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Abstract

Cost-effective lightweight design emerges as a pivotal focus for the automotive indus-
try’s future. Global competitiveness, stringent regulatory standards, and the integra-
tion of weight-intensive electronic elements in modern propulsion systems require the
development of lighter, more efficient chassis components.

With this perspective, topology optimization is extensively applied for the design of
lightweight components. The casting process stands as a time and cost-efficient method
for automotive mass production, widely adapted within the industry. Typically, weight
optimization process does not consider castability, leading to later-stage modifications
. These modifications incur additional time spent for manufacturability and often re-
sult in a heavier design than the initially optimized one. This thesis introduces an
optimization process that optimizes weight and castability concurrently during the
early design phase, offering a solution to this challenge.

The study focuses on incorporating casting simulations into previously developed
topology optimization framework, which involves accommodating geometric casting
constraints, including directional molding, split-drawing, minimum member size, and
draft angle considerations. A previously established Python code, designed for topol-
ogy optimization incorporating casting constraints, offers flexibility and scalability.
This code utilizes the open-source FEniCS Project as its finite element software, en-
abling the utilization of PETSc as a backend for linear algebra operations to enhance
efficiency. A casting simulation is performed using OpenFOAM, focusing on flows in-
volving heat transfer. A dedicated solver, employing the continuous adjoint approach,
is implemented within OpenFOAM to calculate sensitivities. These outcomes are then
merged with the topology optimization optimizer in FEniCS, leading to the establish-
ment of an integrated optimization approach.

The established solver undergoes validation by comparing the sensitivities computed
with the finite difference method. Subsequently, the integrated approach’s validation
is carried out through a 2-dimensional cantilever beam problem.

Keywords : topology optimization, manufacturing, casting, constraints, flows with
heat transfer, OpenFOAM
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1 Introduction

Today’s automotive industry is continuously evolving with a focus on enhancing ef-
ficiency, performance, and sustainability. One of the key frontiers driving innovation
in this sector is the pursuit of lightweight design and product development. The need
for lightweight solutions in automotive design is propelled by various factors from
stringent regulatory requirements aimed at reducing emissions to the growing demand
for energy-efficient vehicles. Lighter vehicles not only improve fuel efficiency but also
contribute to enhanced flexibility, better handling, and overall enhanced performance.
Over the years, there have been relentless innovation and transformative strategies
driving the evolution of vehicles towards a lighter, more efficient future.

1.1 Background

Casting is a widely used manufacturing process in automotive industries to produce
various parts and components which involves pouring molten material, usually metals
or alloys like aluminum, iron, steel, or magnesium, into a mold cavity and allowing
it to solidify into the desired shape. In order to maximize the advantages of topology
optimization, it is crucial to comply the manufacturing requirements.

Figure 1.1 illustrates the current design process for cast components. Currently, op-
timization focuses separately on weight and the casting process without considering
castability in the early design stages. This approach often leads to additional mass
being added to the component, primarily benefiting the casting process but resulting
in a heavier design overall.

Figure 1.1: Current Design Process of Cast Components

In order to develop sustainable transport solutions, there is a need to enhance vehicle
efficiency through weight reduction. However, there are numerous heavy casted com-
ponents in vehicles, offering substantial opportunities for weight reduction through
advanced computational-based design optimization. Nevertheless, optimizing design
aspects separately for weight and the casting process will not sufficiently meet the
weight reduction objectives. There is a necessity to simultaneously optimize the de-
sign for both weight and the casting process to effectively achieve the desired weight
reduction targets.
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Topology optimization is one of the key approaches for lightweight product develop-
ment within the automotive industry. It plays a pivotal role in redefining how engineers
approach the design process to achieve optimal weight reduction without compromis-
ing structural integrity or performance. Topology optimization utilizes advanced algo-
rithms and computational tools to iteratively analyze and redistribute material within
a given design space by systematically removing unnecessary material or strategically
placing it where it is most needed. Although it achieves an optimal result with fulfilled
constraints, it often results complex shapes that can be challenging to manufacture
with traditional methods. Therefore, it is crucial to consider manufacturing constraints
and manufacturability in the design process.

When focusing on cast parts, the initial constraints derived from optimization out-
comes typically revolve around adhering to geometric guidelines. These guidelines in-
volve preventing undercuts and hollow structures (18),(19), performing connectivity
checks, ensuring minimal member sizes (20),(21), and controlling hole sizes (22). Nowa-
days, several of these limitations are integrated into topology optimization software,
allowing for a fundamental usage of the optimization outcomes. However, a significant
level of abstraction exists, demanding manual adjustments to the geometry to achieve
a design suitable for casting. To fully leverage the potential of topology optimization
and to capitalize on the expanded capabilities of simulation tools, emphasis is placed
on employing casting simulations to optimize part designs. Initial approaches primarily
focus on individual aspects, such as the filling or solidification behavior, without taking
into account the mechanical properties simultaneously (23),(24). Subsequent method-
ologies involve multidisciplinary optimizations, integrating mechanical Finite Element
Method (FEM) calculations with casting simulations through various interconnected
methods. Compared to the filling behavior, there has been more approaches focusing
on the solidification of the part. For instance, weighting factors are incorporated into
the SIMP (Solid Isotropic Material with Penalization) method to optimize the cooling
process and mitigate internal stresses in forming tools (27). Shape optimizations are
executed to enhance both mechanical properties and solidification, utilizing thermal
sensitivities (28). Additionally, the Level Set Method is applied to optimize cooling
behavior (25),(26).

1.2 Objective

The objective of this thesis is to integrate casting simulations into the process of
topology optimization while considering manufacturing constraints for the design of
reliable cast components. By merging these methodologies, the aim is to apply their
collective advantages. This integration intends to optimize part designs not only for
mechanical performance but also for manufacturability, specifically focusing on cast
parts within the automotive industry. The goal is to leverage advanced computational
tools and algorithms to achieve optimal weight reduction and structural integrity while
ensuring that the resultant designs are feasible for casting processes. Through this in-
tegration, the thesis aims to explore the potential of topology optimization enhanced
by casting simulations to produce components that meet both performance criteria
and manufacturing requirements, thereby advancing lightweight product development
in automotive engineering.
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The optimization process flow chart is shown in Figure 1.2. The topology optimiza-
tion is integrated with geometric casting constraints and casting process simulation.
The aim of an integrated optimization approach is to produce a conceptual design
for a lightweight castable component. By effectively implementing this optimization-
driven design process, there is a potential reduction in the time required for designing
lightweight cast components. Simultaneously, it ensures adherence to strict structural
standards and high-quality casting process requirements.

Figure 1.2: Overview of Optimization Driven Design Process
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1.3 Methodologies

In the pursuit of ready-to-manufacture, lightweight components for mass production,
a flexible and large-scale Python code had been developed for topology optimization
with integrated casting constraints, the blue boxes in the flow chart, as in Figure 1.2.
The method uses the open-source FEniCS Project as finite element software, allowing
the usage of PETSc as linear algebra back-end for better efficiency and the geometric
constraints for casting had been implemented in Python using the filter-based method
proposed by M. Langelaar (35).

In order to perform casting related simulations with the purpose of enhancing manufac-
turability and design efficiency, the work is done in an open-source software package,
OpenFOAM which allows for efficiently handling large-scale simulations and paral-
lel processing capabilities. The computed sensitivities from OpenFOAM simulations
will be integrated to Python code in order to further performing optimization with
implemented geometric constraints.

1.4 Outline

The thesis report is organized into seven chapters. The first chapter introduces the the-
sis work, providing a comprehensive background to the research. The second chapter
presents the theoretical aspects of topology optimization framework. In third chapter,
it presents the casting process, its geometric constraints, and its integration with topol-
ogy optimization methodologies, including casting simulation approaches. In fourth
chapter, the mathematical formulation of thermal-fluid systems like casting is pre-
sented, detailing the equations and principles. Moving forward, the implementation of
solvers within the OpenFOAM simulation software is discussed, demonstrating practi-
cal applications in fifth chapter. Subsequently, the sixth chapter focuses on validating
the methods employed, outlining validation procedures and results analyses. Finally,
the thesis is concluded by drawing conclusions from the findings and offering perspec-
tives for future research work.

1.5 Limitations

Due to the complexed nature of the entire casting process, from filling to solidifica-
tion, the simulation covers only a partial system, specifically, the focus is solely on
heat transfer within the mold, restricted to a single material. Other components such
as chillers, feeders, in-gates, and various mold elements are not incorporated due to
project time constraints. Additionally, the method’s validation is tested on a simple
2-dimensional cantilever beam problem.
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2 Topology Optimization Framework

2.1 Topology optimization

Topology optimization is a structural optimization technique which is widely used in
industry to design light weight components. A structural optimization problem is com-
posed of an objective function (f), design variables, state variables and the optimization
algorithm maximizes or minimizes the objective function to achieve an optimal solu-
tion. Some of the algorithms commonly applied include Sequential Linear or Quadratic
Programming (2), Optimality Criteria (1) and Method of Moving Asymptotes (33).
The topology optimization method employs some basis concepts such as a fixed design
domain and relaxation of the optimization problem (1). In the literature, various com-
putational models have been proposed (1), however, the so-called SIMP model (Solid
Isotropic Material with Penalization) (4) is applied in the current scope.

2.1.1 Problem formulation and FE discretization

The purpose of topology optimization is to find the optimal design of a structure
within a specified domain with the known quantities in the problem such as, the ap-
plied loads, the support conditions, the structure’s volume and some additional design
restrictions. Typically, the design space is divided into discrete sections using the finite
element method, creating a mesh composed of finite elements.

In the context of this study, the density-based topology optimization relies on the
finite element method as a fundamental tool, requiring a suitable mesh. To facilitate
the iterative design modifications aligned with the objective, the finite element mesh
typically remains unchanged, enabling faster optimization by eliminating the need for
repeated remeshing and re-parameterization of the evolving geometry.

The problem formulation is constructed from the density approach of topology op-
timization, distributing material in every element of a regular finite element mesh
through the use of design variables x representing relative densities. The continu-
ous variation of the design variables xe ∈ [0, 1] within the discrete design domain is
coupled with SIMP interpolation scheme in order to effectively penalize intermediate
densities, allowing the optimizer greater flexibility to enact gradual adjustments to
design variables. This approach enhances convergence properties and aligns well with
gradient-based optimization methods.

In this work, the topology optimization algorithm aims to minimize structural compli-
ance while adhering to a constraint on the maximum material usage. In mathematical
terms, the problem formulation is as:

min
x

c(x)

s.t. : vTx ≤ V ∗

0 ≤ xe ≤ 1

(2.1)

where the function c(x) represents the compliance calculated in each iteration of the
numerical topology optimization problem, derived from the density field of the previ-
ous iteration. V ∗ denotes the maximum allowable material volume, while v represents

5



the array of element volumes, determined by their respective density values.

In mathematical terms, the optimal subset of material distribution within the de-
sign domain (Ωoptimal ⊂ Ω), where Ω is the design domain. The optimization design
variable, the density vector x contains densities for all elements xe. The localized ele-
mental stiffness matrix E is a function of density vector x as per Equation 2.1, where
xe is 0 or 1 depending on the optimal material distribution of the element;

E(x) = xE0 (2.2)

xe =

{
1 if e ∈ Ωmat

0 if e ∈ Ω \ Ωmat
(2.3)

with a volume constraint ∫
Ω

xdΩ = V ol(Ωmat) ≤ V (2.4)

where V is the design domain volume. The elemental density values can either be 0 or
1 where 1 signifies the solid element and 0 is void. With values 0 or 1, the elemental
density value is discrete function which makes the optimization problem unsolvable
with gradient based optimization algorithm.

