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Abstract

The recent surge in interest surrounding generative Al, particularly stable diffusion, highlights their
transformative potential in creating realistic content across various domains, from images to text and
music. These advancements promise to revolutionize content generation, opening up new creative
possibilities. However, challenges persist, notably in ensuring high image quality and consistency.

The challenges addressed include generating minimally pixelated, high-resolution images swiftly,
and maintaining consistency across characters, scenes, and style within comic panels. Achieving
100% consistency in stable diffusion remains elusive due to the inherent randomness in AI models
trained on diverse datasets.

The research aims to create a tool enabling individuals with limited drawing skills to produce comics
using generative Al Key findings are presented, starting with an exploration of generative Al and
stable diffusion, comparing older models with newer SDXL1.0 models, and selecting ComfyUI as the
ideal user interface. The study delves into workflows, testing image generation for text-to-image,
text-to-image with ControlNet, inpainting, and maintaining consistency through effective prompts.

The research explores alternative solutions, focusing on LoRAs for fine-tuning models and achiev-
ing both consistency and flexibility. Tests reveal LoRAs’ potential in altering character appearances,
generating cartoon-style images, and providing conclusive results for prompt-driven modifications.
The integration of LoRAs into ComfyUI is discussed.

In conclusion, the research successfully achieves its primary objectives, showcasing the tool’s capa-
bility to generate consistent, high-quality comic panels. Despite challenges, the findings contribute
to advancing generative Al applications. The implications extend to potential uses in the creative
industry, emphasizing the tool’s adaptability and user-friendly nature.
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Chapter 1

Introduction

Before developing the technical aspects and methods used in this practical work, a contextual back-
ground followed by a brief introduction to the implementation of the tool will be considered. Any
challenges arising from this will then be discussed.

1.1 Context and motivation

In 2010, Julien and Maxime Deuse, 2 brothers, launched an international platform for Korean manga
translated into English, which quickly established itself as the forerunner of Webtoon in Europe.
The initiative was a huge success, with up to 100,000 readers a month, and it attracted a lot of in-
terest. In fact, they ended up selling their platform to a major Silicon Valley entrepreneur following
an offer they couldn’t refuse. Thanks to this sale, they were able to launch their own company to
put their passion for digital technology to work for project owners and, more recently, for their own
projects.

Artificial intelligence is growing exponentially. Its evolution has been marked by significant progress
in recent years, from rule-based systems to machine learning and deep learning techniques. These
advances have been made possible by increased computing power, innovative algorithms and in-
creasingly large datasets. As a result, the convincing results of using Al systems are making them
popular. There is more and more talk about them, and this is giving ideas to companies, like Deuse,
that want to innovate and have the opportunity to jump on the bandwagon.

Moreover, even more recently, generative Al, and in particular stable diffusion, have become hot
topics because of their transformative potential. They have demonstrated remarkable capabilities
in the creation of realistic content, from images to text and even music, pushing back the limits
of creativity and automation. These advances are gaining in importance today as they promise to
revolutionise content generation enabling new possibilities.

That’s why creative companies like Deuse are jumping on the bandwagon and thinking up innova-
tive products involving generative Al and image generation in particular. What’s more, the Deuse
brothers saw an opportunity to link their early experience and passion for Webtoon with the emer-
gence of artificial intelligence. They seized it by wanting to solve a problem that some people wish-
ing to create their own comic strip might have.



1.2 Idea

Today, when creating a comic strip, there are two important aspects to consider: the story and the
graphics. As a general rule, a writer will be good at one or the other. Many authors are not good
at drawing, but they can write good stories. Moreover, sketching art for comic strips can take long
hours of work, it’s quiet cumbersome and time consuming.

The idea of the project is therefore to enable authors with average or even mediocre drawing skills to
produce strips with a certain graphic and aesthetic style. These people will express their creativity
by using generative Al to generate high-quality images tailored to their story in just a few minutes
using tools such as prompts, drawings and image retouching. They select their favourite images and
then they can assemble them one below the other, adding the script and speech bubbles by hand on
each one, to create their own unique, high-quality comic strip.

The ultimate aim is to produce a web and/or mobile solution tool with a professional finish and
acceptable results. The aim is to ingeniously circumvent the limitations of this type of artificial
intelligence, in order to achieve a convincing result.

1.3 Benefits of generative Al for comic strips

Considering the potential advantages of such a tool [1], there are various technical benefits and
practical applications to explore.

« Democratizing artistic expression : A tool like this enables people with a wide range of artistic
abilities to create captivating visual stories by expressing their ideas and emotions in a unique
and accessible way. It opens up artistic avenues to people who might not otherwise have
considered creating comics as a form of self-expression.

 Educational value : This tool could be a valuable educational resource, helping users, par-
ticularly students, to become familiar with storytelling, visual communication and the art of
sequential storytelling. It would foster skills related to plot development, character construc-
tion and visual composition.

« Efficiency and time-saving : Al-generated comics can be considerably faster than manual cre-
ation, making it a practical tool for content creators. This efficiency allows users to focus more
on storytelling and less on technical aspects.

« Entertainment : Beyond its educational and professional applications, the tool offers an enter-
taining and attractive hobby for users who simply want to have fun by creating and sharing
comic content that suits their tastes.

« Accessibility : It makes the art of comic creation accessible to a wider audience, including
people with physical limitations or disabilities that might hinder traditional drawing or illus-
tration. It could therefore promote inclusion and diversity in the art world.

+ Customization and personalization : Users can customise characters, settings and storylines
to suit their preferences, fostering a sense of ownership and personalization of their creations.
It’s a versatile means of communication and storytelling.



+ Collaboration : The tool facilitates collaboration, allowing multiple users to work together on
comic book projects, making it ideal for group work, creative collaborations and team-building
exercises in order to produce original content.

1.4 Setting up the tool - framework description

In this section, the configuration chosen to achieve our objective from front-end to back-end will be
briefly described. Here below, we can see on Figure 1.1 the project configuration.

User Server

deuse.comics.com
b A |;ljl||u|

django
HTML React

A

API
Generated

images Json

\
ComfyUl

U

Google
Server GPU

Figure 1.1: Project configuration

Firstly, an interactive web user interface has been created using the React JavaScript library. It is
from this interface that users will be able to create their comic strip. This React interface (front-end)
will interact with a Django server (back-end) using HTTP requests to send data to the server, as
well as receiving data from the server in HTML format. Then, depending on the data received from
Django, the user interface will be updated. This creates an interactive and responsive user experi-
ence while leveraging the power of React to build the interface and Django to manage the data and
server-side logic.

For image generation, we’ll be using stable diffusion which is an open-source generative Al imple-
mentation. For ease of use and to be able to control how the images are generated, we’ll use ComfyUI
[2, 3] which is an existing node-based graphic user interface (GUI) for stable diffusion. It was created
in January 2023 by Comfyanonymous [4]. It’s one of the most powerful and modular interfaces. In
fact, even StabilityAl, the creators of stable diffusion, are testing Stable Diffusion internally using
ComfyUI and have hired the Comfyanonymous collective to help them work together on in-house
tools.



In a nutshell, the interface lets you build image production workflows by linking together different
blocks (called nodes). Some commonly used blocks are loading a control point model, entering a
prompt, specifying a sampler and so on. ComfyUI breaks down a workflow into rearrangeable ele-
ments so you can easily create your own. There’s no need to code anything, everything is already
pre-implemented in the backend. Workflows are saved as Json files. Another interesting feature is
that SDXL models, the latest latent image generation models, are supported.

However, image generation requires a lot of computing power. So we needed a high-performance
machine to generate good-quality images relatively quickly. That’s why Google servers are being
used for this project, at least temporarily. Google Cloud’s Compute Engine [5] offers the option of
adding graphics processors (NVIDIA GPUs) to virtual machine (VM) instances. These GPUs can
therefore be used to accelerate specific heavy graphics workloads on the VM, such as deep learning.

Then the communication with ComfyUI is established via an Application Programming Interface
(API), which sends data in Json format. This Json document defines the workflow with all the pa-
rameters for image generation. The APl is a set of rules and protocols that enable different software
applications to communicate with each other. They are essential for creating interconnected soft-
ware and enabling different applications to work together coherently.

Finally, the results - the generated images - are sent to the Django server and then to the user
interface. All the user has to do is select the one they prefer and incorporate it into their comic. This
process occurs cyclically each time requests are sent by the user to the Django server.

1.5 Challenges

Any project and any initial idea brings, depending on the methods and techniques used, its share of
advantages and disadvantages. These problems are often possible to circumvent, mitigate or even
resolve following an understanding of the tool and in-depth research. In the present case, the use of
stable diffusion offers many advantages but certain limitations are visible.

As a reminder, the goal is to offer users a qualitative experience both in terms of image generation,
ease of use and the acceptable time necessary for them to create their comic strip. So, perhaps in
the end we will have to make compromises between these different aspects in order to have the best
possible output.

Here are some challenges :

« Image quality : The images generated must be the least pixelated images possible for rel-
atively large dimensions 1024 x 1024 in order to provide a pleasant experience to readers.
These high resolution images should be generated in line with the prompt relatively fast.

« Image composition : A character should be able to be generated in the desired position and
it should also be possible to generate images with multiple characters on them. This is not
easy to achieve at the moment.



» Image consistency : While progressing through the various panels, it is essential to uphold
a consistent portrayal of both characters and scenes. This entails ensuring that the elements
within the scene, as well as the appearance of the characters and their facial expressions,
remain unchanged. The consistency between characters, character clothing and locations is
complicated to obtain at the moment, as is a certain style. However, we know that we have to
be realistic and therefore that achieving 100% consistency in stable diffusion is not possible.
Indeed, Al models are trained on large image datasets. These datasets are diverse and contain
a wide range of visual styles and/or objects and/or scenes. The inherent variability in training
data can lead to some degree of randomness in the generated images.

We already know that there are different techniques to tackle these problems like good SDXL models,
good prompts creation, LoRA training, ControlNet SD plugin, ... It is on these that the foundation
of this research work rests.

1.6 Report structure and useful information

The structure of the report is as follows:

+ Deuse SRL will be presented in Chapter 2. The analysis will focus on a number of interesting
aspects : the company’s history, its services and products, its target sectors of activity, its
short- and long-term vision, its various business, management and organisational strategies
and, finally, its quality.

« The deep learning concepts necessary to understand the use of ComfyUlI, such as generative
Al models and particularly latent diffusion models are developed in Chapter 3. We will also
look at stable diffusion, explaining its various components and applications and comparing
the different SD1.5 and SDXL models. Other interesting concepts will also be covered.

« ComfyUI will be present and the first workflows created using SDXL will be tested and anal-
ysed in Chapter 4.

« Several ideas and possible technical solutions to alleviate the limitations caused by the diffi-
culty of having coherence between characters will be discussed in Chapter 5.

« Analyses on LoRAs and the different stages involved in training SDXL LoRA from data col-
lection and captioning to training itself and testing will be seen in Chapter 6.

+ The final result obtained and discussed is established in Chapter 7.

« Finally, the contributions made by this work and the directions for future work are finally
listed in Chapter 8.

The image generation tests were carried out on an NVIDIA GeForce RTX 4060.
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Chapter 2

Deuse SRL company analysis

This thesis is associated with an internship at Deuse. This chapter provides a non-technical overview
of the company and its strategic elements. Much of the information in this chapter comes from the
Deuse company website [6] as well as my personal experience in the company.

2.1 About

Deuse is a SRL company currently based in Liege, Brussels and Hasselt. It’s an IT engineering
company. Their team of around 40 people is made up composed of engineers and developers and
business and marketing oriented profiles. They are driven by the desire to invest in innovative and
daring projects and to become a trusted partner for their customers. Their partners’ success is their
priority. The company’s website is available here.

2.2 Services (and products)

Deuse is first and foremost a consultancy specialising in the creation of digital solutions tailored
to its customers’ needs, such as mobile applications, web platforms and interfaces, management
software (ERP, CRM, progiciel, etc.), IoT systems and other bespoke developments. They also have
expertise in data science (databases).

However, they are also keen to develop interesting in-house projects such as Odevio and Stripik, the
application for creating webtoon-style comics.

« Odevio [7] is a utility designed to assist developers, whether working independently or collab-
oratively across various operating systems such as Linux, Windows, and MacOS. Its purpose
is to streamline the configuration and publication process of Flutter applications on iOS, sig-
nificantly minimizing the time required for installation. Here is the website for this particular
project.

« Stripik [8] is still a beta version of an application that will enable users to create their own
comic strips in a reasonable time by generating panel images using artificial intelligence. The
aim is to offer a tool that is easy to use, has a good quality-creation time ratio and enables
consistent, yet diverse, high-resolution images to be obtained. It is this project that the thesis
research focuses on. Here is the website for this particular project.
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In order to carry out all these projects, they employ diverse technologies, such as the Django web
framework [9] in Python for the backend, facilitating straightforward web application development
through code reuse. The Flutter software development kit [10] is used for the front-end, enabling
the creation of cross-platform applications compiled natively from a unified code base. Additionally,
the React JS library [11] is employed to simplify the development of single-page web applications.
These technologies operate within the Docker architecture [12], designed to assist developers in
creating, sharing, and running containerized applications.

2.3 Activity sectors

They develop unique tools for their customers in a wide range of sectors : healthcare, events and the
general public, construction, industry, human resources, marketing and sales, public services, etc.

2.4 Vision and mission

The team of skilled engineers is motivated by a commitment to invest in cutting-edge and bold ini-
tiatives, creating digital solutions tailored to address the intricate challenges faced by businesses.
The objective is to provide companies with a high-quality tool that sets them apart from competi-
tors, ultimately establishing a trusted partnership. The selection criteria prioritize innovation and
the significant impact of a project.

The company envisions substantial growth in the future and is actively pursuing this goal. As part
of this expansion strategy, new offices have been established in Hasselt, Flanders, while the current
offices in Liege, now deemed too small, will be relocated to a larger three-story building. Over the
past few months, the team has grown from 30 to 40 members. Additionally, there is a strategic am-
bition to launch more enterprise software projects (such as ERP and CRM) and initiatives involving
artificial intelligence, seizing the existing opportunities in these domains.

Furthermore, the company aims to embrace sustainable development by pursuing a three-year sus-
tainable entrepreneurship certification offered by the CCI Wallonia'. The objective is to align the
company with the seventeen sustainable development goals outlined by the United Nations since
2015.

2.5 Strategy

The strategic elements of a company encompass factors that can provide it with a competitive edge.
This segment elucidates the strategic measures adopted by Deuse from perspectives such as orga-
nization, human resources, research and development, and marketing.

1CCI Wallonia corresponds to "Chambre Wallonne de Commerce et d’ Industrie". It manages the network of Walloon
business services and provides assistance to its members’ projects in the Walloon region.
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2.5.1 Organizational

The staff consists of two CEOs, the Deuse brothers, along with product owners, salespersons, com-
munication professionals, HR personnel, and R&D employees. All are more or less on an equal
footing except for some which depend mainly on seniority. Departments are designated based on
internal constraints, employing an input-based departmentalization model. Decision-making is cen-
tralized.

Most of the meetings are informal, although there are occasional more significant ones. They fol-
low the SCRUM method’s daily practice, wherein each morning, every product owner conducts a
meeting with the employees working on their projects. During these meetings, everyone shares
their plans for the day and sometimes discusses challenges encountered in the project. This fosters
mutual support among the meeting participants. Consequently, work coordination within the com-
pany is achieved through mutual adjustment, without specific oversight from management. Team
monitoring is carried out by 2-3 employees, and the findings are reported to the directors to assess
whether everything is going well and if everyone is satisfied.

2.5.2 Human resources management

Deuse is an expanding firm boasting approximately 40 staff members. The cornerstone of its human
resources management (HRM) policy lies in its values, which define the principles upheld by the
company. Essentially, Deuse places a significant emphasis on fostering team spirit, open communi-
cation, and mutual support among its employees, all while maintaining a serious and professional
demeanor. The company places great importance on cultivating a positive atmosphere and embrac-
ing the youthful energy of its workforce. To achieve this, regular team-building activities and group
meals are organized. Deuse is committed to ensuring that every individual not only finds their place
within the team but also experiences personal and professional well-being. The company offers in-
house training opportunities and actively encourages participation in engaging and diverse projects,
aiming to equip employees with a broad spectrum of skills and prevent monotony in their work.

2.5.3 Marketing management

Deuse primarily caters to businesses within its customer base. The company places considerable em-
phasis on maintaining strong customer relations, utilizing the SCRUM project management method
for project implementation. This methodology fosters extensive collaboration with diverse stake-
holders through multiple interactions and validation stages, ultimately aiming to develop an optimal
product. The SCRUM approach operates on the principles of transparency, inspection, and adapta-
tion, with significant dedication to its implementation to ensure customer satisfaction.

In terms of customer acquisition, Deuse follows a business-to-business (B2B) model. The company
relies on its sales representatives to actively engage with clients, participating in conferences and
forums to showecase its services. Moreover, Deuse strategically selects bold and innovative projects,
collaborating with well-known events and companies like Nomics, Pairi Daiza, Radio Contact (Les
étoiles), SPA GP, among others. These collaborations contribute to their visibility through articles,
reports, and radio segments, fostering word-of-mouth referrals within the business community. Ad-
ditionally, Deuse promotes its services through its website and various social media platforms such
as Facebook and LinkedIn.
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2.5.4 Research and development

Deuse has recently engaged in internal research and development initiatives. They involve a few
employees in these projects, but not on a full-time basis, to have specialized experts in the research
field. Additionally, they welcome interns each year to assist them in their tasks. This collaboration
benefits both parties. On one hand, interns can acquire new skills while benefiting from the guidance
and experience of several skilled engineers in their field. On the other hand, Deuse, aiming to be
increasingly innovative and brimming with new ideas, lacks the time and personnel to bring them
to fruition. Thus, the interns provide them with the opportunity to explore these new areas.
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Chapter 3

Generative Al principles

Generating high-quality images based on text descriptions is a formidable challenge, requiring a
deep understanding of the intrinsic meaning of the text and the ability to create an image in line
with that meaning. Recently, diffusion models [13] have emerged as a powerful tool for solving
this problem. These models are capable of generating a wide range of images from textual content.
Among the diffusion models, the stable diffusion model is one of the most popular because it is
an open-source tool, meaning that anyone can easily create fantastic illustrations from simple text.
This is the tool we’re going to use to generate the images that will be included in the comics.

So, in order to fully understand the mechanism of stable diffusion, which is important to do in
order to be able to use the tool correctly, accurately and obtain the desired image generations. We
will look at the different layers of the diagram shown in Figure 3.1 below. We’ll start with deep
learning models and then go deeper and deeper into the diagram by making things more complex
until we reach the chapter we’re interested in : stable diffusion. The idea behind each layer will
be clearly explained, including the important components and sometimes mathematical principles.
The advantages and disadvantages will also be briefly discussed where appropriate.

Stable diffusion

Figure 3.1: Generative Al schema [14]
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3.1 Deep learning models

Deep learning models are a subset of machine learning models built on artificial neural networks,
inspired by the structure and functioning of the human brain. This is the basis for understanding
what happens next. These models have gained widespread popularity and demonstrated remarkable
success across diverse domains due to their capacity to autonomously learn hierarchical representa-
tions from raw data. This intrinsic feature enables machines to execute tasks and make predictions
or decisions without the need for explicit, task-specific programming. Deep learning harnesses the
power of neural networks to learn functions that approximate the underlying data distribution.

Here is a technical explanation of some key aspects of deep learning models:

+ Neural network structure : Neural networks are at the heart of deep learning models. Each
neuron in a neural network receives raw inputs, performs a weighted sum of these inputs,
then passes the result through an activation function to produce an output. These neurons
are organised in layers, generally consisting of an input layer, one or more hidden layers and
an output layer that produces the final output. The hidden layers are used to capture and
model complex patterns and representations in the data. Here below, on Figure 3.2, we can
visualize the general structure of a deep neural network highlighting what has just been said.

_— Neuron
[

Input Data —  Output

Layer 1 Layer N

J

Y
Hidden Layer

Figure 3.2: Deep neural network [15]

As implied above, each connection between neurons is associated with a weight, which de-
termines the strength of the connection. Neurons also have associated biases.

+ Activation functions : Activation functions introduce non-linearity into the model. The
most common activation functions are the sigmoid, the tanh and the rectified linear unit
(ReLU). These functions enable neural networks to model complex relationships in data. They
are essential for modelling the true distribution of data, as real-life problems are usually com-
plex.

+ Training : Deep neural network models are learned in two important phases : first the for-
ward pass, then the backward pass.

— Forward propagation : During forward propagation, input data is passed to the network
layer by layer and calculations are performed to generate the predicted output. The
output is then compared to the actual target values and the error is calculated using a
chosen loss function.
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— Backpropagation : Once the error has been calculated, backpropagation begins. This
involves calculating the gradients of the error with respect to the weights and biases,
starting at the output layer and working up the network. These gradients are computed
using the chain rule of calculus. Then the weights and biases are adjusted in the oppo-
site direction of the gradient using optimisation algorithms such as stochastic gradient
descent, with the aim of minimizing the error in subsequent iterations. This process is
typically repeated for multiple iterations (epochs) until the network converges to a state
where the error is minimized.

There are a number of different deep learning architectures, including feedforward neural networks,
convolutional neural networks (CNNs) for image data, recurrent neural networks (RNNs) for se-
quential data, and more advanced architectures such as transformers. Each architecture is adapted
to specific types of data and tasks. So, while deep learning models can be used for various tasks,
generative models, a subfield of deep learning, use deep learning techniques to create new data
resembling the patterns in the training data.

3.2 Generative models

Generative models [16, 17, 18, 19] are a category of unsupervised machine learning and probabilis-
tic models, p, specifically designed for data generation or synthesis. These models can take various
forms, handling inputs and outputs such as text, images, sounds, animations, 3D models, and other
data types.

The core objective of generative models lies in understanding and capturing the inherent patterns
or distributions within a given large dataset. Once these patterns are grasped, the model gains the
capacity to produce new synthetic but realistic high-dimensional data that exhibits similar charac-
teristics to the original dataset albeit with some level of variation or noise, x ~ py(x). Indeed, the
generated data are as close as possible from the unknown distribution p(x) and therefore we have
empirical samples. For instance, by training on a dataset filled with images of horses, a generative
model can be used to generate entirely new images of horses, ones that may not exist in reality
but still possess a convincingly realistic appearance. This feat is attainable because the model has
assimilated the fundamental principles that define what a horse typically looks like.

Within the realm of generative models, notable examples include :

+ Generative adversarial networks (GANs) : GANs consist of a generator and a discriminator
that compete in a game. The generator tries to produce realistic data, while the discriminator
tries to distinguish between real and generated data. This competition results in the generation
of high-quality data samples.

« Variational autoencoders (VAEs) : VAEs learn to encode data in a lower-dimensional latent
space and decode it to generate new data points. They aim to maximise the lower limit of the
log-likelihood of the data. This architecture will be discussed in the next section. VAEs rep-
resent a key element in stable diffusion, and, as a result, a dedicated section will delve deeper
into this aspect to enhance comprehension (see Section 3.3). This will facilitate a smoother
association with the stable diffusion architecture.

» Flow-based models (or normalizing flows) : Flow-based models focus on modeling com-
plex probability distributions by using invertible transformations to map simple distributions
to more intricate ones.
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While these models are proficient at creating high-quality images, they do come with certain lim-
itations that render them less effective than diffusion models, which model data distributions by
iteratively diffusing and denoising ! samples to generate data from simple priors. It is this last model
that is of particular interest to us, and which we will describe and attempt to understand in detail
in Section 3.4. The overall structure of all these generative models is shown in Figure 3.3.

