
CraterNet

A Fully Convolutional Neural Network for Lunar 

Crater Detection Based on Remotely Sensed Data

U
ni

ve
rs

ity
 o

f L
iè

ge
  /

  F
ac

ul
ty

 o
f S

ci
en

ce
s 

 / 
 G

eo
gr

ap
hi

ca
l S

ci
en

ce
s

M
as

te
r T

he
si

s 
 / 

 J
un

e 
20

17

Quentin Glaude supervised by Mr. Yves Cornet





Quentin Glaude supervised by Mr. Yves Cornet

CraterNet

A Fully Convolutional Neural Network for Lunar 

Crater Detection Based on Remotely Sensed Data



As students cross the threshold from outside to insider, they also cross the
threshold from superficial learning motivated by grades to deep learning moti-
vated by engagement with questions.

John C. Bean
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1 | Introduction

The craters are important topographic objects on the surface of planets. They give useful
information to researchers about their geology and the history of geomorphological pro-
cess. Moreover they are witnesses of space particles density and inform about presence of
allochthonous materials.

In addition, these topographic elements are crucial in the case of exploratory space mis-
sions. Some probes are not designed to safely land on these objects. Moreover, craters
are structuring elements on the surface of planets that guide local illuminations conditions
by producing shadows which can reach several kilometers. Indeed, energy produced by
the sun is extremely important for the survival of a mission. Finally, craters constitute
landmarks for space navigation.

All these scientific applications require crater detection methods. The problem of crater
detection is not new. First, it was solved by manually locating craters on images. With finer
remotely sensed data produced, that task became deprecated. Then, many scientists tried
to develop supervised or unsupervised algorithms in order to automatically perform the
task. Nevertheless, though much effort has been made, we still don’t have an unanimously
accepted solution.

With recent advances in deep learning associated to image processing, we wanted to try a
new attempt considering the case of the Moon.

The rest of this master thesis is structured as follow. Chapter 2 focuses on the state of
the art, by explaining how craters are formed and how they are described, the different
methods to detect craters present in the scientific literature and the recent advances in
machine learning that we will be used in our project. All these information lead to chapter
3 where we build the hypothesis we will try to validate. In chapter 4, we describe the data
sources and how they are integrated in our work. Chapter 5 is the wider part, talking
about the methodology, the difficulties encountered and their solution, the architecture of
our model, the different post-process and so on. The results and the validation are part
of the chapter 6 where we produced quantitative and visual experiments on our data with
our model. Finally, in chapter 7 we summarize our work and look at the different possible
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perspectives. The annexes gather information that are too exhaustive to be placed inside
the main part of the document. It includes the list of images that have been used in our
project, some visual/quantitative results and the source code.

The contribution of this master thesis is to develop a novel approach to detect crater on a
lunar scene. Moreover, we make available a substantial dataset of craters and crater-free
areas with more than 10 000 manually selected annotations. This dataset responds to a
lack of lunar training data when trying to implement some supervised models and will be
useful to researchers focusing on crater detection.
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2 | State of the Art

Before going into the details of the developed methodology, it seems important to under-
stand what we are talking about i.e. the concepts behind the notion of crater object.

Then we have to argue the motivation of detecting craters and why it has been a hot topic
in space geomorphology for decades.

After that, we can go deep into the work of authors who implements some crater detection
techniques to situate what has been done and what are their perspectives in the future.

To conclude, we need to look at the recent advances in machine learning to develop the
key ideas of our novel approach to detect craters.

Note that this chapter is intended to be exhaustive enough while not being too technical
but also tries to combine the two research areas : crater detection and deep learning. The
readers that are very familiar to one of the topic can pass one of the different sections
without any impact on the rest of the lecture.

2.1 Crater Description

Craters are one of the different geomorphological topographic elements on the surface of
planets. There are different types of craters depending on the way they are formed :

• Impact crater

• Volcanic crater

• Subsidence crater

On the Moon, the large majority of craters are formed by the impact of meteors. The
first step of the crater formation is the nearly instantly collision between the planetary

3



2.1. CRATER DESCRIPTION 4

surface and the allochthonous object. A huge amount of kinetic energy is transferred from
the meteor to the surface causing an important vertical compression (fig 2.1 top). The
compressed soil partially relaxes ejecting a mass in the surrounding (sometimes causing
other secondary craters). The depression consists in vertical deformations and horizontal
relaxation (fig 2.1 bottom).

Then, the crater enters in a transition phase where it tends to stabilize its slopes up to a
balanced profile. Finally, the crater progressively changes its shape through a very slow
degradation process.

Note that the planet determines the erosion process. The Moon has no atmosphere nor wa-
ter. On the Earth, geophysical process are regulated through common erosion/sedimentary
process. Moreover, the crustal renewal of the land slowly removes the crater impacts. On
the Moon, the transition phase exists even if the gravitational effects are less important.
Thus, the slope equilibrium may be sharper than on the Earth. Nevertheless, the lack of
atmosphere and water makes geomorphological process nearly nonexistent. Crater shape
can still vary through the interaction of other meteor impacts causing seismic disturbances
though these effects are infrequent. Finally, the lack of crustal renewal on the Moon avoids
the craters to totally vanish.

The size, the speed and of less importance the trajectory of the meteor influence the visual
aspect of craters. The shape is almost circle-like. The texture1 can be however quite
different. We can distinguish (see fig 2.2):

• Simple craters

• Complex craters

• Giant craters

The simplest craters are bowl-shaped with a pair of crescent-like highlight and shadow
areas (see fig 2.2 left). The rims are formed of ejecta particles. The topographic profile
has more or less a quadratic shape. The greater the crater the flatter the bottom of the
depression. When the mass of the meteor is important or when its speed is high, we can
observe a bounce effect after the compression phase, creating a complex crater (fig 2.2
center). This results in a central-peak in the crater. Finally, when the crater is very large,
the seismic effects and the horizontal relaxation of the soil can form multiple rims (fig 2.2
right). That is the case in the Rachmaninoff crater (290 kilometers of diameter).

It has been shown that the transition diameter between simple to complex craters is about
15-30 kilometers on the Moon. Below this the crater can be considered as bowl-shaped
(Renson P. & Y., 2014).

1Stockman and Shapiro describe the texture as something that gives us information about the spatial
arrangement of the colors intensities in an image.
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2.1. CRATER DESCRIPTION 5

Figure 2.1: Evolution profile of the crater formation. Up : impact and excavation phases.
Bottom : stabilization and filling in with allochthonous materials (not real-scaled) (French,
1998).
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2.2. CRATER DETECTION AND MOTIVATION 6

Figure 2.2: Different crater types. From left to right : simple crater, complex crater (Tycho)
and giant crater (Rachmaninoff). Source : lunarpedia.org, 2013, NASA/GSFC/Arizona
State University, 2011 and impact-structures.com, consulted in November 2016.

The last morphometric parameter that is used in crater description is the depth/diameter
ratio. This ratio gives information about the length of the shadow and the sharpness of
the crater. This ratio is correlated to different parameters such as the gravitational field,
the presence of erosive agents and the size of the crater. The larger the crater, the smaller
the depth/diameter ratio. It has an influence of the visual aspect of the crater. Indeed, a
smaller ratio means a shorter shadow. For a restricted range of crater size, it is possible to
make the assumption that the variability in this ratio is negligible (with other parameters
fixed).

To conclude, the craters are the combination of several parts. We already discussed about
the rims and the shadow, whose appearance is sensitive to the formation, the collision of
the meteor, the illumination conditions and so on. There are also the highlight area and
more finer elements. All these components can be analyzed in order to produce models
able to recognize the crater object.

2.2 Crater Detection and Motivation

Craters are common objects on the surface of atmospheric-free planets. They are the result
of the impact of a solid material with their surface. The study of craters has always been one
of the hottest topics in space geomorphology. The planets are indeed covered by billions of
craters witness of the space geology. Looking at size/frequency crater distribution, it brings
information about the age of exposition surfaces of geological formations for example. This
is the only way to estimate this dating by means of remote sensing. Geophysical process,
local density variations and the nature of the degradation of craters can also be studied.

6



2.2. CRATER DETECTION AND MOTIVATION 7

In addition, craters can be used for automatic navigation and landing of space modules.
In this context, the objective is either to avoid craters and localize safe spots or recognize
referenced craters to navigate to a well-known relative position. Thus the crater detection
is part of avoiding hazards in a space mission.

However, a crater is a complex object. Its diameter size ranges from a few meters to
hundreds kilometers, multiple craters can overlap, the nature of the ground can be different,
its rims can have many levels of degradation and the illumination conditions vary their
appearance. Moreover, the shape of these objects differs (boil-shaped, flat, central-peak
and so on). In conclusion, it is difficult to find discriminant features able to correctly
classify the crater object in a scene.

In the beginning, the task was solved by visual interpretation on passive or active remotely
sensed images. It consisted in a colossal task for researchers. There are several catalogues
of Martian and Lunar craters with dozens of thousands of craters with a diameter of a
few kilometers. However, the lack of sub-kilometric dataset is still embarrassing in some
studies.

Nevertheless, with the increase of remote sensing in space sciences and the improvement of
the space probes sensors, we begin to see finer objects on a still growing number of images.
The frequency distribution of crater diameter follows a power-law with a few craters with
high diameter-size and a tremendous number of craters with a low diameter-size. Thus the
manual task become impracticable and the need of a crater detection algorithm (CDA) was
born. The expansion of these data resulted in the demand of databases for scientists. Then,
it would be possible for them to perform data-mining or extract relevant information.

There have been a lot of papers about the detection of craters : 77 papers in 2012
(Salamunićcara & Lončarićb, 2008). Unfortunately, there is still no standard solution or a
concrete answer to this problem. Actually, the methods do not achieve sufficient accuracy
to be used in general contexts. One of the main concerns is to find the features with which
we can semantically segment a scene. In computer vision, these kinds of detection algo-
rithms can be classified as unsupervised or supervised algorithms. Some CDAs combine
both.

Many unsupervised works are related to pattern recognition and are based on the construc-
tion of common filters. We can cite Gabor, Canny, or Sobel filters to enhance the rims on
the image. Then, with the help of the Hough transform the circular shape of the crater
can be reconstructed (Meng, Yunfeng, & Qingxian, 2009; Renson P. & Y., 2014; Honda &
Azuma, 2000). In this particular methodology, the intervention of an expert is needed to
choose the best filters to recognize the objects.

One of the most cited papers in supervised techniques uses mathematical morphology to
extract crater candidates (Urbach & Stepinski, 2009). The basic idea is that a crater is
a combination of two crescent-like shapes, one of which is bright (corresponding to the

7



2.3. CRATER DETECTION ALGORITHMS (CDAS) 8

illuminated area) and the other is dark (corresponding to the shadow). This method is
said to be useful because rotation and scale invariant. Nevertheless, this assumption is
correct only if every crater characteristic changes proportionally to the size. Based on
these candidates and a set of examples, many authors tried different machine learning
models to classify what is a crater and what is not (L. Bandeira, Ding, & Stepinski, 2012;
Ding et al., 2010; Wang, Ding, Yu, Wang, & Wu, 2011; Cohen, Lo, Lu, & Ding, 2016). In
these papers, the method to find candidates alone is not sufficient to separate craters from
other objects. Similarly, the machine learning model alone is not able to find the crater
but rather to classify the candidates.

L. Bandeira et al. said in 2012 : A good CDA requires a well-known set of discriminating
features, an efficient method for finding all possible crater candidates and a set of criteria
that can accurately separate craters from non-craters in the set of candidates.

The unsupervised techniques have the advantage of being fully autonomous (no need for
learning samples) but have lower accuracy than supervised methods. However, machine
learning-based algorithms need a set of labelled data to be functional. In this context, a
large sub-kilometric dataset has been built on a restricted area on Mars with thousands of
referenced craters (Ding et al., 2010).

On the Moon and on Mars, the number of craters is really high compared to the Earth.
Actually, the erosion/degradation process is very slow. The absence of water is the main
reason (No particles transport by runoff and no frost weathering). Moreover, there is no
atmosphere on the Moon thus no wind. Also, the gravitational attraction is lower than
on the Earth. Finally, the tectonic effects and therefore the renewal of the surface soil is
missing.

2.3 Crater Detection Algorithms (CDAs)

2.3.1 Unsupervised Methods

The goal of unsupervised learning methods is to infer data structures out of unlabelled data.
The developed methods often include a rims enhancement process and then reconstruct
typical geometries using the Hough Transform.

Finding the rims of the craters can be seen as an edge detector problem. Different methods
exist. We can cite : Robert cross (Honda & Azuma, 2000) and Canny filter (Renson P. &
Y., 2014). Other edge detectors also exist (Sobel filter and laplacian filter for example).

8



2.3. CRATER DETECTION ALGORITHMS (CDAS) 9

Figure 2.3: Difference between a well-delimited crater and an eroded crater.

Robert cross : G1 =

[
+1 0
0 −1

]
and G2 =

[
0 +1
−1 0

]
then OIr =

√
G2

1 +G2
2

Canny filter : G1 =
[

+1 0 +1
]
and G2 =

 +1
0
−1

 then OIc =
√
G2

1 +G2
2

In (Meng et al., 2009), the authors claimed that the variation in intensity is too smooth to
detect eroded craters with these common filters (see fig 2.3). Instead, they use an algorithm
developed by L. P. C. Bandeira, Saraiva, and Pina.

After that, the Hough transform is applied. The objective is to find the best parameters
which fit a selected analytic formulation of the geometry (most of the time a circle).

The Hough transform is a way to go from the image space into the parameters space,
called Hough space. The Hough space has as many dimensions as the number of searched
parameters. For the case of a circle, we have three dimensions (x position, y position and
r radius). For an ellipse, the number of parameters is 5. The complexity of fitting the rims
of the craters to a typical shape increases drastically with the number of parameters.

In the studied case (circle), we can see the problem as finding for each pixel coordinate the
best possible radius if one exists (see fig 2.4).

Note that the results applying the Canny edge detector (or other edge detection filters)
are not perfectly continuous and/or displayed in a perfect circle shape. Thus the mask
of the rims is dilated to increase the probability of finding an unseen crater due to noise
(Renson P. & Y., 2014).

In the work of Renson P. and Y., this process only gives a set of candidates. Some descrip-
tors are inferred from these candidates and are compared to a set of descriptors built with
real case craters. Thus, the method needs a training set to pre-tune these features

9



2.3. CRATER DETECTION ALGORITHMS (CDAS) 10

Figure 2.4: Hough space and its 3 parameters (line, column and radius).

2.3.2 Supervised Methods

Crater Candidates

Supervised methods are techniques using different machine learning algorithms to detect
craters in a scene. Many of these are built to recognize objects apart from any spatiality,
meaning setting a label, and not really to detect the craters in a scene. Thus a candidates
generator algorithm has to be expressed before the classification task.

A lot of supervised methods use the work of Urbach and Stepinski to generate candidates
(their candidates are available in .csv format containing position and radius correspond-
ing to a specific scene on Mars). Considering these candidates, many authors developed
different machine learning methods.

The method developed by Urbach and Stepinski is based on the observation that a crater
is a combination of a two crescent-like shapes (one for the shadow and the other for the
highlight area). The scheme of the technique can be seen in figure 2.5.

Step by step, the method eliminates elements which are not prone to be a crater. As
the goal is to find some crescent-like highlight and dark areas, the technique is developed
only to determine the highlight areas then the shadow area is found by inverting the input
image.

The background removal consists in a very large low frequency filter subtraction. In this
part, the method uses a median filter of tremendous kernel size to eliminate the light
alterations associated to natural topography such as big valleys and depressions.

10



2.3. CRATER DETECTION ALGORITHMS (CDAS) 11

The power filter is a type of filter developed by Young and Evans (2003) to remove indis-
cernible elements using morphological image cleaning. Traditionally, this filter is used for
noise reduction to improve image compression systems. Without going deep in the details,
the power filter is a kind of very high-frequency denoising using attribute-based open–close
filters.

The area filter eliminates too small elements. In their papers, the authors defined an area
threshold of 30 pixels, below which it is not possible to recognize a crater.

The shape filters discard elements which are not crescent-like. The shape is defined by a
combination of Hu’s seven moment invariants (M.-K. Hu, 1962). The moments are specific
weighted averaging of the image, whose objectives are to be representative of different
characteristics that can be interpret with ease. The use of these moments gives to each
pre-candidate a score measuring how far the element is from a crescent-like shape.

The last step consists in assembling the pairs of highlight/shadow areas. In order to do
this they examine each possible pair of highlight and shadow area. A candidate is formed
if :

• The distance between the two is small

• The two areas have similar size2

• The combination makes a circle

• The regions are aligned with the solar azimuth (a priori known through image meta-
data).

When the candidates are finally found, the small gaps within the selected area are filled
using morphological closing operation.

Note that this detection method is invariant to any scale factor, rotation or translation.
In other words, the method is insensitive to any Helmert transformation. The scale fac-
tor invariant is related to the assumption that with the range of considered craters, the
variation depth/diameter ratio does not impact the method.

Decision Tree

Originally, the authors of the candidates selection method (Urbach & Stepinski, 2009)
used the C4.5 algorithm (Quinlan, 1986) to build a decision tree classifier to recognize the

2Actually, it depends on the illuminations conditions and the depth/diameter. In their article, Urbach
and Stepinski use the following condition : 0.25 ≤ HighlightRegion

ShadowRegion ≤ 4. If the sun is at high or low elevation
or if the crater is large, the condition must be relaxed.

11
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Figure 2.5: Identification of candidates (Urbach & Stepinski, 2009).

craters among all these candidates. In their paper, a vector of attributes is assigned to
each region. The features used are the Hu’s seven moment invariants (M.-K. Hu, 1962).

A C4.5 decision tree defines a set of rules based on a training sample. The result is a
tree whose splits are formed by maximizing a reduction of an impurity measure (often the
Shannon’s entropy). This reduction of entropy is also defined information gain.

Feature Selection and Boosting

We saw that one major problem in crater detection was to find the relevant features able to
clearly separate what is a crater and what is not. In some papers written by L. Bandeira et
al. (2012), the solution consists in computing hundreds of features and using an algorithm to
sort and rank them. Then, they are used in a modified version of the Adaboost algorithm3.
The algorithm is applied on the bounding boxes of the candidates described in the beginning
of section 2.3.2.

The features used in the papers are a combination of Haar-like image texture features, based

3

Adaboost is a boosting method developed by Freund and Schapire, whose objective is to combine the
outputs of a large amount of weak models in order to produce a strong model with low bias. The prediction
is made by setting the output value to the majority of the all outputs predicted by the weak models, each
weighted according to their accuracy.

In addition, the importance of misclassified elements is increased each time a weak model is created, in
order to force the model to concentrate on errors. If we have N observations with variables x and output
y and T weak models are built, the algorithm computes the final model using the following algorithm
(notations are from Geurts and Wehenkel (2016)):

The weight of each element i is firstly set to wi = 1
N .

Then, for each model built, compute the weighted error errt =
∑

i wiI(yi 6=ŷt(xi))∑
i wi

.

Next, the weight associated to the model is computed according to its accuracy by βt = log 1−errt
errt

and the weights associated to classified elements are increased by wi ← wi exp(βtI(yi 6= ŷt(xi))) then
normalized, so that the sum of all wi is equal to 1.

Finally, the label of the element is predicted by ŷ(x) =
∑T

t=1 βtŷt(x) where x is the inputs of any
element.

12
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Figure 2.6: Each Haar-like feature is computed using a binary mask. The binary mask is
a rectangular sub-region of the image with a white part and a black part in equal area.
The Haar-like feature is computed by subtracting the sum of all pixel values contained in
the black part to the sum of all pixels values in the white part. In the example above, 6
Haar-like features are produced (L. Bandeira et al., 2012).

on the theory developed by Haar (1910). These variables are widely used in computer vision
in the context of face detection algorithm, largely promoted by Viola and Jones (2001).
They consist in a variety of binary filters defining regions in a particular kernel. These
features are easy to compute with the use of integral images. By combining the 9 different
Haar-like features types, their scale and their position, L. Bandeira et al. computed 1089
input features.

Then the candidates are classified using the boosting-like algorithm developed by the au-
thors. In the paper, the weak models consist in single node trees.

LASSO

The LASSO algorithm is a way of selecting features within the machine learning algorithm.
In the method developed by Wang et al., a Bayesian Network Classifier is used with a L1
penalty. The penalty forces the model to select only the most relevant features, meaning
the variables which, by themselves, explained the vast majority of the problem.