Although it should ideally create binary results with either xe=0 or xe=1, instabili-
ties may be induced in the optimization problem due to large design jumps. Therefore,
the binary problem mentioned above is converted into continuous problem by applying
power law and the discrete density variable is converted into continuous variable, which
is known as SIMP (Solid Isotropic Material with Penalization) method and elemental
material property function is written as:

E = xpE0 (2.5)

where p is penalizing factor which penalizes the elements with intermediate densities
to convert them into 0 or 1, xmin is the lower limit of density value in order to avoid
singularities. The method was developed by Bendsϕe in 1989 (4) and it has been
accepted as a topology optimization technique of many advantages. As shown in Figure
2.1, the higher the exponent p, the lower the mechanical properties of intermediate
densities, and thus the optimization algorithm has an incentive to use more and more
full void or fully solid elements, leading to sharper results. With p = 1, there is no
penalization and the element stiffness is proportional to the relative density. It shall
be noted that when using high penalization factor (generally p > 5), the optimization
problem becomes difficult to solve due to the sharp variation of material properties
close to xe=1.
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Figure 2.1: SIMP Interpolation Law

2.2 Numerical instability in topology optimization

Numerical instability, like checkerboard patterns, mesh dependency, and porous mate-
rial inclusion, frequently arise in topology optimization outcomes, affecting both SIMP
and homogenization methods. These issues often yield impractical results as structures
with such flaws are challenging to fabricate.

2.2.1 Porous material

Porous material refers to numerous elements with intermediate density, such outputs
featuring porous elements lack manufacturability and hold little engineering signifi-
cance.

Figure 2.2: Porous Pattern on Cantilever Beam Optimization Problem with p=1

2.2.2 Checkerboard patterns

Checkerboard pattern, shown in Figure 2.3, indicates that the elemental densities of
either 0 or 1 periodically exist in the results. This type of pattern is unrealistic and
difficult to manufacture. As its name indicates, the checkerboard pattern is related to
the inconsistency between displacement and density fields which generates alternating
density values.
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Figure 2.3: Checkerboard Effect on Cantilever Beam Optimization Problem

2.2.3 Mesh dependency

Mesh dependency means that the optimization results are correlated to the mesh
density. A different finite mesh density may lead to different topology distribution.
It can be observed in Figure 2.4, the finer the mesh, the greater the number of small
structures included in the results. For the validity of the results, the solution of topology
optimization should be unique and valid for any discretization of the design domain
and the refinement of the mesh should only influence the result’s accurary in terms of
resolution while maintaing a common overall structure.

Figure 2.4: Mesh Dependency Instability
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2.3 Methods to eliminate numerical instability

Several strategies have been suggested to eliminate numerical instability. Porous den-
sity can be prohibited by introducing a penalty factor p into the SIMP method.

(a) p = 2

(b) p = 3

(c) p = 4

Figure 2.5: Cantilever Beam Optimization Results with Different p Values

2.3.1 Sensitivity and density filtering methods

One commonly employed technique to mitigate issues related to mesh dependency
and checkerboard instabilities is the application of a filtering method. This approach
involves constraining the solution’s design space by prohibiting the occurrence of high-
frequency variations in the density field. The filtering method operates similar to image
processing, where the act of blurring an image or region results in the removal of fine
details, leading to a smoother and more uniform representation of the colour profile.

Historically Ole Sigmund (1994,1997)(7) introduced a filter of the sensitivities based
on the averaging of the sensitivities of the objective function within a circle radius,
rfil. For uniform meshes, the filtered sensitivity field is obtained using the following
equation:

∂f̃

∂xe
=

∑
i∈Ne

wi (Xi)xi
∂f
∂xi

xe
∑

i∈Ne
w (Xi)

(2.6)
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with Xi denoting the coordinates of the element i’s centroid, Ne the set of elements
within the filtering region Ne = {i| ∥Xi −Xe∥ ≤ rfil}, xe the design variable (relative
density) of the element and wi (Xi) the weight of element. The weight function is
determined by calculating the Euclidean distances between element e, located at the
center of the filtering circle, and element i as follows:

wi (Xi) =

{
rfil − ∥Xi −Xe∥ i ∈ Ne

0 i /∈ Ne
(2.7)

Subsequently, the filter was employed in the context of design variables denoted as x,
representing relative densities. This utilization of the filter was suggested by Bruns and
Tortorelli (5) and subsequently confirmed by Bourdin in 2001 (6). The density filtering
method produces a novel set of design variables denoted as xF , aimed at eliminating
the undesirable checkerboard effect, as illustrated in Figure 2.6. In the case of a uniform
and regular mesh, such as the one employed in this study, the filtered density field can
be calculated using the following equation, utilizing the same filter area and weight
functions discussed earlier:

xF,i =

∑
j∈Ni

w(Xi, Xj
)xj∑

j∈Ni
w(Xi, Xj)

(2.8)

Figure 2.6: Effects of Density Filtering

The key characteristic of the density filter is its ability to eliminate all structural intri-
cacies that are smaller in scale than the filter radius, denoted as ”rfil,” as demonstrated
in Figure 2.6. Consequently, this filtering method enables the establishment of an effec-
tive minimum solid size when integrated into the topology optimization problem. This
imposition of a minimum solid size contributes to enhancing the manufacturability of
the solution. Thus, the mesh independence result becomes achievable by consistently
selecting the filter radius ”rfil” based on physical dimensions relative to the dimensions
of the design domain, as depicted in Figure 2.6.

Since the filter radius is determined in relation to the elements, it becomes neces-
sary to readjust its value when conducting topology optimization iterations that in-
volve remeshing. This adjustment ensures that ”rfil” remains consistent in terms of
its physical dimensions and enforces a uniform minimum solid size in the final result.
However, one drawback of the density filter is the emergence of ”blurred” surfaces with
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intermediate densities over a length equivalent to 2 times the ”rfil”. This blurring ef-
fect results from the averaging process.

While this may appear as a regression, considering that the SIMP (Solid Isotropic
Material with Penalization) law originally aimed to diminish the presence of interme-
diate elements by penalizing them, the density filter has emerged as an effective tool
for addressing issues related to mesh dependency and checkerboard instabilities in the
topology optimization process. As a result, it has gained popularity rapidly.

2.3.2 Heaviside filter

Several researchers have explored methods to once again reduce the prevalence of
intermediate densities and enhance surface sharpness, aiding in the interpretation of
designs. Notable approaches include the concept of progressively reducing the filter
radius, as proposed by Sigmund in 1997 (7), and the continued use of mathematical
projection techniques. For the achievement of sharp, nearly binary solutions, Guest et
al. (8) introduced a Heaviside projection function that alters the density-filtered field.
This modification ensures that all element densities (xe) greater than 0 are projected
to a solid physical density (ρe = 1), while void elements (xe = 0) remain void:

ρe =

{
1 if xF,e > 0
0 if xF,e = 0

(2.9)

where, ρ represents the physical density field resulting from the Heaviside projection,
and xF corresponds to the field of design variables with density filtering. To better suit
the requirements of gradient-based topology optimization problems, Guest et al.(8)
introduced a more efficient and differentiable function, which is a smoothed version of
the Heaviside function.

ρe = 1− e−βxe + xee
−β (2.10)

where, β is the parameter that regulates the steepness of the Heaviside function. As
demonstrated in Figure ??, the use of this Heaviside operator has the visual effect of
expanding the optimal designs, resulting in more substantial and bulkier structures.
However, this outcome can be circumvented by employing the Heaviside function with
respect to a specific cut-off density value. This approach, as introduced by Wang et
al. (9), involves utilizing the extended Heaviside function:

ρe =
tanh(βη) + tanh[β(xF,e − η)]

tanh(βη) + tanh[β(1− η)]
(2.11)

where, η, in the range [0,1], represents the chosen cut-off density, while β, the same
steepness parameter mentioned earlier, maintains its role. The extended Heaviside
function is visually depicted in Figure 2.7, highlighting the impact of the β and η
parameters. It’s evident that for β = 0, the Heaviside projection preserves the original
filtered field without any alterations. In contrast, higher values of β yield progressively
sharper results, although with the potential risk of introducing oscillatory instabilities
due to the rapid changes in projection behavior around xF,e = η. As a general guideline,
it is advisable to start the optimization process with a low β value and incrementally
raise it during the course of optimization. Notably, it’s worth mentioning that the
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original Heaviside dilation formulation can be obtained by setting the density cut-
off, η, to 0 in the extended function. This extended Heaviside projection, with the
progressive adjustment of the steepness factor β, has been integrated into the filter-
based method developed in this scope. It provides the final field of physical densities
(ρ) at each iteration, as further discussed in the following section.

Figure 2.7: Heaviside Projection of Optimal Cantilever Beam

Figure 2.8: Extended Heaviside Function

The implementations of filter and projection techniques do not impose any additional
constraints in the topology optimization problem. Instead, they modify the relative
density fields to achieve the desired properties. Consequently, the fundamental for-
mulation of the topology optimization problem as in Equation: 2.1remains unchanged
when employing these density-based methods. The primary distinction lies in the den-
sity field used for computing objective and constraint functions. Specifically, the den-
sity field from the previous iteration (i) is consistently utilized to calculate compliance
and total volume constraints for the subsequent iteration (i + 1). The mathematical
representation of the optimization problem in Equation: 2.1 can be further presented
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as below:
min

x
c(xF )

s.t. : vTxF ≤ V ∗

0 ≤ xe ≤ 1︷ ︸︸ ︷
SIMP + Filter

(2.12)

min
x

c(ρ)

s.t. : vTρ ≤ V ∗

0 ≤ xe ≤ 1︷ ︸︸ ︷
SIMP + Filter +Heaviside

(2.13)

2.4 Sensitivity analysis

When solving the optimization problem, the derivatives of the objective function and
constraints concerning the design variables are essential. These derivatives, termed sen-
sitivities, form the basis of sensitivity analysis. The process involves determining these
sensitivities, and there are two predominant methods for the computation; numerical
approaches or analytical methods.

2.4.1 Numerical methods

Within numerical sensitivity analysis, sensitivities are computed using finite differ-
ences. Various methodologies exist for this purpose, such as forward differences or
central differences to determine these sensitivities. The sensitives using forward differ-
ences can be computed as:

∂f(xP )

∂xP,j
≈ Df =

f(xP + hej)− f(xP )

h
(2.14)

where ej = [0, ..., 0, 1, 0, ..., 0]T , ej is 1 on index j and 0 otherwise.
A main issue with forward differences lies in determining an appropriate value for h.
Ideally, a smaller ′h′ is desirable, yet reducing it substantially can introduce numeri-
cal errors stemming from cancellation issues. Conversely, using a larger ′h′ results in
a less accurate approximation. Despite the ease of implementation, numerical meth-
ods become approximations and tend to be more computationally demanding com-
pared to analytical methods. The primary advantage of numerical methods lies in
their straightforward implementation. In this work, numerical differentiation has only
been employed to validate the accuracy of the implemented analytical method.

2.4.2 Analytical methods

The direct and adjoint methods stand as the primary analytical approaches, each car-
rying distinct advantages. In scenarios where the number of design variables exceeds
that of constraint functions, the adjoint method is more efficient. Conversely, when
constraint functions outnumber design variables, the direct method proves more effi-
cient. The adjoint method is applied to compute the sensitivities in this work.