Generator

G(z)

|i| % X

Discriminator

GAN: Adversarial ’ x
D(x)

training

VAE: maximize
variational lower bound

Flow-based models: X | Flow [7‘ Inllfrse x/
Invertible transform of f(x) | (2
distributions
Diffusion models:' X0 X1 z
Gradually add Gaussian [ --- (€ --1 Sle-------- mEE ot R
noise and then reverse

Figure 3.3: Generative models overview [20]

The success of a generative Al model hinges on meeting three essential criteria [16, 21] :

» High-quality sampling : In numerous applications, particularly those involving direct user
interaction, there is a strong demand for high-quality generation. For instance, in the context
of image generation, the objective is to produce results that closely resemble natural images,
making it difficult to distinguish between the generated and real ones.

+ Modal coverage and sample diversity : When the training data exhibits substantial com-
plexity and diversity, an effective generative model should adeptly capture this diversity while
maintaining the quality of its generated outputs. This contributes to the mitigation of unin-
tended biases in the learned models.

 Fast, computationally inexpensive sampling : Numerous interactive applications demand
swift generation capabilities, particularly in scenarios like real-time image editing, to facilitate
their integration into content creation processes. This not only enhances user experience but
also contributes to reducing the environmental impact of operating resource-intensive deep
neural networks that serve as the foundation for generative models.

!Gaussian noise is commonly used, it’s not a strict requirement. The type and characteristics of the noise can be
adapted to suit the specific modeling task and the nature of the data.
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Figure 3.4: Generative learning trilemma [16]

While existing methods often involve trade-offs and may not fulfill all requirements simultaneously,
diffusion models show promise in delivering both high-quality outputs and a wide diversity of sam-
ples. However, their main drawback is the relatively slow sampling speed compared to traditional
GANs.

Fortunately, recent techniques [22] have been developed to address the issue of slow sampling in
diffusion models. These methods include latent space diffusion models, critically damped Langevin
diffusion, or denoising diffusion GANs. In our study, we focus on stable diffusion models, which
consist on a latent diffusion model. It is therefore this type of model that will be the central focus of
the remainder of this report.

3.3 Variational autoencoders (VAEs)

Now let’s try to understand what VAEs are and how they work. This is important because it is one
of the components of stable diffusion. We’ll look at this later in Section 3.5.

VAEs [23, 24, 25] are a type of generative model used in machine learning, particularly for unsu-
pervised learning and generative tasks. They combine the concepts of autoencoders and variational
inference to model complex data distributions. The idea behind VAEs is that instead of compressing
any inputs into a fixed latent vector, as in a normal autoencoder, we want to map inputs on to a
distribution. The bottleneck vector, z, is replaced by 2 separate vectors, one representing the mean
of the distribution and the other one representing the standard deviation of that distribution.

At its core, see Figure 3.5, a VAE is a deep latent variable model that consists of primary components
[23] :

« The prior p(z) is prescribed, and usually chosen to be Gaussian.

« Encoder : This part of the VAE comprises a sequence of neural network layers that analyze
the input image, extracting its features and transforming them into a lower-dimensional la-
tent space representation of the probability distribution. The encoder is an inference network,
N N, which parameterizes the approximate posterior g4(z|x) taking as input x and outputting
parameters v = N N¢(x) to the approximate posterior.

1o = NNy(x),  qolzlx) = Nz 1, 0°T)
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« Decoder : This part of the VAE is composed of multiple neural network layers designed to
reconstruct the original image from samples in the low-dimensional latent space. The decoder
is a generative network, N Ny, which parameterizes the likelihood py(x|z) taking as input z and
outputting parameters ¢ = N Ny(z) to the data distribution.

w0 =NNy(z), pe(x|z) =N(x;p,0%I)

Variational inference : Variational inference is a statistical technique that approximates complex
probability distributions with simpler ones. In the context of VAEs, it is used to approximate the true
posterior distribution of the latent variables given the data. It relies on the Evidence Lower Bound
(ELBO), which decomposes the intractable posterior into the sum of the reconstruction loss and the
KL divergence loss.

Reconstructed
Input «----------oo Ideally they are identical. ~ ---------------------- - input
x~x
Probabilistic Encoder
70(2[x)
Mean w Sampled
latent vector
Probabilistic
X . Decoder x/
po(x|z)
o
Std. dev
_ An compressed low dimensional

z=p+to0e€ representation of the input.
e ~N(0,I)

Figure 3.5: Variational autoencoder architecture with gaussian [25]

Loss function : The loss function in VAEs [23, 24] is expressed as the ELBO. It’s a lower bound on
the log-likelihood of the data. The foundation of this lower bound lies in the non-negativity of the
KL divergence. So, by minimizing the loss, we simultaneously maximize the lower bound on the
probability of generating novel samples.

« Reconstruction loss, the first term on the equation below (1), quantifies how well the model
can generate data from latent space. Here we have an expectation operator because we are
sampling from a distribution. It’s often the negative log-likelihood of the data given the latent
space.

« KL divergence, the second term on the equation below (2), measures the difference between
the learned approximate posterior g,(z|x) and the prior distribution p(z). Usually, we want
make sure that the latent distribution we are learning is not too far from a normally distributed

gaussian N (0, 1).

0", ¢" = argmax ELBO(x; ¢, ¢)
B¢

= argmax B, ;) [log py(x|z)] — KL(q,(z|x)||p(z))

f p. ~ .
0,6 — ~—

@ ©,
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Reparameterization trick : In the computation graph that we have right now, on Figure 3.6, we
have a problem. In the middle of that network, after the bottleneck we have a sampling operation.
There is a node there that takes a sample from a distribution and then feeds that sample through the
decoder but the problem is that we cannot run backpropagation. We cannot push gradients through
a stochastic node.

Indeed, although unbiased gradients of the ELBO with respect to the generative model parameters
6, VyELBO(x; 0, ¢), are simple to obtain, gradients with respect to the inference model parameters
¢, V4ELBO(x; 8, ¢), are more difficult to obtain.

We have ELBO(x; 0, ¢) = E, (zx)[f (X, 2; ¢)] and so we cannot backpropagate through the stochas-
tic node z to compute V,f. So, in order to run the gradients trough the entire network and train
everything end-to-end, we will use the reparametrization trick [23, 24, 26].

z )~ q(2 | X) = 9(¢, %, )

Figure 3.6: Computation graph - Original = Figure 3.7 Computation graph -
[23] Reparametrization trick [23]

The reparameterization trick [24, 26], see Figure 3.7, consists in re-expressing the variable z ~
¢»(z|x) as some differentiable and invertible transformation of another random variable ¢ given x
and ¢, z = g(¢, x, €), such that the distribution of ¢ is independent of x or ¢. Therefore, instead of
directly sampling from the latent space and having a full stochastic node, z, that is blocking all of
the gradients because you cant do backpropagation trough it, we are going to split it up into a part
where you can do backpropagation and then another part which is still stochastic, €, but which we
don’t want to train because it’s fixed.

For example, if q4(z|x) = N (z; u(x; ¢), 02(x; ¢)), where pu(x; ¢) and 02(x; ¢) are the outputs of the
inference network N V,;, then a common reparametrization [23] is :

p(e) = N(g;0,1)

z=pux;0) +o(x0)O¢
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3.4 Diffusion models

Diffusion models [13, 27] belong to a category of probabilistic generative models that transform
random noise into meaningful data representations. This chapter on the concepts of diffusion is
essential to understanding stable diffusion. Through the utilization of diffusion models, we have the
ability to create images in two distinct manners : unconditionally or conditionally. In this section,
we will focus on the process of unconditional image generation and the process of conditional image
generation will be discussed in Section 3.5.

« Unconditional image generation simply implies that the model converts noise into a com-
pletely arbitrary data representation. The generation process lacks control or guidance, al-
lowing the model to produce images of diverse natures.

« Conditional image generation entails providing the model with additional information,
whether through text (text2img) or class labels (similar to CGANs). This method guides or
controls the image generation process.

Diffusion models entered the realm of deep learning with their initial introduction by Sohl-Dickstein
and colleagues in the seminal 2015 paper titled "Deep Unsupervised Learning using Nonequilibrium
Thermodynamics". So, they are inspired by non-equilibrium thermodynamics. However, it wasn’t
until 2020 when Ho and their team published the widely embraced paper "Denoising Diffusion Prob-
abilistic Models" [28], that the research and development of diffusion models gained significant mo-
mentum. Subsequently, rapid and substantial advancements have been achieved in this field in a
relatively brief period [13].

Forward Diffusion Process

Denoising UNet

Reverse Diffusion Process

Figure 3.8: Diffusion process [29]

Globally this is how it works (see Figure 3.8) [13, 27], the structure (distribution) of the original
image is progressively altered by adding noise following a Markovian chain of diffusion steps, and
then restored using a neural network model, meaning that the noise is removed at each step. By
repeating this process a sufficient number of times and with good quality data, the model eventually
learns to estimate the distribution of the underlying (original) data. Afterward, it is possible to start
with a noisy image and use the pre-trained neural network to generate a new image that represents
the original training dataset. The forward and backward diffusion processes we’ve just explained
are integral to every diffusion model. Let’s delve a bit deeper into them.
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Differing from VAEs or flow models, diffusion models are trained using a fixed procedure, and their
latent variables exhibit high dimensionality, matching that of the original data [27].

3.4.1 Forward diffusion process

During a forward diffusion process [30], see Figure 3.9, noise is incrementally introduced to a train-
ing image, gradually transforming it into a non-representative noisy image. This process is done
for some 7' time steps, i.e., xp. This forward process has the capability to randomly obscure the
original features, making it increasingly challenging to distinguish the initial images. This aspect
holds significant importance for training.

q(x; | xz1)

Xt Xy

Figure 3.9: Forward diffusion process [29]

Given a data point sampled from a real data distribution xy ~ ¢(x), we can define a forward diffusion
process in which a small amount of gaussian noise, € ~ A (0, 1), is added to the sample in T steps.
This produces a sequence of noisy samples X1, ..., X7. A variance schedule, {«; € (0,1)}_,, controls
the step sizes. So, we have [27] :

X; = JouXeo1 + V1 — aue
Q(Xt|Xt—1) = N(Xt; \/a_txt—la (1 - Oét)I)

T
Q(XlzT‘XO) = H C](Xt ’thl)
t=1

One convenient feature of the aforementioned procedure is that we have the ability to sample at
any chosen time step through a closed-form approach employing the reparameterization trick. With
a; = [[._, a; and & ~ N(0, 1), we have [28] :

X, = Vauxo + V1 — e
q(x¢|x0) = N (x¢; VAo, (1 — a)I)

With this formula, we are now able to efficiently sample x; directly at any given time step, signifi-
cantly enhancing the speed of the forward process. Note that all € are standard i.i.d. normal random
variables (independent and identically distributed).

Below, on Figure 3.10, we can observe how a noise is added to the image during the forward diffusion
process, enabling to create a training example. So, it shows the relation between the equation and
the image visualisation.
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Figure 3.10: A step of the forward diffusion process [29]

After generating numerous training examples for refining the foundational element of our image
generation model, we can use this dataset to train the noise predictor, resulting in an exceptional
tool capable of generating images when executed under specific configurations. This is what we’ll
be looking at next.

3.4.2 Reverse diffusion process

Starting with a noisy and unintelligible image, reverse diffusion allows us to reconstruct an image
(see Figure 3.11). That’s the core concept. In this step, the task is to remove the noise added during
the direct process, always iteratively (a Markov chain).

Neural Network
PU(-\'/T L Xt)

Add Noise
g(x; | x1.1)

X .
t-1 Reverse Noise

(impossible)

Figure 3.11: Reverse diffusion process [29]

Regrettably, a straightforward estimation of ¢(x;_1|x;) is challenging since it requires utilization of
the entire dataset. Consequently, we must train a model py, where 6 are learnable parameters, to ap-
proximate these conditional probabilities to facilitate the execution of the reverse diffusion process.
This is done using a neural network model known as a "noise predictor”, which is a UNet model in
the context of stable diffusion. The latter will attempt to predict the noise added to the image at
each step. The denoising process is known as "sampling” in stable diffusion since a new sample is
generated in each step. It’s often a trade-off between speed and accuracy [27, 30, 31].

With e ~ N(0,1), we have [31] :

Xt 1’Xt

=

Z

5
IIEH

p(xr) = N(XT; 0,I)
po(Xi—1x1) = N (%415 o (xs, t), 05 (x4, )1)
X1 = pg(Xe, t) + 0p(Xy, t)e
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3.4.3 Loss function

For learning the parameters 6 of the reverse process, we can form a variational lower bound on the
log-likelihood of the data as [31, 29, 32] :

Po(Xo0:1)
Eq(XO)[log p@(XO)] > E a(x0)q(x1:7]%0) [Iog% =L

X1 T|X0>

This objective can be rewritten as :

L= E‘J(XO)Q(X1;T|X0) |:10g

Lo—» Li1— LT]

t>1

po(Xo1) ]

Q(XLT\XO)

= EQ(XO)

where

« Ly = Eg(x, |xo) [10g pg(xX0|x1)] is the reconstruction term of the last denoising step that can be
ignored. One can approximate it using the identical neural network as in L;_;. Doing this, it
enhances sample quality and simplifies implementation.

o Lioy = Egpjxo)KL(q(X¢-1[%¢, X0) [ [Po(X¢—1(X¢)) is the stepwise denoising term. It compares
the target denoising step ¢ and the approximated denoising step py. The transition ¢(x;_1|xX, Xo)
provides a learning signal for the reverse process, since it defines how to denoise the noisified
input x; with access to the original input x.

« Ly = KL(q(x7|%0)||pe(x7)) shows how close the distribution of the final noisified input is
to the standard Gaussian. It is a constant term that can be ignored since ¢ has no trainable
parameters and p is just a gaussian noise probability.

Parameterization of L; for training loss : The distribution ¢(x;_1|X;, Xo) is the tractable posterior
distribution. You can see it on the computational graph of the reverse process, on Figure 3.12. So,
we have :
q(%¢|X¢-1,%0)q(X¢—1]X0)

q(x¢[xo)
= N(Xt—1§ :uq{xt? X0, t)? 01521)

Q(thlfxt, Xo) =

where s _ .
lul](XhXOvt) = \/a_t( _7&t_1)xt + atil( 7_ Oét)XO
1-— Qg 1-— Qi
s (=)l —a )
o, = —
1— Qi

q(xe-1 | x¢,%0) q(xe | X¢11,%0)
e e

'Pe Xi—1 l Xt pe X | Xt+1)

Xt | X 1 xt+1 | xt

Figure 3.12: Reverse diffusion process with the tractable posterior distribution [31]
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Now, using the reparameterization trick :

_Xt—\/l—O_ét€
X = a )
t

we can obtain the mean of the tractable posterior :

1 1—Oét
Xt —

Vai (1- 0_416)0%E

Nq(xtv X0; t) =

As a reminder, the goal is to approximate the conditional probability distributions in the reverse dif-
fusion process, py. To do that we need to learn a neural network, and therefore train /14 to predict 1.
So, since X; is available as input to the model, the mean of the reverse process can be parameterized
with a noise-prediction network as :

1 1—Oét
\/at \/1—0515

where ¢y is a function approximator intended to predict € from x;.

Ma(Xt, t) = Xta

Then, under this parameterization, we can assess the disparity between the target mean x, and
the estimated mean jp by employing the mean squared error (MSE). So, the minimization of the
expected KL divergence L, ; can be rewritten as :

. 1 (11— O‘t)2 = = 2
L, = arg m@m EN(E;O’I)QTZWHE - 59(\/ aXo + V1 — aue, t)“2

In their empirical study, Ho et al. (2020) [28, 27] observed that training their models using the true
variational bound results in improved code lengths, as anticipated. However, they also discovered
that achieving improved results in training the diffusion model is more effective when employing a
simplified objective that excludes consideration of the weighting term since it produces the highest
sample quality.

simple
L™ (0) = Bt 1y x0.e [|1€ — €0(x2, 1) |I]
= Eioi 10 € — €0(Vaxo + VI — e, t)|?]
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3.4.4 Training

For the training of diffusion models [32], we have a dataset containing the random time step ¢ se-
lected for each training sample, which is converted in embeddings (vectors), and, the correspond-
ing noisy images, obtained processing the forward diffusion process. These elements compose the
dataset used for reverse diffusion process training. We can clearly see in Figure 3.13 an example of
a representation of this dataset, taking NV epochs for the training.

Epoch=1 Epoch =2 Epoch=N
Time step . Time step - Time step .
embedding NOISY embedding Nmsy embedding Xo:sy
image image image
(random) = (random) = (random) =
r=14 t=78 t=064
(1113 [r1rr] [IT117
t=35 t=153 t=4
T OO . 1113
t=06 t=721 t=9
[ 111 1111

UNet

Figure 3.13: Dataset for diffusion training [32]

The UNet training process of a pure diffusion architecture (look at Figure 3.14) can be outlined as
follows :

1. Begin with the selection, from the training dataset, of a noisy training image and its corre-
sponding embedding.

2. Predict the random noise added to the image trough UNet.
3. Loss computation : we compare the predicted noise to the actual (labeled) noise.

4. Taking into account the calculated loss, that we tend to minimize, we update the noise pre-
dictor by adjusting its weights by backpropagation and gradient descent.

Noisy

loss
UNet ]( B _.

Predicted noise True noise &

Time step
embedding

Figure 3.14: UNet training [32]
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UNet architecture : A UNet [33], see Figure 3.15, is a symmetric convolutional neural network
composed of a ResNet backbone that reduces the dimension of an image through downsampling
(contracting path) and subsequently reconstructs it via upsampling (expansive path).

« The contracting part of the network consists of a series of convolutional and pooling layers.
The convolutional layers are responsible for capturing features at different spatial resolutions,
and the pooling layers reduce the spatial dimensions while increasing the depth.

+ The bottleneck connects the contracting path to the expansive path. It typically contains a

series of convolutional layers and serves as a bridge between the low-level and high-level
features.

+ The expansive path consists of a series of upsampling and convolutional layers. Upsampling
builds upon the FCN architecture, is used to increase the spatial resolution. And convolutional
layers help refine the segmentation output.
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Figure 3.15: UNet architecture [33]

To enhance gradient flow, and, therefore, to address the vanishing gradient problem, skip connec-
tions are incorporated between the downsampling and upsampling layers bypassing certain layers.
Moreover, these residual connections also help retain high-resolution information during the up-
sampling process in the decoder part of the network.

Vanishing gradient problem : The vanishing gradient problem [34] (Figure 3.16) emerges in deep
neural networks during backpropagation, where gradients diminish rapidly as they propagate from
output to earlier layers. This results in minimal updates to the weights of early layers, causing slow
learning or stagnation in training. The issue is accentuated with activation functions like sigmoid
or tanh, which compress input values into a limited range, leading to extremely small gradients,
especially for values far from the origin. We can see an example on Figure 3.17 of the sigmoid that
squeezes the input values between 0 and 1. Factors contributing to vanishing gradients include
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the use of bounded activation functions, network depth (since each layer multiplies the gradients),
improper weight initialization, or a high learning rate.
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Figure 3.16: Vanishing gradient problem Figure 3.17: Graph of the sigmoid acti-
[35] vation function and its derivative [34]

To solve this problem, we can use ReLU activation functions, a proper initialization of weights,
batch normalization or also skip connections. Indeed, residual connections [36], look at Figure 3.18,
allow gradients to bypass several layers and flow directly to earlier layers. This avoids the need
for multiplicative gradient operations and this is useful for capturing long-term dependencies by
directly liking the input and output of a layer.

X

A 4

weight layer
F(x) J relu «
weight layer identity

Figure 3.18: Skip connection [36]
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3.4.5 Sampling

Upon completing the training, we now possess a noise predictor capable of accurately evaluating the
introduced noise in an image. When utilizing this noise predictor, the following steps are followed
(see Figure 3.19) [30, 29] :

1. Start with a completely random image, a Gaussian noise for example x7 ~ N(0,I).
2. Iteratively denoise the image, doing at each step :

+ Request of the noise predictor, UNet, to estimate the noise present.

+ Then, subtract this estimated noise from the original image.

3. Finally, we get the clean image, x,, after repeating multiple times as needed the denoising
process.

To sample x;_1 ~ py(x¢_1|X;) is to compute :

1 1— Qi
X; 1 NG (xt meg(xt, )) ++/oie where &~ N(0,1)

Noisy image Predicted noise Denoised image  Noisy image Predicted noise
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Figure 3.19: Sampling [29]

Please be aware that in the final step, we only produce the acquired mean 14(xy, 1) without incor-
porating any additional noise to it.
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3.5 Latent diffusion models (LDMs)

One disadvantage of the diffusion models just described is that they are excessively slow on the IT
front because of the enormous size of the image space. Indeed, think about a 1024 x 1024 image with
three color channels (red, green, blue), we have here a 1024 x 1024 x 3 = 3.145.728 dimensional
space which is very heavy. This makes the pure diffusion model extremely slow.

Fortunately, Latent Diffusion Models (LDMs) offer a novel approach to enhance the speed of im-
age generation. Introduced in the 2022 paper "High-resolution image synthesis with latent diffusion
models" by Rombach & Blattmann, et al. [37], this method takes advantages of the perceptual power
of VAEs, the detail-preserving capacity of diffusion models and the semantic capacity of transform-
ers by merging all three.

LDMs generate diverse and detailed images while preserving semantic structure, exhibiting greater
efficiency and lower memory requirements compared to other models. The key innovation lies in
applying diffusion processes within the latent space instead of pixel space, integrating semantic
feedback from transformers. The motivation for this approach recognizes that a significant portion
of image information conveys perceptual details, even after robust compression [37, 38].

LDMs can be explained through two crucial stages : perceptual compression and semantic compres-
sion.

3.5.1 Perceptual compression - Reducing computational cost via latent space

LDMs, drawing inspiration from VAEs, employ perceptual compression by transforming high-
dimensional pixel data into a latent space using an autoencoder. This structure involves encoding
data into the latent space and decoding to reconstruct the image, capturing abstract representations
while excluding high-frequency details. In contrast to diffusing processes in a high-dimensional
image space, LDMs compress images into a smaller latent space, reducing data processing, lower-
ing training costs, and, speeding up generation. The auto-encoder efficiently learns a perceptually
equivalent space with significantly reduced computational complexity. In the realm of machine
learning, this concept is known as the manifold hypothesis [30, 37, 39].

The encoder, &, is used to compress the input image x € R7*W>3 to a smaller 2D latent vector
z = £(x) € R""*¢ where the downsampling rate f = L = £ = 2™ 1 € N. Then the decoder
D reconstructs the images from the latent vector, X = D(z) [27]. In the paper [37], two different
types of regularisation are explored in autoencoder training to avoid latent spaces with arbitrarily

high variance :

+ KL-reg : A small Kullback-Leibler penalty is imposed towards a standard normal over the
learned latent. It’s similar to a VAE.

« VQ-reg : A Vector Quantization layer is used within the decoder. It can be interpreted as a
VQGAN with the quantization layer absorbed by the decoder.

The diffusion and denoising processes happen on the latent vector z, as you can see in Figure 3.20.
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Figure 3.20: Architecture of latent diffusion models [29]

3.5.2 Semantic compression - Conditioning mechanisms

In the field of generative models, the complex interaction between textual and visual elements is an
essential factor in shaping the result. So far, the diffusion processes described have focused on cre-
ating visually appealing images without relying on textual data. While this produces aesthetically
pleasing results, it lacks the specificity needed to control whether the generated result represents a
pyramid, a cat or any other subject. This is where the integration of conditioning becomes crucial.

The aim of conditioning is to guide the noise predictor in such a way that the predicted noise pro-
duces the desired result when subtracted from the image. In this way, the generative model not
only learns semantic and conceptual composition from latent data, but also uses transformers to
capture the semantic structure present in both guide textual prompts and/or guide images (images,
drawings, semantic maps, human poses (stick man), etc) [40, 39, 30]. Some of guide images will be
discussed in the Section 3.8. This integration makes it possible to regulate the specific nature of the
images generated, guaranteeing a more nuanced and controlled result.

