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Abstract

Quality of Service (QOS) monitoring regroups di�erent measurement
functions that mostly have a diagnostic role and allow for an end-to-end
monitoring.

In the IPv4 Internet, measurement techniques are popular and
widespread.

However IPv6 has been designed to slowly replace IPv4. Accordingly,
it is important to study whether or not the Next Generation Internet
Protocol will allow the performing of QOS measurement.

It is necessary to analyse IPv6 to discover if performance measurement
will still be possible.

This work shows that IPv6 permits the design of measurement func-
tions in a natural way, very similar to the design of some IPv4 functions.
The design and implementation of a basic prototype function are given as
an example.

But IPv6 brings many new features, among which some of them could
be exploited in a way to �nd a smarter way to design measurement func-
tions for IPV6. A global survey of IPv6 is made, in order to determine
which features might be interesting for this purpose.

Evoked solutions are compared, and the design and implementation
of an experimental measurement function based on an IPv6 interesting
chosen facet are tested. All the implemented functions are then regrouped
in a tool.
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Introduction

0.1 Overview

Nowadays tra�c engineering has become an essential tool for every actor of the
network domain. For service providers, tra�c engineering consists of a set of
methods used to monitor some metrics in order to maximize their network re-
source utilization. In a customer view, tra�c engineering techniques are needed
to meet the customers' demands speci�ed in Service Level Agreements (SLA).
In that case, the role of tra�c engineering is to assure a certain quality of service
(QOS) to a tra�c class. It is therefore necessary for customers, as well as for
Internet Service Providers (ISP), to be able to compare the QOS given to a real
�ow against the expected performance speci�ed in the SLA, and detect possible
QOS degradation. It is achieved by the QOS monitoring service.

QOS monitoring service is part of Performance Management service, it regroups
several measurement functions that mostly have a diagnostic role and allow for
an end-to-end monitoring. In this work we will often use the term monitoring
or measurement as a shortcut for QOS monitoring. QOS monitoring can occur
at di�erent levels of abstraction, it can be used at many ISO layers such as at
network layer, transport layer, application layer. Measurements techniques are
popular and widespread over the internet, which is still running over IPv4.

However, in the early 1990's, it has been said that IPv4 will have to be replaced
because it has reached its limits. IPv4 has been used for almost thirty years and
su�ers from di�erent shortcomings. These shortcomings are mainly due to the
evolution of the internet. In its early years, the internet was a wide area net-
work established between non pro�t organisations. Internet Protocol version 4
was designed in this context, a 32-bit internet address was chosen (which allows
for up to 4 billion inter-connected nodes) and concerns as authentication and
security were not considered as critical. Today the internet represents a major
economic agent connecting million users, customers and companies.

This fast growth has shown up the need for some new internet protocol require-
ments. Sooner or later, we will reach the maximum addresses number that can
be assigned by IPv4. IPv6 has been developed by The Internet Engineering
Task Force as the successor protocol to IPv4, bringing a lot of changes and
evolutions in order to �x shortcomings in IPv4. The main change is the address
space expansion but there are a lot of other new features.

One can be convinced or not that IPv6 will one day replace IPv4 as the protocol
running on the whole Internet, but one thing is certain: IPv6 has been developed
to �x every IPv4 weakness, a lot of work has been achieved on IPv6 for more
than 10 years, gathering many new mechanisms and advances presented in the
network world. Thus enterprise networks will probably discover an interesting
facet of IPv6 from which they could take an advantage, in terms of costs or
e�ciency. An IPv6 niche deployment scenario is perfectly described in Je�
Young paper about IPv6 technologies [15]. According to J. Young, once that
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enterprises will have found a particular interest in IPv6, the niche deployment
will expand, requiring a wider connectivity with other enterprises, and perhaps
even a global connectivity.

In a QOS monitoring point of view, mechanisms and concepts are well known
for IPv4, but what about IPv6? Will QOS monitoring still be possible over
IPv6? The aim of this work is to study how we could design some measurement
functions for IPv6. Based on the observation of several existing functions in
the IPv4 world, we will try to see if there is a natural and basic way to design
similar measurement functions in IPv6. However IPv6 brings many changes
and new features, therefore another approach will be a global survey of the
most interesting di�erences between the new Internet protocol version and the
old one in the search of a smarter way to perform some measurements.

0.1.1 Objective of the work:

The �rst objective of the work is to have a global overview of the new IPv6
mechanisms, and the way we could take advantage of them in a monitoring
point of view. We will have to determine whether IPv6 will change the way
measurement is performed or not, by analyzing the new o�ered possibilities.
During our survey, we will focus on the most interesting features for our pur-
pose, and quickly discard some others. We will also describe the solutions that
have already been proposed and the di�erent works achieved on the subject.

The second objective of the work is the design of a prototype measurement
function for IPv6. This measurement function will have to be capable of mea-
suring a particular chosen metric. The objective is double :

• Show by an example that the design of IPv6 measurement functions can
be achieved in a natural and basic way, very similarly to several IPv4
measurement methods described previously.

• Gather the solutions evoked in the IPv6 survey, compare their advantages
and weaknesses, and choose the more suitable in order to design a smarter
measurement function, taking advantage of an IPv6 speci�city.

The �nal objective of this work is to implement an experimental tool regrouping
the proposed functions and show that it can perform the expected measure-
ments.

0.1.2 General structure of the work

The work is divided into �ve parts :
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• Part one is an introduction of the concepts used in this work. A short
presentation of terms such as metrics or monitoring, some de�nitions of
the metrics we have chosen to focus on, and a fast presentation of some
existing IPv4 measurement methods for these metrics : Cisco Systems
IPSLA R© functions, OWAMP, and IPMP.

• Part two of the work consists in a global survey of IPv6 new features,
examining the di�erences with IPv4 and how we could take advantage of
them in a measurement purpose. The survey is divided into two parts :

1. We examine the di�erent features that could be used in order to
perform a semi-active monitoring over IPv6, exploiting IPv6 features.
It is organized in a Bottom-up analysis of every change brought in
an IPv6 packet compared to an IPv4. It starts by the IPv6 main
header, analyze the di�erent Options, and �nally explores the new
mechanisms.

2. Active monitoring requires the use of a transport protocol; in this
section we describe the di�erent changes due to IPv6 in the main
transport protocols.

• Part three is devoted to the design of some prototype functions performing
active measurements.

� the design of a basic UDP based function allowing for a Round-trip
Delay measurement over IPv6 : UDP-Echo.

� An interesting way to perform an automated multiple Round-trip
Delay measurement combining the �rst solution with IPv6 Native
multicast.

� And �nally we discuss the solutions exploiting IPv6 speci�cities evoked
in the survey part, and choose the most suitable of them. This so-
lution is then combined to the basic function prototype in order to
obtain a smarter active measurement function over IPv6.

• Part four part contains the implementation details, such as the chosen
environment, the structure of the application, the possible measurement
options and the way to run it. It also contains the methodology used to
test the program.

• Part �ve is a conclusion about the work, the objectives met and future
possible improvements.
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1 Prelude

1.1 Measurements over IPv4 : overview of some current

methods.

Measurement methods can occur at di�erent layers of the OSI model : network,
transport or application layer. IPv6 will replace the existing network layer
protocol and bring several changes to the transport layer. For this reason we
will focus on these two layers.

There are mainly two di�erent techniques to perform some performance mea-
surements : active monitoring and passive monitoring. Both have their ad-
vantages and weaknesses, in this framework we will focus on active monitoring
and on a combination of the two types called semi-passive monitoring that will
be described in the IPv6 Survey part. Both active and passive measurement
functions can monitor di�erent metrics, in the next part we will de�ne the word
�metric� and describe two particular metrics on which we will focus all along
this work.

1.1.1 Metrics

The aim of performance monitoring is to be capable of measuring some perfor-
mance properties between di�erent points in the network. These measurements
consist of observing some performance indicators, also called performance met-
rics, between the chosen points. IP performance metrics are de�ned in the RFC
2330 [26] as some carefully speci�ed quantities related to the performance and
reliability of a network.
The IP Performance Metrics Working Group (IPPM WG) is an Internet Engi-
neering Task Force (IETF) Working Group responsible of the development of a
set of standard metrics that can be measured by performance monitoring meth-
ods. These metrics were de�ned by the IPPM to provide �unbiased quantitative
measures of performance�.

IPPM has produced many documents specifying di�erent well known metrics
such as :

• Connectivity

• Round-trip Delay

• One-way Delay

• Round-trip and One-way loss

• Delay Variation

• ...
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The aim of this work is mainly to explore IPv6 new features, not to implements
as many metrics measurement functions as possible.

In our goal to design some performance monitoring functions exploiting IPv6
new features, we had to make a choice on the metrics that would be measured.
We have chosen to focus on two well known metrics as they are de�ned by the
IPPM : The Round-trip delay (RTT) and the One-way delay.

1.2.1.1 Round-trip delay

The Round-trip delay or Round-trip time (RTT) of a packet from a source host
to a destination host is the time required for a packet to travel from the source
to the destination and back again.

Round-trip delay metric for IPPM is described in the RFC 2681 ([28]). The RFC
de�nes a singleton for Round-trip delay called �Type-P-Round-trip-Delay�. This
singleton contains three parameters :

• Src, the IP address of a host

• Dst, the IP address of a host

• T , a time

The value of a Type-P-Round-trip-Delay singleton can be a real, or an unde�ned
number of seconds :

1. For a real number of seconds dT :
A Type-P-Round-trip-Delay from the source to the destination at time T
of value dT means that the source sent the �rst bit of a Type-P packet
to the destination at an absolute time T , the destination received that
packet, then immediately sent a Type-P packet back to the Source, and
that Source received the last bit of that packet at the absolute time T +dT .

11



Figure 1: Round-trip Delay Calculation

2. For an unde�ned number of seconds :
An unde�ned Type-P-Round-trip-Delay from the source to Dst at T means
that the source sent the �rst bit of a Type-P packet to the destination at
a time T and either the destination did not receive the packet, or because
the destination did not send a Type-P packet in response, or the source
did not receive that response packet .

In practice, the source and the destination are network entities with limited
resources. These resources can be more or less used depending on the tra�c
load transiting through the entity. The processing time at an end-system is the
time di�erence measured between the arrival of a packet at an entity interface
and its treatment by the entity. In order to respect the de�nition of the Round-
trip Delay metric it is important to remove the processing time of the Type-P-
One-way-Delay packet at source (see further examples in section 1.1.3).

1.2.1.2 One-way Delay

The One-way Delay of a packet from a source host to a destination host is the
time required for a packet to travel from the source to the destination. One-way
Delay metric for IPPM is described in the RFC 2679 ([29]). This RFC de�nes
a singleton for One-way Delay called Type-P-One-way-Delay. This singleton
contains three parameters :

• Src, the IP address of a host

• Dst, the IP address of a host

12



• T , a time

The value of a Type-P-One-way-Delay singleton can be a real, or an unde�ned
number of seconds :

1. For a real number of seconds dT :
A Type-P-One-way-Delay from the source to the destination at time T of
value dT means that the source sent the �rst bit of a Type-P packet to
the destination at an absolute time T , the destination received the last bit
of that packet at the absolute time T + dT .

Figure 2: One-way Delay Calculation

2. For an unde�ned number of seconds :
An unde�ned Type-P-One-way-Delay from the source to Dst at T means
that the source sent the �rst bit of a Type-P packet to the destination at
a time T and the destination did not receive the packet.

In order to respect the de�nition of the One-way Delay metric it is important to
remove the processing time of the Type-P-One-way-Delay packet at both ends.
A di�erence with the Round-trip Delay calculation is that One-way Delay calcu-
lation requires perfect time synchronization between both end-systems. Indeed,
for Round-trip Delay it is only necessary to compute a relative time between the
departure and the arrival of the Type-P-Round-trip at the source entity. But
One-way Delay requires an absolute timestamp at the packet departure from
the source and an absolute timestamp at the arrival at the destination, in order
to accurately measure their di�erence.
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1.1.2 Passive Monitoring

The �rst technique to perform performance measurements is a passive approach,
it consists to collect locally all data transiting by a node in order to analyse data
tra�c transmitted through the network. There is no feedback from the network;
it does not require any co-operation of end-points. The passive monitoring
devices are polled periodically and information is collected (in the case of SNMP
devices the data is extract fromManagement Information Bases (MIB)) to assess
network performance and status. The quality of analysed information depends
on the granularity and integrity of collected data.

The passive approach has a major advantage: it does not increase the tra�c on
the network.