The preceding sections within this chapter explored filter and projection techniques
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applied to the design variable field, resulting in what is referred to as the multi-field
optimization approach. At the end of each iteration, a physical design xP is attained
through Heaviside projection, which is in a ready to manufacture state. With the SIMP
power law penalization and employing the weak formulation of the finite element model
within this work, the objective function f(xP )is defined as the sum of strain energies
of all elements:

f(xP ) =
N∑
e=1

(xP,e)
pψ0(ue) (2.15)

Likewise, the volume constraint is defined as the sum of all element densities of the
projected field xP :

g(xP ) =
∑N

e=1 xP,e

N
− V ∗ ≤ 0

=
∑N

e=1 xP,e −NV ∗ ≤ 0
(2.16)

The sensitivity of the objective and constraint functions df(xP )
dxe

and dg(xP )
dxe

with re-
spect to the design variables x is also required for the Method of Moving Asymptotes
(MMA) used in this work. However, this derivative is not straightforward, as both
values are calculated concerning the physical density field xP , attained after numerous
filtering and projection steps. In the context of the current multi-field optimization
process, the sensitivity analysis with respect to the design variables is obtained after
application of chain rule for all filtering and projection steps applied on the relative
densities:

df

dx
=

df

dxP

dxP
dxI

(
dxI
dxC1

dxC1

dxF
+

dxI
dxC2

dxC2

dxF
)
dxF
dx

(2.17)

2.4.3 Adjoint approach for computing sensitivities

The adjoint method stands out as an efficient technique that avoids the need to solve
the PDEs repeatedly for each gradient component computation. To demonstrate the
effectiveness of this approach, a classical optimization problem in the following form
is taken into account: {

min J(U, x)
s.t. R(U, x) = 0

(2.18)

with J(U, x) (RnU ×Rnx → R) is an objective function to be minimized, x corresponds
to the design variables, U is the set of state variables with the relationship R(U, x) = 0
for a function (RnU ×Rnx → R) to be satisfied (32).

The objective is to determine the total variation or sensitivity of the objective func-
tion concerning the design variables. Solving the relationship R(U, x) = 0 is generally
complex. For a given set of design variable values, obtaining the state variables U
involves resolving R(U, x) = 0. When utilizing FD or DD methods, this requires com-
puting nx finite differences, implying that solving R(U, x) = 0 must occur nx times. In
topology optimization, this quickly becomes expensive due to the abundance of design
variables, leading to a high value of nx. However, with the adjoint approach, compu-
tational expenses decrease significantly compared to the FD (or DD) approach. The
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adjoint method introduces a set of equations solved only once alongside the R(U, x) = 0
relationship, which is also solved only once within a single optimization cycle.

In a straightforward scenario where the objective function directly relies on the state
variables, J = J(U), and these state variables U depend on the design variables x.
The objective is to efficiently compute dJ

dx
defined as:

dJ

dx
=
dJ(U(x))

dx
=
∂J

∂U

∂U

∂x
(2.19)

and
R(U, x) = 0 (2.20)

must be satisfied everywhere. Equation: 2.20 implies that dR
dx

= 0 because R = 0 for
each of the design variables.

The adjoint approach involves utilizing adjoint variables in constructing the Lagrangian,
expressed by the following equation:

L(U, x, ξ) = J(U) + ξTR(U, x) (2.21)

where ξ is the vector of Lagrange multipliers (or adjoint variables).

As R(U, x) = 0 for each x, L(U, x, ξ ≡ J(U) and ξ can be chosen freely. With this new
form of objective function J(U), Equation: 2.19 becomes:

dJ
dx

= dL
dx

= ∂J(U)
∂U

dU
dx

+ dξT

dx
R + ξT (∂R

∂U
dU
dx

+ ∂R
∂U

)
= ∂J

∂U
dU
dx

+ ξT (∂R
∂U

dU
dx

+ ∂R
∂U

)
= ( ∂J

∂U
+ ξT ∂R

∂U
)dU
dx

+ ξT ∂R
∂U

(2.22)

If ξ is chosen, such that:
∂RT

∂U
ξ = −∂J

T

∂U
(2.23)

then, the expensive computation of dU
dx

is avoided.

The final expression of the sensitivity of the objective function with respect to the
design variables is given by:

dJ

dx
= ξT

∂R

∂U
(2.24)

In order to obtain the final sensitivity of J , the adjoint equation represented in Equa-
tion: 2.23 has to be solved only once. Once the adjoint variables are obtained, dJ

dx
is

achieved with the vector dot product between the adjoint variables, ξ and ∂R
∂U

at a
negligible cost compared to solving the equation R(U, x) = 0 nx times.
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2.5 Optimization algorithm

The focus of the topology optimization algorithm is to generate design configurations x
that progressively approach the desired objective while ensuring adherence to imposed
constraints. In the case of minimizing compliance with volume restrictions, the ultimate
design should maximize stiffness regardless of the material quantity used. During the
process, the optimization algorithm initiates each iteration. Firstly, it evaluates the
performance of the previous iteration’s final design, denoted as xP , by computing its
compliance f(xP ) and total volume g(xP ) which serves as the constraint function.
Subsequently, small adjustments are made to refine the new design field (x), bringing
it closer to optimizing the objective. This work considers MMA method to solve the
optimization problem.

2.5.1 Method of Moving Asymptotes

Method of Moving Asymptotes (MMA), developed by Krister Svanberg (33), was
adapted as the preferred topology optimization algorithm within the multi-field ap-
proach for increased flexibility concerning potential constraint violation.

The problem formulation considered in the MMA method is given below:

min
x f(xP ) + a0z +

∑n
i=1(ciyi +

1
2
diy

2
i )

s.t. : gi(xP )− aiz − yi ≤ 0, i = 1, ...,m
0 ≤ xe ≤ 1 with e = 1, ..., n

y ≥ 0, z ≥ 0

(2.25)

where f(xP ) is the defined objective function, m is the number of constraints, where
m = 1 for the case of a single constraint on the volume defined by the function g(xP ).

The coefficients need to be satisfied in a way that:

• a0,ai,ci,di are real numbers with a0 > 0, ai ≥ 0,ci ≥ 0, di ≥ 0 and ci + di > 0 for
all i;

• aici > a0 for all i with ai > 0.

The problems will be based on Equation: 2.25 because it consistently offers feasible
solutions and, crucially, obtain at least one optimal solution. The demonstration of
this is provided in (33).

To align this problem closely with the original formulation, Equation: 2.15,2.16, the
following parameters should be chosen for Equation 2.25.

• a0 can be chosen equal to 1 and ai = 0 for all i > 0, leading to z = 0 for any
optimal solution.

The optimization variable y is then used as a compliance variable with respect to
the violation of the original volume constraint g(xP ), such that the new constraint
g(xP ) − y ≤ 0 is respected. To encourage however the validation of the original con-
straint g(xP ) ≤ 0, the variable y should become ”expensive” by heavily penalizing
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the objective, so that y = 0 at the optimal solution. Therefore, the coefficients of the
optimization variable y can be taken as d = 1 and c =”a large number”, such that the
objective is greatly increased for low y values, penalizing the problem and encouraging
strictly verifying the constraint at the optimal solution. However, the optimization
problem has an increased degree of freedom, being allowed to temporarily violate the
constraints in the research of the optimum. It should be noted that the problem 2.25
always has feasible solutions and at least one optimal solution, even though the origi-
nal problem does not have any feasible solutions, in which case some yi > 0 (33).

MMA functions as an optimization method solving problems defined in Equation 2.25.
However, for this topology optimization problem, it demands a significant number of
design variables and involves highly nonlinear functions implicitly relying on these
variables. Consequently, it become expensive to directly solve the problem , requiring
an efficient mathematical programming scheme. This scheme substitutes the original
problem with a local approximation in each iteration; a fundamental principle under-
lying the MMA approach, which resolves the optimization problem through iterative
steps. Each iteration centers around the current point that comprises all design vari-
ables (x(k), y(k), z(k)), around which is for defining an approximate subproblem. Within
this subproblem, the original objective function f(x) and constraint functions gi(x) are

substituted with certain convex counterparts f̃(x) and g̃i(x). These convex functions
are determined based on the current sensitivities, computed similarly to the previously
discussed method. They also depend on parameters U

(k)
j and L

(k)
j that describe moving

asymptotes, and these parameters are updated in each iteration.

The process involves solving the approximate convex subproblem to obtain a unique
optimal solution (x(k+1), y(k+1), z(k+1)), which then becomes the subsequent iteration
point. Around this solution, a new convex approximation subproblem is defined. Reach-
ing the solution of the original problem occurs when the design variables between con-
secutive iterations converge arbitrarily close to zero, meeting a specified convergence
tolerance.

Figure 2.9 illustrates the MMA approximation technique around a specific design
point, showcasing the vertical asymptotes determined by the U

(k)
j and L

(k)
j param-

eters. Within the context of this work, the MMA method emerges as the preferred
optimization algorithm within the multi-field optimization approach. This preference
is attributed to its good performance, high adaptability for highly filtered material
distributions, and its facilitation of implementing various objective and constraint
functions easily.
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Figure 2.9: MMA Approximation Method(34)
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3 Casting

In automotive manufacturing, casting is a pivotal process for creating various compo-
nents. Molten metal, like aluminum or iron, is poured into a custom-designed mold.
This molten metal solidifies within the mold cavity, taking its shape. Once cooled
and solidified, the newly formed piece is removed from the mold. The casting process
for automotive components includes various techniques such as gravity casting, die
casting, high and low-pressure casting, and investment casting. These methods ensure
the production of intricate and durable parts crucial for vehicles, ranging from engine
blocks and transmission cases to wheels and other structural elements.

In order to optimize cast parts, careful attention to specific geometric requirements
is essential. This consideration is crucial in mitigating casting defects, primarily influ-
enced by fluid flow, heat transfer dynamics, and thermal stresses within the manufac-
turing process.

3.1 Manufacturing constraints

3.1.1 Internal cavities and undercut

Primarily, it is important to ensure that cast part designs are free from internal cavities
or undercuts in the parting direction. While closed internal cavities cannot be achieved
through metal casting, various techniques exist for creating undercuts, such as using
side-action cores in the mold. However, employing such methods significantly impacts
mold complexity and the overall manufacturing costs of the part. Figure 3.1 illustrates
an undercut on a cast part produced in a mold. To ensure cost-effective outcomes, it
shall be clear of both undercuts and internal cavities in the design phase.

3.1.2 Draft angle

Draft angles represent the angled taper integrated into the mold’s side walls and cores,
facilitating the easy removal of a part by minimizing friction between the part and the
mold walls during ejection. Parts lacking vertical walls without draft angles risk being
challenging to strip, prone to denting, scratching, or becoming lodged in the tool.
However, if external walls serve a functional purpose, they may remain without draft
angles.

Figure 3.1: Geometrical Constraints of Undercut and Draft Angle
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3.1.3 Minimal size constraints

The geometry of the part should adhere to a minimum member size restriction, taking
into account the flow properties of the molten metal utilized in casting. This constraint
prevents the formation of delicate structures that could solidify rapidly, potentially
blocking the flow of molten metal to subsequent sections. Moreover, it is essential to
enforce constraints on minimal pocket and hole sizes to guarantee the mold’s feasibility,
as small holes in the part demand a detailed mold structure. Figure 3.2 provides an
illustration highlighting these minimum size limitations.

Figure 3.2: Geometrical Size Constraints

3.1.4 Directional solidification

The quality of cast parts is significantly influenced by the solidification process. Typ-
ically, a cast part solidifies from its outer regions towards the inner sections. As the
material solidifies, temperature-induced shrinkage occurs, leading to a contraction in
volume. This reduction in volume needs to be compensated by liquid material. In cases
where there is not enough liquid material available, casting defects, known as shrink-
age porosity, arise (29). Figure 3.3 provides an overview of potential defects that can
occur.

Figure 3.3: General Overview on Possible Shrinkage Porosity

The objective of the part design process is to create a casting that’s internally free
of porosity. This is accomplished by feeding extra material that supplies the cast
part with liquid material, subsequently removed after solidification. Furthermore, the
design of the cast part must allow for directional solidification towards the feeder. The
method relies on Chvorinov’s rule (31) and Heuvers’ circle method (30). Chvorinov’s
rule illustrates that the solidification time is proportional to the square of the modulus
M, which represents the ratio between a region’s volume V and its heat-transferring
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surface A.

tsolidification ∼ (Mregion)
2 = ((

V

A
)region)

2 (3.1)

Heuvers leverages this principle, asserting that regions farther from a feeder should
solidify before others. When solidification time diminishes with increased distance from
the feeder, directional solidification is achieved. The shrinkage of the melt’s volume can
be compensated by liquid material from nearer regions that haven not solidified yet.
Feeder areas solidify last due to having the largest modulus or longest solidification
time, respectively. Shrinkage porosity only remains in the feeders, not impacting the
overall cast part quality. Figure 3.4 demonstrates this principle, adhering to Heuvers’
circle method is assessed by the diameter progression in the cast part, which should
expand toward the feeder.