First, we’ll start by looking at the learning technique that will enable us to use prompts to generate
the images we want. Then we’ll look at the technique that will allow us to integrate this type of
control into the diffusion models.
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3.5.2.1 Transformer language model mechanism

To enable language understanding from a prompt to a diffusion model, a transforming language
model is first required [40, 41]. This is a component responsible for processing the text prompt and
generating token embeddings. These now become one of the inputs to the UNet. The choice of
language model is important to have high quality generated images. Here, the currently deployed
robust delivery model relies on CLIP (Contrastive Language-Image Pre-Training), which is a neural
network based on GPT architecture by OpenAl. This model is a combination of an image encoder
and a text encoder.

No machine learning model inherently comprehends textual data. To enable a model to grasp the
meaning of text, it is imperative to transform the textual information into numerical representations
known as embeddings. This conversion process, essential for text understanding, can be delineated
into two key components [30] :

« Tokenizer : First, the CLIP tokenizer is used to encode the text from the text prompt, i.e.,
the words are converted to numbers called token. This is done because that’s the way the
computer understands words.

+ Token To Embedding : Every token possesses a distinctive embedding vector, representing a
value vector. The embedding is determined by the CLIP model and remains constant through-
out training. Embeddings are essential as they capture relationships between closely related
words, allowing us to leverage this information.

CLIP Model

Prompt — Token To

“A dog wearing a hat” — Tokenizer Embedding —Pp Text Embeddings

Figure 3.21: CLIP text encoder [39]

Pre-training : Let’s delve into the process of CLIP training [40] (look at Figure 3.22). Initially, it
undergoes training on an extensive dataset comprising billions of images paired with their respec-
tive captions to predict which images were paired with which texts in the dataset. So, it operates
by comparing the resulting embeddings through cosine similarity. At the outset of the training,
the similarity between embeddings is low, even if the text accurately describes the image. Sub-
sequently, we iteratively update both models so that, the next time we embed them, the resulting
embeddings exhibit increased similarity. This iterative process, applied across the entire dataset with
large batch sizes, enables the encoders to generate embeddings that are similar in latent space. No-
tably, the training regimen incorporates negative examples—instances where images and captions
don’t align—and the model is trained to assign low similarity scores to such mismatches.
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Figure 3.22: CLIP training [40]

Here below, on Figure 3.23, we have a clearer visualisation of the integration of the conditioning
mechanism in the latent diffusion model. This integration will be discussed in more detail in the next
section. In addition, we’ll look at how to control the influence of the text prompt on the generation
process in Section 3.6.
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Figure 3.23: Overview of the conditioning mechanism [29]

3.5.2.2 Cross-attention mechanism

The denoising model of LDMs is a time-conditioned UNet, augmented with the cross-attention
mechanism to condition transformers with arbitrary types of token-based conditioning mechanisms
(text prompt, image, semantic maps, ...). Cross-attention layers are added to both the encoder and
decoder part of the UNet, usually between ResNet blocks, as shown on Figure 3.24 describing the
UNet architecture of LDMs. Each category of conditioning information is coupled with a domain-
specific encoder 7y, a transformer (e.g. CLIP), facilitating the projection of conditioning input y into
an intermediate latent representation, 75(y) € RM*? that can be seamlessly integrated into the
cross-attention layer [37] :

KT
Attention(Q, K, V) = softmax (Q ) \%
Vd

where Q = Wg) - i(z;), represents the query matrix which is the current noisy image,

K = Wg? ~19(y), V = W%}) - 19(y), respectively are the key and the value matrices got from the
conditioning features, and, Wg) € Rdxde, Wg?, WS) € R%*4r are learnable projection matrices ;
@i(z;) € RV*4 denotes a flattened intermediate representation of the UNet ; 7y(y) € RM>dr,
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The diagram presented above, see Figure 3.20, features a switch employed to regulate various con-
ditioning inputs [29] :

+ When dealing with text inputs, the initial step involves transforming them into embeddings
(vectors) through a language model 7y (such as CLIP). Subsequently, these embeddings are
integrated into the UNet via the (multi-head) Attention(Q, K, V) layer.

« Alternatively, for other inputs that are spatially aligned, such as semantic maps, images, or
inpainting, conditioning is achieved through concatenation.
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Figure 3.24: Architecture of the UNet in LDM [42]

By example, in the case of text conditioning via a prompt, we are choosing which parts of the text
to pay attention to in the attention maps we see in Figure 3.25 below.

o
o A
Pixel features  Pixel Queries Tokens Keys ?}@,{?Q‘ Tokens Values Output
T 11 (from Prompt) {from Prompt)
— o+ X OIITTTTT] —» XOOTTTTTT] —-

Figure 3.25: Text-to-image cross-attention [43]

Consider the instance of the message "A child with brown hair." In this scenario, the stable diffusion
links the words "brown" and "hair" (self-attention within the prompt), resulting in the generation of
an image featuring a person with brown eyes but not necessarily a person wearing a brown shirt.
Subsequently, this generated information guides the reverse diffusion towards images specifically
depicting individuals with brown hair (cross-attention between the prompt and the image).
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3.5.3 Training

Hence, the ultimate training objective (loss function) [39] is contingent upon not just the latent
space of the original image, z;, but also on the latent embeddings derived from the conditioning

information, 74(y).
z; = vVauzog + V1 — aue  where zy = E(xq)
Lipm = Et 250y [||€ — EO(Ztata Te(y))HQ]

A significant benefit of adopting this method is the ability to train the universal autoencoding step
just once. Consequently, we can leverage it across various diffusion model training sessions or
for delving into potentially divergent tasks. This facilitates the efficient exploration of numerous
diffusion patterns applicable to a variety of image-to-image and text-to-image tasks [37].

3.5.4 Sampling

Once trained, for inference, image generation is facilitated by executing the reverse process, em-
ploying the VAE’s decoder to generate the final image converting the latent matrix back into the
pixel space. However, it is important to note that even if it has been trained on a large database of
images and written descriptions, the model cannot create images that go beyond what it has learned
during its training [37].

In the sampling step, the algorithm refines an image through guided conditional sampling and then
refines it further with unguided unconditional sampling. The resulting diffusion tends to form rec-
ognizable images. The process involves iteratively computing the difference between conditional
and unconditional samplings and is repeated for a specified number of steps [44].

3.6 Classifier-free guidance (CFG)

During the training of generative models on images with conditioning information, it is typical to
produce samples based on class labels or a snippet of descriptive text. In this section, we’ll look at
a technique that gives you even more control over what is generated. The aim is to make the stable
diffusion model understand how much it must rely on the prompt [27].

To seamlessly integrate class information into the diffusion process, Dhariwal and Nichol [45] devel-
oped a classifier, f;(y|x;,t), trained on noisy images x;. They employed gradients V, log fs(y|x:)
to steer the diffusion sampling process towards the specified conditioning information y (such as a
target class label) by modifying the noise prediction [27]. We call this method "classifier guidance".

Even in the absence of a standalone classifier f,, Ho and Salimans [46] demonstrated the feasibility of
executing conditional diffusion steps by integrating scores from both a conditional diffusion model
and an unconditional diffusion model. We call this new method "classifier-free guidance".
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Take, for instance, an unconditional denoising diffusion model py(x) characterized by a score es-
timator ey(xy,t), alongside a conditional model py(x|y) also characterized by a score estimator
€9(xX¢,t,y). These two models can be acquired through the training of a unified neural network.
Specifically, the conditional diffusion model pg(x|y) undergoes training on paired data (x, y), where
the conditioning information y is intermittently and randomly omitted, i.e. £o(X¢, 1) = €o(X¢, ¢,y =
@). This process ensures that the model is adept at generating images unconditionally.

The gradient of a latent classifier can be expressed using estimators for both conditional and uncon-
ditional scores. After integrating with the classifier-informed adjusted score, the resulting score is
independent of any external classifier. So, we execute sampling by employing the subsequent linear
combination of the estimates for both conditional and unconditional scores [46] (see Figure 3.26) :

§9<Xt7 t? y) = ((.U + 1)89(}(257 t? y) - wg@(xfn t)

External
Condition
y
€9(") €9()

Trained %
differently X
@
€o(Xe,Y) €g(Xy) e

Figure 3.26: Classifier-free guidance [47]

Their studies demonstrated that employing CFG can strike a favorable equilibrium between FID
(Fréchet inception distance) which is a metric discerning between synthetic and generated images
and IS (Inception score) which is also a metric assessing both quality and diversity [27].

This will allow us to play with the guidance scale w which is a parameter that influences the prox-
imity of the generated image to the textual prompt. Guidance entails a trade-off : it significantly
enhances adherence to the conditioning signal and overall sample quality, but at the cost of diversity
[48, 49].
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« When w = 0, we recover an unconditional model.
« When w = 1, we get the standard conditional model.

« Whenw > 1, we employ CFR with the objective of generating a high quality image belonging
to class y. The concept is that the class-informed model will produce an output related to the
desired class, but the influence of the class signal may vary in strength.

To boost the signal extracted from class information, we have the option to filter out the signal gen-
erated by the model lacking class information, resulting in an image that is essentially random. As
the parameter w is augmented, we successively filter out a greater number of "null" images. Theo-
retically, the removal of information linked to the null class enables a more distinct comprehension
of the target class.

Nevertheless, an excessively elevated value for w removes too much signal from the image, resulting
in the generation of essentially random noise. This is due to an excessive removal of signal, which
compromises the coherence of the generated output.

3.7 Stable diffusion

At present, there are a large number of diffusion models available (see Section 3.7.4), but most of
the recent AI artworks found on the internet are generated using the stable diffusion model. As it
is an open-source tool, anyone can easily create fantastic illustrations from simple text, provided
you have a graphics card (GPU) with at least 4 GB of video memory (VRAM). Stable diffusion [50]
is a kink of diffusion model, called latent diffusion model. Its code and model weights have been
released in August 2022 by a group of researchers called CompVis from the university of Munich
(LMU Munich) and Runway, with a compute donation by Stability Al and training data from non-
profit organizations [51]. The architecture of the stable diffusion models consists of a UNet, a VAE
and a text encoder. These models were trained using the LAION database. To simplify the utilization
of stable diffusion, you can opt for a graphical interface, enabling convenient browser-based access
instead of relying on command line instructions. There are several, including AUTOMATIC1111,
ComfyU], ... The one we’ve decided to use and which we’ll talk about in the Chapter 4 is ComfyUI.

3.7.1 Components of stable diffusion

Stable Diffusion [40] is a multi-component system comprised of various models. It is not a single,
monolithic model. We can see the composition mentioned below in the Figure 3.27.

1. Text-understanding component : To begin with, there is a text encoder component re-
sponsible for converting textual information into a digital representation that encapsulates
the concepts within the text. This text encoder is a specialized transformer language model,
specifically the text encoder used in a CLIP model.

Input : A text.
Output : A list of numbers representing each word in the text, each representing a word or
token in the text.
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2. Image generator component : The information coming from the text encoder is fed into
the image generator, which undergoes a two-stage process:

« Image information creator : The most crucial component in the system, responsible
for a significant performance enhancement compared to earlier models, is the image in-
formation generator. It operates through multiple steps to create image data, as defined
by the "steps" parameter in stable diffusion interfaces and libraries. This generator ex-
clusively operates in the latent space through the VAE’s encoder, distinguishing it from
prior diffusion models that functioned in pixel space. Technically, it comprises a UNet
neural network and a scheduler algorithm that gradually process/diffuse information in
the information array.

Input : Text embeddings from CLIP and a random starting multi-dimensional image in-
formation array (the latents) made up of noise.

Output : A processed information array. More precisely, it’s the predicted noise residual
that the input noisy latent contains.

« Image decoder : It’s a VAE and its role is to construct an image, in the pixel space, from
the data provided by the image information generator. This process occurs once, at the
conclusion of the workflow, resulting in the production of the final pixel image.

Input : A processed information array.
Output : The resulting image.

Token Image
Input text embeddings tensor Generated
Image
™
Painting of New
Yorkr‘%lty by Text Encoder Image Information Creator I;:amg:eaicot(;:ﬁ
Van Gogh (CLIPText) (UNet + Scheduler) decoder)

Stable Diffusion Model

Figure 3.27: Stable diffusion components [52]

3.7.2 Comparison between SD1.5 & SDXL

In this section, we’ll start with a technological comparison of the 2 most popular stable diffusion
models. Then, we’ll make up our own minds by generating and comparing different examples from
these 2 models.

The first most popular Runway model before Stable Diffusion XL was SD1.5 released in October
2022. Then, Stability Al unveiled stable diffusion XL (SDXL1.0) in July 2023, an enhanced, larger
model than SD1.5 designed for the enterprise. SDXL stands out for its exceptional photorealism,
surpassing its predecessors in producing highly detailed images with superior composition. No-
tably, it can generate descriptive images with concise prompts, create readable text within images,
and enhance image composition and face generation. The outcome is a visually striking and authen-
tically realistic aesthetic. The introduction of stable diffusion marks a revolutionary advancement
in the realm of text-to-image transformation [53, 54].
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As shown on Figure 3.28, the SDXL model consists of 2 models : the base model and the refiner
model [53]. The basic model is used to generate noisy latents and describes the general structure.
In the following, the refiner model, essentially working as an image-to-image model, is specialized
for the final denoising steps and incorporates more complex details. If desired, the base model can
be executed independently.

= = S e y Unrefined -------- ) Refined VAE- Final
Noise i Base i Latent . Refiner | Latent Decoder Image

1024
X
1024

Figure 3.28: SDXL model [55]

As per the research paper titled "SDXL: Enhanced Latent Diffusion Models for Synthesizing High-
Resolution Images" authored by Podell and team [55], SDXL demonstrates superior performance
across all aspects compared to the SD1.5 model. This improved performance is the result of a num-
ber of improvements to the architecture. Here’s a detailed list of the differences between the 2 types
of model.

Image size : By default, SDXL adopts an image size of 1024 x 1024, representing a fourfold increase
compared to the SD1.5 model, which maintains a size of 512 x 512 [53].

Number of UNet parameters : The crucial UNet component in the diffusion model has been in-
creased threefold, going from around 860 million UNet parameters to a total of 2.6 billion for SDXL.
Leveraging this enlarged linguistic model, SDXL generates top-notch images closely aligned with
the provided prompt. The rise in model parameters primarily stems from an expansion in attention
blocks and an increased cross-attention context, driven by the utilization of a second text encoder
in SDXL [53, 56].

Number of text encoder parameters : The main difference between the different versions of
stable diffusion is their use of the CLIP machine learning model [40, 41, 56]. The first stable diffu-
sion models, SD1, are connected to the pre-trained ClipText model published by OpenAl. The SD2
models are connected to the OpenCLIP variants of CLIP, which are much larger but known to have
difficulty understanding instructions. This batch includes text models with up to 354 million param-
eters, compared with 63 million parameters for ClipText. The most recent SDXL models incorporate
two CLIP models, which consist of one of the largest OpenCLIP models trained to date, namely
OpenClip ViT-bigG-14, with 694.7 million parameters. These models are employed to effectively
incorporate textual information into the process of generating images. Additionally, there is an ex-
tra text encoder, CLIP ViT-L with 123.65 million parameters, that appends its output, enhancing the
conditioning process by introducing supplementary text features. Therefore, the total number of pa-
rameters for the SDXL text encoders is more than 800 million parameters. This increases its ability
to create realistic images with greater depth and a higher resolution of 1024 x 1024. Nevertheless,
employing numerous extensive text encoders, though appealing, brings about added intricacies that
may be disadvantageous.
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Total number of parameters : The SDXL model stands out for its significant size, boasting a base
model with 3.5 billion parameters and an ensemble model pipeline with a total of 6.6 billion pa-
rameters (achieved by combining results from two models). This extensive parameter count enables
advanced image generation capabilities. In comparison, the SD1.5 ensemble model pipeline has a
comparatively modest 0.98 billion parameters [53].

Complexity : However, although a greater number of parameters may initially seem advantageous,
it is essential to weigh up the trade-off between complexity and quality [53, 56]. As the number of
parameters increases, so do the training and system generation requirements. So, although SDXL
provides better image quality, generation is slower than for previous models and this requires the
use of more powerful systems. Indeed, SDXL should run efficiently on consumer GPUs with 8GB of
VRAM or on easily accessible cloud instances. 4 GB of VRAM may still work, but it’s likely to be a
little tight.

Now, we will compare for ourselves the 2 SD models generating images with the same prompts.
This will give us a good idea of some of the advantages and disadvantages and, more generally,
which model gives the best results. We make sure to compare base models, and in particular the
very first base models released. Other models giving better results could be created from these ba-
sic models using a fine-tuning method. For all the tests below, the original SD1.5 base model used
is "v1-5-pruned.safetensors", the other SD1.5 base model used is "dreamshaper_8.safetensors" and
finally the original SDXL1.0 base model used is "sdXL_v10VAEFix.safetensors".

To ensure clarity in the upcoming information, a positive prompt involves entering text that outlines
the desired elements in the image, while a negative prompt involves entering text that specifies un-
desired elements. We’ll discuss how prompts work and how to use them later in a dedicated section,
which you can find in Section 5.1.
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Test 1 - Real person (full body) :

« Positive prompt : realistic photography, a young woman standing in a grassy field, full body,
looking at the sky, brown hair, brown eyes, happy, purple dress, sunset, intricate detail, mas-
terpiece, high quality.

« Negative prompt : ugly, disfigured, bad hands, bad eyes, poor face, deformed, blurry, long
limbs, long arms, poor anatomy, text.

5D1.5 original

5D1.5 DreamShaper

SDXL

Figure 3.29: Test 1 - SD1.5 vs SDXL1.0 - Real person generation (full body)

We can see that the second basic SD1.5 model chosen, DreamShaper, delivers better quality images
than its predecessor. However, the SDXL model still outperforms them. Looking at the first test in
Figure 3.29, we can see that the woman’s face in the images is not perfect with any of the models.
However, it is less disfigured with the SDXL model. It’s also clear that the image is more detailed
with the new models. This analysis will work for all the tests. The prompt is also a little better re-
spected, as women are more likely to look up at the sky. This is less the case with the SD1.5 models.
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Test 2 - Legible text :

« Positive prompt : a classroom on the moon with "Happy holidays!" written on the blackboard.

« Negative prompt : ugly, disfigured, bad hands, bad eyes, poor face, deformed, blurry.
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Figure 3.30: Test 2 - SD1.5 vs SDXL1.0 - Legible text generation

In the second test, see Figure 3.30, we try to incorporate text into the image. It’s clear that the orig-
inal SD1.5 base model can’t do it. In the end, the image generated doesn’t make much sense. As
for the second SD1.5 model, it’s better, the image makes sense. It’s easier to understand what we
wanted to generate. However, it’s clear that in terms of creativity, detail and, quite simply, quality,
the SDXL model surpasses the SD1.5 models completely. In this case, you can read on the board the
sentence written in the prompt that you wanted to have on your image.
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Test 3 - Simple prompt :

« Positive prompt : fruit basket painted in the style of Dali.

« Negative prompt : ugly, bad quality, text.

5D1.5 original

5D1.5 DreamShaper

SDXL

Figure 3.31: Test 3 - SD1.5 vs SDXL1.0 - Simple prompt generation

Here, in Figure 3.31, we can see that the generations obtained with a simple prompt are consistent.
However, we can clearly see the difference in quality between the different models. The further
down you go, the more beautiful and appealing the image becomes. There are more and more de-
tails, colours and elements. The SDXL model produces more sophisticated images, while the prompt
is very simple.
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Test 4 - Sophisticated prompt :

« Positive prompt : a landscape of floating islands with lush gardens drifting in a colourful sky,
magical waterfalls cascading from the edges of the islands, fantastic creatures flying between
the islands, intricate detail, mastepiece, high quality.

« Negative prompt : ugly, disfigured, bad hands, bad eyes, poor face, deformed, blurry.

5D1.5 original

5D1.5 DreamShaper

SDXL

Figure 3.32: Test 4 - SD1.5 vs SDXL1.0 - Sophisticated prompt generation

In Figure 3.32, the result here is unequivocal. With a slightly evasive prompt, the SDXL model comes
off well. This confirms previous analyses. Tests 5 and 6, corresponding respectively to generations
of close-up real people (Figure 1) and generations of cartoon characters (Figure 2), can be found in
the appendix. They teach us nothing more.
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Conclusion : Examining the generated images reveals that, overall, the SDXL models provide su-
perior image quality compared to the SD1.5 models. They exhibit a closer adherence to the given
prompt, greater complexity in terms of colors, depth, composition, ..., larger image dimensions which
improves quality, and the capability to produce images with consistent, legible text and darker aes-
thetics [53]. These tests have shown that the SDXL models provide high-quality images. That’s why
we’re going to continue working with these brand new models in this project. And, logically, SDXL
models excel at image generation. By learning more data and parameters, these models can acquire
more complex hierarchical representations of the data, resulting in improved performance.

However, from this fact, the major disadvantage of SDXL is that it requires even greater comput-
ing power, which considerably increases image production time. Nevertheless, the models are also
brand new and improvements will be made in the future. There are already a few, such as SDXL
Turbo [57] or LCM-LoRA [58], which increase the speed of generation. It’s not perfect yet, but it
shows that there are possibilities to be explored and that it’s worth taking the time to understand
and use SDXL models now.

Note that there are techniques that can be applied to the generated images to improve their quality.
In addition, SDXL models followed by a refiner can be used to refine details, but do not always bring
a flagrant improvement to the image.

3.7.3 Various possible applications
Given the open-source nature of the code base, a community of developers and researchers has

innovatively explored stable diffusion. This section delves into some noteworthy applications [13]
and instances of diffusion models.

3.7.3.1 Text to image generation

Text to image is the simplest way to use diffusion stable image generation models. Just simply add
the text description and then start generating the image.

« Positive prompt : cartoon style, boy stroking a dolphin on the edge of a wooden pontoon on
the sea, short blond hair, blue eyes, rectangular glasses, sunset.

+ Negative prompt : ugly, bad face disfigured, text, watermark.

Figure 3.33: Example of text-to-image
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3.7.3.2 Image to image generation

Image to Image is a method employed to convert a given image into a desired target domain based on
a provided text prompt. By offering a textual description of the intended transformation, the stream-
ing model can generate a fresh image maintaining the original color and composition, incorporating
the specified modifications.

« Positive prompt : a man is skiing in the foreground by night, black suit, pink flowers, realistic.

« Negative prompt : ugly, bad face, disfigured, text, watermark.

— -

Figure 3.34: Original image Figure 3.35: Image obtained
after  applying image-to-
image

Figure 3.36: Example of image-to-image

One practical application of Img2Img is evident in style transfer. This involves utilizing two distinct
images—one for content and another for style reference. The outcome is a newly generated image,
combining the content of the first image with the stylistic elements of the second.

3.7.3.3 Inpainting and outpainting generation

Image inpainting serves as a technique for restoring images, aiming to eliminate undesired objects
or substitute them entirely with another object, texture, or design. The user initiates the inpainting
process by outlining a mask around the targeted object or pixels, indicating areas for modification.
Subsequently, the model is guided on how to alter the specified masked pixels based on user input.
Here below on Figure 3.40 is an example of its utilization.
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« Positive prompt : anime, lemon tree in the desert.

« Negative prompt : ugly, bad quality, (blurred image).

Figure 3.37: Original image Figure 3.38: Mask Figure 3.39: Image obtained
after applying inpainting

Figure 3.40: Example of inpainting

On the other hand, outpainting involves the diffusion model incorporating additional details outside
the boundaries of the original image. This extension of the original image can be achieved either by
utilizing segments of the original image or newly generated pixels as reference points. Alternatively,
new textures and concepts can be introduced through the incorporation of a text prompt.

