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Abstract

Samtech, a company whose main activity is the development of a FE software named
Samcef, is interested in gaining know-how about mold compensation techniques for
thermoset composites parts. For the latter purpose, an internship stage of 4 months has
been dedicated to study the subject with Siemens’s software NX, which includes Samcef

capabilities.

A bibliographical research on the mold compensation techniques has been performed.
Several aspects have been studied: the necessity of these compensation methods on the
modern industry, the manufacturing processes of thermoset composite materials, the change
in properties they experience (curing process), the origin of the geometrical deviations of
the produced part from the desired geometry, the available numerical solutions to model
the latter phenomena, and the already employed mold compensation techniques available
in the literature: CAD-based and mesh-based strategies.

After that, a first numerical model has been developed in order for the identified
mold compensation techniques to be implemented. An easy geometry with a predictable
deformation has been selected – the deformation mode has been controlled with the
composition of the employed laminate on the part. After refinement of the model, the
mold compensation techniques have been carried out for the first time and a methodology,
i.e. a set of steps and tasks, has been defined for each of them.

With the first simple geometry and laminate, the compensated mold has been found
with the different compensation strategies. With these results, a first comparison of the
methods has been done. Following that, different geometries with different deformation
modes have been studied: the first geometry and a different one have been used with 4
different laminates. The compensation methods have suffered some modifications to adapt
the new geometries and deformation modes, and success has not always been achieved.
Besides, some restrictive factors have limited the application of some methods to some cases.

The results obtained have been valuable and varied enough to extract thorough
conclusions on the strengths and weaknesses of the methods: their robustness, universality,
accuracy, total time necessary or complexity have been analyzed. Finally, some proposals
on the future continuation of the thesis have been discussed.



v

Acknowledgements

I would like to express my sincere gratitude to my academic advisor Dr. Michaël
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Introduction

This chapter briefly presents the motivation, objectives and the scope of this thesis. It
also introduces the contents and organization of the document and it ends with the global
methodology followed.

The main objective of this thesis is the study and development of mold compensation
techniques for thermoset composite parts. The present study is done in collaboration with
the company Samtech and serves as the master thesis project to complete the Master in
Aerospace Engineering coursed by the author at the Université de Liège.

Samtech’s main activity is the development of Samcef (Système pour l’Analyse des
Milieux Continus par Eléments Finis) FE software, as well as the Caesam platform, which
is a high-level integration platform in CAE. The company was recently acquired by Siemens
PLM Software, one of whose leading products is NX, a CAD/CAM/CAE1 software. Part of
Samtech’s activities is now the implementation of all Samcef capabilities into NX software.
The software that will be used in this thesis will therefore be NX 11.0, in accordance with
the current business orientation of Samtech.

The motivation of the project is the interest of Samtech to investigate the subject of
mold compensation with NX and Samcef for the first time. The latter interest has turned
into an internship of 4 months and a master thesis, which suited the author’s curiosity.

The ultimate goals of this thesis are to implement and study the main mold compensation
techniques found in the literature with NX. The latter consist in developing a numerical
tool for the user to obtain the mold shape with which a desired composite material part
can be manufactured within desired tolerances. To do so, the curing process of a certain
thermoset composite material must be modeled and diverse methods that account for the
cured-induced distortions must be considered to modify the final mold geometry.

The scope of the study is the implementation and test of the most used compensation
techniques in NX and finding their strengths and weaknesses by compensating different
geometries with different types of themroset composite laminates.

The thesis is organized in 5 chapters: Introduction; State of the Art, where a
bibliographical research on the mold compensation techniques has been done; Numerical
Model and Methodology, where the employed numerical models and the methodology,
i.e. steps and tasks, followed to implement the compensation techniques are detailed;

1CAD stands for computer-aided design; CAM stands for computer-aided manufacturing; and CAE
stands for computer-aided engineering.
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Results, where the compensation results of the tested geometries and laminates with the
different methods are presented; and finally, the Conclusions chapter with a summary of
the conclusions deduced from the results and experience achieved.

Additionally, three appendices have been added to support the document: one on
the Classical Lamination Theory (CLT), which describes the stress-strain behaviour of
composite laminates; another in which a numerical verification of Samcef is made by
comparing an analytic known case with a numerical model; and the last one is a brief
explanation on how to obtain a CAD model from a mesh in NX.

For last, the methodology followed to develop the objectives of this thesis is presented
below:

1. Get experience with the employed software: NX (Samcef); and do a bibliographical
research in order to know the state of the art regarding mold compensation techniques
and everything related to them: cure kinetics, cure distortions, modelling approaches,
etc.

2. With a known geometry and unidirectional (UD) thermoset composite material
properties, build an efficient thermo-mechanical model in order to try the mold
compensation strategies on it.

3. Implement the main mold compensation techniques on an easy and predictable
configuration.

4. Apply and modify in accordance the methods to compensate more complex deformation
modes.

5. From the results obtained, extract conclusions on every method with regard to the
geometry, deformation mode, easiness of application and other relevant features.



State of the Art

In this chapter, a bibliographic research on mold compensation techniques for thermoset
composite material parts is presented. The industrial context in which this methods
can be necessary is firstly introduced. After, the main distortions for which molds require
compensation are detailed, preceded by an explanation of the main composite manufacturing
processes and the curing process. The chapter ends with the exposition of the numerical
modeling of the process and the main compensation strategies found in the literature.

2.1 Industrial Context

Composite materials2 offer a number of advantages over traditional materials. They
contribute to the development of durable, lightweight and high-performance structures;
they help reducing the environmental impact of vehicles that use such structures, e.g.
aircrafts or cars, as the weight reduction leads to less fuel consumption; and they are
revolutionizing high value industrial sectors such as aerospace, automotive, wind energy,
marine and construction.

Increasing demand for international travels has lead to a huge employment of these
materials in the aerospace sector, having exceeded the symbolic threshold of 50% of the
total structure weight in the Boeing 787 Dreamliner and the Airbus 350 XWB. Car chassis
are also being manufactured with composites, with the main challenge to overcome being
the production rate and cost optimization. Meanwhile, large-scale composite wind turbine
blades face the challenge of having a reliable process at such scales respecting the desired
tolerances.

Designing and manufacturing composite materials is a challenge for the industry. The
composites industry has only been successful on individual cases, and the latter success has
proven to be inadequate for the development of a coherent industry with deep expertise
and volume production [1]. This difficulty to establish a solid industry is greatly related
to the properties of composites and how those suppose a problem when manufacturing
composite parts.

Composite material properties such as heterogeneity or anisotropy lead to interaction of
the different scales that exist within these materials. There are meso/microscopic defects
such as fiber misalignment, delaminations, porosity, resin-rich zones or internal stresses,
among others. Conversely, macroscopic defects, e.g. cure-induced distortions, are the ones
that play a crucial role in the final properties and shape of the composite part (studied in
depth in this thesis).

Cure-induced distortions are deviations exhibited when the composite material is
removed from the mold at the end of the manufacturing process. They are caused
by different phenomena such as thermal and chemical shrinkage, material anisotropy,
temperature heterogeneity, mold/part interaction or unsuitable process conditions. These

2Composite materials are also referred as composites.
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distortions usually result in spring-in (angles in curved regions tend to close) or warpage
(curvature or twist of initially flat regions) – see Figure 2.1 (a) and (b).

Figure 2.1: Typical distortions of a C-shpaed part: (a) intended geometry, (b) distorted
geometry and (c) potential assembling problem [2].

This post-cure deformations can lead to different problems such as:

• Assembly of parts may be difficult or lead to failure: distortions may require a high
effort to match two parts together – see Figure 2.1 (c).

• Reduced in-service loads as internal stresses are generated in the parts. The overall
mechanical properties obtained are worsen.

• Shape non-conformities can have a crucial impact on the usefulness of the part. In
terms of aerodynamic performance, a wind turbine blade can be completely useless
if the final shape is far away from the targeted shape.

A recognised solution to tackle this phenomena, which is employed in the industry, is
the use of stiffeners. The latter help reduce the amount of distortions but at the same time
they are difficult to assemble and make it harder to anticipate the distortion modes [2].
An alternative to the use of stiffeners are mold compensation techniques, i.e. numerical
tools capable of predicting the shape of the mold which minimizes the deviations with
respect to the target design.

Despite numerous studies about cure-induced distortions, the literature still lacks
tried-and-tested methodologies for their reduction. The increasing complexity of the
designs makes rules of thumb obsolete, while relying on experimental trial-and-error
sequences results in prohibitive additional costs and delays [2]. Thus, there exists a
necessity of developing such mold compensation technique that can be easy to implement
for different geometries and curing conditions.

2.2 Composite Manufacturing Processes

Several manufacturing techniques exist for thermoset composite processing. The choice
of one over the other will be driven by the advantages and disadvantages of each technique.
Some features to consider that are important to take this decision are detailed next:
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Geometric accuracy Structural requirements
Economical context Materials at hand

Part dimensions & shape Production rate
Laminate resulting mechanical properties

Table 2.1: Some features relevant when choosing a manufacturing process.

However, a few common points serve as a basis for all manufacturing processes:

• Molding to shape the composite is always required. The characteristics of the mold
will be decisive to accomplish some of the features detailed in Table 2.1.

• A curing cycle is undergone: resin changes from a liquid or viscous state to a solid
state. The evolution of the curing temperature is crucial for the final mechanical
properties and shape of the manufactured part.

2.2.1 The Autoclave Process

In an autoclave the composite, initially a prepreg3, is subjected to elevated pressures
(compaction of the laminate) and a temperature cycle (curing or polymerization process).
The temperature of the prepreg is regulated owing to convective heat exchange with
circulating hot air, following the pre-determined curing cycle. The prepreg is secured by a
vacuum bag sealed at the periphery of the part [3]. The latter allows a high fiber to resin
ratio and a good removal of air voids. In Figure 2.2, a depiction of the process is shown.

Figure 2.2: Schematic depiction of the autoclave process [2].

The advantages and disadvantages of this process are detailed in Table 2.2:

Advantages Disadvantages

Only a lower mold is necessary Very expensive

High quality of
the final part

Size is limited by the
manufacturing capabilities
of the autoclave and mold

Table 2.2: Advantages and disadvantages of the autoclave process.

3Prepreg refers to pre-impregnated composite fibers where a thermoset polymer matrix is already
present.
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2.2.2 The RTM Process

The resin transfer molding (RTM) process is an alternative to produce high quality
parts. A two-part, matched, closed mold, which is made of metal or composite material is
used. Dry reinforcement (typically a preform) is placed into the closed mold and the two
half molds are sealed together by a clamping force, normally exerted by a press. If the
mold is not self-heating, the press has to play this role. Resin and catalyst are injected
and mixed in dispensing equipment, then pumped into the mold under low to moderate
pressure through injection ports, following predesigned paths through the preform [4]
– the cure is performed inside the mold. Extremely low-viscosity resin is used in RTM
applications for thick parts to permeate preforms quickly and evenly before cure.

Figure 2.3 depicts the above explained process. An alternative process is the Same
Qualified RTM (SQRTM) process, where the dry fabric is replaced by prepregs and where
the injected resin serves only as in-mold compaction pressure.

Figure 2.3: Schematic depiction of the RTM process [2].

The advantages and disadvantages of this process are detailed in Table 2.3:

Advantages Disadvantages

Smooth surface finish
on all exposed surfaces

Self-heating molds
are expensive

Dry fabrics and resins are
less expensive than prepregs

Using a press limits
the size of the parts

Low void content

Table 2.3: Advantages and disadvantages of the RTM process.

2.2.3 The VARTM Process

The vacuum-assisted resin transfer molding (VARTM) process is a low-cost alternative
to the RTM process. In this process the resin flow is driven by the atmospheric pressure.
This drastically reduces the impregnation speed, and a low-facilitating medium is generally
needed on top of the fabric, which prevents the use of an upper mold [2] – see Figure 2.4.
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The lower pressure also results in a higher void content, excluding this process for high
performance applications – using a double bag technique helps improve the latter aspect.

Fiber reinforcements are placed in a one-sided mold, and a cover, typically a plastic
bagging film, is placed over the top to form a vacuum-tight seal. The resin typically enters
the structure (by vacuum) through strategically placed ports and feed lines, that facilitate
wetout of the fibers [4]. The part size is, in theory, not limited – this process is used in
the naval or wind turbine industries. VARTM operates with low-cost tooling, making it
possible to inexpensively produce large, complex parts in one shot.

Figure 2.4: Schematic depiction of the VARTM process [2].

The advantages and disadvantages of this process are detailed in Table 2.4:

Advantages Disadvantages

Size is not limited Higher void content than RTM
Cheaper than RTM Fails to produce high performance parts

Table 2.4: Advantages and disadvantages of the VARTM process.

2.3 Cure Development

The curing of a composite material is actually that of the matrix, i.e. the thermoset
resin. During the curing process, the resin changes from a liquid/viscous state to a solid
state. The solidification of the resin consists in the cross-linking of the polymer chains,
which is an irreversible process. The curing process is a heat-activated auto-catalytic
exothermic chemical reaction.

The temperature required to activate the reaction ranges from room temperature
for low-cost resins, to about 180◦C for the high performance epoxy resins. The typical
processing time is a few hours [2]. The degree of cure X (X ∈ [0, 1]) is a fundamental
parameter to understand the curing process, and it drives the change in stiffness in the
resin, its thermal expansion and its chemical shrinkage. The resin is liquid until the gel
point Xgel (gelation). This value is assumed to be a constant characteristic of the resin.
After, the resin is in a rubbery state, i.e. can withstand some stresses, until the glassy or
solid state is reached (vitrification).
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An important parameter to be defined is the glass transition temperature Tg, which is
the temperature of transition between the glassy and rubbery state. It evolves (increasingly)
with the curing process. When Tg is higher than the temperature of the material, the
mobility of the polymer drops drastically, i.e. the glassy state is reached. After that, the
reaction becomes diffusion-controlled and the cure slows down and eventually stagnates –
see Figure 2.5.

Figure 2.5: Typical curing cycle and cure development for a high performance epoxy. Point
A is gelation, point B is vitrification. Phases I to III refer to liquid, rubbery and glassy
states, respectively [2].

A first temperature dwell at a lower temperature (in Figure 2.5 is 120◦C) is commonly
applied to limit the amount of exothermic heat and to lower the viscosity of the resin in
order to degas it more easily. Then the material is heated and maintained at the cure
temperature until a desired degree of cure is reached. A higher final degree of cure can
then be reached by increasing the cure temperature or by performing a post-cure step,
leading to improved material properties [2].

2.4 Manufacturing-induced Distortions

The distortions of the composite material after the curing process can have different
origins. The variables or phenomena that influence the manufacturing-induced distortions
are: chemical shrinkage, thermal shrinkage, temperature cycle (curing cycle), anisotropy
and stacking sequence, mold/part interaction and inhomogeneities of the process or in the
laminate.

The latter produce the development of a non-reversible dilatational strain. These
phenomena are briefly explained next, and they serve for a better understanding of how
to model such distortions (Section 2.5) and as a starting point to develop the mold
compensation techniques (Section 2.6).
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2.4.1 Chemical Shrinkage

As the curing progresses, the density of the resin increases. That is due to the conversion
of secondary bonds between monomer molecules into covalent bonds, the latter being
shorter than the former [2]. This is an irreversible process that lead to residual stresses
and shape distortions.

2.4.2 Thermal Shrinkage

The thermal shrinkage is caused by the different behaviours of the resin during the
evolution through three material states – i.e. different coefficient of thermal expansion
(CTE).

• Liquid state: the resin just flows through the fibers. Generally the CTE is very
close to 0 and it is usually considered null.

• Rubbery state: there is an expansion that creates residual stresses and shape
distortion. The CTE is not null anymore.

• Glassy state: the CTE is usually smaller than in the rubbery state.

The expansion and contractions that the resin experiences throughout the process are
different during the heating and the cooling phases. Therefore, the deformations do not
cancel out and at the end of the curing process permanent distortions remain in the cured
part. Figure 2.6 schematically depicts the development of the dilatational strain εE, to
which the chemical and thermal shrinkage contribute.

Figure 2.6: Development of dilatational strain with the curing cycle resulting in residual
stresses [2].

2.4.3 Temperature Cycle

The temperature cycle followed during the curing process influences the total dilatational
strain. Reaching gelation at a lower temperature leads to a larger thermal expansion in the
rubbery state (see Figure 2.6), which can balance out the thermal and chemical shrinking,
leading to less distortions.
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2.4.4 Anisotropy and Stacking Sequence

Figure 2.7: Spring-in resulting from
the anisotropic nature of composite
materials (r stands for the radial
direction and t for the tangential
direction) [2].

Anisotropy is the main cause of spring-in
deformations. Fibers are chemically inert and
exhibit a lower CTE than resins. Since the
tangential strain is constrained by the fibers, the
radial strain is the one that has the greatest
contribution, resulting in the spring-in effect – see
Figure 2.7.

The in-plane anisotropy of composites enhances
the ability of the material to avoid or reduce
spring-in, as a reduction of the through-thickness
(radial direction in Figure 2.7) contraction is
obtained.

Then, regarding the stacking sequence of the
laminate, asymmetrical layups lead to warpage due
to the anisotropy of the mechanical properties of
each layer.

2.4.5 Mold/part Interaction

When the mold and the composite part are in contact, there is a traction applied
by the mold to the laminate due to the CTE mismatch between the two materials. If
one-sided mold is used (autoclave or VARTM processes), asymmetrical in-plane forces
appear on the composite material which finally lead to friction between the metal (mold)
and composite (part).

