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Abstract

Since phenomics constitutes a bottleneck in yield improvements, there is a growing need
to develop new, automated phenotyping tools. To study plant topological phenotype, the
focus was set on three dimensional measurements with the help of a low cost laser range
sensor : the Intel RealSense SR300. The use of functional-structural plant modeling was
introduced and used to represent plant architecture in a graphical way. The experiment
was conducted on basil in a hydroponic system with controlled environment, with the
design of a high-throughput phenotyping platform in mind. Such systems are often
automated and deliver large quantities of data and results, thus highlighting key-elements
of plant physiology easier than ever before. The performance of the phenotyping platform
was deemed encouraging. The automated use of the SR300 was explored and opens the
way to better performing phenotyping experiments. A calibration method was proposed
and measurement quality was not perfect but shows promise, given a few refinements. A
plant modeling tool with graphical representation capabilities is introduced, with long-
term possibilities for model implementation. This study opens many perspectives in terms
of phenotyping applications with the validation of a low-cost 3D sensor and the proposal
of a functional structural modeling tool.
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Résumé

A cause du goulot d’étranglement que constitue la phénomique dans la recherche en
amélioration végétale, le besoin se fait sentir de développer de nouveaux outils automa-
tisés de phénotypage. Dans le but d’étudier le phénotype topologique de plantes, l’accent
a été mis sur des mesures en trois dimensions à l’aide du capteur low-cost Intel RealSense
SR300. L’utilisation de la modélisation végétale fonctionelle-structurelle est introduite et
utilisée pour représenter graphiquement une architecture végétale. L’expérimentation
a pour objet du basilic en culture hydroponique avec environnement contrôlé, avec à
l’esprit la conception d’une plate-forme de phénotypage à haut débit. De tels systèmes
sont souvent automatisés et permettent de récolter de grandes quantités de données et
de résultats, mettant ainsi en évidence des éléments clés de la physiologie végétale plus
facilement que jamais auparavant. La performance de la plate-forme de phénotypage est
jugée encourageante. L’utilisation automatisée de la SR300 a été explorée et ouvre la voie
à des expériences de phénotypage plus performantes. Une méthode d’étalonnage a été
proposée et la qualité de mesure, bien qu’imparfaite, est prometteuse moyennant quelques
améliorations techniques. Un outil de modélisation avec des possibilités de représentation
graphique est proposé, avec la possibilité à long terme d’y intégrer de nouveaux modèles.
Cette étude ouvre de nombreuses perspectives en termes d’applications de phénotypage,
avec la validation d’un capteur 3D au prix abordable et la proposition d’un outil de
modélisation performant.
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Chapter 1

Introduction

Whether to face the challenges of feeding the ever growing world population (Godfray
et al., 2012) — with an estimation close to 10 billion individuals in 2050 (United Nations,
2017), to increase benefits or to create new agricultural systems, research in plant physi-
ology is essential to understand the interactions between plants genome, phenome and
environment. To do so, the scientific community has had many tools at its disposal, with
recent dramatic advances in genomics through DNA sequencing. Now, phenomics is
constituting a bottleneck to advances in yield improvements (Fahlgren, Gehan, & Baxter,
2015; Fiorani & Schurr, 2013).

To conduct efficient phenotyping experiments and platform design, it is essential
to correctly identify relevant parameters to be measured, design automated cultivation
systems, monitor environmental variables and gather data efficiently (Fiorani & Schurr,
2013). It is with those aims that high-throughput phenotyping platforms are designed.

This work falls in the scope of plant topological traits monitoring through image-based
processes. Image-based phenotyping is a wide terminology that actually encompasses
several techniques, based on the behavior of plant material in different growth and
illumination conditions, with various scopes and purposes. These different techniques
are summarized in the review of L. Li, Zhang, and Huang (2014) and rely on visible light,
fluorescence, thermal, near infrared, hyperspectral, 3D, or laser imaging. Some authors
even explore the use of medical imaging techniques such as magnetic resonance imaging
(MRI), positron emission tomography (PET) or computed tomography (CT).

The future is bright for this field of study as recent years have seen advances in
hardware and software performance and availability. Indeed, sensors are becoming more
affordable with several papers exploring the use of cheap, consumer-grade red-green-blue
(RGB) cameras, 3D scanners or depth cameras to study plant architecture (Azzari, Goulden,
& Rusu, 2013; Chéné et al., 2012; Paulus, Behmann, Mahlein, Plümer, & Kuhlmann, 2014).
On the other hand, many commercial and open-source phenotyping tools exist. The Plant
Image Analysis database (Lobet, Draye, & Périlleux, 2013) is a repository of such image
analysis tools designed specifically for plant phenotyping.

Much like phenotyping techniques are varied, so are their scopes. While some are
limited to the individual plant, others take phenotyping to the field (Dong, Burnham,
Boots, Rains, & Dellaert, 2016).
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CHAPTER 1. INTRODUCTION

In the present case, a hydroponic cultivation system was designed in a controlled
environment, together with an automated acquisition system. The experiment was con-
ducted in a controlled environment on a dozen of basil plants. The purpose was to explore
the possibility to study plant topology with the help of the Intel RealSense SR300 depth
camera and to determine what methodology or software could be used to make the best
use of the measured parameters.

2



Chapter 2

Bibliographic Review

2.1 Plant phenotyping

L. Li et al. (2014) define plant phenotyping as “the comprehensive assessment of complex plant
traits such as growth, development, tolerance, resistance, architecture, physiology, ecology, yield,
and the basic measurement of individual quantitative parameters that form the basis for more
complex traits”. Characterization of said processes relies on the precise measurement of
several parameters in specific environmental conditions.

As the scope of this work focuses on image-based phenotyping, a short review of
existing techniques will be realized. The purpose of image-based phenotyping is to
take measurements in a non-destructive manner, based on the behavior of photons in
relation with plant material : photon reflection, absorption or transmission, in different
illumination conditions (Figure 2.1). An automation component is also present in image
acquisition and treatment, as computer vision allows development of algorithms to
automatically operate equipment and extract results from data.

Figure 2.1 – Ranges of cameras and sensors used in plant phenotyping (Fahlgren et al., 2015).

Visible light Born of the simplest imaging technique used for plant phenotyping, visible-
light images are intended to mimic human perception. Sensors used in this scope are most
commonly silicon complementary metal oxide semiconductor (CMOS) or charge coupled
device (CCD) arrays, sensitive in the visible range of the light spectrum (400 to 700 nm).

3



CHAPTER 2. BIBLIOGRAPHIC REVIEW

Images are acquired in top-view for plants presenting a rosette architecture (Arabidopsis),
and sometimes complementary side-views in the case of more complex architecture. Raw
data is usually presented in the form of matrices with 3 channels : red, green and blue.
Each channel holds the intensity of light in the corresponding wave band.

A few examples of current applications are biomass estimations (Arvidsson, Pérez-
Rodríguez, & Mueller-Roeber, 2011; Golzarian et al., 2011), yield traits, plant organs
morphology, root architecture, projected leaf area (L. Li et al., 2014). Simple parameters
estimations display a high coefficient of determination with respect to reference mea-
surements. The advantage of such an approach is that data can be easily acquired in
large scale experiments, sometimes in a fully automated manner. This gain in time and
resources management enables the use of large populations and a genetic approach to
plant phenotyping, as Chen et al. (2014) did in an experiment where 312 plants were
monitored over the course of seven weeks using an automated conveyor belts system.

Visible light imaging is compatible with both controlled environment and field agri-
culture. However, the technique faces some limitations, especially in the field, where
illumination conditions are dependent on time of the day, season and cloud coverage. Back-
ground elimination can be achieved with the help of image transformations (Woebbecke,
Meyer, Von Bargen, & Mortensen, 1995). In the field, visible imaging is used to quantify
canopy color and coverage (L. Li et al., 2014).