« Positive prompt : outdoors nature, winter landscape.

Figure 3.41: Original image Figure 3.42: Image obtained
after applying outpainting

Figure 3.43: Example of outpainting
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3.7.4 Types of well-known diffusion-based image generation models (Quick
View)

Let’s examine notable diffusion-based image generation models that gained popularity in recent
months. Given the abundance of diffusion models and their variations in the field, we’ll provide a
brief overview by sampling some of the more renowned ones. We examine these models to deter-
mine the most suitable one for our tool and to demonstrate the availability of alternative solutions.
So, in this discussion, we won’t delve deeply into the mentioned architectures. Instead, we’ll offer
an overview of each model, exploring a few prompts and examining the images produced by Dall-E
3, Stable Diffusion XL, and MidJourney 5.2.

 Dall-E 3 : OpenAlintroduced the initial image generator, DALL-E 1, via a blog post in January
2021, utilizing GANs and a modified GPT-3 for image production. However, a new iteration,
DALL-E 3, was released in September 2023, featuring a text-conditioned UNet latent diffusion
model with three stages and integrating ChatGPT for smooth text-to-image communication
[59, 60]. Described in "Enhancing Image Generation Using Improved Captions” [61], DALL-E
3 enhances coherence and image quality, specifically addressing challenges related to unclear
captions in training images and improving prompt adherence.

+ MidJourney 5.2 : Midjourney [13, 62], a diffusion-based image generation model developed
by the independent research lab led by David Holz, gained popularity for its expressive style
and early availability to the public in February 2022. The latest version, model version 5.2,
released in June 2023, boasts improved image quality, higher resolution, and enhanced un-
derstanding of natural language prompts. Despite its closed-source nature and self-funded
status, Midjourney distinguishes itself from competitors with its powerful generative Al func-
tionalities. The absence of a related paper makes it challenging to understand the underlying
mechanisms, but users can access its image generation capabilities through an official Discord
bot.

Now that we know a little more about the characteristics of these different diffusion-based models,
we’re going to compare a few outputs based on different criteria using the same prompts. It should
be noted that the examples shown are neither personal nor numerous. They merely give an idea of
what would seem to be best achieved with a particular model, i.e. no firm conclusions can be drawn
from them.
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Test 1 - Coherence
Prompt : "An astronaut riding a steel horse on the moon. The astronaut is wearing a medieval armor
with a party hat and a green sword"

DALL-E 3 MidJourney 5.2

Figure 3.44: Coherence comparison between DALL-E 3, MidJourney 5.2 and SDXL [59]

Here, in this example, the coherence of the image in relation to the statement seems to be one of the
strong points of DALL-E 3. Although a unicorn appears in the image when a horse is required, the
rest of the surreal composition of the statement is respected. In comparison, SDXL and MidJourney
5.2 failed to incorporate everything the message asked for - the hat was missing, as was the sword.
In this case, it’s best if the cartoon creator can easily integrate the elements they want into the im-
age. SDXL doesn’t do that perfectly here, which is annoying.

Test 2 - Emotion :
Prompt : "A portrait of a woman holding a wilted rose, her expression one of profound sadness and
longing"

DALL-E 3 MidJourney 5.2 SDXL

Figure 3.45: Emotion comparison between DALL-E 3, MidJourney 5.2 and SDXL [59]

In this case, the test was to see whether these models were capable of understanding feelings and
emotions so as to be able to transcribe them onto the images generated. The quality of appearance is
essential, but so are facial expressions. In the case of a comic strip, the text doesn’t represent much
compared to the images. So the reader has to be able to understand what’s going on just by looking
at the image. SDXL seems to manage this better.
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Test 3 - Composition :
Prompt : "Design an eco-friendly futuristic city floating on the ocean, with advanced technology and
harmony between nature and artificial structures"

DALL-E 3 MidJourney 5.2

Figure 3.46: Architecture comparison between DALL-E 3, MidJourney 5.2 and SDXL [59]

Prompt : "A dreamy landscape where clouds are made of cotton candy and rivers flow with liquid
gold"

DALL-E 3 MidJourney 5.2 SDXL

Figure 3.47: Surreal landscape comparison between DALL-E 3, MidJourney 5.2 and SDXL [59]

Now we want to compare the quality of the images in terms of composition and originality. Overall,
the outputs are cool although we could give a bonus to DALL-E 3 and MidJourney 5.2 because the
image produced is more complex.

Conclusion : Overall, the quality of the images generated is impressive. Dall-E 3 seems to follow
instructions better and generate images that correspond to specific descriptions. MidJourney 5.2
reportedly produces images that are often stunning and creative, but sometimes lack consistency.
SDXL is a good Al image generator, but it seems to lag slightly behind MidJourney and Dall-E 3 in
terms of visual aesthetics on the examples provided here. Its great strength is that it’s open source
and you have greater control over what you can produce (ControlNet, inpainting, outpainting, dif-
ferent styles, etc.). It’s mainly for this last reason, and the fact that the image quality is still very
good, that stable diffusion XL was chosen for the application. Once again, these are just a few ex-
amples. We don’t have enough here to be convinced of the superior generation quality of one model
or the other but it can give brief overview.
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3.8 ControlNet

The most basic form of using stable diffusion models is text-to-image conversion. It uses text
prompts as a condition for directing image generation to generate images that match the text prompt.
However, using only the prompt can quickly limit the production of the desired spatial composi-
tion of the image. Indeed, articulating intricate arrangements, poses, shapes, and forms accurately
through text prompts alone can be challenging [63].

Fortunately, Lvmin Zhang and his colleagues came up with ControlNet, see the article "Adding Con-
ditional Control to Text-to-Image Diffusion Models" [64]. ControlNet [65] is an end-to-end neural
network architecture that controls image generation in stable diffusion by adding one or more addi-
tional conditionals on top of the text prompt, thereby improving performance. This conditioning can
take a number of forms, including squiggles, depth maps, human pose skeletons and segmentation
maps.

3.8.1 ControlNet architecture

ControlNet introduces extra conditions into the components of a neural network [64, 66], see Figure
3.48. In a standard scenario, a trained neural network block® F(+; ©), with parameters ©, receives
a feature map x € R"%*¢ as input, with {h, w, c} as the height, width, and number of channels in
the map, respectively, and generates a corresponding feature map y € R"***¢ as depicted in Figure
3.48a.

y =F(x;0)

When incorporating a ControlNet into this pre-trained block, we freeze the parameters O of the
original block and generate a trainable duplicate ©, which receives an external conditioning vector
c as its input. When implementing this framework in extensive models like stable diffusion, the
fixed parameters safeguard the production-ready model trained on billions of images. Simultane-
ously, the trainable copy leverages this pre-trained model extensively, constructing a profound, re-
silient backbone capable of handling diverse input conditions on a large scale. The locked collection
of initial weights enables ControlNet to generate consistent outcomes without requiring extensive
conditional data, thereby averting the risk of overfitting.

——

zero convolution

x x (?
l l ;

neural network neural network trainabl
block block (locked) ) & | o COPY
' : | '

J( i [ zero convolution

: |
Y o T
Ye ControlNet
(a) Before (b) After

Figure 3.48: ControlNet architecture [64]

ZRefers to a set of neural layers usually joined together to form a single unit of a neural network, e.g., resnet block,
conv-bn-relu block, multi-head attention block, transformer block, etc.
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These two blocks are then linked using zero convolution layers denoted Z(-; -), specifically a 1 x 1
convolution with weight and bias set to zero (see Figure 3.48b). To create a ControlNet, we employ
two instances of zero convolutions with parameters © .1 and .-, respectively. Here below, on Figure
3.49, is the entire feedforward ControlNet with all the computations to reach y., the output of the
ControlNet block [64].

C T
g [Z(c6.)
¢ | zero convolution | —+—— -1
x ? D1 | x+Z(c;0,)
neural network ¢ : ) —_
block (locked) ( trainable copy o .}_(ﬂ? + E{C_._ 011}, @(.}
. ; : - i |
| zero «:-:rnlvr::luti{:-nEl - -|Z{}_{:}3 + Z(e;0,1);0.); 0,2)
D ; I e
Ye ControlNet

Ye =|F(2; 0)|+[Z(F(@ + Z(¢; 0.1); Oc); O2)
Figure 3.49: ControlNet feedforward [66]

Zero-convolution layers : In the initial training step, when the weight and bias of a zero convo-
lution layer are set to zero, both of the Z(+; -) terms are evaluated to 0, and,

Y=Y

This ensures that detrimental noise cannot impact the hidden states of the neural network layers
within the trainable copy at the commencement of training. Additionally, given that Z(c;0,,) = 0,
and the trainable copy is fed the input image x, it remains fully operational, preserving the capacities
of the extensive pre-trained model. This enables it to function as a robust foundation for subsequent
learning. The incorporation of zero convolutions serves to safeguard this foundational structure by
eliminating random noise as gradients during the initial training phases [64].

3.8.2 ControlNet for stable diffusion

As a reminder, stable diffusion can be described as a UNet comprising an encoder, a central block,
and a skip-connected decoder. It doesn’t go through any gradient update and is thus “locked in”.
The encoding of text prompts involves the utilization of the CLIP text encoder, while the encoding
of diffusion time steps incorporates a time encoder with positional encoding.

The ControlNet architecture is implemented across every encoder level of the UNet [64], as illus-
trated in Figure 3.50. Specifically, ControlNet is utilized to construct a trainable duplicate of both
the encoding blocks and an intermediate block within stable diffusion. The encoding blocks exist at
four different resolutions, each replicated three times. The resulting outputs are incorporated into
both the skip connections and the central block of the UNet.
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Figure 3.50: UNet and ControlNet architectures [66]

Stable diffusion employs latent images during training. Thus, to incorporate ControlNet into stable
diffusion, the initial step involves transforming each input conditioning image (such as edges, poses,
depth, etc.) from a pixel-sized input to a feature space vector that aligns with the dimensions of
stable diffusion. Specifically, we utilize a small network £(-) comprising four convolution layers
to transform an image space condition c; into a feature space conditioning vector cy, as follows
(64, 66]:

cr=E(c)

The vector cy, representing the conditioning information, is sent to the ControlNet. Indeed, we can
observe this integration of ControlNet in the modified reverse diffusion process at Figure 3.51 below.

3.8.3 Training

Throughout the training process, ControlNet duplicates the weights of neural network blocks into
a "locked" copy, maintaining the model, and a "trainable" copy, which learns the given condition.
As a result, as zero convolutions don’t introduce noise to the network, the model should retain the
capability to predict high-quality images.
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Loss function : The loss function of ControlNet [66] resembles that of stable diffusion, but it in-
corporates the text condition 7y(y) and latent condition ¢ to enhance the consistency of the output
with specified conditions :

L= ]Et,Zmay,Cf [H&? - 89(Zt7 tv 7-9(1/)7 Cf)”z]

As part of the training process, 50% of the text prompts 7y(y) are randomly substituted with empty
strings. Eliminating the prompts compels the encoder to depend more on the information contained
in the control maps, this enables ControlNet to directly discern semantics in the input conditioning
images maps, such as edges, poses, depth, and so on.

The model doesn’t progressively grasp the control conditions but swiftly adapts to the input condi-
tioning image, typically achieving this in fewer than 10,000 optimization steps. This occurrence is
referred to as the "sudden convergence phenomenon" [64].
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Figure 3.51: Reverse diffusion process of LDM with ControlNet [66]

3.8.4 Inference

We have the capability to influence the impact of additional ControlNet conditions on the denoising
diffusion process through various means.

3.8.4.1 Classifier-free guidance resolution weighting

As said before, stable diffusion relies on a method known as Classifier-free guidance (CFG) to pro-
duce high-quality images. To reiterate, CFG is expressed as :

Eo(xe,t,y) = (w+ 1)eg(x4, t,y) — weg(Xy, )
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When incorporating a conditioning image through ControlNet, it can be introduced to both the
unconditional part and the conditional part, or exclusively to the conditional part. In challenging
scenarios, such as when no prompt is provided, including the image in both the unconditional part
and the conditional part eliminates CFG guidance entirely, while utilizing only the conditional part
intensifies the guidance significantly.

The proposed solution in the document [64] involves initially adding the conditioning image to the
conditional part, followed by multiplying a weight w; at each connection between stable diffusion
and ControlNet based on the resolution of each block, where wi = resolution/h;, and h; represents
the size of the ith block. This approach reduces the guiding force of CFG, resulting in favorable
outcomes, termed as CFG resolution weighting.

3.8.4.2 Composing multiple ControlNets

To incorporate various conditional images into a single instance of stable diffusion, one can simply
combine the outputs of the respective ControlNets with the stable diffusion model. There is no need
for extra weighting or linear interpolation in this compositional process [64].

3.8.5 Different types of conditioning

ControlNet is a versatile tool that enables the utilization of stable diffusion with various types of
conditional inputs. We will go through several examples of conditional input types taking me as
reference image and using the SD1.5 model and an upscaler.

Figure 3.52: Reference image to preprocess using ControlNet

« Positive prompt : (man smilling), happy face, short blond hair, beautiful brown eyes, black
shirt, blue denim, silver watch, (intricate detail, best quality, masterpiece).

« Negative prompt : woman, (worst quality, low quality, letterboxed), ugly, disfigured, bad qual-
ity, bad eyes, bad nose, bad face, bad hands, text, watermark, blurred, blurry, tiling, deformed,
mutated.
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3.8.5.1 Canny edge

As depicted in the following illustration, ControlNet incorporates an extra input image and identifies
its contours through the application of the Canny edge detector [65]. The resulting image, which
includes the identified edges, is stored as a control map. This control map is subsequently introduced
into the ControlNet model as supplementary conditioning along with the text prompt. Canny edge
is valuable for preserving the original image’s composition.

Figure 3.53: Canny edge image Figure 3.54: Generated image

3.8.5.2 OpenPose

OpenPose [65] identifies key points on the human body, including the head, shoulders, and hands,
enabling the replication of human poses while excluding specific details like clothing, hairstyles,
and backgrounds.

Figure 3.55: Open pose image Figure 3.56: Generated image
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3.8.5.3 Depth

The depth preprocessor estimates depth information based on the reference image.

Figure 3.57: Depth image Figure 3.58: Generated image

3.8.5.4 Line art

Line art translates the image into an outlined representation, aiming to simplify it into a basic draw-
ing.

Figure 3.59: Line art image Figure 3.60: Generated image

3.8.5.5 Scribble

Scribble takes a drawn-by-hand image and process it to generate a great picture. It’s an interesting
tool for the application we build since it allows users to generate exactly what they want to have
on their panel without having to be a great artist. Therefore, in what follows, we will go into more
detail about this particular image formation process. Some examples can be found at Section 4.4.2.
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3.8.5.6 Semantic segmentation

Segmentation preprocessors categorize objects present in the reference image.

Figure 3.61: Semantic segmentation im- Figure 3.62: Generated image
age
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Chapter 4

ComftyUI

ComfyUI [30, 67] offers a user-friendly graphical user interface (GUI) for stable diffusion that fea-
tures a highly adaptable, node-based design. It was created by Comfyanonymous in January 2023.
This allows users to visually place and connect the constituent elements of the stable diffusion model
with intuitive ease. Briefly, the interface enables the construction of image production workflows
by connecting various blocks, referred to as nodes. These blocks include actions such as loading
a control point model, inputting a prompt, specifying a sampler, and more. ComfyUI breaks down
workflows into customizable elements, allowing users to easily design their own without the need
for coding—everything is pre-implemented in the backend. Workflows can be saved as Json files,
and an additional noteworthy feature is the support for SDXL templates, the latest templates for
latent image generation [56].

ComfyUI’s brief introduction sheds a little more light on the chapter that interests us at the moment.
In what follows, we will outline the benefits of this GUI compared with another very popular one,
and see how it relates to the technical components of stable diffusion through different workflows
of interest to the application. Finally, tests and analyses will be carried out, using an SDXL model,
to see how the generation of these different workflows behaves, and links will be established with
the theoretical aspects previously mentioned.

4.1 Benefits of ComfyUI

It exists other well-known GUI as the de facto GUI for stable diffusion : AUTOMATIC1111. However,
compared with AUTOMATIC1111, ComfyUI offers users several advantages [30, 67]. It is lightweight,
ensuring fast performance, and boasts flexibility through extensive configurability. This implies that
ComfyUI iterations can be enhanced in a manner not achievable with AUTOMATIC1111 iterations.
The pace at which the iterations occur is quicker with ComfyUI compared to AUTOMATIC1111. The
transparency of the data flow is a notable benefit, as it remains visible throughout the process. So,
by gaining proficiency in ComfyUI, you’ll acquire an understanding of the true mechanics behind
stable diffusion. Sharing is made easy, with each file serving as a reproducible workflow. ComfyUI
stores all the details of the generation stream inside the generated PNG. ComfyUlI is particularly
advantageous for prototyping, allowing users to prototype using a graphic interface rather than re-
lying on coding.

However, there are some drawbacks associated with ComfyUL The interface may be inconsistent, as
the placement of nodes can vary between workflows, requiring users to identify necessary adjust-
ments. The level of detail provided may be excessive for average users who may not need insight
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into the intricate workings beneath the surface—a key expectation when utilizing a GUIL. Addition-
ally, ComfyUI lacks inpainting tools, necessitating the use of an external program for inpainting
tasks.

4.2 How does it work?

Every node performs a code by receiving inputs (values provided to the instructions) and producing
outputs (values generated by the instructions) [67]. We can think of them as functions.

Users have the ability to :

+ Generate new nodes
 Adjust node parameters, such as variables

« Establish connections between nodes by linking their inputs and outputs

For a clear understanding of how ComfyUI works, we will construct step-by-step a simple default
text-to-image workflow made up of the most important nodes. Figure 4.1 shows what the ComfyUI
interface looks like, as well as the final flow of the text-to-image process.

Hence, nodes have inputs on the left and outputs on the right, with parameters represented in the
center of the block. The connections between nodes are depicted as wires linking outputs and in-
puts. Another interesting thing is that we know the compatibility between nodes when inputs and
outputs have the same color [67].

When we select "Queue Prompt", the sequence progresses through the interconnected nodes in the
specified order up to the generated image. It begins with loaders that lack inputs and only generate
outputs [67].

Q ize mo
Queue Prompt
s B

Save

Save (API
Format)

Load
Refresh
Clipspace
Clear
Load Default
Save Full

Export As
Component

Manager

Figure 4.1: Complete text-to-image workflow
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4.2.1 Load checkpoint

Before starting the workflow creation process, it is essential to choose a checkpoint model that cap-
tures our interest and will be utilized for generating images. Numerous checkpoint models can be
found on CivitAl, HuggingFace, and TensorArt websites. Simply download the chosen model and
place it in the designated directory.

Models, referred to as checkpoints, consist of predetermined diffusion weights established after un-
dergoing stable diffusion training with specific images. These models can be customized for a spe-
cific style, genre, or subject, while also having generic models that can produce diverse images. The
model’s capabilities and the keywords it can identify are shaped by the images and related texts
utilized in the training process. There are 2 types of models [68] :

« Base models : These represent the primary models employed by stable diffusion, derived
from an extensive collection of images, serving as the foundation for the ability to create
images. Given the substantial quantity of images needed for their creation, the variety of these
templates is limited. The conventional ones are those released by the company responsible
for developing stable diffusion : Stability AL

+ Fine-tune models : Fine-tuned models employ a standard machine learning approach called
fine-tuning. This process entails taking a model that has been trained on a comprehensive
dataset and providing additional training on a more specific dataset. As a result, the model
becomes inclined to generate images resembling those from the supplementary training, all
while preserving the adaptability of the original model. There are different methods for fine-
tuning.

Load Checkpoint

MODEL e

VAE ®
-« ckpt_name sdXL_v10VAEFix.safetensors B

Figure 4.2: Checkpoint model loader

As shown on Figure 4.2 and explained, we utilize the Load checkpoint node for model selection. The
stable diffusion models employed for image generation consist of three primary elements [30, 69] :

« MODEL : This corresponds to the latent space noise prediction model (UNet), facilitating the
step-by-step execution of the diffusion process. This process involves denoising the latents,
leading to the generation of the image.

« CLIP : This component handles the preprocessing of positive and negative prompts for the
language model. It enables the encoding of text into a format comprehensible by UNet.

« VAE : The VAE is responsible for decoding images from latent space to pixel space. Addition-
ally, it can encode a regular image from pixel space to latent space in cases where image-to-
image encoding is required.
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4.2.2 CLIP text encode SDXL

The output from the Load Checkpoint node in CLIP connects to the CLIP text encode SDXL nodes
[30, 70, 71] (see Figure 4.3). These nodes retrieve positive and negative prompts and input them
into a CLIP language model. Subsequently, this model transforms the text into embeddings. The
resulting embeddings play a crucial role in directing the diffusion model towards the generation of
specific images. Primitive nodes are only used to write prompts.

For image generation guidance, SDXL employs two text prompts : OpenCLIP ViT-bigG-14 and CLIP
ViT-L. In ComfyU]I, these input parameters are represented as follows :

« text_G corresponds to the text_encoder, CLIP_G (CLIPTextModel).

« text_L corresponds to text_encoder_2, CLIP_L (CLIPTextModelWithProjection).

Figure 4.3: Clip text encode SDXL

4.2.3 Empty latent image

The process of converting text to images initiates with a randomly selected image in latent space.
The dimensions of this latent image are directly proportional to the corresponding image in pixel
space. This enables you to specify the image size in terms of height and width, along with the batch
size, indicating the number of images generated in each iteration. The Empty latent image node
[30, 72] generates a fresh set of vacant latent images. These latent images must undergo a process of
introducing noise and subsequent denoising using a sampler node. This node is displayed in Figure
4.4.
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Empty Latent Image

Figure 4.4: Empty latent image

4.2.4 KSampler

In stable diffusion, images are generated through a process known as sampling. In ComfyU], this
process occurs within the KSampler node (Figure 4.5).

KSampler [30, 73, 74] takes inputs of embeddings corresponding to positive and negative prompts
from CLIP models, as well as an image in latent space (in our case, an empty one) that needs to be
denoised. To achieve this, KSampler first introduces random noise to the latent image. Subsequently,
it utilizes the MODEL output from the Load checkpoint, allowing the reverse diffusion process to
take place, using the embeddings as a guide. At the end of this process, the denoised latent image is
produced, hopefully meeting the desired specifications.

Several important parameters are integrated into the KSampler node and allow you to find the best
way to obtain the desired final image :

+ Seed : The initial randomness in the latent image and, consequently, the final image compo-
sition are governed by the random seed value.

« Control_after_generate : This parameter dictates how the seed should change after each
generation. It could be a randomized value (randomize), an increase of 1 (increment), a de-
crease of 1 (decrement), or a constant value (fixed).

« Steps : The denoising process utilizes a specified number of steps. A higher step count results
in fewer artifacts during the processing, which results in better quality. But each step requires
calculation time. Attention that too many steps can ruin the image.

« CFG : The classifier’s free guidance scale (CFG) is a parameter that regulates the extent to
which the image generation process aligns with the text prompt. Increased scales prompt the
image to closely adhere to the prompt, but overly high scaling can negatively impact image
quality. Conversely, lower values result in greater creative deviation of the image from the
text input. A study was carried out at the Section 4.4 to confirm the effects announced and to
determine the most interesting values.

« Sampler_name : This configuration enables you to select the sampling algorithm responsible
for executing denoising procedures. The algorithms can exhibit differences in speed, quality,
and the variety of the image generation process.