Figure 3.4: Principle of Heuvers’

3.2 A filter based method for casting constraints

In order to implement the previously described manufacturing constraints in a topology
optimization framework, these constrains are developed based on filter and projection-
based approach. Langelaar (35) introduced a filter-based technique for incorporating
multi-axis machining restrictions into optimization, yielding manufacturable designs
in both 2D and 3D scenarios. Given the concept between casting and 2.5D machining,
where the tool has a single attack direction, a similar approach can be adapted for
specific casting needs. Filters efficiently modify design variables, narrowing the solution
space suitable for casting without explicitly defining new constraints. This extension of
the three-field optimization method incorporates casting-related constraints via filters
and projections, maintaining the initial problem formulation with a single constraint on
solid fraction (V ∗ from Equation 2.15,2.16). Details on casting constraints’ integration
into the multi-field optimization, alongside explanations of basic filters and projections,
will be briefly covered in later sections.

3.2.1 Minimum member size constraint

As discussed previously, there exists the design variable field’s instability in SIMP-
based topology optimization, like the checkerboard pattern and mesh dependency.
These issues hinder physical interpretation and manufacturability. To address these
problems and achieve a refined physical model, the solution involved expanding the
three-field optimization model. This extension called for incorporating multiple fields,
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introducing supplementary filters and projection functions specifically designed for
casting constraints.

The initial phase of the multi-field method involves the density filter. Here, the design
variables (x) within a circular zone of radius ”rfil” around an element (i) are averaged
using a linear weight function based on proximity. This process establishes the density
of element (i) in the newly created filtered density field (xF ). The filtering process
can be precisely described by a distance-weight matrix. This matrix relies on the fil-
ter radius rfil and calculates the Euclidean distances between elements to define the
filtering operation:

Dij = [rfil − ∥Xj −Xi∥]+ i, j = 1, ..., N (3.2)

where the operator[]+ gives 0 for all negative arguments and Xi are the coordinates of
element’s i centroid. Then, the filtered density field xF can be obtained as:

xF,i =
∑
j

(
Dij∑
gDig

)xi ⇔ xF = Hx (3.3)

with H being the density filtering matrix.

Figure 3.5: Projection Scheme for Minimum Member Size Constraint

This filter effectively eliminates all checkerboard patterns and structural details smaller
than the filter radius. When coupled with the Heaviside projection in the final phase
of the multi-field method, the density filter becomes a practical means of imposing a
minimum member size constraint associated with ’rfil’, illustrated in Figure 3.6.

The study focused on the 2D cantilever beam optimization, Figure 3.6, integrating
the density filter into the optimization process for various filter radii (rfil). Figure
3.6 highlights that increasing rfil in the optimization solely with the density filter re-
moves finer structures quickly but introduces blurry zones with intermediate elements,
making defining the model’s contour challenging. Incorporating the Heaviside projec-
tion in a complete three-field approach generates sharp designs where the minimum
member size is tied to rfil and material availability. The complete three-field method
yields thicker structures as rfil increases. However, in cases where material availability
becomes limiting, despite a larger filter radius, the design may remain unchanged.
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(a) Topology optimization problem with minimum member size constraint

(b) Three-field topology optimization result for simple cantilever beam

Figure 3.6: Minimum Member Size Constraint Enforced with the Density Filter, Based
on Filter Radius rfil
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3.2.2 Directional molding constraint

Ensuring that the design aligns with the molding and parting process stands as the
crucial step in achieving an ideal design ready for casting. It has been observed that
the most challenging aspects towards casting manufacturing are the presence of under-
cuts and internal cavities. Ensuring the compatibility between the part’s design and
the mold’s removal post-casting is the initial step in achieving a design optimized for
casting topology. Selecting a draw direction requires the elimination of all undercuts
and internal cavities present in the filtered density field xF , ensuring the final itera-
tion’s design aligns with the directional molding limitations.

From a mathematical standpoint and considering the regular finite element mesh em-
ployed in this work, directional molding implies that the density field should consis-
tently decrease along the mold’s draw direction. Consequently, this condition ensures
that only external cavities remain at the design domain’s periphery, precisely at the
mold interface. To ensure the elimination of internal cavities and undercuts, a new
field is created from the filtered density field xF . This is achieved by employing a
cumulative summation filter on elements aligned against the drawing direction. The
result is a pseudo-density field xC that exhibits monotonic increase in the opposite
direction of drawing. In this field, elements may surpass the value of 1, as illustrate
in Figure 3.7. While areas feasible for molding remain low values close to 0, internal
cavities are filled with material, although the specific pseudo-density value (beyond 1)
does not hold a direct physical significance.

Figure 3.7: Cumulative Summation Filter for Monotonically Decreasing Pseudo-
density Field in the Draw Direction

The cumulative summation filter, characterized by a matrix operation, is a computa-
tionally efficient linear process with low complexity:

xC = CxF (3.4)

where xC is the new vector of pseudo-densities respecting the directional molding
constraint, xF is the filtered density filed obtained previously and C is a matrix of
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cumulative summation. Matrix C, with dimensions [n × n] (n representing the fi-
nite elements in the mesh), defines the contribution of the filtered element xF,j to
the castable pseudo-density field element xC,i. This contribution is determined by the
summation coefficients Cij, where Cij = 1 signifies contribution and Cij = 0 denotes
non-contribution.

As illustrated in Figure 3.8, the directional molding constraint in the problem for-
mulation often results in bulky designs that exceed the user-imposed limit V ∗ for the
final solid fraction. The optimization algorithm starts with an initial iteration using a
uniform density field where all elements adhere to the volume limit V ∗. Despite the
optimization algorithm solving Equation 2.15 and generating a design variable field x
that complies with the volume constraint, the subsequent application of the cumulative
summation filter results in a physical design xP (post-Heaviside projection) predomi-
nantly comprising solid elements. Consequently, the solid volume increases from V ∗ in
iteration 0 (initial design domain) to nearly 1 in iteration 1.
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Figure 3.8: Topology Optimization Results Subject to Directional Molding Constraint
for Different Draw Directions
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3.2.3 Split drawing

The application of a single drawing constraint, achieved by employing the cumulative
summation filter exclusively in one direction (specifically, opposite to the draw direc-
tion), results in optimization problems that are excessively restrictive. This approach
yields sub-optimal designs that may violate the solid volume constraint set by the
user. Figure 3.8 illustrates that certain material regions, dictated by the direction of
cumulative summation, do not contribute to the structural rigidity of the beam. For
instance, applying cumulative summation in the x-direction leads to solid material in
the upper right corner of the design domain that has no impact on structural rigidity
under given boundary and load conditions. Furthermore, these single draw designs
lack consideration for the potential to create cast parts through split drawing within
a two-part mold, such as between two closed dies.

For a split drawing compatible design, the optimization algorithm must create and
expand cavities from two opposing directions along the draw axis. This simulates the
modification of each die in the casting process. Enabling this optimization process
introduces two distinct draw directions independently. This results in the generation
of two separate castable pseudo-density fields, xC1 and xC2, obtained by performing
cumulative summation in the positive and negative directions of the draw axis, respec-
tively:

xC1 = CxF and xC2 = CTxF (3.5)

The optimization algorithm is allowed to create cavities on two pseudo-density fields
from opposing draw axis directions, considering both directional molding scenarios. To
consolidate contributions from both cumulative summation directions into a unified
design, the intersection of the two pseudo-density fields xC1 and xC2 is necessary to
preserve generated cavities from both directions. Essentially, a unique pseudo-density
field xI is derived where xI,i equals 0 if either xC1,i equals 0 or xC2,i equals 0. This inter-
section operation can be accomplished mathematically by employing an elementwise
smooth minimum operation with the Kreisselmeier-Steinhauser (KS) function over the
two castable pseudo-density fields, resulting in the formulation of the pseudo-density
field xI as follows:

xI,i = f(xC1,i, xC2,i) =
1

p
ln(

1

2
epxC1,i+ +

1

2
epxC2,i+ ) (3.6)

The variable ”p” represents a significantly negative number. A greater absolute value
of ”p” brings the KS function closer to a genuine minimum. In this work, ”p” is set at
-20, which generates values very proximate to the actual minimum, maintaining stabil-
ity without introducing numerical instabilities. It shall be noted that a true minimum
could not be integrated into the optimization loop due to the necessity for smooth
functions in gradient-based optimization procedures, crucial for sensitivity analysis.

Integrating the combined bi-directional cumulative summation and the intersection of
the resultant pseudo-density fields within the optimization process, succeeded by the
Heaviside projection, yields designs suitable for split-drawing applications. Figure 3.9
represents the outcomes of minimizing compliance in a 2-dimensional cantilever beam
scenario using a 160×90 mesh, with split drawing constraints imposed separately in
the x and y-directions.
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Figure 3.9: Topology Optimization Results with Split Drawing Constraints for x and
y Directions
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3.2.4 Draft angle constraint

An another important consideration for cast parts is the draft angle. This feature is
essential to facilitate easy unmolding and prevent surface defects. A draft angle is
applied to the manufacturable design in relation to the draw axis, ensuring compli-
ance with a user-defined taper for all internal and external surfaces within the design
domain. It shall be noted that external walls situated on the boundary of the design
domain should not undergo drafting. This exception is due to their susceptibility to
boundary or load conditions, subjecting the maintenance of their original shape. With
the multi-field optimization approach, the draft angle constraint can be enforced by
applying a filter based on the smooth minimum KS function to each castable pseudo-
density field, whether it is xC1 and xC2 for the split draw problem or the unique xC
for the single draw case.

The concept of this methodology lies in creating cone-shaped void regions based on
each void element within the castable pseudo-density fields, treating them as positions
for the cone tips. This process essentially ”carves out” material, establishing a new
pseudo-density field where all voids are bordered by surfaces conforming to a taper an-
gle at least as specified by the draft angle. However, processing the entire cone-shaped
region for each void element demands a considerable number of elements, prompting
a more efficient approach. Instead, focusing solely on projecting the frontal elements
of the cone suffices. This is feasible due to the monotonically decreasing nature of the
pseudo-density field in the draw direction. By addressing only the frontal elements of
the cone-shaped area, similar to sweeping through the mesh, it achieves comparable
outcomes to projecting the entire region.

In practice, an equivalent element-based method can be established utilizing the smooth
minimum KS function. This function is applied to the mirrored pattern of cone-shaped
elements oriented in the draw direction, as presented in Figure 3.10.
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Figure 3.10: Draft Angle Imposed via a Cone-shaped Pattern

In this method, the element at the cone pattern’s tip, labeled as i, determines its
pseudo-density based on surrounding elements, serving as void detectors. Setting the
pseudo-density xS,i as the smooth minimum of all elements within its cone-shaped pat-
tern makes it void if any pattern element is void. This ensures that surfaces, excluding
those at the design domain boundaries, respect to the prescribed draft angle:

xS,i =
1

p
ln(

1

ns

∑
j

epxC,j) j ∈ Pi (3.7)

Pi represents the cone-shaped pattern with element i positioned at its tip, comprising
a total of ns elements. This pattern’s configuration is determined by the finite element
mesh and the user-defined draft angle, ensuring that the discretized shape’s taper
meets or exceeds the specified draft angle.