This phenomena may lead to inappropriate contact between the mold and the part.
The latter implies an heterogeneous temperature distribution along the material (due
to the contact mismatch) which leads to different curing ratios and therefore, different
resin final properties and permanent deformations. A way to mitigate this phenomenon is
decreasing the mentioned friction: the use of Mylar or propylene sheets at the interface
can help reduce that negative phenomenon [2].

2.4.6 Inhomogeneities

Inhomogeneities on the composite material during the curing process lead to distortions.
One of the major inhomogeneities that can be found in the manufacturing process are
temperature gradients. Temperature gradients in massive metal molds lead to an imbalance
in the residual stresses, and therefore warpage appears on the laminate. The latter
temperature gradients may origin from poor contact between the mold and the part, or
from an uneven heating of the mold or the chamber the mold is in (autoclave process).

Other sources of inhomogeneities are: fiber volume gradients, fiber misalignment,
corner thickening or void content. All these phenomena depend on the proper execution
of manufacturing process, e.g. void content can be avoided with a proper vacuum and
with an even pressure distributed on the prepreg.
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2.5 Process Modeling

In order to predict the cure-induced distortions, numerical models are necessary to
describe the evolution of the main variables involved in the manufacturing process of
thermoset composite parts: the degree of cure X, the glass transition cycle temperature Tg,
the cycle temperature T , the coefficients of thermal expansion α and of chemical shrinkage
β of the composite and the mechanical properties of the composite.

The mechanical behaviour of the thermoset composites during curing must also be
modeled, which must take into account the coupling with the thermal process and the
consequent change in resin properties.

2.5.1 Cure Kinetics

Cure kinetics deals with the evolution of the degree of cure X during the hardening of
the composite material – that is, the hardening of the thermoset resin. The degree of cure
X is defined as the ratio between the heat released by the cure reaction and the maximum
possible heat per unit mass released by the reaction HT :

X(t) = X0 +
1

HT

∫ t

0

dH

dτ
dτ, (2.1)

where X0 is the degree of cure at the beginning of the experiment (usually zero), and
dH/dτ is the instantaneous heat flux per unit mass released by the reaction. X is a
dimensionless variable varying between 0 and 1.

Most phenomenological models assume that the cure rate is solely a function of the
degree of cure and of the temperature, i.e. Ẋ = f(X,T ). The models that perform best
are the ones that account for the auto-catalytic nature of the reaction and for the diffusion
effect which limits the cure in the glassy state.

The model proposed in Samcef is the following [5]:

Ẋ(X,T ) = [K1(1−X)n1 +K2X
m(1−X)n2 ]fd, (2.2)

where n1, m, n2 are partial orders of the reaction, and K1 and K2 are kinetic constants
related to the temperature through Arrhenius-type equations Ki = Aie

−Si/RT , in which Ai
are frequencies and Si are activation energies. The term Xm guides the aforementioned
auto-catalytic aspect. Regarding fd, it represents a diffusion function which tends to zero
when the mobility of the polymer chains prevents further cure.

Samcef includes the rate-limiting effect of vitrification using two different approaches:
the diffusion function is dependent on the degree of cure X [fd(X)] or the glass transition
temperature Tg [fd(Tg)]. The former option has been chosen with the following diffusion
function:

fd(X) =
2

1 + exp(X−Xmax

bD
)
− 1 (2.3)

where bD is a fitting parameter for each specific curing cycle. The parameters of a
kinetic model are most commonly fitted from Differential Scanning Calorimetry (DSC)
measurements, monitoring the heat flux released during curing reactions.
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2.5.2 Glass Transition Temperature

The glass transition temperature Tg is an increasing function of X. Samcef implements
the evolution of Tg as proposed by Di Benedetto [5]:

Tg(X) = Tg0 + (Tg∞ − Tg0)
λX

1− (1− λ)X
, (2.4)

where Tg0 is the Tg of an uncured sample (X = 0), Tg∞ is the Tg of a fully-cured sample
(X = 1), and λ is a fitting parameter. The glass transition temperature can be measured
by DSC or Dynamic Mechanical Analysis (DMA).

2.5.3 Cycle Temperature

Defining the cycle temperature T in Samcef can be approached in two ways:

• Define the curing cycle with respect to time and space T (t, x) and apply it to the
numerical domain.

• Define thermal boundary conditions that will in turn define the cycle temperature of
the composite part: convection, conduction or radiation and its respective properties
or associated parameters as the convection/conduction/radiation thermal coefficients
or the heat fluxes.

2.5.4 Thermal Expansion and Chemical Shrinkage

2.5.4.1 Thermal Expansion

The thermal expansion of the resin is related to the increment of temperature as follows:
∆εth = α∆T , being α the CTE of the composite material. As explained in Section 2.4.2,
the CTE of thermoset resins changes dramatically during the curing process. Samcef uses
separate values for the three states that the resin undergoes, being the CTE constant for
each state.

The CTE of both components of the composite material (matrix and fibers) are
introduced separately, then homogenized. For the matrix, three different values must be
introduced:

αm(T,X, Tg) =


αml ∀X ≤ Xgel

αmr ∀X > Xgel, Tg < T

αmg ∀X > Xgel, Tg ≥ T

(2.5)

Regarding the fibers, their CTE is assumed transversely isotropic: αf1 is the coefficient
in the fibers direction and αf2 = αf3 are the ones in the two transverse directions. Then,
the CTE αi of a unidirectional (UD) ply is computed using the following homogenization
rules:

α1 =
αmEm(1− Vf ) + αf1VfEf

Em(1− Vf ) + VfEf
(2.6)

α2 = α3 = αm(1− Vf ) + αf2Vf (2.7)

which must be computed for the three states that the resin undergoes throughout the
curing process (equation 2.5). Vf is the fiber volume fraction.
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2.5.4.2 Chemical Shrinkage

Another matrix property to be defined is the chemically-induced shrinkage coefficient,
denoted by βm. This coefficient is linking the chemical shrinkage of the resin to the degree
of cure as follows [5]: ∆εch = −βm∆X, with βm implemented in Samcef as

βm(T,X, Tg) =


βml ∀X ≤ Xgel

βmr ∀X > Xgel, Tg < T

βmg ∀X > Xgel, Tg ≥ T

(2.8)

A positive βm induces an isotropic shortening of a piece of resin in the three directions
for any increase of the degree of cure (∆X > 0). Then, since only the matrix is
undergoing chemical shrinkage, the βi of a composite UD ply is computed using the
following homogenization rules:

β1 =
βmEm(1− Vf )

Em(1− Vf ) + VfEf
(2.9)

β2 = β3 = βm(1− Vf ) (2.10)

which must be computed for the three states that the resin undergoes throughout the
curing process (equation 2.8).

2.5.5 Properties of Thermoset Composites during Cure

The mechanical properties of a UD ply of composite material are calculated in Samcef

as explained below.

2.5.5.1 Resin (Matrix) Properties

The matrix is assumed to be a thermoset resin. Its mechanical behavior is evolving
with the cycle temperature T , the degree of cure X and the glass transition temperature
Tg. At any time, the temperature, degree of cure and glass transition temperature fields
must be defined. There are two ways to do this:

• To run first a thermal analysis of curing. Then, the corresponding results – i.e.
T (t,x), X(t,x) and Tg(t,x) – are stored in a .u18 file (model definition and results)
and they are reloaded during the mechanical analysis using:

� Identical meshes.

� Mapping process – dissimilar meshes.

• A second method is to explicitly define the cycle temperature T , the degree of cure
X and the glass transition temperature Tg. These values can be defined as constant
or as functions of time. And then they are used in the mechanical analysis as inputs.

The resin matrix is assumed to behave like an isotropic elastic material, characterized
by a Young’s modulus Em and a Poisson’s ratio νm. For both the Young’s modulus and
Poisson’s ratio, three values must be defined: Emg/νmg, Emr/νmr, and Eml/νml for the
glassy, the rubbery, and the liquid states, respectively.
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Those three Young’s moduli and Poisson’s ratios will be used according to current
values of cycle temperature T , the degree of cure X and the glass transition temperature
Tg. All three can be defined as functions of T and/or X and/or Tg.

The Young’s modulus Em and the Poisson’s ratio νm of the matrix, which will be used
for the homogenization of the stiffness properties of the composite, are therefore defined
as:

Em(T,X, Tg) =


Eml(T,X, Tg) ∀X ≤ Xgel

Emr(T,X, Tg) ∀X > Xgel, Tg < T

Emg(T,X, Tg) ∀X > Xgel, Tg ≥ T

(2.11)

νm(T,X, Tg) =


νml(T,X, Tg) ∀X ≤ Xgel

νmr(T,X, Tg) ∀X > Xgel, Tg < T

νmg(T,X, Tg) ∀X > Xgel, Tg ≥ T

(2.12)

2.5.5.2 Fibers Properties

The fibers are assumed to be all aligned to the direction 1 of the UD ply (see Figure 2.8)
and such is considered in the computation of homogenized properties. The elastic properties
of the fibers are isotropic: Young’s modulus Ef , Poisson’s ratio νf and shear modulus Gf .

2.5.5.3 Homogenized Properties

The homogenized elastic properties are computed considering isotropic properties for
the fibers and matrix. The model presented below is valid for unidirectional systems only,
since transverse isotropy is assumed for the fibers. Its formulation is based on the laws of
mixture originally established by R. Hill [6] and Z. Hashin [7].

Let Vf , Ef , νf , Gf and Vm, Em, νm, Gm denote the volume fractions, Young’s moduli,
Poisson’s ratios and shear moduli of the fibers and matrix material respectively. The
hydrostatic compressive modulus of the fibers (Kf ) and the matrix (Km) are first defined:

Kf =
Ef

2(1− 2νf )(1 + νf )
(2.13)

Km =
Em

2(1− 2νm)(1 + νm)
(2.14)

The latter are used to determine the transverse bulk modulus Kt:

Kt = Km +
Vf

1
Kf−Km

+
1−Vf

Km+Gm

(2.15)

The 9 elastic coefficients are then successively derived from the following expressions:

• Longitudinal modulus (aligned with the fibers – see Figure 2.8)

E1 = EfVf + Em(1− Vf ) +
4Vf (1− Vf )(νf − νm)2

Vf
Km

+ 1
Gm

+
1−Vf
Kf

(2.16)
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• In-plane Poisson’s ratio

ν12 = νfVf + νm(1− Vf ) +
Vf (1− Vf )(νf − νm)( 1

Km
− 1

Kf
)

Vf
Km

+ 1
Gm

+
1−Vf
Kf

(2.17)

• In-plane shear modulus

G12 = Gm
Gf (1 + Vf ) +Gm(1− Vf )
Gf (1− Vf ) +Gm(1 + Vf )

(2.18)

• Transverse shear modulus

G23 = Gm +
GmVf

Gm

Gf−Gm
+

(Km+2Gm)(1−Vf )
2Km+2Gm

(2.19)

• In-plane transverse Young’s modulus (aligned with the matrix – see Figure 2.8)

E2 =
2

1
2Kt

+ 1
2G23

+
2ν223
E1

(2.20)

• Transverse Poisson’s ratio:

ν23 =
E2

2G23

− 1 (2.21)

• The three other coefficients are obtained from the transverse isotropy assumption:
E3 = E2

ν13 = ν12

G13 = G12

(2.22)

Figure 2.8: Schematic representation of a UD ply.
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2.5.6 Mechanical Behavior of Thermoset Composites during Cure

There are different models proposed to model the mechanical behavior of thermoset
resins during the curing process. They can be classified in two groups: cure-hardening
instantaneous linear elasticity (CHILE) models and viscoelastic models.

Viscoelastic models consider the resin as viscoelastic, thus introducing the viscous
effects (relaxation). CHILE models, on their side, neglect relaxation effects and consider
the material as linear elastic at every point in time:

σij(t) =

∫ t

0

Cijkl(τ)
∂(εkl − εEkl)

∂τ
dτ ; (2.23)

where C is the elastic tensor, which will be varying according to the evolution of the
resin properties, σ is the stress, ε is the total strain and εE is the dilatational strain
resulting from the thermal expansion and chemical shrinkage.

The default model implemented in Samcef is a CHILE model in which Cijkl has three
constant values, one for each state that the matrix undergoes. Thus, the change of Cijkl is
driven by the evolution of X. The latter model is the one employed in this thesis.

2.5.7 Thermo-mechanical Coupling

The curing cycle that leads to the process-induced distortions (coupling between
thermal, chemical and mechanical phenomena) is solved as follows:

Starting from an initial state, the heat equation is solved in conjunction with the
chosen kinetics model. This yields a distribution of temperature T , degree of cure X and
glass transition temperature Tg over the part. Knowing these fields, the coefficients of
chemical shrinkage β and thermal expansion α, as well as the mechanical properties can
be determined. The latter will be used in the mechanical simulation.

The thermo-mechanical coupling can either be weak, staggered or strong. In the first
case, the entire thermal simulation is performed and used as an input to the mechanical
simulation. In the second case, this communication is performed at every time step. In the
case of strong coupling, all the equations are solved simultaneously at each time step. The
choice of the coupling method has almost no influence on the solution as the mechanical
behavior has no influence on the thermal behavior, except for some second-order effects,
e.g. distortions leading to a loss of thermal contact [2].

2.6 Mold Compensation Strategies

There are two types of strategies for a generic numerical compensation framework:
CAD-based strategies and mesh-bashed strategies.

• CAD-based strategies consist in parametrizing a CAD model of the nominal geometry
(target design) and using an optimizer, find the optimal value of the set of parameters
P which reduces the cure-induced distortions as much as possible.
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• Mesh-based strategies do not use an optimizer since they rely on the application
of an appropriate correction to the mesh based on the distortions observed at a
previous iteration.

The complexity of the computational chain (see Figure 2.9) depends on what must
be automated or not. If the CAD geometry is changed, this geometry must be meshed
automatically and then the input file for the simulation must be prepared automatically as
well. From that standpoint, mesh-based strategies are simpler. Nevertheless, mesh-based
strategies may require a time-consuming CAD reconstruction step after the final mesh is
obtained.

Figure 2.9: Flowchart of the different mold compensation techniques: (a) CAD-based (b)
Mesh-based [2].

2.6.1 CAD-based Methods

CAD-based methods require an optimization loop to find the values of the set of
parameters P that minimize the difference between the cured part and the nominal part.
Thus, a quantitative indicator is necessary to measure the overall distortions: spring-in
angle, twist angle, maximum deflection, or alternative approaches are used.

An alternative approach is selecting a set of points (control points) and measure
the distance between each point in the distorted geometry and its counterpart on the



18 2.6. Mold Compensation Strategies

nominal geometry. The quantitative indicator is an averaged sum of all squared distances,
proposed in [2], named Dmin. The choice of the points remains subjective. They must be
as representative of the main features of the geometry as possible.

It is necessary to implement an algorithm (optimization procedure) to find the optimal
residual distance between the cured mesh and the nominal mesh. The algorithm must find
the rigid body motion that minimizes Dmin:

Dmin =
1

N

N∑
i=1

‖Pi(λ)P 0
i ‖

2
(2.24)

where N is the number of control points (CPs), λ the applied rigid body mode, Pi(λ) is
the point to which λ is applied and P 0

i is the point in the nominal geometry. If Dmin = 0,
then the two geometries (deformed and nominal) coincide perfectly.

Minimizing the spring-in angle or Dmin for a chosen set of points may lead to different
optimum layouts. In some cases the final results will match perfectly. That will strongly
rely on the initial geometry and the amount of deformation variables involved in it.

2.6.1.1 Distortion Modes Method

One CAD-based technique is the Distortion Modes Method (DMM) [2]. In the DMM
the compensation is based on the actual deformation mechanisms which give rise to the
cure-induced distortions, e.g. spring-in or twist angles. The method is largely subjective as
the deformation mechanisms to compensate, i.e. the optimization variables, are user-chosen.
An optimization process is necessary to minimize the cure-induced mechanisms.

A schematic representation of the method is given in Figure 2.10 (a). In the present
example, the set of parameters to compensate the composite part is P = θ, where θ is the
spring-back angle – as the curved region tends to open.

Figure 2.10: Schematic explanation (a) of the Distortion Modes Method; and (b) of the
Control Points Method [2].
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2.6.1.2 Control Points Method

Another CAD-based technique is the Control Points Method (CPM) [2]. The CPM
requires the parametrization of the position of a certain set of points: the control points
(CPs). The position of the control points, i.e. the displacement field with respect to the
nominal geometry, is the set of variables to use in the optimization procedure. A schematic
representation of the method is given in Figure 2.10 (b). In the present example, P is
composed of the three components of each vector −→vi .

As aforementioned, the CPs must be as representative as possible of the geometry.
This parametrization offers a richer design space (in comparison with DMM), since it
leaves more freedom in terms of shapes to be tested by the optimizer. The parametrization
does not need to be applied to the whole geometry, but still the CPM requires a higher
number of parameters than the DMM.

2.6.1.3 Comparison: DMM and CPM

According to [2] both perform well, in different manners. If the objective of the
compensation is to minimize the overall distance between a cured and nominal geometry
for a given set of points, then the CPM is more efficient. On the other hand, the
DMM is much faster and successful in minimizing several user-selected distortion values
simultaneously. As the DMM is more subjective than the CPM, the latter seems more
suitable for the perspective of developing a systematic mold compensation strategy for
complex geometries.

2.6.1.4 Optimization Algorithms

Either in the DMM as in the CPM, the optimization problem in this thesis is an
unconstrained optimization problem – i.e. neither the deformation modes nor the position
of the CPs are theoretically constrained, despite, for instance, a spring-in angle being
physically limited to be 360o the most.

