and most tick-vectors do not support cold mountain temperatures probably in the last 

category which is above the trees line in the AF (Ribeiro et al., 2011). Slopes were calculated 

in ArcGIS (ESRI, 2017)(version 10.6.1)(planar method with an appropriate CRS, ESRI:102033) 

with the DEM raster, then the resulting raster of slopes was binary reclassified regarding their 

steep feature or not. Steep slopes were defined as slope steeper than 20°. This value is a 

rounded mean of maximum declivity for the agricultural/forestry mechanisation found or 

used in some studies: 1) considering crops or pastures that mainly dominate some landscapes 

of the Cerrado do not exceed 30° of inclination (Carvalho et al., 2009), 2) a study on a forestry 
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site in the AF found a maximum operational slope of 24° for the machinery (Pereira et al., 

2011), 3) a study on the agricultural expansion in the state of Bahia considered 17° as a 

maximum slope for agriculture activities. Proportion of altitude categories and proportion of 

steep slopes per municipalities were calculated. The main altitude category per municipality 

was also spotted. 

Furthermore, the average of the monthly precipitation was calculated per year and per 

municipality from the climatic data. The mean temperature of the coldest and hottest month 

of each year for each municipality was also selected, as cold weather may limit the growth of 

tick populations (Estrada-Peña et al., 2004) and to use as a proxy of the mean temperature of 

the dry and wet season. The average temperature of each year was also calculated.  

Table 1 : Summarize of the main data of interest and their respective landscape metrics/variables involved in 
each hypothesis. 

Hypothesis 
 

Data of interest Landscape metrics/variables 
(per municipalities) 

Forest amount 
and regeneration  

Forest amount Class area (ha): 

𝐶𝐴 =
∑ 𝑎𝑖𝑗

𝑛
𝑗=1

10.000
 

Percentage of landscape (%): 

%𝐿𝑎𝑛𝑑 =  
∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝐴
 ∙ 100 

aij: area of the jth patch of the considered class i (m2) 
A: total landscape/municipality superficies (m2) 

Young secondary 
forest 

Proportion of secondary forests as a proxy of early-
stage forests 

Landscapes 
configuration 

Number of forest 
fragments 

Patch density per 100 hectares:  

𝑃𝐷 =  
𝑛𝑖

𝐴
∙ (10.000)(100) 

ni: number of patches of the same type 
A: total landscape/municipality superficies (m2) 

Connectivity Mean proximity index:  

𝑀𝑃𝐼 =

∑ ∑
𝑎𝑖𝑗𝑠

ℎ𝑖𝑗𝑠
2

𝑛
𝑠=1

𝑛
𝑗=1

𝑛𝑖
 

aijs: area of the sth patch that intercept a defined 
distance radius around the focal jth patch of the same 
class type (m2) 
hijs: nearest edge-to-edge distance between the sth 
patch that intercept the radius and the focal patch (m) 

Mean nearest neighbour distance (m): 

𝑀𝑁𝑁 =
∑ ℎ𝑖𝑗

𝑛′

𝑗=1

𝑛′
𝑖

 

Nearest neighbour standard deviation (m): 

𝑁𝑁𝑆𝐷 =
√

∑ [ℎ𝑖𝑗 − (
∑ ℎ𝑖𝑗

𝑛′

𝑗=1

𝑛′
𝑖

)]

2

𝑛′

𝑗=1

𝑛′
𝑖
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hij: nearest edge-to-edge distance from the jth patch to 
the nearest neighbouring patch of the same type (m) 
n’i: number of patches of the same type 

Nearest neighbour coefficient of variation:  

𝑁𝑁𝐶𝑉 =  
𝑁𝑁𝑆𝐷

𝑀𝑁𝑁
∙ 100 

 

Forest edge Total Edge (m): 

𝑇𝐸 = ∑ 𝑒𝑖𝑘

𝑚′

𝑘=1

 

 

Edge density (m/ha): 

𝐸𝐷 =
∑ 𝑒𝑖𝑘

𝑚′

𝑘=1

𝐴
∙ (10.000) 

eik: the lengths of all edge segments within the 
considered landscape of the kth patch (m) 
m’: number of patches of the same type 
A: total landscape/municipality superficies (m2) 

Matrix type Main matrix type: considered as the dominant class in 
the landscape 

Riparian forest Forest near 
river/water bodies 

Percentage of forests near rivers or water bodies (<500 
m): 

𝑟𝐹𝐶 =  
𝑟𝐹

𝐴
 ∙ 100 

rF: superficies of all forest pixels within the 500 m 
buffer (m2) 
A: total landscape/municipality superficies (m2) 

Agricultural matrix  Main matrix type 

Land conversion Pastoral areas 
convert in 
agricultural areas 

Percentage of conversion of pastoral areas in 
agricultural areas trough time:  

𝑐𝑝→𝑎 =  
𝑆𝑝→𝑎

𝐴
  

Sp→a: pastoral superficies convert into agriculture (m2) 
since the previous year. 
A: total landscape/municipality superficies (m2) 

Topography  Slope Percentage of steep slope areas (>20°) 

Altitude Percentage cover of each categorial altitude: 
alt 1: ≤ 200 m 
alt 2: ]200 – 400] m 
alt 3: ]400 – 800] m  
alt 4: ]800 – 1200] m 
alt 5: > 1200 m 

 

2.2.5 Models 
Because BSF cases have a zero inflated distribution, generalized linear mixed models 

were carried out using a negative binomial family with a log link function (Brooks et al., 2017). 

For each model, BSF cases was the respond variable, numeric predictor variables were scaled, 

municipality and year were set as random effects, and the population (number of inhabitants 
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per municipality) was set as an offset variable to consider BSF incidence when fitting the model 

(Eq.1).  

 

Eq. 1: 

𝐿𝑜𝑔(𝑌𝑖𝑗) =  (𝛽0 +  𝑢0𝑗) + 𝛽1𝑋1𝑖𝑗 +  𝛽2𝑋2𝑖𝑗 + ⋯ +  𝛽𝑛𝑋𝑛𝑖𝑗 + 𝜀𝑖𝑗 +  𝐿𝑜𝑔(𝑃𝑖) 
 
Y : response variable (BSF cases). 
β0 : intercept. 
β1→n : coefficients of predictor variables. 
X1→n : predictor variables. 
u0 : random intercept (Year and Municipality). 
ε : residuals. 
P : offset variable (Population). 
i : ith observation. 
j : jth group. 

Non-assigned (NA) values were handled by removing them from the dataset, thus 

reducing also the period studied to 2001-2019 (missing data on primary and secondary forest 

cover for the years 2020 and 2021). Some NA were also generated due to the lack of forest 

cover within municipalities when the calculation of landscapes metrics was performed. 

Collinearity issues were assessed and avoided for each model: before the model 

construction, by checking the spearman correlation between candidate variables and enabling  

their gathering in a same model at a 0.7 maximum correlation threshold (absolute value), 

then, by discarding models that could contain variables with a Variance Inflation Factor (VIF) 

greater than 5 (Lüdecke et al., 2021).  

The study of the BSF incidence as a function of landscape features in the Atlantic Forest 

was performed using two approaches: 1) one general approach involving principal component 

analysis (PCA) carried out on a subset of the dataset, then fitting all possible models from 

selected PCA axes with the additional two factorial variables. Subsequently, an AICc model 

selection was implemented to the all set of PCA models and the results was interpreted to 

assess the global effects of combined variables on the disease incidence. 2) Multiple AICc 

selections of different model sets, one for each hypothesis stated in the section 1.4 : 

Objectives and hypotheses. Each set of models involving variables supporting the hypothesis 

tested. Then, a second AICc selection on an array of models mixing up all the hypotheses. This 

second approach was fulfilled to investigate the more relevant land use and land cover 

variables to explain the BSF incidence. 

 

2.2.6 Modelling with PCA components  
As a first approach to investigate the landscapes changes impact in the AF on the BSF 

incidences, principal component analysis (PCA) was performed on a subset of the data 

(Kassambara and Mundt, 2020; Lê et al., 2008). To select interesting variables, each variable 

was fit in an individual model than compared by likelihood ratio test (LRT) to the null model. 

Every variable that leads to a significant LRT p-value (error α=0.05) was included in the later 

mentioned subset. The 7 first dimensions of the PCA were retained, together they explained 
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almost 75% of the total variance (see the appendix for the scree plot, Figure A3). The PCA axes 

(dimensions) were selected to explained sufficient variance, but also to have at least each 

variable correlated to one axis at a minimum arbitrary correlation level of 0.4 (Figure 10). 

Percentages of contribution to the total variance of each variable were assessed. This was 

calculated by multiplying the r2 of a variable (square of the correlation to the axis) by the 

percentage of explained variance of that same axis (Figure 10). 

The selected axes of the PCA were fitted in a model additionally with the two qualitative 

variables : the main land cover type (Matrix) and the main altitude class (Main alt) by 

municipality (appendices, Table A5). This latter model, labelled the full model (complete 

model), was thereafter dredged when keeping the random effects structure and the offset 

variable in each sub-model generated (Bartoń, 2023). The sub-models were classified 

according to their corrected Akaike Information Criterion (AICc). Calculation of the relative 

importance of variables among the set of PCA axes models that were dredged from the full 

model was performed. It is calculated as the sum of the models AICc weights that contain the 

variable, the interpretation is the probability of the variable to be in the best model if the data 

were resampled. As a rule of thumb, when the relative importance is smaller than the 

presence frequency of the variable among the all set of sub-models, this variable is more likely 

not to be significant in the best models (appendices, Table A6). From this method, the 

dimension 2 was expected not to be retained in the best models. Subsequently, the best 

models, equally supported by the data (with ΔAICc < 2), were averaged using the shrinkage 

coefficients averaging method (Bartoń, 2023; Symonds and Moussalli, 2011).  

The resulting averaged coefficients were reported, with the correlation and proportion 

of total variance explained by the variables in PCA axes, to investigate the relative effects of 

the variables to the BSF incidence (Figure 9, Figure 10).  

 

2.2.7 Hypothesis testing 
For each hypothesis, a set of models were fitted using the variables related to it 

(appendices, Table A5) and a first AICc selection was performed to highlight the best 

competitor models for each one. In the case where no other model competed within the ΔAICc 

< 2 range with the lowest AICc model, this model was considered as the best model of the 

hypothesis tested. When several models were retained in the best models set, these were 

averaged using a natural averaging method (Symonds and Moussalli, 2011). Each model was 

fitted with and without the mean annual temperature (temp) in the formula to control for the 

effect of climate with the land use and land cover variables. The mean annual temperature 

was considered as the best variable to account for the climate through an AICc selection of 

models containing only climate variables. Then, coefficients of the best models for each 

hypothesis were plotted to investigate the relative effects of variables on the BSF incidence. 