Figure 3.11: Draft Angle Pattern for a Monotonically Decreasing Field in x -draw
Direction
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In 2-dimensional problems, the determination of the cone-shaped pattern was achieved
for both positive and negative orientations of the principal x and y-axes, employing the
subsequent strategy. Assume δ represents the user-defined draft angle, while lx and ly
denote the dimensions of a single finite element in the x and y directions, respectively.
In the case of a castable pseudo-density field resulting from cumulative summation
in the x-direction, the pattern enforcing the draft angle is presented in Figure 3.11.
This pattern is defined by the parameter n, indicating the number of elements in
the x-direction between two consecutive elements within the pattern. The value of n,
determining the pattern’s aperture, is computed based on the draft angle using the
following formula:

nx =
ly

lxtan(δ)
(3.8)

Defining the parameter n for a draft angle pattern in the y direction is similar:

ny =
lx

lytan(δ)
(3.9)

Introducing draft angle erosion into the optimization process results in a more robust
design that adheres to the prescribed draft angle, presented in Figure 3.12. For compar-
ison, the reference design is the undrafted y-axis split draw design depicted in Figure
3.12. The designs shown in Figures 3.12 were achieved by solving the same topology
optimization problem using a 160 × 90 mesh and targeting a volume of V ∗ = 0.3.
These designs integrate the draft angle erosion pattern for δ values of 10◦ and 20◦,
respectively.

Figure 3.12: Effect of Draft Angle Erosion Filter in Topology Optimization Problem
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3.3 Casting simulations

As discussed previously, casting is a fundamental manufacturing process that plays an
important role in the automotive industry, contributing significantly to the production
of various parts and components. This method involves pouring molten material into
a mold, allowing it to solidify and take the shape of the mold cavity. The automo-
tive sector extensively relies on casting for manufacturing components with complex
geometries, designs, and high precision. One of the key advantages of casting in the
automotive industry is its ability to produce parts in large quantities with consistent
quality. This is crucial for meeting the high-volume demands of the automotive market.
Different types of casting processes are employed, which are gravity fed (e.g. die, sand
and investment) and pressure fed methods, each tailored to the specific requirements
of the components being produced.

Figure 3.13: General view on casting process parameters (46)

As shown in Figure 3.13, the casting system consists of several components. The mold
comprises two halves—the cope (top) and the drag (bottom). The liquid metal fills the
space between these halves, forming the mold cavity. Channels called runners guide
the molten metal from the sprue (the channel that receives the poured metal) to the
mold cavity. The point where the runner connects with the cavity is called the ingate.
Extra cavities, known as risers or feeders, are created on the top surface of the mold.
These reservoirs hold excess metal. As the metal cools and solidifies in the cavity, it
contracts, and the additional metal from the risers flows back to prevent any voids
or defects in the final cast. Vents, small openings in the mold, allow gases and air
within the cavity to escape to the atmosphere during the casting process. This helps
in preventing defects caused by trapped gases or air pockets in the final product.

Numerical simulations of manufacturing processes can minimize the need for trial
and error typically associated with new product development, leading to time and
cost savings. Specifically within casting processes, numerical simulations enable the
analysis of fluid flow, heat transfer, solidification, and defect behavior. Most common
numerical techniques for process simulation include the Finite-Element Method, ap-
plied, for example, in (36) to enhance the gate system in high pressure die casting
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(HPDC), and the Finite-Volume Method (FVM), widely employed in computational
fluid dynamics (CFD) (37).

Simulations for the casting process provide valuable insights into defect formation and
help ensure a consistent casting procedure. Given the diverse range of casting methods,
assessing simulation effectiveness requires analyzing various simulation outcomes. The
majority of casting simulations available commercially employ the Eulerian method
within the Finite Volume Method (FVM) to assess metal flow throughout the filling
phase. The interface between metal and air is depicted using the Volume of Fluid
(VOF) method (38). However, these simulations are time-consuming and demand sig-
nificant computational resources. Alternative methods, such as the Smoothed Particle
Hydrodynamics (SPH) utilized in (39) for High-Pressure Die Casting (HPDC) simu-
lations, have not effectively reduced calculation times. As a result, employing casting
simulations within computational optimization processes involving multiple iterations
becomes highly computationally demanding. Optimization algorithms have typically
been limited to adjusting a small set of parameters (40),(41). Hence, there is a need
for simplified models to cut down on calculation time and facilitate autonomous opti-
mizations.

Due to the high complexity and computationally demanding to perform the full simu-
lation of the casting system, the current work focuses specifically on the heat transfer
dynamics within the mold cavity during the casting process. Rather than simulating
the entire casting process, the emphasis lies in understanding and optimizing the flow
of heat within this critical space. The objective is to understand the thermal aspects
of the casting process, concentrating on how heat distributes within the mold cavity
as the molten metal is poured. By narrowing the scope to heat transfer dynamics, this
work aims to optimize the design and structure within the mold cavity to enhance
casting efficiency and minimize defects.

3.3.1 Niyama’s criterion

To anticipate potential issues like shrinkage, hot tears, or mold erosion in specific
regions of a casting, various numerical criteria have been developed. Among these,
an essential aspect of assessing feeding efficiency involves solidification analysis. The
initial criterion proposed by Pellini in 1953 (53) aimed to predict centerline shrinkage.
Subsequently, Niyama (54) enhanced this criterion by establishing correlations between
solidification simulations and observed centerline shrinkage in steel castings. Niyama’s
criterion relies on the relationship between centerline shrinkage and the temperature
gradient concerning the solidus temperature and cooling rate within the solidifying
casting. This relationship is expressed as follows:

Niyama =
Gs√
Ṫ

(3.10)

Where Gs is the temperature gradient and Ṫ is the first derivative of the temperature
or cooling rate [K/s]. From Equation 3.10, it was found that for values larger than
1, the metal is free from porosities, and when the Niyama criterion gives a value less
than 1, shrinkage problems are observed regardless of local solidification time (55).
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3.3.2 Combining topology optimization and casting simulation

Subsequently, it also aims to integrate process simulation into the structural topol-
ogy optimization framework of cast components. In the literature, there have been
various methods for simulating processes involved in designing and optimizing cast-
ing systems, such as molds or ingate configurations for specific component geometries.
Given the substantial influence of mold design on casting quality, process simulation
becomes pivotal in optimizing either the ingate system or mold design, aiming to re-
fine process efficiency or the final part’s quality. For instance, Jadhav and Hujare (42)
uses process simulation to refine cooling system placement, thereby reducing stresses
within the mold to extend its lifespan. Similarly, Pinto and Silva (43) employs CFD
simulations to analyze cavity filling, quantifying porosity issues. Using these findings,
adjustments to molten metal flow systems are made, leading to process enhancements
and a deeper understanding of flow phenomena in casting procedures. Moreover, (44)
introduces a method involving machine learning coupled with process simulations to
perform multi-objective optimization for casting solidification, offering a comprehen-
sive approach that considers various factors simultaneously.

Nevertheless, the approach in this work diverges as the component’s geometry is not
known beforehand, instead, it is generated iteratively from an initial design space. This
iterative process combines topology optimization and parallel process simulations to
derive optimize component’s design. While existing commercial topology optimization
accounts for process knowledge through manufacturing restrictions Liu and Ma (45),
(46) introduces an innovative method leveraging casting simulations to enhance the
manufacturability of topologically optimized components. This approach determines
flow-induced defect sources, areas with high vorticity, regions prone to delayed filling,
and identifies defect locations unfeasible for feeding due to premature solidification of
the melt (47). (48) proposes the utilization of Dijkstra’s shortest-path algorithm (49)
specifically for investigating High Pressure Die Casting parts. Moreover, these findings
have been merged with casting simulations to filter out poorly manufacturable areas
within a topology optimization step. Furthermore, another research endeavor focuses
on optimizing parametric components using both structural and process simulations.

In the literature, the emphasis from a process perspective revolves around refining
mold designs and ingate systems to enhance process quality for established geome-
tries. Meanwhile, significant attention has been directed toward evolving manufactur-
ing constraints from a structural standpoint. However, there is a limited work deeper
into integrating process knowledge into the topology optimization (TO) process be-
yond simple manufacturing constraints. The studies detailed in (46)-(48) integrate
comprehensive casting process simulations into toplogy optimization procedures, al-
though with prolonged iteration times due to the high cost associated with acquiring
results for parameters like vorticity.

In this work, a new workflow for automatically merging topology optimization (TO)
with process simulation outcomes is introduced. Using a casting process-driven stan-
dard, the structurally enhanced design undergoes adjustments through implicit mod-
eling, producing an optimized design proposal. This proposal demonstrates improved
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manufacturability, making it a structurally and process-optimized solution.

3.3.3 Methods and software for casting simulation

For the simulation of casting process, various commercial software could be made use,
such as, Flow-3D, ProCAST, MAGMA, COMSOL Multiphysics, Click2Cast, which
can offer a range of capabilities for simulating casting processes, including detailed
modeling of filling to solidification, thermal and stress analysis, predicting casting de-
fects and optimizing casting processes.

In this work, an open-source computational fluid dynamics (CFD) software package,
OpenFOAM is used to perform the casting related studies for its parallel processing
capabilities allow it to efficiently handle large-scale simulations and being cost effective
compared to commercial software licenses.
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4 Mathematical Formulation of Thermal-fluid Sys-

tems

In the field of thermal-fluid systems, optimizing heat transfer is pivotal for achieving
efficient operations and desired product properties. Systems such as casting processes
rely on complicated thermal interactions to mold materials effectively. Addressing op-
timization challenges involves determining a balance between complicated objectives
and constraints, a task increasingly handled through the integration of computational
fluid dynamics (CFD) for simulating flows and numerical optimization techniques.

The optimal configurations within thermal-fluid systems often include minimizing an
objective function while conforming to specific thermal and fluidic constraints. Among
the current methodologies, the adjoint strategy emerges as a powerful tool for address-
ing challenges, particularly beneficial when dealing with numerous design variables, the
adjoint approach revolves around computing a sensitivity map across the system. This
map outlines how alterations to these variables can yield an optimal heat transfer con-
figuration, empowering automatic geometric modifications to enhance thermal-fluid
characteristics.

While adjoint optimization has found substantial application in reducing pressure
losses and optimizing shapes, its exploration within thermal-fluid systems, especially
in casting processes, remains a promising field. Employing adjoint methods to achieve
specific thermal objectives, such as regulating temperature gradients or optimizing
fluid flow within casting molds, shows great potential.

This study aims to employ adjoint optimization method in simulating thermal-fluid
systems, specifically in casting processes to compute the sensitivities of heat trans-
fer and fluid dynamics within these processes. Detailed discussions on the governing
equations governing the system are presented in following sections.

4.1 Governing equations and problem formulation

The equations describing thermal-fluid problem consist of a group of non-linear par-
tial differential equations. These equations govern in phenomena involving Newtonian
fluids which involve three fundamental equations; the continuity equation, represents
mass conservation within a domain; the momentum or Navier-Stokes equation, apply-
ing Newton’s second law to fluids; and the energy equation, enabling analysis of heat
transfer within the fluid.

∂ρ

∂t
+▽.(ρv) = 0 (4.1)

∂ρv

∂t
+ ρ(v.▽)v − η▽ .(▽v +▽vT ) +▽p− Fb = 0 (4.2)

ρc
∂T

∂t
+ ρc(v.▽ T ) = ▽.(k▽ T ) +Q (4.3)
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where ρ is the density of the fluid, t represents the temporal variable, p is the pressure,
Fb represents body forces, (▽v + ▽vT ) is the shear-stress tensor, η is the dynamic
viscosity, k represents the conductivity of the fluid, T the temperature, c the specific
heat capacity and Q represents the heat source term.