However, the polling required to collect the data and the traps and alarms all
generate network tra�c, which can be substantial. Another weakness is that it
can only measure the performance experienced by the carried tra�c. If there is
no tra�c, the passive approach cannot conclude whether there is a connectivity
concern or not.

An example of a passive monitoring tool is Cisco Systems IOS R© Net�ow. For
more information about what a tool such as Net�ow can provide see [30].
In this framework we will not focus on passive monitoring, but rather on active
monitoring and a combination of passive and active.

1.1.3 Active Monitoring

Active monitoring can be de�ned as active techniques that consist in injecting
additional tra�c with known characteristics into the network to test particu-
lar attributes of a service [11]. Active monitoring requires co-operation from
both measurement end-points, it allows an end-to-end calculation of di�erent
variables such as delay and jitter. Active monitoring allows to measure net-
work service performances even if there is no existing tra�c on the network.
The accuracy of the performance test depends on the frequency used to inject
some test tra�c. However test tra�c requires some resources from the network.
Active monitoring is thus a compromise between better accuracy due to faster
probing and at the same time not disturb the real tra�c on the network by
injecting too much additional load.
Active monitoring can be used at di�erent OSI layers, each use at a particular
layer has its own speci�cities :

1. Network layer
Measurements at this layer allow gathering information about the network
state. They may be used for many purposes such as QOS monitoring or
network layer problems troubleshooting.

14



2. Transport layer
Measurements at this layer is used for end-to-end measurements between
two transport entities. It can only monitor metrics on a full path. It
produces better estimations of the application performances than at the
network layer and it takes into account transport protocol e�ects on per-
formances.

3. Application layer
It is useful for measuring speci�c application(s) performances over the
network. As application performances depend on the lower layers perfor-
mances, it also gives a good feedback of the network and transport layer.
It does not permit to get detailed information about these layers but good
performances at the application layer mean good performance at lower
layers.

1.2.3.1 Examples of measurement functions for IPv4 :

Before going further in our analysis we will have an overview of di�erent mea-
surement functions working on IPv4. A lot of di�erent metrics can be measured
with a monitoring function. Most IPv4 measurement functions are based on
the transport layer. In particular, at the transport layer, we can measure the
metrics we have chosen to focus on : Round-trip Delay and One-way Delay.
In this section we will brie�y describe some IPv4 measurement methods for
these metrics, which are part of the Cisco Systems IPSLA R© tool. They all rely
to the transport layer.

IPSLA R© is a network end-to-end IP Service levels monitoring tool, it regroups
many di�erent measurement functions that are typically used to �verify service
guarantees, validate network performance, identify network issues and react to
performance metrics� ([32]).

In order to perform an accurate measurement of a singleton metric such as
Round-trip Delay as it is described by the IPPM, the measurement functions
have to take into account the processing times at both ends. For this purpose,
every IP SLA operation designed to measure global delay will use di�erent
timestamps. One timestamp will indicate the time of arrival of the packet at
the interface, and the other will contain the time when the packet is treated.

On the �gure 3, timestamps TS2 and TS3 allow to remove the target processing
time, and timestamps TS4 and TS5 the sender processing time. The Round-
trip Delay metric between the source and the destination can be measured by
TS4−(TS3−TS2)−TS1and the One-way Delay can be measured by TS2−TS1.

15



Figure 3: Cisco IP SLA Global Delay and One-way Delay general measurement
method - Source [5]

This measurement scheme requires a listening entity on the target host in order
to compute the processing times of the target and send them back to the source.
As seen above, measuring the One-way Delay has another pre-requirement : the
synchronization of the end-system clocks. This synchronization can be achieved
by protocols such as Global Positioning System or other methods like Network
Time Protocol (NTP) [31] .

Based on these general schemes, Cisco Systems IPSLA R© provides di�erent
measurement functions to compute Delay or One-way Delay. The di�erences
between these functions are that they perform Delay or One-way Delay measure-
ments over di�erent transport protocols. Indeed the objective of performance
monitoring is to evaluate the performance encountered by real data tra�c. Data
tra�c can be of di�erent types, depending on the service it is providing. Ser-
vices can use connection oriented or connection-less transport protocols. The
main three types of transport protocols used by these services are : UDP, TCP
and ICMP. IPSLA allows to perform measurements for these three protocols
thanks to three di�erent operations :

1. IPSLA : ICMP Echo

16



Figure 4: Cisco IP SLA ICMP ECHO Operation - Source [5]

ICMP Echo uses ICMP Echo request and Echo reply messages to measure
the Round-trip Delay metric between two entities. The operation permits
the removal of the source processing time for a more accurate result. The
big advantage of ICMP Echo is that it can be performed toward any IP
host.

2. IPSLA : UDP Echo

Figure 5: Cisco IP SLA UDP ECHO Operation - Source [5]

UDP Echo is based on UDP packets, it allows for a Round-trip Delay
and also a One-way Delay calculation. A dedicated entity listening on
the destination host is required for the One-way Delay measurement; it is
called a Responder. The role of the responder is to listen on a particular
UDP custom port for incoming UDP Echo requests, and answer to them
with the addition of two timestamps (as seen in the �gure).
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3. IPSLA : TCP Connect

Figure 6: Cisco IP SLA TCP Connect Operation - Source [5]

TCP Connect is an operation that can measure the time taken by the
source to establish a TCP Connect operation to any destination host.
Here a responder entity listening on the destination is not required, any
TCP listening service can be tested.

4. IPSLA : ICMP Echo Path
ICMP Echo Path consists of a measurement of the Hop-by-Hop response
time between a source and a destination. For this purpose the operation
will �rst discover the path using traceroute, and then perform an individual
ICMP Echo operation toward each intermediary hop on the path to the
destination.

1.2.3.2 One-way Active Measurement Protocol (OWAMP)

OWAMP is a very complete protocol that allows measuring unidirectional met-
rics such as One-way Delay and One-way Loss. High accuracy in the measures
requires a perfect synchronization between the end systems (using GPS for
example). The idea in OWAMP design was to create a technique allowing sin-
gleton metrics measurements, based on the initiation of test packets exchange.
OWAMP designers wanted to constitute a standard for collecting metrics across
a wide mesh of Internet path.

OWAMP consists of two protocols : a control protocol and a test protocol.

• The control protocol is based on TCP. It is used to initiate, start and stop
test sessions and to fetch the results.

• The test protocol is used to exchange test data contained in UDP packets
between measurement nodes.
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OWAMP has interesting characteristics :

• It is hard to detect because it is based on UDP packets, and because test
sessions are dynamically negotiated (not on a static port).

• It supports security features, there are three di�erent modes : unauthen-
ticated, authenticated, and encrypted modes.

• It can be used to collect every IPPM metric.

For more information about OWAMP see the RFC 4656 [17].

1.2.3.3 Internet Protocol Measurement Protocol (IPMP)

Internet Protocol Measurement Protocol is another active monitoring protocol.
It has been designed by an IETF working group [17] as an evolved echo re-
quest - echo reply protocol. It is also designed to allow intermediate routers
to piggyback additional information in the request, in order to record delivery
timestamps along the path.

Typically, a host that wants to perform a measurement via IPMP will send an
IPMP Echo Request packet to the desired target, and the receiver will answer
with an echo reply. Every IPMP capable routers on the path will be piggyback
an additional indicator to the request : a timestamp. The timestamp will allow
the calculation of the one-way delay between each node on the path.

Another IPMP features are IPMP Information request and reply packets, which
allow to calculate the inference between a node's clock time and the real time.

However, IPMP is not a very popular and widespread protocol. One main reason
is that IPMP requires the de�nition and standardization of several new type of
protocols : IPMP Echo request and reply, IPMP Information request and reply.
It requires the assignation of four new Internet Protocol types by the Internet
Assigned Numbers Authority (IANA). IANA is the authority responsible for
every internet protocol assignment, thus a worldwide consensus is needed for an
assignment. We can keep this concern in mind in our need to �nd a good way
to perform some performance monitoring over IPv6. As we will see further, a
new extension header requires the assignment of a new �next header� type by
the IANA (see 2.1.3).
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2 IPv6 Survey - Exploring IPv6 new features in

a monitoring approach

IPv6 has been designed by the IETF in a way to ensure its interoperability with
the existing protocols : di�erent mechanisms are speci�ed to facilitate the tran-
sition from IPv4 to IPv6. It was also a pre-requirement to leave the widespread
transport protocols UDP and TCP unchanged. This will allow a natural and
basic way to extend the multiple existing IPv4 measurement functions based on
the transport layer to work over IPv6. For example, in the third part of this
work we will describe a really basic UDP measurement function working over
IPv6.

IPv6 has been designed to bring several major changes to the existing IPv4
protocol, the original set of attributes of the protocol are the following :

1. Expanded Addressing Capabilities
The best known is the increase of IP address size to 128 bits in order to
solve IPv4 lack of addresses in the years to come, but there are many
other things like simpler addresses auto-con�guration, native multicast,
and anycast addresses.

2. Header Format Simpli�cation
A choice has been made to remove and replace several �elds in the IPv4
and to simplify IPv6 header. This simpli�cation permits a faster process-
ing of the header by the intermediate nodes on a path.

3. Improved support for Extensions and Options
The way Internet protocols options are carried has been totally reviewed,
options are now separated from the main header and carried into Exten-
sions Headers. The big di�erence is that options are no longer processed
by intermediate nodes, except for one, which allows for a faster processing
and a higher �exibility for new options in the future.

4. Flow Labelling Capability
An additional �eld in the header enables to tag packets belonging to the
same kind of tra�c (same �ows), in order to request a special handling
from the network.

5. Authentication and Privacy Capabilities
New options carried by speci�c extension headers bring authentication,
data integrity and optionally data con�dentiality native support to IPv6

These attributes have required many changes in the header and several new
mechanisms. In this part we will examine every change and new feature in a
performance monitoring view. We will try to determine if the Internet Protocol
Next Generation provides a smarter or more e�cient way to perform some
measurements than IPv4.

This part will be divided into three sections:
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• In the �rst, we will have a global overview of the di�erent changes in IPv6.

• In the second, we will search for some mechanisms that could be used to
set up a semi-passive monitoring operation over IPv6.

• And �nally we will explore every possibility to set up an active monitoring
operation over IPv6.

2.1 Semi-passive monitoring over IPv6.

2.1.1 Semi-passive monitoring.

Semi-passive monitoring combines the principles of both active and passive
monitoring. We will refer to it as a monitoring methodology allowing to mea-
sure some metrics between nodes without explicitly injecting a synthetic tra�c.
Semi-passive monitoring uses existing data tra�c as a transport mean for its
monitoring purpose.
One of the advantages is to avoid introducing more overhead on the network, by
using piggybacking mechanism on the tra�c passing through a node. Di�erent
kinds of tra�c can transit through a node :

1. The tra�c is generated locally and will be sent to the next hop on the
destination path.

2. The tra�c comes from a source node and the destination is the local node.

3. The tra�c comes from a source node and will be forwarded to the next
hop on the destination path.

Typically a semi-passive monitoring agent will add monitoring information on
the type 1 and 3 of these three kinds of tra�c. The information will be pro-
cessed either by the destination or by all the monitoring capable agents on the
path to the destination.
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Figure 7: Semi-passive Monitoring Principle

Semi-passive monitoring requires �nding a well-suited �eld in the network layer
protocol (IPv6) or in another higher level layer (transport layer) in order to
add the monitoring data in the tra�c. The next section will explore IPv6
possibilities to provide a semi-passive monitoring methodology. We will begin
with the basic features (IPv6 main header) and move on to more sophisticated
(option headers, Neighbor Discovery, ...).

2.1.2 IPv6 Header

The main di�erence between the IPv6 header with IPv4 is that it has a �xed 40
bytes length, it does not contain any checksum and is thus simpler and permits
better performance. Let us review every �eld and see if it can be interesting for
our objective :
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Figure 8: IPv6 Header

Version: 4-bit Internet Protocol version number = 6.

Tra�c: Class 8-bit tra�c class �eld. This �eld is used by origin node or
routers to identify a class of tra�c and eventually to apply a priority
policy to it. It cannot be used to store any useful measurement
information, it could be modi�ed by any nodes on the path and it
is not designed for that purpose.

FlowLabel 20-bit Flow label. According to RFC 2460 �A �ow is a sequence
of packets sent from a particular source to a particular (unicast or
multicast) destination for which the source desires special handling
by the intervening routers.� The question is : could we possibly use
the �ow label identi�er to specify a special monitoring handling on
the data transiting by the intervening routers ?