Fluorescence imaging Fluorescence imaging is oriented towards the observation of
metabolic status of plant, especially photosynthesis related processes as the typical fluo-
rescing part of plant material is the chlorophyll complex (L. Li et al., 2014). It originated
from the findings of Kautsky and Hirsch (1931) on the difference in fluorescence in dark-
adapted leaves, highlighting the correlation between fluorescence rate and carbon dioxide
assimilation. In fluorescence imaging, surfaces are irradiated with context-specific light
and measurements aim at the capture of re-emitted light fractions which depend on the
status of the plant (Baker, 2008). Multicolor fluorescence imaging uses ultraviolet (UV)
irradiation and allows the recording of plant material response in four spectral bands,
namely blue (440 nm), green (520 nm), red (690 nm) and far-red (740 nm). These responses
inform on various plant components and associated processes, and their simultaneous
analysis can provide thorough indicators of stress or even chloroplast content (L. Li et al.,
2014).

This technique is obviously of primary interest in disease detection, and in both
biotic and abiotic stress response measurement. To sum up, it is a widespread tool to
assess plant metabolic performance, submitted to various stress and other particular
conditions. Power requirements and specific irradiation conditions make it a suitable
tool for controlled environment experiments, but field applications are not yet suited for
large-scale experiments (L. Li et al., 2014).

Thermal imaging Thermal imaging is used to visualize thermal radiations at the surface
of framed objects, i.e. leaf surface and canopy. Common operating wavelengths for
thermal imaging are 3 to 5 µm and 7 to 14 µm. Recent developments in thermal imaging

4
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sensors have brought a generation of cameras with thermal sensitivity the order of the
millikelvin.

Because of the close relationship between leaf temperature and evapotranspiration,
it is used to study plant-water relations. A direct application of such measurement lies
in drought-resistant genotypes breeding programs (Jones et al., 2009). It is adapted to
both field and controlled environment use but requires heavy procedures of calibration,
and the geometry of analyzed plants must be taken into account in the interpretation of
measurements (L. Li et al., 2014).

Hyperspectral imaging With cameras able to discern hundreds of spectral bands rang-
ing from 350 to 2500 nm, with a resolution of the order of the nanometer, hyperspectral
imaging enables the extraction of information otherwise lost in the process of broader
band images acquisition (Fahlgren et al., 2015). It relies on interaction of solar radiation
with plant canopy. In the visible spectrum, surface reflectance is especially low due to
the absorption of light by leaf pigments and presents a peak of reflectance in the green
region of the visible spectrum (L. Li et al., 2014). The abundance of wavelengths allows the
computation of various vegetation indices (ratio of one on the other, difference between
two spectral bands) which, with proper calibration, can predict phenotypic characteristics
such as yield (Marti, Bort, Slafer, & Araus, 2007), crop response to stresses and leaf nitrogen
content (Leemans, Marlier, Destain, Dumont, & Mercatoris, 2017).

The downside of hyperspectral imaging lies in the slowness of image acquisition, and
the interpretation of data poses supplementary challenges to researchers as the volume of
data grows with each extra band.

3D imaging 3D plant phenotyping is the particular category in which the present work
falls. Sensors capturing 3D data are laser scanners (or structured light depth cameras),
stereo vision cameras and time of flight (TOF) cameras.

Laser scanners rely on active triangulation. A pattern is projected onto the scene, and
signal processing provides a depth map of the framed area. Section 2.4 gives more detail
about this technology since it is the category that the sensor of interest of this study falls
into.

Stereo cameras generally have two sensors mounted close to each other and partially
framing the same scene. However, they sometimes are made of 3 cameras, or only one for
“Structure From Motion” stereo cameras where a static scene is captured by a number n of
successive frames from different positions (Zanuttigh et al., 2016).

As for TOF cameras, their applications in plant phenotyping remain limited because
of comparatively low resolution and sensitivity to outdoor illumination (L. Li et al., 2014).

The purpose of 3D imaging is mainly to study plant architecture. Measurements range
from topographic maps to height or volume measurements, enabling the estimation of
biomass production or canopy cover. Point cloud analysis can provide rich informations
on plant growth (Paulus, Schumann, Kuhlmann, & Léon, 2014) and surface features based
algorithms allow the segmentation of plant organs (Paulus, Dupuis, Mahlein, & Kuhlmann,
2013). Various scales have been explored, from the 3D mapping of single, small plants to
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the use of aerial mounted stereo cameras for growth estimations by Rovira-Más, Zhang,
and Reid (2005) or aerial use of light detection and ranging (LIDAR) to characterize forest
coverage.

Y. Li et al. (2013) and Paproki, Sirault, Berry, Furbank, and Fripp (2012) even go further
by bringing phenotyping in the 4th dimension, by establishing techniques of continuous
3D monitoring, thus adding the time axis to spatial measurements.

6
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2.2 Functional structural plant modeling

Functional structural plant modeling is an approach used to study plant architecture and
physiological processes through computer simulations. It differs from the general trend of
crop growth models, that are generally process-based, in that it is developed with a strong
structural component in mind and the relationship existing between plant architecture
and physiological processes (Henke, Kurth, & Buck-Sorlin, 2016).

The work of Godin and Caraglio (1998) proposes a multi-scale approach to functional
structural plant modeling, allowing to approach a new plant species without a priori on
it’s size or architecture. The multiscale tree graph (MTG) is indeed a tool fit to any plant
species with any desired refinement level, describing the structure of plants in sets of
components and the way these components are connected to each other. Characterizing
said topology in a precise manner allows the study of plant physiology and growth
process by exacerbating phenotypic traits that are not straightforward or obvious (Godin
& Caraglio, 1998). To do so, the multiscale tree graph approach is based on graph theory. A
graph h is defined as a pair h = (V,E) where V is a finite set of vertices andE a finite set of
edges. In the MTG formalism, those vertices correspond to components (i.e. leaves, stems,
petioles, internodes, etc.) and the edges to the connections between those components
(Figure 2.2).

(a) Schematic tree structure.

(b) Corresponding tree graph.

Figure 2.2 – (a) Schematic structure of a tree and (b) the corresponding tree graph. The trunk is
represented by the central vertex t1 and the branches borne by the trunk are the linked vertices.

The arrows in (b) are the edges of the graph (Godin & Caraglio, 1998).

The identification and quantification of such topological traits constitutes a comprehen-
sive and dynamic approach to plant form and development (Barthelemy & Caraglio, 2007).
Numerous possible applications can be envisioned in botany and agronomy, regarding
the development of plants based on endogenous processes and their response to external
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variables (Barthelemy & Caraglio, 2007; Najla et al., 2009).
The outputs of such models are sets of morphological, topological parameters, rep-

resented in a graphical way as per example in the software AMAPstudio developed by
Griffon and de Coligny (2014), providing computed representations consistent with field
observations (Figure 2.3).

Figure 2.3 – Example of simulated plant architecture within the AMAPstudio software (Griffon &
de Coligny, 2014).

2.3 Basics of imaging systems (Zanuttigh et al., 2016)

This section is a simplified overview of the basic principles on which imaging systems
work and that are necessary for the proper understanding of the rest of this thesis. It is
mostly based on the chapter “Basics of Imaging Systems” in Zanuttigh et al. (2016).

The pinhole camera model is the abstract simplification of the geometry of a camera
(Figure 2.4). It defines a 3D Camera Coordinates System with axes x, y and z and the origin
located at the pinhole, called the center of projection, on the face of the camera. Parallel to
the face of the camera is the sensor (also called film or image plane). The focal length is the
distance separating the pinhole from the sensor plane, and the principal point or optical
center is the projection of the pinhole on the sensor, normal to the sensor plane.

The sensor is made of an array of photoelectric conversion units converting photons
into electric signals, based on CCD or CMOS technology (Fraden, 2010). These electronic
signals become values that are stored in an array and become pixel values in an image.
From a mathematical perspective, the relationship between pixel coordinates on the sensor
array p = [u, v]T and points coordinates in real-world coordinates P = [x, y, z]T comes
from triangle similarity (Equation 2.1, Figure 2.5).

9
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(a) Pinhole model

(b) Focal length

(c) Principal point
Figure 2.4 – Simple representation of the pin-hole model and it’s main components, the focal

length (a) and the principal point (b). (Kyle Simek, Creative Commons
license. http://ksimek.github.io/pinhole_camera_diagram/, accessed June 2017).

Figure 2.5 – Perspective projection geometry. (a) 3D scene – (b) horizontal section of (a) – (c)
vertical section of (a) (Zanuttigh et al., 2016).