The objective function to be minimized is already determined for the CPM: Dmin (see
equation 2.24). On the other hand, the objective function for the DMM must be defined
for every particular case. The latter requires a good understanding of the compensation
problem (i.e. accurate prediction of the deformation modes), otherwise a poor-defined
objective function may lead to a false optimum.

The optimization algorithm is greatly related to the objective function. In the literature
there is a wide variety of algorithms at hand, which have their perks and downfalls
depending on the optimization problem. The most relevant to mention for the present
study are detailed below:

• Gradient-based algorithms: algorithms in which the search direction is defined
by the gradient of the function at the current point. These algorithms, e.g. steepest
descent or conjugate gradients, are globally convergent (finite number of iterations) to
a local minimum with certain assumptions on the function: convexity and continuity
of the gradient. There is no guarantee that they converge at all if the latter conditions
are not satisfied. The most general way to detail such algorithms is detailed below.
Let f(x) be the objective function:
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1. Initialization: choose x0 ∈ Rn and set k = 0.

2. Direction finding: compute sk such that [sk]T∆f(xk) < 0.

3. Line search: find pk such that f(xk + pksk) = min
α≥0

f(xk + pksk).

4. Update: set xk+1 = xk + pksk.

5. Convergence check: if satisfied, the optimum is x∗ ≈ xk+1. Otherwise, set
k = k + 1 and go back to step 2.

• Second order algorithms: besides gradient-based methods, second order methods,
like the Newton Methods, could also be used. The main inconvenience of these
methods is that first and second order derivatives must be computed for the update
of the current iterate.

• Surrogate-based algorithm: it evaluates the objective function for a collection
of individuals over a design space. Then, an interpolation function is fitted to these
results – i.e. an approximation of the objective function, i.e. a surrogate model, is
obtained. The fitting coefficient must be higher than a user-set threshold to have an
approximation accurate enough, usually higher than 0.7. After, the minimum of the
surrogate model is found, and the curing simulation of this optimum is computed and
then fed into the data set for the next iteration. A new surrogate model is computed
and the process is repeated until the optimum has not improved for a significant
number of iterations, at the user’s discretion. The use of this type of algorithm
allows for a much faster global optimization process compared to gradient-based
methods, which lack space exploration and convergence to a global minimum is not
guaranteed.

All one-variable surrogate models of this thesis are polynomials of a certain user-chosen
order fitted with Excel. All two-variable surrogate models of this thesis are polynomials
of a certain user-chosen order fitted with Matlab using its built-in function fit. To find the
minimum of the surrogate models a Wolfram|Alpha (the computational knowledge engine)
widget has been used [8].

2.6.2 Mesh-based Methods

The mesh-based method proposed in [2] is called the Mirror Method (MM). It is
based on the notion that cured-induced distortions may be considered as linear in a first
approximation. Under this hypothesis, the compensated geometry should thus be close
to the inverted cured geometry with respect to the nominal geometry. Correction of the
geometry is performed based on the meshes as follows:

Mi+1 =Mi + (Mo −Mi
c) (2.25)

whereMi is the mesh of the mold geometry of part before curing at iteration i,Mo is the
mesh of the nominal geometry and Mi

c is the mesh of the part geometry after curing at
iteration i. An example of the process is depicted in Figure 2.11, where it can be seen
that the update of the mold geometry following equation 2.25 tends to the inverted cured
geometry with respect to the nominal geometry, as previously mentioned.
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In the MM, the measurement of the distortions is the same as for CAD-based methods,
except that the residual distance covers all the nodes, and not just the selected points as
in the CPM.

This method converges towards a perfect compensation when the main distortion is
spring-in, and in very little iterations (ranging from 1 to 4, normally) [2]. When warpage
prevails, though, the method stagnates or diverges [2]. This is due to the radical change of
behaviour between the nominal and reversed geometry. When warpage prevails the main
hypothesis of the MM, that is linear cured-induced distortions, is not satisfied.

Figure 2.11: Schematic depiction of the Mirror Method. In iteration 0 the nominal
geometry = mold geometry.
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Numerical Model and Methodology

In this chapter, the numerical models employed to test the mold compensation techniques
are presented. After, the methodology followed to implement each compensation method is
detailed.

3.1 Numerical Model

3.1.1 Common Properties of All Models

The evolution of the mechanical properties of the composite material (parameter
Cijkl in equation 2.23), follows the default CHILE model implemented in Samcef – i.e.
viscoelastic effects are neglected. The resin properties, Em and νm, only have three discrete
constant values each, one for every physical state that the resin undergoes throughout the
curing process. Accordingly, Cijkl will also be different at each physical state, using the
resultant properties of the laminate that are computed with equations 2.16 to 2.22.

The name of the employed composite material on this thesis is not shared for confidentiality
reasons. The mechanical, thermal and chemical properties of the used material are detailed
in Table 3.1. Regarding the curing properties, the cure kinetics model ˙X(X,T ), the
vitrification model fd(X) and the glass transition temperature Tg(X) model are the ones
described by equations 2.2, 2.3 and 2.4 in Section 2.5, respectively. The parameters of
those models are detailed in Table 3.2.

The specific heat and the thermal conductivity, as well as the maximum curing heat
released HT of the employed composite are not defined. This is due to the thermal boundary
conditions, which are defined below along with the mechanical boundary conditions.

• Thermal boundary conditions: prescribed temperature in all nodes. The
temperature evolution during the curing cycle T (t) (see Figure 3.1) is applied to all
the nodes, thus not requiring the above mentioned properties – which are necessary
in case of convection/conduction boundary conditions where the temperature field at
each time step is an unknown. This boundary conditions are a good approximation
as the thickness of the employed laminate is really small. Being so, assuming
an homogeneous temperature field along the thickness is a good representation of
reality [2]. Furthermore, this boundary conditions suppose a great reduction of CPU
time.

• Mechanical boundary conditions: as the deformation caused by the cured-induced
distortions are going to be studied, only the rigid body modes of the part are
restricted.
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The curing cycle applied has a total duration of 332 minutes starting at room
temperature (21 ◦C) and a maximum curing temperature of 180 ◦C. That temperature is
hold for 120 minutes. There is no dwell to reach that temperature, and the cooling and
heating phases both last 106 minutes.
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Figure 3.1: Evolution of the temperature during the curing process: curing cycle.

Regarding the laminate employed on every model has been changed depending on
the deformation mode intended to be obtained on the part: a symmetrical laminate
leads to pure spring-in deformation while unsymmetrical laminate produces out-of-plane
deformations leading to warpage or spring-in plus warpage. The laminate used – number
of plies, orientation and thickness of each ply and total thickness – is detailed at the
beginning of each section of the Results chapter 4.

Finally, regarding the spatial and time discretizations, a remark must be made:

• The spatial discretization (mesh) has not been studied in-depth as the main goal of
these models has been the proper implementation and test of the mold compensation
techniques and not to obtain accurate results to machine or produce such mold. The
main consideration to define the mesh has been obtaining a good trade-off between
measuring a representative enough displacement field and the CPU time.

• The same must be mentioned for the time discretization: no accurate study has been
performed to determine the best time step or time integration scheme. The time
step has been chosen in order to properly capture all the physical phenomena that
happens during the curing cycle, and the time integration scheme has been set to
the default one.

The type of element used to model the composite material has been a 8 node solid
element, with one element per ply.
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Matrix

Property Glassy Rubbery Liquid

Em [MPa] 4670 40.3 40.3
νm [-] 0.37 0.499 0.499

αm [◦C−1] 4.89 E-5 1.5 E-4 0
βm [-] 2.455 E-3 2.45592 E-3 0
Xgel [-] 0.31

Fibers

Ef [MPa] 228000
Gf [MPa] 27600
νf [-] 0.2

αf1 [◦C−1] -9 E-7
αf2 [◦C−1] 7.2 E-6

Vf [-] 0.5742

UD ply

ρ [kg/m3] 1570

Table 3.1: Mechanical, thermal and chemical properties of the material used in this thesis.

Cure kinetics model

Property Value

A1 [Hz] 1 E-9
A2 [Hz] 68229
S1 [J] 0
S2 [J] 64290
n1 [-] 0
m [-] 0.492
n2 [-] 1.75

Vitrification model

Xmax [-] 0.9051625
bD [-] 0.03322

Glass transition temperature model

Tg0 [K] 275.82
Tg1 [K] 491.42
λ [-] 0.5

Table 3.2: Parameters of the cure kinetics, vitrification and glass transition temperature
models.
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3.1.2 Z-Shaped Model

The implementation of the three main mold compensation techniques mentioned in
Section 2.6 – the MM, the DMM and CPM – has been performed on a Z-shaped geometry
with a symmetrical laminate. The geometrical features of the Z-shaped part are depicted
in Figure 3.2. The out-of-plane dimension of the part is 150 mm.

Figure 3.2: Z-shaped part geometric
features (not scaled). All units in [mm].

Figure 3.3: First mesh of the Z-shaped
model.

3.1.2.1 Implementation and Optimization of the Z-Shaped Model

The initial numerical parameters of the model are detailed in Table 3.3. The mesh
used is depicted in Figure 3.3.

Parameter Value

Node density at curved regions [node/mm] 2/3
Node density at remaining regions [node/mm] 1/5

Elements per ply [-] 1
Total number of D.O.F [-] 240,591

Time step [min] 1

Table 3.3: Numerical parameters of the first Z-shaped model.

First Implementation

As mentioned in Section 2.5.5.1, there are two ways of modeling the thermo-mechanical
coupling that occurs during the curing process: a two and one-model approach. In this first
trial, a two-model approach has been followed. The latter implies creating and running
a thermal model and then load the results to a mechanical model. To do so, identical
meshes have been used for both models.
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In the thermal model the archiving frequency 4 of T (t), X(t) and Tg(t) is 1 min−1

(every time step). In the mechanical model, the displacement field is obtained at every
time step. Thanks to this approach, a very accurate representation of X(t) is obtained –
see Figure 3.4.
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Figure 3.4: X(t).

Model CPU time [min]
Archiving

frequency [min−1]

Thermal 120 1
Mechanical 150 1

Table 3.4: CPU and archiving frequencies for both models in the first implementation of
the Z-shaped model.

The CPU time required for both models is presented in Table 3.4. The total amount of
time necessary to obtain the cured-induced distortions is 270 minutes (4.5 hours), which is
excessively long. Checking the results file, it has been noticed that each iteration lasts
about 2 to 4 seconds and that the highest number of iterations per time step is 5 to 6.
But the CPU time for every time step can amount to more than 50 seconds because of the
writing of results.

Analyzing X(t) at Figure 3.4, the curing times at which the resin properties are going
to change the most can be determined. Thus, different archiving frequencies at the thermal
model must be set in accordance to that. Furthermore, by analyzing Figure 3.1, where the
curing cycle is depicted, different archiving frequencies can be set in the mechanical model
in order to capture the curing times at which the displacement field change is going to be
more important.

4Frequency at which the variables are calculated and saved, i.e. number of time steps between every
new value of the variables.
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Second Implementation

The thermal and mechanical models archiving frequencies are modified, but the
numerical parameters specified above are kept the same. The total curing time (simulation
time) is divided in 4 regions in the thermal model and in 3 regions in the mechanical
model.
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Figure 3.5: X(t) divided in 4 regions.

Region
Comprised curing

cycle [min]
Archiving

frequency [min−1]

I 0 - 60 0.2
II 60 - 166 1
III 166 - 226 0.1
IV 226 - 332 0.2

Table 3.5: Archiving frequencies modification to the Z-shaped thermal model.

As depicted in Figure 3.5, 4 regions have been defined. The archiving frequencies for
each region are specified in Table 3.5. Region III has the lowest archiving frequency as at
that part of the curing cycle, X does not vary much and the cycle temperature is constant.
Regions I and IV have higher archiving frequencies as, despite X being almost constant in
those regions, these regions represent the heating and cooling phases, respectively. Thus,
thermal strains appear and they induce distortions. Finally, region II has the highest
archiving frequency as X and, accordingly, the mechanical properties of the resin vary a lot.

Then, in Figure 3.6 3 regions have been defined. The archiving frequencies for each
region are specified in Table 3.6. In the mechanical model the only interesting data is the
last deformation field when t = 332 min. Despite that, the archiving frequencies of the
heating and cooling phases of the curing cycle (region I and III) are set to 0.1 min−1 in
order to have an evolution history of the displacement field – thus being able to detect
any anomaly in the results.
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Figure 3.6: T (t) divided in 3 regions.

Region
Comprised curing

cycle [min]
Archiving

frequency [min−1]

I 0 - 106 0.1
II 106 - 226 1/120
III 226 - 332 0.1

Table 3.6: Archiving frequencies modification to the Z-shaped mechanical model.

After this simplifications, the total CPU time has been reduced to a total of 120
minutes to obtain the cured-induced distortions (50 and 70 minutes for the thermal model
and mechanical model, respectively). Despite the reduction of the archiving frequencies,
no accuracy has been lost – same results have been yielded.

Third Implementation

In the third implementation, the second option to define the thermo-mechanical
coupling, stated in Section 2.5.5.1, has been chosen. A one-model approach has been
followed. The model now is a mechanical model, for which T (t), X(t) and Tg(t) have been
introduced as input loads.

X(t) and Tg(t) have been discretized into 20 discrete values (T (t) had already been
defined for the thermal model), with which Samcef interpolates the curve by straight lines.
The discretization of X(t) and Tg(t) is based on the results obtained for such variables
in the thermal model. Doing so, the total CPU time is reduced to 40 minutes. But the
introduction of the discretized data implies a difference in the maximum cured-induced
distortion of 3% with respect to the two-model approach. That difference, though, is
considered as acceptable regarding two aspects:

• It reduces the total CPU time from 120 to 40 minutes. That fact is really important
as mold compensation techniques are based on iteration loops in which the curing
process has to be simulated over and over – recall the flowcharts depicted in Figure 2.9.
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• As explained at the beginning of this section, the accuracy of the measured displacements
is not crucial for the accomplishment of this thesis objectives.

In conclusion, the one-model approach is considered as the most suitable option to
implement the mold compensation techniques.

3.1.2.2 Spring-in/Spring-back Model

The initial implementation of the three mold compensation techniques (detailed in
Section 2.6: the Mirror method, the DMM and CPM) has been done on the Z-shaped
part with a pure spring-in/spring-back deformation mode. The latter is achieved using a
symmetrical laminate.

The mechanical boundary conditions applied on the part – the suppression of the rigid
body modes – are shown in Figure 3.7. The 6 degrees of freedom are suppressed by 6
displacement restrictions. After running the simulation, an uneven distribution of the
total displacement can be noticed – see Figure 3.8 (a), which leads to a positive twist
along the y axis (green axis of Figure 3.8).

Figure 3.7: Boundary conditions to suppress the rigid body modes on the Z-shaped model.

The main cause of this phenomenon are the applied boundary conditions. Throughout
the curing process, dilatational and compressive strains are developed in the 3 directions
of each element. Due to the 3 nodes with applied x displacement restriction, an uneven
x displacement field is generated along the Z-shaped part – see Figure 3.8 (b), which in
turn creates the twist along the y axis.

(a) Total displacement field. (b) x displacement field.

Figure 3.8: Uneven displacement field of the Z-shaped part after the curing process with a
symmetric laminate.
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In order to suppress such twist a simplification is made on the model. A section on the
middle of the Z-Shaped part is modeled with only one element along x, with plain strain
conditions – see Figure 3.9. The latter conditions simulate the presence of material at both
(transverse) sides of the section and ensure no transverse displacement (x displacement),
thus having only spring-in/spring-back deformations.

This model yields a different maximum displacement with respect to the fully modeled
geometry one (around 10% difference). Nevertheless, the following reasons make this
simplified model more convenient as:

• Thanks to the reduction of total elements, the density of elements along the curved
regions has been increased – Appendix B proves that the number of circumferential
elements is crucial to properly measure the change in spring-in angle. As seen in
Table B.1, the most optimal number of elements along the circumference is 17.
However, 15 elements has been the number chosen due to the inability of NX to
extrude the volume elements when 17 is the chosen number of elements. This new
model has a total number of D.O.F of 10,401 – check Table 3.7 for the rest of
numerical parameters.

• The total CPU time of a full curing simulation is under 2 minutes, while with the
full model is around 40 minutes. This fact allows this model to be the perfect model
to implement the mold compensation techniques for the first time, as a lot of tests
are required until a full working methodology is developed.

• A Z-shaped part with a symmetrical laminate and free deformation (only rigid body
modes suppressed) is supposed to yield the same displacement field regardless of
the transverse section. Thus, from a modeling point of view, this model accurately
represents the reality of the problem and therefore, the difference in results with the
previous model can be omitted.

Figure 3.9: Simplified model of the
Z-shaped part. A one-element section is
modeled with plain strain conditions (the
latter are not depicted).

Figure 3.10: 0◦ element orientation of the
Z-shaped spring-in/spring-back model.
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Parameter Value

Number of elements at curved regions [-] 15
Node density at remaining regions [node/mm] 1/5

Elements per ply [-] 1
Total number of D.O.F [-] 10,401

Time step [min] 1
CPU time [min] 2

Table 3.7: Numerical parameters of the Z-shaped spring-in/spring-back model.

3.1.2.3 Mixed Deformation Model

A model to study mixed deformation modes (warpage plus spring-in/spring-back) has
been developed. As warpage occurs due to out-of-plane displacements, the whole section
of the Z-shape part needs to be modeled – see Figure 3.11. The mixed deformation modes
have been achieved by using different unsymmetrical laminates.