On tra�c type 3 2.1.1, it seems to be impracticable to give to the
data �ow a new �ow label. The source has already speci�ed a �ow
label which has a meaning on the path. It would be a non-sense to
modify it. RFC 3697 is very clear on that: �The Flow Label value
set by the source MUST be delivered unchanged to the destination
node(s).�

On tra�c type 1 2.1.1, we could make a decision to set a special
�ow label for each packet requiring a special monitoring treatment.
But two problems would appear :

• Firstly, we would not be able to set any other special treatment
for the real data payload.
Hence, we would not be able to distinguish any di�erent �ows.
For example, one �ow carrying some real time data and another
some best e�ort data would have the same treatment.
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• Secondly, if we use the �ow label as a solution for piggybacking,
we will indirectly give to every node processing the IPv6 header
an easy way to identify a measurement packet. Thus, nodes
could decide to apply a special treatment to these packets. For
example monitoring packets could get a higher or lower priority
compared to the other �ows. It would have a big in�uence on
the metrics measured by the monitoring function which would
not re�ect the network state anymore.

For these reasons, the �ow label which could seem to be an interest-
ing solution at �rst glance, is in fact not designed for this purpose.

PayloadLength 16-bit unsigned integer. Length of the IPv6 payload in bytes.
Payload Length set to zero means that the jumbogram option is
used.

NextHeader 8-bit selector. Identi�es the type of header immediately following
the IPv6 header. IPv6 has no option �elds in its header but options
can be speci�ed in extension headers. We will inspect the di�erent
encapsulated headers possibilities for monitoring in the next section.

HopLimit 8-bit unsigned integer. Decremented by 1 by each node that forwards
the packet. The packet is discarded if Hop Limit is decremented to
zero.

Source 128-bit address of the originator of the packet.

Destination 128-bit address of the intended recipient of the packet (possibly not
the ultimate recipient, if a Routing header is present).

IPv6 main header is much simpler than IPv4. As it will be processed by every
node on the path, its designers have chosen to reduce its complexity in order to
facilitate its treatment. It also simpli�es the need of standardisation for possible
options treatments that have to be implemented on every node. The few �elds
present in the main header do not provide any options for a measurement on
actual data tra�c. Actually, IPv6 options are no longer part of the main header.
IPv6 Options are contained in Extension Headers that will be discussed in the
next section.

2.1.3 IPv6 Extension Headers

Extension headers can be used in IPv6 to add di�erent options to the IP packet.

But IPv4 could carry some options too, so why would IPv6 extensions be more
interesting in a monitoring view than the IPv4 option �elds? Because there is
a big di�erence in the way there are handled :

In IPv4, options are a part of the IP header. Hence, it is processed by every
router on a the path from the source to the destination. It requires from every
node the capacity to handle all the options, it has two impacts :

24



1. Option �elds need to be standardised in order to to be recognized and
processed on every hop.

2. The processing of these options has a cost in term of time and computation
power, this cost is repeated on every node.

In version 6, a choice was made to change the way IP header options were
encoded. Its reasons are a more e�cient forwarding, less stringent limits on
the length of options, and greater �exibility for introducing new options in the
future [1].

The options are encoded in extension headers, these headers are separated from
the main header. They are used between the IPv6 main header and the upper-
layer header. They are not mandatory, and they act like an intermediate layer
between the network layer and the transport layer.

Figure 9: IPv6 Packet without Extension Headers.

There are a small number of such extension headers, each identi�ed by a distinct
Next Header value.

A full implementation of IPv6 includes implementation of the following exten-
sion headers:

• Hop-by-Hop Options

• Routing (Type 0)

• Fragment

• Destination Options

• Authentication

• Encapsulating Security Payload
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Figure 10: IPv6 Packet with two Extension Headers : Hop-by-Hop and Desti-
nation Options.

The �rst advantage of using an extension header as a carrier for any monitoring
information is that, �with one exception, extension headers are not examined or
processed by any node along a packet's delivery path, until the packet reaches
the node identi�ed in the Destination Address �eld of the IPv6 header�[1].
Hence, it allows a total transparency for a semi-passive monitoring operation.
The nodes along the path that are not capable of handling a semi-passive mon-
itoring treatment will not even be aware that it is contained in an extension
header.
The second advantage is the �exibility brought by the separation between the
main header and the extensions. There are six de�ned extension headers, but
the number of possibilities to create a new extension header is linked to the
Next Header �eld of the main header. The Next Header is a 8-bit �eld, so there
is 256 possibilities for upper-layer headers among which number 136 to 254 are
actually left unassigned.
That lets us two choices : Either try to use one of the de�ned extension head-
ers to carry our monitoring context, or use one of the unassigned Next Header
value to create a new monitoring protocol extension. We will �rst check if it
is possible to use one of the existing de�ned extensions for our purpose, and
thereafter compare with the second solution.

2.1.3.1 Examining the de�ned extension headers

We will focus on three of the de�ned extensions that seem to be interesting
from our point of view. There are the following : Hop-by-Hop options header,
Routing header, and Destination options header.

1. Hop-by-Hop options
The Hop-by-Hop Options header is used to carry optional information
that must be examined by every node along a packet's delivery path. It
is the only header that will be processed by every node on a path. It has
the following general format :
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Figure 11: Hop-by-Hop Options Header Format.

The option �eld is a Type Length Value (TLV) encoded �eld which is also
used in the Destination extension header. The Type Length Value format
is shown in �gure 12.

Figure 12: Hop-by-Hop and Destination Options TLV Format.

There are currently four options de�ned : two padding options, the jum-
bogram option and the router alert option. The type of an option is a
8-bit �eld where 2 bits are used to specify the action that must be taken
if the processing IPv6 node does not recognize the option type :

(a) 00 : the router must ignore the option (skip it and continue the
processing of the packet).

(b) 01 : the router must reject the packet.

(c) 10 : the router must reject the packet and send back an ICMP Des-
tination Unreachable message.

(d) 11 : the router must reject the packet and send back an ICMP Des-
tination Unreachable message if the destination address is not mul-
ticast.

The third bit is used to specify whether a router can change en-route the
option content or not. It lets us 6 bits as an option type label, so 64
possibilities among which 60 are unassigned.
It is thus possible to create a new option type associated with a new mon-
itoring operation in order to carry some context and process it in every
node on the path.
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This mechanism has already been developed, in particular in H. Kita-
mura's work [12]. We will brie�y have an overview of his work, and we
will focus on the advantages and concerns of using the Hop-by-Hop option
header to implement such a mechanism.

H. Kitamura's Connection Status Investigation (CSI)

The idea of CSI is to couple a new kind of ICMP control message with a
new option called CSI option in the Hop-by-Hop extension header. The
operation works as an evolved and smart traceroute. An ICMP status
request message is sent to a destination and acts as a trigger for every
node on the path. In reaction to the trigger, the nodes will process the
CSI option contained in the hop-by-hop extension header.

Figure 13: Connection Status Investigation (CSI) - Source [12].

Status request, status reply and status report messages are new ICMP
control messages. The status report is sent by a CSI capable router when
the CSI option �eld in the IPv6 Hop-by-Hop extension header of the re-
ceived status request is full. The two other messages work as ICMP echo
and ICMP request messages, their role is to trigger the special treatment
on CSI capable nodes and to carry the sub-layer headers (IPv6 and exten-
sions).
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Figure 14: Hop-by-hop CSI Option format - Source [12].

Thanks to the two �rst bytes of the option type, the CSI option can be
used on a network where not all routers are CSI capable. When a router
does not know how to handle an option type �eld, it refers to these �rst
bytes to take an action. If it is set to 00, the router will skip over this
option and continue the processing of the header. When a CSI capable
router process a Hop-by-hop extension header and recognize the CSI op-
tion type value, it will check the value of di�erent �elds in the CSI option
in order to take part in measurements. Investigation class and investiga-
tion type �elds specify the type of indicator that has to be piggybacked
in the option data by every CSI capable node on the path delivery.

Figure 15: IPv6 Hop-by-hop CSI Option : Mandatory Data Component Record
- Source [12]

The Record Count Field allows nodes to copy their indicators at the right
place in the option data. If the maximum of records is reached, CSI nodes
will send a status report ICMP message with a copy of the records to the
source (or to the destination depending on the R bit value), clear the data
records and increment the Report Count Field.

What are the advantages taken by the CSI mechanism as an option �eld in
the Hop-by-Hop extension header ? It bene�ts from the extension's more
interesting property, which is that it is processed by every router on the
path. The TLV-encoded method allows the mechanism to be used with
non CSI capable routers, that will ignore it .
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There are three disadvantages in this method, the �rst one is directly
linked with the CSI mechanism, and the two others are more general to
the use of the Hop-by-Hop extension.

• First, the CSI mechanism requires three new de�ned and standard-
ized of ICMP control messages : status request , status reply and
status report.
Are the two �rst really necessary ? They have the same behaviour
than ICMP echo request and echo reply, except the di�erence that
they act as a trigger. But according to RFC 2460 �The Hop-by-Hop
Options header is used to carry optional information that MUST be
examined by every node along a packet's delivery path�. Thus, the
CSI option should be examined and recognized by any CSI capable
router, without the need of an additional trigger.

• The second disadvantage is the impact on the processing time at
every step of a packet's delivery. Each intermediary router will have
to process the hop-by-hop extension header, and the CSI option type.
It is a 8-bit only option type that has to be matched, thus it will not
have a big incidence on the delivery global delay.

• And �nally, this mechanism will encounter the same concern as de-
scribed in the �ow label section (2.1.2). Here, a simple 8-bit option
type will let every router know that the whole packet has a special
monitoring purpose. This knowledge could lead certain routers to
have di�erent priority behaviour toward packets containing a CSI
option type, which would compromise the measurement function.

2. Routing Extension Header (RH).
�The Routing header is used by an IPv6 source to list one or more inter-
mediate nodes to be "visited" on the way to a packet's destination. This
function is very similar to IPv4's Loose Source and Record Route option.�
[1]. The Routing Header will not be used to piggyback any monitoring
context, because it cannot contain anything other than routing informa-
tion.
But an interesting property of the Routing header is that it can specify
a lot of intermediary destinations. During the packet's delivery, every
destination in the Routing header list will become an IPv6 main header
destination, on which the Destination header will have to be processed
(see 3). The Routing extension Header in itself is not useful for our pur-
pose, but its combination with the Destination header is a smart way to
perform operations on some chosen nodes.

3. Destination Options Header.
The Destination Options header contains options that should only be ex-
amined by a packet's destination node(s). During its delivery, a packet des-
tination can change en-route if di�erent destinations have been recorded
in the Routing Header. In this case, every intermediary destination will
also process the Destination Options. Options are TLV-encoded, as in the
Hop-by-Hop Extension.
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Figure 16: IPv6 Destination Header Format.

We could use the Destination Header in order to measure some metrics
between two hosts. This can be done by adding a piggybacked monitoring
context to existing tra�c, in the IPv6 Destination extension header. It
requires to create a new monitoring TLV-encoded option type (for exam-
ple like the CSI option).
The main advantage by comparison to the Hop-by-Hop solution is its opac-
ity for other nodes: the Destination extension will only be processed by
the destination of the IPv6 packet. Other routers on the path will not
be aware that it is running because they do not inspect the Destination
Header. Hence, the operation is not detectable by the intermediary nodes,
and the monitored data should not undergo any special treatment.

In his work [14] D.P. Pezaros has achieved a native in-line monitoring
methodology, based on IPv6 destination header.

D.P. Pezaros's In-line measurements.

(a) General description of the method.

His work presents a new �in-line measurement� based on IPv6. Ac-
cording to D.P. Pezaros, �In-line measurement� is a new hybrid mea-
surement technique, based on active and passive measurements prop-
erties. It is thus a new type of performance monitoring that can be
classi�ed in what we call in this framework the semi-passive monitor-
ing family of functions. In-line measurement combines the advantages
of passive and active measurement :

i. The method, like passive monitoring methods, does not inject
any synthetic tra�c in the network. It operates on the actual
data tra�c by adding some measurement indicators. There is
no feedback from the network; which makes it more complex to
correlate the measurements from multiple points in the network.

ii. Similarly to the active measurements methods family, in-line
measurements allow an accurate estimation of tra�c �ows per-
formances in real time. As the technique uses actual data tra�c
as a �piggybacker� for measurement indicators, measurements
results will exactly re�ect the performance experienced by data.
However measurement tests do not have to be periodic as other
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active measurements. The reason is that they will only be trig-
gered by the presence of tra�c type that has to be monitored.
Hence, this solution does not allow measuring any service per-
formances during lack of tra�c of interest.