The coefficients were displayed when being significant at a 85% confidence level (~0.157 p-

value) to be consistent with the AICc selection method of best models as advised by 

Sutherland et al. (2023)(Arnold, 2010; Sutherland et al., 2023).  
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Moreover, a second AICc selection was carried out among all the models fitted for the 

hypotheses testing, in order to evaluate which hypothesis of landscape structure or 

configuration is the most relevant to explain BSF incidence within the Atlantic Forest. 

Therefore, AICc rankings of models that did not contain any land use or land cover variables 

were not considered. Then, the random effects (‘municipality’ and ‘year’) significance was 

tested on the best model retrieved from the previous selection, by contrasting the AICc of 

competing nested models with only fixed factors, a random intercept for ‘municipality’, a 

random intercept for ‘year’, and a random intercept for both ‘municipality’ and ‘year’.  

Finally, on the model selected as the best to explain BSF incidence as a function of 

landscapes, spatial autocorrelation was tested with two Moran’s I tests: one using distances 

between the centroids of municipalities, and another using the contiguity matrix based on 

queen neighbourhood relation (Cliff and Ord, 1970; Suryowati et al., 2018)(appendices, Table 

A8). Then, several spatial models using different methods were fitted to account for the spatial 

autocorrelation (Appendices, Table A5) and went through an AICc selection (Table A7). 
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3 Results 

3.1 Exploratory analyses of BSF data 
The number of BSF confirmed cases has been increasing since 2007. Considering the 

2007 to 2022 period, the mean case-fatality rate is 33%. The maximum value was reached in 

2015 with 42% (Figure 5). 

 

Figure 5 : A. Number of spotted fever cases, death cases, and case-fatality rate per year in Brazil, 2007 to 2022. 

B. Closer view on the confirmed cases and number of deaths. Dashed 2022 data are preliminary. 

The BSF proportion of autochthon cases per year ranged from 69% to 84% with an 

estimate average proportion of 74.49 ± 0.02% inferred for the entire period (Figure 6). The 

main probable place of infection among all cases over the 2007 to 2022 period was the place 

where people live followed by their leisure activities and their workplace (Figure 7). 
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Figure 6 : Overall number and proportion of autochthon cases among the BSF confirmed cases per year, 2007 to 
2022. Dashed 2022 data are preliminary.  

 

Figure 7 : Proportion of probable place of infection among the BSF confirmed cases for the period 2007 to 2022. 

The mapping of the BSF cases over the studied period shows 589 municipalities with 

cumulative incidences ranging from less than 1 case per 100.000 inhabitants to 226 cases for 

the last 20 years. 562 of these municipalities (95%) was located within the Atlantic Forest or 

less than 100 km away from the biome. The cases remained mainly in the southern regions 

(states of Santa Catarina, Paraná, São Paulo, Rio de Janeiro, Espírito Santo, and Minas Gerais), 

while the northern regions of the biome are more spared (Figure 8). 
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Figure 8 : BSF cumulative cases incidence per 100.000 inhabitants for each municipality of Brazil, during the 
period considered: from 2001 to 2021. Only the municipalities with confirmed BSF cases are represented. 

 

3.2 BSF incidence Modelling 

3.2.1 General approach involving principal component analysis (PCA) 
The general modelling approach considered all potential predictors summarized 

through a PCA of their variation and utilizing PCA axes as predictors of the BSF incidence. The 

model averaging result of the 3 best-fit models (appendices, Table A5) pinpoints the main 

effect of groups of variables on the BSF incidence (Figure 9, Figure 10). The first principal 

component (PCA1) alone explains 26% of the variance of the data. The variables most 

contributing to this axis are variables of forest cover (e.g., CA, PLAND, Riparian Forest) and 

temperature, which are positively and negatively correlated with the axis, respectively (Figure 

10). The positive averaged coefficient of PCA1 in the model thus indicates that BSF incidence 

increases with forest cover and decreases with temperature. The temperature effect is in 
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agreement with the mapping of BSF incidence showing concentration of impacted 

municipalities in the south region of the Atlantic Forest biome. This region is where 

temperatures are known to be colder than in the northeastern part of Brazil (Figure 8, 

appendices Figure A5). Moreover, the section of the Figure 10 on the relative importance of 

variables highlights that forest cover is mostly represented by the percentage of forest cover 

(PLAND), the edge density (ED), the riparian forests, and the primary forests followed by the 

secondary forests. The savanna in the AF seems not to have a significant effect on BSF 

incidence, considering that PLAND Savanna do not have much importance even in the PCA 

axis 6 and that PLAND Savanna combined with the percentage of forest cover (PLAND Savanna 

Forest) have less importance than the percentage of forest cover alone.  

Landscape metrics such as the mean proximity index (PROX MN), the nearest neighbour 

standard deviation (ENN SD), and the nearest neighbour coefficient of variation (ENN CV) have 

effects on the BSF incidence but the edge density (ED) is the landscape metric that should 

explain it the best (Figure 10). The PCA1 having a positive coefficient in the models and the 

mean proximity index being positively correlated to this axis, high value of this landscape 

metric is associated with higher BSF incidence. Therefore, less fragmented and bigger forest 

patches in landscapes are correlated with an increasing BSF incidence. This is also 

corroborated by the nearest neighbour standard deviation and the neighbour coefficient of 

variation which appear to be negatively correlated with the axis 1 and thus associated with 

lower BSF incidence. However, increasing mean nearest neighbour distance (ENN MN) and 

neighbour coefficient of variation (ENN CV) have also a positive correlation to the 7th axis, this 

latter having a positive coefficient. These two variables represent landscapes with distant and 

unevenly distributed forest patches that are thus also associated with high BSF incidence. Still, 

the PCA7 is the most significant after the PCA1, and  is exclusively explained by these two 

metrics (at a minimum 0.4 level of correlation) unlike the PCA1 which is inflated by several 

other variables (Figure 10). Thus, ENN SD and ENN CV could also be irrelevant in the first 

component. 

Following the models averaging, the dimensions 2 and 4 turn out not to be significant at 

a 85% level (Figure 9). These dimensions contain mainly agriculture variables and some 

altitude classes, with additional variables of pasture, mosaic of uses and agriculture near main 

water streams (Main str Agriculture, Main str Pasture, Main str Mosaic of Uses) (Figure 10). 

The factorial main altitude variable (Main alt), that represents the main altitude class present 

in the municipality, is significant at 85% for the first (alt1, ≤ 200 m) and third (alt3, 400 – 800 

m) elevation range, the last elevation range (alt5, > 1200 m) is included in the intercept. 

Nonetheless, their effect is difficult to compare as their confidence intervals are wide (Figure 

9). The main altitude class might thus not be an appropriate variable to qualify the topography 

regarding the BSF incidence. On the other hand, the main matrix type occupied in the 

landscape have positive coefficient at a 85% significant level for the agriculture and mosaic of 

uses types. Native non forest natural formation as a positive coefficient but a wider confidence 

interval, making difficult comparison with the two others matrix type. Nevertheless, 

agriculture, mosaic of uses, and native non forest formation matrix, tend to increase BSF 

incidence compared to forest matrix (included in the intercept) (Figure 9). 
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Figure 9 : Coefficients averaging results based on the best models from the AICc selection (ΔAICc < 2) considering 
dredged sub-models combination of the PCA axes full model. Percentage of axes explained variance in 
parentheses. Only coefficients with a 85% significance level are plotted (p-value < 0.157). Range of p-values of 
each variable in the model are represented: 0.157 (.) 0.05 (*) 0.01 (**) 0.001 (***) 0.000. Confidence Intervals 
(IC) are represented by a thin line (95% IC) and a bold line (85% IC), uninformative variables within a 95% IC 
(crossing the 0 dotted line) have a pellucid IC. The colours of the ICs highlight the approximated similar “thematic” 
of the variables in the Figure 10. Main alt: main elevation range, Matrix : main land cover type present in the 
landscape. Forest matrix and alt5 are included in the intercept of the models. 

 

Figure 10 : Above section: Correlation coefficient between the axes of a PCA (Dim.) of the landscape features 
used as predictors of BSF incidence and each of these predictors individually. Correlation coefficients under 0.4 
are not shown. Under section : Percentage of contribution to the total variance of each variable, calculated by 
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multiplying the r2 of a variable (based on the correlation above) by the percentage of explained variance of the 
axis. Abbreviations, by municipality : CA: forest class area (ha), PLAND: percentage of forest cover, ED: forest 
edge density (m/ha), PROX MN: Mean proximity index, ENN MN: Mean nearest neighbour distance between 
forest patches (m), ENN SD: nearest neighbour distance standard deviation (m), ENN CV: nearest neighbour 
coefficient of variation, Riparian [class]: percentage of the specified class near rivers, Main str [class]: percentage 
of the specified class near main streams (> 30 m wide), CA [class] : class area (ha),  PLAND [class]: percentage 
cover of the class specified, Primary/Secondary Forest: percentage of primary/secondary forests, alt1/alt3: 
percentage of area in the first/third elevation range, steep slope: percentage of steep slope, temp: mean annual 
temperature, cold/hot temp: mean annual minimum/maximum temperature.  

PCA axes 3, 5 and 6 have negative coefficients in the models (Figure 9). On these axes, 

riparian non forest natural formation, agriculture near main stream, agriculture cover (in ha) 

are related to low BSF incidence considering their positive correlation with their respective 

PCA axis. While pasture, mosaic of uses cover and riparian mosaic of uses are associated with 

higher BSF incidence because they are negatively correlated to the axes. High percentages 

cover of the altitude class 1 (alt1, ≤ 200 m), being positively correlated to PCA5, is also linked 

to lower disease incidence (Figure 10). 

 

3.2.2 Hypotheses testing and best landscape features to explain BSF risk  
Results of the best models by hypothesis tested are presented in Figure 11. In each 

model, municipalities with higher mean annual temperature (temp) are associated with lower 

BSF incidence as described by the PCA analysis (Figure 9, Figure 10). 