In a linear model with L1 penalization, the model is constrained by the sum of absolute
weights. With a least squares approach, the optimization algorithm consists in finding

minβ
( N∑
i=1

(yi − (β0 +
∑
j

βjxj))
2 + λ

∑
j

|βj|
)

(2.1)

Where βi are the parameters of the linear model. From a graphical point of view (see fig
2.7), we can represent (in the case of a two variables optimization) β̂ the optimal pair of
variables, meaning that β̂ minimizes the expression above without the penalty term. As
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Figure 2.7: Representation of the penalization term effect on the optimal set of β. The
elliptical shape represents the increase of the first term of the equation when the parameters
move away from β̂ whereas the diamond shape centered on the origin of the axis corresponds
to the second term. The optimal set of β is found by the intersection of the two terms
(Geurts & Wehenkel, 2016)

.

one moves away from β̂, the score increases. With a penalization on the sum of absolute
weights, we find another couple of β by the intersection of the two terms of the equation.
One of the variable is now set to zero (β1).

Convolutional Neural Networks

The convolutional Neural Networks (CNN) are new techniques derived from deep learning,
vastly used in computer vision with promising results.

As many deep learning approaches, the model learns the convincing features without any
human intervention. The goal is to present the model enough labelled images to let it train
the features useful for the classification task. As in previous methods, the CNN cannot
detect craters on a scene by itself but only classifies an image in a whole. In their article,
Cohen et al. also uses the previously defined candidates that they classified.

The goal of a CNN is about finding a set of filters that computes features maps taking the
context of the image into account. On these features maps, it is possible to find other filters
to compute other features maps. Hierarchical features are built step by step, assembling
previous features. Note that the CNN architecture will be discussed in more details in a
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dedicated section (2.4.2). I invite the readers to come back to this section later.

The CNN is here defined with a set of 20 filters to train constituting the first convolutional
layer. Then, 20 another filters are applied on these 20 first features. Finally, they obtain
the fully connected layer consisting in 500 neurons and the labelling output.

2.3.3 Conclusion

Only a glimpse of all CDAs has been described in current section. Salamunićcara and
Lončarićb list much more articles on the subject from 1999 to 2007 in a synthetic way. I
only detailed the more promising and well-known articles in the literature.

The unsupervised methods are based on the same principle: extract rims and reconstruct
typical crater shapes. They differs by using the knowledge of an expert to adequately use
contextual information. However, the accuracy does not enable their use in the previously
described applications. The article written by Renson P. and Y. is interesting but use a
set of training examples. However, he developed a novel way to detect candidates.

Also, other machine learning techniques exist. We can cite for example the use of support
vector machine as a crater classifier. Nevertheless, we notice that these models lack in
their ability to detect craters in a scene by themselves. In all the discussed techniques,
the authors used the crater candidates from Urbach and Stepinski (2009) to apply their
machine learning technique.

An alternative option would be to detect shadows (Rufenacht, Fredembach, & Susstrunk,
2014; Kadhim, Mourshed, & Bray, 2015) in order to attenuate the restrictive illumination
conditions using topographic normalization. However, many techniques to detect craters
use the particular shape of the shadows. Moreover, the topographic normalization needs
near-infrared data. We cannot ensure that all lunar space probes are equipped with this
type of sensors.

The accuracy of machine learning methods is sometimes really good (in particular with
the use of CNN) but are restricted to the ability of the candidates selection algorithm not
to miss some craters. In other words, the number of false negative is restricted by this
previous work. Some of these authors claim that their algorithm may have better results
with an exhaustive pixel-based search but this solution is not feasible in practice.

With all the methods developed in the scientific literature, Salamunićcara and Lončar-
ićb propose different ways to display results/evaluate CDAs in common ways to ease the
comparison between articles.
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2.4 Machine Learning Advances

2.4.1 Machine Learning and Deep Learning

Machine learning is a field of artificial intelligence which got an important gratitude these
last few years. Artificial intelligence has been a field of interest of computer scientists for
about 50 years ago with Turing as pioneer (1950). At the beginning, researchers in this
domain where very enthusiastic and much effort has been made. Famous authors from
that period are Newell and Simon for their work in problem solving domain and Shank
and Tesler for their work in natural language understanding. Some researchers thought
that they could rapidly recreate human-like skills in many applications. Marvin Minsky,
from the MIT, said in 1970 : In from three to eight years we will have a machine with
the general intelligence of an average human being (Walter, 1994). Nevertheless, though
they produced really interesting results, we are still far from the conception of the human
behaviour’s complexity. Follows a quiet period of disillusion (called cold winter) when
noticing that some problems were underestimated.

In the nineties, there was a rebirth of the artificial intelligence through the concept of
machine learning. Some important discoveries are the random forests (Ho, 1995) and
the support vector machines (Cortes & Vapnik, 1995). The key insight is the use of
a set of examples to learn. The goal is actually to define an algorithm able to find a
function/relation which best approximates the output based on a training dataset. These
data are called observations. They are collected either by the user or via available dataset.
Using the notations of Geurts and Wehenkel (2016), we can summarize machine learning
problems as

From a learning sample {(xj, yj)|j ∈ {1, ..., k}} with xj ∈ X and yj ∈ Y , find a function
f : X → Y that minimizes the expectation of some loss function ` : X × Y → R over the
joint distribution of the input/output pairs.

x1 ... xi ... xn Y
element 1 x11 ... x1i ... x1n y1
element 2 x21 ... x2i ... x2n y2

... ...
element j xj1 ... xji ... xjn yj

... ...
element k xk1 ... xki ... xkn yk

⇒ Find f(X) so that EX,Y {`(f(X), Y )} is minimum.

The output is either symbolic (classification) or numerical (regression). A well-trained
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model is able to predict the output of unseen elements. The prediction is indeed a guess of
the most likely value/class according to the ability of the model to generalize the problem.
Also, the model helps the user understands the relationship between the variables.

In the previous section, we mentioned several crater classification techniques using machine
learning (C4.5 decision tree for example).

The deep learning is simply another way to use machine learning. The figure 2.8 gives a
visual interpretation of the relationship between deep learning and the concepts previously
discussed.

Figure 2.8: Set representation of Artificial Intelligence, Machine Learning and Deep Learn-
ing (Algorithmia, 2016)

Deep learning techniques are often related to artificial neural networks. This term is chosen
to make the analogy with human neurons. In machine learning, a neuron is a structure
that receives different inputs and computes one single output with a weighted summation
of the different inputs (and bias) (Rojas, 1996). Then an activation function is used (see
fig 2.9). The main purpose of the latter is to force the neural network’s decision boundary
to be non-linear (Raschka, 2015).

y = f(
∑
j

wj ∗ xj + b) (2.2)

Where xj is the jth input, wj its associated weight and b is a bias term.

However, multiple neurons are often used in deep learning models. Then, an architecture
of several layers each containing a certain number of neurons can be built (fig 2.10), called
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Figure 2.9: Single neuron representation (Edgar Amaya, 2017).

Figure 2.10: Architecture with multiple neurons (multi-layer perceptron) (Edgar Amaya,
2017).

a multi-layer perceptron.

When assembling many neurons, a neural network is formed. This network can rapidly
have thousands of parameters (weights and bias) and can approximate any kind of function,
which makes it multipurpose.

Even if the model can potentially be very complex (far more than ”traditional” machine
learning models), they are trained in the same way: given a set of observations with
associated output, the algorithm tries to find the weights of the model that minimizes a
loss function.

Similarly to our brain which reinforces the synaptic strength of certain synapses when
we learn new things in our life, a neural network adjusts its weights during the training
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process.

As before-mentioned, a neural network has an important number of parameters (up to
millions). The number of possible combinations of the different weights is infinite, what
makes it difficult to train. That’s the reason why a lot of networks originally have one
single hidden layer (i.e. a layer which is a between the input and the output). Moreover,
when multiplying the number of hidden layers, the model is affected by the vanishing
gradient effect. This effect occurs because the gradient computed by back-propagation
follows a chain rule from the last layer to the first. Computing that gradient layer by layer
means that it decreases exponentially from the last layer to the first, making the first layers
difficult to train.

In computer vision problems, we work with images. The number of input variables in an
image is equal to the number of pixels4, which can be important. Moreover, an image
associated to a label can be highly different. If a developer wants to produce a model able
to recognize a car, he has to show the algorithm a sufficient amount of examples such that
the model can predict the label of an unseen image of car. But with this example, many
possibilities exist (color, type, shape and so on), complicating the problem.

In image recognition, the one hidden layer model is often not sufficient but the multi-hidden
layer is still too difficult to train and use. The idea is thus to create a set of characteristics
of the image and give them as input of the one hidden layer model. This step of extracting
features is a very important stage as already discussed in the description of CDAs. It
requires the knowledge of an expert who determines what are the best characteristics to
extract in a specific task. Indeed, the quality of the model is thus related to the expertise
of the developer.

In a deep learning approach, no set of features is given to the algorithm. A deep neural
network is simply built and, in the last layers, the algorithm creates a set of hierarchical
characteristics hidden in the neurons. Hence, we do not need an expert : the model learns
the features by itself.

2.4.2 Convolutional Neural Networks

Machine learning in computer vision has always been a highly particular task due to the
great number of input variables and the importance of spatial auto-correlation between
the pixels. Deep learning takes this last assertion in consideration to create a new kind of
architecture specific to images. That architecture is called a convolutional neural network
(CNN), with LeCun, Bottou, Bengio, and Haffner as pioneers but Krizhevsky, Sutskever,

4Note that the pixel is here considered as a variable (or a vector of variables for multi-channel images),
contrary to geo-spatial analysis where the pixel is above all a segmentation of the space according to a
specific ground sample distance (GSD).
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and Hinton are famous names too in the deep learning field.

CNN, as other deep learning architectures, is composed of a set of layers. Yahn Lecun
described the functioning of its network saying that the first layer detects small elementary
contours, the second layer assembles these contours into patterns, then the patterns are
assembled into parts of objects, parts of objects into objects and so on.

The word convolutional is related to the convolution operation in image filtering. Actually,
the goal of a CNN is to produce a set of auto-trained filters.

The architecture of such a network is composed with three types of hidden layers: a
convolutional layer, a pooling layer and a fully-connected layer (see fig 2.11).

Figure 2.11: Example of CNN model (WILDML, 2015).

In previously described neural networks, the network was described as a sequence of layers
from input to output with a vector representation of each layer (see fig 2.10). In CNNs,
each layer is described as a 3D tensor to make the representation more convenient. The
input layer has indeed three dimensions : two for the geometry and one for the number of
channels (3 channels in RGB images for example). This visual representation can also be
used for the other types of layer.

Convolutional layer

In machine learning, developers use common filters/kernels in order to extract some con-
textual quantifiers. For example, the Sobel filter is used in edge detection (fig 2.12).
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Figure 2.12: Approximation of horizontal and vertical derivatives by using the Sobel filter.

A filter is a matrix with weights. Image filtering consists in sliding the kernel over the
image doing a convolution operation (fig 2.13) with a given row/column step. The greater
the dimensions of the matrix, the further contextual information is taken into account.

Figure 2.13: Filtering operation (developer, 2016).

In the convolutional layer, several filters produce a certain amount of outputs. The initial
weights of the filters follow a probabilistic distribution law5. In the training process, the
algorithm adjusts its weights to produce relevant features. The convolutional layer is
sometimes used as a features extraction technique. This approach is useful because it
doesn’t need human intervention.

5Note that we cannot simply set the weights all equal to a specific value (1 for example) because of
symmetry issues in the training process.
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As convolutional operators are used, the network is more locally connected than classical
multi-neurons networks (importance of contextual information). Note that the sliding
operation does not have to be exhaustive thanks to the auto-correlation. The parameter
defining the sliding step is called the stride. A stride greater than one makes the geometry of
the output smaller. As layers are connected by filters, the number of parameters is highly
reduced (in multi-neurons models, two successive layers consists in a complete bipartite
graph).

After the weighted summation, the result is then post-processed to break the linearity using
an activation function. That function was originally a sigmoid or a hyperbolic tangent.
However, the Rectified Linear Unit (ReLU) is nowadays commonly used because it shows
satisfying results and is highly more efficient (Maas, Hannun, & Ng, 2013). The softplus
function is another activation function that approximates the ReLU. Figure 2.14 shows
different activation functions.

Figure 2.14: Examples of classical activation functions.

sigmoid =
1

1 + e−x
, tanh =

ex − e−x

ex + e−x
, ReLU = max(0, x), softplus = ln(1 + ex)

Pooling layer

The pooling layer consists in a sub-sampling operation decreasing the size of the image. It
limits the computation cost of the training process but also generalizes the layers, which
decreases potential over-fitting effects (i.e. a model that is restricted to produce satisfying
results only on the observations used to train the model).
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The pooling process is defined by two parameters : the kernel size and the stride. These
parameters have strictly the same role as in the convolutional layer. The pooling layer is
also a filtering operation. Originally, the operation itself was an average over the kernel.
However, experiments shows that a max operation (called max-pool) gives better results.
Nowadays, some deep CNNs use both : GoogLeNet is one example (Szegedy et al., 2014).

Figure 2.15: Max-pooling operation (kernel 2x2, stride 2x2) (Li et al., n.d.).

Fully-connected layer

At the end of the multiple convolutional/pooling layers, the features of the input images
are sufficiently well-encoded to be all mixed together, meaning that a combination of
these hierarchical characteristics enables the model to recognize the object. This stage
corresponds to an one hidden layer model with a set of features as input. The difference
between traditional approaches using one hidden layer models and CNNs is that this set
of relevant features is automatically computed without any human intervention.

It is possible to have multiple fully-connected layers. However, the more hidden layers, the
more difficult is the model to be trained.

Now that the different parts of the model have been described, I suggest the reader to go
back to the end of section 2.3.2 to clearly understand how Cohen et al. created a CDA
based on CNN.

2.4.3 Fully Convolutional Networks

As described in section 2.3.2, the machine learning models (a fortiori deep learning models)
are not built for crater detection but rather for crater recognition. The CDA developed
are based on a set of crater candidates which are post-classified using these supervised
algorithms. The output is only semantic. The CNN is not an exception to the rule. The
CNN developed by Cohen et al. (2016) uses the same process to produce a CDA. One
solution to semantically segment a scene is to perform an exhaustive search on the image,
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by extracting pixel per pixel the surrounding window and in fine labelize the whole image.
This technique is however not feasible with remotely sensed data, considering the amount
of time needed to analyze such a large scene.

Fortunately, in 2016 came important articles related to fully convolutional networks for
semantic segmentation (FCN) (Zhao, Shi, Qi, Wang, & Jia, 2016; Shelhamer, Long, &
Darrell, 2016; Badrinarayanan, Kendall, & Cipolla, 2015). These articles use some concepts
of the CNN (convolutional and pooling layers) but instead of computing the probability
of belonging to a class as output, the model gives the probability of belonging to a class
at pixel level (see fig 2.16) by removing the fully connected layers and using an efficient
upsampling approach.

Figure 2.16: Result of a semantic segmentation using a FCN (Shelhamer et al., 2016).

The theory developed manages to link the semantic to the location, the what and the
where. The deep characteristics encode the location and semantic into a hierarchy from
local to global. Because of the fully-connected layer, the output in CNN is non-spatial.
In these articles, the network computes local to general characteristics by removing the
fully connected layers and adding deconvolution layers. Thanks to the upscaling in the
deconvolution process, the output is at the same dimension as the input.

In image processing, deconvolution is used as a deblurring process when the quality of the
image is limited by the optical properties of the sensors, in particular the point spread
function.

If the real/ideal image is noted f(x) and the received image g(x), an alteration between
the two can be seen as the application of a deformation filter h(x), representing this point
spread function. Convolution is the formalization of the effect of a filter. Thus, it can be
written
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Figure 2.17: Pyramid scene parsing network (Zhao et al., 2016).

g(x) = f(x)⊗ h(x) =

∫ +∞

−∞
f(t) h(x− t) dt (2.3)

To obtain f(x), the deconvolution product on g(x) has to be applied.

f(x) = g(x) / h(x) (2.4)

Looking at a CNN model, it can be noticed that the different pooling layers reduce the
geometrical dimensions of the image. Hence, an upscaling process has to be defined. In
the different before-mentioned articles (Zhao et al., 2016; Shelhamer et al., 2016; Badri-
narayanan et al., 2015), each team of researchers uses its own method.

Zhao et al. (2016) developed a very atypical network (fig 2.17). The first layer is a classical
convolutional layer producing some feature maps. Then, this result is downsampled by
average-pooling at different resolutions (1x1, 2x2, 3x3, and 6x6 in this case). Each reso-
lution is treated in a parallel network where a single convolution with 1x1 filter size over
all the features is performed. These results are upsampled by bilinear interpolation to the
input image size and added to the first features. The predication map is computed in a
final convolution layer.

Shelhamer et al. (2016) first trained the classical Alexnet CNN model (Krizhevsky et al.,
2012). Then they discarded the two fully-connected layer and upsampled the previous layer
to original image size (fig 2.18). The upsampling process is performed using a non-integer
stride deconvolution. If the upscaling is 2 for example, the stride of the convolution process
is 1 over 2.
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Figure 2.18: Fully convolutional networks for semantic segmentation (Shelhamer et al.,
2016). Depending on where the model is cut, we focus more on location or more on
semantic. In the first row, the prediction is made by upsampling the last convolutional
layer by a scale factor of 32 (since 5 pooling operations have been performed). In the
second row, the upsampling is is made one stage sooner, limiting location artifacts but
decreasing semantic complexity.

Using Alexnet and only removing the last fully-connected layer, the last convolutional
layer has a poor geometry. Even if the upsampled prediction is pixel-wise, the artifacts
are present. Indeed, at the end of Alexnet model, several pooling operations drastically
decrease the geometrical dimensions of the layer. With high scale upsampling, the quality
of location is altered. An idea to improve the geometry is to discard one more stage of
layer (comprising a convolutional and a pooling layer). The sooner you cut the network,
the smaller the geometrical artifacts are. However, the features learned with more shallow
networks are also less complex. There is a trade-off between semantic and location.

Badrinarayanan et al. (2015) used the VGG16-Net (Simonyan & Zisserman, 2014). The
network consists in a CNN using max-pooling operations at different stages. In a max-
pool operation, the maximum value is chosen in a specific filter size. The novel approach
proposed by (Badrinarayanan et al., 2015) is to memorize the location of the maximum to
directly use it in the upsampling (fig 2.19). Hence, the upsampled features map is a sparse
image (i.e. containing many zeros) which is then processed by a convolutional decoder (fig
2.20).
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Figure 2.19: Comparison between SegNet upsampling and classical FCN upsampling
(Badrinarayanan et al., 2015).

Figure 2.20: Deep convolutional encoder-decoder architecture for image segmentation
(Badrinarayanan et al., 2015).

27



3 | Hypothesis

Deep learning advances proved to be highly efficient in various classical tasks such as
image classification. More recently, deep learning techniques are used in fields where no
clear answer exists to see if recent advances in artificial intelligence can solve the issue.

In the crater detection task, many proposals tried to solve the problem with a certain
exhaustivity and precision. It appeared that unsupervised techniques are not suitable as
a solution in many applications. The supervised techniques are more efficient, especially
with convolutional neural networks. However, they lack in their ability to extract crater
candidates. It results in a mix of unsupervised (to extract candidates) and supervised (to
post-classify) CDAs.

The hypothesis developed in this brief is based on the idea that the benefits of deep learning
techniques can be applied to the task of crater detection. In this master thesis, we propose
a semantic segmentation using deep learning techniques to produce a quick and efficient
CDA. The working hypothesis can thus be formulated as :

A fully convolutional neural network is an innovative and convincing model for the detection
of lunar craters based on remotely sensed data.

This hypothesis has to be worked and verified as a response to the lack of clear answer in
the field of CDA.
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4 | Data Description

In 2009, the NASA launched a space probe called Lunar Reconnaissance Orbiter (LRO)
for the Constellation mission, producing high quality remotely sensed products about the
Moon (LRO Mission Overview , 2015).

In the year 2011, The European Space Agency (ESA) initiated a project called Land-
SAfe (Landing Site Risk Analysis Software Framework) with the collaboration of the ge-
omatics unit from the University of Liège and the institute of photogrammetry and geo-
information from the University of Hanovre, coordinated by Spacebel (LandSAfe: 10/10
pour SPACEBEL et ses partenaires académiques, 2014). The goal of the project was to
create a software able to select, analyse and validate landing sites based on planetary
products from the NASA.