In-line measurements are �multi-point measurements whereby pack-
ets are tagged with measurement information at one point in the
network, and this information is observed, augmented and retrieved
at a points (or points) elsewhere.

Figure 17: Inline Measurement Technique - Source [14].

A major advantage of using IPv6 rather than IPv4 in an in-line mea-
surement goal is the new way IP options are handled. Pezaros chose
to exploit the destination header as a carrier for an in-line measure-
ment. He de�ned new TLV-encoded options to be inserted as part
of the destination extension header within the actual data packets.
These new options also allow piggybacking some measurements indi-
cators along a packet's delivery path. Typically, a node that wants to
perform an in-line test on a particular tra�c type will select the tra�c
of interest and create the appropriate measurement option in the des-
tination header in order to hold an indicator of the metric measured
(for example a timestamp or a packet counter). At the destination
node, the destination header will be processed. The presence of the
TLV-encoded option will trigger a direct measurement observation.
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Figure 18: D.P. Pezaros In-line Measurement method using TLV-Encoded Op-
tions - Source [14].

(b) New de�ned TLV-Encoded options
He de�ned two new TLV-Encoded options :

i. One-way Loss (OWL) TLV-Encoded Option

Figure 19: Destination Header encapsulating a One-way Loss TLV-Encoded
Option - Source [14].

One-way Loss option (OWL) is used to measure packet loss be-
tween two points in the network. The method is really simple
: The origin node choose a tra�c type of interest, and piggy-
back in a corresponding packet the OWL option with a sequence
number based on a local policy. At an identi�ed destination,
the destination header is processed and the OWL option is ex-
tracted. The sequence number is then stored, and by observing
sequence numbers of successive packets satisfying some common
classi�cation criteria the destination can compute the One-way
loss.

ii. One-way Delay (OWD) TLV-Encoded Option

33



Figure 20: Destination Header encapsulating a One-way Delay TLV-Encoded
Option - Source [14].

One-way Delay (OWD) TLV-Encoded option has been designed
to allow the performing of a One-way delay measurement be-
tween two points in the network. Let us describe the essential
Option �elds :

A. Pointer : it indicated the octet which begins the next times-
tamp to be added

B. Over�ow : it is used to indicate if nodes have tried to insert
more timestamps than there are slots to accommodate them.

C. Source Timestamp seconds/microseconds : two 32-bit
timestamps to record the departure time of the packet from
the interface of the originator

D. Destination Timestamp seconds/microseconds : two
32-bit timestamps to record the arrival at the interface at
the node processing the OWD option.

Usage of the OWD option requires perfect time synchronization
between the origin node and the destination one.

D.P. Pezaros's work is one more proof that TLV-Encoded options provide
a �exible and smart way to perform measurements. His smart use of
the destination header allows measurements between two points in the
network. But another interesting characteristic of the destination header
is that we can combine the Destination Header and the Routing Header
to create a multi-point measurement. The Routing Header may specify a
list of hosts that has to be visited. According to RFC 2460, each host in
the Routing Header list will become a destination host during the packet's
delivery, and will process the Destination Header if it is present.
The idea has been proposed in an internet draft called One-way delay
Measurement using IPv6 Source Routing [33]. The draft introduces the
idea of a Subpath One-way Delay measurement (SODM).
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Subpath One-way Delay measurement (SODM).

The measurement packet consists of an IPv6 main header followed by three
next header : two next headers are IPv6 Destination extension header and
Hop-by-hop extension header, the third one is the given as a generic One-
way Delay test protocol.

Figure 21: Layout of Subpath One-way Delay Measurement Packet - Source [33]

The solution requires the de�nition of a speci�c TLV-Encoded One-way
Delay measurement option in the destination header. The main di�erence
with D.P. Pezaros's OWD option would be that the option must be large
enough to contain every timestamp added by the nodes on the subpath to
be measured. A special �eld should also be available to indicate whether
the intermediate nodes were able to piggyback their timestamps or not.

Unfortunately, this solution su�ers from di�erent issues due to several
Routing header concerns. These security concerns were already present in
the IPv4 Loose Source and Record Route option (LSRR), and they result
in the decision from many Internet actors to ignore the LSRR option.
IPv6 Routing header is very similar to IPv4 LSRR. For many reasons
we might think that IPv6 Routing header (RH) will be ignored too, RH
brings several issues as :

(a) Avoiding destination �lters
Many �rewall rules are based on the destination address �eld, but
with the use of RH, the destination address �eld is not always the
real destination of the packet. The destination can change many
times during its delivery. To solve this concern would require from
�rewalls to inspect deeper in the routing header extension if there is
no record of forbidden destination address.

(b) Scope escape
IPv6 addresses can have four di�erent scopes : node local, link-local,
site local or global. These scope addresses must be used only in the
scope perimeter, because they guarantee the address uniqueness in
that scope. Routers never forward any packets where the destination
scope di�ers from the source scope. Using the RH makes it possible
to change the scope of the destination address during its travel.
Normally an IPv6 node receiving a packet on an interface whose
address has a di�erent scope than the source address of the packet,
will answer to it by using its local scope. And thus the reply will be
blocked by routers.
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However the node could use the same RH mechanism in order to
reply to the request which would create a security issue.

(c) Tra�c billing
Internet Service Providers (ISP) have �nancial agreements with net-
work partners (such as carriers and other ISPs). As they have to
pay for the tra�c passing through their peering partners, they want
to have a perfect control on how the tra�c is being routed. For
these reasons they might not care about the presence or not of a RH.
Also, a malicious partner could force the tra�c to pass several times
through his network in order to overbill the tra�c costs.

(d) Accelerate the research of reachable nodes.
By combining an echo-request protocol with the RH, it is possible
to check the availability of some nodes much faster. It consists in
placing every address to be checked as a record in the RH, and to
send an ICMP Echo to one of these address. If an ICMP Echo reply
is received all the addresses are reachable, else an ICMP Unreachable
message will be received from the last reachable address in the RH
list.

The prohibition of the IPv6 Routing header extension would cause the
ine�ciency of any measurement method combining the Routing Header
and the Destination Header, such as the subpath One-way Delay method.
For now, we still do not know if managers of IPv6 networks will take this
option into account or not. But based on the experience of IPv4 LSRR,
there are no reason inciting IPv6 actors to care about the Routing Header.
Because all encountered issues in IPv4 LSRR are still present in IPv6 RH.

2.1.3.2 A Measurement Extension Header.

IPv6 modularity and �exibility allow creating new experimental options carried
into extension headers. As seen previously, there are a certain number of next
header �eld values which are currently unassigned. This lets an opportunity to
create a new type of extension, speci�c to monitoring operations : a measure-
ment extension header.
There are several di�erences between a �dedicated� extension header or the use
of a de�ned extension header to carry our information. De�ning a new extension
has a big advantage:

• a new extension header dedicated to measurements would allow to de�ne a
lot of option types specifying di�erent possible operations (like RTT, one-
way delay, loss rate, ...) where the use of the existing extension headers
only permits to de�ne several minimalist operations. It is due to the TLV-
encoded format : only 6 bits specify the option type (2 exp 6 possibilities).

But it has some drawbacks :
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• In case of unrecognized option by the destination, the two approaches
(options or header) have a di�erent behaviour :
If a destination of a packet containing an IPv6 measurements extension
header is not capable of handling this type of extension, it will normally
discard the packet and send an ICMP parameter problem message to the
source. Thus, the data will be lost. In the other scenario, if the destination
does not recognize the option type it will skip it and process the rest of
the packet.

• The new created extension will have a unique next header protocol num-
ber. It is subject to the same concern as Flow label and CSI option in the
Hop-by-Hop Header : it is easily identi�able by all nodes and they can
possibly adapt their behaviour while detecting a measurements extension
header (see 2.1.2).
This concern is minimized in the TVL option because it is located in a
header that is not supposed to be processed by every nodes.

• A new extension requires a new protocol identi�er, which has to be unique
and standardised. TLV options have to be unique and standardised too,
but the scope of the standardisation is local to IPv6, while the scope for
a new extension is a global scope. IPMP, the complete measurement pro-
tocol described above, is a good example of a new measurement extension
that has never been standardized.

The idea of a new option header dedicated to measurement is not new, it has
been discussed in a draft named �IPv6 measurement header� proposed at the
IETF (see [21]). The measurement header was proposed as a new IPv6 option
header, thus requiring a new internet protocol type identi�er. It can perform dif-
ferent measurements : one-way measurement, two-way measurement and allows
higher layer protocol measurement.

Figure 22: IPv6 Measurement Header Format - Source [21].

The message data �eld contains in fact the measurement options. The options
are encoded in TLV format as the options in the destination header and hop-
by-hop header.
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Figure 23: Measurement Options TLV Format - Source [21].

This proposal for a new measurement header seemed to be a smart and complete
measurement solution for IPv6, taking advantage of the way IPv6 options are
handled option. But it has been abandoned, why ?

As we have seen above, the creation of a new internet protocol type brings
several di�culties. The major concern is that the IANA authority has to be
convinced of the necessity to standardize such a protocol. Actually it is not only
the IANA but the whole internet community that has to �nd some bene�ts in
the use of this protocol.
The measurement header possibilities are based on TLV-encoded options in
the measurement header data �eld. We have seen in the previous section that
destination header and hop-by-hop header could carry these TLV-encoded mea-
surement options too. Thus the proposed new measurement header would have
allowed the same functionalities than the use of the existing header options �eld.
Accordingly, a new measurement header as it is described in the draft [21] would
not have provided more bene�ts than the use of the options which encounters
fewer di�culties to be developed.

It does not mean that the idea in itself of creating a new IPv6 header entirely
dedicated to measurements must be forgotten. But the amount of e�ort needed
to standardize and convince Internet actors of the necessity to widely deploy
such a protocol would require from this solution to provide something really
new, more complete and powerful that what the TLV-encoded options currently
allow. A new extension header would have to be designed to regroup all the
existing measurement features, it should handle many more options than the
2exp6 possible types allowed by the TLV options. Such a header should also
be capable of measuring any metrics and be used in di�erent modes : active,
passive, semi-passive.

2.1.4 Neighbor Discovery (ND) mechanism

Neighbor Discovery (ND) is the address resolution protocol for IPv6. It is the
equivalent of ARP protocol for IPv4, but it also combines a new router discovery
protocol.
ND allows nodes to perform the following operations :

• Determine the link-layer addresses of the neighbours attached to the same
links.
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• Be aware of a cached address that becomes invalid.

• Find the di�erent routers on the same links.

• Keep track of the neighbours that are reachable and those that are not.

• Detect changed link-layer addresses.

• When a router of the path to it fails, try to �nd an alternate.

At �rst glance it looks like an interesting solution for our purpose, could we
combine our measurement indicators with the ND mechanism ? Let us �rst
check deeper how ND works :

The ND algorithm is based on four tables :

1. Destinations' cache

2. Neighbors' cache

3. Pre�x list

4. Router list

In summary it works like this :
When a node wants to send (or to forward) a packet to a known destination :

• It checks the destination cache. The destination cache associates a neigh-
bor's address with every destination.

• The ND algorithm checks the Neighbors' cache for the corresponding
Neighbor's address.
If the Neighbors' cache does not contain the needed entry, a Neighbor
Solication message is sent to discover the media layer address. These mes-
sages are ICMP control messages, they have the following format :
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Figure 24: Neighbor Solicitation Message Format - Source [2].

• The neighbour receives the Solication message and replies with a Neighbor
Advertisement message.

Figure 25: Neighbor Advertisement Message Format - Source [2].

• The local nodes receives the Neighbor Advertisement message and updates
its cache, it can now send its packet to the next hop on the packet's path.

The router discovery mechanism uses two other ICMP control messages : Router
Solicitation message and Router Advertisement message. All these messages are
part of the ICMPv6 protocol. The piggybacking of a monitoring context on these
mechanisms would require �nding an appropriate �eld in the ICMP messages.
As we will see in the 2.2.2 section, the only convenient �eld would be the option
�eld. Its maximum size in bytes is : 1280 - 40 (IPv6 header) - 24 (ICMP other
�elds) = 1216 bytes.
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However RFC 2461 [2] speci�es three options for Router Advertisement message
and only one for the other messages. It is also said that future versions of the
protocol may de�ne new option types. As it is not clearly said that experimental
options can be used in these messages it might be inappropriate and risky to
introduce a new measurement option in a protocol that is not designed for it.
Another reason opposed to a possible use of these new ICMPv6 messages is that
ICMPv6 messages have the same general format as ICMPv4. There do not seem
to be any work on ICMPv4 going in that direction, that is to say : using a new
option �eld in an existing ICMP message in order to couple some performance
measurements with the basic service provided by the ICMP message chosen.