In contrast to the forest amount and regeneration hypothesis that BSF incidence 

decreases with forest cover and increases with secondary forests, the results (Figure 11, H1) 

indicate that BSF incidence increases with the percentage of forest cover (PLAND) and primary 

forests within the municipalities of the Atlantic Forest. Secondary forests might be involved 

too, yet with a smaller effect than primary forests, considering that the percentage of forest 

cover sums the percentage of primary and secondary forests. Additionally, when investigating 

the distribution of the forest cover variable, it appears that most of the municipalities present 

a low forest cover (Appendices, Figure A4).  

According to the landscape configuration hypothesis, more fragmented landscapes, 

with high forest edge effects, low connectivity between patches, and immersed in rural land 

use matrices would be more at risk. As the results of the PCA analysis suggest too, mean 

nearest neighbour distance, nearest neighbour standard deviation, and neighbour coefficient 

of variation, were less significative to explain the disease incidence as the models containing 

these variables did not stand out from the AICc selection. Instead, the forest patch density 

(PD) and total edge amount (TE) are the main landscape configuration variables explaining the 

BSF incidence (Figure 11, H2). The TE effect is mitigated as its significance level rest on the 

85% IC. However, the forest edge density (ED) is included in another model that support the 

third hypothesis (Figure 11, H3) at a more significant level, thereby it bears out the that forest 

edge effects is associated with lower BSF incidence. The patch density (PD) has also a negative 

coefficient. Hence, in opposition to the hypothesis, more fragmented landscapes are 

correlated with lower BSF occurrence. The percentage of forest, pasture and mosaic of uses 

have positive coefficients (Figure 11, H2). Regarding that with the previous considerations, it 
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seems that huge patches of continuous forest with low edge amount and immersed in pasture 

areas, and in a lesser proportion, agricultural areas contained in the mosaic of uses, increase 

the spotted fever risk. 

The results support the third hypothesis stating that low forest cover but large amount 

of riparian forests, and consequently of forest edge, within agricultural matrices would be 

associated with high BSF risk. Indeed, the positive coefficient of the best model (Figure 11, H3) 

corroborates the effect of forests cover (PLAND) described above, especially when those are 

riparian (Riparian Forest). However, the edge density (ED) displays a negative coefficient 

despite increasing with the riparian forest (Spearman correlation of 0.87, not shown). 

Agriculture, pasture, and mosaic of uses matrices increase the BSF risk with a lesser significant 

effect of the agriculture matrix (informative at a 85% significant level). It is important to keep 

in mind that matrix type coefficients are to be interpreted in comparison with the intercept, 

which contains the forest matrix. Hence, riparian forests immersed in rural matrices raise the 

BSF incidence. As stated before, most of these landscapes present a low forest cover 

(Appendices, Figure A4), which is in agreement with the prior hypothesis settled. 

Furthermore, the results of the fourth set of models (Figure 11, H4) are provided to 

highlight that the amount of pastoral lands converted into agriculture are not correlated with 

the BSF incidence significantly. These land conversions were evaluated by municipality and 

between a year and the one before. The land conversion hypothesis expected to have higher 

BSF incidence in municipalities that underwent more conversion of pasture area into 

agricultural ones. However, the results do not underlie that correlation. Those transition rate 

variables were not significant after the model averaging of the best models (ΔAICc < 

2)(Appendices, Table A7). They were also not selected in the subset of the data for the PCA 

analysis because they failed the LRT test comparing them in an individual model with the null 

model. Moreover, the effects of pasture and the mosaic of uses were less significant following 

this model averaging than observed in the two previous hypothesis results (Figure 11, H2 and 

H3), pasture displaying a negative coefficient in this case. While, the effect of agriculture is 

more significant than in the others hypothesis and appears to be associated with lower disease 

incidence. 
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Figure 11 : Coefficients of the best model by hypothesis (log scale). H1 : Forest amount and regeneration 
hypothesis. H2 : Landscapes configuration hypothesis. H3 : Riparian Forests hypothesis. H4 : Land Conversion 
hypothesis. H5 : Topography hypothesis. Only coefficients with a 85% significance level are plotted (p-value < 
0.157). Range of p-values of each variable in the model are represented: 0.157 (.) 0.05 (*) 0.01 (**) 0.001 (***) 
0.000. Confidence Intervals (IC) are represented by a thin line (95% IC) and a bold line (85% IC), uninformative 
variables within a 95% IC (crossing the 0 dotted line) have a pellucid IC. The colours of the ICs highlight the 
approximated similar theme of the variables. Forest matrix and alt5 are included in the intercept of the models. 
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The last hypothesis assessed the effect of landscape topography on the BSF incidence. 

Presence of steep slope (>20%) and high-altitude mounts would reduce the incidence. The 

results underline the positive effect of steep slope on the BSF risk (Figure 11, H5). The third 

altitude class (alt3: 400 to 800 m) has also a positive correlation with the BSF cases. Steep 

slopes in the landscape present thereby opposite patterns as expected by the hypothesis by 

increasing the BSF incidence, whereas municipalities in high altitude seem more spared as it 

was assumed. 

Finally, after the overall AICc selection to evaluate the best model to explain BSF 

incidence between the hypotheses tested, the topographic model (Figure 11, H5) was the first 

model followed by the riparian forest model (Figure 11, H3). Yet, the topographic model did 

not account explicit land use and land cover variables. Therefore, the riparian forest model 

was used to answer the main investigation: how land use and land cover changes of the 

Atlantic forest can affect the BSF incidence. The model was thereafter used to assess the 

significance of the random intercepts. The riparian forest model including the two random 

intercepts was ranked higher than the same models containing only the fixed effects or with 

one of the intercepts, evidencing the spatiotemporal variability of the data and the necessity 

to control for it in the analyses. Spatial autocorrelation of the riparian forest model was 

assessed with two different methods (Table A8). The results indicate significant 

autocorrelation for the majority of the years, irrespectively of the method used. The results of 

the best spatial model accounting for the autocorrelation are shown in Figure 12. Edge density 

and mean annual temperature are no longer significant when a spatial exponential covariate 

term (Kristensen and McGillycuddy, 2023) is added to the riparian forest model. It also appears 

that riparian forests have a smaller coefficient in this spatial model. However, its significance 

is still higher than that of the other variables.  

 

Figure 12 : Coefficients of the best spatial model of the riparian forest hypothesis (log scale). Only coefficients 
with a 85% significance level are plotted (p-value < 0.157). Range of p-values of each variable in the model are 
represented: 0.157 (.) 0.05 (*) 0.01 (**) 0.001 (***) 0.000. Confidence Intervals (IC) are represented by a thin 
line (95% IC) and a bold line (85% IC). Forest matrix is included in the intercept of the models. 
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4 Discussion 

4.1 Spatiotemporal variation of the BSF incidence 
Over the years, the number of confirmed cases has increased as stated before by Alcon-

Chino and De-Simone (2022) (Figure 5, B). Yet, the increasing number of cases could also 

reflects the increasing number of reported cases, as the awareness of physicians regarding the 

BSF would have raised since the disease was mandatory to report in 2007 (Oliveira et al., 

2016). The mean case-fatality rate of 33% for the 2007-2022 period is the same as Oliveira et 

al. (2016) previously found. Finally, the years 2020 and 2021, discarded from the dataset due 

to the lack of information on primary and secondary forests cover, show a drop in the case-

fatality rate that could be explained by the covid-19 pandemic (Figure 5). Indeed, practicians 

would have been more likely to disregard others diseases such as spotted fever during the 

pandemic, especially when those have quite similar first stage symptoms (Blanton, 2019; 

Regan et al., 2015).  

The mapping of the BSF cases shows that 95% of the Brazilian municipalities with 

confirmed cases of spotted fever are within the Atlantic Forest biome. The municipalities 

affected are mostly located in the southeastern part of the biome (Figure 8). It is more likely 

that when BSF cases are notified, these cases correspond to people infected by the most 

pathogenic Rickettsia bacteria of Brazil: R. rickettsii (Ministério da Saúde do Brazil, 1991) 

followed by R. parkeri and the Atlantic rainforest Rickettsia strain (Labruna, 2009; Spolidorio 

et al., 2010; M. P. J. Szabó et al., 2013). Therefore, the tick species (mainly A. cajannense (s.l.), 

A. aureolatum (Ogrzewalska et al., 2012), A. triste (Silveira et al., 2007), and A. ovale) 

associated with these bacteria (M. Szabó et al., 2013), and their ecology, would be the main 

drivers of the BSF and its distribution in the environment. 

 

4.2 Environmental drivers of the BSF 

4.2.1 Forest cover 
From the PCA analysis (Figure 9, Figure 10) and the best-fit models (Figure 11, H1) 

including forest cover variables, municipalities with high forest cover, especially primary 

forests, are the most likely to exhibit high BSF incidence levels. Because spotted fever is a 

vector-born disease propagated by ticks (Parola et al., 2013), this correlation likely stems from 

the preference of tick species for forest environments. In the Brazilian Atlantic Forest (AF), A. 

aureolatum and A. ovale, thrive in dense vegetations (Szabó et al., 2009). Such dense 

vegetation conditions mostly correspond to primary forests, which could explain that the 

primary forest cover is also positively correlated with BSF incidence. In contrast to this, it was 

expected that primary forests would strongly mitigate zoonoses (Claudia Araujo Scinachi, 

2022; M. Szabó et al., 2013) by the dilution effect principle (Civitello et al., 2015; Keesing and 

Ostfeld, 2021), while secondary forests would supply weaker ecosystems services (Ferraz et 

al., 2014). However, the classification from the MapBiomas initiative of primary forest can be 

misleading. Primary vegetation status was attributed to every forest mapped at the beginning 

of the data availability, namely in 1985, whether or not these forests had already been used 
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before. This status was only lost when a land cover change was observed after this year 

(MapBiomas Project, 2022b). Therefore, the primary forests considered in this study for the 

period of 2001 until 2019 may in fact correspond to young forest stands. Such forests would 

probably not contribute as much as pristine forests in the mitigation services of zoonoses, 

which could explain the association between primary forest cover and BSF incidence. In 

general, ecosystem services in the Atlantic Forest will be mostly effective when forest are at 

least 25 years old. Nonetheless, the current forest cover is mainly composed of heterogenous 

forests of different age in a same patch, compromising the ecosystem services provisioning 

(Ferraz et al., 2014).  