As in the spring-in/spring-back model, a one-model approach thermo-mechanical model
has been followed (T (t), X(t) and Tg(t) are introduced as input loads), the rigid body
modes are also suppressed in the same way as in Figure 3.7, a 8 node solid type of element
has been used and the number of elements along the curved part regions has also been 15.
The rest of numerical parameters and relevant information are detailed in Table 3.8.

Figure 3.11: Z-shaped part mixed
deformation model.

Figure 3.12: 0◦ element orientation of the
Z-shaped mixed deformation model.

Parameter Value

Number of elements at curved regions [-] 15
Node density at remaining regions [node/mm] 1/5

Elements per ply [-] 1
Total number of D.O.F [-] 282,549

Time step [min] 1
CPU time [min] 70

Table 3.8: Numerical parameters of the Z-shaped mixed deformation model.
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3.1.3 Warpage Model

A model to study pure warpage deformation has been developed. To achieve such
deformation mode different unsymmetrical laminates have been tried on a flat plate (see
Figure 3.13) in order to study the different warpage or out-of-plane types of deformation –
check Appendix’s A Section A.4.2 for further details on those deformation modes. Details
of each laminate tested are given at the beginning of each section of the Results chapter 4.

The geometrical dimensions of the plate are 200x150 mm. The suppression of rigid
body modes has been applied at different locations depending on the warpage mode studied
– they have been suppressed using 6 displacements restrictions. The three out-of-plane
modes studied are: bending, torsion and mixed mode (bending + torsion). For the bending
mode the boundary conditions have been applied at the center of the plate, while for the
other two modes they have been applied at a corner, as depicted in Figure 3.7.

As in the Z-shaped model, a one-model approach thermo-mechanical model has been
followed (T (t), X(t) and Tg(t) are introduced as input loads), a 8 node solid type of
element has been used and a time step of 1 min has been set. The rest of numerical
parameters and relevant information are detailed in Table 3.9.

Figure 3.13: Warpage model. Figure 3.14: 0◦ element orientation of the
warpage model.

Parameter Value

Node density [node/mm] 1/5
Elements per ply [-] 1

Total number of D.O.F [-] 40,701
Time step [min] 1
CPU time [min] 11

Table 3.9: Numerical parameters of the flat plate model.
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3.2 Methodology

In this section all the steps followed to implement the mold compensation techniques
are detailed. The explanation of the latter must serve as the guidelines for anyone willing
to develop such compensation strategies with its own means, i.e. CAD-modeling software,
CAE software, optimization algorithm, etc. In the present thesis, the compensation
methodology for CAD-based and mesh-based strategies is detailed in the frame of the
employed software NX.

3.2.1 CAD-based Compensation Methodology

The key of both the DMM and CPM (see Section 2.6.1.1 and 2.6.1.2, respectively)
is that the mold geometry is defined with a finite number of parameters, i.e. the mold
geometry is parametrized. In the case of the DMM, that parameter(s) P is a distortion
mode, e.g. a pring-in angle or a twist angle; and for the CPM those parameters P are the
displacement field of one or more points of the mold geometry with respect to the nominal
geometry. An example of the latter is depicted in Figure 3.15.

(a) P = θ (spring-in angle).

(b) P = {v1, v2}.

Figure 3.15: Different parametrized models: (a) DMM and (b) CPM.
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The CAD-based compensation methodology is detailed below. Figure 3.16 summarizes
the process explained in a flowchart:

1. The first step of the method is to have the mold 2D geometry fully parametrized
(.prt file). In the present thesis a 2D geometry approach has been followed as the
composite laminate is then extruded in the FEM model.

2. With the geometry ready, a FEM model is created (.fem file). The steps necessary
to have the model fully meshed and ready for the simulation are:

i. An idealized part of the original geometry is created where the geometry can
be partitioned in accordance with the desired mesh, e.g. partition the geometry
so the curved regions can be have a higher density of elements than the rest.

ii. With the geometry partitioned, the mesh density of the geometrical edges is
defined.

iii. Then the type of 2D element, i.e. 3-node triangular, 4-node rectangular or
8-node rectangular, is chosen. The general element size is defined for the edges
where the node density was not specified. And the 2D mesh is generated.

iv. The element orientation, directions 1 and 2, is defined in accordance with the
problem of study, i.e. so it coincides with the laminate global axes. Then the
laminate is defined and extruded (solid elements).

3. With the FEM model ready, the simulation model is created (.sim file). The required
steps to launch the simulation are:

i. Import T (t), X(t) and Tg(t) and apply the three fields to all the nodes.

ii. Apply the boundary conditions to suppress the rigid body modes – as explained
in Section 3.1.2.2, 6 displacements restrictions have been used.

iii. Then the integration limits, i.e. the curing cycle total duration, are defined in
accordance to the archiving frequencies defined in Table 3.6: three subcases are
created for the three archiving frequencies. Also the time step is defined.

iv. With the above completed, the simulation can be launched.

4. Once the simulation is completed, the parameters P relevant for the optimization
objective function are measured – the objective function must be preferably defined
so that its minimum tends to 0. The objective function is evaluated in terms of the
measured parameters Fobj(P) and is compared to a chosen precision η.

i. If Fobj(P) < η, then the compensate geometry is obtained, which corresponds
to the last parametrized CAD model.

ii. If Fobj(P) > η, then the process must be repeated from step 1 changing the
mold geometry of the paramterized model in accordance to the optimization
algorithm chosen.
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3.2.2 Mesh-based Compensation Methodology

The key of the Mirror Method (see Section 2.6.2) is that the update of the mold shape
from iteration to iteration is performed on the mesh – following equation 2.25. Thus,
when the process is finished, a reconstruction is required to obtain a CAD file of the
compensated mold geometry.

The Mirror Method methodology is detailed below. Figure 3.17 summarizes the process
explained in a flowchart:

1. The first step of the method is to have the nominal 2D geometry modeled in a CAD
model (.prt file). The MM is always initiated by modeling the mold geometry as the
nominal geometry.

2. Same as in the CAD-based compensation methodology.

3. Same as in the CAD-based compensation methodology.

4. Once the simulation is completed, the residual distance δres, i.e. distance between
cured mesh and nominal mesh, is measured for all mesh nodes. The maximum
residual distance measured δmaxres is compared to a chosen precision η.

• If δmaxres < η, then the compensate geometry is obtained. The latter corresponds
to the last mold mesh.

• If δmaxres > η, then the process must be repeated from step 1 updating the mold
mesh following equation 2.25. The updating of the mold mesh is explained
below.

The update of the mold mesh consists in the following steps:

0. The nominal position of all nodes must be measured. The latter is saved to an Excel

sheet, as NX allows to export results or model data to an Excel sheet.

1. At each iteration, the cured displacements of the mesh nodes are measured and
exported to the Excel sheet.

2. Then, on the Excel sheet δres is computed in the three cartesian directions for all
the mesh nodes. Afterwards, it is saved in a text file (.txt).

3. The new mold mesh is obtained by copying the FEM model (.fem) of the previous
iteration mold mesh and rename it. Then, the displacement field of the residual
distance δres (.txt file) is imported into the model and a NX Field is created. Finally,
the NX option of translate is used, which allows to select all nodes of the mesh and
apply the previously created Field with a user-chosen scale factor.
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Results

This chapter presents the results obtained with the three mold compensation techniques
studied in this thesis: the MM, DMM and CPM. Three deformation modes have been
studied: spring-in, warpage and a mixed mode; with two different geometries: a Z-shaped
part and flat plate. The methods have been compared after analyzing the results of every
deformation mode.

4.1 Z-shaped Part under Spring-in Deformation

In this section, the MM, the DMM and CPM have been implemented for the first
time using NX – the methodology followed to do the latter is explained in Section 3.2 and
depicted in Figures 3.16 and 3.17. The compensated geometry of the Z-shaped part is
obtained with the three methods.

The laminate that has been used on the Z-shaped part in order to obtain spring-in
deformations is the following: [−45/0/-45/0]s, a symmetrical laminate, with plies of
thickness h = 0.205 mm each (htot = 1.64 mm). The numerical model employed is the
one detailed in Section 3.1.2.2, the spring-in/spring-back model. The element’s reference
vector (0◦ orientation) is aligned with the global axis y, but follows the Z-shape of the
part – see Figure 3.10.

4.1.1 Compensation with the MM

Using the MM, the compensated geometry is obtained in 2 iterations. Figure 4.1
depicts the nominal geometry, the mold geometry and cured geometry at each iteration. At
every iteration, the maximum residual distance between the cured and nominal geometries
has been computed – see Table 4.1.

It is important to highlight the fact that in iteration 1 5 the compensated geometry
is already obtained: the maximum residual distance δmaxres is 4.21 µm. Iteration 2 has
been performed seeking higher accuracy, and being successful: δmaxres is much less than a
micron: 0.0239 µm. Another iteration (not shown in Table 4.1) has been performed but
δmaxres has increased a few hundreths of a micron. Therefore the process – if it’s thought as
a mathematical function – oscillates around the minimum from the third iteration and on.

5The actual first iteration is named 0 as it is a numerical simulation that must be performed, but is
not after this iteration that the compensation process starts – i.e. the mold geometry is modified.
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Iteration δmaxres [mm]

0 8.87 E-01
1 4.21 E-3
2 2.39 E-05

Table 4.1: δmaxres between the nominal and cured mesh at each iteration using the MM for
the Z-shaped part under spring-in deformation.

Cured geometry 0

Nominal geometry= mold geometry 0

(a) Iteration 0.

Mold geometry 1

Cured geometry 1

Nominal geometry

(b) Iteration 1.

Mold geometry 2

Cured geometry 2

Nominal geometry

(c) Iteration 2.

Figure 4.1: Depiction of the iterative process followed to compensate the Z-shaped part
under spring-in deformation with the MM. A deformation factor of 10 is applied.

4.1.2 Compensation with the DMM

Using the DMM, the only distortion mode in this specific case is spring-in deformation.
Thus, the optimization process must seek to minimize the spring-in angle resulting from
the curing process. Three optimization processes are proposed:
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• Optimization process 1: the objective function is Fobj = θic−θ0c
θ0c
· 100, where θic is

the cured angle at iteration i and θ0c is the cured angle at iteration 0. The process
starts with θ0applied = 0◦ and the update of the latter is θi+1

applied = θiapplied − θicured –
see Figure 4.2. This is the same approach that is followed in the MM to modify the
mold mesh. It has been carried out with Excel.

• Optimization process 2: the objective function is the same as in optimization
1. The update of the applied angle is θi+1

applied = −pi+1 · θ0applied, which is a line search

method in which the value of p that turns θic to 0 must be found. The first step is to
find two values of p that yield θc > 0 and θc < 0. After, a bisection method has been
followed in which the value of alpha is updated as follows: pi+1

applied = (pimax + pimin)/2,

where pimax and pimin are updated every iteration reducing the available range of
values for p. It has been carried out with Excel.

• Optimization process 3: a surrogate-based algorithm (see Section 2.6.1.4) has

been followed. The objective function selected has been Fobj =
(
θkc /θ

0
c

)2
, where θkc is

the cured angle for every configuration k. A set of 7 initial θapplied have been tried
and θkc has been computed for each configuration: after, a surrogate model has been
fitted into the data and the minimum has been sought. The minimum has been
added to the set of individuals, by running a curing simulation, and a new surrogate
model has been found until no improvement of Fobj has been shown.

Figure 4.2: Schematic representation of the only deformation mode: spring-in. θ is the
applied spring-back/spring-in angle to the mold geometry.

It is important to highlight that the variable update used in optimization processes
1 and 2 is a linear function. That is because the spring-in/spring-back deformation can
be considered as linear: plain strain conditions and the thermal and chemical tractions
(which evolve linearly with respect to ∆T and X, respectively) only appear in global
directions y and z – see Figure 4.2. No bending nor torsion moments are generated due
to the curing process: symmetrical laminate with homogeneous distribution of T and X –
see Section A.3 of Appendix A. Therefore, the global deformation mode behaves linearly –
the MM proves the latter by obtaining the compensated geometry in 1 iteration.
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The first optimization process gets a compensated geometry in 2 iterations (compensated
angle θapplied = −0.32471◦) with a reduction of 99.938 % of the initial cured angle6 – the
followed convention is positive angle for an anticlockwise direction. Table 4.2 details the
results of this process.

Iteration θapplied [o] θc [o] Reduction [o] Reduction [%]

0 0.0000 0.325 - -
1 -0.32500 -0.00025 0.0.32475 99.922
2 -0.32473 -0.00020 0.32480 99.938

Table 4.2: Results obtained with the first optimization process of the DMM.

Then, regarding the second optimization process, the number of iterations to obtain
the final compensated geometry is larger – all the results are shown in Table 4.3. The
line search procedure is really sensitive to the initial guesses, as it determines the initial
interval of p values. If the guess is accurate, the number of iterations is highly reduced.
Conversely, if the guess is not accurate the number of iterations gets increased as the
initial interval is larger.

Iteration θapplied [o] θc [o] Reduction [o] Reduction [%] p

0 0.0000 0.325000 - - -
1 -0.3250 -0.000254 0.32475 99.922 1
2 -0.2600 0.039900 0.28510 87.723 0.8
3 -0.2925 0.025800 0.29923 92.071 0.9
4 -0.3088 0.012885 0.31212 96.035 0.95
5 -0.3169 0.006442 0.31856 98.018 0.975
6 -0.3209 0.003221 0.32178 99.009 0.9875
7 -0.3230 0.001611 0.32339 99.504 0.99375
8 -0.3240 0.000805 -0.00055 99.752 0.996875
9 -0.3245 0.000403 0.03950 99.876 0.9984375
10 -0.3247 0.000201 0.02557 99.938 0.99921875

Table 4.3: Results obtained with the second optimization process of the DMM.

For last, optimization 3 has been executed. The initial 7 individuals tested to obtain
the first surrogate model (see Figure 4.3) are detailed in Table 4.4 – individuals A to G.
Additionally, the 2 minimums obtained of the 2 surrogate models (iterations) necessary
for convergence are shown – individuals 1 and 2. All surrogate models are second order
models and they have had a fitting parameter R2 = 1, i.e. a perfect fit.

From Table 4.4, it can be deduced that the θapplied that minimizes Fobj is individual
7: θapplied = −0.3247◦. That is the optimum of the first surrogate model. That optimum
has been added to the set of individuals in the next iteration, and a new surrogate
model has been obtained. The optimum of the second surrogate model has turned to be
the same value as the first, thus not improving Fobj . The process has been terminated there.

6The cured angle has been measured with the y and z position change of the geometrical point located
at the upper part of the web of the Z-shaped part.
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Conclusions

The same value of θapplied is obtained using different optimization procedures. The
latter was expected. However, success is highly dependent on proper formulation of the
optimization algorithm. Otherwise, the optimum yielded may not be the real one – as
mentioned in Section 2.6.1.4.

Individual θapplied [o] θcured [o] Fobj =
(
θkc
θ0c

)2
[-]

Initial set

A -1.0000 -0.6779 4.3511
B -0.5000 -0.1758 0.2927
C -0.3000 0.0249 0.0059
D 0.0000 0.325 1.0000
E 0.3000 0.6272 3.7248
F 0.5000 0.8281 6.4930
G 1.0000 1.3295 16.7346

Iterations

1 -0.3247 0.0002 0.0000
2 -0.3247 0.0002 0.0000

Table 4.4: Tested configurations and Fobj obtained with the third optimization process of
the DMM.
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Figure 4.3: First surrogate model of the third optimization process of the DMM. It includes
individuals 0 to 6.

Optimization process 3 algorithm is a surrogate-based approach. The use of such
approach allows for a wide space exploration. However, surrogate-based algorithms rely on
having enough representative tested configurations (i.e. if θapplied ∈ [0, 1] then the surrogate
model will be different and so will be the optimum) and on choosing the appropriate order
of the surrogate model.

Optimization processes 1 and 2 use a fixed search direction throughout the process
to update the current iterate: sk = −1 (constant gradient algorithm). Gradient-based
methods strongly depend on a proper iterate update method and on the initial iterate.
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Then, regarding the objective function Fobj , it must represent accurately the deformation
mode, i.e. the behaviour of the distortion variable θc for any θapplied. Fobj of optimization
processes 1 and 2 are a function of θc, while Fobj of optimization process 3 is a function of
θ2c . As the three processes yield the same θapplied it can be assumed that both the objective
function and the iterate update method are well formulated for each process.

Finally, the following conclusions can be deduced:

• The formulation of the objective function is key for the success of any optimization
algorithm. Then, regarding the search direction, surrogate-based algorithms are
more appealing as their implementation is less susceptible to errors: testing a wide
range of possible values, despite more time-consuming, is safer than choosing the
update of the the search direction and the initial guess.

• When using surrogate-based algorithms, the order of the surrogate model is as
important as the definition of the objective function. If the objective function of

the optimization process is formulated as Fobj =
∣∣∣ θkcθ0c ∣∣∣, neither a first nor a second

order surrogate model will yield the real optimum obtained above (see Figure 4.4).

However, if Fobj = θkc
θ0c

, thus now taking into account the sign, a first order surrogate

model will make Fobj = 0 when θapplied = −0.3247◦ (see Figure 4.5).
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Figure 4.4: Fobj =
∣∣∣ θkcθ0c ∣∣∣. Bad objective function as neither a second nor first order surrogate

model fits it.
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Figure 4.5: Fobj = θkc
θ0c

and first order surrogate model. Good choice.
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4.1.3 Compensation with the CPM

Using the CPM, the CPs position (x, y, z ) are the optimization variables. Dmin (see
equation 2.24) is the objective function to minimize, i.e. the averaged sum of the squared
distances – residual distance of the CPs. The studied case can be considered 2-dimensional
as plain strain conditions are imposed. So, a CP can only have a maximum of two variables.