4.1 Lunar Reconnaissance Orbiter Camera

Similar to the LandSAfe project, we used the data produced by the space probe LRO.
This probe is equipped with seven acquisition instruments. In our case, we used the LROC
images (Lunar Reconnaissance Orbital Cameras). The LROC is composed of a set of three
cameras: one with a large field of view (WAC - Wide Angle Camera) and two with a little
field of view placed in parallel with a small overlap region (NAC L/R - Narrow Angle
Camera Left/Right) (“LROC EDR/CDR data product software interface specification”,
2010). The resolution of the WAC images is 100 meters per pixel and cover regions of 60
kilometers wide whereas the NAC products have a resolution of 0.5 meter per pixel but
cover regions of only 5 kilometers (2*2.5km). The second major difference is the channels
used by the two cameras; the WAC is sensitive to 7 different wavelengths (from 320 to
690 nanometers) when the NAC sensor covers the whole visible spectrum into one channel,
called panchromatic. Finally, the satellite is also equipped with a compression system
allowing it to send its data with a bandwidth of 100 Mo/sec. The probe and its equipment
can be seen in figure 4.1.

The NASA has an open archive of the products of the Constellation mission and allows
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Figure 4.1: Upper left: WAC. Upper right: NAC. Lower left: LROC instrument. Lower
right: the LRO space probe (“LROC EDR/CDR data product software interface specifica-
tion”, 2010).

authorized users to download data. The website has a query tool to choose those data
according to some parameters. We can cite : lunar time, GMT, planetometric coordinates,
emission angle, incidence angle and so on.

Nevertheless, the archive also has an index file with the metadata of all images in a CSV-
like format. This file is easily convertible into a MySQL database for example. To each
image corresponds a tuple with 83 fields. It enables the user to create more complex SQL
queries if necessary.

To reduce the panoramic disturbance and to work at finer resolution, we choose to use
the calibrated NAC images1. In this context, the calibration is concerned by the radiance
of the object. It means that for different images of different scenes, a same digit number
indicates an equivalent radiance. Said in other words, the linear relationship between the
digit number and the radiance is the same for all the scenes. Finally, the NAC images
covers all the surface of the Moon.

1The images are not ortho-rectified but as the field of view (FOV) is small (1.21◦), the problem of an
altered visual aspect of the craters due to the panoramic disturbance can be neglected.
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Figure 4.2: Sun azimuth and sun elevation by range of latitude (NAC images -10◦ to
+10◦longitude).

For reasons of convenience, we use the images in .tif format.

Note that the orbit of the satellite and the solar latitude do not allow all possible illumina-
tion configurations everywhere on the Moon. We can however simulate other illuminations
conditions by rotating our images.

With a sun at very low elevation, the images are not usable. In fact, the shadows hide
a large part of the image. Similarly, when the incidence angle is near 0, the shadows are
almost non-existent. The images used here are supposed to have a good overall quality,
judged by our expertise. Whatever the chosen images, we will always have on a same image
a set of sharp craters and a set of eroded craters, with other possible topographic elements
such as lunar rocks for example.

It is possible to build a skyplot (4.2). This way, we have a visual representation of the
different illumination conditions encountered.

Parallel to these NAC images, the Arizona State University produced lunar digital elevation
models (DEM) based on NAC products using stereophotogrammetry, with a resolution of
2 to 5 meters depending on the image quality. Photogrammetric processing needs a human
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intervention thus these DEM cannot cover the whole Moon surface. There are currently
388 treated sites. The production of DEM enables the creation of ortho-rectified images.

4.2 Description of the Dataset

The goal of a supervised learning algorithm is to adjust its parameters using a dataset of
observations with associated ground truth to let the model learn the input-output relation
by an optimization process.

The dataset would consist in a set of lunar craters (positives) and crater-free zones (nega-
tives). The first question to be asked is to know if such a dataset exists about the Moon.
This dataset would be useful to learn and evaluate a model.

Some lunar craters databases exist (Salamunićcar, Lončarić, & Mazarico, 2012). We can
cite the still growing LU60645GT lunar database, containing 14 923 lunar craters. It
currently constitutes the most complete lunar craters database. Unfortunately, it contains
only craters with a diameter above 8 kilometers. For the time being, there is still no
sub-kilometric lunar database available.

If we look the authors who implement CDAs, some used a restricted test zone with an
available dataset to recognize craters (especially in unsupervised methods). The method is
questionable in the sense that nothing can argue that the method would work on different
scenes (with another illumination condition for example).

On supervised methods, most recent papers focus on a mars craters dataset related to a
small region of Mars. This dataset consists in a set of instances which are labelled as a
crater or not a crater.

This dataset was built by Urbach and Stepinski (2009) using the High Resolution Stereo
Camera panchromatic image h0905 0000 taken by the Mars Express spacecraft. The scene
contains many different topographic conditions. It is thus an advantageous place to create
an efficient CDA.

The scene is decomposed into six tiles (see fig.4.3). Each one is related to two .csv files
(one for the positives and one for the negatives). The file is structured as x, y and r where

• x : center of crater measured from the left side of image

• y : center of crater measured from the top of image

• r : radius of crater
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Figure 4.3: The different tiles of the Martian dataset.
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Figure 4.4: Labelling of patches (left = positive, right = negative).

Though we appreciate the efforts made on building such a useful dataset and it them
available, these samples suffer from the same imperfections from before, that is to say that
only one illumination condition is treaten (only one image is chosen). Even if the scene
is decomposed into several tiles, we can assume that the developed models are too much
related to the metadata of the scene and the direct application on another image with
different illumination conditions may lead to bad results.

Coming back to the Moon, as no dataset exists, we need to manually create these resources.
Our efforts would result in an available dataset for any lunar researcher interested in the
case of the Moon.

Based on the NAC images, we extract thousands of annotations of different sizes repre-
senting either a crater or a crater-free zone. The dataset will serve as examples to let the
model learn what is a crater.

Note that craters with a diameter below 8 meters (16 pixels) are hardly distinguishable.
Thus, they are neglected in our database and in our quality assessment protocol. In the
same way, craters with a diameter larger than one kilometer (2000 pixels) are frequently cut
into multiple images (a NAC image is about 5000 pixels large, equivalent to 2500 meters).
There is thus a range of craters that are in our interests, between�min and�max (8 meters
to 1 kilometer).

In our case, the crater detection must be generalized to the different illumination conditions.
It implies to have a large variety of NAC images. To increase the variability of the dataset,
we can use some tricks (for example rotating annotations). Also, we need to vary the
degree of wear to be able to recognize fresh to eroded craters.

In a CNN, the output to be predicted is only symbolic, with a single value (0 for crater-free
and 1 for crater for example). In fully convolutional neural networks, we need to produce
an output image whose pixels are the labels to be predicted, thereby mixing the semantic
and the location (fig 4.4).

It can be noticed that, on the annotations, small craters are not labelled as crater (they
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Figure 4.5: Mapping of the pairs of NAC CDR images. Note that the images are
encoded in geotiff. They are already georeferenced in equirectangular cartographic system.

remained black). The reason is that the annotations focus on labelling craters with a di-
ameter of half the annotation size. The rest is neglected. Indeed, an exhaustive annotation
would not be feasible, considering the time available to produce the dataset.

Given the orbit of the space probe, we only consider NAC CDR images whose center is
comprised between a latitude of -60◦ and +60◦ to avoid undesired illumination conditions
that affect overall image quality. The longitude does not influence the images in terms of
spectral variations thus we only considered longitudes ranging from 0◦and 90◦2.

From this geographical area we extracted NAC images by systematic random sampling.
The area has been divided in rectangle of 30 degrees in longitude and 10 degrees of latitude.
In each sub-area we randomly pick 1 pair of NAC images (left/right). If the expert judges
that the overall quality of the images is not sufficient, another random pair of NAC images
is chosen. From this process we selected 72 images (fig 4.5).

The range of lunar coordinates and the variability of the acquisition date insure that we
meet most of the different cases, adding more complexity to the dataset. The full list of
retained NAC images can be seen in the annexes.

From the ortho-rectified images created by the Arizona State University, we only considered

2Indeed we were planning to select images from 0◦ to 360◦ but the task proved to be more time-
consuming that expected.
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Figure 4.6: Spatial distribution of the ortho-images according to their latitude.

the images with a ground-sampling-distance (GSD) of 0.5 meter. In addition, some images
are not appropriate (very particular topographic structures or incoherent mosaic process).
In the end, we choose 79 sites (also listed in the annexes). The location of these sites is
mainly between -50◦and +50◦of latitude (fig 4.6).

Our approach is thus defined with two types of data:

• Case 1 : we have the NAC CDR images.

• Case 2 : we have the ortho-images from the Arizona State University.

For the question of the amount of data, the larger the dataset, the more likely it is rep-
resentative of all lunar conditions encountered in a scene. However, the overall accuracy
of the model increases logarithmically with the number of samples up to a moment where
collecting more data becomes almost useless.

As we have to create our own dataset, we need to be economical in time when collecting
data. To know if the number of collected samples is representative enough, we can check
the stability of the some metrics when evaluating the developed model.

When building a dataset of crater annotations based on remotely sensed data, a sampling
protocol is to be described. In the case of a spatial sampling, we have several possibilities
(fig 4.7).

36



4.2. DESCRIPTION OF THE DATASET 37

Figure 4.7: Different sampling methods. From left to right : random, systematic and
transect sampling (CATMOG concepts and techniques in modern geography , n.d.).

The first way to sample a region is the simple random sampling. In that case each point
on the region of interest has the same probability to be chosen. The second way to proceed
is the systematic sampling. This sampling protocol is realised by superimposing a regular
grid on the region. A variant is possible by incorporating a small amount of randomness
in the systematic sampling : each vertex of the grid being moved using a small random
shift. The last sampling method is the transect sampling. The latter consists in sampling
by following random lines crossing the region.

In our case, we had to look at the balance between performance and time-budget dedicated
to collect data. For each image, we define 10 equally distributed sub-regions. In each sub-
region, we annotate 10 positives (crater) and 10 negatives (crater-free) to preserve priors of
50%. We thus extracted 200 annotations per image. Due to lack of time, not every selected
image could be annotated. Nevertheless, we collected in total 11 239 different annotations.

37



5 | Methods and Developments

The problem to be assessed can be formalized as follow. As input, we have a panchromatic
image in tiff format, encoded in 8 bits. The ground sampling distance of the image is
0.5 meter. The output is a set of binary masks whose combination gives the precise
segmentation of the craters on the lunar scene.

5.1 Implementation and Computation

Building a deep learning application without any previous work in the field can be an
ambitious task. Furthermore, no sub-km lunar crater dataset exists. We thus need an
efficient way to produce the needed samples to train and evaluate our model. To build
the dataset according to the sampling method developed in previous chapter, we used the
Cytomine open-source web-oriented database.

The mathematical formulation of the problem has already been discussed. We can thus
write our own code designed to build and train our deep learning model. Nevertheless,
some deep learning libraries emerged the last few years to help us creatie our application.

Finally, we would like to benefit from the recent advances in Graphics Processing Unit
(GPU) computation. In this context, we used the Compute Unified Device Architecture
(CUDA) Deep Neural Network (CuDNN) library to parallelize calculations.

5.1.1 Cytomine

Cytomine is an open-source web-oriented database with a Graphical User Interface (GUI)
and a communication interface to deal with very large images. One of the objectives of
Cytomine is to encapsulate what is independent of the problem by setting tools for users.
In many projects, there is a need of creating a software able to collect and manage datasets.
Not only the implementation of these tools can be long and difficult (especially for people
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that are not from computer sciences) but also often meets the needs of other researchers.
Thus, Cytomine is a solution to get rid of these issues. In the beginning, Cytomine was
designed to bio-medical research. Nevertheless, the features of Cytomine can be adapted
to other applications. Ours is one example.

The main features of Cytomine are (Marée et al., 2016) :

• Upload : we can upload our large images in the online Cytomine database.

• Organize : we can organize our images in different projects/folders with their own
ontology, restriction and so on.

• Explore : Cytomine has a dynamic interactive tool to navigate within the images. It
is possible to associate pixels with geographical coordinates.

• Annotate : the main concept of Cytomine is the ontology1. It is possible to select a
sub-area in an image and assign a label (a crater for example). A shape with an asso-
ciated label is called an annotation. All the annotations are stored and administrated
in the online database.

• Share : a database on Cytomine can be shared with other contributors. Each one
has his specific permission rights.

• Analyze : given a set of annotations, Cytomine is able to build a model of each label
to recognize some objects, using segmentation algorithms already pre-implemented
(Marée et al., 2016).

• Extend : we can integrate our own algorithms into Cytomine.

We can extract the cropped images corresponding to the annotations. These operations
can be carried out in three ways :

• With GUI in a web-browser.

• Using queries directly in the web-browser’s URL.

• Using an application programming interface (API).

Note that all the operations cannot be done only with a GUI. To automate the procedures,
the best solution is to opt for an API. Cytomine has a Python-Client-API available on

1An ontology is a formal naming and definition of the types, properties and interrelationships of the en-
tities that really or fundamentally exist for a particular domain of discourse (The International Association
for Ontology and its Applications, 2017).
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Figure 5.1: Extraction of the entire database in .csv format corresponding to all the anno-
tations on all images.

GitHub2. This API enables the user to interact with Cytomine using pre-built functions
such as get annotation, dump annotation, add user and so on.

All these annotations are reusable in our own codes on a personal computer having a
network connection. The connection is established by setting the different parameters
related to our Cytomine account.

One advantage of using Cytomine is the reliability of the dataset ; it is easy to check the
annotations, remove/correct some objects, select specific images and so on. Moreover, it
is possible to add contributors to a project to assess our dataset and even improve it by
selecting new annotations on our image set (according to their rights).

By selecting the needed image, it is easy to work with stratified datasets. For example, it is
possible to focus on annotations associated to images with a same illumination orientation.

It is also possible to make requests to the database. We can extract the whole database
in CSV format (fig 5.1). For each annotation, we have different information such as the
Id, the area, the label (called term in Cytomine), the centroid position, the original image
filename and so on.

However, if any update of the images metadata is done, it makes some operations more
difficult. In a late stage of our project, I decided to update the resolution of my images to
one unit per pixel to express our coordinate system in terms of pixels instead of geographical
units. Nevertheless, the update of images metadata does not affect the previously defined
annotations, meaning that the area of the annotations are still expressed using the previous
image resolution. The Python client has an update functionality designed to recompute
these kind of features. Unfortunately, this new function still has some bugs which does not

2https://github.com/cytomine/Cytomine-python-client
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allow me to use it properly.

To counteract this issue, we need to implement a script that builds the CSV file. The first
step consists in retrieving the annotations and images information. These are gathered
in JSON data format (see examples in annexes). It contains many attributes and spatial
data. In the examples present in annexes, we can see that the resolution of the image is
set to 1.0 but the area of the annotation is still enormous.

Then, we write the header of our CSV file. The considered variables are : id, X, Y, radius,
label and id image. Note that the X and Y coordinates are expressed according to the
image coordinate system in pixels.

By retrieving the geometry of the polygon constituting the annotation, it is possible to re-
compute the area. Then, for each treaten annotation we can write the needed information,
separated by a comma.

In total, 11 223 annotations have been created manually, with a prior of 50% for each class
(5612 negatives and 5611 positives).

Offline Solution

There exists another way to efficiently produce annotations on images. Antoine Lejeune,
a researcher from the Montefiore’s Institute, built for our application a dedicated software
written in C++ designed to annotate large images.

At current state, the software is able to

• Load remotely sensed products (TIFF/GEOTIFF and pyramid TIFF/GEOTIFF).

• Define directories to store annotation (one per class).

• Zoom in button.

• Zoom out button.

• Original size button.

• Define patch dimensions.

• Browse on the image with arrow keys.

• Define key shortcuts to save annotations to specific directories (for example, when
the key button associated to the first term is pressed, the current selection is saved
into the dedicated directory).
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Figure 5.2: Stand-alone software to collect annotations.

• Left click to center the patch to the click location.

When working, the software writes a logfile in a CSV format where each tuple records the
same attributes than the ones from Cytomine (namely id, X, Y, radius, label and id image).

Using the logfile, it is then possible to add the annotations to Cytomine via the Python
client.

Both Antoine Lejeune’s software and Cytomine are able to produce a huge amount of
annotations in a reasonable amount of time. However, when possible, we prefer to use
Cytomine thanks to its pleasant GUI.

5.1.2 GPU Computating

As seen in 2.4, the training process and the use of neural networks can be very computa-
tionally expensive when building a deep learning model. The fully connected layers implies
to have a connection between each neuron of the current layer and each neuron of the next
layer.

These operations can easily be rewritten in terms of inner-product between the weights
vector and the input vector, with the addition of the vector of biases. These operations
can be replaced by a simple matrix multiplication (Oh & Jung, 2004).
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W =


w11 w12 ... w1N

w21 w22 ... w2N

... ... ... ...
wM1 wM2 ... wMN



X =


x11 x12 ... x1L
x21 x22 ... x2L
... ... ... ...
xN1 xN2 ... xNL



B =


b1 b1 b1 b1
b2 b2 b2 b2
... ... ... ...
bM bM bM bM


︸ ︷︷ ︸

L

M = W ×X +B (5.1)

with :

wij, the weight between the jth input node and the ith output node

N, the number of input nodes

M, the number of output nodes

xij, the value of the jth input vector for the ith feature

L, the number of input vectors

bi, the bias of the ith output node

These kinds of matrix operation is very common in neural networks. We saw the mathemat-
ical formulation of a fully-connected layer but it also works with other matrix operations
such as activation functions, pooling, convolutional layers and deconvolution layers. If the
network consists in more than one layer, we repeat the operations following a chain rule.

GPU was originally designed to rendering. However, pixel shader allows a very effective
parallelism compared to a classical central processins unit (CPU). Matrix multiplication is
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indeed performed by rendering. For this reason, GPU becomes a powerful tool for parallel
computation.

NVIDIA R© developed a library dedicated to GPU-accelerated computing : CuDNN. This
library allows the user to use its graphic card for computation. CuDNN also implements
standard deep learning operations such as pooling, activation functions and so on.

In my project, I had the opportunity to use dedicated GPU to train and run my models.
According to the circumstances, several GPU can be used.

• Using my personal computer, our GPU is a NVIDIA Geforce GTX 970 overclocked
(+8.5% on based frequencies).

• Using secure shell (SSH) network protocol, we have access to more powerfull GPUs
(NVIDIA GeForce GTX TITAN X, Pascal architecture) located in Montefiore Insti-
tute.

• Integrated in Cytomine, the model would be able to use the NVIDIA DGX-1, con-
taining 8 NVIDIA Tesla P100.

Depending on the GPU, some memory restrictions are made. With the first mentioned
GPU, we have 4Go VRAM. The second one has 12 Go and finally the DGX-1 has 128 Go
VRAM. The VRAM is highly used with CuDNN and limits some operations. We need to
pay attention to it.

5.1.3 TensorFlow

As described in 2.4, a neural network is a complex architecture. The mathematical formu-
lation has been written and the way the model is trained using well-known techniques.

Though it is possible to recreate an algorithm to create, train and evaluate a neural network,
it represents a huge task in implementation. The objective of this master-thesis is not to
create an extensive implementation of a deep network. Moreover, our expertise is not
sufficient for an optimal implementation.

In deep learning coding, there are several open-source libraries that can be used. The most
popular are Theano (Python), Caffe (C++), DeepLearning4j (Java), Torch (LuaJIT) and
more recently, TensorFlow (Python). Thanks for the rapid growth of TensorFlow (in terms
of community, performance, documentation and features), our choice fell on this one.

TensorFlow is a open source library originally developed by the Google Brain research
team. Its name comes from the architecture of the data, represented as tensors. Tensor
representation enables parallelism programming and thus efficient computation.
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TensorFlow is a very efficient library using CuDNN for GPU computation. It has many
classes, functions and methods that are imported in the beginning of the code. The con-
volution functions, the cost functions, the activation functions, the minimization functions
and more are already implemented.

TensorFlow works in two times. Firstly, we build the computation graph. We set all the
variables. These variables are stored in placeholders. These placeholders are tensors with
user-defined shape and type. Then we can define the operation between the variables,
namely the different layers, the filters, the loss function and so forth.

After that we run the computation graph and the training process. In this step, the
program will run the user-defined operations and training algorithm.

Figure 5.3: Example of TensorFlow’s API’s documentation.

5.2 Data Importation

5.2.1 Annotations Importation

The first step of the process consists in downloading the crops of the annotations taken on
Cytomine. That task was performed using the Python client. The source code produces
two directories : one with the positives (craters) and the second with the negatives (crater-
free) (fig 5.4). It is possible to specify what are the images to be chosen (for example, we
can separate NAC CDR images from the ortho-images).
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Figure 5.4: Extraction of the dataset into positive and negative folders.

Unfortunately, the Cytomine Python client is designed only to download the smallest
bounding box of the annotation. In our algorithm and in geographical problems in a more
general sense, we need to extract the surrounding context to create efficient models (for
example a bounding box equivalent to twice the size of the annotation). This functionality
is not available at current state and we had to modify the core of the Python client to
adjust the dump annotation function by adding a parameter increaseArea in the function.
Also, when using the Python client to download the annotations, some may be corrupted
(reasons remain unknown) that we need to remove.