10
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u− cx = f xz

v − cy = f yz

(2.1)

where: u = Horizontal pixel coordinate [px]
v = Vertical pixel coordinate [px]
cx = Horizontal coordinate of principal point [px]
cy = Vertical coordinate of principal point [px]
f = Focal length [mm]
x = Horizontal point coordinate [mm]
y = Vertical point coordinate [mm]
z = Distance between sensor plane and point [mm]

The projection from 2D camera coordinates to 3D real-world units is ruled by a non-
linear relationship presented in Equation 2.2, in which the 3 by 3 matrix is commonly called
the camera matrix, intrinsic parameters matrix or projection matrix. Axis skew is theoretically
present in this matrix but is often neglected in practice and will not be presented here.

z

uv
1

 =

f 0 cx

0 f cy

0 0 1


xy
z

 (2.2)

Finally, in real imaging systems, the use of lenses distorts the coordinates of points on
the sensor. Correct pixel coordinates can be computed on the basis of the measured pixel
coordinates and the characteristics of the lens by inverting distortion models (Equation 2.3).
A real camera presents radial and tangential distortion. Tangential distortion is often
deemed negligible when compared to radial distortion and is not considered in this study.

p = Ψ−1(p̂) (2.3)

where: p = Undistorted pixel coordinates [px]
p̂ = Distorted pixel coordinates [px]
Ψ = Distortion model

All parameters presented in this section can be estimated by the means of a geometric
calibration, following various methodologies such as that proposed by Zhang (2002) based
on the acquisition of checkerboard images, where the camera parameters are estimated
via detection of a pattern of known size. This technique was used and is developed in
section 3.4.2.

2.4 Active triangulation

The active triangulation working principle is central to this study, as the SR300 camera
relied on it to capture 3D frames of the basil plants. Cameras based on active triangulation
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are commonly called structured light depth cameras, because depth (i.e. distance between
camera plane and object) measurements are based on the projection of a structured light
pattern. The active adjective reflects the presence of a projector or illuminator in the design
of the sensor and marks the difference between such devices and passive triangulation
devices such as stereo depth cameras.

The principle of optical triangulation is represented in the diagram of Figure 2.6. Point
coordinates are computed by trigonometry as explained by Blais, Rioux, and Beraldin
(1988) (Equations 2.4 and 2.5).

Z =
d l′

p+ l′ tan θ

X = Z tan θ

(2.4)

where: p = Point coordinate on the sensor [px]
X = Point coordinate in the scene [mm]
Z = Camera-point distance [mm]
θ = Deflection angle of the laser beam [°]
d = Baseline (distance between light source and lens) [mm]

and l′ is given by Equation 2.5 :

l′ =
l f

l − f
' f (2.5)

where: l′ = Distance between the sensor and the lens
l = Distance between the sensor and the object plane
f = Focal length of the lens

The previous approximation holds if l� f .

Figure 2.6 – Active triangulation diagram comprising a sensor, a laser and a deflector (Blais et al.,
1988).
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The projector illuminates the scene with a structured light pattern coded in binary
words. Correspondence between the projected pattern and it’s measured counterpart is
estimated to determine on which points the triangulation can be computed. Indeed, the
structured light approach faces a limitation in the form of shadow effect, illustrated in
Figure 2.7 and due to the geometry of such devices. Some points are not illuminated,
while others are illuminated but not detected by the camera. When a correspondence
exists between points, they are called conjugates and the coordinates of said conjugate
points in the scene are computed by triangulation.

Figure 2.7 – Shadow effect due to the nature of optical triangulation. Some regions cannot be
detected because of occlusion from the perspective of either the light source (S) or the detector (D)

(Blais et al., 1988).

2.5 4D reconstruction

Four dimensional reconstruction of plants is a complex technique based on three dimen-
sional measurements taken at regular time intervals.

Three dimensional measurements, for example taken by a red-green-blue-depth (RGB-
D) camera, can be represented as 3D point clouds. The data type stores points coordinates
(X,Y, Z), and if provided, maps texture to them. Point clouds come in various sizes,
encompassing a single plant in the present case, or large items or rooms in robotics related
applications (Figure 2.8).

Figure 2.8 – Point cloud of a tea pot from the Matlab Computer Vision Toolbox examples data set.

13
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A very interesting trend in plant phenotyping is the addition of the time axis to those
3D measurements, hence the term “4D reconstruction”. The huge challenge in plant
4D reconstruction lies in the dynamic nature of shapes (Dong et al., 2016). Y. Li et al.
(2013) present a multi-labeling technique : an approach where each stem and each leaf is
segmented and well identified, with correspondence of organs over time. They proposed a
technique to monitor the growth of various plants over time with the help of precise point
clouds, implementing a forward-backward approach for event detection : their algorithm
would analyze data over time, and when an event such as budding was detected with
high certainty, a backward analysis was initiated to find the precise moment of event
occurrence (Figure 2.9).

Figure 2.9 – Forward backward analysis pipeline used by Y. Li et al. (2013). An event is detected
with high certainty in F t in the forward analysis. A backward analysis is initiated to find the exact

time of the event occurrence.

Paproki et al. (2012) established a phenotyping technique that uses multiple 3D views
to reconstruct complete point clouds, segment plant organs and estimate topological
characteristics of Gossypium hirsutum L.

In the field, Dong et al. (2016) recently developed a method of spatio-temporal recon-
struction for 4D crop monitoring (Figure 2.10), based on structure from motion stereoscopic
images, a 9 degrees of freedom inertial measurement unit and an RTK-GPS positioning
system1.

Figure 2.10 – 4D reconstruction model, with the time axis added to three dimensional space (Dong
et al., 2016).

1RTK-GPS is a positioning system providing great accuracy, used in precision agriculture applications.
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Chapter 3

Materials and Methods

This chapter details the conditions of the experiment, during which basil was cultivated
in a controlled environment with hydroponic system and monitored by the means of an
automated 3D image acquisition device (Figure 3.1).

Figure 3.1 – Non scaled schematic of the container. 1 : equipment room - 2 : growth chamber - 3 :
electrical panel - 4 : pH-up and water injection set-up - 5 : water tanks (2) - 6 : separate

experimentation - 7 : basil hydroponic system - 8 : RGB-D camera secured on the displacement rail
- 9 : air conditioning - 10 : CO2 tank. Dashed lines : nutrient solution flow - dotted lines : pH-up

and fresh water injection pipes - full line : CO2 injection pipe (Courtesy of B. Stalport).

3.1 Plant material

3.1.1 Basil

Basil (Ocimum basilicum L.) was chosen for this study because of it’s simple architecture,
and it is a common product of indoor agriculture.

First of all, as a member of the Lamiaceae family, basil displays a relatively simple
architecture with decussate leaves. The assumption was made that this trait would limit
optical occlusion between leaves borne by successive internodes when the plant is seen
in nadir view1. Axillary shoots may arise in late growth stages, but were not a primary
concern in this research.

1The nadir is defined as the orientation that is vertical and pointing in the direction of the force of gravity
at a given point. This term is more precise than “top view” or “from above” (Wikipedia, 2017)
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Finally, cultivating basil in controlled conditions is deemed a viable economical en-
deavor by Liaros, Botsis, and Xydis (2016). Indeed, the study concluded that small urban
indoor plant factories can constitute an asset for local retail market, provided that the
produced plants present high added value, which is the case for medicinal plants and, in
the present case, herbs. It is also one of the products cultivated by an industrial partner
of the Precision Agriculture laboratory. Conducting a research on this plant allowed
us to make several tests and observations that may prove useful in the future of that
partnership.

Sowing took place on May 23, 2017. The 12 plants were in a germination area until
June 12, when they were relocated to the growth chamber. Durations are expressed in
days after sowing (DAS) in the rest of this report.