Additionally, considering the results (Figure 11, H1), it is unclear whether secondary 

forests have a greater effect on the global BSF incidence than primary forests. Indeed, despite 

that the percentage of forest cover (PLAND) is also correlated to secondary forests, when 

taking a closer look at the mean forest cover by municipality and by year (Figure 13), we can 

see that the proportion of primary forests outweighs the proportion of secondary forests. 

Consequently, it can justify why secondary forests are not as significant as primary forests to 

explain BSF incidence. It is also worthy to mention that 75% of the municipalities in the Atlantic 

Forest and during the period studied presented less than 30% of forest cover (Appendices, 

Figure A4). Thus, the positive correlation established between the spotted fever incidence and 

the forest cover mainly involves a deforested landscapes context.  

  

Figure 13 : Mean percentage of forest cover by municipality and by year in the Atlantic Forest. Proportion of 
primary forest and secondary forest are shown in dark green and light green respectively. 

 

4.2.2 Landscape metrics 
Concerning the landscape metrics, it appears that municipalities with large continuous 

forest patches (with small patch density, low forest edge effects (Figure 11, H2 and H3), and a 

high proximity index (Figure 10)) are more at risk of BSF. Forest fragmentation, in synergy with 

secondarization processes, is responsible for the biodiversity loss of forests (Oliveira et al., 

2004; Pfeifer et al., 2017). Those effects are also drivers of defaunation, especially mammalian 
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defaunation (Canale et al., 2012). Ticks being hematophagous parasite, low animal diversity 

and abundance might decrease tick abundance too for populations affiliated with forest 

environments. This could explain why continuous and more biodiverse forests are more 

suitable habitats for these ticks, thereby putting forward an argument against the dilution 

effect of biodiversity on the BSF (Civitello et al., 2015; Keesing and Ostfeld, 2021). However, it 

could also rely on the fact that more fragmented landscapes exhibit a less structured and 

dense vegetation adapted for the tick species, or as previously stated, that the environment 

of the “pseudo primary forests” considered in this study could actually be considered as 

secondary forests.  

Landscape metrics, such as mean nearest neighbour distance and the proximity index 

between forest patches, were not the most relevant variables to explain the BSF incidence. 

Such metrics seem to have more utilities in observational studies at a smaller scale than over 

an entire biome (Ogrzewalska et al., 2012). Indeed, unlike Ogrzewalska et al. (2012), who have 

found that endemic areas of BSF in the metropolitan region of São Paulo contain smaller forest 

patches with high nearest neighbour distance, in this present thesis the opposite pattern was 

observed at the scale of the whole biome. This is most likely due to the difference of scale and 

design of these studies, which make their results difficult to compare. What can be true for a 

smaller region, may not necessarily be extensible to broader geographic scales.  

 

4.2.3 Riparian forest immersed in rural matrices 
Concerning the different land use types, it is less obvious to draw conclusions using the 

PCA analysis, especially because it seems to depend on the proximity to water. However, 

agriculture seems to have less effect in increasing the BSF risk than pastures and mosaics of 

uses as these last two variables have more relative importance than agriculture in the PCA 

axes (Figure 10). However, the results from the best-fit model of all the hypotheses involving 

land use and land cover variables (Figure 11, H3) suggest that landscapes with increasing 

amount of continuous and riparian forests immersed in pasture and agriculture matrices 

(Pasture, Agriculture and Mosaic of Uses) increase the BSF risk. While the tick vectors 

previously cited have a preference for dense canopies, A. cajannense (s.l.) and  A. triste, can 

be found in more open landscapes (Matias P. J. Szabó et al., 2007; Szabó et al., 2009). Such 

open areas, including pasture and agriculture, are, more than any other land cover types, 

shaped by human activities (Lira et al., 2021). A. cajannense (s.l.) and  A. triste might increase 

the BSF risk in such environments. This is also supported by the cluster of BSF incidence in 

Santa Catarina that matches with the distribution of  A. ovale in the state (Figure 14). In this 

cluster, native forest cover more than 60% of the territory in most municipalities. By contrast, 

the other states such as São Paulo and the Minas Gerais are dominated by municipalities with 

agriculture and pasture as main landscape (Figure 3). These others states correspond to the 

large geographic distribution of A. cajannense (s.l.) (M. Szabó et al., 2013) and probably also 

A. triste as its ecological requirements are similar (Szabó et al., 2009)(Figure 14). 

Furthermore, although spotted fever is a vector born disease, tick vertical transmissions 

of the pathogens do not allow alone the persistence of the zoonosis in the environment 

(Blanton, 2019), as some highly pathogenic Rickettsia can be partially deleterious for its tick 
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vector (M. Szabó et al., 2013). Consequently, amplifier hosts are required in the enzootic cycle. 

The species known in the Atlantic Forest to intensify pathogen prevalence in vector 

populations are capybaras (Souza et al., 2009; M. Szabó et al., 2013), horses (Souza et al., 

2016), and domestic dogs (Moerbeck et al., 2016; Ogrzewalska et al., 2012). The ecology and 

habits of these species are thus directly related to the BSF risk in municipalities. Riparian 

forests are favoured environments by some tick species (Osava et al., 2016; M. Szabó et al., 

2013) but also by capybaras (Brites-Neto et al., 2015; M. Szabó et al., 2013), which 

underscores the implication of riparian forests in the BSF risk. Capybaras are also well adapted 

to human-modified landscapes with agricultural and pastoral environments (Dias et al., 2020; 

Verdade and Ferraz, 2006). Moreover, after the proximal environment where people live, 

leisure areas are the second most probable place of infection that was reported among the 

spotted fever cases (Figure 7). Forests and riparian environments are both well appreciated 

by humans for leisure (Appendices, Figure A6). Specifically, if people hike with dogs in these 

environments, vectors, amplifier hosts and final hosts (human), are concentrated at the same 

place, thereby increasing the transmission risk. Since domestic dogs are known to be the most 

associated amplifier hosts with A. aureolatum, some epidemiologic issues might thus be 

expected with wild ownerless dogs that are also frequent in Brazil (Claudia Araujo Scinachi, 

2022; Labruna, 2013). 

 

 

The best-fit model (Figure 11, H3) points out that pasture, mosaic of uses or agriculture 

matrices in a municipality increase the BSF risk. Variables representing the pasture land use 

conversion in agriculture were not selected in the best model testing their potential 

correlation with BSF incidence (Figure 11, H4). The major land use change in the Atlantic forest 

during the last decades was the expansion of agriculture, with additional land conversions of 

pasture areas to agricultural ones (Lira et al., 2021; Ribeiro et al., 2011). The increasing 

Figure 14 : Left side: distribution of host tick species in the main states of Brazil touched by the spotted fever, 
from M. Szabó et al. (2013). Right side: BSF cumulative cases incidence per 100.000 inhabitants, from 2001 to 
2021, for each municipality (Figure 8) restricted to the main infected states of Brazil. Only the municipalities 
with confirmed cases are represented. Purple arrows highlight the coincidence between the A. ovale 
distribution and the main BSF cluster of the Santa Catarina state. 

) 
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agriculture cover provides new grazing areas for capybaras (Felix et al., 2014; Verdade and 

Ferraz, 2006) and their increasing population is suspected to be involved in the raise of BSF 

cases (Souza et al., 2009; M. Szabó et al., 2013). The pasture to agriculture conversion between 

two consecutive years do not explain the BSF incidence. Nonetheless, there might be some 

delays between the BSF occurrence and the land transition that could take more than one 

year. It could still be interesting to test this effect in further studies accounting this lagged 

response, for example, by modelling BSF cases upon the entire period as a function of total 

land conversions that occurred in that same period and investigate for potential correlations. 

Additionally, it is worthy to remember that amplifier hosts are not the only hosts that 

drive tick species distribution. Although horses are amplifier hosts (Souza et al., 2016) and can 

be found in pasture, the latter also includes other animals among the cattle that can host BSF 

tick species without amplifying the pathogen prevalence. Those non-amplifier hosts sustain 

the tick populations and can therefore contribute to raise the BSF risk in landscape with 

pasture matrix. The same features are known in other animal species, among felines and birds 

for instance, present in more dense vegetation and that can help translocate ticks and spotted 

fever into new areas (de Paula et al., 2022). 

 

4.2.4 Topography relationship with land use and land cover  
Two altitude ranges considered in this study and the percentage of steep slopes were further 

shown to correlate with BSF incidence. Low elevations (alt1, ≤ 200 m), are characterized by 

high levels of pasture and agriculture, and thus, high level of potential tick infection by 

farmers. At medium elevation (alt3, 400 – 800 m), wherein high BSF risks were also identified 

(Figure 11, H5), forest cover distribution reaches its maximum (30%), notably due to 

environmental law enforcement on steep slopes. However, only 10% are remanent forests 

(from the original distribution), which is the lowest level of remnant forests observed among 

the others altitude classes (Ribeiro et al., 2011). In this aforementioned elevation range, 

mitigation services of zoonoses are thus expected to be weakened. This information also 

corroborates the previous statement claiming that primary forests as classified by the 

MapBiomas initiative do not reflect pristine forests with highly valuable mitigation ecosystem 

services. 

 

4.2.5 Temperature effect 
Moreover, the analyses strongly highlighted that high mean annual temperatures are 

associated with low incidence, but its relevance varied among analyses. The Moran’s I statistic 

was low for most of the years (<0.1), which is expected knowing that spotted fever 

transmissions do not occur between humans (IDPH, 2023), by contrast with others diseases 

like COVID-19 that present higher spatial autocorrelation (Castro et al., 2021), but was 

nonetheless significant. When spatial autocorrelation was controlled for in the riparian model, 

temperature (and edge density) was not selected in the best model. Temperature variation in 

fact exhibits a strong spatial structure, so that its effects cannot be decoupled from simple 

spatial effects, but likely plays a role in the BSP incidence. Temperature was in fact shown to 
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drive A. cajennense distribution in south America (Estrada-Peña et al., 2004). Likewise, it is 

likely that mean annual temperature is a driver of the distribution of others tick species 

involved in the BSF cycle (Oliveira et al., 2017; M. Szabó et al., 2013), thus explaining that BSF 

risk are lower in municipalities with high mean annual temperature (Appendices, Figure A5). 

The spatial model also bears out the assertions made before on the effect of riparian forests 

immersed in pasture or agriculture matrices on the BSF incidence. 