A general optimization problem includes an objective function to be minimized or
maximized subject to different constraints. In the case of a general cost function, de-
pending on flow variables v, p, T and the design variable α, subject to the constraint
of fulfilling the incompressible, Navier-Stokes equations, the problem can be written as:

min J(α, U)
s.t. gi(α) ≤ 0 i = 1, ...,m

0 ≤ αj ≤ 1 j = 1, ..., N
R(α, v, p, T ) = 0

(4.4)

In this case, the design variable α is pseudo-density values [0, 1], and the constraints
R are given by governing equations defined in Equation 4.1-4.3. Therefore, the incom-
pressible Navier-Stokes equations now become:

Rv =
∂ρv

∂t
+ ρ(v.▽)v − η▽ .(▽v +▽vT ) +▽p+ αv = 0 (4.5)

Rp =
∂ρ

∂t
−▽.(ρv) = 0 (4.6)

RT = ρc
∂T

∂t
+ ρc(v.▽ T ) = ▽.(k(α)▽ T ) +Q = 0 (4.7)

where Rv, Rp RT are used as compact notation to refer to the momentum, mass
conservation and energy equations respectively such that the constraints abstractly
defined in Equation 4.4 can be written as:

R =
{
Rv, Rp, RT

}
(4.8)
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4.2 Thermophysical material properties

With the adapted density-based topology optimization method in this study, the con-
cept of pseudo-density field (α) in the [0,1] is used to describe the distribution of
materials between solid and fluid. As per Borrvall and Petersson’s research from 2003
(56), an additional friction force linked to the fluid velocity is incorporated into the
Navier-Stokes equations:

Fb = −αv (4.9)

where α is the local permeability and it is related to the pseudo-density field.

For the energy conservation equation, the temperature is controlled by the field k(α),
whereas, k = ksα and ks is the thermal conductivity of solid which means there is no
conduction at the void region, (α = 0) :

k = ksα (4.10)

The thermal-flow simulation of the conceptual design is performed in OpenFOAM
to understand the thermal behaviour of the design problem. The material used for the
simulation is Aluminium and the material properties are given in Table 1.

Parameter Value Unit
Density 2710 kgm−3

Thermal conductivity 237 Wm−1K−1

Specific heat capacity 903 Jkg−1K−1

Table 1: Material Properties in Thermal Simulation
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4.3 Continuous adjoint formulation

The objective involves understanding the sensitivity of the objective function J con-
cerning the design field α. This function relies on the state variables. As discussed
previously, computing sensitivity directly or using a finite difference approach is ex-
tremely costly, especially considering the high number of design variables. To avoid
solving the primal equations repeatedly, which scales proportionally with the prob-
lem’s dimension in each optimization cycle, the adjoint formulation provides a robust
method to compute δJ

δα
. This approach requires solving the flow equations just once

per optimization cycle. Additionally, a separate set of equations, known as the adjoint
equations, is solved only once within the cycle. By employing this technique, obtain-
ing the sensitivity δJ

δα
in each optimization cycle comes at a cost independent of design

variables. This highlights the strength and efficiency of the adjoint formulation.

The problem described in Equation 2.15, considering Equation 4.8, can be represented
as a Lagrange problem introducing a functional L to minimize as an effective cost
function:

L := J +

∫
Ω

u.RvdΩ +

∫
Ω

q.RpdΩ +

∫
Ω

Ta.RTdΩ (4.11)

where the Lagrange multipliers corresponding to the adjoint velocity u, adjoint pres-
sure q and adjoint temperature Ta are introduced.

Then, it is essential to compute the complete variation of the Lagrangian L to de-
rive the sensitivity of the objective function concerning the design variable α. It is
important to note that the Lagrangian functional does not solely rely on α; it also
involves contributions from v, p and T . To isolate the dependence on these variables,
the chain rule needs to be applied, resulting in:

δL =
∂L

∂α
δα +

∂L

∂v
δv +

∂L

∂p
δp+

∂L

∂T
δT (4.12)

The key advantage of the adjoint method lies in formulating optimality equations
that isolate the variables of interest. This isolation substantially eliminates the cal-
culation of sensitivity from the complexities of the state equation, making it much
simpler.

To establish the adjoint problem and determine the sensitivity of the objective function
J with respect to the design variable α, first-order optimality conditions are formu-
lated. The initial condition addressed is the sensitivity equation:

∂L

∂α
= 0 (4.13)
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Then, the adjoint equations are yielded:

∂L

∂v
= 0 (4.14)

∂L

∂p
= 0 (4.15)

∂L

∂T
= 0 (4.16)

Equation 4.14-4.16 simply recover the original constraints Rv, Rp and RT :

∂L

∂u
= 0 (4.17)

∂L

∂q
= 0 (4.18)

∂L

∂Ta
= 0 (4.19)

Using the above equations, it is then arrived at the expressions for calculating the
sensitivity:

δL =
∂L

∂α
δα (4.20)

⇔ δL =
∂J

∂α
δα +

∫
Ω

u.
∂Rv

∂α
δαdΩ +

∫
Ω

q.
∂Rq

∂α
δαdΩ +

∫
Ω

Ta.
∂RT

∂α
δαdΩ (4.21)

This highlights the core aspect of the adjoint method, where the equation above specif-
ically depends on reasonably low-cost derivatives related to the porosity term. The
efficiency of this method remains intact since the computational expense of sensitivity
analysis stays nearly unaffected by the quantity of design variables.
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4.4 Calculating the sensitivity

Considering the problem in the discretized framework, the sensitivity of the cost func-
tion with respect to the porosity in cell i can be expressed as:

∂L

∂αi

=
∂J

∂αi

+

∫
Ω

u.
∂Rv

∂αi

dΩ +

∫
Ω

q.
∂Rq

∂αi

dΩ +

∫
Ω

Ta.
∂RT

∂αi

dΩ (4.22)

In this framework, there is typically no dependence of the objective function J on
the porosity. The porosity describes the continuous transition from fluid to solid and
is considered an auxiliary variable, thus, ∂J

∂αi
= 0. In addition, the only dependence on

α in the constraints R is in the Darcy term in Rv; accordingly, from Equation 4.5-4.7:

∂Rv

∂αi

= vi;
∂Rp

∂αi

= 0;
∂RT

∂αi

= −▽ .(
k

ρc
▽ Ti); (4.23)

which, for the momentum residual, yields the velocity in the barycenter of cell i. This
simplifies the equations to:

∂L

∂αi

=

∫ Ω

(ui.vi − Tai ▽ .(
k

ρc
▽ Ti)) dΩ (4.24)

Therefore, the sensitivity for each cell, using a single integration point per cell, equals
as;

∂L

∂αi

= (ui.vi)Vi − Tai ▽ .(
k

ρc
▽ Ti)Vi (4.25)

Hence, to compute the sensitivity, it requires the flow velocity viand temperature Ti,
obtained by solving the state equations R, the volume of each cell Vi, easily derived
from the mesh, the adjoint velocity ui and the adjoint temperature Tai . This ui, Tai
needed for the sensitivity equation, are determined using the adjoint equations and
the respective boundary conditions.
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4.5 Boundary conditions

Figure 4.1: 2D Cantilever Beam Detail

Figure 4.1 displays the typical layout of a simple 2D-beam problem. The closed domain
Ω(x, y) = (0, Lx) × (0, Ly) ∈ R2 represents the 2D-beam of lengths Lx,Ly. The walls
are thermally isolated and the sides are kept at different temperatures, Tin and Tout
with Tin > Tout. The primal boundary conditions can be seen in Table 2.

Wall Inlet Outlet
v No-slip Prescribed value Zero gradient
p Zero gradient Zero gradient Zero p=0
T Zero gradient Prescribed value Prescribed value

Table 2: Boundary conditions for the primal quantities

The reference temperature Tref is defined as:

Tref =
Tin − Tout

2
(4.26)
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4.6 Cost functions formulation

In the optimization of casting processes, achieving optimal thermal performance is im-
portant, which involves balancing two key objectives: ensuring a uniform temperature
distribution across the casting, crucial for material integrity, and minimizing power
dissipation to enhance cooling efficiency. These objectives are focused in the simula-
tions, with one focusing on the mean temperature distribution within the flow and the
other addressing the efficient dissipation of power for cooling purposes.

The uniform distribution of temperature throughout the casting is fundamental to
prevent thermal stress and distortion, ensuring consistent material properties. Con-
versely, minimizing power dissipation during cooling is essential for energy efficiency
and cost-effectiveness in the casting process.

The cost function for temperature distribution can be written as:

J =
1

2

∫
Ω

(T − T ∗)2 (4.27)

The cost function for dissipated power is presented as:

J = −
∫
Ω

(p+
1

2
u.u)u.ndΩ (4.28)

4.7 Cost function 1

In this section, the derivations of adjoint system and sensitivity based on the temper-
ature distribution cost function are briefly described.

4.7.1 Adjoint equations

In this section, the derivation of the adjoint system and the sensitivity of the first
objective function is briefly presented. The state equations R(v, p, T, α) = 0 can be
recalled firstly as Equations 4.5-4.7.

The weak form of the adjoint equations requiring the derivative of L w.r.t. the state
variables to be zero can be deduced, as follows:

∂xL[δy] = ∂vL[δv] + ∂pL[δp] + ∂TL[δT ] = 0 (4.29)

Considering the cost function defined as in Equation 4.27, the adjoint equations are:

∂u

∂t
− (▽u)v − (v.▽)u−▽(2νD(u)) + αu+▽q + Ta ▽ T = 0 (4.30)
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▽.u = 0 (4.31)

∂Ta
∂t

− v.▽ Ta −▽.(k(α)▽ Ta) + T − T ∗ = 0 (4.32)

4.7.2 Adjoint boundary conditions

The boundary conditions for adjoint velocity, pressure and temperature are also de-
rived from the weak form of the adjoint problem. Considering the boundary integrals:∫

Γ

((u.v)n+ u(v.n) + 2νn.D(u)− qn).δv −
∫
Γ

2νn.D(δv)u = 0 (4.33)∫
Γ

(u.n)δp = 0 (4.34)∫
Γ

(Tav.n+ k(α)n.▽ Ta)δT +

∫
Γ

k(α)n.▽ δTTa) = 0 (4.35)

From these equations, the following adjoint boundary conditions for the study problem
yield:

u = 0 on Γ (4.36)

Ta = 0 on ΓT (4.37)

∂Ta
∂n

= 0 on ΓA (4.38)

4.7.3 Gradient of cost function

The sensitivity of the objection function with respect to the control variable can be
computed as:

J
′
(α)[δα] = ∂αL[δα] = ∂αJ +

∫
Ω

(u, q, Ta)∂αR (4.39)

in which, it includes a boundary integral, however, considering the case of a null
boundary contribution on J

′
(α), the discrete formulation of the sensitivity in a typical

finite volume approximation becomes:

J
′

h(αh)[δαh] =
∑
i

((ui.vi(αi)) +▽Tai .▽ Tik(αi))Viδαi (4.40)
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5 Solver Implementation in OpenFOAM

5.1 OpenFOAM General Aspects

OpenFOAM (Open-source Field Operation And Manipulation) serves as the software
employed within this thesis to perform topology optimization of heat transfer related
scenarios. It is an open-source C++ program extensively utilized in Computational
Fluid Dynamics (CFD). It operates on the finite-volume method, capable of managing
diverse physics, ranging from straightforward laminar flows to complex flow dynamics
encompassing heat transfer, acoustics, electromagnetism, and more.

OpenFOAM is distributed with a large number of built-in solvers, covering different
aspects of simulations which can be done. These solvers can be referenced as examples
and new applications can be developed to fit the needs of the one’s simulation and
study. Its related documentation, such as, user guide (13) and tutorial guide (14) are
available online in details and a learner can gain understanding of how the cases are
assembled and evaluated within the software environment.

5.1.1 Finite volume method

Fluid equations usually take the form of non-linear partial differential equations and
so, most of time, no analytical solution can be derived from them. In that context,
different numerical techniques are employed to reach an approximation of the solution
to these problems. These methods require a discretization of the domain in which the
solution is going to be calculated. OpenFOAM employs the finite volume method, an
approach in Computational Fluid Dynamics (CFD) that discretizes equations by di-
viding the computational domain into smaller control volumes. This method involves
the integration of equations over these volumes, focusing on the conservation laws of
mass, momentum, and energy. It facilitates the accurate simulation of fluid flow by
calculating fluxes across the faces of these volumes, enabling the analysis of various
physical phenomena within the fluid domain.

Similarly to the finite element method, the FVM also needs a discretization of the
geometric domain but in this numeri- cal method, the elements used to integrate the
algebraic equations represent- ing the conservation partial differential equations are
finite volumes. Some of the terms in the conservation equation are converted into face
fluxes and evaluated in the discretized finite volumes. These face fluxes are strictly
conservative. This is that the flux entering the volume is equal to the flux leaving the
adjacent volume.