The CAD model of the mold geometry is parametrized with the variables of the chosen
CPs. The rest of geometrical features will accordingly move when any of these variables
are modified. If the CPM is executed with a number of CPs equal to the number of
meshed nodes, the method resembles the MM but using a CAD-based strategy. Using the
CPM with a high number of CPs requires a high automation of the process, otherwise it
is very difficult to be executed manually. For the latter reason, this method has only been
implemented for 1 and 2 variables – no automation has been developed in this thesis.

For the one-variable case (see Figure 4.6 and 4.7), the chosen CP (CP1) is at the
geometrical point at the end of the web before the upper radial part starts. Both radial
parts have tangential constrains with the web, and the upper flange is constrained to
remain horizontal (parallel to the lower flange). Variable v1 is the y-position of CP1.

Figure 4.6: CP1 and v1 of the one-variable
application of the CPM.

Figure 4.7: Parametrized model of the
one-variable application of the CPM on NX.
v1 = p5 = −1.5 mm.

Figure 4.8: CP1 (red, v1) and CP2 (green,
v2) of the two-variable application of the
CPM.

Figure 4.9: Parametrized model of the
two-variable application of the CPM on NX.
v1 = p5 = −2 mm and v2 = p6 = −0.5
mm.
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For the two-variable case (see Figure 4.8 and 4.9), two CPs are chosen: the same
as in the one-variable case (CP1) and another one at the free edge of the upper flange
(CP2). Both radial parts have tangential constrains with the web, and the upper flange is
not constrained anymore to remain horizontal. Variable v1 is the y-position of CP1 and
variable v2 is the z -position of CP2.

To solve the two cases, a surrogate-based algorithm has been chosen. The tested
individuals of the one-variable problem are detailed in Table 4.5. The first surrogate model
has been obtained with individuals 1 to 9 – see Figure 4.10. The minimum of the first
surrogate model (individual 10) is fitted to the set of individuals and the second surrogate
model is obtained. The same minimum is yielded again (individual 11), finishing the
optimization process: v1 = −0.81663 mm. Both surrogate models are second order models
and have a fitting parameter of R2 = 1, i.e. a perfect fit.
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Figure 4.10: First surrogate model of the one-variable case of the CPM. It includes
individuals 0 to 9.

Individual v1 [mm] Dmin [mm2]

Initial set

A -2.0 1.424860
B -1.5 0.480950
C -1.0 0.042861
D -0.5 0.110284
E 0.0 0.682911
F 0.5 1.761049
G 1.0 3.343546
H 1.5 5.429010
I 2.0 8.019067

Iterations

1 -0.81663 0.008904
2 -0.81663 0.008904

Table 4.5: Tested configurations and Dmin obtained for the one-variable application of the
CPM.
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The first set of tested individuals of the two-variable problem are detailed in Table 4.6.
Then the optimums of the 4 iterations performed are shown in Table 4.7 (Figure 4.11
shows the first fitted surrogate model). As Dmin does not improve in 4 iterations, the
process is stopped. The solution found is v1 = −0.856132 mm and v2 = 0.03088 mm. All
surrogate models are in the second order in both variables and have a fitting parameter of
R2 = 0.95.

Dmin [mm2]

v1/v2 [mm] -0.5 -0.25 0 0.25 0.5
-2 1.495796 1.380387 1.249745 1.338713 1.412426
-1 0.174149 0.069219 0.028176 0.050175 0.135224
0 0.85765 0.764906 0.73522 0.768563 0.864944
1 3.549187 3.469542 3.449438 3.494137 3.601873
2 8.248266 8.178242 8.227333 8.227333 8.346385

Table 4.6: Initial tested cases for the two-variable case of the CPM.
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Figure 4.11: First surrogate model of the two-variable case of the CPM.

Iteration v1 [mm] v2 [mm] Dmin [mm2]

1 -0.856132 0.03088 0.007748253
2 -0.856134 0.03099 0.007755155
3 -0.856135 0.03107 0.007759916
4 -0.856136 0.03111 0.007763585

Table 4.7: Optimums of the surrogate models of the two-variable case of the CPM.

As it was expected, different solutions are found in the two applications of the CPM.
The optimization result depends on the number of variables considered. As mentioned
above, in order to achieve an accurate result resembling the one obtained with the MM is
necessary to increase the number of variables. It is not necessary, though, to have as much
CPs as meshed nodes, but there must be a set of CPs representative of the geometry.
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Checking the two values of v1 yielded by the two cases, -0.81663 and -0.856132 mm,
the corresponding θapplied are -0.3228 and -0.3384◦, for the one and two-variable cases,
respectively. The value obtained in Section 4.1.2 with the DMM θDMM

applied = −0.3261◦ lies in
between the two values, but is closer to the one obtained by the one-variable case.The
latter is due to the fact that Dmin is an averaged quantity and thus, when minimizing two
variables the optimization aims to reduce the residual distance of CP1 and CP2 at the
same time. On the other hand, when only one variable is minimized, the residual distance
of CP1 is being reduced more than when two are used.

Finally, is important to remark that the one-variable yielded θapplied resembles more
θDMM
applied baceuse in the DMM the cured angle is measured with the y and z displacements

of the geometrical point where CP1 is located.

4.1.4 First Comparison of the Three Methods

The three compensation methods are compared in this section for the first time. With
the implementation of every strategy, valuable information has bee retrieved: number
of iterations, easiness of execution, total compensation time, etc. But to compare the
effectiveness of the compensation process with every method, a common variable must
be measured as every method uses different indicators, e.g. maximum residual distance,
spring-back angle or a cartesian component of the displacement vector. The common
variable chosen has been Dmin with a set of 7 representative CPs (see Figure 4.12). The
latter has been computed on the last cured geometry yielded by every method – see
Table 4.8.

Method Dmin [mm2]

MM 2.33 E-10
DMM 5.95 E-3
CPM1 8.21 E-3
CPM2 6.94 E-3

Table 4.8: Dmin (7 CPs) at the last iteration for the three methods. CPM1 and CPM2
stands for one or two-variable application of the CPM.

Control points

Fixed point

Nominal geometry

Figure 4.12: Chosen CPs to compare the effectiveness of compensation methods.
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Below, a few common features of the three methods are discussed and compared with
the acquired experience up to now, which is exclusively related to the studied deformation
mode in this section: spring-in deformation.

• Complexity of the computational chain: CAD-based methods (DMM and
CPM) require a greater number of steps to perform a single iteration of the
compensation process. While mesh-based methods (MM) only require an initial CAD
model plus an initial FEM model that is then modified after every iteration, the DMM
and CPM require a new CAD model and FEM model every iteration. The latter
implies modifying the parametrized CAD model, seeding the geometry to obtain
the desired mesh, modify the orientation of the elements, create the laminate and
extrude it, assign boundary conditions, loads, set the different archiving frequencies
and launch the simulation. After that procedure, the optimization process must
be applied. And also the post-processing, which is required by the three methods.
Mesh-based methods, on the other hand, just require an update of the mesh following
equation 2.25, plus applying the loads, boundary conditions and the archiving
frequencies. Thus, the MM is simpler than the DMM and CPM, i.e. is easier to be
automated.

• Compensation iterations: in a spring-in dominated geometry, the MM converges
in very few iterations: 1 or 2 (depending on the desired accuracy). The DMM also
performs really well as the deformation mode is well-known, but it can take more
iterations to optimize the spring-in angle than the MM, i.e. it is very sensitive to the
chosen optimization process. If DMM optimization processes 2 or 3 are chosen the
amount of simulations/iterations required is higher than with the MM. On the other
hand, the CPM is very sensitive to the amount of CPs chosen for the optimization.
The greater the number of CPs, the higher the number of iterations. In conclusion,
with a spring-in deformation mode, the MM requires the least number of iterations.

• Compensation time: considering the last two characteristics, complexity and
iterations of the methods, the MM is the one that requires less time for the
compensation to be obtained: less time to complete a whole iteration and less
iterations to achieve the optimum than the DMM and CPM.

• Compensation accuracy: the accuracy of the MM is greater than the DMM and
CPM – check Table 4.8. The cause of the difference in Dmin between methods is due
to the fact that in the MM the optimization of the geometry is applied to the totality
of the nodes of the model. Thus, the accuracy achieved is very high. In the DMM
only one variable is minimized, θapplied, which despite driving the main displacement
mode is less precise than taking into account each and every geometrical point. For
last, the CPM is really dependent on the amount of CPs. A larger amount of CPs
will lead to a higher accuracy, resembling the MM – the latter is proved in Table 4.8,
where the two-variable application of the CPM yields a lower value of Dmin than
the one-variable application.

• CAD model of the compensated mold: the DMM and CPM are better than
the MM as they are CAD-based methods. Once the compensation process is finished,
the CAD model of the last iteration is the CAD model of the mold. The MM, on
the other hand, requires the conversion of the final mold mesh to a CAD model –
which can actually be done using NX (see Figure 4.13).
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Figure 4.13: CAD model of the mold obtained using the MM for the Z-shaped part under
spring-in deformation.
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4.2 Flat Plate under Warpage Deformation

In this section, compensation when warpage is the main (and only) deformation mode is
studied. Warpage occurs if a non-symmetrical laminate is used, as the use of a symmetrical
laminate leads to null moments – inspection of equations A.22 and A.23, taking into
account that there is a homogeneous distribution of T and X, leads to MT = MCH = 0.
Besides, lack of symmetry in the laminate causes in-plane/out-of-plane couplings (see
Section A.4.2), i.e. an in-plane traction generates a change in curvature.

There are three types of warpage deformation: pure bending, pure torsion and mixed
warpage (bending + torsion). Accordingly, three laminates have been used:

• Pure bending: [90/0]4, an anti-symmetrical cross-ply laminate.

• Pure torsion: [−45/45]4, an anti-symmetrical angle-ply laminate.

• Mixed warpage: [−45/0/45/0/0/− 45/0/45], an unsymmetrical laminate.

The three laminates plies have thickness of h = 0.205 mm each (htot = 1.64 mm).
The numerical model employed is the one detailed in Section 3.1.3, the warpage model.
The element’s reference vector (0◦ orientation) is aligned with the global axis x – see
Figure 3.14.

4.2.1 Flat Plate under Pure Bending

In this section the compensation of a flat plate under pure bending is obtained with
two of the three methods studied in this thesis: the MM and the DMM. Despite not
solving this case with the CPM, its approach is evaluated and discussed. The laminate
[90/0]4 is used.

4.2.1.1 Compensation with the MM

The MM has been applied for 8 iterations with a δmaxres of 0.0421 µm yielded in the last
iteration – see Table 4.9. The process oscillates at iterations 3 and 4 and finally starts
converging from iteration 5.

Iteration δmaxres [mm]

0 1.54
1 0.14
2 1.71 E-02
3 1.01 E-01
4 1.15 E-01
5 1.77 E-02
6 2.25 E-03
7 2.91 E-04
8 4.21 E-05

Table 4.9: δmaxres between the nominal and cured mesh at each iteration using the MM for
the flat plate under pure bending.
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Below, two figures show the initial and final iterations of the process. Figure 4.14
depicts iteration 0: the mold geometry (shaded) is the nominal geometry; and the cured
geometry takes an expected saddle shape, as the contraction of the 0◦ plies competes with
that of the 90◦ plies. Figure 4.15 depicts iteration 8: (a) the cured geometry which has
a extremely small δmaxres ; and (b) the mold geometry is close to the inverse shape of the
first cured geometry, with curvatures along x and y, κx and κy, of opposite sign. The
compensated mold’s CAD model is depicted in Figure C.1.

Figure 4.14: Cured geometry and mold geometry = nominal geometry (shaded) at iteration
0 of the MM for the flat plate under pure bending. A deformation factor of 10 is applied.

(a) The flat plate is recovered after curing.

(b) The mold shape (feature lines) is close to the inverse cured shape of
iteration 0. Up: short edge (yz plane); Down: long edge (xz plane).

Figure 4.15: Cured geometry at iteration 8 of the MM for the flat plate under pure bending.
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4.2.1.2 Compensation with the DMM

The distortion mode that must be minimized is the curvature of the edges caused by
the bending of the plate. As the plate bends along x and y, both curvatures κx and κy
must be considered. In the parametrized model of the plate, the edges have been defined
as parabolas – see Figure 4.16. The vertices of the parabolas are forced to stay on the xy
plane, and thus the equations to define them and the curvatures are:{

z(x) = px2 + b

κx = z′′(x) = 2p
(4.1)

{
z(−100) = 0

z(+100) = 0
(4.2)

{
p = − b

1002

κx = − 2b
1002

(4.3)

{
z(y) = my2 + a

κy = z′′(y) = 2m
(4.4)

{
z(−75) = 0

z(+75) = 0
(4.5)

{
m = − a

752

κy = − 2a
752

(4.6)

Figure 4.16: Parametrized model of the plate in which the curvatures κx and κy are
modelled with the parameters a and b.

The proposed objective function for the optimization of the mold geometry is

Fobj =
(
κkcx/κ

0
cx

)2
+
(
κkcy/κ

0
cy

)2
, where κkcx and κkcy are the cured curvatures measured for

each configuration k, and κ0cx and κ0cy are the reference cured curvatures, i.e. obtained
when the mold geometry is equal to the nominal geometry (flat plate).

The reference cured curvatures are: κ0cx = 0.0003 and κ0cy = −0.0003 (κ0cx = −κ0cy). The
curvatures are measured as follows: export from NX the cured displacements of the plate
edges to an Excel sheet; then, fit a second order curve to the deformed edges, y = ex2 + q,
and find the curvature κi = 2e (i = x, y).

A surrogate-based algorithm has been chosen to solve the
compensation problem. A set of 16 different mold geometries have been tried following
the parametrized model described in Figure 4.16 and equations 4.3 and 4.6. Four values
of a and b each have been tried, i.e. different values of initial κx and κy. Those are:
{a, b} = −2, −1, 1 and 2.

The set of initial curvatures and the yielded values of the Fobj for each configuration
are presented in Table 4.10. The first surrogate model obtained with the initial set of
cases is presented in Figure 4.17 – all surrogate models used are in the second order in
both variables and have a fitting parameter of R2 = 0.95.
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Fobj =
(
κk
cx

κ0
cx

)2
+
(
κk
cy

κ0
cy

)2
[-]

κx/κy (x 10−4) [-] -4 -2 2 4
-7.11 7.63 4.66 1.82 2.16
-3.55 5.86 3.13 0.21 0.07
3.55 7.77 6.02 4.90 5.24
7.11 12.44 11.28 11.12 11.83

Table 4.10: Initial tested cases for the DMM of the flat plate under pure bending.
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Figure 4.17: First surrogate model of the DMM for a flat plate under pure bending.

The optimum of the first surrogate model is κx = −3.408 E-4 and κy = 2.958 E-4,
detailed along the other optimums of each iteration in Table 4.11. As it can be seen
after 5 iterations, the tendency of κx is to decrease and κy is to increase, while Fobj is
being reduced. This iterative process has been carried through manually (as any iterative
process in this thesis), taking around 30 minutes per each tested configuration (16+5),
which amounts to 10.5 hours to obtain the results shown up to now.

For the latter reason, the compensated geometry of the mold yielded by the MM
in Section 4.2.1.1 has been examined. The curvatures of the mold’s edges have been
measured and are κMM

x = −3.3158 E-4 and κMM
y = 3.3168 E-4 (κMM

x ' −κMM
y ). With

the MM, though, the vertices of the plate do not stay on the xy plane – see Figure 4.18.
Despite that difference, the same curvatures have been applied to the parametrized model
and the curing simulation has been executed. With the obtained cured curvatures, the
corresponding objective function value has been computed, being Fobj = 1.213 E-5 – i.e.
the optimum has been found.

In conclusion, the optimization process would have reached κx = −3.3158 E-4 and
κy = 3.3168 E-4. Due to the slow change of the iterates, as long as the limited time to
achieve all the objectives of the thesis, the process has been terminated earlier and the
MM solution has been tested. The latter has been proved to be the optimum of the DMM
despite having boundary conditions that are not satisfied in the MM.
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Iteration κx (x 10−4) [-] κy (x 10−4) [-] κcx (x 10−4) [-] κcy (x 10−4) [-] Fobj =
(
κk
cx

κ0
cx

)2
+
(
κk
cy

κ0
cy

)2
[-]

1 -3.4078 2.9585 -0.0302 -0.1905 4.134 E-3
2 -3.3970 2.9701 -0.0249 -0.185 3.872 E-3
3 -3.3887 2.9782 -0.0208 -0.1811 3.692 E-3
4 -3.3842 2.9868 -0.0187 -0.1768 3.512 E-3
5 -3.3805 2.9919 -0.0176 -0.1742 3.406 E-3

Table 4.11: Optimums of the surrogate models of the DMM for a flat plate under pure
bending.

Figure 4.18: Compensated mold mesh of the flat plate under pure bending.

4.2.1.3 Compensation with the CPM

The CPM has not been applied to this particular case for two reasons:

• The optimization process carried with the DMM might as well be thought as a CPM.
The curvatures (distortion modes) are modified by changing the z -component of 2
points (CPs).

• As previously discussed in the implementation of the CPM in Section 4.1.3, if higher
accuracy is sought, a high number of CPs is necessary to be used (resemblance
to the MM) – see Figure 4.19. A richer design space would be available and a
different solution, where for instance the vertices do not have to be in xy plane, can
be found. A high number of CPs implies a multi-variable optimization, which is
very time-consuming and hard to execute manually. As the CPM has already been
executed twice in this thesis, for this case it has been discarded.