When the annotations are correctly downloaded, the function searches for all .png files in
specified directories (.png and .jpg files are still the only decodable format for images in
TensorFlow). Each image is resized to a specified dimensions (in our case, the dimensions
are 64x64) and added to an images list data structure. The resampling is processed using
bicubic interpolation. In parallel we compute to each annotation a ground truth label
image (fig 5.5). If the annotation is a crater (a positive), the image label is a centered
circle shape filled with positives with a diameter of size half the annotation size. The rest
of the image is negative. If the annotation is negative, the image label is entirely filled
with negatives

The goal is indeed to produce a model able to recognize a crater with a specific diameter
size (about half the annotation size). The assumption used here is that the shape of all
sub-kilometric craters are similar enough to be mixed all together. We may wonder why
we do not produce a model for all diameter sizes in order to use it to detect all craters on
the scene. The main problem is the lack of a huge exhaustive dataset. As we have to build
our own dataset, we have to be economical about the time spent to collect data. The trick
here is to be able to find a crater of specific dimensions and then applying the model on a
pyramid of the scene. By applying the model on each level of the pyramid, all crater sizes
can be found (more details on section 5.5.2).
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Figure 5.5: Normalization of the annotations size and construction of the image label.

5.2.2 Patches Creation

Given a dataset of crater images and non-crater images, we have to train the model. The
model has to be reliable, meaning that for each possible situation encountered on a scene
it has to find the best possible label. The golden rule is that the model is able to detect
only things that it learned.

This statement is problematic at different levels. The main problem is that if the goal is
to detect all craters with diameters between �min and �max, we have to show examples
of all these diameters. This implies to have patches of very different sizes (from 16x16 to
2048x2048 pixels). This is not feasible in practice and I think the model may have troubles
to find the relevant features to understand what is a crater.

Our solution to this is to train the model to a given diameter size. Then the scene is
re-sampled to produce a pyramid of resolutions. From each new image, we extract the
craters corresponding to the given size.

To simulate different situations encountered on lunar scenes we have to extract from our
image dataset uncentered patches to vary the way the model learns features. In fact,
centered patterns are a priori knowledge that we do not want the model to know. To do
so, we import the different crops of the craters with geographical context. From this image,
we randomly draw points from which we extract patches with its associated label (fig 5.6).
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Figure 5.6: Example of the extraction of 4 patches per annotation (white = crater).

To multiply the number of patches and to generate more illumination conditions, we also
rotate the patches by angles of +90, +180 and +270◦. The use of other angles would imply
truncation of the patches to eliminate regions out of the patch. Note that this trick only
enables to simulate other sub-solar azimuth angles but not the sun elevation.

5.2.3 Learning Set / Test Set / Validation Set

In any supervised learning algorithm, it is always important to ensure that we have an
independent set of data to validate our model. 10% of the entire dataset is dedicated to
the validation set (11 133 annotations). However, we also need a test set different from
the train set to determine the hyper parameters of the model’s architecture. Doing so, we
slightly overfit the model because the hyper-parameters are related to the test set.

To counteract this issue, we decided to randomly separate the learning set from the test
set with a proportion of 70%/30%. If the number of patches per annotation is 10, that is
100 200 patches that are used, 70 138 to train the model and 30 059 to to test the model.

With these high numbers, it can be statistically shown that priors (meaning the proportion
of positives/negatives in the train and test sets) are respected. In 99% of the cases the
priors are comprised between 49.5% and 50.5% for the train set and comprised between
49.3% and 50.7% for the test set.
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Figure 5.7: Distribution of the dataset in the different sets.

5.3 Description of the Model Architecture

5.3.1 Input Layer

The first step is to import the data. To do so, we create two placeholders designed to
receive the input data and the ground truth image labels. These tensors are fed with
the previously defined patches that have been stored in the images list with its associated
ground truth.

5.3.2 Convolutional Layer

In each convolution layer, we compute a simple linear model with specific weights stored
in a filter. By sliding the filter, we produce a feature map.

The parameters of each convolutional layer to be defined are the number of input layers,
the dimensions of the filter and the number of feature maps to compute (i.e. the number of
filters to train). The parameters are initially set using a truncated Gaussian distribution,
with a mean of 0 and a standard deviation of 0.1. Values greater than 2 and lower than -2
are discarded and recomputed. These parameters are stored in a 4D-tensor.
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The stride is defined here by a step of 1 for the columns and 1 for the rows (equivalent to
an exhaustive search). Also, we use zero-padding, meaning that the outside of an analyzed
patch is filled with zeros to ensure that the output of the convolution layer has the same
shape as the input layers (fig 5.8).

The fact that the geometry is unchanged throughout convolution operation does not mean
that the process is not insensitive to boundary effect. Actually, the greater the filter
size, the greater is boundary effect. However, a greater filter size enables the model to
make more use of the contextual information. As this geographical context is crucial, in
particular in geographic domains, we need to make a good trade-off between boundary
effect and contextual information.

Figure 5.8: In this example, the filter is represented in the upper part (green) and the
patch is situated below (blue). To ensure that the output image has the same dimensions
that the blue image, we add zeros out of the patch (Hien, 2017).

5.3.3 Activation Layer

After the convolutional layer, we use an activation function. The activation function is a
non-linear function whose role is to introduce non-linearity in the network.

In our work we used the ReLU within the hidden layers and a sigmoid in the output layer
to produce probabilities.
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5.3.4 Pooling Layer

The pooling layer reduces the geometry of the scene by down-sampling the previous layer.
This aggregation also diminish the potential over-fitting.

In our case, we uses a max-pool filter (a filter that searches the maximum value) of size 2x2
without overlap (i.e. a stride equivalent to the filter size). Each pool operation diminishes
the size of the layers by a factor 2x2.

5.3.5 Deconvolutional Layer

In a FCN, the deconvolution is a way of reconstructing a scene by efficiently upsampling
the features maps, contrary to classical CNN that produces a non-spatial response to a
given input3.

With a simple linear or bicubic upsampling, the blur effect seriously affects the quality
of the map. With deconvolution, we apply a contrast restoration by computing a inverse
convolution operation. The parameters of the deconvolution procedure are weights that
have to be determined by our optimization process.

5.3.6 Output

After the last deconvolution layer, we have one features map with the same resolution as
the input. This features map is then processed using a sigmoid as an activation function
on each pixel. One property of the sigmoid function is to transform any real value into a
probability map (see fig 5.9).

S(x) =
1

1 + e−x
(5.2)

3To semantically segment the images using a CNN, we have to make the model slides through the entire
scene (i.e. by the means of exhaustive search). The process is quite long for results similar to FCN models
(judged by our expertise). Personal experiments shows that the computation time was about 2500 times
longer.
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Figure 5.10: Computing a probability map and thresholding the result at a probability
level of 0.5.

Figure 5.9: The sigmoid activation function.

From this probability map, we can predict the label by using a threshold beyond which
the pixel is considered as a crater. Depending on the application, we can use different
threshold values. If the goal is to be sure that a crater is indeed a crater (i.e. minimizing
false positives), we set a high threshold. On the contrary, if we need to focus on detecting
all craters (i.e. minimizing false negatives), we set a low threshold. Fig 5.10 represents a
scene whose threshold was chosen to be 0.5.

5.4 Training the Model

In neural networks, the most common way to train a model (i.e. adjust the weights such as
we minimize a cost/loss function) is to use a gradient descend algorithm. However, there
are different variants of that technique.
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Figure 5.11: Prediction of a patch during the training phase (upper right = ground truth,
lower right = prediction).

5.4.1 Loss Function

The loss function is a measure of how far the predictions are from the actual labels.

The goal of a machine learning algorithm is to minimize that loss (most of the time with
gradient descent-based algorithm in deep learning). In the end, if convergence is acquired,
the best weights are found.

In the case of our work, the model tries to predict the probability of belonging to a label
for all pixels for each training patch (see fig 5.11). Based on these predicted probabilities,
the algorithm computes the pixel-wise loss and adjusts its weights.

The value of the loss depends on the function used to calculate that metric. One common
loss function used when computing probabilities comes from information theory, called the
cross-entropy function.

Hy(ŷ) = −
∑
i

(
yi ∗ log ŷi + (1− yi) ∗ log (1− ŷi)

)
(5.3)

Where ŷi is the predicted probability of the ith pixel and yi is the true label of the ith pixel
(1 for crater and 0 when not a crater). When looking at the equation, we are glad to notice
that true detections do not increase the loss. If np represents the number of pixels which
are likely to be correctly labelled as crater (true positives) and nn the number of pixels
that are likely to be correctly labelled as non-crater, we have
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True positives : np ∗
(
1 ∗ log (≈ 1) + 0 ∗ log (≈ 0)

)
≈ 0 (5.4)

True negatives : nn ∗
(
0 ∗ log (≈ 0) + 1 ∗ log (≈ 1)

)
≈ 0 (5.5)

Using a sigmoid as an output estimator of probabilities, the problematic case where the
predicted probability is zero does not exist ( lim

x→−∞
sigmoid(x) = 0).

5.4.2 Gradient Descent Algorithms

The principle of gradient descent is to minimize a specific loss function (cross-entropy or
least squares for example) computed on a model with parameters θ with a specific training
set. To do so, we update the parameters to the opposite direction of the gradient of the
loss function with a particular learning rate.

The learning rate gives an indication of the convergence speed. A high learning rate enables
the model to train faster. However, a high learning rate can miss some optimum in the
N-dimensional loss function curve (where N is the number of parameters to fit). The lower
the learning rate, the higher the chances of finding an optimum, but the slower the train
process.

Problems arise when the slope of each parameter is highly different. In those cases the
rate of change is slow due to the rapid change in slope direction with regards to some
parameters. To counteract this problem, we allow the model to converge faster in some
directions, introducing a momentum.

Figure 5.12: Example of the training process without momentum (left) and with momen-
tum (right).

Adagrad and Adadelta are algorithms that adapt the gradient descent to the frequencies
of the parameters (in cases of some input variables are missing). Frequent parameters are
adjusted with smaller updates since they are supposed to be updated more frequently.

Finally, the Adaptive Moment Estimation (Adam) performs all of previous considerations
by computing the estimated first two moments of the model parameters. Empiric results
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show that Adam is very powerful optimizer that can adapt to most circumstances. That’s
the reason why we decided to use it in our master thesis.

5.4.3 Variants of Gradient Descent

As previously said, the gradient descent computes the gradient of a typical loss function
according to all the parameters. There are three ways to compute the gradient of the loss
function :

• Batch gradient descent.

• Online/Stochastic Gradient Descent (SGD).

• Mini-Batch gradient descent.

In batch gradient descent, the cost function is computed for the whole training dataset.

To take the notations of S. Ruder (2016), if θ is the vector of parameters, 5 the gradient
notation, J the loss function and η the learning rate, the new parameters are computed by

θ = θ − η.5η J(θ) (5.6)

That operation is performed several times, either with a fixed number of iterations or up
to a specific amount of loss.

Computing the cost function on the entire dataset can lead to very slow training. Moreover,
some memory limitations do not allow the use of very large training dataset in one pass.

The SGD is performed using only one sample of the training dataset at once. It enables fast
training, but often requires a significant larger number of iterations to achieve satisfying
results. The variance of the loss is high, enabling the models not to be stuck in local
minima. However, the high variation of loss at each step can lead to miss some optimum
weights.

The mini-batch gradient descent is a trade-off between the two. At each iteration, the cost
function is applied to a subset (also called batch size) of the entire dataset. Mini-batch
gradient descent is most common way to train a neural network.

In our work, memory limitations forces to neglect batch gradient descent. Also, the sudden
jumps at each iterations do not allow us to use SGD. We thus use the mini-batch gradient
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Figure 5.13: Loss as a function of the iteration step.
Upper-left : Batch-size = 1 (equivalent to SGD), number of steps = 1 000 000.
Upper-right : Batch-size = 10, number of steps = 100 000.
Bottom-left : Batch-size = 100, number of steps = 10 000.
Bottom-right : Batch-size = 1000, number of steps = 1 000.
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Figure 5.14: Standard neural net (left) and after applying dropout (Srivastava et al., 2014).

descent. The batch size varies the variance of the loss and the number of steps to obtain
convergence (see fig 5.13).

The smaller the batch size, the smaller the computation time of each step. Nevertheless,
the number of steps is bigger. We can notice that an optimum batch size is comprised
between 50 and 200 patches in terms of total computation time.

5.4.4 Dropout

The dropout is a way to prevent overfitting. In large neural networks, there can be millions
of neurons. To avoid some neurons to co-adapt too strongly on the train set, we can
randomly drop some neurons in the training process (fig 5.14).

Working with CNNs, we traditionally use the dropout on the fully connected layers. How-
ever, Srivastava et al. (2014) claim that dropout can be applied on any layer, including
convolution and deconvolution layers.

Nevertheless, when we apply dropout on our networks, we notice a decrease of overall
accuracy, whatever the degree of dropout (the more present is the dropout, the bigger
the loss). This problem is often met by researchers in deep learning but we still let the
possibility to use it, even if we did not employ it in our project.

5.4.5 Penalization

The penalization is a way to penalize too large weights in a supervised learning algorithm.
Here we used L1 penalization.
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The idea of L1 penalization is to add a constraint in the loss function. This constraint
is equal to the sum of all absolute weights, multiplied by a λ factor. The greater the λ,
the greater the importance of the penalization. This technique is used in many machine
learning optimization algorithms to prevent overfitting.

Penalization term = λ
∑
k

|wk| (5.7)

Where k covers all the weights of the model.

However, when we apply L1 penalization, the accuracy of the model decreases. The greater
the λ, the smaller the accuracy. The best way to train the model is simply to set λ to zero.

5.4.6 TensorBoard

TensorFlow has an event listener functionality that enables us to visualize the network,
to interact with it, to display the history of some metrics (for example the loss at each
training step), the weights of the filters trained by the model and so on. This set of features
is called the TensorBoard.

In the code, it is possible to serialize the data into a logfile that TensorFlow modifies to
build an html file. That html file can be opened in any web browser.

A deep learning model can be quite complex. TensorBoard is useful to better analyze and
debug the code. Each part of the code can be named, it is possible to group some layers
in order to make the model visually clearer.

5.4.7 Saving Parameters

A neural networks-based model can be quite complex and saving its parameters in order
to load them for any type of use is not an easy task for a programmer. Fortunately,
TensorFlow developed some functions to save the parameters as checkpoints and restore
them when desired. These checkpoints are stored in binary files in proprietary format.

5.4.8 Considered Models

There may have different models to be considered : many hyper-parameters are indeed
possible.
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The number of layers and their arrangement are important. The more the number of
layers, the more the model is able to encode deep characteristics. Also, it makes the
model more complex and introduce the problem of vanishing gradient4. In addition, we
can insert several convolution layers between each pooling operation. The deconvolution
can be processed in one or in multiple steps. Moreover, the network can be symmetrical
with as many convolution layers than deconvolution layers. Many possibilities exists.

In our work, we built 24 models, each having different possible hyper-parameters (number
of layers, number of features per layer, the filter size per layer and so forth). Each model
has a different amount of parameters to determine.

The main hyper-parameters that we considered are :

• The number of stages : 1, 2 or 3.

• The number of convolution layers at each stage : 1 or 2.

• Presence of a pooling operator before the first deconvolution layer : 1 or 0 (resp. yes
or no).

• Symmetry of the network : 1 or 0 (resp. yes or no).

The number of stages will influence the depth of the networks. In each stage, we add
new parameters to train. The pooling layer between each stage reduces drastically the
number of parameters by geometrical aggregating the layers. Moreover, this reduction of
too located information enables to reduce overfitting effects.

Having two convolutional layers in one stage enables the model to extract more complex
features. However, more complexity means more potential overfitting and an increase of
the number of parameters.

The presence of a pooling operator before the first deconvolution is subject to debate. This
spatial aggregation enables to decrease by a factor of 4 the number of parameters but also
decreases the location precision without adding any semantic aspect.

The secondary hyper-parameters are :

• The number of features computed at each convolution layer

• The kernel size at each convolution layer.

4When applying gradient descent algorithm, we update the parameters according to the opposite direc-
tion of the gradient of the loss function. On the last layers, this update is quite fast. On the first layers,
the convergence can be much longer. The deeper the network, the longer the training time.
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Figure 5.15: Example of one developed model.

Unfortunately, TensorFlow does not allow to change the major hyper-parameters. We need
to build each of these models in separate python codes. For the minor hyper-parameters,
these are just variables that can be easily changed.

To represent a model, I will use the following figure (5.15). In that example, the input is
the patch to be analyzed. To make the visualization more convenient, we can omit one
geometrical dimension. The input only contains 1 panchromatic layer and its dimensions
are 32x32 pixels. In the first convolutional layer, we decided to extract 8 features meaning
that we have 8 filters to train. We also use a ReLU as activation function. In the second
convolutional layer, we produce 16 features based on the 8 previous featuresmaps and we
use a ReLU as an activation function. After that, we perform a first max-pooling opera-
tion, reducing the dimensions of our 16 features maps from 32x32 to 16x16 pixels. Then,
another stage of two convolution layer (+ activation function) and a pooling operation is
applied. At this stage we now have 32 features maps of size 8x8. The features represent
the deep characteristics to classify the pixels. To up-sample the features maps, we use 2
deconvolution layers in a row with each a scale factor of 2. Finally, we use the sigmoid
function to compute pixel-wise probabilities and we round the result to associate at each
pixel a label. The representation of the other models are available in the annexes.

Note the the set of hyper-parameters (major and minor) influences the numbers of param-
eters to determine. In each layer, we train several filters from a certain amount of inputs
to a certain amount of outputs. The number of parameters in each layer is equal to the
the size of the kernel multiplied by the cartesian product of the number of inputs and the
number of outputs. Table 5.1 summaries the number of parameters of model 3 2 1 1.

5.5 Analysing a Scene

Once the model is calibrated and able to correctly recognize a crater, we can take a larger
scene containing an important number of craters and determine their positions.
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Table 5.1: Number of parameters of the model 3 2 1 1.
Layer Name Number of parameters
conv. 1. 1. (11*11+1)*1*8 = 976
conv. 1. 2. (9*9+1)*8*8 = 5 248
conv. 2. 1. (7*7+1)*8*16 = 6 400
conv. 2. 2. (5*5+1)*16*16 = 6 656
conv. 3. 1. (3*3+1)*16*32 = 5 120
conv. 3. 2. (3*3+1)*32*32 = 10 240
deconv. 3. 2. (3*3+1)*32*32 = 10 240
deconv. 3. 1. (3*3+1)*32*16 = 5 120
deconv. 2. 2. (5*5+1)*16*16 = 6 656
deconv. 2. 1. (7*7+1)*16*8 = 6 400
deconv. 1. 2. (9*9+1)*8*8 = 5 248
deconv. 1. 1. (11*11+1)*8*1 = 976
Total 66 280 parameters

5.5.1 Restoring Parameters

Before running the computation graph, we need to restore the parameters we trained in
the training process. We only need to be coherent between the graph used in the training
process and the graph used to analyze a scene (i.e. using the same hyper-parameters).

5.5.2 Application of the Model

The crater detection cannot be done in one operation. After importing any scene, different
steps are executed, including pyramid scene processing, image tiling, scene reconstruction
and several post-processing including mathematical morphology.

Images Pyramid

The model is calibrated to a small range of crater sizes. In our case, it is able to recognize
craters of about 32x32 pixels. Empirical results show us that craters dimensions ranging
from 16x16 to 64x64 pixels are also recognized.

In order to find smaller craters, we need to up-sample the scene. Similarly, we down-sample
the scene to find bigger craters. We decided to create a pyramid of resolution with bicubic
interpolation with a scale factor of 2 between each level. The idea is thus to build a pyramid
of images, each treated independently. Considering our observations, the scale factor of 2
seems to be reasonable.
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Figure 5.16: Hierarchical representation of a pyramid in image processing, with a scale
factor of 2 between each level (Bradski, 2000).

However, if we try to up-sample too small elements on a scene, the blur effect becomes too
important and we may not be able to recognize if whether of not the pixel belongs to a
crater (even with expert eyes). Thus we have to set a minimum diameter size below which
we do not consider the crater detection. Empirical pre-results show that below a diameter
of 4 meters (8 pixels), we cannot ensure the reliability of the process.

Similarly we have to set a maximum diameter size. This parameter is not related to any
image processing artifact but to the acquisition scene. Each NAC CDR image is about
5000x50000 pixels, meaning that diameters bigger than half the width of the image is likely
to be cut on the edge of the scene. We decided to set the maximum diameter size to 2048
pixels (about one kilometer).