« Scheduler : It governs the pace and advancement of the sampling process. It dictates the
frequency and intervals at which the sampling process is iterated. Various Schedulers yield
distinct impacts on both the quality and variety observed in the image generation process.
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« Denoise : This parameter ranges from 0 to 1. A setting of 1 implies the input image is entirely
substituted with noise, producing an output image unrelated to the original. Conversely, a
setting of 0 signifies no noise addition, yielding an output identical to the input. Any value
between 0 and 1 introduces some noise, allowing the output image to be influenced by the
input but not entirely determined by it. This represents the amount to be removed to obtain
the final image.

LATENT ®

Figure 4.5: KSampler

4.2.5 VAE decode

The VAE Decode node [30], see Figure 4.6, accepts inputs such as the VAE from our checkpoint
model or any other VAE, along with the denoised latent space image generated by our KSampler.
The VAE is employed to convert an image from latent space to pixel space, specifically utilizing the
decoder component of the autoencoder.

IMAGE ® ——@— ® images

Figure 4.6: VAE Decode and Preview image

It sends the ultimate pixel image to the Preview image node for display purposes. Additionally, the
Save image node is available for downloading the image.
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4.3 Interesting custom nodes

Alarge number of nodes have been created and put online in open-source packages. These are added
to ComfyUIL We won’t go through many of them, just the ones that really interest us for this work.
There are dozens of them, with a variety of objectives. The advantage of ComfyUI and its workflows
made up of different nodes is that you can apply other tools to improve image generation that at
first glance have nothing to do with the stable diffusion architecture. By using them appropriately,
we can obtain or get closer to the desired result.

4.3.1 ComfyUI Manager

ComfyUI manager [2, 75] is an extension crafted to enhance the user experience of ComfyUI It
serves as a specialized node with the purpose of simplifying the installation, removal, and updating
of extra custom nodes through the ComfyUI interface. Furthermore, it offers a hub function and
user-friendly features to access various information within the ComfyUI system. The ComfyUI
manager menu is shown below on Figure 4.7.

ComfyUI Manager Menu

) W sl D L Sy ok @i Install Custom Nodes ComfyUl Community Manual
Pre nethod: Auto Install Missing Custom Nodes ComfyUl Workflow Gallery~
>: None Install Models ComfyUl Nodes Info

Channel: default
Share: All Update All
Keywords: SDXL-Turbo, SVD,
Update ComfyUl IPAdapter, FreeU Advanced
Fetch Updates __ )
Issue News:
Snapshot Manager
Install via Git URL Alternatives of A1111 » [IPAdapter Issue] The
== = IPAdapter has been
updated to address

Figure 4.7: ComfyUI manager menu

4.3.2 ComfyUI Impact Pack

This collection of specialized nodes designed for ComfyUI simplifies the process of improving im-
ages using features such as detector, detailer, upscaler, pipe, and others.

Face Detailer : Included in this set is the FaceDetailer node [76], see Figure 4.10, which stands
out as particularly intriguing. It merges two nodes — the Detector node for face detection and the
Detailer node for restoring details. This combination simplifies the process of identifying faces and
improving their quality. It proves valuable, especially in cases where stable diffusion struggles to
generate high-quality facial images. Since this node shares functionality with KSampler’s image
enhancement, there is some overlap in options.

The detector identifies specific regions based on the model, and there are three types : SEGM, BBOX,
or SAM [76].
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« BBOX : BBOX, short for Bounding Box, enables the capture of detection zones in the form
of rectangular regions. For instance, by employing the bbox/face_yolov8m.pt model, one can
obtain masks corresponding to the rectangular areas of faces. These masks are accessible
through BBOXs acquired via the UltralyticsDetectorProvider. The UltralyticsDetectorProvider
node loads the Ultralytics detection models.

« SEGM : SEGM, which stands for Segmentation, captures detection zones as silhouettes. Us-
ing the segm/person_yolov8n-seg.pt model, for instance, one can obtain silhouette masks for
human shapes. These masks can be acquired through SEGMs obtained via the UltralyticsDe-
tectorProvider.

YOLO (You Only Look Once) [77, 78], a popular model for real-time object detection and image
segmentation, has gained popularity for its speed and accuracy. It operates by dividing an image into
a grid and predicting bounding boxes and class probabilities for each grid cell. YOLO is renowned
for its real-time processing capabilities, as it processes the entire image in a single forward pass
through the neural network. The network predicts multiple bounding boxes with associated class
probabilities for each box using intersection over union. These predictions are refined using non-
maximum suppression to filter out redundant or overlapping boxes, yielding a final set of accurate
and distinct object detections. You can see a visualisation summarising what has just been explained
in the Figure 4.8.

Class probability map

Figure 4.8: YOLO principle [78]

YOLOVS, developed by Ultralytics [79], represents the most recent iteration of YOLO, offering com-
prehensive support for various vision Al tasks. It leverages the accomplishments of its predecessors
while introducing novel features and enhancements to boost overall performance, flexibility, and
efficiency.

+ SAM : SAM [80] produces silhouette masks using the Segment Anything technique. While it
cannot be used independently, when used in conjunction with a BBOX model to specify the
target for detection, it can generate finely detailed silhouette masks for the detected objects.

SAM is a promptable segmentation system designed for zero-shot generalization without requiring
additional training on unfamiliar objects or images. Its architecture comprises an image encoder, a
prompt encoder, and a lightweight mask decoder. The image encoder generates one-time image em-
beddings, while the prompt encoder embeds prompts such as points, boxes, or text in real-time. The
lightweight mask decoder predicts segmentation masks based on embeddings from both encoders,
utilizing prompt self-attention and cross-attention. SAM updates model weights using annotated
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masks, allowing for continual learning and flexibility. The model is trained on the Segment Any-
thing 1 Billion Mask (SA-1B) dataset, the largest labeled segmentation dataset to date, known for its
diversity, size, and high-quality annotations [81, 82]. You can get a better idea of what was just said
by looking at Figure 4.9.

valid mask valid mask ,—> annotate —l
lightweight mask decoder model data
T T T; train <—]
model |
i LiaEs ‘ Segment Anything 1B (SA-1B):
encoder
prompt ] ‘ * 1+ billion masks T
s ° | | cat with . ol Irnli]h'on tlﬂ:lgk‘&
b black ears = privacy respecting
T ) 1 * licensed images
segmentation prompt image prompt image
(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM) (c) Data: data engine (top) & dataset (bottom)

Figure 4.9: SAM principle [83]
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Figure 4.10: Face detailer

An example of its use with BBOX is shown below in figure 4.13. We can clearly see that the man’s
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face in the image on the right is of high quality, unlike the image on the left. We will therefore use
and test this node later in our workflows. It solves some interesting problems, as you can see from
this example.

2

1

A

oa

Figure 4.11: Image obtained after one Figure 4.12: Image obtained after apply-
generation ing Face detailer

Figure 4.13: Example of the effectiveness of the Face detailer

4.4 SDXL workflows - tests

Now that we have understood the tool, i.e. we have seen and understood what generative Al is, how
stable diffusion works, the SDXL models, the ComfyUI interface, etc., we can now create streams in
ComfyUI using SDXL. We’ll then test these workflows and try to understand how images are gen-
erated using certain parameters. We'll keep the workflows and parameters that give the best image
quality, depending on what we want to do. The 3 workflows we’ll be testing are : text-to-image,
text-to-image with Scribble and inpainting. We will apply these tests to character generation and
scene generation. The influence of the Face detailer will also be tested.

The goal is to generate images of a comic strip by taking as an example some panels from an existing
comic strip. The choice is : "To the Stars and Back - episode 1" by Peglo, found on webtoon.com.
In this way, we will recreate the idea of the images, trying to ensure that the images we generate
resemble the comic strip and that the images have as much consistency and quality as possible.
In addition, other tests are carried out. The tests set out below will be used to demonstrate the
consistency that can be achieved with prompts alone. To do this, go to Section 5.1 in the next
chapter.
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MY NAME
1S KANG DAE.

Figure 4.14: Panel 1 [84]

Figure 4.16: Panel 3 [84] Figure 4.17: Panel 4 [84]

70



4.4.1 Text-to-image workflow

The easiest workflow to create is the one that was precisely explained in the previous section (back
to Section 4.2), the text-to-image workflow. In this part, we will explain the choice of certain param-
eters and analyze the rendering of images, in order to see what is good and what has to be improved.

Now, we’re now going to generate images corresponding to the chosen panels and inspect them, to
see what can already be done and what the challenges are in terms of consistency and image quality:.
We'll start by generating the panels for the scene, then move on to generating the characters.

We used the following model, dynavisionXLAllInOneStylized, which is a 3D model, and, the same
negative prompt for all generations : bad face, ugly, deformed face, bad quality, beard, earring. The
"denoise" parameter of the KSampler is set to 1 because we need to generate a completely new image.
The image to be denoised must consist of 100% random noisy image. The other parameters chosen
are "sampler"=dpmpp_2m, "scheduler"=karras and "steps"=20. According to the literature [85], this
is a good and rather popular choice when you want fast convergence, decent generation quality and
something new. There are plenty of other samplers and schedulers out there, with slightly different
characteristics but just as good.

Regarding the "cfg" parameter, as mentioned earlier in Section 3.6, we will conduct a brief investi-
gation to observe its impact on the images. Here below are the different prompt scenarios devised
for this test and it is important to note that the same seed was used for each CFG scale tested from
a particular prompt.

Model : sdXL_v10VAEFix.safetensors

Prompt1:

— Positive prompt : bike resting against a wooden fence in front of a heavenly beach, (boat
in the sea:1.2), sun shining, intricate detail, masterpiece, high quality.

— Negative prompt : houses, ugly, deformed, blurry, text, painting, anime, cartoon.

Prompt 2 :

— Positive prompt : 4x4 car parked in the savannah, group of lions, lionesses posed near a
baobab, sun shining, intricate detail, masterpiece, high quality.

— Negative prompt : ugly, deformed, blurry, text, painting, anime, cartoon.
e Prompt 3:

— Positive prompt : bustling futuristic cityscape with advanced technology, soaring skyscrap-
ers, and flying vehicles intricate detail, masterpiece, high quality.

— Negative prompt : ugly, deformed, blurry, text, painting, anime, cartoon.

Prompt4:

— Positive prompt : anime, young brunette girl going down a slide in a green playground,
close-up face, happy, smiling, rainy weather, yellow jacket, she raises her arms to the
sky, intricate detail, masterpiece, high quality.

— Negative prompt : ugly, deformed, disfigured, extra limbs, blurry, text.
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Figure 4.18: CFG test - First part
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Figure 4.19: CFG test - Second part
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As a reminder, we previously mentioned that the CFG scale serves as a parameter to regulate how
closely the stable diffusion model aligns with the text prompt. A higher CFG value, w regarding to
the theoretical part in Section 3.6, implies a stronger adherence to the prompt, and vice versa. The
tests will confirm this hypothesis. It is logical in view of the equation which combines the estimates
for the conditional and unconditional scores.

Upon observing Figure 4.18, it becomes evident that for lower CFG values (1, 2, 4), the model devi-
ates from the prompt and we have a poor image quality. Conversely, as the CFG value increases, a
noticeable enhancement occurs. Examining Figures 4.19, it’s apparent that prompt adherence im-
proves progressively. However, there’s a simultaneous rise in color saturation and contrast with
increasing CFG values, especially beyond 14. Beyond a certain CFG threshold, roughly 20-25, the
image output starts to lose detail, becoming blurrier.

Consequently, outputs with a more creative and artistic appearance tend to emerge within the CFG
range of 6 to 12. Although using a scale up to 14, and possibly a bit more, still yields results with
minimal artifacts. Hence, selecting a CFG value of 8 appears to be a well-balanced choice based on
our comprehensive testing.

Now that we have given and discussed the important parameters of the KSampler, we can first
examine and analyse what we obtain by generating images of scenes using only the text-image
method. Later, in Section 4.4.2, we will compare these results with those obtained with the help of
a drawing.

« Positive prompt : ((cartoon style)), intersection of 2 small streets, buildings stuck together,
crosswalk with a blond woman walking on it, small store, overhead electric cables carried by
a pole and linking the houses, one tree is behind an electric pole, yellowish image, yellow-
orange sky, some clouds, high quality.

Figure 4.20: Text-to-image - Panel 1
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« Positive prompt : ((cartoon style)), a large yellow apartment building with balconies, white
clouds in the yellow-orange sky, yellow-orange image, one tree at the bottom left of the build-
ing, high quality.

Figure 4.21: Text-to-image - Panel 2

We can already see here that it’s difficult with a single prompt to capture all the elements you want
to incorporate into the scene and position them where you want them to be positioned.

Another difficulty, as can be seen in Figure 4.20, the faces don’t look great in a big scene without
a Face detailer. The key to creating webtoon-style comic panels, particularly in manga, anime, and
cartoons, is to focus on simplicity. It’s advisable to generate straightforward scenes that don’t re-
quire numerous elements. Unlike other genres, there’s usually no necessity for elaborate, complex
scenes in this style of comics. Here, we need to concentrate above all on the characters.

The second series of images, Figure 4.21, requires fewer elements and already looks more like what
we want. Overall, the quality of the images is acceptable and more or less resembles what we want
to achieve, although a few elements are missing.

To achieve a cartoon style, it’s important to specify in the prompt : "cartoon style". And, to make
sure you get the cartoon effect you can use brackets around these keywords. This will give more
weight to the words. A full explanation of this principle can be found in Section 5.1.
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Now let’s do the same thing for character generation.

« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book sitting on the floor
against a wall in his bedroom where there is a desk with a computer leaning, black color eyes,
black color eyebrows, medium-length black hair, rectangular black glasses, wearing a solid-
colored cyan t-shirt, solid-colored black pants and white socks, legs crossed, high quality.

il

Figure 4.22: Text-to-image - Panel 3

« Positive prompt : ((cartoon style)), young adult man, 25, concentrated face, black eyes, black
eyebrows, medium-length black hair, rectangular black glasses wearing a solid cyan t-shirt,
is reading a book held in one hand and scratching the back of his head with his other hand,
beige background, high quality.

Figure 4.23: Text-to-image - Panel 4 - First order of the prompt
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« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book held in one hand
and scratching the back of his head with his other hand, beige background, black eyes, black
eyebrows, concentrated face, medium-length black hair, rectangular black glasses wearing a
solid cyan t-shirt, high quality.

Figure 4.24: Text-to-image - Panel 4 - Second order of the prompt

Here are the analyses that can be made of images generated for characters using text-to-image. First
of all, when comparing the images in Figure 4.22 with those in Figures 4.23 and 4.24, it should be
noted that the quality of the faces is not as good when they are not close-up faces. We can also see
that the haircuts, although sometimes similar, vary slightly from one image to another. It should be
noted that it was difficult to get the character to look at the book. Also, as the colour of the book was
not specified, the book took one of the colours from the prompt that was associated with something
else. Nevertheless, it’s sometimes complicated to use several colours in the same image. Even if
they are specified for each element of the image, they can sometimes blend together. In the same
way, when you indicate that the character is reading a book, there are lots of books in the room.
Once again, we see that it’s complicated to capture everything in the prompt. Finally, it’s worth
noting that it was difficult to get the character to look at the book or to make sure that he was in
the expected pose, i.e. with his hand on the back of his neck. In fact, especially when it comes to
the pose, we can see by comparing Figures 4.23 and 4.24 that the order of the words in the prompt
matters.

This means that the way in which the prompt is written is very important and that by using only the
prompt you can achieve a more or less coherent character with a very good quality image. These
tests also showed that certain words give better results and that the order of the words in the prompt
is important. We’ll see why later in a chapter reserved for the prompt (go to Section 5.1). So these
tests are already encouraging in terms of consistency and quality.

With Face detailer : We can now generate and analyse images of characters and then apply the Face
detailer to obtain a better quality face. We use for the positive prompt, "beautiful young man face, 25,
best quality, cartoon style", and, for the negative prompt, "bad face, ugly face, disfigured". As concern
the parameters, a good choice is to use "denoise"=0.45, "sampler"=dpmpp_2m, "scheduler"=karras,
"steps"=20 and "cfg"=8. The parameters are the same as before, except for the "denoise". The choice
of a value of 0.45, around 0.5, will be discussed below following the tests carried out.

77



« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book sitting on the floor
against a wall in his bedroom where there is a desk with a computer leaning, black color eyes,
black color eyebrows, medium-length black hair, rectangular black glasses, wearing a solid-
colored cyan t-shirt, solid-colored black pants and white socks, legs crossed, high quality.

Figure 4.25: Text-to-image with Face detailer - Panel 4 - "denoise"=0.45

« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book sitting on the floor
against a wall in his bedroom where there is a desk with a computer leaning, black color eyes,
black color eyebrows, medium-length black hair, rectangular black glasses, wearing a solid-
colored cyan t-shirt, solid-colored black pants and white socks, legs crossed, high quality.

Figure 4.26: Text-to-image with Face detailer - Panel 4 - "denoise"=0.9
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We can see that it works quite well, but it’s difficult to correct the character’s face if you want them
to look at their book. Indeed, the Face detailer only regenerates part of the image and no longer has
the context of the book you need to look at. Moreover, we can note that sometimes it is important to
specify the character’s gender in the Face detailer prompt so as not to change the character’s gender.
This depends on the models, which are often based on a larger number of female characters.

Finally, here it is important to note that the "denoise" parameter plays a vital role. When the "denoise”
is high, see Figure 4.26, the original head is no longer respected and the face changes a lot. A lower
denoise gives much better results in terms of consistency, see Figure 4.25. This is logical because,
as we explained earlier, the more noise we decide to add, the more we’re going to ask the model to
generate an image that has no basis, no pre-generated image, which means that the final image will
be completely different from the base image we were expecting. The "denoise" value depends on the
image, but generally around 0.5 is a good compromise for flexibility and consistency. This could be
a parameter to be supplied to the user of the application.

4.4.2 ControlNet (Scribble) worklfow

An interesting opportunity to integrate into the comic creator is the ability for the user to generate
the image they want based on a sketch. This sketch should only give the direction to be followed
during the denoising process. The drawing does not need to be of high quality for the tool to be
accessible to everyone. So, below, Figure 4.27 shows the workflow, the assembly of nodes, chosen
to achieve this.

Figure 4.27: Scribble SDXL workflow

Let’s take a closer look at the part added to the text-to-image workflow. This part of the workflow,
shown in Figure 4.28, is the one that enables ControlNet to be used. You can see that several nodes
are involved. We will briefly discuss them.
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Figure 4.28: ControlNet workflow

Load image : This node loads an image [86]. It therefore takes as input the name of the
image to be used, in our case a black-on-white drawing, and returns the image in pixels and
the mask, i.e. the alpha channel of the image.

Invert image : This is used to invert the colours of an image [87]. It therefore takes as input
the pixelated image to be inverted and returns the inverted pixelated image. So the black-on-
white design becomes a white-on-black design. This is beneficial because the model we are
using requires a hand-drawn image on a black background with white outlines.

Load ControlNet model : This node is used to load the chosen ControlNet model [88]. This
model is used to give visual indications to the diffusion model. As input, this node takes
the name of the ControlNet model and returns the loaded model. In our case, the chosen
model is TencentARC/t2i-adapter-sketch-sdxl-1.0' trained with PidiNet edge detection. This
specific control point offers conditioning directly on the sketch for the SDXL control point.
This collaboration is a joint effort involving Tencent ARC and HuggingFace.

Apply ControlNet (advanced) : Ultimately, the primary node serves as the visual refer-
ence for the diffusion model [90], any model. It receives input from the positive and negative
prompts, the ControlNet model guiding the diffusion model with specific image data, and the
image serving as a visual guide. The output includes the conditioning incorporating both
the ControlNet model and the visual guide. Additionally, three parameters require careful

selection [91] : "strength", "start_percent,’ and "end_percent". They ascertain the timing and
manner in which control is exerted over the generation process.

— strength : The potency of the ControlNet network is defined by the strength parame-
ter, indicating the extent of its impact. A greater weight ensures a closer resemblance
between the generated image and the original reference image. The ControlNet outputs
are multiplied by the "strength" factor, amplifying their influence during the integration
with the UNet of the stable diffusion model. This ensures heightened attention to the
contributions of ControlNet in the merging process.

!Similar to ControlNet, the T2I adapter [89] functions as a network, offering supplementary conditioning for stable
diffusion.
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- start_percent : This corresponds to the proportion of the generative process at which
the impact of ControlNet initiates.

- end_percent : This marks the phase in the generation process where the ControlNet
ceases to exert influence. To illustrate, suppose we opt to generate an image over 20 steps.
By setting "start_percent" to 0 and "end_percent" to 0.75, the generation initiates with
the ControlNet model and concludes after 15 steps, allowing the model some creative
latitude.

To understand how the scribble and its parameters work and to see how it reacts, we're going to
generate several images based on a hand-drawn picture. The same model, the same prompts and
the same seed are used for each generation, so that we can compare and contrast the effects. All the
parameters remain the same apart from the ControlNet parameters, which we will vary. We only
fix the "start_percent" parameter to (. Below you’ll find the model and prompts used, as well as the
reference image, which is my drawing on Figure 4.29.

Model : dynavisionXLAIlInOneStylized

« Positive Prompt : cartoon style, man standing up arms crossed, white skin, blue eyes, black
hairs, red t-shirt, white short, white socks, black baskets, happy, smiling, basketball hoop,
bright sunshine, beautiful face, quality.

« Negative Prompt : ugly, disfigured, bad quality, bad eyes, bad nose, bad face, bad hands, text,
watermark, blurred.

« Positive Prompt of the Face detailer : beautiful man face, blue eyes, cartoon style.

« Negative Prompt of the Face detailer : bad face, ugly, disfigured.

Figure 4.29: Hand-made drawing

Consequently, in order to decide on a relevant way to configure the sketch tool that will be proposed
to the user, we will observe the influence of the parameters. A comparison grid will allow us to
visualize the images generated with different combinations of parameters (see Figure 4.30). The
goal is to decide on a slider to offer to the user so that the generated image resembles more or less
their original sketch, while sparing them all the technical aspects because the creation tool should
be accessible to as many people as possible.
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Figure 4.30: Visualisation to determine the influence of Scribble ControlNet parameters
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Analyzing this, we can extract some interesting information. Indeed, we see that the "strength" pa-
rameter plays a rather important role, having the expected effect. The higher its value, the more
significance the sketch’s weight carries. It can be observed that only from a "strength" of 0.75 does
the model comprehend the sketch in its entirety. However, when the "strength" parameter is set to 2,
the sketch is overly emphasized, preventing the generation of a high-quality image. This hinders the
model’s ability to be creative. As for the "end_percent" parameter, there is less noticeable difference
between the values. However, upon closer inspection, some quality differences among the images
become apparent. Whether for the "strength" or "end_percent" parameter, when set to 0, the sketch
is not considered.

In conclusion, one can imagine introducing into the image generation tool a slider that would oper-
ate diagonally in the table, i.e., with similar values for both parameters ranging from 0 to 1.

We can now return to our tests for the comic book "To the Stars and Back - episode 1". However, we're
now going to test the generation of images from a hand-drawn sketch. We'll start by generating
scenes, as we did earlier for the tests with the text-to-image workflow. Below are the 2 drawings I
made. The one based on panel 1 is in Figure 4.31 and the one based on panel 2 is in Figure 4.32. We
will analyse the images generated and compare them with those obtained using text-to-image.
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Figure 4.31: Drawing from panel 1 Figure 4.32: Drawing from panel 2
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« Positive prompt : ((cartoon style)), intersection of 2 small streets, buildings stuck together,
crosswalk with a blond woman walking on it, small store, overhead electric cables carried by
a pole and linking the houses, one tree is behind an electric pole, yellowish image, yellow-
orange sky, some clouds, high quality.