3.1.2 Direct measurements

During the experiment, a series of parameters (Figure 3.2) were measured on half of the
plants — i.e. on six individuals — to serve as ground truth topology, at four different time
points. Measurements were carried out with the help of a digital vernier caliper with a
rated accuracy of 0.02 mm. However, in this particular situation, the characteristics of the
instrument become irrelevant as the measurement uncertainty majorly comes from the
difficulty for the operator to access plants because of their neighbors. The parameters
were chosen to best describe the topological traits of interest in the frame of this work, i.e.
organs dimensions and appearance, while being fairly easy to measure or estimate. The
list of measured parameters comprised :

• internode height (hi) ;
• projected leaf length (Lij) ;
• leaf width (wij) ;
• projected petiole length (Pij) ;
• insertion angle of petiole on the stem, estimated on a discontinuous scale of 15° steps

(θij) ;
• height difference between petiole tip and leaf tip (∆hij) ;
• leaf curvature (qualitative classification in 4 classes based on the orientation and

intensity of the curvature) ;
• leaf texture (smooth or rough).

Indices are relative to plant internodes : i = {1, 2, . . . , n}with the first being the lowest
one, i.e. between the substrate surface and the first node, and n the number of internodes,
and leaves borne by said internodes : j = {1, 2}. Based on those simple measurements,
other parameters could be computed, such as :

• the main stem height as the sum of internodes heights (Hstem =
n∑
i=1

hi) ;

• the total plant height as the highest ∆h added to the main stem height
(Htot = Hstem + ∆hn) ;
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• the real plant length by the Pythagorean theorem (Lr,ij =
√
L2
ij + ∆h2ij), considering

the real length as the hypotenuse of a right triangle (Figure 3.2b).

(a) Plant measurements.

(b) Detail of leaf measurements. Lr can be
computed by the Pythagorean theorem.

Figure 3.2 – Diagram of direct measurements that were taken on 6 plants at 4 time points.
P : projected petiole length ; L : Projected leaf length ; θ : insertion angle of petiole on the stem ;
∆h : height difference between the tip of the petiole and the tip of the leaf ; h : internode height.

3.2 Data acquisition and regulation equipment

Data logging relied on the use of two separate Campbell Scientific CR1000 dataloggers : one
for nutrient solution measurements and the second for climate-control related measure-
ments. All measurements were transferred onto an online server.

Two single board computers were used for this experiment : a Raspberry Pi and an
Up Board. On one hand, the Raspberry Pi commanded a custom printed circuit board
(PCB) and handled the hydroponic regulation systems brought up in the next section,
based on the measurements sent to the server by the CR1000 data loggers. On the other
hand, the Up Board was in charge of driving the light-emitting diode (LED) lighting
system and capturing the RGB and depth images. The choice of the Up Board relied on
the advertised partnership between it’s manufacturer, AAEON Technologies, and Intel
Corp., manufacturer of the image acquisition device used in the study (Intel RealSense
SR300 RGB-D camera) which ensured compatibility between both devices.

3.3 Growth conditions

3.3.1 Growth chamber

The growth chamber was located in a 20 ft Reefer container. The most interesting charac-
teristics of this device are it’s efficient insulation, airtightness and its integrated heating,
ventilation and air-conditioning (HVAC) system.

However, an external air-conditioning unit was used to regulate the temperature inside
the growth chamber for energy efficiency concerns. The temperature set point was 21 °C
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during the day (6 a.m. to midnight) and 18 °C during the night (midnight to 6 a.m.). This
temperature range was decided in consultation with scientific collaborators and had to
accommodate an other experiment taking place inside the growth chamber simultaneously,
where lettuce was grown in an aquaponic system.

To ensure that temperature regulation was based on representative data, three tempera-
ture probes were placed inside the growth chamber. The air-conditioning unit would turn
on when the mean of the three measurements went above the set-point. The integrated
ventilation system provided air mixing and temperature homogenization inside the air
conditioned enclosure.

To provide CO2 fertilization, concentration in the growth chamber was kept at high
levels throughout the experiment : the set-point was 1000 ppm. As can be seen on
Figure 3.3, CO2 levels were quite inconsistent throughout the experiment. Concentration
drops were due to the opening of the growth chamber door, while peaks were due to
the presence of people, often for measurement purposes. However, by zooming in on a
short period of time from day 27 to day 32 , one can have confirmation that the regulation
process of CO2 concentration was effective. Indeed, during this period, the container
remained closed most of the time, diminishing disturbances and finally leaving a chance
for the regulation process to perform better. Finally, despite the large variations of CO2

levels attested by a coefficient of variation of 24 %, concentration levels remained above
the set-point 62% of the time.
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Figure 3.3 – CO2 concentration throughout the experiment.

3.3.2 Hydroponic system

Two dark plastic polypropylene containers of 30 L were used as study tanks, with an
additional 50 L opaque tank in the equipment room containing hydroponic solution
related probes while being easily accessible for measurements and interventions without
disturbing the growth of the basil plants inside the growth chamber. The total liquid
volume was 50 L, as the containers were only partially filled. A 144 W membrane pump
provided water influx to both containers, connected in a parallel circuit with a volume flow
rate of 8 L·min−1. The return to the main tank occurred through an overflow in adjustable
pipes. This setup ensured efficient water flow and thus solution homogenization in the
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whole set-up, essential for representative measurements and pH regulation.

(a) Peat pellet. (b) Pots containing wet, expanded peat pellets.
Figure 3.4 – Peat pellets used during the experiment. (a) Dry, compact peat pellet. (b) Wet,

expanded peat pellets.

Peat pellets were used as substrate because of their satisfying quality/cost ratio. On
the two 30 L containers sat four extruded polystyrene foam (XPS) lids, each pierced of
23 holes allowing the placement of net pots that kept the substrate partially submerged.
Figure 3.4 pictures the substrate and Figure 3.5 shows the set-up of the containers and XPS
lids. For future reference, those XPS lids constitute the ground level of the experimental
set-up.

Figure 3.5 – Layout of the two 10 L containers with the XPS lids (green). Colored spots mean the
hole is occupied by a plant, with colors indicating the light recipes. The dashed line separates the

area in two. White holes were either empty and covered or containing backup plants.

The difference in hole colors in Figure 3.5 actually symbolizes the light treatment. To
bring light to the plants, an array of 224 LED lights was assembled, comprising 128 white
LEDs, 64 red LEDs and 32 blue LEDs, symmetrically placed on two sub-arrays. The LEDs
were linked in series circuits of 8 for the red and the white ones, and in series circuits
of 4 for the blue ones, totaling 32 different channels. Figure 3.6 displays the LED array,
where numbers represent the various channels and the white channels go by pairs of
columns, labeled in the bottom of the image (W1, W2, ... , W16). These were powered by
an eldoLED POWERdrive 6060/R power supply, capable of delivering a maximum power of
600 W. The current intensity delivered to the channels was set to 750 mA. Channels were
independently dimmed by a digital multiplexer (DMX), allowing to easily set the intensity
of each channel on an 8-bit scale (0-255), with the full scale value of 255 corresponding
to the maximum intensity of 750 mA. A Python script (Appendix A) was developed to
establish serial communication between the UP Board and the DMX.

To ensure diversity in topological phenotypes appearing in the experiment, the basil
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Figure 3.6 – LED array layout seen from above. Numbers represent blue and red channels, while
white channels are numbered in the bottom in the form W1, W2, ... , W16. Shaded squares

represent the channels that were turned off during the experiment.

plants were separated by an opaque plate in two groups of different light recipes. One
with blue LEDs on and red LEDs off, and the second with blue LEDs off and red LEDs on.
The difference between groups lay in light spectrum distribution and not in total energy
delivered. Indeed, the photosynthetic photon flux density (PPFD) was set to values of
roughly 70 µmol·m−2·s−1 under both sub-arrays at the level of the XPS lids (i.e. 70 cm
below the lamps), which was achieved thanks to the high modularity of the installation.
Measurements were taken with the photosynthetically active radiation (PAR) sensitive
probe of a Delta Ohm HD 2102.2 photoradiometer. According to Folta and Childers
(2008), such light treatments would give way to different phenotypes in terms of biomass,
internode lengths and leaf size. This phenomenon had also been previously observed by
scientific collaborators (Blanchy, Hubert, Lahaye, Maron, & Taguem, 2014). To maximize
light efficiency and mitigate border effect, the enclosure of the basil plants was made of
reflective fabric, with spaces between the different pieces to ensure airflow and prevent
excessive humidity accumulation.