ND is also based on another IPv6 new feature : native multicast. Indeed,
ND uses ICMP messages, which is an upper-layer than IP. Thus Solicitation
messages have to be sent to an IP address, and this address is a multicast IPv6
address : solicitated nodes address.
The big change compared to IP version 4 is that IPv6 de�nes a set of well-known
multicast addresses that have to be listened to by every node. We will see if we
can take advantage of this native multicast mechanism in the active monitoring
section 2.2.3.

2.1.5 Path Maximum Transfer Unit (PMTU) discovery

In IPv6 fragmentation is not allowed at intermediate nodes, for a performance
reason. Thus sending hosts have to perform the fragmentation if necessary
because routers are not able to fragment packets that are too large for a link.
The notion of Maximum Transfer Unit (MTU) is essential in IPv6 because it
is important for a node to know the MTU of a path in order to use the best
packet size and avoid ICMP �packet too big� error messages.

To discover a path MTU, a host will use the Path MTU (PMTU) discovery
mechanism speci�ed in the RFC 1981 [20]. If a host cannot discover a PMTU,
it will have to limit the sending packet size to the lowest allowable MTU in an
IPv6 network, which is 1280 bytes.

PMTU discovery mechanism is based on ICMP �packet too big� messages. Ini-
tially, the PMTU value for a path is assumed to be the (known) MTU of the
�rst-hop link. Each time that the sending host will receive an ICMP packet too
big message, it will be aware that the MTU used for this path is too big. The
PMTU will be reduced until the correct delivery of the packet.
In a monitoring point of view, for many reasons PMTU discovery is obviously
not suited for any special monitoring operation. Amongst other things PMTU
discovery mechanism is not mandatory and its implementation can di�er from
a system to another. Another reason is that the only node on a path that will
certainly receive the packet used to discover the PMTU is the �rst hop, and
thus it does not provide an interesting monitoring approach of the feature.
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2.1.6 Address auto-con�guration and Duplicate Address Detection
(DAD).

Another new IPv6 feature is the address auto-con�guration. Auto-con�guration
allows IPv6 nodes to be Plug and Play. An IPv6 node only has to be plugged
into an existing IPv6 network and it will be automatically con�gured without
any human intervention.
IPv6 address auto-con�guration aims are:

• To allow newly plugged nodes into a network to obtain a global IPv6
address.

• To allow nodes to obtain a new address in case of reassignment.

Address auto-con�guration process is divided into 3 phases : generation of a
link-local address, Duplicate Address Detection (DAD) mechanism in order to
verify its uniqueness, and global address auto-con�guration.

1. Generation of a link-local address :
The node will �rst generate a �tentative address�, this address has only
a link-local scope and is generated by using the link-local pre�x (FE80)
combined with the interface identi�er.
The tentative address will only be partially assigned to an interface, in or-
der to receive Neighbor Solicitation Messages and Neighbor Advertisement
Messages.

2. Duplicate Address Detection (DAD) :
This mechanism allows a node to check that its tentative address is not
already used by another node.

DAD is pretty simple, it is based on two types of ICMP messages : Neigh-
bor Solicitation Message and Neighbor Advertisement Message.
The DAD algorithm consists of sending a Neighbor Solicitation Message
with an unspeci�ed source address �eld to the tentative address chosen
and listen to the interface for a certain time. During this time interval,
three scenarios are possible :

(a) A Neighbor Advertisement is received from the same address as the
tentative address, meaning that the tentative address is another node
valid address. Thus addresses are duplicated and cannot be used.

(b) A Neighbor Solicitation Message is received, its source �eld allows to
distinguish whether its part of the DAD mechanism or the ND. If it
has an unspeci�ed source �eld, it means that another node has chosen
the same tentative address. Addresses are duplicated and cannot be
used.

(c) If nothing has been received for a certain time, the tentative address
is considered unique and will be assigned to the interface as a valid
address.
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Duplicate Address Detection is a mechanism to allow nodes to obtain a lo-
cally unique address. As we have seen, nodes running DAD on an interface
still have no valid address for this interface. Thus it would be pointless to
try to combine any performance monitoring operation with DAD, know-
ing that nodes running it are still not capable of communicating with any
other nodes.

Also DAD is, like Neighbor Discovery, based on ICMP messages. For the
same reasons there would be no possibilities to take advantages of these
messages in a monitoring purpose (see 2.1.4).

3. Global address auto-con�guration :
Until now, our newly connected node has acquired a new link-local unique
address for its interface. The third step of the address auto-con�guration
process is the global address auto-con�guration. There are actually two
modes for global auto-con�guration : stateless or statefull. The chosen
mode will be dependent on the presence of a router on the link.

(a) A router is active on the link
When a router is present on the same link as the node expecting
a global address con�guration, it will communicate through Router
Advertisements messages the auto-con�guration mode. Special �ags
in the RA will specify whether the auto-con�guration mode will be
statefull or stateless.

Figure 26: Router Advertisement Messages : Containing Auto-Con�guration
Information.

The �M� and �O� �ags are respectively the ManagedFlag and the
OtherCon�gFlag. If the 'M' bit is set, it means that the node will
have to run the statefull auto-con�guration protocol. Otherwise if the
'M' bit is not set, the node will use the stateless auto-con�guration
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mechanism.
If the statefull mode is chosen, the node will have to run the statefull
auto-con�guration protocol for IPv6 : DHCPv6. The 'O' bit speci�es
that the node will have to use DHCPv6 to discover other parameters
(but not for address con�guration). In this framework we will not
discuss DHCPv6, for more information about it see the RFC 3315
[25].
When the stateless mode is speci�ed, the node will compute its global
address by combining some local address information with some in-
formation about the network, respectively its link-local address with
a pre�x given by the routers in Router Advertisement messages (as
seen in the previous �gure).

Figure 27: Stateless Auto-con�guration : Global Address Construction.

For several reasons described in [22], the node could decide to ig-
nore link pre�x information. If stateless auto-con�guration cannot
be completed with obtaining of a global address, statefull protocol
will have to be run.

(b) There is no active router on the link
If after a few solicitations the node does not receive any Router Ad-
vertisements, it means that there is no active router on the link.
In that case the node will not be able to perform a stateless auto-
con�guration. It will then run the statefull auto-con�guration proto-
col to try to obtain its global address. If statefull con�guration fails,
global address con�guration will fail too, and the node will only be
able to communicate on its link using its link-local address.

In a performance monitoring point of view, the analysis of the global
address auto-con�guration mechanism leads us to the same conclusion as
for the DAD feature. Global address auto-con�guration mechanism also
takes place at the setup of a node on a network. At the setup time, the
node still has no global address and no global visibility from the rest of
the network. Thus coupling any performance monitoring methods with
such a mechanism would be totally pointless.

2.2 Active monitoring over IPv6.

We have seen in the previous section 2.1.3 that it is possible to add some moni-
toring information in the extension headers. There are three choices which have
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their di�erent advantages and concerns : the Hop-by-Hop header, the Destina-
tion header or a new extension header. In that section their purposes were to
carry some information on one-way, and let the receiver collect all the piggy-
backed information to compute a measurement.

Active measurement can be performed the same way, the only di�erence is that
active measurement context will be carried on synthetic tra�c rather than pig-
gybacked to the real tra�c. This synthetic tra�c will obviously contain the IPv6
protocol, but also a transport protocol. Most IPv4 active measurement func-
tions, like the IP SLA measurement functions described in 1.1.3, are based on
three well known transport protocols. Therefore a natural and basic approach
to design measurement functions for IPv6 would be to use these transport pro-
tocols.

In this part we will discuss what IPv6 changes in the three main transport
protocol : UDP, TCP and ICMP. We will also talk about IPv6 multicast, which
can be used in combination of an active measurement.

2.2.1 Transport protocols : TCP and UDP

UDP and TCP are so widespread all over the world that it was an IPv6 pre-
requirement to left them unchanged in order to facilitate the upgrade from IPv4
to IPv6. However there are only some small modi�cations in both protocols.
The �rst one is due to the suppression of the checksum in the IPv6 header.
With IPv6, it has been decided that every upper-lay protocol had to compute
and control a new checksum. The second change involves the new IPv6 jum-
bogram option. This option allows an IPv6 packet to contain more than the
maximum 16-bit length �xed by the Payload Length �eld of the IPv6 header.
But transport protocols such as UDP and TCP also have a 16-bit length �eld for
their maximum data size. Thus they have to be able to handle the jumbogram
option as well. So what changed ?

1. In UDP over IPv6 :
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Figure 28: UDP Header Format

(a) The checksum is no longer an option, it becomes required and its
method calculation is now a little di�erent. It now takes into ac-
count a pseudo-header containing information from the IPv6 header.

Figure 29: Pseudo-Header that has to be included in the TCP checksum for
IPv6

(b) When the jumbogram option is used in the IPv6 header, UDP 16-bit
length �eld still limit the UDP packet to 65 535 bytes.
RFC 2675 speci�es the modi�cation of UDP required by IPv6 to relax
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that limit. UDP packets longer than 65 535 bytes may be sent by
setting the UDP length �eld to zero and letting the receiver derive
the actual UDP packet length from the IPv6 payload length.

2. In TCP over IPv6 :

Figure 30: TCP Header Format - Source [37].

(a) In TCP the checksum was already mandatory, the only di�erence is
that now it has to take into account the pseudo-header described in
the �gure above.

(b) TCP does not contain any �eld �xing a packet size limit, however it
contains two 16-bit counters that require a special handle in case of
jumbogram option.

i. The Maximum Segment Size (MSS) is negotiated at the connec-
tion establishment and is a 16-bit length �eld, which limits the
largest TCP packet that can be sent to 65 535 bytes. When de-
termining what MSS value to send, if the MSS is greater than
65 535, the value sent will be 65 535. When a 65 535 MSS is
received, it has to be treated as in�nity and the real value must
be calculated thanks to the Path MTU discovery algorithm on
the path to the TCP peer.

ii. The Urgent Pointer is a 16-bit o�set indicating the start of urgent
data when the URG bit is set. If both jumbogram option and
urgent pointer are used, the RFC 2675 speci�ed three di�erent
scenarios :

A. If the o�set is less than 65 535, �ll in the Urgent �eld and
continue with the normal TCP processing.
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B. If the o�set is greater than 65 535, and the o�set is greater
than or equal to the length of the TCP data, �ll in the Ur-
gent Pointer with 65 535 and continue with the normal TCP
processing.

C. Else the TCP packet must be split into two pieces. The �rst
piece contains data up to, but not including the data pointed
to by the Urgent Pointer, and the Urgent �eld is set to 65,535
to indicate that the Urgent Pointer is beyond the end of this
packet. The second piece can then be sent with the Urgent
�eld set normally.

The negligible changes in transport protocols allow for an easier migration for
applications based on these transport protocols. This will be shown by an ex-
ample in the third chapter, where we will describe the design of a simple mea-
surement function prototype based on UDP and working over IPv6. Many IPv4
measurement functions based on these transport protocols could be extended
to IPv6 in the same natural and basic way.

2.2.2 ICMPv6

Internet Control Message Protocol (ICMP) which was in version 4 has been
reviewed for IPv6. It is an integral part of the IPv6 architecture and must be
supported by all IPv6 implementations. ICMPv6 has been given the IP protocol
number 58. The main di�erences with its predecessor are a better distinction
between the possible ICMP messages (control or error), but also the addition
of several new ICMP messages which are part of protocols such as the Multi-
cast Listener Discover (MLD), the IPv6 successor of Internet Group Message
Protocol (IGMP) in IPv4; or like Neighbor Discovery (ND, the successor of
ARP.

ICMP header has remained unchanged :
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Figure 31: ICMPv6 General Format.

The type �eld determines the ICMP type of message, and thus the ICMP data
format. There are now two types of ICMP messages :

• Error messages : Identi�ed by a type number between 0 and 127.

• Information messages: Identi�ed by a type number between 128 and 255.

The following tables contain the currently de�ned ICMP type numbers 1:

Figure 32: ICMPv6 Error Message Types.

1de�ned by the IANA and available at http://www.iana.org/assignments/icmpv6-
parameters
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Figure 33: ICMPv6 Informational Message Types.

2.2.3 IPv6 native multicast addresses

In IPv6, multicast is natively supported by nodes. In a measurement point of
view, native multicast should greatly facilitate the design of multicast measure-
ment functions.
Another new feature brought by IPv6 are the native multicast pre-de�ned ad-
dresses. According to RFC 4291 [9] IPv6 nodes have to listen to a set of well-
known pre-de�ned multicast addresses :

• The All-Nodes multicast addresses
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• The Solicited-Node multicast address for each of its unicast and anycast
address

• Multicast addresses of all other groups to which the node belongs.