Figure 4.33: Scribble - Panel 1 with a strength of 1

« Positive prompt : ((cartoon style)), a large yellow apartment building with balconies, white
clouds in the yellow-orange sky, yellow-orange image, one tree at the bottom left of the build-
ing, high quality.

Figure 4.34: Scribble - Panel 2 with a strength of 0.8

If we analyse the generations in Figures 4.33 and 4.34, we can see that the images are much closer
to what we want to achieve than they would have been without the scribble, i.e. only with the
text-to-image workflow (see Figures 4.20 and 4.21). To get a better match between the drawing and
the generated image, a high level of strength is required. In this case, the elements are positioned
in the right places. However, the characters are sometimes less well realised and it is difficult to
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make out which character is which.? What’s more, it’s always complicated to bring together all the
characteristics of the prompt. All in all, scribbling is very useful and allows you to specify what you
want. The key is to adjust the ControlNet parameters using the tests described above.

Next, we’ll examine the creation of character images derived from hand-drawn sketches. I've pro-
vided illustrations I crafted, with the depiction from panel 1 shown in Figure 4.35 and the one from
panel 2 in Figure 4.36. We’ll assess the generated images and draw comparisons with those produced
using the text-image approach.

ESR)

Figure 4.35: Drawing from panel 3 Figure 4.36: Drawing from panel 4

« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book sitting on the floor
against a wall in his bedroom where there is a desk with a computer leaning, black color eyes,
black color eyebrows, medium-length black hair, rectangular black glasses, wearing a solid-
colored cyan t-shirt, solid-colored black pants and white socks, legs crossed, high quality.

Figure 4.37: Scribble - Panel 3

2As a reminder, the multiplicity of characters in the images is not the subject of the research in this work and may
be the subject of a future work.
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« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book held in one hand
and scratching the back of his head with his other hand, beige background, black eyes, black
eyebrows, concentrated face, medium-length black hair, rectangular black glasses wearing a
solid cyan t-shirt, high quality.

Figure 4.38: Scribble - Panel 4 - with a strength of 1

« Positive prompt : ((cartoon style)), young adult man, 25, is reading a book held in one hand
and scratching the back of his head with his other hand, beige background, black eyes, black
eyebrows, concentrated face, medium-length black hair, rectangular black glasses wearing a
solid cyan t-shirt, high quality.

Figure 4.39: Scribble - Panel 4 - with a strength of 0.4

Using the scribble, we can see that the model is trying to generate images in line with the sketch.
However, he has difficulty understanding the depth of the drawing (see Figure 4.37), especially when
the quality is poor. We can also see that with a high strength the character looks younger and older,
and respects the prompt, see Figure 4.38. In fact, the pose is completely respected, as is the slightly
odd shape of the head. With a lower strength, as in Figure 4.39, the pose is also taken into account,
while leaving the model free to be creative. These results confirm our previous tests.
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4.4.3 Inpainting workflow

A great feature to possibly integrate into the application is the ability for the user to regenerate
selected parts of an already generated image. This would allow improvement by adding or removing
components in the image. The user only needs to create a mask on the part of the image they want
to modify. Below, Figure 4.40 illustrates the chosen workflow to achieve this.

Figure 4.40: Inpainting SDXL workflow

Let’s take a closer look at the part added to the text-image workflow. This portion of the workflow,
illustrated in Figure 4.28, is the one that enables the use of inpainting. You can see that several nodes
are involved. We will discuss them briefly.

code (for Inpainting)

LATENT ® =—@— @ LATENT @
2 »

Figure 4.41: Inpainting workflow

« VAE encode (for inpainting) : This node uses a VAE to encode images from pixel space to
latent space [92]. It takes as input the images to be encoded, a VAE, and the mask indicating
where to denoise in the sampler, and returns the masked and encoded latent images. Finally,
the "grow_mask_by" parameter, set to 32 here which seems good, indicates by how many
pixels the surface of the given mask should be increased.
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« Repeat latent batch : This node allows repeating a batch of latent images [93]. It is used
here to have 2 generations of inpainting, allowing the selection of the best version. It takes
as input the batch of latent images to be repeated and the number of repetitions. It returns a
new batch of latent images repeated x times.

The generations obtained following the inpainting as described here are not always well-executed.
This is an aspect to be improved.
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Chapter 5

Consistency between characters

Ensuring consistency in Al-generated character images is a complex challenge, given the variability
in training data and the intricacies of human appearance. This involves maintaining uniform facial
features and clothing styles across diverse poses and backgrounds. Al models face challenges in pre-
serving consistent details like expressions, poses, and anatomical features, with the potential risk
of overfitting. Generative Als encounter a significant challenge in creating consistent appearances
across sequential contexts, such as in a comic series [94, 95].

Stability AI’s stable diffusion provides a platform for achieving a high level of consistency, neces-
sitating mastery of its tools and features for success. While reaching absolute uniformity remains
a challenge, consistent characters, even if not at 100%, offer advantages for storytelling, branding,
and user experience design, contributing to a cohesive narrative, enhancing viewer immersion, and
establishing a strong brand image across diverse contexts [96].

With that out of the way, let’s take a look at the current possibilities for approaching our goal, which
is to enable users to create fairly coherent comic strips. We will see that there are several techniques
such as correct use of prompts and fine-tuning methods. There are others which will be mentioned
in the conclusion, see Chapter 8, as we do not have the possibility of covering everything. In the
meantime, we’re going to explain the techniques involved in this work and list the advantages and
disadvantages of each in order to make a choice.

5.1 Prompts

A first idea for trying to create coherence between the characters is to use prompts intelligently. In
this section, we’ll look at how prompts should be used with stable diffusion and particularly with
SDXL models. There are various techniques and subjects that can be covered in a prompt in order
to achieve consistency. We'll take a look at them through a number of examples, which will give us
an interesting first approach to analyse.

5.1.1 Essentials of an effective prompt
First of all, it’s important to know what an effective prompt is [94, 97]. Intuitively, it must be com-

plete and precise. A recommended approach is to review a list of keyword categories and determine
if any of them align with your intended use.
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+ Overall aesthetic of the image : It’s link to the style of the image. This pertains to the
artistic expression reflected in the image, encompassing various forms such as comic, cartoon,
realistic photograph, impressionist, surrealist, pop art, and others.

« Character portrayal : The physical appearance of the character is described in terms of age,
hair colour and cut, eye colour, muscles, etc. Everything you want the character to look like.

« Attire worn by a character : The character’s appearance is described through his or her top,
bottoms, shoes, the shape and colours of all these components, etc.

« Character’s behavior : We also find the attitude, the position, what the character is doing in
the image.

« Location : The place where it all happens. You need a background that can be more or less
detailed.

We could also have other categories like resolution (highly detailed, sharp focus, ...), additional de-
tails (stunningly beautiful, dystopian, ...) color of the global image, lighting.

All the things you want to see in the images are grouped together in a single prompt called Positive
prompt, as you have already seen in a number of examples.

5.1.2 Negative prompt

Using positive prompts alone does not always produce the desired image. This is why the use of
negative prompts [97] is also an effective method of guiding the image generation process. Indeed,
instead of specifying what you desire, negative prompts involve indicating what you wish to avoid.
For instance, negative keywords can pertain to objects or body parts that are undesirable in the gen-
erated image. As an illustration, if the rendering of hands is problematic in SD1.5 models, employing
"hand" as a negative prompt proves useful in concealing them. There are universal negative prompts.

In SD1.5 models, numerous keywords have minimal impact, and negative prompts are even less
crucial for the SDXL model. It is sufficient to specify only the elements you wish to exclude, such as
adding "animated" as a negative prompt for generating a photo-type image or removing a specific
object. So, although optional, they can be used regularly because they are useful and do no harm.
For information, conversely, in SD2 models, the inclusion of negative prompts is indispensable to
ensure the production of high-quality images [98].

Contrary to what we saw at Section 3.5.4, when we only managed a positive prompt. Here, the im-
plementation of the negative instruction involves redirecting the process of unconditional sampling.
Rather than utilizing an empty instruction that produces random images, a negative instruction is
employed [44].

Let’s test the influence of negative prompts.

« Positive prompt : man standing looking at the camera, in a chalet in the mountains.
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You can see in Figure 5.1, where we don’t use the negative prompt, that the chalet is automatically
located in the mountains in the snow. However, by using the keyword "snow" in the negative prompt,
we can now see looking at Figure 5.2 that the image generated no longer places the chalet in the
mountains. This proves the usefulness of using a negative prompt.

Figure 5.1: Original image us- Figure 5.2: Image using the
ing only a positive prompt same positive prompt and a
negative prompt

5.1.3 Techniques

There are several techniques for using words in a prompt, whether to control the importance to be
given to a keyword.

+ Prompt order : Keyword placement [99, 100] is an interesting element to consider when cre-
ating a stable diffusion prompt. Keywords placed at the beginning of the prompt carry more
weight than those placed at the end.

The order of prompts is essential, as the model processes input sequentially. For complex in-
structions, prompt order is crucial, influencing the model’s step-by-step interpretation of the
task. The model assigns more weight to tokens encountered early on, ensuring they have a
stronger impact. In general, the exact wording of a prompt significantly influences the specific
output, making even small changes potentially lead to unpredictable variations in the gener-
ated content. This effect can be seen by comparing Figures 4.23 and 4.24. An analysis had
already been made under these figures.

« Keyword weight : Prompt weighting [97, 101], achieved through the syntax (keyword: fac-
tor), offers a valuable tool for influencing the importance of specific elements within a prompt,
allowing for precise control over the generated image. The factor, a numerical value, deter-
mines the degree of importance, with values less than 1 indicating reduced significance and
values greater than 1 enhancing importance. This technique is versatile and applicable to var-
ious prompt categories, including subject keywords, style, and lighting.

Understanding that keywords are converted into embedding vectors, altering the importance
of a word in the prompt involves adjusting the scale of the text embedding vector associated
with that word—either increasing or decreasing it. Subsequently, the model utilizes these em-
beddings to condition its cross-attention layers for the purpose of image generation.
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The sensitivity of the SDXL model to keyword weighting is evident [98], wherein adjusting
the weight of keywords, such as (keyword: 1.1), results in a proportional increase in the sig-
nificance of the keyword, specifically by 10%.

+ () and [] syntax : An alternative method to modify the intensity of the keyword is to utilize
parentheses () and brackets [] [97]. Using (keyword) enhances the keyword’s intensity by a
factor of 1.1, equivalent to (keyword:1.1). Conversely, [keyword] diminishes the keyword’s
intensity by a factor of 0.9, identical to (keyword:0.9). We can use several parentheses or
brackets for a same keyword. Doing that the effect is multiplicative. So, ((keyword)) is equiv-
alent to (keyword:1.21) since 1.1 x 1.1 = 1.21, (((keyword))) is equivalent to (keyword:1.33),

5.1.4 How to write a good prompt?

Finally, in order to conclude this section explaining the interesting methods for constructing good
prompts, it is important to summarise them using the following rules :

1. Be detailed and specific : While Al is making significant strides, stable diffusion technology
cannot intuitively understand your thoughts. It is essential to provide a detailed description
of your image for accurate interpretation, especially with SDXL models. This must be done
through both positive and negative prompts [102].

Indeed, as said before, the SDXL model boasts a superior language model compared to the
SD1.5. While the SD1.5 tends to treat prompts as a bag of words, the SDXL model has the
capability to genuinely comprehend your input. Therefore, it allows you to describe an image
in more elaborate and natural language detail. Despite this, the keyword-based approach
remains effective [98].

2. Use powerful keywords : Certain keywords hold more influence than others in guiding the
generated images [102, 103]. The model training relies on images and their accompanying
captions, leading to the frequent use of specific words to describe these images. Notably,
words such as celebrity names (e.g., Roger Federer), names of artists (e.g., Picasso), and terms
related to artistic media (illustration, painting, photography, etc.) carry significant weight
when incorporated into prompts. Thoughtful utilization of these influential keywords allows
for precise control in directing the generated images toward the desired outcome. It’s like
learning the vocabulary of a new language. There are lists of keywords on the web like here.

An interesting development of a message-guide should be seen as an iterative process [97]. Al-
ways start with a simple guide message containing only the subject, the medium and the style, and
generate several images in order to assess the quality. If this is satisfactory, you can go further by
gradually adding other keywords. For intelligent assistance, ChatGPT could also be used to create
prompts.

5.1.5 Consistency with prompts

The main and most obvious weapon for achieving relative consistency of characters from one gen-
eration to the next is to write the guide image in an extremely detailed and relevant way. Once
you're happy with the result you’ve achieved for the guide image, you can reproduce images using
similar information to that which you used as your reference.
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To The Stars and Back
Episode 1

DynavisionXL — Without Face Defailer

Figure 5.3: First short comic
strip without Face detailer

To The Stars and Back
Episode 1

DynavisionXL — With Face Detailer

Figure 5.4: First short comic
strip with Face detailer
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Figure 5.5: First short comic
strip with a style LoRA and
Face detailer



Furthermore, to showcase the consistency between characters solely through well-crafted prompts,
tests were carried out in the examples presented in Section 4.4. The results revealed significant
similarities in the generated images with minor variations. The level of coherence achieved can be
influenced by the model’s quality. If a model encourages diversity in its outputs, maintaining coher-
ence with the prompt becomes more intricate. Therefore, alternative solutions need to be explored,
potentially in combination with the current approach.

In a broader context, the diverse images generated using the SDXL workflows from the preceding
chapter already enable us to create some appealing initial comic strips that closely resemble the
reference comic. The first example, presented in Figure 5.3 without Face detailer, is followed by the
second in Figure 5.4 featuring Face detailer, and the third in Figure 5.5 incorporating Face detailer
along with an additional LoRA style. The details of LoRAs will be explored later, and for more
information, please refer to Section 5.2.4. All the comics are good but the result seems a little better
for the third case.

5.2 Methods for fine-tuning stable diffusion models

We will see a second possible solution to obtain consistency between characters : fine-tuning. As
said before, fine-tuning [104] is a prevalent approach in machine learning, involving the additional
training of a model initially trained on a broad dataset using a more specific dataset. The outcome is
a model that tends to produce images resembling those present in the fine-tuning dataset. It allows
the users to personalize the models.

There are various fine-tuning methods, each with its own advantages and disadvantages. Most of
these methods have the same objective : to train a single concept, such as a subject or style, or
several concepts simultaneously. Here, we will describe these methods one by one, understanding
how they work and their characteristics. The choice will be guided by our final objective.

5.2.1 Hypernetwork

The Hypernetwork fine-tuning approach [105, 106] (see Figure 5.6), pioneered by Novel Al involves
inserting additional layers into the model. However, instead of updating these layers directly, a sep-
arate small secondary network called a Hypernetwork is used to generate the intermediate layers.
These will be specifically applied to the cross-attention modules of the UNet noise predictor.

The Hypernetwork is a simple neural network that incorporates a fully connected linear network
with dropout and activation functions. Its objective is to predict new weights (matrices) for the orig-
inal network, essentially modifying the cross-attention module by transforming the key and query
vectors.

During the learning phase, the connected Hypernetwork is allowed to adapt while the stable diffu-
sion model remains fixed. In this case, it is the weights of the layers of the Hypernetwork, which is
learning to create layers for the stable diffusion network, that are gradually updated, which improves
the results.
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Figure 5.6: Hypernetwork training [107]

Hypernetworks [105], being smaller, require minimal resources for training, which takes place
quickly. They also offer the advantage of a reduced file size. However, they will be less efficient
than other methods due to their indirect approach.

5.2.2 Textual inversion

The fine-tuning method, referred to as Textual inversion [106, 108, 109] (see Figure 5.7), imparts a
new word to the textual model using a small set of example images (3 -> 5). This process ensures
the integration of the new word closely with a visual representation, introducing fresh keywords
without altering the stable diffusion model’s structure. Specifically, only the section related to text
integration undergoes refinement, allowing the incorporation of new styles or objects into a prede-

fined model.

The approach involves updating a vector embedding. To execute this method, a novel keyword is
defined for the desired object or style, absent in the existing model. This defined keyword is then
converted into a token, represented numerically like other prompts in the model. Each keyword is
transformed into a distinct embedding vector utilized by the model for image generation.

The training phase initiates by embedding text and noise into the model, initially resulting in an
image divergent from the desired concept. By penalizing the model when the generated image
deviates from a slightly noisy reference, the vector is gradually updated to yield the desired outcome.
This process determines the embedding vector associated with the new keyword.
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Figure 5.7: Textual inversion training [107]

Textual inversion [108] has the notable advantage that you don’t train a whole new model, just a
vector. The output is therefore a very small embedding, with a compact file size, which means that
several inversions can be stored and easily shared. Several simultaneously generated embeddings
can be applied to a single image. Textual inversion works well, although it doesn’t always produce
the desired effect since it can be more difficult to use than custom models, which can make it sub-
optimal for some applications. Another drawback to consider is that Textual inversions are model-
specific, which limits their generalization.

5.2.3 Dreambooth

Introduced in 2022 by Google’s research team, Dreambooth is a training technique designed to en-
hance the overall stable diffusion model [106, 110, 111] (see Figure 5.8). This method utilizes a small
set of images associated with a specific concept, incorporating two inputs: the targeted concept and
a unique, meaningless identifier. The inclusion of the identifier is crucial to prevent the Al from
associating the concept with common words or other learned terms. The primary objective is for
the model to learn the correlation between the unique identifier and the concept, as represented by
the provided image samples.

The training process shares similarities with latent diffusion models but differs in that it starts with
an existing model and retrains it by introducing new concepts. The procedure commences by con-
verting the concept into an integrated text, where each word is represented by a vector. Subse-
quently, the model introduces noise to a sample image and attempts to denoise it to align with the
given concept. The evaluation involves comparing the model’s output with a slightly less noisy ver-
sion, from which a loss is calculated. The model undergoes updates through gradient adjustments
based on this calculated loss.
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Figure 5.8: Dreambooth training [107]

The Dreambooth method [106] is likely the most effective way to finely tune and shape specific
concepts. However, its storage efficiency is compromised as it necessitates the management of an
entirely new model.

5.2.4 LoRA

LoRA, or Low-Rank Adaptation of Large Language Models, serves as a mathematical technique de-
veloped by Microsoft researchers in 2021 to streamline the parameter count during the fine-tuning
of expansive language models [112].

Originally designed for large language models and showcased on transformation blocks, the ver-
satility of the LoRA technique extends beyond its initial scope. Simo Ryu (@cloneofsimo) [113]
ingeniously proposed implementing LoRA in the context of stable diffusion [114, 115]. The innova-
tive idea involves integrating these compact LoRA models with an existing standard stable diffusion
model, introducing subtle modifications to incorporate new concepts. This adaptation allows Lo-
RAs to be effectively applied to the cross-attention layer, linking image representations to descriptive
prompts. Notably, researchers discovered that refining this specific part of the model was sufficient
for effective training [116, 117], a concept we will delve into in greater detail below.

5.2.4.1 Technical understanding of LoRAs

We'll start by trying to understand what LoRAs are and how they work technically. Then we’ll see
how they apply to stable diffusion models. We’re going to use the paper that highlighted the Lo-
RAs [118] and several articles summarising well the main principles of this paper [114, 117, 119, 120].

Decomposition of AW : During the standard fine-tuning process, adjustments are made to the
weights of a previously trained neural network to adapt to a new task. This entails modifying the
original weight matrix, denoted as W, € R¥**, The cumulative modifications applied to W, in this
context are collectively referred to as AW, leading to updated weights expressed as Wy + AW.
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However, the LoRA method takes a distinct approach by emphasizing the decomposition of AW
instead of directly altering the matrix Wy,. This decomposition proves crucial in mitigating the com-
putational intricacies associated with fine-tuning extensive models.

Intrinsic rank hypothesis : The intrinsic rank hypothesis suggests that, despite initial full-rank
weight matrices in the dense layers of a neural network, crucial changes when adapting to a new
task can be efficiently represented in a lower-dimensional space. Rather than treating every ele-
ment of the update matrix AW as equally important, this hypothesis posits that a restricted subset
of changes can adequately encapsulate the necessary adjustments. This simplifies the learning pro-
cess during fine-tuning, allowing more efficient adaptation of models to new tasks.

Introduction of A and B matrices : Based on this assumption, LoRA proposes to represent AW
as the product of two smaller matrices, A € R™** and B € R?*" of lower rank, with r < min(d, k)
the rank of a LoORA module. The update matrix of a pre-entrained weight matrix W, is then the low
rank decomposition Wy + AW = W, + BA.

Thus the modified forward pass for h = Wx is given by :

h =Wyx+ AWx = Wyx + BAx

During training, W remains fixed without gradient update, while A and B contain trainable pa-
rameters, representing an approximation to AW. This approach allows A and B to be fine-tuned
instead of W. The end result is a remarkably compact model, significantly smaller than W. Both
W, and AW = BA are multiplied by the same input, and their output vectors are added together
in the coordinate direction.

For reparametrization, as depicted on Figure 5.9, A is initialized with a random Gaussian distribu-
tion, and B is initialized with zeros. Thus, AW = BA is zero at the start of training. Subsequently,
AWX is scaled by * where « is a constant in 7 you can tune. Setting « to the first 7 tried eliminates
the need for further tuning hyperparameters and helps maintain stability when varying 7.

h | |

Z
Pretrained
Weights

= Rdxd

r
X |

Figure 5.9: LoRA - Reparametrization [118]
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Let’s illustrate the reduction in size achieved by LoRAs through an example [117]. Consider a model
with a matrix of dimensions 2000 rows by 4000 columns, totaling 8.000.000 numbers (2000 x 4000).
Storing such a large set of values in the model file isn’t optimal. We can do better. With the LoRA
technique, we can decompose this matrix into a 2000 by 2 matrix and a 4000 by 2 matrix, where the
number 2 indicates the rank of the matrices. Consequently, only 12000 numbers (2000 x 242 x4000)
need to be stored. This represents a reduction of 666 times in file size. The term "low-rank matrices"
is aptly coined as we observe that the rank is significantly smaller compared to the original dimen-
sions, and the rank can be as minimal as 1. This succinctly explains why LoRA files are considerably
more compact.

Applying LoRAs to stable diffusion : LoRAs offer an innovative approach to optimize neural
networks by specifically targeting subsets of weight matrices. This results in a reduction of the
overall number of parameters that need to be trained. In the context of transformers, LoRAs exhibit
a selective adjustment mechanism, focusing on certain weight projection matrices and self-attention
layers, while keeping other Multi-Layer Perceptron (MLP) modules fixed. This targeted approach
streamlines the fine-tuning process, especially in handling matrices like W (or Wx, Wy, W)
within each attention module in a unified manner. Notably, LoRAs deviate from the traditional
fine-tuning method by freezing pre-trained weights and introducing new low-rank decomposition
matrices alongside existing ones. Subsequently, training is exclusively applied to these introduced
matrices, effectively minimizing the total number of parameters to store. This approach ensures the
preservation of the capability to precisely adjust cross-attention layers.

Understanding the foundational concept of LoRAs, its application to stable diffusion becomes straight-
forward as depicted in Figure 5.10. In the fine-tuning process of stable diffusion, LoRAs are exclu-
sively applied to adjust the diffusion part, which adopts a UNet architecture. Given that LoRAs are
specifically applied to the attention module, it becomes imperative to identify the number of at-
tention modules within the diffusion model. Once this is determined, the corresponding attention
layers are frozen, and LoRA matrices are created for the fine-tuning process. This meticulous ap-
proach ensures that the benefits of LoRAs are leveraged precisely where needed, contributing to the
optimization of the stable diffusion model.

Text
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Figure 5.10: LoRA training [107]
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5.2.4.2 Advantages of LoORAs

By reducing the number of parameters available for training, LoRAs come with several advantages
[115, 119, 121], especially when fine tuning extended neural networks. Here are a few :

+ Faster training and less memory consuming : LoRA focuses on updating specific layers
rather than the entire model, leading to faster learning times and reduced memory usage. It
facilitates the management of large-scale models.