Geometric domain discretization

The finite volume method relies on discretizing the computational domain into control
volumes (CV), each with a computational point or centroid where the solution is
calculated. OpenFOAM employs a cell-centered approach, defining unknowns at these
cell centers and computing their values as averages within the cells. Control volumes
are determined by neighboring cells; internal faces separate volumes with adjacent
neighbors, while faces without neighboring volumes are considered boundaries.
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Discretization of the fluid dynamic’s equations

The continuity equation, Navier-Stokes equations, and the heat equation can be ex-
pressed more generally using the Reynolds transport theorem formulation:∫

Vp

∂ρΦ

∂t
dV +

∫
Vp

▽.(ρu⃗Φ)dV =

∫
Vp

▽.(ρΓΦ ▽ Φ)dV +

∫
Vp

SΦdV (5.1)

where VP is the control volume cell, Φ may be any scalar or vectorial variable of the
continuum, ΓΦ is the diffusivity of the variable and SΦ is a source term.

In order to recover the continuity, momentum and energy equations, the parameters
shown in Table 3 need to be shaped in the transport equation.

Equation Φ ΓΦ SΦ

Continuity 1 0 0
Momentum u⃗u v −▽ p
Energy CpT κ 0

Table 3: Parameters to recover continuity, momentum and energy equations

The fluid variable is determined by integrating itself across the volume cell, resulting
in the following form:

Φ = ΦP =
1

VP

∫
VP

Φ(x)dV (5.2)

Therefore, a complete discretization of the previous terms is needed to solve the physics
regarding a general fluid dynamics problem.

5.1.2 Structure of a case in OpenFOAM

In this section, a brief explanation on the functioning of OpenFOAM software is pre-
sented, including the details of solver extension and implementation of the case in the
current thesis.

To conduct a simulation, OpenFOAM relies on a series of files dedicated to config-
uring specific case parameters such as geometry, boundary conditions, initial states,
discretization schemes, etc. These files collectively define the necessary settings for
running simulations tailored to different scenarios. The minimum set of files required
to run an application is shown in Figure 5.1.
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Figure 5.1: Case Directory Structure

The constant directory

It contains fields like gravity and other unchanging physical parameters for the specific
simulation. Additionally, upon creating the mesh using the ’blockMesh’ command, the
’polyMesh’ directory emerges, consisting crucial mesh-related data such as points,
faces, boundary and associated details.

The system directory

Within this directory, it includes all the files defining the solution’s parameters and
its control schemes. A brief overview of the files utilized in this project is described
below:

• controlDict: sets input parameters essential for the creation of the database.
The compulsory entries are the computational time, time step control, data read-
ing and writing, etc.

• fvSchemes: sets the numerical schemes for terms, such as derivatives in equa-
tions, that appear in applications being run. A scheme should be set for each of
the following terms:

– Time schemes, ddtSchemes, discretize the temporal derivatives d
dt
, d2

dt2
.

– Gradient schemes, gradSchemes, discretize the gradient terms ▽ϕ.
– Divergent schemes, divSchemes, discretize the convective terms ▽.(Uϕ).
– Laplacian schemes, laplacianSchemes, discretize the conductive terms▽.(DT▽
ϕ).

– Interpolation schemes, interpolationSchemes, contains the infor mation of
values at the faces are obtained from the values at the centres. The most
common is the linear interpolation.
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– snGradSchemes, discretize the surface normal gradients at the faces

• fvSolution: contains several subdictionaries which control the solver parame-
ters. There are three main subdictionaries:

– Linear solver control: it is outlined within the ’solvers’ subdictionary, en-
abling control over these settings. It is crucial to differentiate between the
linear solver, responsible for the numerical approach in addressing transport
equations, and the application solver, which encompasses all equations and
algorithms tackling the problem at hand. This section allows selection of
parameters like tolerance, preconditioner, and more.

– Relaxation factors: Within this sub-dictionary, the underrelaxation tech-
nique is managed, which enhances solution stability, allowing the selection
of varied relaxation factors for different solution variables.

– Algorithm selection: In this section, the method for coupling transport equa-
tions is chosen from options like SIMPLE, PIMPLE, and PISO. Addition-
ally, other solution control parameters can be specified within this con-
text. Within the fvSolution dictionary, various parameters extending be-
yond transport equation resolution can be specified to regulate solvers and
algorithms. For instance, in this thesis, the application solver will extended
to temperature equation, addressing the pure conduction heat equation or
conjugate heat equation.

• blockMeshDict: Within this file, configurations for the computational domain
and associated parameters are established. This comprises defining the size and
shape of the computational domain and mesh, as well as specifying boundary
conditions. Once the blockMeshDict dictionary is appropriately configured, ex-
ecuting the command blockMesh generates the mesh, stored in the polyMesh
directory within the constant folder.

The time directory

It comprises individual data files for specific fields. These data files contain either the
initial values and boundary conditions, which the user needs to define for outlining
the problem, or the outcomes generated by OpenFOAM and stored in files. It shall be
noted that OpenFOAM fields always need initialization, even in scenarios where the
solution might not strictly require it, such as in steady-state problems.
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5.2 Description of the solver

In this thesis, a solver applying a density based method, using the adjoint approach to
compute the sensitivities with respect to the design variables, is studied. The porosity
of each cell, represented by the design variable α, is utilized to penalize unfavorable
cells. The update occurs in a single-step process, employing partially converged fields
to calculate sensitivity.

In this section, it describes the basic algorithm of ”adjointShapeOptimizationFoam”
and how extensions are made to solve the simulation problem for cost function related
to heat transfer case. In order to be able to validate the results to some extent, the
implementation of cost function and sensitivity of each cell is presented.

5.2.1 HeatTransferAdjointFoam

In order to compute sensitivities using an adjoint method, it has been established in the
theory section that solving two sets of governing equations is necessary: the primal and
the adjoint. Both sets contain comparable terms, allowing for the utilization of similar
algorithms to solve them. The solver employs a ”one-shot” strategy to solve both the
primal and adjoint systems, calculating sensitivities using partially converged quanti-
ties. The adjoint system is solved in a manner similar to the primal system, the built
in solver, ”adjointShapeOptimizationFoam” employing a SIMPLE-type algorithm to
couple pressure and velocity. In this scope of thesis, it requires solving an additional
equation, therefore, temperature equation is implemented and a new solver named
”HeatTransferAdjointFoam” is complied. Figure 5.2 below graphically illustrates the
solution procedure.

Figure 5.2: Solution Procedure in HeatTransferAdjointFoam.C
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5.2.2 HeatTransferAdjointFoam.C

The solver is initialized by including a number of files:

Figure 5.3: Listing:1 File HeatTransferAdjointFoam.C

The initial header file creates an argList object, named args, comprising the arguments
passed into the main function. It verifies both the case path and root path alongside
the argument list. Additional details regarding the case, such as processor count and
directory specifics, are stored. The files createTime.H and createMesh.H initiate an
object of the Time class, runTime, and an object of the fvMesh class, mesh, respec-
tively. The runTime object contains time-related data, essential counters, and values
extracted from the control dictionary. On the other hand, the mesh object includes
finite volume mesh details, such as, node positions, face areas, cell volumes, and infor-
mation related to interpolation schemes to be employed.

In createFields.H, the initialization process involves setting up the variables utilized by
HeatTransferAdjointFoam. This contains the primal and adjoint variables, alongside
mesh density, other dimensioned scalars, and the turbulence model. As for initAd-
jointContinuityErrs.H, it sets the cumulative adjoint continuity error to zero during
initialization.

Figure 5.4: Listing:2 File HeatTransferAdjointFoam.C

At the start of the main loop of the solver, the mesh density field is updated. As
for momentum predictor, the different terms of the constraints in Equation 4.2 can
be easily identified, including the turbulence term, a pointer to the RASModel used,
which is constructed in createFields.H. The sink term due to porosity is treated like
other source terms and is implemented implicitly using fvm :: Sp(alpha, U) as shown
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in Figure 5.4. The pressure and velocity of the primal system are then solved by using
the value of the velocity from the momentum predictor to correct the pressure and
then correcting the velocity with the new value of p in a momentum corrector, in a
SIMPLE-type algorithm. As an extension to the built-in solver, the energy equation
corresponding to temperature distribution is included by reading thermal coefficients
from the properties under createFields.H, then the primal temperature is solved.

The adjoint system is solved in a very similar approach to the primal, using the same
viscosity (frozen turbulence) and calculated values of the primal quantities needed.

5.2.3 createFields.H

As mentioned previously, it has been discussed how the createFields.H file initializes the
variables utilized by the solver. The configuration for writing and reading the adjoint
pressure, velocity and temperature is established using the IOobject class, following
the approach for the primal quantities. A number of scalar fields used in the solver are
also defined in this createFields.H.

Figure 5.5: Listing:2 createFields.H

As shown in Figure 5.5, the code makes the solver write the data to the file “pa” in a
directory named after the timestep. The same is done for the adjoint velocity Ua and
the adjoint temperature Ta.

5.2.4 Boundary conditions

The existing implemented adjoint sovler of OpenFOAM optimizes for total pressure
loss rather than controlling power dissipated or temperature distribution which the
thesis focuses on. Therefore, the following files are modified and implemented for those
boundary conditions as described in the theory section.
The current setup incorporates additional boundary conditions mainly for the outlet
and not for the inlet since the boundary conditions for the inlet patch often align with
existing conditions, rendering them non-distinctive for the adjoint method.

adjointOutletPressureHeatFvPatchScalarField.C
adjointOutletVelocityHeatFvPatchVectorField.C
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5.2.5 costFunction.H

The intended cost function for minimizing temperature distribution within the domain,
as described in the theory section is implemented. In Figure: 5.6, it represent the
cost function implemented for power dissipation. More than one cost function can
be implemented and user can choose which cost function to be considered for the
simulation.

Figure 5.6: Listing:3 costFunction.H

5.2.6 sensitivity.H

As explained in the theory section of computing sensitivity, the equations are imple-
mented within the solver. In order to be able to obtain the output file for the sensitivity
of each cell, an addition to createFields.H has to be made and the values have to be
updated in every loop in HeatTransferAdjointFoam.C.
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6 Validation of Methods

To validate the solver’s progression across various extended stages, creating a bench-
mark problem for testing proved beneficial. Therefore, 2D cantilever beam has been
incorporated as an initial example. This demonstration offers a clear and evident way
to check the effectiveness of the implemented solver to analyze the simulation flow in
OpenFOAM and continue topology optimization in Python FEniCS in order to design
manufacturable and lightweight components.

6.1 Numerical simulations in OpenFOAM

The problem layout consists of 2D domain Ω(x, y) = (Lx, Ly) ∈ R of lengths, Lx = 50
[mm], Ly = 20 [mm] with prescribed temperature at the boundary, Th in (x, y) = (0, 0)
and Tc in (x, y) = (Lx, Ly), with Th > Tc and the adiabatic horizontal walls.

6.1.1 Mesh density data transfer between FEniCS solver and OpenFOAM

As the main objective of this work is to integrate OpenFOAM simulation results to the
structural topology optimization framework as explained in the flow chart, Figure 1.2
, it is critical to transfer the pseudo-density data of structure’s domain obtained from
iterations of topological optimization problem to OpenFOAM accurately. This trans-
fer of pseudo-density data to OpenFOAM to further perform the intended simulation
and sensitivity analysis shall be done for every iterations or at user’s defined inter-
vals. While it ensures that the most recent and updated pseudo-density information
is integrated into each iteration, it incurs significant computational overhead due to
the repeated data transfers between the models. This may may result the simulation’s
overall efficiency and escalate computational expenses significantly. On the other hand,
opting for user-defined intervals to execute the transfer mitigates the computational
burden to a certain extent.