Regarding the hydroponic nutrient solution, the two parameters of interest were pH
and electrical conductivity (EC), which are main concerns for the proper growth of plants
in hydroponic systems (Kozai, 2016). They were continuously measured throughout the
experiment by the means of dedicated pH and conductivity probes, and data was logged
by a Campbell Scientific CR1000 data logger. Complementary measurements were taken
five days a week with a Hach Q40D Multimeter probe, to serve as reference values and
possibly to recalibrate the sensors continuously measuring solution parameters.

The set-point for pH regulation was 6 to ensure proper nutrient absorption by the roots
(Kozai, 2016). Experienced collaborators mentioned that, in the usual growth conditions
that were met in the growth chamber, pH tended to acidification. Knowing that, 5 L

of KOH 0.5% pH-up solution were prepared for pH regulation. Figure 3.7 shows the
evolution of pH throughout the experiment and mainly confirms this downward trend,
except at the beginning of the growth cycle and towards the end. An issue occurred
between days 27 to 31, where pH plummeted below the set-point. This problem was due
to the intervention of maintenance staff around the regulation circuit board, which lead to
a poor contact that took some time to detect. After the diagnosis, measures were taken
and regulation resumed.

Basification started again on day 38 until the end of the experiment. This shows that
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for future experiments, a pH-down solution should also be available in order to fully
control the pH of the nutrient solution.
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Figure 3.7 – pH levels throughout the experiment.

EC informs on the salt concentration in the solution and therefore gives an indication of
the nutrients available to the plants. For herbs such as basil, appropriate levels range from
1.4 dS·m−1 to 2.2 dS·m−1 . For the purpose of this experiment, EC was set to 1.5 dS·m−1

with Aptus All-In-One Liquid Fertilizer (NPK : 3-9-5 % in mass) at the beginning of the
experiment and no extra fertilizer was added afterwards.

3.4 Image acquisition and treatment

3.4.1 RGB-D camera

RGB-D stands for Red Green Blue–Depth. As the name suggests, an RGB-D sensor
captures color frames in the form of RGB pictures, and depth frames that contain distance
information. The sensor central to this study was the Intel RealSense SR300 RGB-D camera
(Figure 3.8), a consumer-grade product designed for computer gaming and entertainment
(e.g. : hands-free computer control). The device shows promise as a low-cost 3D scanner
at a time where some studies explore the use of similar structured light depth sensors such
as Microsoft Kinect (Azzari et al., 2013; Paulus, Behmann, et al., 2014) for applications in
plant phenotyping.

Figure 3.8 – Intel RealSense SR300.
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Figure 3.9 shows the component locations in the SR300 camera. The imaging appli-
cation specific integrated circuit (ASIC) processes data before sending it to the USB3-
connected client system (i.e. a computer).

Figure 3.9 – SR300 components locations (SR300 datasheet).

The SR300 provides 3 types of output : RGB images, infrared (IR) images and depth
images.

RGB images are captured by a chromatic sensor — whose exact type is undisclosed —
and processed by the integrated image signal processor, then the imaging ASIC and finally
transmitted to the client system (i.e. connected computer).

As for IR images, the camera possesses an IR projector which illuminates the scene
with a white pattern (i.e. a uniform intensity). The pattern is reflected by the scene
and captured by the IR camera. Pixel values are processed by the imaging ASIC and
transmitted to the client system.

Finally, the working principle on which depth images capture relies on is active
triangulation, or structured light (section 2.4). It relies on infrared pattern projection and
capture of the reflected pattern by the IR camera.

The actual detailed procedure by which depth data is acquired by the SR300 is not
publicly available, as it is the intellectual property of the manufacturer. However, the
SR300 datasheet gives the following piece of information about depth images acquisition :
“the IR (infrared) projector illuminates the scene with a set of increasing spatial frequency coded
vertical bar patterns. These patterns are warped by the scene, reflected back and captured by the IR
camera. The IR camera pixel values are then processed by the imaging ASIC to generate a depth
frame”, pointing at spatial multiplexing (Zanuttigh et al., 2016).

The recent study by Carfagni et al. (2017) adds some details relative to pattern projec-
tion. The IR projector is actually made of three components : an IR laser, a line lens and a
resonant micro mirror. The line lens turns the IR laser point into a line, which is projected
by the rapidly moving mirror onto the scene. The camera then detects the reflected pattern
that is emitted back by the scene and acquires the depth frame.

Table 3.1 shows infrared and color camera properties and Table 3.2 shows the infrared
projector properties, essential for proper acquisition set-up geometry design.

Finally, image acquisition used the existing cpp-headless software from the open
source library LibRealSense (2017). It captured the last RGB and depth frame out of a
series of 30 frames to ensure camera parameters stabilization, much like Carfagni et al.
(2017) did in their experiment. Its name “headless” reflects the fact that the program
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comes without graphical user interface : calling the executable only prints said frames to
the current working directory.

Table 3.1 – Infrared and color camera properties (SR300 datasheet).

Infrared camera (depth) Color camera

Active pixels 640 x 480 1920 x 1080
Aspect ratio 4:3 16:9
Vertical field of view [°] 55 ± 2 41.5 ± 2
Horizontal field of view [°] 71.5 ± 2 68 ± 2
Diagonal field of view [°] 88 ± 3 75.2 ± 4
Inclination ± 1° yaw/pitch tilt ± 1° yaw/pitch tilt
Range [mm] 200 - 1200

Table 3.2 – Infrared projector properties (SR300 datasheet).

Description

Projector Coded light
Laser wavelength [nm] 860
Laser compliance Class 1, IEC 60825-1:2014 Ed 3
Vertical field of projection [°] 60 ± 4
Horizontal field of projection [°] 72.5 ± 2
Inclination 5 ± 2 ° yaw tilt towards IR camera

3.4.2 Intrinsic camera parameters

To estimate intrinsic parameters of the camera (section 2.3), a checkerboard calibrations
of both IR and RGB cameras were realized with the Single Camera Calibration App
(Computer Vision System Toolbox, MATLAB R2016a, The MathWorks Inc., Natick, MA),
which is a user-friendly implementation of the Zhang (2002) method. Only the IR camera
calibration is presented here.

The data set used for calibration comprised 30 frames of a flat checkerboard pattern
of known square size (40 mm), in a distance range resembling the distance between the
camera and the objects of interest. A distance ranging from 500 to 600 mm was chosen to
remain consistent with the measurements taken in the hydroponic system. Many pictures
were taken to fill most of the image frame. This was necessary to have a good grasp of the
radial distortion, which increases with respect to the distance from the center of the image.

The calibration algorithm first detected intersection points of the checkerboard pattern
on all images (Figure 3.10), then computed the camera’s intrinsic parameters. Results of
the calibration were analyzed to ensure proper algorithm execution, especially regarding
radial distortion (Figure 3.11). Camera parameters are presented in Table 3.3.

Based on the definition of Kalantar-zadeh (2013), depth resolution (also called discrim-
ination) is the smallest depth difference that the camera is able to detect. It was computed
by Equation 3.1 (Blais et al., 1988) and plotted in Figure 3.12. Focal length was obtained
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Figure 3.10 – Checkerboard calibration of the IR sensor. The calibration algorithm detects pattern
intersections and extracts camera parameters based on the known dimensions of the pattern’s

squares.

(a) Original, distorted IR image. (b) Undistorted IR image.
Figure 3.11 – IR images of checkerboard pattern used for camera calibration.

Table 3.3 – Camera intrinsic parameters and lens distortion extracted from checkerboard
calibration.

Parameter Value Standard deviation Unit

Focal length X 478.9433 0.3964 px
Focal length Y 477.0327 0.3851 px
Principal point X 315.7035 0.3531 px
Principal point Y 238.1820 0.5091 px
Radial distortion X -0.1309 0.0018 -
Radial distortion Y -0.0259 0.0051 -
Mean reprojection error 0.02054 - px
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through checkerboard calibration (Table 3.3), while baseline and disparity resolution are
provided in the datasheet. According to Guidi, Gonizzi, and Micoli (2016), the disparity
resolution corresponds to the error on the measurement of the position of dots in the
projected pattern and is affected by the IR camera noise.