To summarize, we have the following layers to analyse :

Scale Factor Diameter (in meters)
0.25 4x4
0.5 8x8
1 16x16
2 32x32
4 64x64
8 128x128
16 256x256
32 512x512
64 1024x1024
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Figure 5.17: Image processing using tiles (Geomatics, 2016).

Tiling Images

The hardware limitation forces us to use image tiling to apply our model. In tile processing,
we extract from a large scene some sub-scenes that are processed one after the other. Note
that to avoid boundary effects inside the scene when we reconstruct the image, we apply
the model on each tile with a small overlap between them. In the project, we defined tiles
of size 1000x1000 pixels (at pyramid level) and an overlap of 16 pixels (i.e. half the path
size). Note that if the patch size was greater, the overlap should be more important too.

Computing Probabilities

The application of the model on the image produces a probability map. This probability
is transformed into a label by setting a threshold beyond which the pixel is considered as
belonging to a crater (see section 5.3.6).

5.5.3 Mathematical Morphology

The classified image contains isolated predictions creating some noise. A crater consists in
an ensemble of joined pixels labeled as crater whose shape is circular with a diameter of
about 32 pixels. Thus, isolated pixels labeled as craters may be false detections An opening
operation eliminate this artifact.

The opening results from cascading an erosion and a dilation with the same structuring
element (i.e. a kernel in computer vision) (Van Droogenbroeck P., 2016):
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X ◦B = (X 	B)⊕B (5.8)

The opening of a set X by structuring element B is the set of all the elements of X that are
covered by a translated copy of B when it moves inside of X.

Similarly, a crater-free pixel inside a set of crater pixels forming a circle can be considered
as a false negative. The idea is to use a closing operation to fill the gaps in crater objects.

A closing is obtained by cascading a dilation and an erosion with a unique structuring
element (i.e. a kernel in computer vision) (Van Droogenbroeck P., 2016):

X •B = (X ⊕B)	B (5.9)

These morphological operators are already implemented into the OPENCV library (Bradski,
2000).

Figure 5.18: Application of the opening of the set X by structuring element B (center).
Application of the closing of the set X by structuring element B (right) (Van Droogenbroeck
P., 2016).

Figure 5.19: Application of mathematical morphology to clean a processed image.
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5.5.4 Object Extraction

To extract objects on a image, we need to visualize our binary mask as a graph image
where each crater pixel is a node and an edge between two nodes exists only if two crater
pixels are neighbors (8-connectivity).

Based on this graph, we use a connected-component labeling algorithm to create our objects
(Dillencourt M., Samet H. and Tamminen M., 1992). This task was performed using scipy
Python library which has a package specialized in multi-dimensional image processing.

Then we compute the total area of each component and we remove those that are not
relevant. The concept of relevance used here is related to the fact that our model is
supposed to be able to detect craters with a diameter ranging from 16 pixels to 64 pixels
(in each single pyramid level). Therefore, the conditions to keep a crater are

π82 ≤ Area ≤ π322 (5.10)

With the area expressed in square pixels.

Note that these conditions can be a little relaxed for two reasons :

• The smallest craters present in the range of valid diameters may not be entirely
recognized. The area of a correctly recognized crater might be below the lower bound
of the condition.

• If some valid craters are arranged one next to the other, they are likely to merge with
our mathematical morphology.

The objects can be qualified in terms of image position and radius. The position is related
to the centroid of each connected-component and the radius is an aggregation of the total
area covered by the object, supposed to be a circle. Given the area, the radius is computed
using

Radius =

√
Area

π
(5.11)

These craters are not directly geolocated but associated with its NAC CDR or ortho rec-
tified image metadata, their geographical position can be retrieved. The crater object is
thus defined by a tuple whose fields are : id crater, id image, X, Y, Radius.
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5.5.5 Reconstruction of the Scene

At each stage of the pyramid, craters with a specific diameter are detected. We thus
have a list of masks with different resolutions. Each image can be resampled to produce
geometrically coherent maps of craters. Note that with classified images, the re-sample is
executed with nearest neighbor interpolation.

With these images, it is possible to produce a map of all crater types. The result is nothing
but a OR operation between the different masks (see figure 5.20).

Figure 5.20: Combination of the different crater masks.

Note that the reconstruction may be subject to errors. Firstly, if the down-sampling leads
to rounding some dimensions, the up-sampling in the reconstruction may be incoherent,
meaning that the superposition of the different layers is inconsistent. Secondly, the overlap
is different at each stage of the pyramid. If the overlap between each tile is 16 pixels, We
have an overlap region out of the whole set of tiles which is different when re-sampled to
the original resolution.

Thus we need to be careful when reconstructing the mask at original resolution to be
perfectly coherent.

Since some large craters can hide smaller craters, we can let the different crater masks
separated.

5.6 Integration to Cytomine

Cytomine was mostly used to handle our large remotely sensed data online and to efficiently
generate a dataset. However, it is also possible to add some python code to Cytomine in
the form of jobs.
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The job can be integrated into Cytomine. That way, the computations are done on servers
(meaning using the DGX-1 of the Montefiore’s Institute). It has the advantages that
anybody can apply the methods developed in our project. However, the integration process
can be long and tedious. It is recommended to integrate the source code when the job is
done (or in advanced stage).

The job can also be integrate on the client side. That way, the server asks the user to
produce results that are integrated into Cytomine. This method is more suitable when fre-
quent changes are made (test/adapt coding). Nevertheless, the power of personal desktop
is much lower.

However, since it is not the main goal of our project, we preferred to focus on the core of
the crater detection problem instead of adding our CDA into Cytomine.
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6 | Results, Validation and Discus-
sion

6.1 Framework for Objective CDA Performance Eval-

uation

Salamunićcara and Lončarićb (2008) designed a framework to evaluate the efficiency of
CDAs.

From 1998 to 2007, 73 CDAs have been developed. When a new method to detect craters is
built, there is a need to compare the novel CDA with the best previously developed CDAs
throughout coherent comparison protocols and criteria. It implies either to re-implement
the best methods or compare on similar datasets with the same metrics. In the first way,
the re-implementation can be a laborious task and some articles do not provide enough
information (especially for hyper-parameters). Though the second way looks easier, there
is no common lunar crater dataset used for CDAs as it is the case on Mars.

In our work, we built a substantial dataset of lunar craters on various scenes on NAC CDR
LROC products and on ortho-rectified NAC images. We vary the illumination conditions,
the latitude, the lunar hour, the overall image quality and the geological lunar context.
Any researcher can use the dataset to make its own experiments.

Moreover, we use in our work common pattern recognition metrics/protocols put forward
by CDA developers. The objective is to use a coherent way to evaluate the semantic
precision of the detected craters. On the one hand, we produced masks of craters. The
evaluation can be based on these maps in a pixel-based approach. On the other hand we
extracted from these masks the crater objects in CSV files, containing radii and positions.
using these files, we can evaluate our CDA according to an object-based approach.
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6.1.1 Metrics

Error/Confusion Matrix

The error matrix (or confusion matrix) is one way to assess the performance of a classifica-
tion process. In this matrix, the predicted results are compared to the true labels. Dealing
with binary classification, the error matrix only contains four cells.

Predicted
0 1

Ground 0 TN FP
Truth 1 FN TP

• TN (true negative) : predicted negatives that are actually negatives.

• FP (false positive) : predicted positives that are actually negatives.

• FN (false negative) : predicted negatives that are actually positives.

• TP (true positive) : predicted positives that are actually positives.

These values are either absolute (count) or relative (proportion of total).

Note that the confusion matrix can be built either pixel-wise or object-wise.

Metrics

From the before-mentioned values, we can compute useful metrics :

• Recall (or sensitivity) =
TP

TP + FN
: corresponds to the proportion of positives

detected.

• Specificity =
TN

TN + FP
: corresponds to the proportion of negatives detected.

The objective of any CDA is to maximize these two metrics.

Other metrics also exists :
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• Precision =
TP

TP + FP
: reliability of the predicted positives.

• Accuracy =
TP + TN

TP + FN + FP + TN
: proportion of well-classified elements amongst

all elements.

• f1-score = 2 ∗ Precision ∗Recall
Precision+Recall

: harmonic mean of the precision and recall. Con-

sidered as an ideal compromise between both.

• Intersection over Union (IoU) =
Positivepred ∩ Positivetrue
Positivepred ∪ Positivetrue

: represent the concor-

dance between the targeted elements we predict and their true positions (fig 6.1).

Figure 6.1: Graphical representation of intersection over union metric on detected objects.

6.1.2 ROC Curve

With the sensitivity and specificity, it is possible to represent a model in a bidimensional
space called receiver operating characteristic (ROC) space (see fig 6.2). In this space, an
ideal classifier is situated in the upper-left corner. The upper-right corner consists in a
classifier that always predicts positive. Similarly, the lower-left corner corresponds to a
classifier that always predicts negative. The center of the space is a random classifier.

A classifier often computes the probability of an object to belong to a class. The choice
to associate the object to the label is finally made by setting a threshold above which the
class is predicted.

By varying this threshold, we change the sensitivity and specificity, making the model
describe a curve on the ROC space, called the ROC curve.

It is possible to plot different ROC curves to compare different models. If one is always
upper than the other, the model is better. However, if the two curves cross, we choose the
model according to the metric we want to maximize.
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Figure 6.2: Example of a ROC curve produced in our work.

In the case of safety landing for example, the priority is that all craters are detected,
i.e. maximizing sensitivity. In the case of crater landmarks-based navigation, we need
a high reliability when a crater is detected meaning maximizing the false negative rate
(1-specificity).

Finally, it is possible to summarize the graph as the area under the curve (AuC).

The Python code created on this purpose saves the results by building a dedicated R-script
that plots and saves the ROC curve.

6.1.3 Object-Based Evaluation

The pixel-based evaluation is an easy task to implement. To each pixels in the image, we
look at true label and we compute the confusion matrix (and its related metrics). Since
the evaluation is simple, the interpretation is sometimes confusing.

The object-based evaluation is more complex to implement. It is impossible to detect
craters that are perfectly equivalent to the true craters. There is always a shift in center
positions or a difference in radius and shape. We have to define a certain tolerance. To do
so, Salamunićcara and Lončarićb encourage researchers to compute a measure of differences
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in position and size between two craters. This measure is normalized by the crater size,
meaning that this score is not biased by the size of the crater (with the assumption that
all crater characteristics evolves proportionally to the crater size).

The measure of crater difference is defined by

f = max
(r1
r2
− 1,

d

r2

)
(6.1)

Where 1 and 2 represent the predicted crater and the true crater. r1 is the bigger radius
between the two and d is the euclidean distance between the craters.

The first term of the equation is based on the difference in radius. The second is based
on the difference in center position. The two terms are normalized by the radius of the
bigger crater. The score does not simply averages the two terms but only takes the worst.
A crater is considered as well-predicted if the score is below a specific threshold. Fig 6.3
shows different examples of computed measures of crater difference.

To produce that metric, we need to spatially pair the craters. For each true crater, we
compute all possible measures of crater difference with all predicted craters. The f is chosen
taking the minimum value encountered, i.e. the crater that is the most likely associated
with the true crater.

Though that metric is visually interesting, it has two important disadvantages. First,
it only concerns the positives, meaning that false negatives are not taken into account.
Secondly, the metric cannot be used alone. If not, the CDA could simply create a huge
amount of craters to maximize the score. It must at least be paired with false negative
rate for example.

Note that this metric was already used by Wetzler et al. (2005).

6.2 Results and Discussion

To evaluate metrics that represents the CDA, we can use the test sample. It contains
patches that need to be predicted. The evaluation is thus processed by comparing the
prediction with the ground truth.

The train and test set are randomly divided at each execution of the code. To compute the
metrics, we can execute several times the code and aggregate the results. With a random

72



6.2. RESULTS AND DISCUSSION 73

Figure 6.3: Examples of different comparisons between ground truth and predicted craters
and its associated measure of difference (Salamunićcara & Lončarićb, 2008).

separation of the train/test set, we do not strictly need a validation set1. However, to be
consistent with traditional machine learning approaches, we defined a validation set which
represents 10% of the whole dataset (fig 5.7 visually summaries the different sets).

Note that, similarly to the train step, memory limitations do not allow us to predict the
whole test set in once. Thus we have to evaluate the model using mini-batches.

6.2.1 Evaluation Procedure

In deep learning, each training operation can be quite long. Producing a sufficient amount
of data needs an evaluation procedure to limit the unreasonable time needed to produce an
exhaustive analysis on all considered models. The idea developed here is to compute at the
beginning a limited amount of trials to eliminate models whose metrics are well below the
others (see annexes for an exhaustive description of analyzed models). Then we repeat the
process with the remaining models by producing a bigger amount of runs. After that, we

1Traditionally, evaluation methods use a train set, a test set and a validation set. The reason why using
3 sets is simple. If your sets are fixed and you optimize the hyper-parameters of the model using a metric
computed on the test set, you overfit the test set. Even if the training of the model only uses the train set,
the choice of hyper-parameters are made using the test set, what makes it not independent. The validation
set is thus a totally independent set which gives an approximation of the overall accuracy of the model.
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can remove the worst remaining models. We iterate up to find the different useful models
considering some applications. Some may have a good ability to minimize false positive
rate. In contrast, some might be better in recognizing craters with a high reliability (low
false negative rate). Finally, the last ones can split the difference.

In our work, the evaluation procedure of the training stage is separated in 3 steps. First,
we rapidly eliminate models that do not suit our requirements. The eliminated models
are called third order models2. Then, from the remaining ones, we produce more results.
From these we separate the second order models (that are discarded) from the first order
models (retained). Note that the first order models are chosen not only in decreasing order
according to the scores. Actually, some good models are quite redundant. There are thus
put into the second order models. Also, even among models that are not at the top of the
rankings, some have characteristics that may be useful in certain circumstances (a better
recall for example).

Then, to measure the ability of the model to generalize the problem to all considered
latitudes (from -60◦ to +60◦), we divide our dataset into two subsets. The first one is
concerned with the latitudes closest to the lunar equator (from -30◦ to +30◦). The second
one contains the annotations of the images situated beyond these latitudes (below -30◦ and
above +30◦). As the images have been chosen according to a systematic random sampling,
the subsets are balanced in terms of amount of annotations and in terms of priors.

In the same way, we can separate the different data sources (namely the annotations from
the NAC CDR images and those from ortho-rectified images). In section 4.2, we were
wandering if the ortho-rectification brings something useful when trying to detect craters.
That must be verified in this section.

6.2.2 Results

The results displayed below are aggregated results from the different models on the 3 differ-
ent datasets (namely train set, test set and validation set). The metrics are computed using
pixel-wise comparison between ground truth and prediction with a threshold probability
of belonging to a crater set to 50%.

Note that we discarded the object-based evaluation method in our evaluation. Though we
were confident in our approach, we notice that craters close to each other tend to merge,
leading to very poor results when trying to extract crater objects from the connected
component search algorithm, even if visual interpretation leads us to conclude that the

2Note that the models 1 1 0 0 and 1 1 0 1 are redundant, just as 1 1 0 0 and 1 1 0 0. The notion
of symmetricality (a symmetric model is a model that has the same number of convolutional layers than
deconvolutional layers) is pointless for such simple models. In our framework, we only consider 1 1 0 0
and 1 1 1 0.
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detection performs well.

Exhaustive quantitative results, including ROC curves, are available in the annexes. An-
nexes also comprises visual results on crater prediction on the different sets used but also
detections of craters on parts of the scenes (with a distinction between NAC CDR images
and Ortho images).

The first series of tests allows us eliminate all models with only one stage (namely 1 1 0 0,
1 1 1 0, 1 2 0 0, 1 2 0 1, 1 2 1 0 and 1 2 1 1 ). These models are not able to encode the
deep enough characteristics representative of the crater object. We also eliminate some of
the models with two stages with only one convolutional layer in each stage, suffering from
the same problem (2 1 0 1 and 2 1 1 1 ). Finally, we remove the two models with 3 stages
that have very asymmetrical deconvolution network. The rapid growth in their dimension
(from one eighth of the patch size to the original patch size in one deconvolutional layer)
does not seems relevant (3 1 0 0 and 3 1 1 0 ).

In the second series of tests we eliminate the remaining two-stages models with one con-
volutional layer in each (2 1 0 0 and 2 1 1 0 ). We also remove 2 2 0 0 because of its
redundancy with model 2 2 0 1. Moreover, we remove the three-stages models with one
convolutional layer in each. We can here observe the benefits of multiple non-linearities
within the stages. Finally, we withdraw the models 3 2 0 0 and 3 2 0 1 because of their
redundancies with models 3 2 1 0 and 3 2 1 1. Since the latter gives better results, we
only consider them.

We can also visualize the correlation between the different sets (table 6.4). We notice that
the validation set is highly dependant of the train set. That observation is reassuring. It
shows that our model does not overfit any set and that the application of the model to
unseen data is not a risky venture.

In addition, we can analyze the dependences between the different metrics (table 6.5). For
example, the F1-score and IoU are very redundant metrics. Moreover, we notice that the
precision is a very important metric since no other score explains it correctly.

All these models can be represented in a diagram with prediction and recall as axis (fig
6.4).

The retained models are finally 2 2 0 1, 2 2 1 0, 2 2 1 1, 3 2 1 0 and 3 2 1 1. Their
representation can be seen below. The yellow layers represent the convolutional layers
(including activation function), the blue ones the pooling layers and the green ones the
deconvolutional layers. The thickness of each layer is representative of the number of
features maps produced by the layer. More details are available in the annexes.
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Considered Model 1 1 0 0 1 1 1 0 1 2 0 0 1 2 0 1 1 2 1 0

Precision Train 0.724 0.500 0.822 0.802 0.500
Test 0.726 0.769 0.819 0.801 0.574
Valid 0.724 0.500 0.823 0.792 0.500

Recall Train 0.423 0.351 0.149 0.519 0.276
Test 0.421 0.005 0.151 0.520 0.000
Valid 0.418 0.355 0.143 0.493 0.267

F1-Score Train 0.534 0.412 0.253 0.631 0.355
Test 0.533 0.011 0.255 0.630 0.001
Valid 0.530 0.415 0.244 0.608 0.348

Accuracy Train 0.823 0.566 0.789 0.854 0.630
Test 0.823 0.761 0.787 0.854 0.760
Valid 0.821 0.561 0.788 0.847 0.637

IoU Train 0.364 0.260 0.145 0.460 0.216
Test 0.363 0.005 0.146 0.460 0.000
Valid 0.361 0.262 0.139 0.436 0.210

Considered Model 1 2 1 1 2 1 0 1 2 1 1 1 3 1 0 0 3 1 1 0

Precision Train 0.802 0.723 0.803 0.826 0.787
Test 0.804 0.724 0.810 0.832 0.812
Valid 0.796 0.714 0.779 0.845 0.824

Recall Train 0.448 0.241 0.581 0.425 0.109
Test 0.441 0.239 0.584 0.426 0.104
Valid 0.427 0.252 0.540 0.407 0.100

F1-Score Train 0.575 0.362 0.674 0.562 0.192
Test 0.570 0.360 0.679 0.564 0.185
Valid 0.556 0.373 0.638 0.550 0.179

Accuracy Train 0.841 0.796 0.864 0.839 0.777
Test 0.840 0.795 0.867 0.842 0.782
Valid 0.836 0.796 0.847 0.840 0.778

IoU Train 0.404 0.221 0.509 0.390 0.106
Test 0.398 0.219 0.514 0.392 0.102
Valid 0.385 0.229 0.468 0.379 0.098

Table 6.1: Third order models - immediately eliminated.
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Model 2 1 0 0 2 1 1 0 2 2 0 0 3 1 0 1 3 1 1 1 3 2 0 0 3 2 0 1

Precision Train 0.788 0.773 0.860 0.823 0.746 0.832 0.808
Test 0.786 0.771 0.863 0.842 0.763 0.849 0.804
Valid 0.793 0.776 0.854 0.834 0.737 0.818 0.801

Recall Train 0.627 0.543 0.543 0.741 0.643 0.763 0.760
Test 0.625 0.543 0.760 0.750 0.648 0.775 0.754
Valid 0.600 0.520 0.733 0.720 0.603 0.730 0.725

F1-Score Train 0.698 0.628 0.807 0.779 0.689 0.796 0.783
Test 0.696 0.628 0.808 0.792 0.698 0.810 0.778
Valid 0.683 0.615 0.789 0.772 0.662 0.772 0.760

Accuracy Train 0.870 0.853 0.912 0.896 0.858 0.903 0.899
Test 0.870 0.853 0.913 0.906 0.867 0.912 0.896
Valid 0.866 0.850 0.904 0.896 0.848 0.889 0.891

IoU Train 0.536 0.467 0.676 0.641 0.530 0.662 0.644
Test 0.534 0.466 0.678 0.657 0.532 0.681 0.637
Valid 0.519 0.452 0.652 0.630 0.507 0.628 0.614

Table 6.2: Second order models - eliminated after deeper computations.