 

4.2.6 Spatiotemporal validity of the results 
The riparian forest model containing ‘municipality’ and ‘year’ in the random structure 

was the best ranked by AICc compared to the same models without random effects or only 

one of them. The results thus evidence the spatiotemporal variation of the BSF incidence and 

its relationships with landscape features. 

 

4.3 Potential limitations of the study 
It is important when interpreting these results to keep in mind that because data on BSF 

have begun to be mandatory to report only since the last 20 years (Oliveira et al., 2016), the 

increasing cases might thus reflect the increasing number of reports rather than the real 

increasing of BSF cases. Consequently, the increase of the correlation with recent landscape 

changes in the Atlantic Forest (Box 1, Figure 3) may be over-inflated. Also, some variability is 

added knowing that on average, 75% of the reported cases are autochthon to the municipality, 

thus 25% could be wrongly associated with the municipality (Figure 6). 

Furthermore, the results show the effects of land cover and land uses on the BSF in the 

entire Atlantic Forest biome during the period covering 2001 until 2019. However, BSF is a 

multi-vector born disease involving several etiological agents, tick species with different 

ecological requirements, and different tick hosts, amplifier or not. The complexity of the 

sylvatic cycle produces pattern of landscape effects on the BSF that can differ depending on 

the location. The global trend observed in the Atlantic Forest might not reflect what is 

observed at a smaller scale. 

Finally, the present study was not able to corroborate strong evidences of dilution effect 

of the rainforest biodiversity, most likely for the reasons mentioned earlier related to the data. 

Some studies have however suggested that the dilution, which apply to most of the zoonoses 

known, would also be effective for the BSF (Claudia Araujo Scinachi, 2022; Ogrzewalska et al., 

2012). This thesis investigation is mainly about the environmental epidemiology of the BSF 

and did focus on the relationship between the eco-epidemiology of the hosts and the risk of 

transmission. Therefore, the results should be taken with caution when attempting to draw 

conclusions on potential dilution effect. 
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4.4 Applications 
Under the current environmental law in the Atlantic Forest (Brancalion et al., 2016), 

riparian remanent forests are semi-protected areas and are needed to be restored. These 

environments are thus expected to increase (Molin et al., 2018; Teixeira et al., 2009). 

However, this study shows that riparian forests tend to increase the BSF risk as features of 

these areas allow to gather tick vectors and their hosts, sometimes some Rickettsia amplifier 

hosts (M. Szabó et al., 2013). This effect of riparian forests is also incremented in pasture or 

agriculture matrices. However, the tropical rainforests supply several others important 

ecosystem services (Ribeiro et al., 2011) and their important biodiversity is needed to be 

conserved. Molin et al. (2018) suggested that the regeneration of the Atlantic Forest 

prioritizing the riparian environments as the current law compelled was not the most effective 

strategy. Indeed, regeneration processes can be active or passive (Crouzeilles et al., 2019). 

Molin et al. (2018) proposed an alternative relying more on effective passive regenerations, 

by selecting areas near large and ancient forest fragments with higher natural regeneration 

potential. Hence, the authors provide evidences that this strategy would be more cost-

effective than focusing regeneration processes on riparian environments where active 

restauration sometimes are required. This thesis puts forward another argument relative to 

the BSF that riparian forests might not be the most appropriate strategy in a context of 

zoonotic mitigation services, thereby supporting the cost-effective strategy evoked by Molin 

et al. (2018). Indeed, riparian forest cover was more relevant to, explain BSF incidence than 

the simple forest cover. 

The spotted fever can be lethal for the most pathogenic Rickettsia agents, however, 

antibiotic are available to help people to recover and prevent death (Blanton, 2019; Regan et 

al., 2015). Effective prevention and education should be the first measure settled to limit 

spotted fever casualties. For instance, sensibilizing the public to environment at risk for the 

disease, spreading the use of tick repellents and preventive antibiotic administration in case 

of suspicious symptoms following activities in BSF risky areas. Besides, education of owners 

about the risk of unrestrained domestic dogs and dogs abandoning consequences. Finally, 

capybaras are either well appreciated by the public or depreciated because these rodents are 

also considered as major crops destroyer (Dias et al., 2020). In both of these cases, people can 

be led to approach closely the animal to pet or chase it, which represent a risk of transmission 

that they should be informed. As the increasing population of capybaras in Brazil is suspected 

to be involved in the BSF incidence (Souza et al., 2009; M. Szabó et al., 2013), controlling 

capybara populations may seem to be a solution to reduce the zoonotic risk. However, 

regardless of the ethical and environmental policies issues this would raise, the BSF enzootic 

cycle is too complex to designate capybaras as a major cause of the disease transmission 

(Labruna, 2013). 

Although dense forests are associated with BSF risk, deforestation and expansion of 

pasture and agriculture increase further more the risk. Indeed, deforestation seems to have a 

double cost regarding the spotted fever: one for the resulting rural land use matrices of the 

landscape, and another for the following regeneration process (probable weaker mitigation 

services) that also increases BSF incidence, especially when occurring in riparian areas. 

Reinforcing conservation of pristine primary forests and the integrity of their ecosystem 
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services in synergy with slowing down deforestation caused by the agricultural expansion, 

rather than controlling amplifier host populations, would probably have much higher 

mitigation impact on the BSF incidence. Moreover, knowing that 30% of the forest cover is 

within private properties. Sensibilizing the landowners of the issues associated with 

deforestation is urging (Rezende et al., 2018). 

Besides, a useful application of environmental epidemiology studies is the prediction of 

diseases incidence as a function of landscape changes. Knowing which landscape parameters 

are the most correlated with the BSF incidence, these variables can be included in various 

inference analysis types to assess risk of future landscape scenarios. In this study, the spatial 

model (Figure 12) is an example of model that could be used for prediction of the BSF 

incidence (see Box 2 for instance). 

 

 

 

 

 

 

 

 

 

 

Box 2 : Example of a model inference to assess the effect from an increase in additional 10% of 
riparian forest cover in a municipality immersed in a pasture matrix. 

This example is given with the following prior assumptions: the increase of riparian forest cover occur in the 

same municipality and in the same year (no random intercepts), the population is assumed to be constant 

(BSF cases = BSF incidence). A coefficient represents the increase in BSF cases on a logarithm scale for each 

standard deviation unit of the variable associated (scaled variables), when the other variables of the model 

are kept constant. The riparian forest cover standard deviation (σ) is 17.73, therefore, 10% increase of 

riparian forest cover represents an increase of (1/17.73)x10 which is equal to 0.56 x σ. Hence, the model 

equation (Eq.1) becomes: 

𝐿𝑜𝑔(𝐵𝑆𝐹 𝑐𝑎𝑠𝑒𝑠) =  −16.37 +  0.45 x 0.56 +  0.41 

with intercept (β0) = -16.37,  βpasture matrix = 0.41 (factor),  βRiparian Forest = 0.45, which is equal to: 

 𝐵𝑆𝐹 𝑐𝑎𝑠𝑒𝑠 = 𝑒𝑥𝑝(−16.37) x 𝑒𝑥𝑝(0.45 x 0.56) x 𝑒𝑥𝑝(0.41) 

Therefore, in this fictive example, BSF incidence increases by 2.79 cases per 100.000 inhabitants (confidence 

interval 95% : 2.21 – 3.61) in response to an additional 10% increase in riparian forest cover. 
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5 Conclusion and perspectives 
In the context of constant landscape changes, zoonoses became an actual area of 

concern. Studying and monitoring the emergence of zoonotic diseases is crucial to adapt 

ourselves to face epidemics and prevent a maximum of casualties. Environmental 

epidemiology studies can provide a good assessment of environments that are the more at 

risk of a given zoonosis. This thesis is embedded in such a background as it aims at appraising 

how landscape changes of the last two decades in the Atlantic Forest have affected the 

Brazilian spotted fever incidence. To do so, the more specific objectives were collecting 

spotted fever data in each municipality of the biome, creating a temporal database of land 

use and land cover and the assessment of their changes, and finally, investigating the 

relationship between landscape changes and the BSF incidence. 

In conclusion, the main results point out that forest cover, especially riparian forest 

cover, are associated with spotted fever risks. However, that risk is increased when such 

riparian forests are immersed within pastoral and agricultural landscape matrices. Unlike 

landscape structure, landscape metrics were not as much useful to clarify the BSF incidence 

at the scale of the biome. The results are explained by the tick species ecology and their hosts, 

as they can colonize both densely vegetated and open environments. Therefore, knowing the 

structure and the configuration of landscapes with BSF risk, adequate prevention measures 

can be undertaken. Now, physicians should also take the recent activity history of patients (for 

instance, rural fields work, riparian leisure activities) with suspect symptoms of fever and 

potential recent tick bites into account. Education of the public about behavioural risks is also 

important. For example, informing people on the risk of unrestrained or ownerless dogs, or 

the close contact with capybaras and cattle. Moreover, sensibilization to the use of repellents 

when visiting such environments and the preventive antibiotics administration in case of BSF 

suspicion, would be the most effective measures to avoid lethality. 

The results also highlight the importance of pristine forests conservation, as they 

suggest that the majority of forest cover of the Atlantic Forest do not provide efficient 

mitigation services for the spotted fever incidence, probably because of their young age. 

Furthermore, the study supplies another argument that the current environmental law, 

promoting restoration of riparian environments, would be more cost-effective if it would 

focus on areas with higher potential of natural forest regeneration. 

Finally, the method of the present study has generated a vast temporal database on the 

Atlantic Forest biome containing landscape structure and configuration data that could be 

used in further studies, thereby sparing considerable time of data generation. It will be also 

interesting in further studies to break down the analysis and compare the trends observed in 

the different regions of the biome that include different tick species involved in the BSF cycle. 

For example, comparing the effects of landscape between the states of Santa Catarina mostly 

colonized by A. aureolatum and the others states colonized by A. cajannense (s.l.). Further 

studies are also needed to confirm a dilution effect of the rainforest biodiversity on spotted 

fever. This could be achieved by assessing the effect of biodiversity on the hosts eco-

epidemiology and the transmission risk. 
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7 Appendices 
 

 

Figure A1 : Atlantic Forest biome land use and land cover, Brazil, 2013. Forest (26%), native vegetation in 

intermediate or late successional stages, and non-forest vegetation (2%), shrubs and grassland, are both 

considered as the native vegetation cover (28% of the biome). Built areas (2%), water surfaces (2%), forestry 

(3%)(tree monocultures, mostly Eucalyptus spp. and Pinus spp.), anthropic areas (65%) which include non-built 

areas such as agriculture, pasture, mining and degraded areas (Rezende et al., 2018). 
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Table A1 : Classes of the MapBiomas LULC collection 7 with their respective ID and colour (MapBiomas Project, 

2022c). 
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Table A2 : Reclassification summary of the MapBiomas LULC classes from the collection 7, with their new ID and 
colour attributed. Savanna formation is an exception within the non-forest class. 