Figure 4.19: Example of the parametrized model to compensate the flat plate under
bending. Points in red and green are the CPs and their z -component are the optimization
variables.



56 4.2. Flat Plate under Warpage Deformation

4.2.1.4 MM Convergence with Warpage Deformation

The main hypothesis of the MM is that the cured-induced distortions are consider as
linear, and thus, the compensated mold geometry should be close to the inverted cured
geometry with respect to the nominal geometry. The only deformation mode studied in
this section is bending and there is a consequent change in curvature of the plate’s edges.
And curvature is a second order phenomena, e.g. κx = ∂2w

∂x2
, where w is the z -oriented

displacement. Therefore, it must be analyzed whether the MM will always converge or
not under this type of deformation.

In [2] the MM is used to compensate several geometries with different laminates. A
small mention is made to the compensation of a flat plate with an unsymmetrical laminate:
[06/906]. It is claimed that the method will diverge or stagnate when warpage is the only
deformation mode. It is also mentioned that a modification of equation 2.25, the mesh
update method, has been tried without success: a relaxation factor has been introduced to
try to adjust the non-linearities, i.e. Mi+1 =Mi+ξ(Mo−Mi

c), where ξ is the relaxation
factor.

The flat plate with [06/906] laminate has been simulated with the MM adapting it
to the curing model and information of this thesis (as no information on that matter is
given in [2] for this case). The results obtained are the same as in [2]: the cured geometry
oscillates between saddle shapes across iterations – see Figure 4.20.

(a) Iteration 0. (b) Iteration 1.

(c) Iteration 2. (d) Iteration 3.

Figure 4.20: Divergence of the MM on a flat plate with an anti-symmetrical cross laminate:
[06/906].

So far, then, the MM is successful in compensating a flat plate with [90/0]4 but
fails when the employed laminate is [06/906]. Matrix B is the one that accounts for the
coupling between in-plane/out-of-plane phenomena (see Appendix A). The main source of
non-linearities comes from that coupling, as the moments generated in the laminate are
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going to be less important than the tractions because the employed laminates are very
thin – moments are related with the thickness (see equations A.22 and A.23).

By inspection of equation A.13, it can be stated that the amplitude of B will be greater
in the [06/906] laminate rather in than the other. Therefore, the non-linearities are more
important when [06/906] is used and thus, the MM does not succeed. A relaxation factor
of ξ = 0.8 has been tried obtaining the same oscillation between saddle shapes.

No more ξ have been tried as the only purpose of this section is to determine the
effectiveness of the MM when warpage prevails. The conclusion that can be extracted
is: when the non-linearities are such that the MM fails to succeed, it is more convenient
to use a CAD-based method rather than reformulating the MM strategy – introducing
a relaxation factor, for instance, is really case-dependent: the geometry, laminate, and
thermo-mechanical conditions will influence the value of ξ that adjusts the non-linearities.

4.2.2 Flat Plate under Pure Torsion

In this section the compensation of a flat plate under pure torsion is obtained with two
of the three methods studied in this thesis: the MM and the DMM. Despite not solving
this case with the CPM, its approach is evaluated and discussed. The laminate [-45/45]4
is used.

4.2.2.1 Compensation with the MM

The MM has been applied for 8 iterations with a δmaxres of 5.4 µm yielded in the last
iteration – see Table 4.12. The latter is two orders of magnitude bigger than the one
achieved for the flat plate under pure bending. As it happened with the pure bending
deformation case, the process oscillates: at iteration 3, δmaxres increases with respect to
iteration 2; but then, from iteration 4 the process starts converging.

Iteration δmaxres [mm]

0 9.80
1 0.43
2 5.49 E-02
3 1.85 E-01
4 2.21 E-02
5 1.46 E-02
6 1.05 E-02
7 7.52 E-03
8 5.40 E-03

Table 4.12: δmaxres between the nominal and cured mesh at each iteration using the MM for
the flat plate under pure torsion.

Below, two figures show the initial and final iterations of the process. Figure 4.21
depicts iteration 0: the mold geometry (shaded) is the nominal geometry, i.e. the flat plate;
and the cured geometry suffers a torsional deformation around the x axis. Figure 4.22
depicts iteration 8: the cured geometry is now flat and the mold geometry (shaded) has a
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torsional angle of opposite sign to the one of the first cured geometry. The compensated
mold’s CAD model is depicted in Figure C.2.

Figure 4.21: Iteration 0 of the MM for the flat plate under pure torsion. The cured
geometry and mold geometry = nominal geometry (shaded) are depicted.

Figure 4.22: Iteration 8 of the MM for the flat plate under pure torsion. The cured
geometry and mold geometry (shaded) are depicted.

4.2.2.2 Compensation with the DMM

The distortion mode that must be minimized is the torsional angle φ caused by the
torsion moment generated in the plate. In the parametrized model of the plate, one of
the short edges of the plate has been given an initial torsional angle – see Figure 4.16.
One of the vertex of that edge is forced to stay on the xy plane, and thus the relation to
define the edge on the parametrized model (parameter c) according to the desired applied
torsional angle φapplied is deduced from simple trigonometry:

c = 150 · tan(φapplied) (4.7)

Figure 4.23: Parametrized model of the plate in which the torsional angle φ is modeled
parameter c.
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The proposed objective function for the optimization of the mold geometry is

Fobj =
(
φkc/φ

0
c

)2
where φkc is the cured torsional angle measured for each configuration k,

and φ0
c is the reference torsional angle, i.e. obtained when the mold geometry is equal

to the nominal geometry (flat plate). The reference torsional angle is φ0
c = −3.68. The

torsional angle φ is measured as follows: export from NX the cured displacements of the
plate edge to an Excel sheet; then, fit a first order curve to the deformed edges, y = ex+ q,
and find the torsional angle φ = tan−1(e).

A surrogate-based algorithm has been chosen to solve the compensation problem. A set
of 11 different mold geometries have been tried following the parametrized model described
in Figure 4.16, i.e. 11 values of φ0 have been tried, which have been obtained by setting
the parameter c (see equation 4.7).

The set of initial torsional angles (φ > 0 when there is a counterclockwise change in
torsional angle) and the yielded values of the Fobj for each configuration are presented in
Table 4.13. The first surrogate model obtained with the initial set of cases is presented in
Figure 4.24 – all surrogate models are second order models of φ with a fitting parameter
of at least R2 = 0.9992.

The optimum of the first surrogate model is φapplied = 3.8512◦, detailed along the
other optimums of each iteration in Table 4.10. The optimums found after the first
surrogate model are all worst than the first optimum. Thus, the process is terminated and
φapplied = 3.8512◦ is taken as the initial torsional angle that the mold geometry must have
to obtain the flat plate geometry after the curing process.

Individual φapplied [o] φc [o] Fobj =
(
φk

c

φ0
c

)2
[-]

Initial set

A -5.0000 -7.9865 4.7099
B -4.0000 -7.1306 3.7546
C -3.0000 -6.2716 2.9045
D -2.0000 -5.415 2.1656
E -1.0000 -4.5568 1.5333
F 1.0000 -2.7823 0.5717
G 2.0000 -1.8500 0.2527
H 3.0000 -0.8708 0.0550
I 4.0000 0.1604 0.0019
J 5.0000 1.5523 0.1779
K 6.0000 2.3421 0.4050

Iterations

1 3.8512 0.0051 1.9635 E-06
2 3.8581 0.0114 9.6964 E-06
3 3.8673 0.0229 3.8786 E-05
4 3.8683 0.0229 3.8786 E-05
5 3.8742 0.0286 6.0602 E-05

Table 4.13: Tested configurations and Fobj of the DMM for a flat plate under pure torsion.
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Figure 4.24: First surrogate model of the DMM for a flat plate under pure torsion.

4.2.2.3 Compensation with the CPM

The CPM has not been applied to this particular case for the same two reasons as
with the pure bending case:

• The optimization process carried with the DMM might as well be thought as a CPM.
The torsional angle φapplied is modified by changing the z -component of 1 point (CP).

• Ideally, multiple CPs should be used and a multi-variable optimization is then
required. In that way, a higher accuracy can be reached. But that is very
time-consuming and hard to execute manually, and it has been avoided as the
CPM has already been implemented in this thesis. A proposal of CPM is depicted
in Figure 4.25.

Figure 4.25: Example of the parametrized model to compensate the flat plate under torsion.
Points in red and green are the CPs and their z -component are the optimization variables.

4.2.3 Flat Plate under Mixed Warpage

In this section the compensation of a flat plate under mixed warpage (bending + torsion)
is analysed with one of the three methods studied in this thesis: the MM. Despite not
solving this case with the DMM and CPM, their approaches are evaluated and discussed.
The laminate [−45/0/45/0/0/-45/0/45] is used.
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4.2.3.1 Compensation with the MM

The MM has been applied and it has failed to find the compensated mold geometry. As
detailed in Section 4.2.1.4, when the non-linear terms have a big amplitude, the hypothesis
of the MM does not apply anymore and the method diverges or stagnates.

In the present case, the in-plane/out-of-plane coupling is higher than in the pure
bending and torsion cases. Now, bending and torsion occur at the same time, i.e. they are
coupled. As a result, when applying the MM, the cured geometry oscillates between saddle
shapes every iteration. A relaxation factor ξ = 0.8 has been tried in order to adjust the
correction performed to the mesh with the non-linearities. The latter has not solved the
convergence issues. As aforementioned, in such situation it is better to try a CAD-based
strategy to solve the compensation problem.

(a) Iteration 0. (b) Iteration 1.

(c) Iteration 2. (d) Iteration 3.

Figure 4.26: Divergence of the MM on a flat plate under mixed warpage.The shaded
shapes represent the mold geometry.

4.2.3.2 Compensation with the DMM

Compensation with the DMM has not been performed in this section. In this
particular case there are three distortion modes: two curvatures and one torsional angle,
supposing that parallel edges have same curvatures; or on the contrary, four curvatures
and one torsional angle. That implies a multi-variable optimization process, which is very
time-consuming and hard to execute manually.

The latter two factors have limited the amount of compensation problems tried in this
thesis. Despite that, the DMM has already been implemented for warpage-dominated
geometries. A proposal of a parametrized model to solve this problem with the DMM is
depicted in Figure 4.27: parameters a, b and c used in the un-coupled problems would
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be used in the same way to produce intial torsional angles and initial curvatures. The
proposed objective function to minimize the three distortion modes at the same time is

Fmixed
obj =

(
κkcx
κ0cx

)2
+
(
κkcy
κ0cy

)2
+
(
φkc
φ0c

)2
= F bending

obj + F torsion
obj .

Figure 4.27: Example of the parametrized model to compensate the flat plate under mixed
warpage with the DMM.

4.2.3.3 Compensation with the CPM

Compensation with the CPM has not been performed in this section. Several CPs
are necessary to capture both the bending and the torsion of the plate. As previously
mentioned, a multi-variable optimization has not been considered to be solved as the whole
execution of the method is done manually. Lack of automation has been a huge limiting
factor in this thesis.

4.2.4 Applicability of the Methods when Warpage Dominates

A comparison of the three methods on general terms like accuracy, number of iterations,
compensation time, complexity of the computational change or the CAD model of the
compensated mold, was discussed on Section 4.1.4. In this section, the advantages and
downfalls of compensating a geometry where warpage prevails are discussed for each
method. Also, some comments in regard to spring-in/spring-back deformation prevailing
geometries are added for completeness.

• Mirror Method

� The accuracy order reached with the MM when warpage is caused by pure
bending is the same as in the spring-back case: 10−2 µm. But it takes 8 iterations
while in the spring-back case it only takes 2. Then, regarding warpage caused
by pure torsion, with 8 iterations the accuracy order reached is lower: 100 µm.

� Convergence is not guaranteed when warpage dominates. The MM’s main
hypothesis is to assume cure-induced distortions as linear. When the non-linearities
associated with warpage are not too important, the method still converges; on
the contrary, when second order effects dominate the displacement field, the
method stagnates and oscillates between saddle shapes.

• Distortion Modes Method

� If the distortion modes, i.e. curvatures and torsional angles, are well identified,
the process is effective and the compensated geometry is obtained.
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� Complexity of the method increases as the distortion modes are second-order
phenomena: good identification of the distortion modes and a representative
enough first set to start iterating is necessary. For instance, when using the
DMM for the pure bending case (Section 4.2.1.2), the set of tested individuals
has been more representative for κx than for κy, as its optimum value on the
first surrogate model has lied closer to the final optimum of the process.

� Furthermore, warpage deformation implies optimization of multiple variables at
the same time, in comparison with spring-in/spring-back deformation. In a flat
plate, three deformation modes can be identified for the mixed warpage mode
(two curvatures and one torsional angle). Therefore, more complex geometries
will require a higher number of variables (distortion modes) to be solved in
the compensation process – a good selection of the optimization algorithm is
necessary.

• Control Points Method

� Despite not being executed in this section, the CPM with a deformation mode
such as warpage requires a higher number of CPs than in a spring-in/spring-back
deformation mode. The second-order phenomena requires a higher number of
variables to be precise in the proper characterization of the deformation of the
geometry. A higher amount of CPs directly implies a higher complexity in the
optimization process of the problem, i.e. multi-variable optimization.
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4.3 Z-shaped Part under Mixed Deformation

In this section, compensation when mixed deformation occurs (spring-in/spring-back
+ warpage) is studied. As previously detailed in Section 4.2, there are different types of
warpage depending on the type of laminate used. Regarding spring-in/spring-back, it is a
geometrical phenomenon that occurs due to the anisotropical expansion/contraction of the
material throughout the curing process. The same three laminates as in Section 4.2 have
been used: [90/0]4, for which it can be expected global spring-back deformation and bending
(mixed deformation 1); [−45/45]4, for which it can be expected global spring-back
and torsional deformation (mixed deformation 2); and [−45/0/45/0/0/ − 45/0/45],
whose deformation is expected to be a combination of the latter two laminates (mixed
deformation 3).

The three laminates are composed of plies of thickness h = 0.205 mm each (htot = 1.64
mm). The numerical model employed is the one detailed in Section 3.1.2.3, the mixed
deformation model. The element’s reference vector (0◦ orientation) is aligned with the
global axis y, but follows the Z-shape of the part– see Figure 3.12.

Finally, it is important to mention that only the MM has been employed to compensate
the Z-shaped part under mixed deformation. The latter is in accordance with what has
been discussed in Section 4.2.4: the amount of distortion modes (DMM) or CPs (CPM)
is very high in this present case, as the global deformation is a composition of several
deformation modes. Therefore, the compensation of this case with the DMM and CPM
has been unapproachable in this thesis. As mentioned early in the text, multi-variable
optimization without automation is very time consuming and complex. Despite not
applying the two methods, a brief discussion on how they should be applied to the present
problem is given.

4.3.1 Compensation of Mixed Deformation 1 the with the MM

The MM has been applied for 8 iterations with a δmaxres of 0.0242 µm yielded in the last
iteration (see Table 4.14). The achieved accuracy is the same order of magnitude as the
one yielded in the spring-in deformation case. In the latter case it takes just two iterations
to achieve such accuracy, 10−5 mm, while in the present case it has taken 6 iterations as
warpage (non-linearities) slow down the compensation process.

Iteration δmaxres [mm]

0 11.56
1 1.044
2 1.08 E-1
3 1.07 E-2
4 1.18 E-3
5 1.27 E-4
6 3.30 E-5
7 2.89 E-5
8 2.42 E-5

Table 4.14: δmaxres between the nominal and cured mesh at each iteration using the MM for
the Z-shaped part under mixed deformation 1.
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Two figures depicting the initial and last iterations of the process are shown below.
Figure 4.28 depicts the cured geometry of iteration 0 of the mixed deformation 1, which
has experienced spring-back and warpage (due to bending) deformation. Note that the
bending of the part makes the upper and lower flanges experience a spring-in/spring-back
deformation while in the pure spring-back deformation case of Section 4.1 they barely
change its horizontal shape.

Figure 4.28: Initial cured geometry of the Z-shape part under mixed deformation 1: (a)
curvature of upper flange; (b) curvature and spring-back of the web; and (c) curvature of
the lower flange. A deformation factor of 2 is applied.

Then, in Figure 4.29 (a) the cured geometry at iteration 8 is depicted, which is very
close to the nominal geometry. The mold geometry is also shown (shaded). Figure 4.29
(b) is added to explain why there is a twist on the mold geometry. It is caused by the
applied boundary conditions to restrict the rigid body modes. The latter are applied
on one side of the Z-shaped part, and thus, the expansion/contraction of the material
induces an uneven displacement field along x. That twist is purely numerical and the only
geometrical features that are necessary to account for in the final mold geometry are the
spring-back angle and the curvatures of the flanges and web. To remove that twist the
boundary conditions (see Figure 3.7) should be applied on the same fashion but on the
plane of symmetry of the part.

Figure 4.29: Last cured geometry and mold geometry of the Z-shape part under mixed
deformation 1: (a) the nominal geometry is recovered; (b) twist of the mold induced by
the boundary conditions.
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4.3.2 Compensation of Mixed Deformation 2 the with the MM

The MM has been applied for 8 iterations with a δmaxres of 0.0257 µm yielded in the
last iteration (see Table 4.15). In the present case, it takes 5 iterations to achieve an
order of magnitude of 10−5 mm. The highest accuracy is achieved in iteration 6. In
iteration 7, δmaxres increases and in iteration 8 it decreases again. The latter behaviour can
be understood as an accuracy threshold of the method – the same behaviour was observed
when applying the MM to the Z-shaped part under spring-in deformation.