Considered Model 2 2 0 1 2 2 1 0 2 2 1 1 3 2 1 0 3 2 1 1

Precision Train 0.699 0.844 0.728 0.834 0.849
Test 0.698 0.856 0.725 0.843 0.847
Valid 0.704 0.826 0.733 0.830 0.836

Recall Train 0.964 0.776 0.960 0.796 0.787
Test 0.963 0.782 0.958 0.803 0.781
Valid 0.954 0.755 0.949 0.770 0.754

F1-Score Train 0.809 0.808 0.828 0.814 0.817
Test 0.809 0.817 0.825 0.822 0.813
Valid 0.815 0.772 0.827 0.798 0.792

Accuracy Train 0.891 0.909 0.904 0.911 0.914
Test 0.890 0.916 0.902 0.917 0.914
Valid 0.892 0.895 0.904 0.904 0.903

IoU Train 0.681 0.678 0.707 0.687 0.691
Test 0.679 0.691 0.703 0.699 0.685
Valid 0.681 0.644 0.705 0.666 0.657

Table 6.3: First order models - retained and validated.

R Train Test Valid
Train 0.947 0.948
Test 0.913
Valid

Table 6.4: Correlation between the different dataset (train set, test set and validation set).
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R Precision Recall F1-Score Accuracy IoU
Precision 0.313 0.397 0.788 0.411
Recall 0.903 0.695 0.920
F1-Score 0.747 0.990
Accuracy 0.776
IoU

Table 6.5: Correlation between the different metrics.

Figure 6.4: Representation of the models in the precision-recall space.
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Figure 6.5: CraterNet 2 2 0 1.

Figure 6.6: CraterNet 2 2 1 0.

Figure 6.7: CraterNet 2 2 1 1.
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Figure 6.8: CraterNet 3 2 1 0.

Figure 6.9: CraterNet 3 2 1 1.

After computing the results on the whole dataset, we can focus on the stratified dataset
according to the latitude (table 6.6). Here, we split the dataset in central latitudes (-30◦ to
+30◦) and in external latitudes (-60◦ to -30◦and 30◦ to 60◦) where we train and test each
model on its same range of latitudes. We only considered the models 2 2 1 1 and 3 2 1 0.

We clearly notice the improvement when stratifying the dataset. With the model 2 2 1 1,
the intersection over union increases from about 0.71 to 0.80 (low latitudes) and 0.75 (high
latitudes). The F1-Score also increases from 0.83 to 0.89 (low latitudes) and 0.86 (high
latitudes). The same phenomenon occurs with model 3 2 1 0, with slightly lower results.

We can also observe that the two subsets do not produce similar results. In both models,
the annotations situations in latitudes ranging from -30◦ to +30◦ perform better than
latitudes beyond.

80



6.2. RESULTS AND DISCUSSION 81

Considered Model 2 2 1 1 2 2 1 1 3 2 1 0 3 2 1 0
Low lat. High lat. Low lat. High lat.

Precision Train 0.821 0.779 0.857 0.856
Test 0.820 0.774 0.899 0.849

Recall Train 0.967 0.955 0.817 0.816
Test 0.963 0.949 0.848 0.805

F1-Score Train 0.888 0.857 0.836 0.836
Test 0.885 0.852 0.872 0.826

Accuracy Train 0.941 0.924 0.916 0.922
Test 0.941 0.921 0.941 0.919

IoU Train 0.799 0.751 0.720 0.718
Test 0.795 0.744 0.775 0.705

Table 6.6: Results when separating the datasets according to the latitude.

Considered Model 2 2 1 1 2 2 1 1 3 2 1 0 3 2 1 0
Low lat. High lat. Low at. High lat.

precision 0.764 0.716 0.845 0.838
recall 0.957 0.951 0.744 0.745
F1 0.849 0.817 0.791 0.789
Accuracy 0.918 0.897 0.902 0.904
IoU 0.738 0.690 0.655 0.651

Table 6.7: Results on stratified validation sets according to the latitude.

Also, we can train our model with the entire dataset and validating on different ranges
latitudes (table 6.7). With the model 2 2 1 1, we notice an improvement at low latitudes
and a degradation on high latitudes. This is coherent with previous results. Also, we
observe that model 3 2 1 0 is insensitive to latitudes variations, though the model performs
less well on most metrics.

After that, we can evaluate the model trained with the entire dataset on the different data
source (namely NAC CDR images and ortho-rectified images) (table 6.8). Surprisingly, the
results are better on the NAC images. The reasons may be that the ortho-rectification,
though it corrects some alterations due to panoramic disturbances, brings some linear
noises through lines and columns in some images. Those linear artifacts may be decreased
using Fourier denoising pre-process. However we did not test it in our work.
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Considered Model 2 2 1 1 2 2 1 1 3 2 1 0 3 2 1 0
NAC Ortho NAC Ortho

precision 0.751 0.713 0.827 0.772
recall 0.958 0.949 0.773 0.741
F1 0.841 0.814 0.799 0.756
Accuracy 0.913 0.896 0.903 0.876
IoU 0.727 0.687 0.665 0.608

Table 6.8: Results on stratified validation sets according to the type of data.

Then, we can try to train our two datasets separately and measure the performances (table
6.9). We notice a slight improvement when separating the dataset, with again better results
on the NAC CDR images.

However when training the models on one specific data source and trying to predict the
other one (i.e. performing somehow transfer learning), the results are drastically decreased
(table 6.10).

Considered Model 2 2 1 1 2 2 1 1 3 2 1 0 3 2 1 0
NAC Ortho NAC Ortho

precision 0.771 0.769 0.843 0.825
recall 0.962 0.949 0.792 0.792
F1 0.856 0.849 0.816 0.808
Accuracy 0.922 0.918 0.910 0.906
IoU 0.749 0.738 0.690 0.679

Table 6.9: Results when separating the datasets according to the data source.

Considered Model 2 2 1 1 2 2 1 1 3 2 1 0 3 2 1 0
NAC Ortho NAC Ortho

precision 0.710 0.686 0.799 0.719
recall 0.910 0.843 0.685 0.647
F1 0.797 0.756 0.737 0.681
Accuracy 0.889 0.868 0.880 0.837
IoU 0.663 0.607 0.584 0.517

Table 6.10: Results when trying to predict the other data source.

Analyzing those results, we notice that in exchange of a slight loss of overall accuracy, the
model can combine different data sources in order to produce a model that is satisfying in
different circumstances.
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6.2.3 Discussion

The results shows that depending on the application, some models are more suitable than
others. We notice that models 2 2 0 1 and 2 2 1 1 distinguish in their ability not to miss
craters (more than 0.95 in recall). If the goal is to ensure that a probe does not land in
a crater, these models must be considered. In return, the reliability of these craters are
sometimes low, with about 30% of pixels considered as craters that are actually not. We
notice that model 2 2 1 1 is slightly better in general, meaning that the central pooling
layer brings some benefits to crater recognition.

If the goal is to maximize the reliability of each crater found, the 3 other models are more
likely to be picked. They all produce similar results, with 3 2 1 0 that performs a bit
better. It is moreover the quicker model to train and use. That model is thus to be
privileged.

Looking at visual results, we notice that the asymmetrical models are more flexible in terms
of decision making (fig 6.10). The probability distribution of belonging to a crater is more
relaxed than symmetrical models, making possible to slightly move the threshold above
which the pixel is classified as crater to produce significantly different results. Depending
on the application, this option is welcome.

Figure 6.10: Difference between a symmetrical model (left) and a asymmetrical model
(right) in terms of computed probabilities (bottom-left patches).

In visual results, we are disappointed that some lunar rocks or other topographic elements
are classified as craters (fig 6.11). The a priori knowledge of solar illumination conditions
would have enable the model to understand that the highlight/shadow areas should have
been inverted. Since the model was designed to work autonomously, we did not let it know
that information. We thought that showing a set of lunar rocks classified as negatives
would have enable the model to learn the slight difference between the two (in terms of
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sharpness and shape for example).

Figure 6.11: Misclassified crater. Ground truth = label, prediction = logits.

Though the results show that the method is viable, we are a bit disappointed not to see
spectacular enhancement of the metrics compared to state of the art methods. The main
problems are encountered with the smaller craters when applying the model on a scene.
The noisy background of the lunar ground is often interpreted as small craters (especially
on ortho-rectified images). Some parts of the topographic lunar surface are rugged and are
also misinterpreted as craters.

Nevertheless, when working on stratified datasets, we observe a net improvement of our
models. Indeed, the stratification of the dataset also decreases the complexity of the
problem. That observation indicates that our fully convolutional neural networks have
difficulties to generalize the problem. In addition, we notice that the model is more able to
detect craters that are closer to the lunar equator. Looking back at the skyplot (fig 4.2),
that observation is understandable since high latitudes leads to more varied illumination
conditions.

When separating the two data sources, we notice that the ortho-rectification of the images
has a negative impact in all metrics. Also, we observe that transfer learning is not viable
with our models. However, we are glad to see that combining two different data sources is
possible with minor decreases in overall accuracy.
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6.2.4 Trials on Mars Dataset

The CDA developed in our project is focused on the Moon but we can try the application
directly on the Mars dataset introduced in section 4.2.

In order to rapidly produce results, we use the freely available dataset3 from Urbach and
Stepinski (2009) to train our model. The kit is composed of 6 tiles of a single scene with
a set of candidates in CSV files. This set of candidates comes along with its ground truth
: for each candidate an expert put a label.

However, the proper use of these data is not designed to semantically segment the scene
but rather to non-spatially classify the set of candidates. Traditionally, articles using this
dataset developed a machine learning model able to classify the candidates. Nevertheless,
those methods are not able to determine craters that are not part of the candidate dataset.

This point is important because our CDA is indeed designed to classify an entire scene.
In our case we need annotations of craters but also crater-free zones. In the Mars dataset,
the only available data are the candidates i.e. a set of craters or zones that look like
craters (since they have been classified as candidates). In this dataset we are thus missing
annotations of various simple crater-free zones, making our CDA unable to classify scenes
that should be easily classified as crater-free areas.

Moreover, though positive annotations (craters) are quite relevant to our CDA, the negative
annotations are highly redundant (fig 6.12). We sometimes meet more than 10 annotations
of the same object. With some tiles having less than 300 annotations, the amount of exam-
ples to train our model is quite small. In addition, some of the negative martian annotations
are misleading according to our CDA and lead it to unlearn the concepts describing the
crater object because what Urbach and Stepinski consider as negative candidates contains
pixels that are actually positives (fig 6.13).

Figure 6.12: These 14 negative martian annotations represent the same object with a slight
translation (Urbach & Stepinski, 2009).

3https://github.com/ieee8023/CraterDataset
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Figure 6.13: These negative martian annotations contain craters with diameter size that
should have been classified as positive, according to our methodology (Urbach & Stepinski,
2009).

At finer resolution, the model is even less able to detect crater-free areas because of the
speckle noise of this particular Mars scene. It results in large craters that may be cor-
rectly classified and smaller craters which tend to merge, forming tentacular connected
components at fine scale (fig 6.14).

Figure 6.14: Attempts to retrieve craters on a Mars scene. Left : craters of about 64 pixels.
Right : craters of about 16 pixels.

6.2.5 Comparison with Other Models

The use of the framework developed by Salamunićcara and Lončarićb (2008) helps the com-
parison with other CDAs developers. Nevertheless, the most renowned authors in CDAs
were working on Mars, which makes our comparison difficult. Moreover, the geophysical
process and the geological history of the planet may influence the results. Also, CDA
developers who worked on the Mars dataset developed by Urbach and Stepinski (2009)
only evaluate their results based on the ground truth related to the candidates and not on
the entire scene. We can argue that the CDA can miss craters/find false craters because
the candidates pre-selection may not be exhaustive. Nevertheless, our evaluation method
suffers from the same problem.

For any researcher who would want to reuse our dataset, we recommend to take benefits
from the framework for CDA performance evaluation to make comparisons easier. We are
aware of the issues met by authors who wants to situate their results among the literature.
The confusing variety of ways to evaluate the efficiency of the methods is one major problem
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but the use of a different dataset is another one when trying to make comparisons.

The CDA we developed has several pro and cons compared to the CDAs developed by
previous researches.

The first advantage is that our models are independent from any previous work. In the
case of CDA developers that work on the Mars dataset, their results are dependent on the
craters candidates estimator developed by Urbach and Stepinski.

Also, our models are quite efficient in terms of computation time. Once trained, each
model is able to map an entire region of 5000x50000 pixels in less that one minute. By
comparison of the candidates estimator takes a couple of hours to produce its results4.

Our CDA, as many deep learning models, is quite flexible. Choosing a different set of
hyper-parameters may lead to completely different results. It thus enables researchers to
use one specific model for one particular application.

Finally, once the CDA is employed, the model may look like a black-box of parameters
difficult to interpret for humans. We can look at the different trained filters (see annexes)
and try to extract general conclusions about the way our models define the crater object.
In practical terms, the number of filters and the spatial arrangement of the filter weights
make the interpretation almost impossible.

4Note that with recent advances in terms of hardware and image processing, the time needed to compute
these candidates is probably much slower, but certainly still slower than ours by several order of magnitude.
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7.1 Conclusion

In this project, we tried to use the recent advances in deep learning into the unsolved
problem of crater detection. To do so, we had to study the formation of craters and look
at scientific literature in the crater detection problem. We also needed to investigate in
progress in deep learning and try to implement some classical models such as CNN or FCN.

After that, we were looking for data to train our model. Unfortunately, no dataset met our
needs. Then came the question of how to create our learning observations. in this context,
we created a Cytomine project and we integrated some lunar images from the LRO space
probe. Cytomine enabled us to create a fairly large number of annotations necessary to
our CDA.

Doing so, we contributed somehow to the research in crater detection by making an entire
crater dataset available to the scientific community. This dataset consists in more than 11
000 annotations of craters and crater-free area in two types of data sources. The first one
is the NAC CDR image available in the NASA’s LROC archive. The second one is the
ortho-rectified images produced by the Arizona State University. This dataset is available
directly on Cytomine with a authorized account or by the use of a CSV file containing all
the needed information to easily extract the annotations on the images.

Based on these annotations, we created patches that help our model learn the relevant
filters allowing to separate the crater object from the background. As our model is only
functional for a fixed crater size, we produced a pyramid of the scene, to recognize craters
of different sizes.

Then, we evaluate our models using a pixel-based approach. Though we are aware that our
CDA did not clearly overpass previously described CDAs, some advantages make it a viable
technique that could inspire geomorphological researcher, considering some applications.
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7.2 Perspectives

In this master thesis, we trained a model based on remotely sensed data. Firstly The idea
was to use only the NAC CDR images, which are radiometrically calibrated images from
the panchromatic sensor of the LRO probe that has the smallest field of view. However
we discovered later in March the ortho-rectified images produced by the Arizona State
University. One idea was to use these images and look at the advantages of the ortho-
rectification in the results. However we could also use the DEM that maps the terrain
elevation across the area. These topographic information could have been beneficial in our
CDA. Nevertheless, due to lack of time and since this was not the primary objective of the
project, we discarded this option.

In addition, one idea that maybe could have been implemented was to introduce in the
annotations a rank according to the level of degradation. Doing so, we could have evalu-
ated the model according to the freshness of the crater. However, the limits between the
different classes of degradation is difficult to establish and criteria could have been subject
to confusion.

Another possible stratification is the geological context of the model. If we go back to
figure 4.5, we notice different types of ground. These information could have been taken
into account when creating annotations.

Moreover, the image quality is generally fairly good. One question to be answered is to
know what happens when a certain amount of noise is added on the images. This artifact
could have been added by simulating salt-and-pepper noise for example.

In terms of implementation, we would have liked to use TensorBoard in a more efficient
way. TensorBoard recently reached a high level of interaction with developers and the
possibilities it offers can be useful.

In conclusion, each time a question is answered, new questions emerge, giving the researcher
the opportunity to deepen his research. However, we arrive at a point where it is time to
stop computing results and developing ideas. These new perspectives are all opportunities
for young researchers to get involved in the exciting adventure of crater detection and in
image processing in remote sensing in a more general sense.
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Annexes

Database

NAC images

Exhaustive NAC-CDR images list (bold product IDs are annotated images), from the free
planetary data system database :

• M1105680456LC

• M1105680456RC

• M1113630818LC

• M1113630818RC

• M1113929391LC

• M1113929391RC

• M1118438810LC

• M1118438810RC

• M1120982294LC

• M1120982294RC

• M1128984946LC

• M1128984946RC

• M1129170030LC

• M1129170030RC

• M1131721504LC

• M1131721504RC

• M1134111735LC

• M1134111735RC

• M1136506064LC

• M1136506064RC

• M1144451737LC

• M1144451737RC

• M1146592844LC

• M1146592844RC

• M1146911198LC

• M1146911198RC

• M1147117663LC

• M1147117663RC

• M1149076545LC

• M1149076545RC

• M1151417501LC

• M1151417501RC

• M1151437972LC

• M1151437972RC

• M1151617197LC

• M1151617197RC

• M1164519486LC

• M1164519486RC

• M121681384LC

• M121681384RC

• M121729272LC

• M121729272RC

90
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• M129221791LC

• M129221791RC

• M137299729LC

• M137299729RC

• M139374320LC

• M139374320RC

• M139376089LC

• M139376089RC

• M139666180LC

• M139666180RC

• M144490338LC

• M144490338RC

• M154868397LC

• M154868397RC

• M159365173LC

• M159365173RC

• M159698003LC

• M159698003RC

• M168048543LC

• M168048543RC

• M168191400LC

• M168191400RC

• M175218641LC

• M175218641RC

• M183403129LC

• M183403129RC

• M190536605LC

• M190536605RC

• M190580987LC

• M190580987RC
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Ortho-images

Table 7.1: List of the ortho-images we take some annotations
Image name Number of annotations
NAC DTM APOLLO16 2 200
NAC DTM LICHTENBER2 200
NAC DTM ARISTARCHU5 200
NAC DTM LINNECRATER 200
NAC DTM GRTHSENNW 200
NAC DTM REINER4 200
NAC DTM HARDINGH 200
NAC DTM BRISBANEZ 200
NAC DTM APOLLO12 200
NAC DTM KUGLERRIDGE 200
NAC DTM MNDLSHTMLS 200
NAC DTM GRUITHUISE8 200
NAC DTM ENDYMION 200
NAC DTM LICHTENBER8 200
NAC DTM LICHTENBER7 200
NAC DTM LICHTENBER10 200
NAC DTM RUMKERDOME2 200
NAC DTM LUNA16 200
NAC DTM HORTENSIUS5 200

Exhaustive ortho-images list, from the free Arizona State University database :

• NAC DTM KUGLERRIDGE

• NAC DTM REINER4

• NAC DTM ARISTARCHU5

• NAC DTM LINNECRATER

• NAC DTM GRTHSENNW

• NAC DTM APOLLO12

• NAC DTM HARDINGH

• NAC DTM APOLLO16 2

• NAC DTM LICHTENBER2

• NAC DTM BRISBANEZ

• NAC DTM APOLLO16 1

• NAC DTM RUMKERDOME3

• NAC DTM LUNA24

• NAC DTM MARIUS4

• NAC DTM APOLLO11

• NAC DTM FECNDITATS3

• NAC DTM MRECRISIUM1

• NAC DTM APOLLO16 6
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• NAC DTM MRECRISIUM2