IPv6 routers are required to recognize all multicast addresses that a host is
required to recognize, plus the All-Routers multicast addresses.

Here are especially the more interesting pre-de�ned multicast addresses for our
purpose :

1. All nodes address FF02:0:0:0:0:0:0:1 (local scope)

2. All routers addresses :
FF02:0:0:0:0:0:0:2 (local scope) and
FF05:0:0:0:0:0:0:2 (site scope)

These native multicast addresses for nodes or routers can be used to contact
any nodes or routers in a local scope, or contact any routers in a site scope. In
particular we could combine their use with an active measurement operation in
order to query every node or every router in the local or site scope. In the next
chapter we will describe the design of an UDP-echo over IPv6 operation using
a multicast address.
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3 Exploiting IPv6 features for designing measure-

ment functions.

The aim of this chapter will be to describe the design of a monitoring operation
measuring Round-trip Delay and One-way Delay metrics by using several spe-
ci�c of the previously seen new IPv6 mechanisms .
The �rst step of our description will be the de�nition of a basic UDP-Echo op-
eration over IPv6. Then we will discuss the combination of this basic operation
with the IPv6 native multicast mechanism to get an automatic multicast mon-
itoring operation.
Finally we will talk about a smarter way to improve our UDP-Echo functionali-
ties, by combining it with one of the new IPv6 features : TLV-Encoded options
in Extension headers.

3.1 Basic solution

As said previously, one objective of this work is to show that measurement
functions can be used over IPv6, and to prove that it can be done in a basic
way by an example : the implementation of a simple measurement function. For
this purpose we have chosen to design a simple UDP - Echo prototype operation
working on IPv6. This operation will be capable of measuring one metric : the
Round-Trip Delay (see 1.1.1) between two end systems . It will be an active
function, working in two phases : a control phase to initiate the test phase, and
a test phase to establish the measurement.
UDP - Echo function described in this section is a simple and rather naive
active function, that does not take into account several issues like security issues.
UDP - Echo has two roles in this work: �rstly to show that existing monitoring
approach on IPv4 can easily be extended to IPv6, and secondly to constitute the
base function that will be combined with speci�c IPv6 features for our further
improvements.

3.1.1 De�ning a basic IPv6 UDP-echo operation

The test unfolding will be divided into two phases. The �rst one is a control
protocol datagram exchange that will establish parameters for the second phase
: UDP-echo request.

a) First phase : control protocol

The control protocol is a simple UDP exchange between a source and a des-
tination, where the source is the host interested in performing measurements
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and the destination is the target of these measurements23. The control proto-
col purpose is to allow a source node running a client to contact a destination
running a server for a particular request.
This request will be encoded in the UDP data payload in a Type Length Value
(TLV) format4, and will specify a prede�ned measurement operation that the
sender would like to perform.

The server entity will have to be listening on a given control port : port 5354. If
a server receives a request from a client node on that port, it will have to analyse
the TLV-encoded UDP data content and determines whether it is able to handle
the requested operation or not. If the server entity is capable of answering the
operation request, the server will reply to the control request and specify a port
number that the client will have to use for the second phase : the test phase.
This control protocol could be used for di�erent operation types, but in this
work it will only be used to establish one kind of measurement operation : an
UDP-Echo operation.

Control datagram data will be composed of the following Type Length Value
format :

Figure 34: UDP Measurement Options TLV Format

The chosen TLV format will be used in both Control and Test datagrams. A
2-byte Type �eld allows the de�nition of up to 65 536 di�erent type of options,
and in this work we will de�ne a few option types. Each Option type can have

2The terms �Source� and �Destination� will be used as shortcuts to refer to these de�nitions
in the remainder of this work

3In the implementation part, the Source will have to run a Client application, and the
Destination a Server. For these reasons the terms Client and Server might be used in place
of Source and Destination in the remainder of this work.

4The TLV format used in the control and test datagrams is di�erent of the TLV format
used to de�ne options in the IPv6 extension header
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a maximum value length of 255 bytes, �xed by the Length �eld.
Two TLV option types have been de�ned for the Control protocol

1. Type �MC� for Measurement Control.
Its 2-byte value is 0x4D43, which is the ASCII value of �MC�. This option
will be used as the UDP datagram option content by a node establish-
ing the control protocol with its target. The value �eld will specify the
measurement operation that the source would like to perform with the
destination of the datagram.
In our case, an UDP-Echo operation will have a value �eld of �UDP-
ECHO�, and thus a length �eld of 8.

2. Type �PN� for Port Number.
Its 2-byte value is 0x504E, which is the ASCII value of �PN�. The option
will be placed in a monitoring control reply in order to communicate a
port number where the requested measurement test can be performed.

In particular, a node interested in the establishment of an UDP-ECHO mea-
surement test with another node will have to send a datagram to that node on
the port 5354. This datagram will contain a TLV-Encoded Monitoring control
option, of type �MC�, its length and its value : �UDP-ECHO�.
The server listening on port 5354 will receive the request and process it. If it
can handle an UDP-Echo test operation, it will send a reply to the client con-
taining its �UDP-Echo� request, plus a TLV-Encoded Port Number option, of
type �PN�, its length and the value of the port to use.

Figure 35: UDP-Echo : Control protocol.
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b) Second phase : UDP-echo test

An UDP-Echo test phase consist of a two UDP datagram exchange : one echo
request and one echo reply. New UDP TLV-Encoded option types have been
de�ned for the particular UDP-Echo test operation :

1. Type �MR� for Measurement Request.
Its 2-byte value is 0x4D52, which is the ASCII value of �MR�. The option
speci�es the operation performed by a measurement request, to which the
destination is supposed to answer. We have de�ned two possible values
for our UDP-Echo request operation :�UEBASIC� or �UETIMESTAMPS�
respectively UDP-Echo Basic, or UDP-Echo with destination timestamps
in order to have a more accurate result of the Round-trip Delay.

2. Type �RE� for Request Echo.
Its 2-byte value is 0x5245, which is the ASCII value of �RE�. The aim of
this option is to de�ne the request echo type according to the measure-
ment type asked. Possible values of an UDP Request echo are �UEBASIC�
or� UETIMESTAMPS� according to the MR value. A type value of �UE-
TIMESTAMPS� will require the presence of two more option types in the
datagram : �IT� and �OT�.

3. Type �IT� and Type �OT�, respectively for Incoming Timestamp and Out-
going Timestamp.
Their values are 0x4954 and 0x4F54, the ASCII values of �IT� and �OT�.
These options are combined to the Echo Reply of value UETIMESTAMPS
in order to provide a better accuracy in the Round-trip delay calculation.
�IT� and �OT� options both contains a 8-byte length value, which is a
time value expressed as seconds and microseconds since 00:00 Coordi-
nated Universal Time (UTC), January 1, 1970. The di�erence between
these timestamps show the processing time between the reception of a
Measurement Request packet, and the generation and sending of an Echo
Reply packet.

More option types could have been de�ned in order to enhance the test function.
For example :

• An option type �SN� for Sequence Number. A sequence number would
identify the request in case of multiple requests. For example it would
allow the calculation of the jitter metric.

• An option type �AD� for Arbitrary Data, would allow the monitoring
station to specify a certain size for the test datagram.

Once it has completed the �rst control phase, a node interested in an UDP-Echo
measurement will know if it can start or not an UDP-Echo test phase with the
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chosen destination. If a control protocol reply has been received, the client has
been given a port number to send its UDP-Echo request to.
The test phase will thus be initiated by the client.
The client will send a datagram with a TLV-Encoded Measurement Request
Option to its target. It can choose among the two possible values : UEBASIC
or UETIMESTAMPS. The datagram will be sent to the port given by the con-
trol protocol.
At the reception, the server will process UDP data and send a reply corre-
sponding to the measurement request. The datagram will contain at least a
TLV-Encoded Request Echo option with the same value than the Measurement
Request.

Figure 36: UDP-Echo Basic Operation

If the chosen mode is UETIMESTAMPS, the datagram will also contain the
TLV-Encoded timestamps options : IT and OT.
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Figure 37: UDP-Echo Operation using Timestamps Option to remove the target
processing time.

It is important to note that our UDP-Echo measurement function does not
require any time synchronization between end-entities, the Round-trip Delay
calculation will only be computed thanks to relative times on the client side.
The client will measure the interval between the Measurement Request depar-
ture and the reception of the Request Echo. When Timestamps mode is used,
the client will remove the target processing time of the Round-trip Delay mea-
sured by computing the di�erence between OT and IT.
Thanks to the timestamps option, the function could easily be modi�ed in order
to measure the One-way Delay. It could be achieved by computing the di�erence
between the Incoming Timestamp at the destination and the packet departure
time at the source, however it would require perfect time synchronization be-
tween end systems.

3.2 Combining the basic solution with native multicast

Now that we have an operational active measurement operation working over
IPv6, it is interesting to combine it with the new IPv6 pre-de�ned multicast
addresses in order to have an automatic monitoring tool for every nodes listening
on the chosen multicast address.
Using these multicast addresses with our UDP-echo operation, we can perform
a complete monitoring test with all nodes on the local link, or with all routers
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on the local link or in the site scope. The three possible multicast addresses we
can use are the following :

1. All nodes address FF02:0:0:0:0:0:0:1 (local scope)

2. All routers addresses :
FF02:0:0:0:0:0:0:2 (local scope) and
FF05:0:0:0:0:0:0:2 (site scope)

The multicast UDP-Echo operation is the result of the combination of the UDP-
Echo operation de�ned in the previous section with one of these multicast ad-
dresses.

Typically a node interested in a classic UDP-Echo operation will start the con-
trol protocol, that is to say : send a Measurement Control to a chosen destination
address to be measured. The multicast UDP-Echo consists in using one of the
prede�ned multicast destination address rather than a unicast address.
For example, if a client uses the All-nodes multicast address in its Measurement
Control datagram, every listening node that has a server entity active and lis-
tening on its port 5354 will answer to this request with a Measurement Control
reply. The client will receive as many Measurement Control replies as there are
nodes interested by measurements on the local link.
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Figure 38: Multicast UDP-Echo Operation using the All-node multicast address
: control phase.

Therefore it will be able to initiate the test phase with all of them, using their
unicast address and the speci�ed port contained in the Control reply.
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Figure 39: Multicast UDP-Echo Operation using the All-node multicast address
: test phase.

3.3 Thinking of a smarter solution

Through our IPv6 survey we have distinguished two IPv6 natural mechanisms
providing a smarter way to perform some performance monitoring.

The �rst one consists in using some existing IPv6 extension headers, and insert
new TLV-Encoded option �elds in it in order to carry a measurement context.
Two extension headers can be used in that way : the hop-by-hop extension
header and the destination option header. We have seen that some work has
already been achieved on both of these headers, mainly in a semi-passive mon-
itoring approach.
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The second way would be to create a new measurement header for IPv6. We
have seen that an interesting proposal has already been made, but abandoned.
We have also seen that a whole new extension header dedicated to measure-
ments might bring many more features than what the 64 di�erent possible TLV
options allow. The major di�culty of designing such a header would be to con-
vince the whole Internet world of the necessity to standardize and deploy it.
This would require from the new header to provide major advantages than the
other solutions.

Both solutions have thus their advantages. The new option types in the existing
Destination extension headers seem to be a smarter solution for an end-to-end
two-point measurement. Theoretically, it should work in multi-point mode too
by a combination with the routing header to specify di�erent intermediary des-
tinations, but we have seen that in practice the routing header might be ignored.
Using the Hop-by-Hop Options header allows not only two-point measurement
mode, but also multi-point mode. It introduces two other concerns : it is more
easily identi�able because it is processed by every nodes, and it also lightly in-
crease the processing time of every node on the path.

An interesting solution would be to gather the powerful features brought by
a complete active measurement method based on the transport protocols, and
the �exibility of the TLV-encoded options to carry some network indicators.
The role of the active measurement will be double : perform an active measure-
ment of di�erent metrics between two end-systems, and allow the collect and
send back of the TLV indicators at the destination .
TLV-Encoded options interest will be to extend the active monitoring measure-
ment functionalities from a two-point mode to a multi-point mode measurement.
Combining a powerful active protocol such as the One-way Active Measurement
Protocol (OWAMP) described in 1.1.3, which is already ready for IPv6, with a
piggybacking system in the TLV options would permit the performing of many
measurement functions, all along a delivery path. However OWAMP is a rather
complex protocol, which would require a lot of time to be implemented and
combined with the TLV options. That is why in this framework we have chosen
to combine the UDP Echo simple active protocol with the TLV solution.