Iteration δmaxres [mm]

0 10.57
1 5.64 E-1
2 5.63 E-2
3 5.99 E-3
4 5.58 E-4
5 4.01 E-5
6 2.24 E-5
7 2.91 E-5
8 2.57 E-5

Table 4.15: δmaxres between the nominal and cured mesh at each iteration using the MM for
the Z-shaped part under mixed deformation 2.

Two figures depicting the initial and last iterations of the process are shown below.
Figure 4.30 depicts the cured geometry of iteration 0 of the mixed deformation 2, which
has experienced spring-back and torsion deformation. Note that there is a torsional angle
in both flanges and on the web.

Figure 4.30: Initial cured geometry of the Z-shape part under mixed deformation 2: (a)
torsion of upper flange; (b) torsion and spring-back of the web; and (c) torsion of the lower
flange. A deformation factor of 2 is applied.
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Then, in Figure 4.31 the cured geometry at iteration iteration 8 is depicted, which is
very close to the nominal geometry. Figure 4.31 also depicts the mold geometry (shaded),
which is close to the the inverse of the first cured geometry (depicted in Figure 4.30) with
respect to the nominal geometry.

Figure 4.31: Last cured geometry and mold geometry of the Z-shape part under mixed
deformation 2: (a) the nominal geometry is recovered; (b) twist of the mold geometry
along the web of the part.

4.3.3 Compensation of Mixed Deformation 3 the with the MM

The MM has been applied for 8 iterations with a δmaxres of 0.118 mm yielded in the last
iteration (see Table 4.16). The achieved accuracy is way less than the one yielded with
mixed deformations 1 and 2. Three extra iterations have been performed seeking higher
accuracy: δmaxres has only been reduced to 0.0415 mm. The main cause behind this slow
reduction of the residual distance is a higher dominance of the non-linear effects on the
cured-induced distortions – the main hypothesis of the MM is less satisfied. Warpage now
couples bending and torsion, which in contrast with mixed deformation modes 1 and 2,
where they are uncoupled, makes the compensation process reduce the residual distance
field less per iteration.

Iteration δmaxres [mm]

0 19.31
1 3.16
2 1.27
3 8.11 E-1
4 4.79 E-1
5 3.42 E-1
6 2.36 E-1
7 1.68 E-1
8 1.18 E-1

Table 4.16: δmaxres between the nominal and cured mesh at each iteration using the MM for
the Z-shaped part under mixed deformation 3.
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Two figures depicting the initial and last iterations of the process are shown below.
Figure 4.32 depicts the cured geometry of iteration 0 of the mixed deformation 3, which has
experienced spring-back and warpage (bending + torsion) deformation. Torsion dominates
more as the employed laminate has ±45◦ plies (responsible for the torsion of the part)
while there are not 90◦ plies for the 0◦ plies: 90/0◦ ply groups are responsible for the
change in curvature. Nonetheless, as the laminate is unsymmetrical, the coupling terms
responsible for curvature changes are non-zero (B11 and B22) – see Section A.4.

Figure 4.32: Initial cured geometry of the Z-shape part under mixed deformation 3:
spring-back + warpage (torsion and bending).

Then, in Figure 4.33 the cured geometry at iteration 8 is depicted, which is close to
the nominal geometry. However, as δmaxres is only a tenth of a millimeter, there are some
areas where some curvature can be subtly sensed: curved region of the upper flange. The
latter calls for an extension of the compensation process to achieve higher accuracy. The
mold geometry is also shown (shaded).

Figure 4.33: Last cured geometry and mold geometry of the Z-shape part under mixed
deformation 3: the nominal geometry is recovered; the compensated mold (shaded) is
depicted .



Chapter 4. Results 69

4.3.4 MM Convergence with Mixed Deformation

In this section, some conclusions are deduced about the convergence of the MM when
mixed deformation occurs. The last three sections, where the MM has been applied with
different laminates that induce different warpage deformations, serve as a basis to the
discussion of the subject.

In [2], several geometries and laminates have been compensated with the MM. It is
stated that when mixed deformation occurs in the curing process, the MM converges
if the spring-in/spring-back deformation is more dominant than warpage on the global
cure-induced displacement field. The earlier presented results yielded on the Z-shaped
part under mixed deformation prove the latter. In the three cases the method converges,
and thus it can be assumed that spring-in/spring-back dominates over warpage.

In the mixed deformation modes 1 and 2 (bending and torsion uncoupled) an accuracy
order of 10−5 mm is achieved in 6 and 5 iterations, respectively. When mixed deformation
3 laminate is applied (bending and torsion coupled), the accuracy order achieved in 8
iterations is 10−2 mm. When bending and torsion are coupled the non-linear effects are
higher and thus, spring-in/spring-back deformation dominates less over warpage.

As it was done in Section 4.2.1.4, a [906/06] laminate has been applied to the the
present geometry: the Z-shaped part. With such laminate, the non-linearities are more
present in its displacement field due to the in-plane/out-of-plane coupling. This test has
been performed in order to prove that if warpage dominates over spring-in/spring-back
deformation, i.e. the displacement field is dominated by non-linear phenomena, then the
MM should not converge as its main hypothesis is that cured-induced distortions are linear.

Effectively, as it happened in Section 4.2.1.4 with the flat plate when this laminate was
used, the method does not converge. In Figure 4.34, the first 4 iterations of the method
are depicted. And the latter divergence is shown: iterations 0 and 1 depict spring-back
and bending of the flanges and web; then, in iteration 2 and 3, a torsional moment starts
appearing on the whole structure; and in iteration 4 that torsional angle seems to be
reducing. No more iterations have performed, but the cured geometry of iteration 4 seems
to be recovering the shape of cured geometry 1 – showing a similar behaviour as the flat
plate oscillating between saddle shapes.

From the results of the above mentioned test, plus the 3 mixed deformation modes
studied, it can be stated that the conclusions deduced in [2] are confirmed: the MM will
converge only if the spring-in/spring-back deformations prevail over warpage deformations.
In such circumstances, the MM hypothesis of linear cure-induced distortions still has some
validity, and despite taking more iterations, the method is able to yield a compensated
mold mesh. Conversely, if warpage prevails the method does not converge.

4.3.5 Compensation with the DMM and CPM

As earlier mentioned, the compensated mold geometry of the Z-shaped part has not
been found using the DMM and CPM. However, for the sake of completeness, some brief
comments on how to approach the problem with these methods are detailed below:
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(a) Iteration 0. (b) Iteration 1.

(c) Iteration 2. (d) Iteration 3.

(e) Iteration 4.

Figure 4.34: Divergence of the MM on a flat plate under mixed warpage. A [906/06]
laminate has been used.

• DMM: the distortion modes that can be identified in this geometry under mixed
deformation are: three spring-in/spring-back and twist/torsional angles, θi and φi
(upper and lower flanges, and web); and 8 curvatures κi corresponding to the 8
edges. The total amounts to 14 parameters. A proposal of objective function is the

following: Fobj =
∑3

k=1

(∣∣∣ θkθ0 ∣∣∣+
∣∣∣φkφ0 ∣∣∣)+

∑8
i=1

∣∣∣ κiκ0 ∣∣∣. A similar one is used in [2], where

a C-shaped curved spar is compensated and 7 distortion modes are identified.
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• CPM: accounting for the mixed deformation, a prediction of how many CPs and
how many variables are necessary is detailed next. The curvatures of the 8 edges
require at least 3 CPs per edge. That amounts to 24 CPs. With such number of
CPs on the edges, the twist and spring-in/spring-back angles can also be measured.
As the deformation mode is mixed, 3 variables are required per CP (x, y and z
components of each CP). Therefore, the total minimum amount of variables to solve
this problem with the CPM is 24 x 3 = 72.

4.3.6 Applicability of the Methods under Mixed Deformation

Finally, a few comments on the three methods when the geometry to be compensated
is under mixed deformation are detailed below:

• Mirror Method

� The rate of reduction of residual distance per iteration is directly related with
the intensity of the warpage deformation. The more warpage dominates the
deformation field, the less residual distance is reduced per iteration.

� Convergence is not guaranteed: if warpage (non-linear phenomenon) prevails
over spring-in/spring-back deformation, the method diverges.

• Distortion Modes Method

� The number of distortion modes increases a lot. In the spring-in/spring-back
case there was only 1 distortion mode; in the warpage case there were 2 distortion
modes; and in this case there are 14 distortion modes.

� Complexity of the method increases: optimization of multiple variables at
the same time. However, if the distortion modes are well identified and the
optimization algorithm is well chosen and executed, the method will succeed [2].

• Control Points Method

� The number of CPs and number of variables per CP increases drastically. A
higher amount of total variables directly implies a higher complexity of the
optimization process.

� If the CPs are representative enough of the geometry, and the right variables
are chosen, the method will succeed [2].
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Conclusions

This chapter presents the final conclusions of the main subject of the thesis, mold
compensation techniques. Besides from that, some proposals on how the achieved knowledge
can be continued and expanded are discussed. Finally, a project overview is done in where
a general valuation of the thesis is given.

5.1 Compensation Methods

This section presents a thorough comparison of the three compensation methods
implemented and tested in this thesis. The characteristics to discuss the strengths and
weaknesses of every method have been the ones chosen in [2], as they encompass all that
can be compared from the results obtained in this thesis. Some of these characteristics
have already been visited earlier in the text, but will be explained more in-depth.

Complexity of the computational chain: CAD-based methods (DMM and CPM)
require a greater number of steps to perform a single iteration of the compensation process
than the MM – see Figure 3.16 and 3.17. While the MM only requires an initial CAD
model plus an initial FEM model that is then modified after every iteration, the DMM
and CPM require a new CAD model and a FEM model every iteration.

The latter implies modifying the parametrized CAD model, seeding the geometry to
obtain the desired mesh, modify the orientation of the elements, create the laminate and
extrude it, assign boundary conditions, loads, set the different archiving frequencies and
launch the simulation. After those steps, the optimization process must be applied. And
finally, the post-processing must be done to obtain the final results, which is required
by the three methods. The MM, on the other hand, just require an update of the mesh
following equation 2.25, plus applying the loads, boundary conditions and the archiving
frequencies. The above process to prepare the mesh is just performed once.

In terms of automating the process, the MM has less steps/tasks to be automated than
the CAD-based methods. Thus, the MM is simpler than the DMM and CPM.

Compensation time: most of the compensation time is spent on the curing simulations
(if the whole process is automated). CAD-based methods update the current iterate based
on an optimization algorithm, which leads to a high number of total simulations. With the
most employed algorithm in this thesis, the surrogate-based algorithm, there is a minimum
of simulations required to create the first surrogate model, plus then the optimization
iterations. This initial set of simulations and the total optimization iterations grow with
the number of parameters, as mentioned in [2]. The latter is also proved in this thesis in
the Results chapter, where 1 and 2 variable problems have been solved using the DMM or
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the CPM and the latter tendency is observed.

On the other hand, the MM follows a fixed update of the mesh every iteration and
converges quickly, if it converges. The tested cases in which the MM has converged have
always required less simulations than the total simulations required by CAD-based methods
(initial set + optimization). Therefore, when the method converges, the MM needs less
time to obtain the compensated mold geometry.

In the case of a non-automated process, the mesh update must be done manually for
the MM, and for CAD-based strategies a new CAD and FEM model must be created for
every iteration. From those tasks, CAD-based strategies are the ones take more time.

Current robustness: CAD-based methods show a better robustness than the MM.
The MM diverges when warpage prevails on the global cured-induced displacement field.
The introduction of a relaxation factor to correct the non-linearities has been tried, being
unsuccessful. On the other hand, CAD-based methods always lead to convergence if they
are well formulated. The CPM, although it has only been tested twice in this thesis,
is theoretically very effective. If choosing representative enough CPs, the method must
yield the compensated position of such parametrized points. The DMM, as it is based on
the knowledge of the distortion modes, has an excellent robustness if the modes are well
identified.

Compensation success (accuracy): in terms of reduction of the distortions, the
most efficient method is the MM, when it converges. The residual distance reduction is of
almost 100 %, with δmaxres achieved of the order of 10−5 mm. Recall that the compensation
process on the MM is performed on all the geometrical points at the same time – geometrical
points are represented by the mesh. Then, regarding the DMM and CPM, their success
depends on the richness of the parametrization.

When the Z-shaped part was tested under spring-in deformation, the 3 methods’
accuracy was compared. The DMM had a better accuracy than the CPM, which was only
applied with 1 and 2 variables. The only distortion mode, i.e. the spring-in angle, was well
identified and thus the process was effective. Regarding the CPM, the accuracy achieved
with 2 variables was higher than with 1, proving that its accuracy depends on the number
of variables used – as earlier mentioned in the thesis. Summing up, the MM (mesh-based)
is more accurate than CAD-based methods.

Universality: the MM is the most generic method among the three presented in this
thesis. It always starts by running one curing simulation where the mold geometry is the
nominal geometry, and then the latter is updated iteratively until convergence is reached.
The same cannot be said about CAD-based methods, which require adaptations from one
geometry to another. They involve geometry-dependent tasks: parametrization of the
geometry using different number of variables, definition of objective function in accordance
with the geometry, etc.

Finally, as stated in [2], the principles of the CAD-based methods are generic: it is
always possible to parametrize a geometry with control points or distortion modes. But by
doing so, CAD-based methods remain subjective as these parameters are user-chosen. In
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that respect, the CPM is more objective than the DMM: it is easier to choose the control
points than the distortion modes, specially in complex geometries.

Control of the final shape: some shape constraints must be necessary to be
introduced to the compensation process for manufacturing reasons: the vertices of a
surface must remain on the same plane or two edges must remain parallel. The latter
cannot be introduced in the MM as it is currently defined, whereas they are inherently
part of the design process in CAD-based methods. In both the CPM and DMM, the user
controls the parametrization and, therefore, controls the shape that the mold can take
during the optimization.

CAD model of the compensated mold: the DMM and CPM are better than the
MM in this aspect as they are CAD-based methods. Once the compensation process is
finished, the CAD model of the last iteration is the CAD model of the compensated mold.
The MM, on the other hand, requires the conversion of the final mold mesh to a CAD model.

It can be concluded that the choice of compensation method is not straightforward and
it will be driven by considering each and every above exposed factor to the particular case:
the complexity of the geometry and deformation mode – if warpage dominates the MM
must be avoided, and if the deformation mode is too complex the CPM is more appealing
than the DMM; the requirements in terms of manufacturing tolerances (compensation
quality) – in which the MM achieves the lowest residual distance; the manufacturing
constraints – if any, the only option is to use CAD-based methods; and so forth.

From an industrial point of view, the MM is the most appealing method: it is the
easiest to be executed, it is generic and the achieved accuracy is very high. The key
for this method to outrun CAD-based strategies is to improve its robustness: if some
easy-ruled correction is found for the method to converge also when warpage prevails,
then it is, by far, the best compensation technique. In respect to the inability of applying
manufacturing constraints, [2] proposes a hybrid method where first an unconstrained
mold shape is found with the MM and then with a CAD-based approach, the shape is
tried to be reproduced introducing the constraints. Finally, regarding the CAD model of
the mold, NX allows the conversion from mesh to volume CAD model following simple
steps – thus, not being an important weakness of the method.

Regarding CAD-based methods, they are more difficult to be executed and its
subjectivity (choice of the distortion modes and/or of the control points) should be
improved. Even with the latter improved, they are less interesting as automation of the
process would be very difficult to implement in a commercial software as NX – user-selection
of optimization parameters, modification of the parametrized model after every iteration,
proper meshing of the new geometry, etc. On the contrary, the MM formulation would
allow it to be automated with less effort.
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5.2 Future Work

The three compensation methods have been implemented and tested on different
geometries and laminates in this thesis. From this basis, the next steps that may be
interesting to investigate are the following:

• Model the mold on the numerical model instead of representing it as a surface of
the part to be compensated. Modeling both the laminate and the mold, different
subjects could be studied:

� Mold/part interaction. Simulate the curing process taking into account the
friction force between the mold and the part and how that affects the final
shape.

� Control the cycle temperature of the part by heating the mold and study the
conduction between mold and part. An uneven distribution of temperature and
its uneven displacement field could be studied.

� Model the unmolding procedure: study the effect of suddenly releasing the part
from the mold and how the residual stress converts into a residual displacement
field once the part is free to move.

• Study the viability of introducing a correction into the MM to ensure its convergence
when warpage deformation prevails over spring-back deformation.

• Automation of any of the three methods.

• Include the effect of viscosity in the curing process and study if its effect deviates the
new mold geometry from the mold geometry obtained with a pure elastic formulation.

• Take a known composite part and design and manufacture a mold to produce it.
Then produce the part and check the obtained tolerances. To achieve such goal, a
painstaking numerical study should be performed: the final shape of the mold depend
on how accurately the numerical model represents reality. A space discretization
should be performed, i.e. refinement of the mesh on the curved regions or areas
where large displacements happen; and study of the time step is crucial to capture
the expansion/contraction of the part during the curing process.

The above proposed topics are just a few examples that could be undertaken as a new
project from the level of know-how achieved in this thesis.

5.3 Project Overview

Overall, the scope and objectives set at the beginning of the document have been fully
satisfied. However, and as in any project, more goals could have been tackled. But there
have been two limiting factors: time, and lack of automation of the employed methods.
The former has been taken into account to stop the investigation at a certain point, and
the latter has limited the amount of tested geometries and laminates with the DMM and
CPM.
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The making of this thesis in a professional environment in collaboration with Samtech
has been a truly enriching experience. Working with Siemens NX software for 4 months
has allowed me to become skillful with it.