∆z =
z2

b · f
·∆d =

z2

48 · 478.9701
· 1

8
(3.1)

where: ∆z = Depth resolution [mm]
z = Depth [mm]
b = Baseline [mm]
f = Focal length [px]
∆d = Disparity resolution [px]
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Figure 3.12 – Depth resolution with respect to depth, within the range prescribed by the
manufacturer for the SR300.

3.4.3 Depth data calibration

3D information was provided as depth, i.e. the distance between the scanned object and
the camera. Depth data was encoded on the three channels of a portable network graphics
(PNG) file with a resolution of 16 bits, in a RGB565 bitmap format : 5 bits were stored in the
red channel, 6 bits in the green channel and 5 in the blue channel. Each channel contained
distance information at different scales, with the most significant bit stored in the red
channel and the least significant bit in the blue one, which meant that the depth map had
to undergo a conversion operation to express a continuous distance scale (Equation 3.2).

Sc = 211 ·R+ 26 ·G+ 20 ·B (3.2)

where: Sc = Scaled depth value [distance unit]
R = Red pixel intensity [-]
G = Green pixel intensity [-]
B = Blue pixel intensity [-]
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Given Equation 3.2, it becomes clear that :

• a value of 1 stored in the blue channel equates 20 = 1 unit of distance ;
• a value of 1 stored in the blue channel equates 26 = 64 units of distance ;
• a value of 1 stored in the blue channel equates 211 = 2048 units of distance.

Figure 3.13 shows the same image, before and after scaling. The scaled image is
displayed through the imagesc function.

(a) Checkerboard image before scaling. (b) Scaled checkerboard image.
Figure 3.13 – Checkerboard depth map, (a) before and (b) after scaling.

The final step of calibration was to convert the arbitrary depth units to real world
units. To achieve this, pictures of a flat surface were taken at several distances to compute
a calibration curve. Both the camera and the flat surface were secured to 30 mm Bosch
profile mounts. To achieve parallelism, a Bosch DLE 70 laser meter was used to measure
the distance between the front face of the camera and the plane surface at two opposite
points. It’s advertised accuracy is 1.5 mm. The pixels used to establish the calibration
curve were in a central square of 200 by 200 pixels. Indeed, Carfagni et al. (2017) suggest
that for such a sensor, the edges of the framed areas are prone to strong deformations and
depth pixel values can become aberrant. The value retained as calibration data was the
mean of the values contained in that central square . The resulting relation is plotted in
Figure 3.14. This simplification was possible because the acquisition set-up was designed
to take pictures in nadir view, with images centered on the plant of interest.

Table 3.4, from the paper of Carfagni et al. (2017), presents interesting image char-
acteristics. The scale factor is computed by Equation 3.3. It is function of the following
geometric parameters, represented in Figure 3.15 (courtesy of F. Uccheddu, coauthor of
Carfagni et al. (2017) via e-mail exchange) : half of the field of view (FOV) opening angle β
(horizontal : 71.5 °or vertical : 55 °) ; the half width (320 px) or the half height (240 px) and
the distance between the camera and the framed object. In simple terms, the scale factor is
the ratio between real-world image height and width in millimeters to image height and
width in pixels (respectively 480 and 640 px). It increases linearly with distance.
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Figure 3.14 – Depth linear calibration curve.
Dmm = 0.1286×Ddata − 12.61
R2 = 0.9996 ; RMSE = 2.64 mm

Table 3.4 – Geometrical image characteristics of SR300 IR and depth camera (Carfagni et al., 2017).
X and Y stand for real-world image width and height, respectively.

Distance X Y Scale factor Framed area Point density
[mm] [mm] [mm] [mm.px−1] [mm2] [points.mm−2]

200 256 192 0.4 49152 6.25
450 640 480 1 307200 1.00
600 832 624 1.3 519168 0.59
800 1152 864 1.8 995328 0.31
1000 1472 1104 2.3 1625088 0.19
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SF =
tanβ

x
· d (3.3)

where: SF = Scale factor [mm/px]
β = Half FOV angle (H : 35.75 °; V : 27.5 °) [°]
x = Half of image width (320 px) or height (240 px) [px]
d = Camera-object distance [mm]

Figure 3.15 – Diagram of the underlying geometric parameters of Equation 3.3 (Carfagni et al.,
2017). d : distance to object [mm] ; x : half of image width or height [px] ;

β : half FOV angle ; δ : complement to β.

The point density can prove itself useful to estimate area of plant organs (mainly
leaves) and it’s value is ruled by Equation 3.4. It decreases quadratically with distance.

PD =
X0 · Y0
FA

=
X0 · Y0
X · Y

=
X0 · Y0

X0 · Y0 SF 2
=

1

SF 2
=

(
x

tanβ

)2

· 1

d2
(3.4)

where: PD = Point density [px.mm−2]
X0 = Image width [px]
Y0 = Image height [px]
FA = Framed area [mm2]
X = Real world width of image [mm]
Y = Real world height of image [mm]
SF = Scale factor [mm.px−1]

3.4.4 Image acquisition

The image acquisition set-up was designed to capture nadir view images of the basil
plants disposed on the central line of the hydroponic system (Figure 3.5). It is pictured in
Figure 3.16.

It comprised a stepper motor linear displacement rail, it’s power supply and control
circuit, an L-shaped 20 mm Bosch Rexroth profile assembly and a CNC machined foam
PVC support for the camera. The camera was secured 530 mm above the the surface of
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Figure 3.16 – Image acquisition set-up.
1 : displacement rail ; 2 : Up Board secured on the displacement rail ; 3 : RGB-D camera.

the XPS lids (i.e. the “ground level”) of the hydroponic system to account for the expected
plant growth during the experiment, as well as other geometrical constraints. The camera
support was designed for easy alignment on the central axis of the XPS lids, where the
basil plants of interest were placed. This central position ensured a strict nadir view of the
plants.

The Up Board controlled image acquisition by the Intel RealSense SR300, and the dis-
placement rail thanks to an intermediary Arduino microcontroller. The image acquisition
program is detailed in the form of a pseudocode (algorithm 1 ; the actual program was
coded in C++). At first, all non-white LEDs were turned off to suppress differences in
spectrum distribution due to red and blue LEDs. Images were then captured at various
positions. A text file containing the relative displacement information was read, and said
information was sent via serial communication to the Arduino microcontroller connected
to the stepper motor. The camera moved to the first position and a flag was raised when
said position was reached. At that moment, RGB and depth pictures were captured by the
SR300 camera. Then the acquisition cycle continued to it’s next positions, until the last
basil plant was reached. At the end of the process, LED lighting returned to it’s normal
setting and the displacement rail returned in home position.

3.4.5 Image processing

Preprocessing

A mask was manually applied to the images to only leave the plant of interest in each
frame, similarly to the method used by Azzari et al. (2013). This was necessary mainly
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Algorithm 1: Image acquisition program pseudocode.
Data: positions
Result: RGB-D images of each plant
initialization;
turn off red and blue LEDs;
foreach position in positions do

move camera to position;
take pictures;

end
turn all LEDs back on;
move camera back home;

to remove leaves from adjacent plants that were in contact with the plant of interest,
disturbing depth measurement and analysis. To improve computation time, images were
cropped to only display the region of interest, i.e. the target plant. They were then scaled
following the method explained in section 3.4.3 and converted to height maps. In the case
of growing plants, it made sense to convert depth data to height, by subtracting depth to
the camera height relative to the surface of the XPS lids, i.e. the “ground level” (Figure 3.17,
Equation 3.5).

h = Hcamera −D (3.5)

where: h = Plant height [mm]
Hcamera = Camera height [mm]
D = Depth value [mm]

Figure 3.17 – Height computation diagram. H = distance between camera and ground level ;
D = depth of measured point ; h = height of measured point.

Point cloud conversion and accumulation

Resulting images were then converted to point clouds objects thanks to the pointCloud
function of the MATLAB 3-D Point Cloud Processing toolbox. In the process, the back-
ground points were removed, thus reducing the quantity of data to be analyzed.