3.3.1 Combining an existing IPv6 extension header and UDP Echo

UDP-Echo is a basic prototype of a measurement function that allows perform-
ing Round-trip Delay measurements between two end-systems over an IPv6
network. So why would it be interesting to combine it with IPv6 TLV options ?
Because the resulting function will have an interesting capability : it will be
able to measure some metrics all along a delivery path.
In particular in this framework, it will be capable of measuring two more metrics
: the One-way Delay and the One-way Path Delay.
Indeed, the use of extension headers will allow the piggybacking of some indica-
tors at every hops on the delivery path, letting us compute the delay between
each hop along the path.
Another of reason of its interest is that, though UDP Echo is a rather naive pro-
tocol, it is has a similarity with OWAMP, it is also based on transport protocols,
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and divided into two phases : Control and test. Thus implementing a prototype
of this smarter function will give us a good idea of what the combination of
TLV options and OWAMP could provide.

3.3.2 Hop-by-hop Options or Destination Options header ?

A choice had to be made between the two possible TLV Options carriers, Hop-
by-hop Options and Destination Options. This choice has taken into account the
di�erent headers properties, and in particular their advantages and weaknesses
for our purpose.
The Destination header seemed to be the cleverer solution at �rst glance for two
main reasons :

• It should only be processed by the destination of the packet.
Hence the Destination Options header will remain an opaque data payload
unit for every router on the delivery path that is not a destination of the
packet . Thanks to that property, measurement packets will be far less
identi�able by intermediary nodes. Another interest of that property is
that intermediary nodes will not have to spend some processing time on
the Destination Header, and thus not increase the global travel time.

• The Routing header can specify intermediary destinations.
Each destination record present in the RH will become the destination of
the packet through its delivery, letting intermediary destination process
the Destination Options header. It allows the calculation of some metrics
along a path, but it also permits the measurement of a particular subpath.

In theory the Destination Header seems to be the best choice for our purpose,
nevertheless in practice the solution is confronted with a major concern.
The issue does not concern the Destination Options solution in itself, but rather
the use of the Routing Header as a way to extend Destination Header solution
features. Based on the experience of IPv4 LSRR header which is very similar
to IPV6 RH, we have many reasons to think that IPv6 Network actors might
force their routers to ignore the RH option.
If it was the case, the Destination Options solution would no longer allow the
handling of multi-point measurements. However our primary interest in using
TLV-Encoded options resides in the possibility of performing multi-point mea-
surements, which can expend the features of our active measurement function.
Therefore it is essential to have a certainty about the ability of the chosen mean
for multi-point measurements.

For that reason the Destination Header solution had to be discarded, and the
choice was made to use the Hop-by-Hop Options Header as a measurement
indicators carrier. Hop-by-hop Options properties have the following advantages
for our function :
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• The header is processed by every intermediary node.
It makes this solution simpler than the Destination Header. While in
the DH it was required to specify each intermediary node in the Routing
header, here the simple use of a TLV-Encoded option in an IPV6 Hop-by-
hop Header will allow every node on the packet delivery path to be aware
of the measurement context, and participate in the measurements.

• Options can be used even when nodes are unaware of their meaning :
The solution is also �exible thanks to the �rst two bytes of the Option
Type, unrecognized options types can be ignored by a node processing the
Hop-by-hop header. Thus multi-point measurements can be performed on
every path without examining whether intermediary nodes are measure-
ments capable or not.

The �rst property is also the reason of some drawbacks.

• Firstly, the Option type �eld is visible to all nodes on the path, and so it
could be an easy way to iden�ty measurement �ows and possibly adapt
the forwarding policy in consequence.

• And secondly the addition of an option that has to be observed by every
hop will lightly increase the global delivery time, which is what IPv6 de-
signers wanted to avoid by de�ning the new IPv6 Extension header mech-
anism. However this is only a minor issue, because intermediary nodes
not aware of the measurement option will only have a 8-bit Option type
�eld to process and can then skip the rest of the option if it is not recog-
nized. The simple observation of a 8-bit new option type is not relevant
to performance issues. But the processing of the option in intermediary
nodes aware of its use will have to be optimized for performances.

In conclusion, the Hop-by-hop Extension Header seems to be the more appro-
priate extension header to carry our measurement indicators, allowing for a
One-way Path metric calculation. Its combination with an active measurement
function will allow the design of a smart and �exible solution capable of measur-
ing di�erent metrics, not only between two end-systems but also between hops
along the path.

• Smart
The simple addition of a Hop-by-Hop Option to its measurement packet
will greatly extend the active measurement functionalities. It will be pro-
cessed by every intermediary routers, and automatically collect indicators
on the measurement capable routers. The active measurement will permit
the send back of the indicators to the source, in order to compute the
results locally.

• Flexible
The choice of an active method allows measurements at anytime, even
when there is no actual data tra�c between the measured entities. The
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Hop-by-Hop Option can be used on any path. Even if routers are not
capable of handling the Option, the two �rst bit of the option will let
them know to ignore the option and continue the processing.

In particular the Hop-by-hop Extension Header will be perfectly suited for
recording intermediary nodes timestamps needed for a One-way Path Delay
calculation. The next section will describe a new TLV-Encoded option that will
be used for this special purpose.

3.3.3 Using Hop-by-hop Options to carry a One-way Path Delay
option.

Measuring the One-way Path Delay metric will require the de�nition of a new
TLV-Encoded option, that we will call One-way Path Delay Option.

The One-way Path Delay Option measurement will allow the gathering of inter-
mediary nodes timestamps along the path. These timestamps will represent the
absolute time of arrival of the measured packet at the incoming interface. As
some nodes might not be capable of processing such an option it is also needed
to record nodes addresses in the option. The gathered records will allow the
One-way Path delay Calculation at the destination system.

The de�nition of a new option requires the attribution by the IANA of a new
Option Type number. Our new Option de�nition will only be used for an ex-
perimental work and will obviously not lead in the �lling of a request form at
the IANA. Unfortunately IANA does not specify any option type values for
experimental purpose, thus the option type value chosen for our new One-way
Path Delay Option (OWP5) will be arbitrarily chosen based on TLV options
values de�ned in some other works encountered through our survey.

5OWP will be used as a shortcut to design the One-way Path Delay TLV-Encoded option
in the remainder of this work
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Figure 40: One-way Path Delay TLV-Encoded Option using Hop-by-hop Ex-
tension Header

The general format of the OWP option is very similar to the One-way Delay
option format de�ned by D.P Pezaros in his work. The di�erence is that OWP
design must allow multi-point measurements which require a record for each
participating node. Here is a description of the di�erent �elds of the One-way
Path Delay option:

• Option Type = 00100010 (34)
The �rst two bytes 00 mean that the option must be ignored if it is not
recognized. The third bit to 1 means that the data can change en-route.
Remaining bits are set to 00010, for a value of 2, which is a simple incre-
ment of D.P Pezaros OWD option which has a value equals to 1.

• Option Length = 164
The option has a �xed 164 bytes value size. 4 bytes are used for three
di�erent �elds described below, and the other 160 bytes are used to store
the maximum 20 possible records.

• Counter
The counter �eld indicates the number of data records that are currently
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stored in the option. It allows intermediary nodes to add their record at
the right position. The counter will have a maximum value of 20.

• Over�ow
The over�ow �eld indicates whether some nodes weren't able to insert
their data record in the option because the maximum records number was
reached.

• Reserved
Reserved for future use.

• Records :
The option allows to contain a maximum of 20 records, each record is a
8 bytes storage space that can contain two intermediary node indicators :
two 32-bit timestamps.

Figure 41: Option Path Delay - Record �eld format.

The record indicates the arrival time of the packet at the incoming in-
terface, expressed as seconds and microseconds since 00:00 Coordinated
Universal Time (UTC), January 1, 1970.
The �rst 32-bit �eld represents the seconds, and the last 32-bit the mi-
croseconds.

It would have been interesting to store one more information about intermediary
nodes in the record �eld : their incoming interface IPv6 address. The address
stored with the timestamp would give complete information about the route
taken and the time elapsed between each nodes.
Without that information, two scenarios are possible:

• If all nodes on a delivery path are participating in a OWP measurement,
it is possible to learn the IPv6 addresses of the nodes whose timestamps
have been gathered by performing a traceroute on the same path.
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• However if some nodes are not participating in the measurements because
they are not OWP capable, the source will have to know which interme-
diary nodes are OWP capable to be able to �nd their IPv6 addresses.

These requirements decrease the �exibility of the OWP option, so why could
not we simply store IPv6 addresses in the OWP data records ?
Unfortunately TLV-Encoded options have a maximum 255 bytes length, which
would allow to store only ten 24-byte records containing a 8-byte timestamp
and a 16-byte IPv6 address.
There are other alternatives, for example a new option dedicated to intermediary
nodes address could be de�ned, but this would only let us a 15-record data
space. Another alternative would have been to place two times the OWP option
containing timestamps and addresses space, in order to carry the 20 possible
records.

3.3.4 UDP-Echo with One-way Path Delay Option

The aim of this section is to describe the combination of our UDP-Echo pro-
totype function with a One-way Path Delay Option in the Hop-by-hop header.
This new function will be designed to perform an active measurement based
on UDP-Echo, and carrying a One-way Path Delay Option in the Hop-by-hop
Options header. We will call it the �UDP-Echo OWP� function for UDP-Echo
One-way Path Delay Option. Such a function will allow the measurement of
the Round-trip Delay metric, but also of the One-way Path Delay.
The basic UDP-Echo operation is divided into two phases, but only the second
phase will have to be modi�ed to insert the OWP option.

The �rst phase, or control phase, will be performed as it is described in the
section 3.1.1. The monitoring control request value of �UDP-ECHO� will re-
main unchanged, which mean that a listening server will not see any di�erences
between a basic UDP-Echo monitoring control request and an UDP-Echo OWP
request. The de�nition of a di�erent monitoring control value type is not neces-
sary because, as we will see in the description of the test phase, it is the OWP
option itself that will trigger a special handling from the server for its treatment.

The second phase, called test phase will be modi�ed to take into account the
new OWP option. The UDP test packet will have exactly the same format than
in the basic UDP-Echo, but the client will now add the Hop-by-hop Extension
Header between the IPv6 main header and the UDP test packet.
On the destination side, the server entity will have to process every Hop-by-hop
options and check for an OWP option presence. If the OWP has been found, its
records will have to be returned to the source thanks to the UDP reply. These
records will be stored in a new TLV-Encoded option6 called OP option.

6The TLV format discussed here is the experimental format described in the section 3.1.1
and NOT the TLV format for IPv6 Extension headers
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Figure 42: UDP-Echo OWP test phase

As shown on the �gure, the OP option will be inserted in the echo reply, just
next to the Request Echo option (RE), even if UETIMESTAMPS mode has
been used. This choice does not seem to be important in the de�ned model, but
it will be used further in the implemented model.
The OWP option use requires two properties of the intermediary nodes :

• First, every router on the way should be OWP capable.
It means that intermediary routers should implement a procedure to be
run when the OWP option is found in Hop-by-hop Extension Header of
an incoming packet. The procedure will be the following :

� Check the OWP counter �eld value.

� If its value is less than 20, insert the packet arrival timestamps at the
good position (which can be determined thanks to the counter value
and the records size). Increment the counter �eld value.

� Else if its value is equal to 20, increment the over�ow �eld value.

� Continue the processing of the Hop-by-hop Options.

• And secondly, this measurement requires the perfect time synchronization
between the measured hops. However there are di�erent ways to obtain
an accurate time synchronization between hosts, and they will not be
discussed here because it is outside of this work's scope.
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4 Implementation and test.

4.1 Development of a measurement tool.

The next section will describe an implementation of a tool regrouping functions
described in the last chapter. Many features have currently been implemented,
but unfortunately not all. The tool has been divided into three entities : the
client, the server, and a module for intermediary nodes participating in mea-
surements. The client and the server have been both completely implemented,
but the procedure to be run on routers among a measured path is currently not
implemented.

4.1.1 Environment.

The developed tool is a Client - Server application, coded in C/Unix. It can be
compiled and executed on Linux distributions. The version of the kernel must
be at least 2.6.14 or newer in order to support the IPv6 advanced API.