Topology optimization is being done using the previously developed codes in Python
with FEniCS finite element solver; FEniCS primarily uses its own mesh format, which
is commonly represented in XML-based formats such as XML (.xml) or XDMF (.xdmf).
These formats contain information about the mesh topology, geometry, and associated
data (such as pseudo-density data). When transferring meshes from FEniCS to other
simulation environments, like OpenFOAM, conversion to a format compatible with the
target software is often necessary. In OpenFOAM, the mesh is stored in a particular file
structure that consists of various files and directories describing the geometry, connec-
tivity, and boundary conditions. OpenFOAM primarily uses ASCII-based formats for
readability and ease of manipulation in (.msh) extension. OpenFOAM can also import
mesh data in formats like OBJ (.obj), STL (.stl), or VTK (.vtk). Conversion tools or
utilities are used to transform these formats into the OpenFOAM-native format.

When transferring a mesh to OpenFOAM from other software or formats (such as
FEniCS, Gmsh, etc.), conversion tools or intermediate formats might be necessary to
ensure that the mesh data is represented in a manner compatible with OpenFOAM’s
file structure and formats. After conversion, it’s crucial to validate the imported mesh
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for accuracy, boundary conformity, and element quality. The methods explored for this
conversion are briefly described in the following:

1. OpenFOAM’s mesh conversion utilities: There are numerous mesh conver-
sion utilities, such as, ansysToFoam, fluentMeshToFoam, gmshToFoam, vtkUn-
structuredToFoam, etc. Since there is no direct conversion utilities available from
FEniCS mesh (.xdmf), conversion to intermediate format is necessary, such as
, Gmsh (.gmsh) or VTK (.vtk). In the scope of this work, ParaView is used to
visualize the density fields and it also allows to export the data to other formats,
(.csv), (.vtk). Once converted, the mesh can be imported into OpenFOAM using
appropriate utilities (vtkUnstructuredToFoam). However, OpenFOAM operates
with three-dimensional (3D) meshes by default, therefore, it requires defining the
additional dimension and mesh cells appropriately for 2D problems. This can be
done by ”extrude2DMesh” mesh generation utility for creating a 3D mesh by
extruding a 2D mesh with specified thickness.

2. Mesh generation with the ”blockMesh” utility: The mesh generation util-
ity, blockMesh, is supplied with OpenFOAM, which creates parametric meshes
with grading and curved edges. The mesh is generated from a dictionary file
named blockMeshDict located in the constant/polyMesh directory of a case.
blockMesh reads this dictionary, generates the mesh and writes out the mesh
data to points and faces, cells and boundary files in the same directory. For a
2-dimensional geometry, the user has the option to omit block faces lying in the
2D plane, knowing that they will be collected into an empty patch as required.

Both methods have been verified to ensure the converted mesh for simulations accu-
rately represents the original geometry and maintains its essential features.

In order to simplify the validation of the method, the solution of the compliance
topology optimization problem stated in Equation 2.15, 2.16 is first considered as:

f(xP ) =
N∑
e=1

(xP,e)
pψ0(ue)

g(xP ) =
∑N

e=1 xP,e

N
− V ∗ ≤ 0

=
∑N

e=1 xP,e −NV ∗ ≤ 0

The compliance topology optimization is applied to simple cantilever 2D-beam with
boundary conditions and load case, as illustarted in Figure 6.1a and its end result
is shown in Figure 6.1b, this pseudo-density data is used to initialize the mesh in
the OpenFOAM domain at the start of the simulation before executing the solver
equations.
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(a) Boundary conditions and load case of 2D cantilever beam

(b) Topology optimization result of 2D cantilever beam

Figure 6.1: Cantilever Beam Topology Optimization Result
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6.1.2 2D thermal flow problem

In order to investigate the validity of the solver, a 2D thermal problem is presented. As
described in the theory section, the problem is formulated based on Equation 4.4as:

min J(T ) = 1
2

∫
Ω
(T − Tref )

2

s.t. ∂v
∂t

+ (v.▽)v −▽.ν(▽v +▽vT ) +▽p+ αv = 0
∂ρ
∂t

−▽.(ρv) = 0
∂T
∂t

+ (αv.▽ T )−▽.(k(α)▽ T ) = 0
0 ≤ α ≤ 1

The problem domain Ω(x, y) = (0, Lx)× (0, Ly) ∈ R2 is a beam of side Lx = 50[mm],
Ly = 20[mm], with the two vertical sides at fixed temperature, T (0, Ly) = Th and
T (Lx, Ly) = Tc, and the adiabatic horizontal sides.

The design variable, α represents the pseudo-density field, [0, 1], which is obtained
by solving compliance topology optimization problem using FEniCS solver. Therefore,
in the very first step of performing the simulation in OpenFOAM, it is critical that
the accurate pseudo-density field to the OpenFOAM mesh has been updated and this
has been verified in the earlier section.

Secondly, it has been investigated the validity and reliability of the sensitivity analysis
by carrying out a comparison with the finite difference (FD) method. In finite difference
method, the difference step is set to 1×10−6 as when working with FD, governing equa-
tions must be converged fully because sensitivities are computed by subtracting two
very close values. A coarse mesh is used to perform the comparison and the detailed
values of sensitivities and relative errors are presented in Table 4. The sensitivities
computed by the continuous adjoint method in OpenFOAM delivered good agreement
with FD values, as illustrated in Figure 6.2. Therefore, the parallel solver is capable
of calculating correct sensitivities.

Figure 6.2: Sensitivity Analysis Result
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Sensitivities of J
Cells Continuous

adjoint
FDM Relative

difference
(%)

Cells Continuous
adjoint

FDM Relative
difference
(%)

1 0.7895 0.7895 0.0063 14 4.7395 4.7394 0.0010
2 0.0263 0.0262 0.1900 15 4.8865 4.8864 0.0010
3 0.0331 0.0330 0.1510 16 2.3587 2.3586 0.0021
4 0.0071 0.0070 0.7083 17 0.0639 0.0638 0.0782
5 0.0091 0.0090 0.5474 18 2.3554 2.3553 0.0021
6 2.0926 2.0925 0.0023 19 0.0366 0.0365 0.1366
7 0.0852 0.0851 0.0587 20 0.0266 0.0265 0.1883
8 4.8910 4.8909 0.0010 21 1.0045 1.0044 0.0050
9 4.5258 4.5257 0.0011 22 0.0297 0.0296 0.1684
10 5.6059 5.6058 0.0008 23 0.0212 0.0211 0.2359
11 3.4673 3.4672 0.0014 24 0.0019 0.0018 0.1588
12 3.3783 3.3782 0.0014 25 0.0041 0.0040 0.4870
13 5.4640 5.4639 0.0009

Table 4: Sensitivities and relatives error
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6.2 Coupling OpenFOAM results into topology optimization
framework

In the next step, in order to integrate the sensitivities derived from OpenFOAM simu-
lations into a structural topology optimization framework, transferring these calculated
sensitivities to the optimizer of the FEniCS solver becomes essential. The purpose is
to kick off the multidisciplinary optimization approach by considering thermal effects
alongside structural performance in a single optimization framework. With this com-
bined approach, it aims to create lightweight design solutions that balance structural
integrity, thermal requirements and manufacturability optimally.

Figure 6.3 represents the topology optimization solution of the minimized compli-
ance problem with manufacturing constraints through integrated approach. It can be
noticed that the solution obtained through this combined approach deliver more fea-
sible solution in terms of manufacturability while taking into account the structural
robustness.

Figure 6.3: Cantilever Beam Topology Optimization Result with Integrated Manufac-
turing Constraints
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7 Conclusion and Perspectives

In this thesis, the first goal was to explore the fundamental principles of topology
optimization, initially centered on the widely used SIMP methodology and its in-
tegration into a three-field optimization approach. This transformation marked the
evolution of the methodology into a multi-field method. This innovative multi-field
method integrated several casting manufacturing constraints, implementing filtering
and projection techniques onto the design variable field x. By doing so, the aim was to
provide engineers with a robust framework capable of accommodating different con-
straints associated with the casting process.

The ultimate goal was to empower engineers in the creation of cutting-edge, lightweight
designs for future cast parts. Through the adoption of this advanced approach, engi-
neers are ready to explore novel design spaces, leveraging the optimization framework
to craft innovative solutions that not only meet stringent structural requirements but
also adhere to the complexities of casting manufacturing. With this insight, it has been
explored to further advance by integrating casting-related simulations into the struc-
tural topology optimization framework. To achieve this, the formulation of a simplified
heat transfer problem within OpenFOAM has been accomplished and extended the
existing solver’s capabilities to compute sensitivities through OpenFOAM’s continu-
ous adjoint approach. Additionally, ensuring accurate transfer of mesh density data
between FEniCS Python and OpenFOAM became a pivotal aspect of this integration.
Therefore, the validation process involved confirming accurate update of mesh density
data within the software and the accuracy of thermal sensitivities using the finite dif-
ference method, strengthening the reliability and robustness of the implemented solver
in OpenFOAM.

The integration of OpenFOAM-derived sensitivities into the topology optimization
optimizer marks a significant step towards comprehensive optimization. By aligning
structural, geometric, and thermal constraints, this approach reaches to integrated
optimization, aligning the development of designs that excel in structural integrity,
manufacturing feasibility, and thermal management.

While this thesis has laid a foundational work by integrating a OpenFOAM simu-
lation to topology optimization, it only presented the surface of the vast potential
within the field of optimizing cast parts. There remains an expansive horizon of pos-
sibilities awaiting exploration and refinement beyond the scope of this research. Thus,
further improvement on the current method is strongly encouraged.

The following section presents the scope of future work to expand the optimization
driven design process of reliable lightweight cast component. The recommendations
are based on the experience gained during the progress of the project and are focused
on improving the process even further.

1. In this study, the thermal simulation and sensitivity analysis in OpenFOAM is
developed based on simplified conductive heat transfer aspect based on design
variable α[0, 1], however, this can be further enhanced by conjugate heat transfer
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approach, i.e., including the convective heat transfer for the void area within the
design domain. This can be done by defining the solid and fluid region based on
the mesh density value [0,1] and adding convective term for fluid region in the
energy equation.

2. To further challenge the numerical investigation in OpenFOAM for the cast
components, particularly to analyze the solidification behaviour, the coupled use
of the enthalpy-porosity technique can be established within OpenFOAM. Rösler
and Brüggermann (50) introduced a numerical model for a solid-liquid phase
change inside a latent heat thermal energy storage. Richter et al. (51), worked
out a method for the simultaneous mould filling and solidification process which
settles the developing of free surface flow and the liquid-solid phase transition
under the volume-of-fluid and enthalpy-porosity methods. By inspiring these
work, a new solver based on the coupling of volume of fluid (VOF) and enthalpy-
porosity techniques which covers the relevant physical effects during the process
of solidification can be developed.

3. Furthermore, for solidification analysis, the Niyama criteria developed can be
integrated into solidification solver to evaluate the Niyama values based on the
temperature gradient and the cooling rate. This aspect can predict whether the
cast part is free from porosities.

4. The current approach can be further extended for practical applications, with
complex structural configurations beyond the simple cantilever beam. Such a
complex configuration can be determined within the parallelepipedic reference
domain by defining three sub-domains: the non-design domain, which can be
either set to void or full material and will not be modified by the optimizer,
the support region on which boundary conditions are applied and the load re-
gion, on which external forces act. This kind of structural configuration can be
created using the 3-dimensional finite element mesh generator gmsh developed
by C.Geuzaine and J.-F.Remacle (52), which allows the user to simply mark
the different sub-domains with numerical labels. The gmsh file can then be con-
verted to an xdmf extension, which FEniCS is able to read and import into the
problem, allowing the optimization of mechanical parts of complex shapes. The
supports and loads are defined by reading the labels of the imported mesh. Us-
ing OpenFOAM’s mesh conversion utilities ”gmshToFoam”, the gmsh file with
respective boundary and load conditions can also be converted for simulations
with OpenFOAM solvers.
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