However, a point cloud of a single height map contained the same information but
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with a different encoding ; the lower leaves remained hidden by upper leaves. To generate
a more thorough point cloud of the plants’ topology and manage occlusion issues, the
point clouds were accumulated over time. For a given plant, the initial point cloud
corresponded to the conversion from height map to point cloud, i.e. the conversion
from pixel coordinates to real-world coordinates thanks to the scaling factor computed
by Equation 3.3. Height was already present in real-world units in the depth rasters, so
only x and y coordinates had to be computed. The real-world reference frame had it’s
origin located at the coordinates of the optical center of the depth maps, given by the
checkerboard calibration (Table 3.3), at ground level. Points coordinates were computed
following Equation 3.6. Once the point clouds were generated, a denoising filter was
applied to mitigate flying pixel effect (Rusu, Blodow, Marton, Soos, & Beetz, 2007). The
flying pixels are artifacts coming from the depth data processing internal to the SR300
camera. Depth is interpolated to generate a larger number of data points than the camera
actually measures. To do so, the camera software interpolates between two known
points by generating an interpolating function (or interpolant) between these points, thus
generating a number of new between measured points. The exact interpolation algorithm
remains undisclosed by Intel Corp. The downside of this technique is the presence of
flying pixels near depth discontinuities, such as leaves edges. Figure 3.18 showcases flying
pixel effect in a transect of a checkerboard image. The black squares do not reflect infrared
light, preventing some parts of the projected pattern to be detected by the camera. Hence,
they appear to lie at an infinite distance and are set as null values by the camera software,
creating a discontinuity in the depth map.

(X,Y ) = SF (h(x,y)) · (x, y) (3.6)

where: (X,Y ) = Point coordinates with respect to the optical center of the image
[mm]

SF (h(x,y)) = Scale factor depending on height at coordinates (x,y) [mm.px−1]
(x, y) = Point coordinates with respect to the conventional axes origin

in the top left corner of depth raster [px]

For the following frames of the plant in the time sequence, the same operations were
carried out to generate new point clouds. In addition to that, the newly generated points
were added to the previous point cloud in order to accumulate information over time
(Equation 3.7), thus forming the aforementioned more thorough point cloud. All point
clouds were stored at every time step in order to keep a record of the dynamic of the
process.

PCLt =
[
pcl

n(1)
1 pcl

n(2)
2 · · · pcln(t)t

]
(3.7)

where: PCLt = accumulated point cloud at time t
pcl

n(t)
t = point cloud at time t, containing n(t) points
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(a) Checkerboard depth map.
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(b) Transect of the depth map (a) along the red
line.

Figure 3.18 – (a) Depth map of a checkerboard image. Black squares return a depth value of 0,
creating depth discontinuities. Flying pixel effect is identified in (b) by the dashed rectangle.

3.4.6 Feature extraction

The point clouds resulting from this process were analyzed to estimate total plant height
over time. Estimations were compared to the direct measurements (subsection 3.1.2) to
evaluate the accuracy of the process. To do so, point cloud estimations were plotted
against manual measurements. The coefficient of determination was computed, as well
as the mean absolute error (MAE, Equation 3.8). According to Willmott and Matsuura
(2005), the MAE is a more intuitive way to evaluate error on a model than the widespread
root-mean-square error (RMSE) that is more prone to error overestimation.

MAE =
1

n

n∑
i=1

ei (3.8)

where: MAE = Mean absolute error
n = Number of observations
ei = Absolute measurement error

3.5 Harvest measurements

At the end of the growth cycle, final measurements were taken to store as much information
as possible about the plants’ architecture. First, several side view RGB pictures were taken
to have a global representation of each plant. The following measurements consisted of a
complete depth scan of the plants, weighing the internodes and measurements of leaves’
dimensions.

The RGB side-view pictures were realized with a digital single-lens reflex camera
camera. A ruler was placed vertically on the right of the plants to serve as height reference,
allowing a rough estimation of the plants’ dimensions. This was not intended as a rigorous
measurement, since the parallax effect distorts heights readings.

To capture a quasi-complete point cloud of the plant topology, an alternating sequence
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of pruning and image acquisition was set in place. The plants’ uppermost internode were
beheaded between frames, 5 mm above the inferior node (Figure 3.19), thus eliminating all
nadir view occlusion for the camera. The architecture was captured by as many snapshots
as there were internodes, to provide a clear view of each storey of the plants. All depth
frames were converted to point clouds and merged into one point cloud representing the
whole architecture. The same denoising filter as in section 3.4.5 was applied, once again
to mitigate flying pixel effect. In addition, a merge filter was used to deal with duplicate
points : a box grid filter with kernel size 3 was applied to merge points that were close
enough to each other so as to be considered duplicates of the same leaf points. This gave
birth to a lighter point cloud, without significant loss of topological information.

Figure 3.19 – Basil plant internodes separated right above each node. During RGB-D acquisition,
internodes were removed one after the other with pictures being taken in between, while the plant

was still in its spot.

An analytical balance was set even thanks to the spirit level attached to it and the
adjustable feet and used to weigh each internode. The weighing occurred as soon as
possible after the plant being cut (within a five minutes range), in order to avoid fresh
mass variations due to evaporation.

Finally, all plant material was laid out on custom forms (Appendix B) and glued with
transparent sheets of sticking plastic. Once all plants were processed, the forms were
scanned in an office scanner (Lexmark MX410de) in tagged image file format (TIFF) with
a pixel density of 300 dots per inch (dpi). Measurements were carried out through image
analysis. Images were first converted to the hue saturation value (HSV) colorspace and
leaves were segmented with Matlab’s Image Processing Toolbox Color Thresholder. The
regionprops function returned the leaves dimensions. The area measurement was trivial
as it is computed as the sum of pixels belonging to the segmented region. However, leaves
length and width were approximated by the major and minor axes of ellipses presenting
the same second-moments as the distribution of the leaves pixels, i.e. the same covariance
matrix. This was deemed a more accurate alternative to the bounding box measurements,
since this approach would have included petiole length, which was not consistent with
the way manual measurements were taken during the experiment. The internodes lengths
were measured using the bounding box coordinates, since the length measurement was
direct.

To convert the pixel measurements in real-world units, the scale factor was computed
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based on the pixel density. The pixel density expressed in dpi informs on the number of
points or pixels present on a 1 in, or 25.4 mm line. The computation of the scale factor is
then trivial (Equation 3.9).

k =
l

dpx
=

25.4

300
= 84.67× 10−3

mm

px
(3.9)

where: k = Scale factor [mm.px−1]
l = 1 in = 25.4 mm long line [mm]
dpx = Pixel density [dpi]

The forms were designed with a scaling calibration pattern consisting of four black
crosses in the corners of the sheets with their centers at known distances, in millimeters.
This allows the conversion to real-world units in the case where pixel density is not known
a priori. Finally, the correspondence between pixel length or area and real-world units is
given by Equation 3.10.

L = k · l

A = k2 · a
(3.10)

where: L = Converted length [mm]
l = Measured length [px]
A = Converted area [mm2]
a = Measured area [px]
k = Scale factor [mm.px−1]

3.6 Topology characterization and graphical representation

As a premise of working with functional-structural plant modeling and phenotyping
tools in parallel, the joint use of direct and harvest measurements allowed a graphical
representation of basil plants in XPLO software, part of the AMAPstudio suite (Griffon &
de Coligny, 2014).

The software handles various file formats, both as inputs and outputs. The preferred
input format in this work was the multiscale tree graph (*.mtg files), based on the work of
Godin and Caraglio (1998). The MTG format allows easy parameter encoding. The user
can even create new classes of components, say a petiole, and assign them appropriate
geometrical attributes. In the case of a petiole, the length is an obvious attribute. It is
possible to define a wide set of parameters, completely defining plant geometry.

This modularity in plant topology characterization enabled the graphical representa-
tion of digital basil plants resembling the real one, based on the manual measurements
described in subsection 3.1.2.
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Results and Discussion

4.1 Height measurements

Figure 4.1 shows a bar plot of height over time for the manually measured basil plants
(section 3.1.2). Bars are grouped by plant and the shades of grey indicate the various
time points. The manually measured ground truth is represented by a square on each
bar. The error bars on the estimated (i.e. 3D measured) values are the uncertainty on
the measurement and depend on the height of the measured plant : the taller the plant,
the smaller the uncertainty. Indeed, uncertainty increases with distance from the sensor,
meaning that it will decrease for taller plants which are closer to the sensor (Figure 3.12).
The error bars on the ground truth measurements reflect the precision of the measurements
taken by the operator in a cluttered environment ; taking measurements on a specimen
without disturbing it’s neighbors proved itself challenging and most likely generated
some error on the measurements.