LULC classes reclassified New ID Colour 
number 

colour 

1. Native Forest 1 #129912  

1.1. Forest Formation  #129912  

1.2. Mangrove  #129912  

1.3. Wooded Sandbank Vegetation  #129912  

2. Native Non-Forest Natural Formation 10 #D1F6B2  

2.1. Wetland  #D1F6B2  

2.2. Grassland  #D1F6B2  

2.3. Salt Flat  #D1F6B2  

2.4. Rocky Outcrop  #D1F6B2  

2.5. Herbaceous Sandbank Vegetation  #D1F6B2  

2.5. Other non-Forest Formations  #D1F6B2  

2.6. Savanna Formation  #D1F6B2  

3. Pasture 15 #bdb76b  

4. Agriculture 18 #ffd966  

4.1 Temporary Crop  #ffd966  

4.2 Soybean  #ffd966  

4.3 Sugar cane  #ffd966  

4.4 Rice  #ffd966  

4.5 Cotton (beta)  #ffd966  

4.6 Other Temporary Crops  #ffd966  

4.7 Perennial Crop  #ffd966  

4.8 Coffee  #ffd966  

4.9 Citrus  #ffd966  

4.10 Other Perennial Crops  #ffd966  

5. Mosaic of Uses (agriculture and pasture) 21 #ffffb2  

6. Silviculture (Forest Plantation) 9 #6F7D3B  

7. Non vegetated area 22 #85596B  

7.1 Beach, Dune, and Sand Spot  #85596B  

7.2 Mining  #85596B  

7.3 Other non-vegetated Areas  #85596B  

8. Urban area 24 #af2a2a  

9. Water 26 #2B7AED  

9.1 River, Lake, and Ocean  #2B7AED  

9.2 Aquaculture  #2B7AED  

10. Non observed  27 #D5D5E5  
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Table A3 : Detailed description of the 7th collection of LULC from MapBiomas (MapBiomas Project, 2022c). 
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Figure A2 : A. Extended zone considered in the present study and comparison with the Atlantic Forest biome 
extent, municipalities were selected when intercepting the AF, or presenting BSF cases and intercepting a 100 
km buffer around the AF biome. B. Studied zone in perspective with the municipalities positive to BSF within the 
2001 – 2021 period (562/3121 municipalities). 
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Figure A3 : Scree plot of the principal component analysis (PCA) showing the percentage of explained variances 
by PCA axes (Dimensions). 

Table A4 : List of variables contained in the dataset and their abbreviations used in models formulation. 

Variable header Meaning Variable type/calculation 

CD_NUM Municipality code categorical nominal 

NM_MUN Municipality name categorical nominal 

SIGLA_UF Federal Unit acronym  categorical nominal 

AREA_KM2 Superficies of the municipality (km2) numerical continue 

NM_UF Federal Unit name categorical nominal 

NM_REGIAO Region of Brazil categorical nominal 

BSF 
Spotted fever cases incidence (per 
100.000 inhabitants) 

numerical continue : (number of 
cases/estimated number of 
inhabitants)*100.000 

Year Year categorical ordinal  

Matrix Dominant land use or land cover type categorical nominal 

CA Total area of Forest cover (ha) numerical continue  

PLAND Percentage of Forest cover (%) 
numerical continue : 
CA/AREA_KM2  

PD Patch density (patches/100 ha) 
numerical continue : number of 
patch/AREA_KM2 

TE Total Edge (m) numerical continue  

ED Edge Density (m/ha) numerical continue: ED/AREA_KM2 

PROX_MN Mean Proximity Index  numerical continue  

ENN_MN Mean Nearest Neighbour distance (m) numerical continue, with NA value 

ENN_SD Nearest Neighbour standard deviation (m) numerical continue, with NA value 

ENN_CV 
Nearest Neighbour Coefficient of Variation 
(%) 

numerical continue, with NA value : 
ENN_SD/ENN_MN 
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Riparian_Forest Percentage of riparian Forest (%) numerical continue  

Riparian_Non_Forest 
Percentage of riparian Non Forest 
vegetation (%) numerical continue  

Riparian_Pasture Percentage of riparian Pasture (%) numerical continue  

Riparian_Agriculture Percentage of riparian Agriculture (%) numerical continue  

Riparian_Mosaic Percentage of riparian Mosaic (%) numerical continue  

Main_str_Forest 

Percentage of riparian Forest considering 
only the main streams (river width > 10 m) 
and waterbodies (%) numerical continue  

Main_str_Non_Forest 

Percentage of riparian Non Forest 
vegetation considering only the main 
streams (river width > 10 m) and 
waterbodies (%) numerical continue  

Main_str_Pasture 

Percentage of riparian Pasture considering 
only the main streams (river width > 10 m) 
and waterbodies (%) numerical continue  

Main_str_Agriculture 

Percentage of riparian Agriculture 
considering only the main streams (river 
width > 10 m) and waterbodies (%) numerical continue  

Main_str_Mosaic 

Percentage of riparian Mosaic considering 
only the main streams (river width > 10 m) 
and waterbodies (%) numerical continue  

CA_Agriculture Total area of Agriculture (ha) numerical continue  

PLAND_Agriculture Percentage of Agriculture cover (%) 
numerical continue : 
CA_Agriculture/AREA_KM2 

CA_Pasture Total area of Pasture (ha) numerical continue  

PLAND_Pasture Percentage of Pasture cover (%) 
numerical continue : 
CA_Pasture/AREA_KM2 

CA_Mosaic_of_Uses Total area of Mosaic of Uses (ha) numerical continue  

PLAND_Mosaic_of_Uses Percentage of Mosaic of Uses cover (%) 
numerical continue : 
CA_Mosaic_of_Uses/AREA_KM2 

CA_Urban_area Total area of Urban area (ha) numerical continue  

PLAND_Urban_area Percentage of Urban area cover (%) 
numerical continue : 
CA_Urban_area/AREA_KM2 

trans_ha 
Transition areas from Pasture to 
Agriculture (ha) numerical continue  

trans_p 
Percentage of transitions from Pasture to 
Agriculture (%) 

numerical continue : 
trans_ha/AREA_KM2 

PLAND_Savanna Percentage of Savanna cover (%) 
numerical continue : 
CA_Savanna/AREA_KM2 

PLAND_Savanna_Forest 
Percentage of Savanna and Forest cover 
(%) 

numerical continue : ((CA_Savanna 
+ CA)/AREA_KM2)*100 

Primary_Forest 
Percentage of Primary Forest (% per 
municipality) numerical continue, with NA value 

Secondary_Forest 
Percentage of Secondary Forest (% per 
municipality) numerical continue, with NA value 

alt_1 
Percentage of pixels within the category 1 
of altitude classes (%) numerical continue  

alt_2 
Percentage of pixels within the category 2 
of altitude classes (%) numerical continue  

alt_3 
Percentage of pixels within the category 3 
of altitude classes (%) numerical continue  

alt_4 
Percentage of pixels within the category 4 
of altitude classes (%) numerical continue  
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alt_5 
Percentage of pixels within the category 5 
of altitude classes (%) numerical continue  

Main_alt 
Main altitude class present in the 
municipality categorical nominal 

steep_slope Percentage of steep slope (%) numerical continue  

temp Mean annual temperature (°C) numerical continue  

cold_temp 
Mean temperature of the coldest month 
of the year (°C) numerical continue  

hot_temp 
Mean temperature of the hottest month 
of the year (°C) numerical continue  

prec 
Mean annual total monthly precipitation 
(mm) numerical continue 

Population Estimated population per municipality numerical discrete 

BSF_cases 
number of confirmed cases of spotted 
fever  numerical discrete 

 

 

Table A5 : Description of the fitted models by hypothesis/Use. For each models, the response variable was the 
BSF cases, Population (estimation of inhabitants per municipality) was set as an offset variable with a log function, 
Municipality (CD_NUM) and Year were set as random intercept variables. Each model of the 5 tested hypotheses 
were fitted with and without the temperature (temp). See Table A4 for the abbreviations. 

Model name Predictor variables 

Full model with the PCA axes 

mod_full Dim.1  + Dim.3 + Dim.4 + Dim.5 + Dim.6 + Dim.7 + Matrix + Main_alt 

Null model 

mod_null (Intercept only model) 

Climatic models 

modclima_1 temp 

modclima_2 prec 

modclima_3 temp + prec 

modclima_4 cold_temp 

modclima_5 hot_temp 

modclima_6 cold_temp + prec 

modclima_7 hot_temp + prec 

Hypothesis 1 : Forest cover and secondary forest 

H1mod_1 (H1mod_16) CA (+ temp) 

H1mod_2 (H1mod_17) PLAND (+ temp) 

H1mod_3 (H1mod_18) Matrix (+ temp) 

H1mod_4 (H1mod_19) PLAND_Savanna (+ temp) 

H1mod_5 (H1mod_20) PLAND_Savanna_Forest (+ temp) 

H1mod_6 (H1mod_21) Primary_Forest (+ temp) 

H1mod_7 (H1mod_22) Secondary_Forest (+ temp) 

H1mod_8 (H1mod_23) CA + PLAND (+ temp) 

H1mod_9 (H1mod_24) PLAND + PLAND_Savanna (+ temp) 

H1mod_10 (H1mod_25) Primary_Forest + Secondary_Forest (+ temp) 

H1mod_11 (H1mod_26) PLAND_Savanna_Forest + Secondary_Forest 

H1mod_12 (H1mod_27) CA + PLAND_Savanna + PLAND_Savanna_Forest (+ temp) 

H1mod_13 (H1mod_28) CA + PLAND_Savanna + PLAND_Savanna_Forest + Secondary_Forest (+ 
temp) 

H1mod_14 (H1mod_29) PLAND + PLAND_Savanna + Secondary_Forest (+ temp) 

H1mod_15 (H1mod_30) Primary_Forest + Secondary_Forest + PLAND_Savanna (+ temp) 

Hypothesis 2 : Land configuration  
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H2mod_1 (H2mod_45) CA (+ temp) 