Finally, it is worth mentioning that this thesis has encouraged me to keep up with
my education. The project and the internship in Samtech have been a good experience
to realize that my student background is a good basis which allows me to work in a
professional environment. But at the same time, it has shown me that I have still a lot
new things to learn and discover.
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Classical Laminate Theory

The Classical Laminate Theory (CLT) is a direct extension of the classical plate theory
for isotropic and homogeneous material as proposed by Kirchhoff – Love. However, the
extension of this theory to laminates requires some modifications to take into account
the inhomogeneity in the thickness direction, i.e. the stiffness variation through plies is
considered. Below the assumptions made in this theory along with the assumptions made
for classical plate theory are detailed.

A.1 Assumptions of the Classical Laminate Theory

1. The laminate consists of perfectly bonded plies. There is no slip between the adjacent
plies. In other words, it is equivalent to saying that the displacement components
are continuous through the thickness.

2. Each ply is considered to be a homogeneous layer such that its effective properties
are known.

3. Each ply is in a state of plane stress.

4. The strain in the direction perpendicular to the ply due to the Poisson effect is
ignored.

5. The individual ply can be isotropic, orthotropic or transversely isotropic.

6. The laminate deforms according to the Kirchhoff - Love assumptions for bending
and stretching of thin plates (as assumed in classical plate theory). The assumptions
are:

(a) The normals to the midplane remain straight and normal to the midplane even
after deformation.

(b) The normals to the midplane do not change their lengths.

A.2 Development of the Classical Laminate Theory

The the tractions N and moments M applied to the plate at a position x,y are assumed
to be known – see Figure A.1. These tractions and moments are normalized by the width
of the plate, having units of N/m and N-m/m, or simply N, respectively. Coordinates x
and y are the directions in the plane of the plate, and z is customarily taken as positive
downward.
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Figure A.1: Applied tractions and moments in a plate [9]

N =


Nx

Ny

Nxy

 M =


Mx

My

Mxy

 (A.1)

When these tractions and moments are applied, a displacement field is generated in
the plate. The plate bends (see Figure A.2) and the different in-plane displacements follow
the relations described below:

u(x, y, z) = u0 − z
∂w

∂x
, v(x, y, z) = v0 − z

∂w

∂y
, w(x, y, z) = w0(x, y) (A.2)

Figure A.2: Undeformed and deformed geometries of an edge of a plate under the CLT
assumptions [10].
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Displacement u corresponds to the x direction, v to the y direction and w to the z
direction, while u0, v0 and w0 are displacements of the midplane in x, y and z directions,
respectively. It is important to recall that w is constant as it was stated on assumption 4,
i.e. the strain in z direction due to Poissson effects is neglected. Being so, equation A.2
can be rewritten as

u(x, y, z) = u0 − z
∂w0

∂x
, v(x, y, z) = v0 − z

∂w0

∂y
(A.3)

Based on the displacement field above, the strain field is defined as follows:

ε =


εx
εy
γxy

 =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

{u
v

}
=


∂u0
∂x
∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

+ z


−∂2w0

∂x2

−∂2w0

∂y2

−2∂
2w0

∂x∂y

 =

=


εx

0

εy
0

γxy
0

+ z


κx
κy
κxy

 = ε0 + zκ

(A.4)

where ε0 is the midplane strain and κ is the vector of second derivatives of the
displacement, i.e. the curvature. The component kxy is a twisting curvature, stating how
the x -direction midplane slope changes with y (or equivalently how the y-direction slope
changes with x ).

The stresses relative to the x-y axes are now determined from the strains, and it
must be consider that each ply will (usually) have a different stiffness – depending on its
own mechanical properties and also its orientation with respect to the x-y axes. This is
accounted for by computing the transformed stiffness matrix D, which is the same matrix
D as in Hooke’s law σ = D · ε, but multiplied by the transformation matrix T .

T =

 c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2

 (A.5)

where c = cos θ and s = sin θ. The angle θ is the angle that that the fibers form with
the x -axis. The properties of each ply must be transformed to a common x-y axes, chosen
arbitrarily for the entire laminate. The stresses at any vertical position are then:

σ = Dε = Dε0 + zDκ (A.6)

where here D is the transformed stiffness of the ply at which the stresses are being
computed. Each of these ply stresses must add to balance the traction per unit width N:

N =

∫ +h
2

−h
2

σdz =
N∑
k=1

∫ zk+1

zk

σkdz (A.7)

where σk is the stress in the kth ply and zk is the distance from the laminate midplane
to the bottom of the kth ply. Using equation A.6 to write the stresses in terms of the
midplane strains and curvatures, it yields:

N =
N∑
k=1

(∫ zk+1

zk

D
k
ε0dz +

∫ zk+1

zk

D
k
κzdz

)
(A.8)
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The curvature κ and midplane strain ε0 are constant throughout z, and the transformed

stiffness D
k

does not change within a given ply. Removing these quantities from the
integrals, the expression is rearranged:

N =
N∑
k=1

(
D
k
ε0
∫ zk+1

zk

dz +D
k
κ

∫ zk+1

zk

zdz

)
(A.9)

After evaluating the integrals, this expression can be written in the compact form

N = Aε0 + Bκ, (A.10)

where A is an extensional stiffness matrix defined as:

A =
N∑
k=1

D
k
(zk+1 − zk) (A.11)

And B is a coupling stiffness matrix defined as:

B =
1

2

N∑
k=1

D
k
(zk+1

2 − zk2) (A.12)

The A matrix gives the influence of an extensional midplane strain (ε0) on the in-plane
traction N, and the B matrix gives the contribution of a curvature (κ) to the traction
(coupling). ”It may not be obvious why bending the plate will require an in-plane traction,
or conversely why pulling the plate in its plane will cause it to bend. But visualize the
plate containing plies all of the same stiffness, except for some very low-modulus plies
somewhere above its midplane. When the plate is pulled, the more compliant plies above
the midplane will tend to stretch more than the stiffer plies below the midplane. The top
half of the laminate stretches more than the bottom half, so it takes on a concave-downward
curvature.” [11, page 9]

Similarly, the resultant moments per unit width must be balanced by the moments
contributed by the internal stresses. Following the same procedure as with the tractions:

M =

∫ +h
2

−h
2

σzdz =
N∑
k=1

∫ zk+1

zk

σkzdz (A.13)

M =
N∑
k=1

(∫ zk+1

zk

D
k
ε0zdz +

∫ zk+1

zk

D
k
κz2dz

)
=

=
N∑
k=1

(
D
k
ε0
∫ zk+1

zk

zdz +D
k
κ

∫ zk+1

zk

z2dz

) (A.14)

M = Bε0 +Dκ (A.15)

where D is a bending stiffness matrix defined as:

D =
1

3

N∑
k=1

D
k
(zk+1

3 − zk3) (A.16)
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The complete set of relations between applied forces and moments, and the resulting
midplane strains and curvatures, can be summarized as a single matrix equation:{

N
M

}
=

[
A B
B D

]{
ε0

κ

}
(A.17)

The A/B/B/D matrix in brackets is the laminate stiffness matrix, and its inverse will
be the laminate compliance matrix.

The above relations provide a straightforward – although tedious to solve unless
a computer is used – means of determining stresses and displacements in laminated
composites subjected to in-plane traction or bending loads.

A.3 Thermal and Chemical Effects in Laminates

If thermal and chemical effects are considered, the tractions and moments originated by
these phenomena have to be computed. As N = Aε0+Bκ, the thermal and chemical strains
must be included. The total strain is the sum of the mechanical, thermal and chemical

strain εtot = S
k
σ + εth + εch, where S

k
=
(
D
k
)−1

. Therefore σ = (D
k
(εtot − εth − εch),

where εth = α∆T and εch = −βm∆X. Following equation A.7 it can be deduced:

N = Aε0 + Bκ−NT +NCH (A.18)

Similarly for the moments, it can be deduced:

M = Bε0 +Dκ−MT +MCH (A.19)

The thermal and chemical tractions and moments are described as follows:

NT =
N∑
k=1

(∫ zk+1

zk

D
k
αk∆T kdz

)
(A.20)

NCH =
N∑
k=1

(∫ zk+1

zk

D
k
βkm∆Xkdz

)
(A.21)

MT =
N∑
k=1

(∫ zk+1

zk

D
k
αk∆T kzdz

)
(A.22)

MCH =
N∑
k=1

(∫ zk+1

zk

D
k
βkm∆Xkzdz

)
(A.23)

where αk =


α1

α2

α6


k

and βkm =


α1

α2

α6


k

are the thermal expansion coefficient and chemical

shrinkage coefficient, respectively, at the kth ply.
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A.4 Types of Coupling

Equation A.17 can be expanded, detailing every component of matrices A, B and D –
see equation A.24.

Nx

Ny

Nxy

Mx

My

Mxy


=


A11 A12 A16

A12 A22 A26

A16 A26 A66

B11 B12 B16

B12 B22 B26

B16 B26 B66

B11 B12 B16

B12 B22 B26

B16 B26 B66

D11 D12 D16

D12 D22 D26

D16 D26 D66





εx
0

εy
0

γxy
0

κx
κy
κxy


(A.24)

The coupling terms of this equation are A16 and A26, the shear-extension coupling; the
whole matrix B, the in-plane/out-of-plane coupling; and D16 and D26, the bending/torsion
coupling.

A.4.1 Shear/Extension Coupling

The terms A16 and A26 imply the following: an in-plane traction oriented with any
of the plate axis (x,y) will induce a shear deformation, and conversely, an in-plane shear
traction will induce a x or y deformation. These terms will be zero if these type of
laminates are used:

• Cross-py laminates (symmetrical or unsymmetrical): only made by 0 and 90◦plies.

• Balanced angle-ply laminates (symmetrical or unsymmetrical): only made by +θ
and -θ plies and in order to be balanced there must be the same amount of +θ and
-θ plies.

A.4.2 In-plane/Out-of-plane Coupling

The presence of nonzero elements in the coupling matrix B indicates that the application
of an in-plane traction will lead to a curvature or warping of the plate, or that an applied
bending moment will also generate an extensional strain. However, this coupling can
be avoided by making the laminate symmetrical about the midplane, as examination of
equation A.12 can reveal.

The terms of the B matrix will be zero or nonzero depending on the type of laminate
employed:

• symmetrical laminate: [B] = 0.

• Unsymmetrical laminate: [B] 6= 0.

• Anti-symmetrical cross-ply laminate: only made by 0 and 90◦plies and anti-symmetry
with respect to the midplane. B11 6= 0 and B22 6= 0 and the remaining terms are 0.

• Anti-symmetrical angle-ply laminate: only made by +θ and -θ plies and anti-symmetry
with respect to the midplane. B16 6= 0 and B26 6= 0 and the remaining terms are 0.
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A.4.3 Bending/Torsion Coupling

The terms D16 and D26 imply the following: a bending moment traction will induce
a twist or warpage deformation, and conversely, a torsional moment induce a bending
deformation. These terms will be zero if these type of laminates are used:

• Symmetrical and anti-symmetrical cross-ply laminates.

• Anti-symmetrical angle-ply laminates.

The latter can be deduced by proper examination of equation A.16. The terms D16 and
D26 are zero for 0 and 90◦plies. And regarding angle plies, D16 and D26 are nonzero but they
have opposite signs and thus, they cancel out only when the laminate is anti-symmetrical.

A.4.4 Summary of Couplings

A summary of the couplings is depicted in Figure A.3, and Table A.1 groups together
all the laminates described above and their respective A, B and D matrices.

Figure A.3: Possible couplings in laminates [12].
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Laminate A B D

Symmetrical cross-ply

 x x 0

x x 0

0 0 x


 0 0 0

0 0 0

0 0 0


 x x 0

x x 0

0 0 x



Anti-symmetrical cross-ply

 x x 0

x x 0

0 0 x


 x 0 0

0 x 0

0 0 0


 x x 0

x x 0

0 0 x



Symmetrical angle-ply

 x x 0

x x 0

0 0 x


 0 0 0

0 0 0

0 0 0


 x x x

x x x

x x x



Anti-symmetrical angle-ply

 x x 0

x x 0

0 0 x


 0 0 x

0 0 x

x x 0


 x x 0

x x 0

0 0 x


Table A.1: Different types of laminates and its A, B and D matrices.



Analytical Verification

Samcef capabilities have been tested on a simple geometry as performed in [13]. The
main goal of the test is to compare the numerical measured spring-back angle – one of
the main deformation modes in the curing of thermoset composites – with the analytical
value. The test is performed in a 90◦ angle shape part made of a material with anisotropic
thermal expansion coefficients.

The part geometry and boundary conditions are depicted in Figure B.1. Material ‘1’
direction is parallel to the inner surface, direction ‘3’ is perpendicular to the latter and
direction ‘2’ is perpendicular to the plane of interest.

Figure B.1: Geometry employed for the thermal anisotropy spring-back test [13].

The material thermal expansion coefficients are α1 = α2 = 0 and α3 = 100 · 10−6 ◦C−1.
A total temperature difference of 180 ◦C is applied. The change in spring-back angle for
this case can be calculated with the first-order approximation given in [13]:

∆θ = θ

[
(αθ − αr)∆T

1 + αr∆T

]
(B.1)

where θ is the initial angle (in this case 90◦), αθ = α1 and αr = α3. For a ∆T = 180◦C,
equation B.1 yields an analytical spring-back angle of -1.591◦. The convention used is that
a positive spring-back angle induces a decrease on the original angle – see Figure B.2.
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The effect of mesh density on predicted spring-back has been examined by varying
the number of corner elements in the radial and circumferential directions. The type of
elements used are 8-node solid elements. Additionally, all possible non-linearities have not
been taken into account as equation B.1 is a first-order approximation.

The tested combinations of corner elements are presented in Table B.1:

Circumferential
elements [−]

Radial
elements [−]

Predicted
spring-back angle [o]

Prediction error
[%]

1 3 -0.3937 75.253
2 3 -1.3708 13.839
2 4 -1.3711 13.820
2 5 -1.3712 13.812
2 6 -1.3713 13.807
3 6 -1.5153 4.759
5 6 -1.5675 1.475
8 6 -1.5821 0.558
15 6 -1.5872 0.239
16 6 -1.5877 0.209
17 6 -1.5881 0.184
18 6 -1.5817 0.583
19 6 -1.5796 0.718
20 6 -1.5805 0.657
20 10 -1.5805 0.657

Table B.1: Tested corner elements and deviation with respect to the analytical solution.

Figure B.2: Analytical spring-back
of a 90o angle shape with a ∆T =
180◦C.

For the above simulations, different boundary
conditions have been used so that an odd
number of elements along the circumference
can be used – see Figure B.3. With the
boundary conditions proposed in Figure B.1,
just an even number of elements along the
circumference can be used as the displacement
constraints are applied on a 45o tilted line with
respect to the global axis z. Both boundary
conditions have been implemented and tested
with 8 and 6 elements along the circumference
and radius, respectively. There is only a 0.01%
difference in the measurements with each boundary
conditions.

As seen in the Table B.1, the influence of the
number of radial elements can be neglected – when using 2 elements along the circumference,
the number of radial elements does not modify the measured spring-back angle. Regarding
the number of circumferential elements, a point is reached when increasing the number
of elements does not reduce the prediction error but it increases it again. That point is
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reached with 17 elements along the circumference. The same divergence is observed in
[13] – where the software COMPRO is used, but at a different number of elements along
the circumference.

Figure B.3: Alternative boundary conditions so that odd number of elements along the
circumference can be tested.

The reasons behind this divergence must have a relation with:

• The way of measuring the spring-back angle change. ∆θ has been measured on the
upper 1 mm edge with respect to the vertical z axis. The latter angle may not be
the actual ∆θ.

• The assumptions made in [13] to deduce equation B.1, which are not detailed. If
there is some additional condition that was taken to deduce such equation that what
can be inferred by Figure B.1, the latter has not been taken into account.

The numerical divergence requires an in-depth study for it to have a detailed and
clear explanation. In regards with Samcef, the test performed prove that it is completely
capable of measuring spring-back angles when anitostropical thermal conditions are applied
on a curved shape – accordance with analytical solution of more than 99 % when more
than 8 elements along the circumference are used.
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Compensated Molds with the Mirror
Method

The MM final solution of the compensated mold is a mesh, but for the manufacturing
purposes a CAD model with the mold’s geometry needs to be created. This appendix’s
main purpose is briefly explain the procedure followed to convert a mesh into a CAD
model with NX. The procedure is in fact very straightforward:

1. Open the FEM model (.fem) with the last mesh of the iterative process.

2. Then, in Face operations, there is an option called Face from Mesh. Then choose 2D
element as the type of mesh and next, select the final 2D mesh: a surface is created.

3. Once the surface is obtained it must be added to a CAD model. To do so in a FEM
model environment, only one way has been found: create an empty CAD model, and
assign it as the idealized part of the FEM model – the idealized part is the CAD
model used to partition the geometry for meshing purposes. The latter is done using
the option Replace Ideal/ Master Part. Once that is done, the surface can be added
to the CAD-model by using the command Insert>Model Preparation>Surface>From
Polygon Face.

4. The last step to perform is to open the CAD model with the surface and create the
mold geometry by adding a surrounding structure to the surface.

Some examples of CAD models of compensated molds obtained in this thesis with the
MM are depicted next:

• Flat plate under pure bending (warpage)

Figure C.1: CAD model of the mold obtained using the MM for the flat plate under pure
bending.
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• Flat plate under pure torsion (warpage)

(a) General view.

(b) Plane yz view. (c) Plane xz view.

Figure C.2: CAD model of the mold obtained using the MM for the flat plate under pure
torsion.

• Z-shaped part under spring-in deformation

Figure C.3: CAD model of the mold obtained using the MM for the Z-shaped part under
spring-in deformation.
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