+ Reduced output size : Trained weights are considerably smaller. By introducing new train-
able layers into a frozen original model, the weights for these layers can be saved in a single,
lightweight file.

+ Adaptability to multiple models : LoRAs can be integrated into different models since they
produce smaller external files with fewer parameters for easier sharing, storage, and reuse.

« Ease of access : Users can create their own LoRA models or explore pre-trained ones on
platforms like CivitAl or HuggingFace, which offer a broad range of models. The affordability
of resources for training and using LoRAs contributes to this accessibility. The GPU require-
ments are low, and the training can be carried out on a good personal computer.

« Control : LoRA matrices are typically added to the attention layers of the original model,
allowing control over the degree to which the model adapts to new training images through
a scaling parameter.

In summary, the numerous advantages of LoRA training contribute to its popularity, establishing it
as the most accessible choice in contemporary scenarios.

5.2.4.3 What can LoRAs do?

LoRAs exhibit remarkable versatility and have been employed by the stable diffusion community in
various applications, including [112] :

« Enhancing quality,
« Exploring styles and aesthetics,

 Generating characters or depictions of individuals,.

Creating representations of clothing or objects,.

Designing diverse settings.

5.2.4.4 How to use LoRAs in ComfyUI?

To initiate the loading of a LoRA, you can utilize a node within ComfyUI named "Load LoRA" [122,
123] (see Figure 5.11). This node requires inputs such as the diffusion model and the specified CLIP
model, which the designated LoRA will adjust to alter the denoising process for latents. Additionally,
this node considers parameters like "strength_model," indicating the extent of modification to the
diffusion model, and "strength_clip," denoting the degree of adjustment to the CLIP model. It’s
noteworthy that these values can be negative. The resulting outputs from this process are the models
that have been appropriately modified. So, LoRAs are patches applied on top of the diffusion model
and the CLIP model.
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Load LoRA

® model MODEL @
® clip CLIP ®

< lora_name Choi_Kang-rim_v2.1.safetensors P

<« strength_model 1.00 b
<« strength_clip 1.00 p

Figure 5.11: LoRA loader

To incorporate a LoRA with a weight in ComfyUI, we can employ the subsequent expression within
the prompt [117] : <lora:LORA-FILENAME:WEIGHT>, where :

« "LORA-FILENAME" represents the LoRA file name, excluding the extension (.pt, .safetensor,
etc.), and,

« "WEIGHT" signifies the strength assigned to the LoRA model. This is similar to the keyword
weight. The impact of the LoRA model can be adjusted by modifying the weight value, allow-
ing for an increase or decrease in its effect. A higher value amplifies the influence of LoRA on
the outcome, typically ranging between 0 and 1. The default setting is 1, where 0 disables the
model. Notably, as stated in the ComfyUl Community Manual, it’s possible to define LoRA
strength values as negative, leading to occasionally intriguing effects.

Importantly, note that the LoRA expression itself is not considered as part of the prompt ; it will be
removed once the LoRA has been applied.

Moreover, the utilization of LoORAs may necessitate the inclusion of trigger keywords in the prompt
to activate specific concepts. Simultaneously, multiple LoRAs can be employed by specifying various
LoRA expressions. We can do this in ComfyUI by chaining Lora loaders. Ultimately, enhanced
outcomes are achieved when models are linked with LoRAs derived from the common base model
on which they were originally trained.
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Chapter 6

LoRAs analysis and training

In summary, LoRAs provide a balanced trade-off between file size and training capability. Therefore,
based on information from Section 5.2, our preference about the fine-tuning methods leans toward
LoRAs. Consequently, in this chapter, we will evaluate their effectiveness and proceed to train our
own LoRAs. We will assess how prompts can impact LoRAs and link the coherence achievable
through prompts to that attainable in LoRAs.

6.1 Exploring consistency and flexibility in LoRA-generated
characters

In this section, we will try to see the influence that LoRAs can have on a model. First, its important
to note that modifying the "strength_model" and "strength_clip" parameters plays a crucial role on
the result. However, since the way in which these parameters are set is specific to the LoRA model
that has been formed, no tests have been carried out on the LoRAs chosen. We'll use the values
recommended by the people who trained the LoRAs we’re going to use for our tests. Therefore,
thanks to the following subsections, we’ll see if it’s possible to modify the appearance of the LoRAs
while maintaining consistency, and we’ll evaluate the importance of the trigger words' linked to the
LoRAs. This will tell us whether it is worth using LoRAs and possibly give us some ideas for the
design of the application.

6.1.1 Study of the consistency of animated-style LoORAs with modifica-
tions via prompts

Our primary objective is to strike a balance between consistency and diversity in user-generated
characters through LoRA training. Indeed, our exploration extends to the fascinating prospect of
introducing flexibility while maintaining consistency. We aim to assess whether LoRA characters
can be seamlessly modified while retaining some distinct characteristics. Initial experiments con-
centrate on LoRA characters trained with animated-style images.

These tests are tailored to a comic strip style, given its prevalent animated aesthetic. If successful,
subsequent experiments will involve LoRAs trained with images of real people, aiming to generate
stylized images suitable for a comic strip. This approach allows us to gauge whether training on real
people’s photos enables the generation of stylized images and whether subsequent modifications are

A trigger word is a keyword that triggers the application of the LoRA when we generate an image.
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feasible. This process simplifies the assembly of a diverse dataset.

Before delving into experiments, we make assumptions about the feasibility of our approach. LoRA
training allows the integration of new concepts, with the foundational CLIP and denoising mod-
els well-versed in a myriad of concepts. Proper training and prompt utilization, leveraging CLIP-
recognized keywords, are expected to enable the model to associate existing knowledge with new
concepts.

This first study of LoRA modification via prompts is therefore based on 4 different animated-style
LoRAs, 2 female and 2 male, using the same type of modification for each LoRA and comparing
with 3 different seeds in order to draw relevant conclusions. The 4 SDXL LoRAs used were found
on CivitAl and are : Alice (Figure 6.3), Makima (Figure 3 in the appendix), Choi Kang-rim (Figure
6.4) and Gojou Satoru (Figure 4 in the appendix). Below, we give their trigger words and the positive
original prompts, corresponding to "Prompt 0".

Model : dynavisionXLAIlInOneStylized

« Alice:

— Trigger words : AliceDV, orange hair, orange eyes, short twintails, hair ornament.

— Positive prompt : cartoon style, woman drinking a beer in a tavern in the far west, Al-
iceDV, white shirt, (black jacket:1.2), jeans trousers, brown belt, red scarf tied around her
neck, high quality.

« Makima :

— Trigger words : makima, braided ponytail, ringed eyes, collared shirt, black necktie, black
pants and red hair and yellow eyes if necessary.

— Positive prompt : cartoon style, woman strolling through a snowy Christmas market at
night, makima, heavy light brown coat, denim trousers, white shirt, white snow boots,
high quality, (beautiful face), beautiful eyes.

+ Choi Kang-rim :

— Trigger words : Anime boy, Choi Kang-rim.

— Positive prompt : anime boy dancing by the river, Choi Kang-rim, smiling, black cargo
trousers, (beige jumper:1.2), forest by the river, high quality.

+ Gojou Satoru :

— Trigger words : gojou satoru.

— Positive prompt : cartoon style, gojou satoru is holding an ice cream on the beach, under
a palm tree on his deckchair, casual area, white shorts, red t-shirt, sun is shining, high
quality, beautiful face.

Here are the different modifications chosen for the tests :

« Prompt 0 : It defines the original image and the seed on which the other prompts will be based.

« Prompt 1: We want to add a light brown cowboy hat.
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Prompt 2 : We want to change the hair colour to pink and the eyes colour to purple.

Prompt 3 : We would like to make the character bigger.

Prompt 4 : We want the character to be fat, have pink hair, purple eyes and wear a light brown
cowboy hat.

Prompt 5 : We want to add green sunglasses.

By analysing the images generated between the different seeds for the same LoRA character, we can
see that consistency is achieved and that it is also possible to play with the prompt to modify the
appearance of the characters slightly. That said, you absolutely must have a good starting prompt,
which is sometimes difficult to obtain. In terms of physical appearance, the game is fairly consistent,
but this isn’t always the case for the way the characters are dressed. We still have the problem of
understanding the colours in the images.

Other examples show that it is possible to modify a LoRA character and provide us with further
information. Indeed, 2 other modifications have been applied to the Alice LoRA (see Figures 6.1 and
6.2). The second attempts to change the length of Alice’s hair and remove her ornament. However,
after repeated attempts, it was not possible to do better than the result obtained in Figure 6.2 where
it was complicated to remove the ornament. This is probably due to the fact that the images and
captions used for training all have this feature, this keyword. The model is too well trained on this
feature. In order to change this, we would also need to have data without this feature. It’s more
difficult to remove a style element than to add one. Other examples have been produced, present
in the appendix, concerning the LoRA Choi Kang-rim in Figures 5, 6, 7, 8 and concerning the LoRA
Makima in Figure 9.

Figure 6.1: Modification : Figure 6.2: Modification : no

brown hair and blue eyes - hat, very long hair and with-

Seed a - Alice LoRA out the ornament - Seed a -
Alice LoRA

In conclusion, overall, the tests of the 4 animated-style LoRAs are satisfactory and confirm our initial
hypotheses. What’s more, by not using all the trigger words and using weights on added elements,
it’s possible to change the character’s appearance. We can now go one step further and move on
to the next stage mentioned above. It should be noted that these tests depend on the quality of the
LoRAs training carried out.
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Prompts

Figure 6.3: Study of consistency and modifications of LoRAs via prompts - Alice LoRA
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Prompts

Figure 6.4: Study of consistency and modifications of LoRAs via prompts - Choi Kang-rim LoRA
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6.1.2 Study of the consistency of real-person LoRAs with modifications
via prompts

Having established the feasibility of maintaining consistency in LoRAs trained on animated-style
data and making slight modifications, we aim to explore if similar findings can be extended to LoRAs
trained on datasets comprising real photos of individuals. Our focus lies in assessing whether these
LoRA models, despite being trained on authentic images, possess the capacity to correlate with styl-
ized models or cartoon-related descriptors, thereby generating outputs different from their training
data format. Additionally, we will investigate the potential for altering their appearance through
prompts.

This is very interesting because it’s easier to create training data on photos you’ve taken of yourself
or someone else than it is to create a character in a particular style and have several copies of it.

Thus, this second study of LoRA modification via prompts is based on 3 different celebrity LoRAs,
1 female and 2 male, using the same type of modification for each LoRA and comparing with 3
different seeds in order to draw relevant conclusions. In addition, a LoRA was also used to obtain
cartoon-style images : the CuteCartoon LoRA, with the trigger words "CuteCartoonAF" and "Cute
Cartoon". The 3 celebrity SDXL LoRAs used were found on CivitAl and are : Cillian Murphy (Figure
6.5), Jason Momoa (Figure 10) and Rihanna (Figure 6.6 in the appendix). Below we show their trig-
ger words, the original positive prompts without LoRA style, corresponding to "Prompt 0", and with
LoRA style, corresponding to "Prompt 2". Only one modification, "blue hair", is applied for now, as
we mainly want to see if it’s possible to have cartoon images based on training images of photos of
real people.

Model : dynavisionXLAIlInOneStylized

« Cillian Murphy :

— Trigger words : cilli@nmur&y, a man.

— Positive prompt without style LoRA : (cartoon style:1.5), a man is holding an ice cream on
the beach, under a palm tree on his deckchair, cilli@nmur&y, casual area, white shorts,
red t-shirt, sun is shining, high quality, beautiful face, (beautiful eyes).

— Positive prompt with style LoRA : (CuteCartoonAF, Cute Cartoon), a man is holding an
ice cream on the beach, under a palm tree on his deckchair, (cilli@nmur&y:1.2), casual
area, white shorts, red t-shirt, sun is shining, high quality, beautiful face, (beautiful eyes).

o Jason Momoa :

— Trigger words : jason momoa.

— Positive prompt without style LoRA : (anime art:1.5), (cartoon style:1.5), man strolling
through a snowy Christmas market at night, jason momoa, smiling, happy, heavy light
brown coat, denim trousers, white shirt, white snow boots, high quality, (beautiful face),
beautiful eyes.

— Positive prompt with style LoRA : (anime art:1.4), (Cute Cartoon, CuteCartoonAF:1.45),
man strolling through a snowy Christmas market at night, jason momoa, smiling, happy,
heavy light brown coat, denim trousers, white shirt, white snow boots, high quality,
(beautiful face), beautiful eyes.
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« Rihanna:

- Trigger words : ohwx woman, ohwx.

— Positive prompt without style LoRA : (cartoon style:1.4), ohwx woman drinking a beer in
a tavern in the far west, ohwx, white shirt, (black jacket:1.2), jeans trousers, brown belt,

red scarf tied around her neck, high quality.

— Positive prompt with style LoRA : (CuteCartoonAF, Cute Cartoon:1.2), ohwx woman drink-
ing a beer in a tavern in the far west, ohwx, white shirt, (black jacket:1.2), jeans trousers,
brown belt, red scarf tied around her neck, high quality.

Prompts

Figure 6.5: Study of consistency and modifications of LoRAs via prompts with real-person LoRA -

Cillian Murphy LoRA
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Prompts

Figure 6.6: Study of consistency and modifications of LoRAs via prompts with real-person LoRA -
Rihanna LoRA

Through an examination of the aforementioned tables, it becomes evident that the diffusion model
can produce cartoon images utilizing LoRAs trained on real people’s photos, and the resulting char-
acter in the image is subject to modification. This outcome is logical, as the foundational diffusion
model, although not specifically acquainted with cartoon concepts through LoRA training, success-
fully establishes a connection due to its extensive training on numerous cartoon images. Moreover,
it’s also due to the fact that we give more weight on the "cartoon style" keyword, given that we want
the character to have a cartoon style. The association becomes even more evident with the appli-
cation of LoRA CuteCartoon, resulting in a more stylized image. This demonstrates the successful
combination of multiple LoRAs, contingent upon their effective training, encompassing parameters,
training duration, and the diversity of training images.

For instance, the style LoRA yields aesthetically pleasing generations ; however, variations in the
character’s age, frequent frowning, and open mouth smiles are noticeable. Similar inconsistencies
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are observed among the LoRA characters, indicating varying quality levels. Notably, Rihanna’s
LoRA stands out as it avoids appearing over-trained on specific characteristics, resulting in higher-
quality generated images compared to the other two LoRAs. In summary, the conducted tests yielded
equally satisfactory results.

6.1.3 Conclusion

So, a final examination would involve conducting a test identical to the one in Section 6.1.1 for Ri-
hanna’s LoRA character, but this time using a cartoon-style LoRA like in Section 6.1.2. As illustrated
in Figure 6.7, the table presents results for 3 different seeds and 6 distinct prompts, incorporating
the same modifications as before. Below, we specify the trigger words and the original positive mes-
sages associated with "Prompt 0".

Model : dynavisionXLAIlInOneStylized

« Rihanna:

— Trigger words : ohwx woman, ohwx.

— Positive prompt : (CuteCartoonAF, Cute Cartoon:1.2), ohwx woman drinking a beer in a
tavern in the far west, ohwx, white shirt, (black jacket:1.2), jeans trousers, brown belt,
red scarf tied around her neck, high quality.

We observe that the findings derived from the images produced in this test align with our observa-
tions from prior tests. Consequently, the results are decisive, enabling us to progress to the subse-
quent significant phase. Our next step involves training our own LoRA using real photos of individ-
uals, and this will be the focus of the upcoming section.

In addition, as the tests proved conclusive, an interesting idea would be to create a LoRAs database
of real people with different characteristics. So, a future project, outside the scope of this work,
would be to create and use an Al system to associate the keywords entered in the prompt by the user,
relating to the physical description of the characters, with the trigger words of the LoRAs characters
with similar physical characteristics. We could then combine the characteristics of different LoRA
characters to create a unique character.
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Prompts

Figure 6.7: Study of consistency and modifications of LoRAs via prompts with real-person LoRA -

Rihanna LoRA
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6.2 LoRA training

After conducting numerous tests on pre-trained LoRAs available on established platforms like Hug-
gingFace or CivitAl, we observed that maintaining and altering consistency is feasible by adjusting
the character through prompts. This adaptability applies to both images featuring animated char-
acters and those based on real characters, including celebrities. Notably, we successfully altered the
character’s style with ease.

Given these findings, we believe it is advantageous to train our own LoRA specific to our character
for the purpose of ensuring consistency in our upcoming comic. As mentioned earlier, incorporating
a dataset with diverse LoRAs from real individuals adds richness to our content. Consequently, we
have decided to train a LoRA specifically for myself, Romain. The objective is to assess the quality of
the results and identify potential areas for improvement. The ultimate goal is to showcase a comic
creation integrating the valuable insights gained during this thesis, evaluate its satisfaction level,
and explore avenues for enhancement.

Now that we know who’s going to be the focus of attention in these tests, we need to select data,
caption the data, choose which tool we’re going to use to carry out the training, train and finally
test the results obtained.

It’s crucial to highlight that the computational power required for training SDXL LoRAs posed a
limitation, preventing the attainment of LoRAs of significantly higher quality. VRAM plays a crucial
role in the graphics card’s ability to handle large data sets and complex models. Indeed, a larger
VRAM allows larger data to be stored and manipulated in memory, which can speed up the training
process. It can enable the use of larger batches, which can improve training stability and lead to
more robust model updates. It can also facilitate the training of more complex models. Specifically,
the LoRAs underwent training on Google’s cloud services using an NVIDIA T4 with 16GB VRAM.
Nevertheless, utilizing a datacenter GPU such as the A100 with 80GB VRAM or an RTX 3090/4090
with 24GB VRAM would have been more appropriate and desirable for comprehensive testing [124].
Although higher-performance GPUs would expedite the training process, they come with a higher
cost. The subsequent discussion will delve into the decisions made and the challenges encountered
as a consequence.

6.2.1 Kohya-ss LoRA training

For the training of LoORAs, we won’t develop new methodologies to avoid time-consuming efforts and
potential subpar outcomes. Instead, we plan to leverage well-established practices that have been
in existence for several months, undergone numerous refinements, and gained widespread adoption.

To achieve this, we will utilize existing scripts authored by Kohya-ss [125], which are accessible
on his GitHub page and also designed to support SDXL. These scripts, using PyTorch, encompass
various functionalities essential for stable diffusion, including :

« DreamBooth training, featuring UNet and Text encoder,
« Fine-tuning through native training, incorporating UNet and Text encoder,

+ LoRA training, based on the cloneofsimo repository [113], which interests us,
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+ Textual inversion training,
« Image generation,

« Template conversion, supporting both 1.x and 2.x, stable diffusion ckpt/safetensors, and dif-
fusers.

Furthermore, bmaltais [126] has contributed a user-friendly graphical interface on their GitHub for
Kohya’s stable diffusion trainers, compatible with both Windows and Linux. This interface facili-
tates the definition of training parameters and the generation and execution of the necessary CLI
commands for model training.

6.2.2 Training data pre-processing

The first and most important step is to collect images and caption them. Next, you need to organise
them in a format suitable for the training algorithm. To get an idea of how to make a good dataset
and captions, we consulted several articles [112, 124, 127].

6.2.2.1 Gathering training images

To construct our dataset, we captured numerous photographs from various perspectives, including
close-ups of the face, medium shots, and full-body shots. The photos featured diverse lighting con-
ditions and shadows, albeit within the realm of typical scenarios. We incorporated variations in
postures, clothing, backgrounds, and facial expressions with the objective of achieving maximal di-
versity. Given that this is an important element, especially in webtoon-style comics, we wanted more
qualitative images of the face to capture as much detail as possible. This diversity in the dataset aims
to mitigate the risk of the model unintentionally memorizing specific unwanted attributes present
in the training images.

To further enhance dataset quality, we deliberately excluded blurred images, pictures with additional
individuals, unconventional styles or poses, and instances where the person is partially obscured by
objects. These precautions were taken to prevent any potential bias in the model and maintain a
focus on the intended facial recognition task.

Having a larger quantity of images is advantageous, but the quality of the images is a crucial factor.
It’s not advisable to include images solely for the sake of increasing quantity, especially if those im-
ages are of low quality. In our case, we opted to utilize approximately thirty images, as illustrated in
Figure 6.8. Although testing with more images would have been desirable, the constraints imposed
by the available resources prevented us from doing so. Typically, the practice involves working with
a dataset comprising 30 to 150 images that are accurately labeled.

An extensive, high-quality dataset is vital for training machine learning models, ensuring broad
applicability and minimizing biases. Diverse data enhances adaptability, avoiding overfitting and
enhancing accuracy across various scenarios. Strategic image selection is crucial to impart flexibility
in handling elements like clothes and backgrounds. Teaching the Al about specific elements requires
clear images with and without the element, enabling precise control and preventing overemphasis.
The UNet model’s learning process seems centered around recognizing differences, underscoring
the significance of diverse examples in effective training.

113



Figure 6.8: Training images

As concern the image size, it is advisable to use images that are ideal squares with dimensions greater
than or equal to 1024 x 1024 to avoid compatibility issues with SDXL LoRA. Consequently, we have
opted exclusively for 1024 x 1024 images. This decision stems from the fact that larger images
entail a higher demand for computational power during processing. This is primarily attributed to
the increased volume of data and pixels to be managed and stored at each stage of the processing,
resulting in a higher number of parameters to handle. It is noteworthy that all images adhere to the
same JPG format.
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6.2.2.2 Captioning training images

Next, once we've selected our images, we need to caption all of them for the course. We’ll create a
.txt file for each image describing its content.

Image captioning entails adding descriptive labels or tags to images, emphasizing particular de-
tails or components. This procedure aids the model in understanding the connection between these
tagged elements and whether they are present or absent in various images. It plays a crucial role
in ensuring uniformity and minimizing confusion for the model, especially when dealing with vari-
ations in appearance. The accuracy of model outcomes is contingent on the effectiveness of the
captioning process.

In order to accomplish this, it is crucial to recognize the essential classifications for captioning,
which include the perspective (such as close-up, medium-shot, full body), the style (photo, sketch,
painting), the subject (like a man, a woman, a boy), the activity (such as walking, eating, running),
attire (such as wearing a shirt, wearing trousers, donning a dress), physical attributes (like eyes,
hair, facial expressions), background, and additional elements (like watermarks, text, low-quality).
Providing captions for backgrounds and outfits can be beneficial in mitigating recall issues when
there is a limited diversity in the image dataset.

Captions will more or less follow the following format : TRIGGER, CLASS, <any element that is not
universally present in all images>. Some examples are presented in Table 6.1.

« "TRIGGER" : designates a term which must be included in the prompt once the LoRA is to be
applied. It must be a rare token, i.e. a word which is unique so that it is not misinterpreted by
the model. Here, we use "rc_test".

« "CLASS": is the subject of the training. In our case, we use "man".

6.2.2.3 Folder structure

Once our dataset has been established, we need to structure it in a way that the training algorithm
can understand. Consequently, the typical folder structure used is as follows. The folder contains 4
other folders :

« img : This is where all the images and captions collected for training will be stored. Inside this
img folder, before going back to all the training content, there is a pre-folder named according
to convention : REPEAT TRIGGER CLASS.

— "REPEAT" : represents the number of passes that the training algorithm will make per
epoch on each image.

In the end, the folder will be called : 20_rc_test man.
« model : where the checkpoints of the model you decide to save will be placed.
+ log : optional. This is where the logs will go.