H2mod_2 (H2mod_46) PLAND (+ temp) 

H2mod_3 (H2mod_47) PD (+ temp) 

H2mod_4 (H2mod_48) TE (+ temp) 

H2mod_5 (H2mod_49) ED (+ temp) 

H2mod_6 (H2mod_50) PROX_MN (+ temp) 

H2mod_7 (H2mod_51) ENN_MN (+ temp) 

H2mod_8 (H2mod_52) ENN_SD (+ temp) 

H2mod_9 (H2mod_53) ENN_CV (+ temp) 

H2mod_10 (H2mod_54) CA_Agriculture (+ temp) 

H2mod_11 (H2mod_55) PLAND_Agriculture (+ temp) 

H2mod_12 (H2mod_56) CA_Pasture (+ temp) 

H2mod_13 (H2mod_57) PLAND_Pasture (+ temp) 

H2mod_14 (H2mod_58) CA_Mosaic_of_Uses (+ temp) 

H2mod_15 (H2mod_59) PLAND_Mosaic_of_Uses (+ temp) 

H2mod_16 (H2mod_60) CA_Urban_area (+ temp) 

H2mod_17 (H2mod_61) PLAND_Urban_area (+ temp) 

H2mod_18 (H2mod_62) Matrix (+ temp) 

H2mod_19 (H2mod_63) CA + PD + ED  + Matrix (+ temp) 

H2mod_20 (H2mod_64) CA + PD + ED  + CA_Agriculture + CA_Pasture + CA_Mosaic_of_Uses + 
CA_Urban_area (+ temp) 

H2mod_21 (H2mod_65) CA + PD + ED  + Matrix + CA_Agriculture + CA_Pasture + 
CA_Mosaic_of_Uses + CA_Urban_area (+ temp) 

H2mod_22 (H2mod_66) CA + PD + ED  + Matrix + CA_Agriculture + CA_Pasture + 
CA_Mosaic_of_Uses (+ temp) 

H2mod_23 (H2mod_67) CA + PD + ED  + CA_Agriculture + CA_Pasture + CA_Mosaic_of_Uses (+ 
temp) 

H2mod_24 (H2mod_68) CA + PD + ED  + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_25 (H2mod_69) PLAND + PD + TE  + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_26 (H2mod_70) PLAND + PD  + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_27 (H2mod_71) CA + PD + ED  + Matrix + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + PLAND_Urban_area (+ temp) 

H2mod_28 (H2mod_72) CA + PD + ED  + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + PLAND_Urban_area (+ temp) 

H2mod_30 (H2mod_74) Matrix + PD + ENN_MN (+ temp) 

H2mod_31 (H2mod_75) Matrix + PD + ENN_SD (+ temp) 

H2mod_32 (H2mod_76) Matrix + PD + ENN_CV (+ temp) 

H2mod_33 (H2mod_77) Matrix  + ENN_MN (+ temp) 

H2mod_34 (H2mod_78) Matrix  + ENN_SD (+ temp) 

H2mod_35 (H2mod_79) Matrix  + ENN_CV (+ temp) 

H2mod_36 (H2mod_80) Matrix + PROX_MN + ENN_CV (+ temp) 

H2mod_38 (H2mod_82) Matrix + PD + ENN_MN (+ temp) 

H2mod_39 (H2mod_83) Matrix + PD + ENN_SD (+ temp) 

H2mod_40 (H2mod_84) Matrix + PD + ENN_CV (+ temp) 

H2mod_41 (H2mod_85) Matrix  + ENN_MN + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_42 (H2mod_86) Matrix  + ENN_SD + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_43 (H2mod_87) Matrix  + ENN_CV + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_44 (H2mod_88) Matrix + PROX_MN + ENN_CV + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 
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H2mod_45 (H2mod_89) ENN_MN + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_46 (H2mod_90) ENN_SD + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H2mod_91  ENN_CV + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + temp 

H2mod_92  PROX_MN + ENN_CV + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + temp 

H2mod_93  PD + ED  + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + temp 

H2mod_94 CA + PD + ED  + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + temp 

H2mod_97 ENN_MN + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses 

H2mod_98  ENN_SD + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses 

H2mod_99 ENN_CV + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses 

H2mod_100 PROX_MN + ENN_CV + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses 

Hypothesis 3 : Riparian forests 

H3mod_1 (H3mod_42) CA (+ temp) 

H3mod_2 (H3mod_43) PLAND (+ temp) 

H3mod_3 (H3mod_44) TE (+ temp) 

H3mod_4 (H3mod_45) ED (+ temp) 

H3mod_5 (H3mod_46) Riparian_Forest (+ temp) 

H3mod_6 (H3mod_47) Riparian_Non_Forest (+ temp) 

H3mod_7 (H3mod_48) Riparian_Agriculture (+ temp) 

H3mod_8 (H3mod_49) Riparian_Pasture (+ temp) 

H3mod_9 (H3mod_50) Riparian_Mosaic (+ temp) 

H3mod_10 (H3mod_51) Main_str_Forest (+ temp) 

H3mod_11 (H3mod_52) Main_str_Non_Forest (+ temp) 

H3mod_12 (H3mod_53) Main_str_Agriculture (+ temp) 

H3mod_13 (H3mod_54) Main_str_Pasture (+ temp) 

H3mod_14 (H3mod_55) Main_str_Mosaic (+ temp) 

H3mod_15 (H3mod_56) Matrix (+ temp) 

H3mod_16 (H3mod_57) PLAND_Agriculture (+ temp) 

H3mod_17 (H3mod_58) PLAND_Pasture (+ temp) 

H3mod_18 (H3mod_59) PLAND_Mosaic_of_Uses (+ temp) 

H3mod_19 (H3mod_60) CA + ED + PLAND_Agriculture (+ temp) 

H3mod_20 (H3mod_61) PLAND + TE + PLAND_Agriculture (+ temp) 

H3mod_21 (H3mod_62) CA + ED + PLAND_Agriculture + PLAND_Pasture (+ temp) 

H3mod_22 (H3mod_63) CA + ED + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H3mod_23 (H3mod_64) CA + ED + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + Matrix (+ temp) 

H3mod_24 (H3mod_65) Riparian_Agriculture + PLAND + TE (+ temp) 

H3mod_25 (H3mod_66) Riparian_Forest + TE + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H3mod_26 (H3mod_67) Riparian_Forest + TE + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses + Matrix (+ temp) 

H3mod_27 (H3mod_68) Riparian_Forest + TE + Matrix (+ temp) 

H3mod_28 (H3mod_69) Riparian_Pasture + PLAND + TE (+ temp) 

H3mod_29 (H3mod_70) Riparian_Mosaic + PLAND + TE (+ temp) 

H3mod_30 (H3mod_71) Riparian_Non_Forest + PLAND + TE (+ temp) 
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H3mod_31 (H3mod_72) Main_str_Forest + TE + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H3mod_32 (H3mod_73) Main_str_Non_Forest + TE + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H3mod_33 (H3mod_74) Main_str_Agriculture + TE + PLAND_Pasture + PLAND + 
PLAND_Mosaic_of_Uses (+ temp) 

H3mod_34 (H3mod_75) Main_str_Pasture + TE + PLAND_Agriculture + PLAND + 
PLAND_Mosaic_of_Uses (+ temp) 

H3mod_35 (H3mod_76) Main_str_Mosaic + TE + PLAND_Agriculture + PLAND + PLAND_Pasture 
(+ temp) 

H3mod_36 (H3mod_77) Main_str_Forest + TE + PLAND_Agriculture (+ temp) 

H3mod_37 (H3mod_78) Main_str_Forest + ED + PLAND_Agriculture (+ temp) 

H3mod_38 (H3mod_79) Main_str_Forest + ED + Matrix (+ temp) 

H3mod_39 (H3mod_80) Riparian_Forest + TE + PLAND_Agriculture (+ temp) 

H3mod_40 (H3mod_81) Riparian_Forest + ED + PLAND_Agriculture (+ temp) 

H3mod_41 (H3mod_82) Riparian_Forest + ED + Matrix (+ temp) 

H3mod_83 PLAND + ED + Matrix + temp 

Hypothesis 4 : Land conversion 

H4mod_1 (H4mod_18) trans_ha (+ temp) 

H4mod_2 (H4mod_19) trans_p (+ temp) 

H4mod_3 (H4mod_20) PLAND_Agriculture (+ temp) 

H4mod_4 (H4mod_21) PLAND_Pasture (+ temp) 

H4mod_5 (H4mod_22) PLAND_Mosaic_of_Uses (+ temp) 

H4mod_6 (H4mod_23) trans_p + PLAND_Agriculture (+ temp) 

H4mod_7 (H4mod_24) trans_p + PLAND_Pasture (+ temp) 

H4mod_8 (H4mod_25) trans_p + PLAND_Mosaic_of_Uses (+ temp) 

H4mod_9 (H4mod_26) trans_p + PLAND_Agriculture + PLAND_Pasture (+ temp) 

H4mod_10 (H4mod_27) trans_p + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H4mod_11 (H4mod_28) trans_p + PLAND_Agriculture + PLAND_Mosaic_of_Uses (+ temp) 

H4mod_12 (H4mod_29) trans_ha + PLAND_Agriculture (+ temp) 

H4mod_13 (H4mod_30) trans_ha + PLAND_Pasture (+ temp) 

H4mod_14 (H4mod_31) trans_ha + PLAND_Mosaic_of_Uses (+ temp) 

H4mod_15 (H4mod_32) trans_ha + PLAND_Agriculture + PLAND_Pasture (+ temp) 

H4mod_16 (H4mod_33) trans_ha + PLAND_Agriculture + PLAND_Pasture + 
PLAND_Mosaic_of_Uses (+ temp) 

H4mod_17 (H4mod_34) trans_ha + PLAND_Agriculture + PLAND_Mosaic_of_Uses (+ temp) 

Hypothesis 5 : Topography 

H5mod_1 (H5mod_26) alt_1 (+ temp) 

H5mod_2 (H5mod_27) alt_2 (+ temp) 

H5mod_3 (H5mod_28) alt_3 (+ temp) 

H5mod_4 (H5mod_29) alt_4 (+ temp) 

H5mod_5 (H5mod_30) alt_5 (+ temp) 

H5mod_6 (H5mod_31) Main_alt (+ temp) 

H5mod_7 (H5mod_32) steep_slope (+ temp) 