• NAC DTM APOLLO16 5

• NAC DTM RUMKERDOME5

• NAC DTM RUMKERDOME4

• NAC DTM GRUITHUISE3

• NAC DTM HORTENSIUS3

• NAC DTM RUMKERDOME2

• NAC DTM GRUITHUIS12

• NAC DTM GRUITHUISE8

• NAC DTM ORIENTALE1

• NAC DTM ARISTARCHU4

• NAC DTM ARISTARCHU2

• NAC DTM APOLLO16 3

• NAC DTM HORTENSIUS2

• NAC DTM HORTENSIUS5

• NAC DTM LICHTENBER10

• NAC DTM GRUITHUISE2

• NAC DTM MRECRISIUM3

• NAC DTM LICHTENBER13

• NAC DTM RANGER

• NAC DTM LICHTENBER8

• NAC DTM MARIUS6

• NAC DTM LICHTENBER11

• NAC DTM COMPTONBELK

• NAC DTM FRSHCRATER4

• NAC DTM HANSTEENAL1

• NAC DTM A13SIVB

• NAC DTM LICHTENBER12

• NAC DTM LICHTENBER7

• NAC DTM LICHTENBER1

• NAC DTM GRUITHUISE7

• NAC DTM LICHTENBER3

• NAC DTM INACALDERA3

• NAC DTM REINER3

• NAC DTM GRUITHUISE9

• NAC DTM ENDYMION

• NAC DTM MARIUS2

• NAC DTM HORTENSIUS7

• NAC DTM GRUITHUISE4

• NAC DTM APOLLO16 4

• NAC DTM TRANQPIT1

• NAC DTM FRSHCRATER10

• NAC DTM GRUITHUISE6

• NAC DTM LUNA16

• NAC DTM HORTENSIUS6

• NAC DTM CRISIUMVOLC

• NAC DTM REINER2

• NAC DTM LICHTENBER9

• NAC DTM GRUITHUIS11

• NAC DTM LICHTENBER6

• NAC DTM ARISTARCHU3

• NAC DTM MNDLSHTMLS

• NAC DTM GRUITHUIS10
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• NAC DTM APOLLO14

• NAC DTM LASELMASIF1

• NAC DTM SURVEYOR7

• NAC DTM LICHTENBER5

• NAC DTM RANGER9

• NAC DTM MARIUS3

• NAC DTM RUMKERDOME1

JSON examples

Example of a JSON file associated to a specific annotation :

{

"class": "be.cytomine.ontology.UserAnnotation",

"id": 21583989,

"created": "1490299000045",

"updated": null,

"deleted": null,

"location": "POLYGON ((4271 4909, 4277.776996252509 4915.1167393786245, 4281.480188354018

4923.461111559433, 4281.469260747733 4932.590298786123, 4277.746102916053 4940.925781651136,

4270.954482671905 4947.0262794416285, 4262.268732855433 4949.836960668341, 4253.1906985174655

4948.871833012938, 4245.290054266391 4944.297775814947, 4239.932893268318 4936.905685117907,

4238.045517328095 4927.9737205583715, 4239.954270892059 4919.046299953035, 4245.329113128517

4911.66705542763, 4253.240684985877 4907.11192539893, 4262.3210038156285 4906.168533230957,

4271 4909))",

"image": 21556903,

"geometryCompression": 0.0,

"project": 19653296,

"container": 19653296,

"user": 19652953,

"nbComments": 0,

"area": 1.470352965E9,

"perimeterUnit": "mm",

"areaUnit": "micron",

"perimeter": 137.0,

"centroid": { "x": 4260.000000000002, "y": 4928.0 },

"term": [19653341],

"similarity": null,

"rate": null,

"idTerm": null,

"idExpectedTerm": null,

"cropURL": "http://demo.cytomine.be/api/userannotation/21583989/crop.jpg",
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"smallCropURL": "http://demo.cytomine.be/api/userannotation/21583989/crop.png?maxSize=256",

"url": "http://demo.cytomine.be/api/userannotation/21583989/crop.jpg",

"imageURL": "http://demo.cytomine.be/#tabs-image-19653296-21556903-21583989",

"reviewed": false

}

Example of a JSON file associated to a specific NAC image :

{

"class": "be.cytomine.image.ImageInstance",

"id": 21556903,

"created": "1490290632354",

"updated": null,

"deleted": null,

"baseImage": 21556891,

"project": 19653296,

"user": 19652953,

"filename": "/1490290559594/NAC_DTM_FECNDITATS3_M150178619_50CM.TIF",

"extension": "tif",

"originalFilename": "NAC_DTM_FECNDITATS3_M150178619_50CM.TIF",

"instanceFilename": "NAC_DTM_FECNDITATS3_M150178619_50CM.TIF",

"sample": 21556890,

"path": "/1490290559594/da15a872-9cca-4226-913a-04841d259ff5.tif",

"mime": "openslide/ventana",

"width": 9318,

"height": 57465,

"resolution": 1.0,

"magnification": null,

"depth": 8,

"preview": "http://demo.cytomine.be/api/abstractimage/21556891/thumb.png?maxSize=1024",

"thumb": "http://demo.cytomine.be/api/abstractimage/21556891/thumb.png?maxSize=512",

"macroURL": "http://demo.cytomine.be/api/abstractimage/21556891/associated/macro.png",

"fullPath": "/data/images/19652953//1490290559594/da15a872-9cca-4226-913a-04841d259ff5.tif",

"numberOfAnnotations": 201,

"numberOfJobAnnotations": 0,

"numberOfReviewedAnnotations": 0,

"reviewStart": null,

"reviewStop": null,

"reviewUser": null,

"reviewed": false,

"inReview": false

}
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Sample of the Database in CSV Format

Here is a sample of the crater annotations table (the full table has 11 239 annotations at
current state).

id;x;y;radius;label;id_image

23695500;5270.0;42647.5;15.8890897914;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583989;4260.0;4928.0;21.633952132;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583975;3819.0;4843.0;14.7809927636;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583952;4029.0;4679.0;19.1329977494;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583934;3760.0;4271.0;11.0171015314;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583920;3851.0;4623.0;33.9784272264;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583904;4318.0;4401.0;14.7809927636;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583883;4968.0;4381.0;18.5139760683;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583827;5298.0;4626.0;23.9960463426;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583724;5156.0;4783.0;34.2771756884;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583686;4607.0;4773.0;39.2431569046;0;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583654;3932.0;4678.0;10.0491427376;1;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583634;4488.0;4888.0;16.2516251775;1;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583602;5278.0;4265.0;11.2352831384;1;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583584;4601.0;4279.0;10.2878729972;1;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583549;4234.0;4802.0;16.5183059299;1;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

21583529;3487.0;4615.0;14.3476335455;1;NAC_DTM_FECNDITATS3_M150178619_50CM.TIF

... ... ... ... ... ...

... ... ... ... ... ...

Visual Results

Considered Models

Here is compiled the scheme of all the considered models in our project. The terminology
comes as follow :

• The first term corresponds to the number of stages in the model. Each stage is
composed of one or 2 convolutional layers (+ activation function) followed by a
pooling layer. We considered models with 1, 2 or 3 stages.

• The second term informs on the number of convolutional layers per stage (1 or 2).
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• The third term is a boolean that indicates if whether or not a pooling operation is
employed just before the deconvolution process.

• The last term is also a boolean inquiring about the symmetricality of the model. A
symmetrical model is a model that has as many convolutional layers than deconvo-
lutional layers.

Figure 7.1: Craternet 1 1 0 0.

Figure 7.2: Craternet 1 1 0 1.

Figure 7.3: Craternet 1 1 1 0.
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Figure 7.4: Craternet 1 1 1 1.

Figure 7.5: Craternet 1 2 0 0.

Figure 7.6: Craternet 1 2 0 1.

Figure 7.7: Craternet 1 2 1 0.
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Figure 7.8: Craternet 1 2 1 1.

Figure 7.9: Craternet 2 1 0 0.

Figure 7.10: Craternet 2 1 0 1.

Figure 7.11: Craternet 2 1 1 0.
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Figure 7.12: Craternet 2 1 1 1.

Figure 7.13: Craternet 2 2 0 0.

Figure 7.14: Craternet 2 2 0 1.

Figure 7.15: Craternet 2 2 1 0.
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Figure 7.16: Craternet 2 2 1 1.

Figure 7.17: Craternet 3 1 0 0.

Figure 7.18: Craternet 3 1 0 1.

Figure 7.19: Craternet 3 1 1 0.
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Figure 7.20: Craternet 3 1 1 1.

Figure 7.21: Craternet 3 2 0 0.

Figure 7.22: Craternet 3 2 0 1.

Figure 7.23: Craternet 3 2 1 0.

Figure 7.24: Craternet 3 2 1 1.
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Filters Trained

Here are displayed some filters from the 3 2 1 1 model, i.e. the network with 3 stages of 2
convolutional layers (+ activation layer) each followed by a pooling layer and a symmetric
deconvolution network. Note that the whole network contains 3984 filters.

Figure 7.25: Examples of filters trained from the first convolution layer (patch size = 32x32
pixels).

Figure 7.26: Examples of filters trained from the second convolution layer.

Figure 7.27: Examples of filters trained from the third convolution layer (after one pooling
operation, i.e. patch size = 16x16 pixels).
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Figure 7.28: Examples of filters trained from the forth convolution layer.

Figure 7.29: Examples of filters trained from the fifth and sixth convolution layers (after
two pooling operations, i.e. patch size = 8x8 pixels).

Figure 7.30: Examples of filters trained from the first deconvolution layer (after three
pooling operations, i.e. patch size = 4x4 pixels).

Figure 7.31: Examples of filters trained from the second deconvolution layer (after two
upsampling operations, i.e. patch size = 8x8 pixels).
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Figure 7.32: Examples of filters trained from the third deconvolution layer.

Figure 7.33: Examples of filters trained from the forth deconvolution layer (after two
upsampling operations, i.e. patch size = 16x16 pixels).

Figure 7.34: Examples of filters trained from the fifth deconvolution layer.

Figure 7.35: Examples of filters trained from the last deconvolution layer (after three
upsampling operations, i.e. patch size = 32x32 pixels).
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Patches Prediction (test set)

In the following pages, we displayed the semantic segmentation of patches used to test the
model (considering only the first order models). In the following examples, Original refers
to the panchromatic image, Label to the ground truth, Proba to the probability of the pixel
to belong to a crater and Logits is finally the predicted class.
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CraterNet 2 2 0 1

Figure 7.36: Examples of predicted patches. We can notice the ability of the model to
recognize craters but also its lack of reliability to detect other topographic elements without
a priori knowledge (upper right).
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CraterNet 2 2 1 0

Figure 7.37: Examples of predicted patches. Contrary to the previous one, the model
computes here probabilities with a far less degree of certainty.
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CraterNet 2 2 1 1

Figure 7.38: Examples of predicted patches. We notice that the model does not get trapped
with smaller craters (middle right) or with topographic artifacts (middle left).
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CraterNet 3 2 1 0

Figure 7.39: Examples of predicted patches. As for CraterNet 2 2 1 0, the non-symmetry
of the model prevent the model to compute a sharp probability map.
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CraterNet 3 2 1 1

Figure 7.40: Examples of predicted patches.
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Scene Parsing

NAC CDR Images

Figure 7.41: Extracting craters of size ' 16 pixels.

Figure 7.42: Extracting craters of size ' 32 pixels.
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Figure 7.43: Extracting craters of size ' 64 pixels.

Figure 7.44: Extracting craters of size ' 128 pixels.
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Figure 7.45: Extracting craters of size ' 256 pixels.

Figure 7.46: Extracting craters of size ' 512 pixels.
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Figure 7.47: Extracting craters of size ' 1024 pixels.

Ortho-Images

Figure 7.48: Extracting craters of size ' 16 pixels.
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Figure 7.49: Extracting craters of size ' 32 pixels.

Figure 7.50: Extracting craters of size ' 64 pixels.
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Figure 7.51: Extracting craters of size ' 128 pixels.

Figure 7.52: Extracting craters of size ' 256 pixels.
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Figure 7.53: Extracting craters of size ' 512 pixels.

Figure 7.54: Extracting craters of size ' 1024 pixels.
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Numerical Results

Roc curves

Here are displayed the roc curves of the first order models.

CraterNet 2 2 0 1

Figure 7.55: From left to right : train set, test set and validation set.

CraterNet 2 2 1 0

Figure 7.56: From left to right : train set, test set and validation set.



ANNEXES 120

CraterNet 2 2 1 1

Figure 7.57: From left to right : train set, test set and validation set.

CraterNet 3 2 1 0

Figure 7.58: From left to right : train set, test set and validation set.
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CraterNet 3 2 1 1

Figure 7.59: From left to right : train set, test set and validation set.
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Train Process

Here is displayed the evolution of the loss function value during the train process. The
considered models are the first order models.

Figure 7.60: From left to right : train set, test set and validation set.



ANNEXES 123

Source Code

Importation Function

import glob

import cv2

import random

import numpy as np

def importData(path, imageList, labelList, dim, n_sub, patch_size, label, rotated = True):

init = len(imageList)

if label==1:

labelImage = np.zeros((dim,dim))

cv2.circle(labelImage,(int(dim/2),int(dim/2)),int(dim/4),1,-1)

else:

labelImage = np.zeros((dim,dim))

path += ’*.png’

for filename in glob.glob(path):

img = cv2.imread(filename,0)

img = cv2.resize(img, (dim,dim), interpolation = cv2.INTER_CUBIC)

for i in range(0,n_sub):

rand_x = random.randrange(0, dim-patch_size)

rand_y = random.randrange(0, dim-patch_size)

sub_img = img[rand_y:rand_y+patch_size,rand_x:rand_x+patch_size]

sub_label = labelImage[rand_y:rand_y+patch_size,rand_x:rand_x+patch_size]

if rotated:

for j in range(4):

M = cv2.getRotationMatrix2D((patch_size/2,patch_size/2),j*90,1)

img_rotated = cv2.warpAffine(sub_img,M,(patch_size,patch_size))

label_rotated = cv2.warpAffine(sub_label,M,(patch_size,patch_size))

img_rotated = np.asarray(img_rotated).reshape(-1)

label_rotated = np.asarray(label_rotated).reshape(-1)

imageList.append(img_rotated)
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labelList.append(label_rotated)

else:

sub_img = np.asarray(sub_img).reshape(-1)

sub_label = np.asarray(sub_label).reshape(-1)

imageList.append(sub_img)

labelList.append(sub_label)

print(repr(len(imageList)-init) + ’ patches imported’)

Mini-Batch Creation

import random

def miniBatch(imageList, labelList, batchImage, batchLabel, sizeBatch):

for i in range(0,sizeBatch):

idx = random.randrange(len(imageTrain))

batchImage.append(imageList[idx])

batchLabel.append(labelList[idx])

Convolutional Network Functions

def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)

return tf.Variable(initial)

def bias_variable(shape):

initial = tf.constant(0.1, shape=shape)

return tf.Variable(initial)

def conv2d(x, W):

return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=’SAME’)

def max_pool_2x2(x):

return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],

strides=[1, 2, 2, 1], padding=’SAME’)



ANNEXES 125

R Script Writer

def R_script(filename,folder,title,namex,namey,x,y,xmax = 1, ymax = 1):

f = open(’./’ + folder + ’/’+ filename +’.R’, ’w’)

f.write("x = c(")

for value in x[:-1]:

f.write(repr(value)+’,’)

f.write(repr(x[-1]))

f.write(")\n")

f.write("y = c(")

for value in y[:-1]:

f.write(repr(value)+’,’)

f.write(repr(y[-1]))

f.write(")\n \n")

f.write("""plot( x, y, type="l", col="red", xlab=" """+namex+""" ",

ylab=" """+namey+""" ",main=" """+title+""" ",

xlim = c(0,"""+repr(xmax)+"""), ylim = c(0,"""+repr(ymax)+"""))""" + ’\n’)

doted = np.linspace(0,ymax,11)

for value in doted:

f.write("""abline(h = """ + repr(value) + """, col = "lightgray", lty = "dotted",

lwd = par("lwd"))""" + ’\n’)

doted = np.linspace(0,xmax,11)

for value in doted:

f.write("""abline(v = """ + repr(value) + """, col = "lightgray", lty = "dotted",

lwd = par("lwd"))""" + ’\n’)

f.write("dev.copy(jpeg,’" + filename + ".jpg’)" + ’\n’)

f.write("dev.off()")

f.close()

Error Matrix Computation

import numpy as np
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import math

import tensorflow as tf

import sklearn.metrics as skm

def error_matrix(image, label, threshold = 0.5):

sizeBatch = 100

step_max = math.floor(len(image)/sizeBatch)

err_mat = np.zeros((2,2))

for i in range(0,step_max):

print(’Evaluating the model : step ’ + repr(i+1) + ’ of ’ + repr(step_max)

+ ’ (batch size : ’ + repr(sizeBatch) + ’)’)

proba = sess.run(predictions, feed_dict=x_input: image[i*sizeBatch:(i+1)*sizeBatch])

proba_flat = proba.flatten()

y_pred = np.round(proba_flat+0.5-threshold)

y_true = []

for sublist in label[i*sizeBatch:(i+1)*sizeBatch]:

for val in sublist:

y_true.append(val)

err_mat = err_mat + skm.confusion_matrix(y_true, y_pred)

return err_mat

Metrics Computation

def evaluate(err_mat, printable = True):

tp, fp, fn, tn = int(err_mat[1,1]), int(err_mat[0,1]), int(err_mat[1,0]), int(err_mat[0,0])

if printable:

print(’\n\n Confusion Matrix’)

print(’GT\P \t 0 \t\t 1’)

print(’0 | ’ + repr(tn) + ’\t\t’ + repr(fp))

print(’1 | ’ + repr(fn) + ’\t\t’ + repr(tp))



ANNEXES 127

precision = tp / (tp + fp)

if printable: print(’\n Precision : ’ + repr(precision))

recall = tp / (tp + fn)

sensitivity = recall

specificity = tn / (tn + fp)

if printable: print(’\n Recall/sensitivity : ’ + repr(recall))

F1 = 2 * (precision * recall) / (precision + recall)

if printable: print(’\n F1-score : ’ + repr(F1))

eps = (tp+tn) / (tp + fn + fp + tn)

if printable: print(’\n Accuracy : ’ + repr(eps))

iou = tp / (tp + fn + fp)

if printable: print(’\n Intersection over Union : ’ + repr(iou) + ’\n\n’)

results = [specificity, sensitivity, F1]

return results

ROC Curve

import numpy as np

import cv2

def PolyArea(x,y):

return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))

def roc_curve(images, labels, folder, suffix):

proba = sess.run(predictions, feed_dict=x_input: images)

pred = np.round(proba)

kernel = np.ones((3,3),np.uint8)

for i in range(100):

pred[i] = np.expand_dims(cv2.morphologyEx(pred[i],

cv2.MORPH_CLOSE, kernel),axis=2)
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pred[i] = np.expand_dims(cv2.morphologyEx(pred[i],

cv2.MORPH_OPEN, kernel),axis=2)

y_pred = pred.flatten()

y_true = np.asarray(labels)

y_true = y_true.flatten()

tmp = np.c_[y_pred, y_true]

tmp = tmp[tmp[:,0].argsort(),]

tmp = tmp[::-1]

values = tmp[:,0];

labels = tmp[:,1];

TPRs = labels.cumsum(axis=0)

TPRs = np.concatenate(([0], TPRs))

TPRs = TPRs / TPRs[-1]

index_0 = np.where(labels==0)

index_1 = np.where(labels==1)

labels[index_0] = 1

labels[index_1] = 0

FPRs = labels.cumsum(axis=0)

FPRs = np.concatenate(([0], FPRs))

FPRs = FPRs / FPRs[-1]

AuC = PolyArea(np.append(FPRs,1), np.append(TPRs,0))

AuC_str = ’%.3f’ % AuC

R_script(’roc_curve’+suffix[8:], ’model’+suffix[0:8], ’ROC curve (AuC = ’+AuC_str+’)’,

’1-Specificity’,’Sensitivity’,FPRs[:-1],TPRs[:-1])

Visualization of Predicted Patches

import cv2

import random

import tensorflow as tf
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from PIL import Image

from matplotlib import pyplot as plt

from matplotlib import gridspec

def plot_predict(image, label, folder, suffix, n = 1):

kernel = np.ones((3,3),np.uint8)

for k in range(n):

i = random.randrange(test_size)

original, label, proba, logits = sess.run(

[x_[0,:,:,0 ], y_[0,:,:,0], predictions[0,:,:,0],

tf.round(predictions[0,:,:,0])],

feed_dict=x_input: imageTest[i:i+1], y_input: labelTest[i:i+1])

original_min = original.min()

original_max = original.max()

original_image = Image.fromarray((255*(original-original_min))

/(original_max-original_min))

label_min = label.min()

label_max = label.max()

label_image = Image.fromarray((255*(label-label_min))/(label_max-label_min))

proba_min = proba.min()

proba_max = proba.max()

proba_image = Image.fromarray((255*(proba-proba_min))/(proba_max-proba_min))

logits = cv2.morphologyEx(logits, cv2.MORPH_CLOSE, kernel)

logits = cv2.morphologyEx(logits, cv2.MORPH_OPEN, kernel)

logits_min = logits.min()

logits_max = logits.max()

logits_image = Image.fromarray((255*(logits-logits_min))/(logits_max-logits_min))

gs = gridspec.GridSpec(2, 2)

plt.subplot(gs[0, 0]),plt.imshow(original_image,’gray’, interpolation=’none’, vmin=0,

vmax=255),plt.title(’Original’)

plt.axis(’off’)

plt.subplot(gs[0, 1]),plt.imshow(label_image,’gray’, interpolation=’none’, vmin=0,

vmax=1),plt.title(’Label’)

plt.axis(’off’)

plt.subplot(gs[1, 0]),plt.imshow(proba_image,’gray’, interpolation=’none’, vmin=0,

vmax=1),plt.title(’Proba’)
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plt.axis(’off’)

plt.subplot(gs[1, 1]),plt.imshow(logits_image,’gray’, interpolation=’none’, vmin=0,

vmax=1),plt.title(’Logits’)

plt.axis(’off’)

plt.savefig("./model"+ suffix +’/examples/sample_’+repr(k)+’.png’)