« reg : where you place the regularisation images if you decide to use them. In this case, a pre-
folder will have to be created, similar to the img folder, except that this time the convention to
be respected is: REPEAT_CLASS where "CLASS" is the same as that used previously for img.
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Captions

Training images

rc_test, photo of a man, close up, from front,
looking at the camera, sitting on a couch, round
glasses, brown beard, short curly brown hair,
green-brown eyes, dark blue jumper, dark blue
background

rc_test, photo of a man, close up, from front,
looking at the camera, happy, smiling with
mouth open, visible teeth, sitting on a couch,
round glasses, brown beard, short curly brown
hair, green-brown eyes, dark blue jumper, dark
blue background

rc_test, photo of a man, medium shot, walk-
ing in a room, looks off to the side in front of
him, round glasses, brown beard, short curly
brown hair, green-brown eyes, black velvet
jacket with molton collar, dark blue and white

background

rc_test, photo of a man, full body, from front,
looking at the camera, standing in a room
next to a couch, round glasses, brown beard,
short curly brown hair, green-brown eyes, blue
t-shirt, jeans trousers, denim trousers, silver
watch on wrist, white shoes, dark blue and
white background with a small window, a ra-
diator

Table 6.1: Examples of captions for training images
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A regularization image [128] refers to any image sharing the same class as the subject of training
but is not the specific subject being trained. The use of regularization images is discretionary. It
introduces a moderating influence on training, helping to prevent class drift and overfitting. It is
recommended to generate these images using the base model employed for training. However, they
are not used here, as they are only necessary when there is a large number of training images, which
is not the case here.

6.2.3 Training parameters

Now that the images have been chosen and captioned, and everything has been put into the right
folders with the right names, we can select the parameters to be used for training. There are a num-
ber of them, and we’re going to take a look at some of the most important. We’ll briefly discuss
how they work and what they’re intended to achieve. This will enable us later to select the right
values with full knowledge of the facts. It’s important to note that specific datasets and hardware
may perform better with different parameters.

First of all, we need to specify that we want to carry out a standard LoRA type training and that we
want to do it for an SDXL1.0 model with 1024 x 1024 images. We must also specify the stable dif-
fusion model on which the LoRA training will be based. It is preferable to train on a basic SDXL1.0
model such as the following model : sdXL_VAEfix.safetensors or sd_xI_base_1.0.safetensors.

Here is a non-exhaustive list of useful parameters to choose from in order to optimise your training
and get the best possible quality [128, 129] :

« Batch size : The batch size indicates the number of images considered simultaneously during
training. The batch size should evenly divide the total number of training images. A larger
batch size accelerates training but demands more VRAM. While it enhances training quality,
excessively large sizes yield diminishing returns, necessitating careful selection based on GPU
capacity. In this instance, a maximum achievable size of 1 was chosen.

+ Epoch : The epochs represent the number of passes the learning algorithm undertakes across
the entire dataset, updating the LoRA based on accumulated information. This concept is
closely tied to steps and repeats, where a step involves training the model on an individual
image.

The total number of steps is computed using the formula :

Number of training images x Repeats X Epochs x Regularization images

Total st =
Ot Steps Batch size

where "Regularization images" acts as a multiplier, being 1 when no regularization images
are employed and 2 when they are used. After several training sessions, we realized that a
maximum of 10 eras was sufficient. More significantly increases training time for equal or
worse results. Indeed, the greater the number of steps, the longer the training will last.

« Learning rate : The learning rate is an important adjustable value that determines the step
size that a machine learning algorithm takes when optimizing to minimize the loss function.
The larger it is, the larger the adjustments to the model weights at each iteration, which can
lead to rapid convergence, but with the risk of not reaching an optimal solution and jumping
around the latter. The smaller it is, the smaller the adjustments, which can lead to a slower
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but more stable convergence, often beneficial to achieve an optimal solution without excessive
oscillations. The choice often depends on the specific problem and requires empirical adjust-
ments. Most of the time we decided to set this parameter to a value of 1e — 4 as recommended
[129)].

Learning rate scheduler : The learning rate scheduler adapts the learning rate during train-
ing to enhance convergence and performance. For instance, this might enable the model to
rapidly grasp the fundamental traits of the data initially, followed by a gradual decrease in
the learning rate to identify more intricate details. Various schedulers are available, including
constant, constant with warmup, linear, linear with warmup, cosine, and cosine with restarts,
providing flexibility in optimizing the learning process. We decide to keep it constant but we
could have tested others as cosine.

Optimizer : The optimizer is a crucial component that adjusts the weights of a model during
training to minimize the loss function. One can use several such as AdamW or AdamW8bit,
commonly used. The latter is faster and saves memory while the former is more accurate.
Thus, the best choice is probably the first. However, in view of the VRAM restrictions, we will
use AdamW8bit which remains rather precise. Other solutions are also possible like Adafactor,
SGDNesterov, DAdapt, Lion, Prodigy, ...

Text encoder learning rate : This represents the learning rate for the Text encoder, and any
additional training applied to Text encoders impacts the entire UNet. As a rule, this rate is
typically set lower than the learning rate assigned to each UNet block. If a numerical value
is specified, it supersedes the learning rate. As for the learning rate, we take back the recom-
mended value which is 5e — 5 [129].

UNet learning rate : This represents the learning rate used for extra training on individual
attention blocks within the UNet. If a numerical value is specified, it supersedes the learning
rate. We decide to use as for the others the recommended value which is 1e — 4 [129].

Network rank (dimension) : This denotes the quantity of neurons in the middle layer of
the extra small neural network incorporated into the attention blocks of the UNet. A higher
count allows for the storage of more information and relevant details about the training target.
However, it also implies training a greater number of parameters, leading to larger checkpoint
files, increased VRAM usage, and a heightened risk of learning superfluous information (over-
fitting). This decision holds significant importance. Here we chose to evolve with 128 neurons
per layer. We would have liked to try 256 in order to capture even more details but this was
not possible. We could also have tried lower values like 64, we would have had less details but
gain flexibility. The number of neurons depends on the complexity of the task, the size of the
images, the nature of the model, and the material resources available.

Network alpha : This measure was introduced for convenience to prevent weights from be-
ing rounded down to zero during the saving process in LoRA. Because of its structure, LoRA
tends to diminish the values of neural network weights. If these values become excessively
small, they may become practically indistinguishable from zero, essentially signifying a lack
of meaningful learning.

The technique involves maintaining a large actual weight value while consistently weaken-
ing the weight during training to create the illusion of a smaller value. The alpha network
dictates this weight-weakening rate, with a smaller alpha resulting in a larger stored LoRA

weight. The extent to which the weight weakens during usage is calculated by %
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(typically ranging between 0 and 1), closely tied to the Network rank number.

If post-learning accuracy is insufficient, weight data may be reduced to zero, and in such cases,
it is advisable to lower the Network alpha value. The default value is 1, aiming to maximize the
stored weight value. It is crucial to ensure that the alpha value does not exceed the network’s
rank value to avoid unintended LoRA behavior.

When setting Network alpha, its impact on the learning rate should also be taken into con-
sideration. If Alpha and Rank are equal, the applied force will be 1, with no impact on the
learning rate.

Scale weight norms : It enhances training stability by restricting the weight standard of the
network. When employed alongside other LoRAs, it can effectively mitigate LoRA overfitting
and enhance overall stability. The suggested value for this parameter is 1.

Min SNR Gamma : In LoRA, learning involves adding noise to the training image, but the
stability of the learning depends on the strength of the applied noise and its proximity to the
target. The Min SNR Gamma is introduced to compensate for variations, especially when
images have little noise. This value, ranging from 0 to 20 with a default of 0 (optimal at 5
according to the source article [130]), attenuates random peaks in training losses, promot-
ing smoother learning without negatively impacting speed or VRAM. We decide to keep the
optimal value which is 5.

6.2.4 Testing

For these tests, we mainly played with the value of Network alpha. Its definition is not obvious,
some tests allow us to have an overview of what is better to use as a value between 16 and 32. Thus,
we have described 2 different prompts to double the examples that you can admire in Figure 6.9.
An image every 2 epochs was generated using the same seed and without changing the parameters.
We used the LoRA CuteCartoon and the Face detailer, although the latter for these trainings is not
mandatory. The "strength_model" was set to 1.2. Here are the prompts used :

Model : dynavisionXLAIlInOneStylized

« Prompt1:

— Positive prompt : (CuteCartoonAF, Cute Cartoon:1.2), (rc_test), photo of a man, holding
a book in one hand, looking his book, front view, dubious face, glasses, masterpiece,
intricate detail, high quality, <lora:loras_romain_charles_test:0.9>.

— Negative prompt : ugly, disfigured, bad quality, bad eyes, bad nose, bad face, bad hands,
text, watermark, blurred, blurry, worse, worst, tiling, deformed, mutated, low quality.

« Prompt 2:

— Positive prompt : (CuteCartoonAF, Cute Cartoon:1.2), (rc_test), photo of a man, full body,
(from face:1.2), swimming in the ocean around fish and corals, glasses, (green jersey
shorts), masterpiece, intricate detail, high quality, <lora:loras_romain_charles_test:0.9>.

— Negative prompt : ugly, disfigured, bad quality, bad eyes, bad nose, bad face, bad hands,
text, watermark, blurred, blurry, worse, worst, tiling, deformed, mutated, low quality.
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Network alpha
16 32

Prompt 1 Prompt 2

Prompt 1 Prompt 2

Epochs

10

Figure 6.9: Network alpha tests

We can already see that the generations are quite remarkable, and there is consistency among char-
acters. We observe that even for 2 epochs, the results are very good, which is good news from the
comic book user’s perspective if we were to propose generating their own LoRA. Indeed, approxi-
mately 30 minutes to 1 hour would be sufficient under the same conditions, with the same resources.
However, we can notice that the quality of the generated images deteriorates quickly, although not
catastrophically in all cases. It is true that for prompt 2, with an Network alpha of 32, we see a
deterioration from the fourth epoch already. We can see that the model has already learned too
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much; it is overfitting, and artifacts appear. A model becomes "overfitted" when it tries to replicate
the training images too aggressively, and the results are simply bizarre. We can clearly see this phe-
nomenon in the generation corresponding to an alpha network of 16, with prompt 1 at epoch 10.
The background closely resembles that of the training images, and the quality is lower.

Furthermore, we observe that the model cannot make the character look at the book, even when
increasing the weight. However, as mentioned in the prompts section, specific keywords can direct
the gaze, such as "looks down", and it works, as seen in Figure 6.10. Finally, for the LoRA Romain
model to trigger, some trigger words are important, such as "rc_test, glasses, man".

Figure 6.10: Keyword test "looks down"

These tests allow us to choose which training and which epoch seems to be the best. The results
obtained with an alpha network of 16 appear to be the best overall, especially for epochs 2 and 4. It
is the first of the two that we will choose to create our final short comic strip.

It should be noted that multiple tests have been performed, you have here 2 of the best. Other tests
could have been done to really determine the influence of other parameters.
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Chapter 7

Final result - Creation of a comic strip

To conclude this research work and these multiple tests, we will now attempt to create a short,
consistent comic strip of a few panels using an SDXL model.

Adventure
awaits !|

What mysteries lie
ahead ?

. There's so much

to discover!

Figure 7.1: Final result part 1
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Hello there,
little friend!

Every
direction
leads fo a
new

adventure,

Figure 7.2: Final result part 2

For this test, we used the training set that provided the best compromise between quality, consis-
tency, and flexibility in generations. You can find the script with the parameters used in Figure 11
in the appendice, the epoch used is the second. Subsequent epochs were already starting to overfit.
For this creation, we used the CuteCartoon style LoRA and the Face detailer. We used the same
seed for the generations to maximize the chances of consistency between the characters. We had
to experiment a lot with the LoRAs’ strength parameters and prompts to achieve the best possible
results. The obtained results are very promising and pave the way for further research. With limited
resources, it is possible to obtain convincing results.
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Chapter 8

Conclusion and Future works

To conclude our discussion on the research and findings, let’s revisit the primary objective of this
thesis. The goal of this study was to create an inventive tool allowing authors with limited or
no drawing skills to produce comics characterized by a distinct graphic style and a meticulously
crafted aesthetic. The aim was to unleash the creativity of these individuals through the utilization of
generative Al facilitating the rapid generation of high-quality images tailored to their narratives. By
employing features like prompts, drawings, and image editing, these creators could articulate their
artistic vision within minutes. In addition to focusing on image quality, the challenge also involved
achieving consistency across characters during the image generation process. Hence, the project
aimed to adeptly navigate the limitations inherent in generative artificial intelligence, ultimately
striving for a compelling and user-friendly end result.

8.1 Key findings

With that in mind, let’s take a look at the various stages involved in arriving at the final result re-
vealed in Chapter 7.

Firstly, in Chapter 3, we endeavored to grasp the essence of generative Al as a whole. To compre-
hend the subtleties of stable diffusion, we delved into various key concepts, including deep learning
models in the broad sense, generative models, VAEs (Variational Autoencoders), diffusion models,
and latent diffusion models. The latter constitute the core of stable diffusion. As a reminder, stable
diffusion is an open-source diffusion model with an efficient image generation process, facilitating
numerous applications such as text-to-image, image-to-image generation, inpainting, or outpaint-
ing. We also explored the ability to control the influence of prompts on generation and the integra-
tion of image control architectures like ControlNet with stable diffusion, enabling generation based
on sketches, segmentation maps, or depth information. All these technical concepts are crucial for
understanding stable diffusion.

However, despite the theoretical nature of this chapter, we conducted significant tests related to
image quality. Specifically, we compared the older SD1.5 models with the new SDXL1.0 models,
both in technical aspects and through examples of image generations.

« In terms of technical aspects, we observed that the SDXL1.0 models process images that are
twice as large. Moreover, these models have a significantly increased number of parameters
compared to the SD1.5 models due to improvements in their UNet and Text encoder architec-
tures. This enhancement is expected to increase the quality of generated images and improve
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prompt understanding. However, it also increases complexity and, consequently, the time it
takes for images to be generated.

« After the technical comparison of these two versions of stable diffusion, we aimed to determine
if the difference in quality was substantial and, more importantly, what the optimal trade-off
between quality and generation speed was. The conclusion is that overall, the SDXL models
do indeed offer superior image quality compared to the SD1.5 models. The prompt is better
respected, and the composition, depth, color palette are more sophisticated, and the images are
larger. However, as anticipated, its relative slowness remains its major drawback. This relative
slowness is not a significant issue given the superior quality. Therefore, we will continue
working with the SDXL1.0 models, especially considering their recent development and the
emergence of techniques to reduce image production time.

Finally, a section comparing SDXL with other well-known diffusion models such as DALL-E 3 and
MidJourney 5.2 was conducted. We described these models and compared some of their genera-
tions. All three models demonstrate high performance, with no significant standout. Consequently,
we will continue working with SDXL as the other two models are not open-source, preventing us
from achieving our ultimate goal of providing users of the comic creation tool with a minimum level
of control.

Once we understood how stable diffusion operates and chose to work with the SDXL1.0 models, in
Chapter 4, our initial task was to select the ideal user interface for utilizing stable diffusion. We
compared the two most popular GUIs currently available : AUTOMATIC1111 and ComfyUL Through
this comparison, we noticed that ComfyUI offers several advantages in terms of performance speed,
flexibility, and transparency of data flow. While it is more complex, this complexity allows for a
greater range of choices. Its major drawback is a lack of tools for inpainting. Following this compar-
ison, we opted to continue with ComfyUI, which, in addition to its numerous previously mentioned
qualities, allows communication with an API—a particularly useful feature for developing a mobile
or web application.

With ComfyUI selected, our next step was to understand how it integrates with stable diffusion. We
described a basic workflow for text-to-image using SDXL, clearly showing and explaining all the
nodes and parameters involved. Additionally, we introduced additional nodes to discover that other
useful applications were possible, such as the Face detailer, enabling the detection and regeneration
of faces in images.

Finally, we concluded this chapter by examining what could already be accomplished with the avail-
able tools. Consequently, we created three workflows for different applications : text-to-image,
text-to-image with ControlNet (Scribble), and inpainting. We aimed to test these flows based on
the initial goal of enabling the creation of high-quality and consistent comics. Thus, we attempted
to generate images resembling those from a randomly selected webtoon comic. This allowed us
to understand how images reacted based on the desired image type (characters and landscapes),
prompts, and the selection of certain parameters (cfg, denoise, strength, end_percent), ultimately
enabling us to establish fixed parameters. Ultimately, we noted that skillfully crafted prompts could
generate high-quality images and maintain consistency. However, achieving the desired variation
and uniformity across characters in different panels requires more than just well-crafted prompts.
We also found the Face detailer to be useful, as well as the scribble tool, provided parameters were
set appropriately for each case. However, we noted a lack of high-quality inpainting tools.
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Now that we have effective SDXL workflows capable of producing high-quality images, Chapter
5 will explore techniques for creating image consistency. Building on the understanding from the
previous chapter that prompts can be beneficial, we delved deeper into this concept to grasp all the
crucial specifics involved in crafting effective prompts. As a result, we identified key elements to
include in a prompt and recognized the significant utility of negative prompts for specifying unde-
sired aspects in our images. Additionally, practical techniques were discovered to emphasize certain
keywords in the prompt, such as placing the most important ones at the beginning or assigning
varying degrees of importance using parentheses or brackets. Furthermore, the importance of hav-
ing detailed and specific prompts for obtaining consistent, high-quality images was highlighted.
Connecting this insight with the tests conducted in Chapter 4, the results were deemed promising
but not sufficient.

In response, we explored alternative solutions, such as fine-tuning methods, enabling additional
training of an initial model using a more specific dataset. Various methods, including Hypernet-
works, Textual Inversion, Dreambooth, and LoRAs, were considered. Each method’s technical work-
ings, along with their respective advantages and disadvantages, were outlined. Ultimately, our fo-
cus turned to LoRAs due to their faster training, lower memory consumption, reduced output size,
adaptability to multiple models, controllable adaptability, and ease of access requiring fewer GPUs.
Consequently, we discovered the ability to train a specific character, a pivotal step in achieving the
sought-after consistency. Finally, the integration of LoRAs into ComfyUI was discussed, demon-
strating its straightforward implementation.

Ultimately, in Chapter 6, recognizing the LoRA method as the most promising, we delved deeper
through a series of tests to examine its impact on a model. The objective was to assess the potential
for achieving both consistency and flexibility.

« The initial study sought to determine the feasibility of altering the appearance of LoRA-
animated characters using prompts while preserving coherence. Analysis of the test-generated
images revealed that we achieved coherence and could subtly adjust the characters” appear-
ance through prompt manipulation. However, obtaining an effective starting prompt was
crucial, and clothing consistency posed challenges. Additionally, the model’s understanding
of colors, particularly in complex scenarios, was not flawless, emphasizing the dependence of
these tests on the quality of LoRA training.

+ Building on the positive outcomes, subsequent experiments continued with LoRAs, aiming to
evaluate their capacity to generate cartoon-style images when trained on real people’s photos.
This approach, leveraging a dataset of real images transformable into various styles, demon-
strated the diffusion model’s ability to produce coherent cartoon images. The usage of a LoRA
trained in a specific style further emphasized the potential for style associations, underscoring
the importance of well-trained LoRAs.

« Concluding the series, the final tests explored whether prompt-driven modifications remained
viable for real-person LoRAs with the application of a cartoon-style LoRA. These tests pro-
vided conclusive results.

In summary, these analyses affirmed the appropriateness of selecting the LoRA method, offering a
multitude of possibilities while maintaining both consistency and flexibility.

Subsequently, our focus shifted to training a personalized LoRA using real individuals’ photos. This
involved employing Kohya-ss’s scripts for SDXL LoRA training and collecting training images linked
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with captions adhering to various quality criteria. Despite a minimal dataset of only 30 images, a
comprehensive exploration of crucial training parameters, including epochs, learning rates, opti-
mizers, and others, paved the way for several successful training sessions. Notably, the significance
of parameters like Network rank and Network alpha, along with the justified use of the face detailer,
became apparent. The impressive final results underscored the potential of the LoRA model, even
with limited GPU resources.

8.2 Implications

The approach undertaken in this thesis has resulted in the findings presented in Chapter 7. The gen-
erated comic panels vividly illustrate the achievement of both consistency and high-quality images.
The initially outlined objectives have, for the most part, been met. As a result, Deuse Company can
utilize this work for the development of its application, with a commitment to refining it by taking
into account the identified limitations and the suggestions for future research that will be discussed
in the upcoming section.

8.3 Limitations and Future research directions

While the outcomes show promise, the realm of generative Al is still in its early stages, with con-
tinuous advancements offering the potential to overcome the limitations identified in this thesis.
Several points are worth considering :

« Initially, the prolonged image generation time of SDXL models compared to its predecessor,
SD1.5, is a drawback. Yet, ongoing efforts like SDXL Turbo [57] or LCM-LoRA [58] present
possibilities to reduce computation time, signifying avenues for exploration and emphasizing
the importance of understanding and utilizing SDXL models presently.

« A notable limitation is the lack of tests for the SDXL workflows in inpainting, an aspect that
could be a specific focus for future endeavors.

+ Regarding techniques for achieving consistency, only prompts and fine-tuning methods like
LoRAs are mentioned. However, alternative ideas, such as the Roop technique or Fast face
swap, could have been explored. Supplementing this research with these ideas might uncover
optimal choices or combinations for achieving consistency.

+ The section on LoRA training could have been more comprehensive, exploring various pa-
rameters, incorporating more training images, or employing regularization images. Resource
limitations, particularly VRAM, constrained the depth of these investigations.

Looking ahead, beyond these limitations, several future work ideas emerge :

+ Considering the success of consistency tests in Chapter 6, a compelling prospect is creating
a database of LoRAs featuring real people with diverse characteristics. A subsequent project
could involve employing Al to match user-entered keywords describing physical characteris-
tics with LoRAs possessing similar attributes, enabling the creation of unique characters by
combining features from different LoRA characters.

« The issue of image composition, crucial in comic panels, was not addressed in this research.
Techniques like Scribble, Openpose, Regional prompter, Area composition, and Attention cou-
ple might offer assistance, though further exploration is warranted.
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Appendix

Test 5 - Real person (close-up face) :

« Positive prompt : realistic photography, angry man, close-up face, looks at the camera, blond
beard, blond hair, black eyes, green t-shirt, on a farm, intricate detail, masterpiece, high quality.

« Negative prompt : ugly, disfigured, bad hands, bad eyes, poor face, deformed, blurry, text.

Seed c

5D1.5 original

5D1.5 DreamShaper

SDXL

Figure 1: Test 5 - SD1.5 vs SDXL1.0 - Real person generation (close-up face)
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Test 6 - Cartoon character :

« Positive prompt : cartoon style, a boy eating a burger on a bench in a garden, black hair, black
eyes, intricate detail, masterpiece, high quality.

« Negative prompt : ugly, disfigured, bad hands, bad eyes, poor face, deformed, blurry, text.

5D1.5 original

5D1.5 DreamShaper

SDXL

Figure 2: Test 6 - SD1.5 vs SDXL1.0 - Cartoon character generation
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Seed 3

Seed 2

Seed 1

sydwolg

Figure 3: Study of consistency and modifications of LoRAs via prompts - Makima LoRA
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Prompts

Figure 4: Study of consistency and modifications of LoRAs via prompts - Gojou Satoru
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Figure 5: Modification : blue
hair and green eyes - Seed a -
Choi Kang-rim LoRA

Figure 7: Modification : fat
boy, blue hair and green eyes -
Seed a - Choi Kang-rim LoRA

Figure 6: Modification : no
hair - Seed a - Choi Kang-rim
LoRA

Figure 8: Modification : blue
hair, green eyes and orange
headband - Seed a - Choi
Kang-rim LoRA

Figure 9: Modification : very
long black hair - Seed a -
Makima LoRA
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Prompts

Figure 10: Study of consistency and modifications of LoRAs via prompts with real-person LoRA -

Jason Momoa LoRA
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Best training scrip

Figure 11
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