H5mod_8 (H5mod_33) alt_1 + alt_2 + alt_3 + alt_4 + alt_5 + steep_slope + Main_alt (+ temp) 

H5mod_9 (H5mod_34) alt_1 + alt_2 + alt_3 + alt_4 + alt_5 + steep_slope (+ temp) 

H5mod_10 (H5mod_35) alt_1 + alt_2 + alt_3 + alt_4 + alt_5 (+ temp) 

H5mod_11 (H5mod_36) steep_slope + Main_alt (+ temp) 

H5mod_12 (H5mod_37) alt_1 + alt_2 + alt_3 (+ temp) 

H5mod_13 (H5mod_38) alt_2 + alt_3 (+ temp) 

H5mod_14 (H5mod_39) alt_1 + alt_2 + alt_3 + steep_slope (+ temp) 

H5mod_15 (H5mod_40) alt_2 + alt_3 + steep_slope + Main_alt (+ temp) 

H5mod_16 (H5mod_41) alt_2 + alt_3 + Main_alt (+ temp) 

H5mod_17 (H5mod_42) alt_4 + alt_5 + steep_slope (+ temp) 
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H5mod_18 (H5mod_43) alt_4 + alt_5 + steep_slope + Main_alt (+ temp) 

H5mod_19 (H5mod_44) alt_4 + alt_5 + Main_alt (+ temp) 

H5mod_20 (H5mod_45) alt_3 + Main_alt (+ temp) 

H5mod_21 (H5mod_46) alt_3 + steep_slope (+ temp) 

H5mod_22 (H5mod_47) alt_3 + steep_slope + Main_alt (+ temp) 

H5mod_23 (H5mod_48) alt_2 + Main_alt (+ temp) 

H5mod_24 (H5mod_49) alt_2 + steep_slope (+ temp) 

H5mod_25 (H5mod_50) alt_2 + steep_slope + Main_alt (+ temp) 

Spatial models 

H3mod_82_spa (no convergence) Riparian_Forest + ED + Matrix + temp + mat(pos + 0 | group)  

H3mod_82_spa_2 Riparian_Forest + ED + Matrix + temp + exp(pos + 0 | group) 

H3mod_82_spa_3 Riparian_Forest + ED + Matrix + temp + ar1(pos + 0 | group) 

H3mod_82_spa_4 Riparian_Forest + ED + Matrix + temp + X + Y 

H3mod_82_spa_5 Riparian_Forest + ED + Matrix + temp + acd 

H3mod_82_spa_6 Riparian_Forest + ED + Matrix + temp + acd2 

H3mod_82_spa_7 Riparian_Forest + ED + Matrix + temp + acd3 

Note: The 3 first models use different covariate terms from the glmmTMB package (Brooks et al., 2023; 
Kristensen and McGillycuddy, 2023), X and Y are the UTM latitude and longitude (scaled), acd are distance-
weighted autocovariate structure using different weighting schemes: one (acd), inverse (acd2), 
inverse.squared (acd3) (Bivand, 2022). 

 

 

Table A6 : Presence frequencies and weights of variables in the dredged models set from the PCA axes models. 
Weights represent the relative importance of variables, it is calculated as the sum of the models AICc weights 
that contain the variable, the interpretation is the probability of the variable to be in the best model if the data 
were resampled. 

Variables Frequency Weight 

Intercept 1.0 1.000 

offset(log(Population)) 1.0 1.000 

Random intercept variables 1.0 1.000 

Dim.1 0.5 1.000 

Main alt 0.5 0.984 

Dim.7 0.5 0.976 

Dim.5 0.5 0.969 

Dim.3 0.5 0.906 

Matrix 0.5 0.891 

Dim.6 0.5 0.732 

Dim.4 0.5 0.637 

Dim.2 0.5 0.354 
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Table A7 : AICc models selections by Hypothesis/Use. The table shows only the best models of each model 
selections (ΔAICc < 2). See Table A4 for the abbreviations. Df: degree of freedom, LogLik: log likelihood. 

Model name Predictors variables AICc ΔAICc 
AICc 

weight 
Df LogLik Deviance 

Dredged models of the PCA axes full model 

510 
Dim.1 + Dim.3 + Dim.4 + Dim.5 
+ Dim.6 + Dim.7 + Main_alt + 
Matrix 

11870.68 0.000 0.290 21 -5914.3 3602.7 

512 
Dim.1 + Dim.2 + Dim.3 + Dim.4 
+ Dim.5 + Dim.6 + Dim.7 + 
Main_alt + Matrix 

11872.15 1.477 0.138 22 -5914.0 3602.4 

502 
Dim.1 + Dim.3 + Dim.5 + Dim.6 
+ Dim.7 + Main_alt + Matrix 

11872.41 1.733 0.122 20 -5916.1 3599.5 

Climatic models 

modclima_1 temp 11943.46 0.000 0.403 5 -5966.7 11933.5 

modclima_4 cold_temp 11944.53 1.077 0.235 5 -5967.3 11934.5 

modclima_3 Temp + prec 11944.62 1.168 0.225 6 -5966.3 11932.6 

Hypothesis 1 : Forest cover and secondary forest 

H1mod_21 Primary_Forest + temp 11919.29 0.000 0.272 6 -5953.6 11907.3 

H1mod_17 PLAND + temp 11919.83 0.541 0.207 6 -5953.9 11907.8 

H1mod_25 
Primary_Forest +  
Secondary_Forest + temp 

11920.74 1.445 0.132 7 -5953.4 11906.7 

H1mod_23 CA + PLAND + temp 11921.23 1.938 0.103 7 -5953.6 11907.2 

Hypothesis 2 : Land configuration 

H2mod_69 

PLAND + PD + TE + 
PLAND_Agriculture + 
PLAND_Pasture + 
PLAND_Mosaic_of_Uses + temp 

11901.63 0.000 0.983 11 -5939.8 11879.6 

Hypothesis 3 : Riparian forests 

H3mod_82 
Riparian_Forest + ED + Matrix + 
temp 

11886.0 0.0 0.978 14 -5929.0 11858.0 

Hypothesis 4 : Land conversion 

H4mod_27 
trans_p + PLAND_Agriculture + 
PLAND_Pasture +  
PLAND_Mosaic_of_Uses + temp 

11933.17 0.000 0.162 9 -5957.6 11915.2 

H4mod_33 
trans_ha + PLAND_Agriculture + 
PLAND_Pasture +  
PLAND_Mosaic_of_Uses + temp 

11933.21 0.038 0.159 9 -5957.6 11915.2 

H4mod_26 
trans_p + PLAND_Agriculture + 
PLAND_Pasture + temp 

11933.71 0.536 0.124 8 -5958.9 11917.7 

H4mod_32 
trans_ha + PLAND_Agriculture + 
PLAND_Pasture + temp 

11933.72 0.542 0.124 8 -5958.9 11917.7 

H4mod_28 
trans_p + PLAND_Agriculture + 
PLAND_Mosaic_of_Uses + temp 

11933.77 0.594 0.121 8 -5958.9 11917.8 

H4mod_34 
trans_ha + PLAND_Agriculture + 
PLAND_Mosaic_of_Uses + temp 

11933.94 0.764 0.111 8 -5959.0 11917.9 

H4mod_20 PLAND_Agriculture + temp 11933.96 0.785 0.110 6 -5961.0 11922.0 

Hypothesis 5 : Topography 

H5mod_46 alt_3 + steep_slope + temp  11848.5 0.0 0.7 7 -5917.3 11834.5 

H5mod_39 
 

alt_1 + alt_2 + alt_3 +  
steep_slope + temp 

11850.2 1.7 0.3 9 -5916.1 11832.2 

Spatial models 
H3mod_82_
spa_2 

Riparian_Forest + ED + Matrix + 
temp + exp(pos + 0 | group) 

11138.11 0.0 1 16 -5553.0 11106.1 



Spotted fever risk on the Brazilian Atlantic Forest   66 
 

 

Table A8 : Moran’s I test for spatial autocorrelation. Moran’s I statistics are provided and their respective p-
value by year, based on distances between the centroids of municipalities, and based on a contiguity matrix 
using the Queen neighbourhood relation. 

 Distance based Queen contiguity matrix 

Year Moran I statistic p-value Moran I statistic p-value 

2001 0.00015924 0.4886 0.032662305 0.0001665*** 

2002 0.00408747 8.223e-09*** 0.0485083604 7.475e-07*** 

2003 0.00890779 2.2e-16*** 0.1772017569 2.2e-16*** 

2004 0.00669378 2.2e-16*** 0.01920351 0.02452* 

2005 0.00018649 0.4813 -0.01895160 0.9745 

2006 0.00078274 0.1284 0.04281812  3.612e-06*** 

2007 0.00667601 2.2e-16*** 0.0835435287 1.867e-15*** 

2008 0.00250973 0.0004605*** 0.0197807868  0.03023* 

2009 0.00098170 0.09843 -0.0088464078 0.7928 

2010 0.00219064 0.001485** 0.0610183148 2.346e-09*** 

2011 -0.00299631 0.000447** -0.0199545104 0.9741 

2012 0.00303726 2.528e-05*** 0.0358413825  0.0003104*** 

2013 -0.00260637 0.004057** -0.0334044709  0.9991 

2014 0.00478377 2.624e-10*** 0.1034723632   2.2e-16*** 

2015 0.00748062 2.2e-16*** 0.0988669984 2.2e-16*** 

2016 0.00038556 0.375 0.0536910853 1.584e-07*** 

2017 0.00358004 1.122e-06*** 0.0355094889 0.0003719*** 

2018 0.00081090 0.1598 -0.0085213562 0.7789 

2019 0.01691277 2.2e-16*** 0.1813108077 2.2e-16*** 

 

 

Figure A4: Frequency of observations by PLAND value (percentage of forest cover in a municipality). First, second 
and third quantile values are shown. The red histogram part are the potential outliers. 
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Figure A5 : A. Average for the 2001-2021 period of the mean annual temperature by municipality in the Atlantic 
Forest. B. BSF cumulative cases incidence per 100.000 inhabitants by municipality of Brazil for the 2001-2021 
period. Only municipalities with confirmed BSF cases are reported. 
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Figure A6 : Santo André, São Paulo. Regular exchange student enjoying riparian environments associated with 
high spotted fever risk for leisure instead of writing his master thesis. You have been appendices easter egged. 

 

 

 

 

 

 

 

 

 

 

 

 