Extraction of crater objects into CSV file

from scipy import ndimage

import cv2

import math

import sys

folder = sys.argv[1]

image = sys.argv[-1]

scale=[]

for i in range(-5,2): scale.append(pow(2,i))

f = open(’./’+folder+ ’/’+image[:-4]+’.csv’, ’a’)

for scaleFactor in scale:

print(’Determining craters of size ’ + repr(int(32/scaleFactor)) + ’ meters.’)

mask = cv2.imread(’./’+folder+ ’/’ + image[:-4] +’_label_’+repr(scaleFactor)+’.png’,0)

label_im, nb_labels = ndimage.label(mask)

sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))

areaMin = 804 # correspond to pi*Rmin*Rmin with Rmin = 16

areaMax = 12868 # correspond to pi*Rmax*Rmax with Rmax = 64

mask_size = sizes < 255*areaMin

remove_pixel = mask_size[label_im]

mask[remove_pixel] = 0

mask_size = sizes > 255*areaMax

remove_pixel = mask_size[label_im]
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mask[remove_pixel] = 0

#cv2.imwrite(’./’+folder+ ’/’+image+’_’+’filtered_’+repr(scaleFactor)+’.png’,mask)

label_im, nb_labels = ndimage.label(mask)

print(’ -> ’ + repr(nb_labels)+’ crater(s) found.’ ) # how many craters?

sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))

centers = ndimage.measurements.center_of_mass(mask, label_im, range(nb_labels + 1))

for i in range(1,len(sizes)):

f.write(repr(int(centers[i][0]/scaleFactor))+’,’+

repr(int(centers[i][1]/scaleFactor))+’,’+

repr(math.sqrt((sizes[i]/255)/(math.pi*scaleFactor)))+’\n’)

print(’\n’)

f.close()

Data Importation

imageTrain = []

labelTrain = []

imageValid = []

labelValid = []

suffix = sys.argv[0][-11:-3]

folder = ’results’

dim_x = 32

dim_y = 32

crop_size = 64

n_crop = 10

path_crater = ’./NAC_ANNOTATIONS/positive/’

path_no_crater = ’./NAC_ANNOTATIONS/negative/’

print(’\n Import of crater (nac)’)
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importData(path_crater,imageTrain,labelTrain,crop_size,n_crop,dim_x,1)

print(’\n Import of no crater (nac)’)

importData(path_no_crater,imageTrain,labelTrain,crop_size,n_crop,dim_x,0)

path_crater = ’./ORTHO_ANNOTATIONS/positive/’

path_no_crater = ’./ORTHO_ANNOTATIONS/negative/’

print(’\n Import of crater (ortho)’)

importData(path_crater,imageTrain,labelTrain,crop_size,n_crop,dim_x,1)

print(’\n Import of no crater (ortho)’)

importData(path_no_crater,imageTrain,labelTrain,crop_size,n_crop,dim_x,0)

path_crater = ’./VALIDATION_SET/positive/’

path_no_crater = ’./VALIDATION_SET/negative/’

print(’\n Import of crater (validation set)’)

importData(path_crater,imageValid,labelValid,crop_size,n_crop,dim_x,1)

print(’\n Import of no crater (validation set)’)

importData(path_no_crater,imageValid,labelValid,crop_size,n_crop,dim_x,0)

# random decomposition of the dataset

imageTest = []

labelTest = []

test_relative = 0.3 # test set = 30% dataset

test_size = int(test_relative*len(imageTrain))

for i in range(0,test_size):

idx = random.randrange(len(imageTrain))

imageTest.append(imageTrain[idx])

labelTest.append(labelTrain[idx])

del imageTrain[idx]

del labelTrain[idx]

One of The Different Fully Connected Networks

# Convolutional Network parameters

kernel_11 = 11

kernel_12 = 9
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kernel_21 = 7

kernel_22 = 5

kernel_31 = 3

kernel_32 = 3

nb_features_11 = 8

nb_features_12 = 8

nb_features_21 = 16

nb_features_22 = 16

nb_features_31 = 32

nb_features_32 = 32

# Input

x_input = tf.placeholder(tf.float32, [None, dim_y*dim_x])

x_ = tf.reshape(x_input, [-1,dim_y,dim_x,1])

y_input = tf.placeholder(tf.float32, [None, dim_y*dim_x])

y_ = tf.reshape(y_input, [-1,dim_y,dim_x,1])

# Convolutional layer 11

W_conv11 = weight_variable([kernel_11, kernel_11, 1, nb_features_11])

b_conv11 = bias_variable([nb_features_11])

h_conv11 = tf.nn.relu(conv2d(x_, W_conv11) + b_conv11)

# Convolutional layer 12

W_conv12 = weight_variable([kernel_12, kernel_12, nb_features_11, nb_features_12])

b_conv12 = bias_variable([nb_features_12])

h_conv12 = tf.nn.relu(conv2d(h_conv11, W_conv12) + b_conv12)

# Pooling layer 1

h_pool1 = max_pool_2x2(h_conv12)

# Convolutional layer 21

W_conv21 = weight_variable([kernel_21, kernel_21, nb_features_12, nb_features_21])

b_conv21 = bias_variable([nb_features_21])

h_conv21 = tf.nn.relu(conv2d(h_pool1, W_conv21) + b_conv21)

# Convolutional layer 22

W_conv22 = weight_variable([kernel_22, kernel_22, nb_features_21, nb_features_22])

b_conv22 = bias_variable([nb_features_22])

h_conv22 = tf.nn.relu(conv2d(h_conv21, W_conv22) + b_conv22)

# Pooling layer 2

h_pool2 = max_pool_2x2(h_conv22)
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# Convolutional layer 31

W_conv31 = weight_variable([kernel_31, kernel_31, nb_features_22, nb_features_31])

b_conv31 = bias_variable([nb_features_31])

h_conv31 = tf.nn.relu(conv2d(h_pool2, W_conv31) + b_conv31)

# Convolutional layer 32

W_conv32 = weight_variable([kernel_32, kernel_32, nb_features_31, nb_features_32])

b_conv32 = bias_variable([nb_features_32])

h_conv32 = tf.nn.relu(conv2d(h_conv31, W_conv32) + b_conv32)

# Pooling layer 3

h_pool3 = max_pool_2x2(h_conv32)

temp_batch_size = tf.shape(x_)[0]

# Deconvolutional layer 32

output_shape32 = tf.stack([temp_batch_size,tf.to_int32(dim_y/8),

tf.to_int32(dim_x/8),nb_features_31])

W_deconv32 = weight_variable([kernel_32, kernel_32, nb_features_31, nb_features_32])

b_deconv32 = bias_variable([nb_features_31])

h_deconv32 = tf.nn.conv2d_transpose(h_pool3, W_deconv32, output_shape32,

[1,1,1,1], padding=’SAME’) + b_deconv32

# Deconvolutional layer 31

output_shape31 = tf.stack([temp_batch_size,tf.to_int32(dim_y/4),

tf.to_int32(dim_x/4),nb_features_22])

W_deconv31 = weight_variable([kernel_31, kernel_31, nb_features_22, nb_features_31])

b_deconv31 = bias_variable([nb_features_22])

h_deconv31 = tf.nn.conv2d_transpose(h_deconv32, W_deconv31, output_shape31,

[1,2,2,1], padding=’SAME’) + b_deconv31

# Deconvolutional layer 22

output_shape22 = tf.stack([temp_batch_size,tf.to_int32(dim_y/4),

tf.to_int32(dim_x/4),nb_features_21])

W_deconv22 = weight_variable([kernel_22, kernel_22, nb_features_21, nb_features_22])

b_deconv22 = bias_variable([nb_features_21])

h_deconv22 = tf.nn.conv2d_transpose(h_deconv31, W_deconv22, output_shape22,

[1,1,1,1], padding=’SAME’) + b_deconv22

# Deconvolutional layer 21

output_shape21 = tf.stack([temp_batch_size,tf.to_int32(dim_y/2),

tf.to_int32(dim_x/2),nb_features_12])
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W_deconv21 = weight_variable([kernel_21, kernel_21, nb_features_12, nb_features_21])

b_deconv21 = bias_variable([nb_features_12])

h_deconv21 = tf.nn.conv2d_transpose(h_deconv22, W_deconv21, output_shape21,

[1,2,2,1], padding=’SAME’) + b_deconv21

# Deconvolutional layer 12

output_shape12 = tf.stack([temp_batch_size,tf.to_int32(dim_y/2),

tf.to_int32(dim_x/2),nb_features_11])

W_deconv12 = weight_variable([kernel_12, kernel_12, nb_features_11, nb_features_12])

b_deconv12 = bias_variable([nb_features_11])

h_deconv12 = tf.nn.conv2d_transpose(h_deconv21, W_deconv12,output_shape12,

[1,1,1,1], padding=’SAME’) + b_deconv12

# Deconvolutional layer 11

output_shape11 = tf.stack([temp_batch_size,dim_y,dim_x,1])

W_deconv11 = weight_variable([kernel_11, kernel_11, 1, nb_features_11])

b_deconv11 = bias_variable([1])

h_deconv11 = tf.nn.conv2d_transpose(h_deconv12, W_deconv11,output_shape11,

[1,2,2,1], padding=’SAME’) + b_deconv11

# Probilistic output

predictions = tf.sigmoid(h_deconv11)

Loss Function and Optimizer

total_loss = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(predictions,1e-31,1.0 - 1e-31))

+(1-y_)*tf.log(tf.clip_by_value(1-predictions,1e-31,1.0 - 1e-31)))

l1_regularizer = tf.contrib.layers.l1_regularizer(scale=0.000, scope=None)

weights = tf.trainable_variables()

regularization_penalty = tf.contrib.layers.apply_regularization(l1_regularizer, weights)

regularized_loss = total_loss + regularization_penalty

train_step = tf.train.AdamOptimizer(1e-4).minimize(regularized_loss)

Training Process

sess = tf.InteractiveSession()
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sess.run(tf.global_variables_initializer())

losslist = []

step_max = 5000

sizeBatch = 125

for step in range(0,step_max) :

batchImage = []

batchLabel = []

miniBatch(imageTrain, labelTrain, batchImage, batchLabel, sizeBatch)

#print(’size of batch : ’ + repr(len(batchImage)))

train_step.run(feed_dict=x_input: batchImage, y_input: batchLabel)

loss = sess.run(regularized_loss, feed_dict=x_input: batchImage, y_input: batchLa-

bel)

losslist.append(loss)

print(’Step ’+repr(step+1)+’ of ’+repr(step_max)+’ (batch size : ’ + repr(sizeBatch)+’)’)

x = np.arange(len(losslist))

R_script(’train_evolution’,’model’+suffix,’loss = f(step)’,’step’,’loss’,x,losslist,xmax

= len(losslist), ymax = max(losslist))

writer = tf.summary.FileWriter(’./’+’model’+suffix+’/log/’, sess.graph)

Visualization of Trained Filters

import cv2

import os

print(’\nExporting filters as images.\n’)

directory = "./model"+ suffix + "/filters"

if not os.path.exists(directory):

os.makedirs(directory)

for var, kernel, name in zip([W_conv11,W_conv12,W_conv21,W_conv22,W_conv31,W_conv32,

W_deconv11,W_deconv12,W_deconv21,W_deconv22,W_deconv31,W_deconv32],

[kernel_11,kernel_12,kernel_21,kernel_22,kernel_31,kernel_32,

kernel_11,kernel_12,kernel_21,kernel_22,kernel_31,kernel_32],

["conv11","conv12","conv21","conv22","conv31","conv32",

"deconv11","deconv12","deconv21","deconv22","deconv31","deconv32"]):

filter_tmp = sess.run(var)
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for i in range(len(filter_tmp[0,0,0,:])):

for j in range(len(filter_tmp[0,0,:,i])):

x_max = filter_tmp[:,:,j,i].max()

x_min = filter_tmp[:,:,j,i].min()

filter_img = 255*(filter_tmp[:,:,j,i]-x_min)/(x_max-x_min)

filter_img = cv2.resize(filter_img, (20*kernel, 20*kernel),

interpolation = cv2.INTER_NEAREST)

cv2.imwrite(directory+"/"+name+"("+repr(i) + ’_’ + repr(j) +").png",filter_img)

Object-Oriented Evaluation

import numpy as np

import math

import sys

folder = sys.argv[1]

image = sys.argv[-1][:-4]

gt = np.genfromtxt(’./’+image+’_annotations.csv’, delimiter=’,’)

predict = np.genfromtxt(’./’+folder+’/’+image+ ’.csv’, delimiter=’,’)

def dist(pos1,pos2):

d = math.sqrt(math.pow(pos1[0]-pos2[0],2)+math.pow(pos1[1]-pos2[1],2))

return d

result_raw = open(’./’+folder+’/’+image+’_result_raw.csv’, ’w’)

result_binary = open(’./’+folder+’/’+image+’_result_binary.csv’, ’w’)

ths = 1

for i in range(len(gt)):

f_min = float("inf")

for j in range(len(predict)):

r1 = max([gt[i,2], predict[j,2]])

r2 = min([gt[i,2], predict[j,2]])

d = dist([gt[i,0],gt[i,1]],[predict[j,0],predict[j,1]])

f = max([(r2/r1)-1,d/r2])

if f < f_min:
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f_min = f

result_raw.write(repr(f_min) + ’\n’)

if f_min < ths:

f_min = 1

else:

f_min = 0

result_binary.write(repr(f_min) + ’\n’)

result_raw.close()

result_binary.close()

Saving Parameters

saver = tf.train.Saver()

saver = tf.train.Saver()

save_path = saver.save(sess, ’./’+’model’+suffix+’/model.ckpt’)

print("Model saved in file: %s" % save_path)

Restoring Parameters

saver = tf.train.Saver()

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver.restore(sess, ’./model’+suffix+’/model.ckpt’)

print("Model restored.")
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Analyzing a Scene

# limited size of each tile

MAX_DIM = 1000

# overlap (in pixels)

ov = 32

threshold = 0.5

kernel = np.ones((5,5),np.uint8)

studied_region = cv2.imread(image,-1)

orig_h, orig_w = studied_region.shape[:2]

scale=[]

for i in range(-5,2): scale.append(pow(2,i))

for scaleFactor in scale:

scene_data = []

import_scene = cv2.resize(studied_region,None,fx=scaleFactor,

fy=scaleFactor, interpolation = cv2.INTER_CUBIC)

h, w = import_scene.shape[:2]

print(h, w)

nx, ny = math.floor((w-2*ov)/MAX_DIM), math.floor((h-2*ov)/MAX_DIM)

print(nx, ny)

image_label = np.zeros((h, w))

image_proba = np.zeros((h, w))

for i in range(0,ny):

for j in range(0,nx):

scene_data =[]

sub_img = import_scene[ov+i*MAX_DIM-ov:ov+(i+1)*MAX_DIM+ov,

ov+j*MAX_DIM-ov:ov+(j+1)*MAX_DIM+ov]

sub_img = np.asarray(sub_img).reshape(-1)

scene_data.append(sub_img)

proba = sess.run(scene_proba[0,:,:,0],

feed_dict=scene_input: scene_data)
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logits = np.round(proba+0.5-threshold)

logits = cv2.morphologyEx(logits, cv2.MORPH_CLOSE, kernel)

logits = cv2.morphologyEx(logits, cv2.MORPH_OPEN, kernel)

image_label[ov+i*MAX_DIM:ov+(i+1)*MAX_DIM,

ov+j*MAX_DIM:ov+(j+1)*MAX_DIM] = logits[ov:MAX_DIM+ov,ov:MAX_DIM+ov]

image_proba[ov+i*MAX_DIM:ov+(i+1)*MAX_DIM,

ov+j*MAX_DIM:ov+(j+1)*MAX_DIM] = proba[ov:MAX_DIM+ov,ov:MAX_DIM+ov]

proba_upsampled = cv2.resize(image_proba, (orig_w, orig_h), interpolation = cv2.INTER_NEAREST)

label_upsampled = cv2.resize(image_label, (orig_w, orig_h), interpolation = cv2.INTER_NEAREST)

#scipy.misc.toimage(proba_upsampled, cmin=0.0, cmax=1.0).save("./model"+ suffix

# +’/’+image[:-4]+’_proba_’+repr(scaleFactor)+’.png’)

scipy.misc.toimage(label_upsampled, cmin=0.0, cmax=1.0).save("./model"+ suffix

+’/’+image[:-4]+’_label_’+repr(scaleFactor)+’.png’)

Extraction of Cytomine’s Annotations in PNG format

from cytomine import Cytomine

from cytomine.models import *

#Connection parameters to Cytomine

cytomine_host="demo.cytomine.be"

cytomine_public_key="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

cytomine_private_key=""XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

#Connection to Cytomine Core

conn = Cytomine(cytomine_host, cytomine_public_key, cytomine_private_key, base_path = ’/api/’,

working_path = ’/tmp/’, verbose= True)

id_project=19653296 # ULG-GEO-CRATERES

#id_term=19653322 # Positive

#id_term=19653341 # Negative

annotations = conn.get_annotations(

id_project = id_project,

#id_image = id_image,
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#id_term = id_term,

showWKT=False,

showMeta=False,

showGIS=False,

reviewed_only = False

)

#note that it is possible to specify image or term

print "Number of annotations: %d" %len(annotations.data())

dump_type=1 #1: original image, 2: with alpha mask, 3: only alpha mask

zoom_level=0 #0 is maximum resolution

output_dir="/the/desired/path/" #local directory where to dump annotation cropped images

if dump_type==1:

annotation_get_func = Annotation.get_annotation_crop_url

elif dump_type==2:

annotation_get_func = Annotation.get_annotation_alpha_crop_url

else:

annotation_get_func = Annotation.get_annotation_mask_url

#Note: if file already exists locally, they will not be requested again

print "Downloading annotations into %s ..." %output_dir

dump_annotations=conn.dump_annotations(

annotations = annotations,

get_image_url_func = annotation_get_func,

dest_path = output_dir,

desired_zoom = zoom_level

)

Extraction of Cytomine’s Annotations in CSV format

# Great thank you to Romain Mormont for his help on these lines of code

import os

import sys

from math import pi, sqrt

from cytomine import Cytomine

from shapely.wkt import loads

#Connection parameters to Cytomine
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cytomine_host="demo.cytomine.be"

cytomine_public_key="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

cytomine_private_key=""XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

#Connection to Cytomine Core

cytomine = Cytomine(cytomine_host, cytomine_public_key, cytomine_private_key, base_path =

’/api/’, working_path = ’/tmp/’, verbose= True)

id_project = 19653296

project = cytomine.get_project(id_project)

instances = cytomine.get_project_image_instances(id_project=id_project)

instances = {inst.id: inst for inst in instances}

annotations = cytomine.get_annotations(id_project=id_project, showMeta=True, showWKT=True)

print("{} annotations to save..".format(len(annotations)))

with open("project_{}_annotations.csv".format(id_project), "w+") as file:

file.write(";".join(["id", "x", "y", "radius", "label", "id_image"]) + "\n")

for annotation in annotations.data():

polygon = loads(annotation.location)

if annotation.image not in instances:

sys.stderr.write("Annotation {} contained in an image ({}) out of project

{}".format(annotation.id, annotation.image, id_project) + os.linesep)

continue

instance = instances[annotation.image]

term =""

if ",".join(map(str, annotation.term)) == "19653322":

term = 1

else:

term = 0

data = [

str(annotation.id),

str(polygon.centroid.x),

str(polygon.centroid.y),

str(sqrt((polygon.area * instance.resolution * instance.resolution)/pi)),

str(term),

str(instance.instanceFilename)

]

file.write(";".join(data) + "\n")
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Renson, P. (2012). Détection des cratères à la surface de la Lune sur des produits planétaires
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In this master thesis, we propose a novel approach to detect 
lunar craters using new deep learning advances. The archi-
tecture of the model employed is a fully convolutional neural 
network that uses the freely available remotly sensed data 
from the «Lunar Reconnaissance Orbiter» space probe. 

In this brief, we discuss the methodology, the choices made 
and the evaluation of the model with different visual and 
quantitative results in addition to the source code. 