The application is based on the basic socket API for IPv6 [38] and also on the
IPv6 Advanced API [23] which has to be supported by the kernel. However the
most recent RFC discussing the Advanced API, RFC 3542, does not seem to
be implemented on the tested kernel (2.6.14). Thus we referred to the previous
RFC, number 2292.

4.1.2 Tool features.

The developed tool regroups the following functions :

• UDP-Echo
UDP-Echo can measure the Round-trip Delay between two hosts, using
the basic mode or the timestamps mode (see 3.1.1).

• Multicast UDP-Echo
This operation is described in the section 3.2, it allows a multicast Round-
trip Delay measurement on a local network, using the All-node or All-
router addresses.

• UDP-Echo OWP
UDP-Echo One-way Path is a smarter function, capable of computing the
One-way Path Delay metric between two systems. It is described in 3.3.4.It
requires a perfect time synchronization between hosts on the measured
path, and the presence of a dedicated procedure on every intermediary
hosts.
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4.1.3 Structure of the Implementation.

The application is divided into three 3 parts :

1. The Client
The client is the application to run on a system in order to perform a
particular measurement between the local host and a chosen distant host.
Di�erent parameters can be speci�ed at the execution of the client, such
as the type of measurement, the target and some other options. The usage
of the possible options will be given in the next section.

The �gure 43 shows an UML Activity Diagram of the Client general be-
haviour:

Figure 43: Client General Behaviour.

70



Processes

A client is a multi-process application where there are two types of pro-
cesses : Main process and Child process.

The father process (or main process) task is to check parameters, and
start the control protocol each time interval between measurements as
speci�ed in argument (see 4.1.4). After the control protocol request has
been sent, it waits for a control reply from the target, and creates a new
child process when it is received. If multicast mode is chosen, the main
process will create a new child process for each control reply received dur-
ing the time interval between two measurements. The father process will
exit only when all tests have been performed and its child have been closed
or when the program is closed using Ctrl+c.

The child process role is to analyse the received control reply, and perform
a measurement test toward the target on its chosen port. It �rst sends
a monitoring request of the desired type to the target, and listens for its
answer. If no answer is received after a certain lap of time, the request is
considered as a time out. If an answer is received, it is analyzed and the
Round-trip Delay is computed and append to a �le in the client directory.
After the measurement has been completed or timed out, the child process
shutdowns.

Files

The client application composed of two main �les : main.c and client.c.

(a) main.c
This �le contains the program entry point, its role is to check the
value of parameters and then call the client.c function that will start
the measurement protocol.

(b) client.c
This �le contains every function needed to perform an UDP-Echo
operation on an unicast address, or on a multicast all-node or all-
router address 7. It is also capable of starting an UDP-Echo OWP
operation.

2. The Server
The server is the application to be run on a every host that has to be mea-
sured by client entities, the server is a multi-process application listening
to the chosen measurement control port : port 5354.

The �gure 44 shows an UML Activity Diagram of the Server general be-
haviour:

7when the option has been chosen (see 4.1.4)
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Figure 44: Server General Behaviour.

Processes

A server is a multi-process application where there are two types of pro-
cesses : Main process and Child process.

The main process task is to create a socket, bind it to the control port 5354
and listen for requests. For each monitoring control requests received, if
the requested operation can be handled, the main process will check for
a free port among a range of possible test ports, and create a new child
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process that will listen to that port. Once the port is opened, the main
process role is to send back a monitoring control reply with the number
of the newly opened port and continue the listening on the control port
for next requests. The main process will not stop, unless it is closed using
Ctrl + c.

A child process role is to receive a monitoring request (test phase), check
if it is supported and answer it using the suited options. If an UDP-Echo
request is received, a child process will also check for a Hop-by-Hop One-
way Path Delay option in the IPv6 options in order collect and insert its
records in the request echo. Once that the request echo has been sent, the
child tells its father process to free the port, and exits.

Files

The server source code is composed of two main �les : main.c and server.c.

(a) main.c
This �le contains the program entry point, its role is to listen to the
port 5354, and call the server.c functions for each packet received.
If received packets are supported monitoring request, other server.c
functions will be called in order to send a control reply and start the
test phase.

(b) server.c
This �le contains all necessary functions to analyze a packet received
on the control port, check whether the requested monitoring opera-
tion is supported or not, and handle it. If the requested operation
is supported, the �le contains functions to open and listen to a new
dedicated port and send a control reply specifying the new port.

3. The OWP Module for intermediary nodes.
Unfortunately, due to a lack of time, this module could not have been
implemented.

4.1.4 Running the Application.

In order to run a measurement test between two IPv6 hosts running a Linux
Kernel 2.6.14 or newer, the following procedure must be followed:

1. Copy the Client source �les on the machine that will perform the mea-
surement, and copy the Server source �les on every machine that will be
measured.

2. Compile both Client and server sources, with the command �make�.

3. Start every Server entities with the command �./responder�
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4. Run the Client with the desired parameters using ./client Options
Options are [-h]-a ip6addr -p protocol [-m multicastop][-o][-i interv][-n
nbtest] :

-h Show the Help.

-a ip6addr IPv6 Address of the monitored host

-p protocol :available modes are �udp" for UDP basic UDP-Echo
, and "udpt" for UDP-Echo with timestamps option.

-m multicastop : options are "nodes" for the All-node IPv6 mul-
ticast address or "routers" for the All-routers multicast ad-
dresses

-o Combine the One-way Path Delay Option to the chosen mode,
OWP is still in test mode because the module for intermediary
nodes is missing.

-i interv : speci�es the interval in seconds between a test re-
sult and the next test. Minimum 5 seconds Maximum 3600
seconds. Default value is 60 seconds.

-n nbtest : speci�es the number of tests to perform before shut-
ting down the client.
Default value is 10 tests, Maximum value is 1000 tests.

For example, the command :

• ./client -a ::1 -p udp -i 10 -n 100

Will start an UDP-Echo operation with the local host every 10 sec-
onds until 100 operations have been performed.

• ./client -a ::1 -p udpt -m nodes

Will start an UDP-Echo with timestamps measurement (UETIMES-
TAMPS) on the multicast All-nodes address every 60 seconds until
10 tests have been performed. Note that the -a option is ignored if
the -m option is valid.

• ./client -a 2001:0db8:85a3:08d3:1319:8a2e:0370:7334 -p udpt -o

Will start an UDP-Echo with timestamps measurement (UETIMES-
TAMPS) and the One-way Path Delay option set in the Hop-by-hop
Extension header on the given address, every 60 seconds until 10 tests
have been performed.

It is important to note that the use of the OWP option (-o) requires from both
Client and Server to be run as root. If it is not the case, the option cannot be
set by the client in the Extension Header, and the Server will consider that it
has not been used.
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4.2 Test of the measurement tool.

This section will be devoted to the description of di�erent tests measured with
the Client - Server tool. Our interest is to show that the tool can perform the
expected measurement functions on an IPv6 network. Because of a lack of time
the measurement tool has only been tested in a Local Area Network, in order
check its functionalities. A future work would be to test the tool over a wider
IPv6 network. The tests have been realized between three machines running
two di�erent hosts : a Debian Sarge 3.1 distribution with a Linux Kernel 2.6.14,
and a Knoppix 5.1 distribution with a Linux Kernel 2.6.19.
Due to the very short time intervals measured, the lack of accuracy in systems'
clock, and the di�erent target processing times, the results are rather inaccurate.
One of the measured machines is a rather slow computer, which explains the
di�erences in the computed metrics value.

1. UDP-Echo : Basic and Timestamps test :

Figure 45: Test measurement of the Round-trip time use UDP-Echo and UDP-
Echo Timestamps on a link-local address

The �gure 45 shows the measurements of the Round-trip Delay estimation
between two machines on a LAN. Two measurements have been performed
toward the same target: the �rst one is using UDP-Echo in basic mode,
and the second is using UDP-Echo in timestamps mode.
As we can see on the �gure, UDP-Echo basic results are rather inaccu-
rate. Some values are really high for a LAN measurement while others
are normal. This is mainly because the chosen target is an old machine,
with little memory. The processing time of the target can be very long,
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depending on the order of scheduling.
UDP-Echo timestamps results constitute a better estimation of the Round-
trip, removing a big part of the target processing time. However the mea-
surement of the target processing time is performed at the application
layer. It does not take into account time spent between the actual recep-
tion of the packet at the network layer by the system, and the reception
of the binary data thanks to the receive function in Server's code. Also it
does not taken into account the same phenomenon at the reply.
A more accurate estimation could be obtained by computing the e�ective
Incoming and Outgoing timestamps, at the lowest level.

2. UDP-Echo via Multicast All-node Address:

Figure 46: Test measurement of the Round-trip time using UDP-Echo on the
Multicast All-node address

The �gure 46 show the results obtained using UDP-Echo Multicast oper-
ation on a LAN. Two local nodes have answered to the multicast request,
and participated in measurements. We can see a big di�erence between
the two measured machines. The host number 1 is the same old machine
used that in the previous test, which explains the high measured Round-
trips. The host number 2 is a recent machine, and obtained results are
normal for a LAN measurement.

3. UDP-Echo One-way Path Delay
The One-way Path Delay metric could not be measured, because the mod-
ule required on intermediary nodes to participate in the OWP measure-
ment has not been implemented. However the function has been tested in
order to check that end systems could handle the expected behaviour.
During some UDP-Echo basic and UDP-Echo timestamps tests, the One-
way Path Delay option records in the Hop-by-Hop header have been �lled
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with random information at the source, and compared to the OP �eld
received in the destination reply. For each test performed, the OP �eld
content was exactly the same than the random information inserted which
prove that the mechanism is perfectly working at end-systems.
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5 Conclusions

The work has shown that IPv6 will permit the design of measurement functions
very similar to the existing IPv4 measurement methods. The main reason is
that most of IPv4 methods are based on transport protocols, which were almost
left unchanged in IPv6.
With an example, the design and implementation of an UDP-Echo function, we
have seen how this natural way to build a measurement function for IPv6 could
be achieved.

But more than that, IPv6 o�ers new possibilities to measurement methods,
thanks to some new features. These features allow enhancing measurement
methods capabilities, and this, in a smart and �exible way.

The Native Multicast mechanism is one of these new features. It will obviously
facilitate multicast measurement methods, o�ering the possibility to �exibly
create wide multicast groups over IPv6 networks.
IPv6 also speci�es some pre-de�ned multicast group addresses that have to be
joined by IPv6 nodes, which provides an automatic way for measuring di�erent
hosts.
In particular, the combination of UDP-Echo for IPv6 and the All-node multicast
address has allowed the performing of a multicast UDP-Echo on a local network.

Another interesting facet of IPv6 is the way options are handled. Extension
Headers o�er new possibilities to enhance measurement methods. We have seen
two di�erent ways to exploit Extension Headers in a measurement purpose.

• Create a new Extension Header dedicated to measurements requires many
standardisation e�orts and need to convince IPv6 Actors of the necessity of
its deployment. However this solution remains possible, but future works
on such a header will have to focus on �nding major advantages compared
to other solutions.

• Use Type Length Value (TLV) options in existing Extension Headers in a
measurement purpose.
We have discussed two headers: The Hop-by-Hop Header and the Desti-
nation Header. Both have advantages and drawbacks, and we chose the
Hop-by-Hop Option header to carry TLV measurements Options.

In our goal to propose a smarter measurement function, we wanted to �nd a way
to enhance our active UDP-Echo function for IPv6. A good way was to combine
it to Hop-by-Hop TLV options. This allowed extending an active end-to-end
two-point measurement to an active end-to-end multi-point measurements.
We designed and partially implemented a combination of a One-way Path Delay
(OWP) Option (in the Hop-by-Hop Header) with an UDP-Echo function for
IPv6. UDP-Echo OWP is the result of this combination and is an example of a
new smart way to exploit an IPv6 feature in the design of active measurements
functions. Unfortunately, the complete test of the UDP-Echo OWP could not
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be achieved because the OWP treatment procedure at intermediary nodes was
not implemented. This could be part of a future work.

The implemented functions constitute good examples of some of the possibilities
o�ered to performance monitoring on IPv6. They have been regrouped in an
experimental tool. Future improvements of the tool could focus on increasing
the number of metrics measured and options, or add other transport protocols
support such as TCP or ICMP.

In our work we chose to combine our UDP-Echo prototype function to IPv6
Hop-by-Hop Options.
An interesting idea to investigate would be to combine a standardized ac-
tive monitoring solution such as the One-way Active Measurement Protocol
(OWAMP), which is also based on transport protocols, to the IPv6 Hop-by-
Hop Options. This would create a powerful tool, capable of measuring every
IPPM metric in multi-point mode.
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