Figure 4.2 exhibits the comparison between reference values and image-based esti-
mations. Figure 4.2a shows a plot of image measured height versus the reference height.
The full line is the first bisector and represents the ideal situation where all estimated
points correspond to their reference counterpart, while the dashed line represents the
linear model that fits estimated values to the measured reference. Figure 4.2b displays the
relative error on the measurements (Equation 4.1).

εi =
xi −Xi

Xi
(4.1)

where: εi = Relative error [-]
xi = Estimated height [mm]
Xi = Reference height [mm]

The first observation that can be made is that the measurements taken by the camera
are almost always overestimating the plant height. This offset is a systematic error and
may come from different sources : error during depth calibration (section 3.4.3), error on
the positioning of the camera above the plants or systematic error on plant measurement.
As for the underestimated value, it could come from the fact that the height is computed as
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Figure 4.1 – Heights of measured basil plants over time. Bars are grouped by plant and colors
indicate different time points. Error bars on image measurement are too small to appear on graph.
Error bars on measurements estimate operator-related error in the cluttered environment of the

growth chamber. Plants 1-5 were part of the red light modality, and 8-12 of the blue light modality.
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Figure 4.2 – Comparison between reference values and image-based estimations. (a) :
Image-based height versus reference height from manual measurements. (b) : Relative error on

height measurements.
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the 99th percentile of the height points on the height maps, in a case where the measured
reference height would be for example a leaf pointing upwards. The elimination of the
top 1 % could eliminate the tip of the leaf, thus underestimating the height. The random
component of the error is reflected by the spread of the residues. It may be due to reading
errors during the manual measurements — as stated before, conditions were quite far
from ideal to measure efficiently in some cases — or to the resolution of the camera. This
last hypothesis seems all the more likely in the light of the fact that resolution increases
with respect to distance from the camera (Figure 3.12), potentially increasing random
error when estimating the height of short plants. The coefficient of determination between
estimated and reference height is of 99.7 %. The MAE was computed to give a more
natural quantification of the quality of the relationship between measured and reference
heights than the computation of the RMSE as suggested by Willmott and Matsuura
(2005). It’s value is 8.47 mm. This error rate must be examined in light of the desired
application, but it is important to note that Carfagni et al. (2017) mention the acquisition
of filtered measurements reducing the error on measurement. A recalibration could also
be considered to deal with the offset issue.

4.2 Harvest measurements

The harvest measurements comprised two main parts : the scan of individual plant organs
and the reconstruction of the 3D point clouds representing the final topology of the plants.

4.2.1 Organs scans

Appendix C shows an example of a filled out scanned form.
Table 4.1 shows the difference between manually measured values and the so-called

“ellipse approximations” explained in section 3.5. The sample leaves chosen to populate
this table were picked to represent various shapes and sizes and go by pairs (i.e. leaves 1
and 2 come from the same node, etc.). Figure 4.3 shows an example of the segmentation
result and the aforementioned ellipses, with their major and minor axes.

Table 4.1 – Comparison between manual leaves measurements and ellipse approximation.
L : length ; w : width.

Sample Manually measured Ellipse approximation Relative error
L [mm] w [mm] L [mm] w [mm] L [%] w [%]

1 18,47 10,17 18,18 9,53 1,61 6,69
2 18,20 10,54 18,32 10,37 -0,66 1,63
3 50,59 33,12 50,18 29,57 0,81 12,01
4 48,79 34,71 48,09 31,97 1,46 8,57
5 60,26 60,44 60,57 59,04 -0,52 2,37
6 64,15 61,59 63,14 58,36 1,61 5,53
7 84,74 70,92 84,20 65,90 0,64 7,62
8 85,42 70,56 86,42 65,00 -1,16 8,56
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Figure 4.3 – Scanned leaves segmentation example, used to populate rows 1 and 2 of Table 4.1.
The ellipses of same second-moment as the segmented leaves are plotted in red. Full lines

represents the major axes and dashed lines the minor axes.

It appears that the ellipse approximation generated very low relative errors for leaf
length estimation, which is positive since it is the measurement that led us away from the
bounding box approach. However, this approach performed rather poorly regarding the
estimation of leaves width, with relative errors ranging up until 12 %. To counter this, two
solutions can be considered :

• placing the leaves in an even more structured way such as to be able to estimate
leaves width via bounding box coordinates ;

• separating the petioles from the leaves and placing them in a dedicated slot on the
scan form, removing the need to use the ellipse approach and estimate all leaves
dimensions via bounding box coordinates.

The analysis of leaves dimensions presented interesting results in terms of correlation
between leaf length, width and area (Table 4.2). Since the leaves length and width were
approximated by ellipse axes, it made sense to approximate leaf area as the area of an
ellipse. Area was modeled by surface fitting against length and width (Equation 4.2).
That equation is based on the relatively ellipse-like shape of basil leaves. Indeed, the
regression coefficient’s value is k = 0.727, making it very close to the actual area of an
ellipse A = π

4 L w ≈ 0.785 L w (with L = length, w = width). This relationship presents a
high coefficient of determination of 99.9% and a mean absolute error of 31.2 mm2.

Table 4.2 – Correlation matrix between leaf length, width and area.

Length Width Area

Length 1 0.97 0.95
Width 0.97 1 0.96
Area 0.95 0.96 1
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A = k L w (4.2)

where: A = Area [mm2]
k = Regression coefficient [-]
L = Length [mm]
w = Width [mm]

However satisfactory this might seem, we refer the reader to Table 4.1 where it was
determined that the width measurements could be improved. This relationship between
actual area and leaf length and width is thus based on biased measurements but constitutes
an interesting lead to pursue in a future research, in which width would be measured
more accurately. An application could be to estimate leaf area in real time thanks to the
SR300 based on this relationship and, for instance, the degree of curvature of leaves.

4.2.2 3D reconstruction

The leaf topology of the basil plants could be reconstructed thanks to sequential partial
point cloud acquisition. To reconstruct the —almost — complete point cloud, each height
map was processed and converted to point cloud format Figure 4.4. Neither stems
nor petioles were detected by the camera in nadir view. All points coordinates were
concatenated in a single point cloud, giving the result presented in Figure 4.5.

(a) Leaves of node 1. (b) Leaves of nodes 1 and 2.

(c) Leaves of nodes 2 and 3. (d) Leaves of nodes 2 to 4.
Figure 4.4 – Height maps of the four nodes present on the plant. These are the images that were

converted to 3D point clouds and assembled into a reconstructed point cloud.

Two other views of the point cloud and the corresponding histogram of points heights
is shown in Figure 4.6. The histogram counts the number of points in classes 5 mm wide.
The peaks and valleys detection on the histograms shows accurate results, and allow
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Figure 4.5 – Raw reconstructed point cloud.

the estimation of the height of the various nodes. The comparison between estimated
internodes length and measured internode lengths are presented in Table 4.3 for three
basil plants. Because of a mishap during 3D acquisition, data was lost for one basil plant.
As for the two other missing plants, they had massive axillary shoots which rendered the
peaks and valleys detection unusable and are not presented here. In retrospect, axillary
shoots should have been pruned between frames to provide more usable data. All in all,
the three remaining basil plants that were manually measured are individuals 8, 10 and
12, all part of the blue light modality.
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Figure 4.6 – (a,b) Point clouds of reconstructed architecture of basil n°8 from two orthogonal points of view and (c) corresponding histogram with peaks and

valleys detection.
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Table 4.3 – Comparison between estimated and measured internodes heights. Estimated height is
given by histogram bins 5 mm wide, hence the ±2.5 mm uncertainty affected to the estimated

values. Rows marked by a @ indicate leaf senescence ; the leaves did not appear at all in the point
cloud.

Basil Internode Estimated height Measured height Relative error
[mm]±2.5 mm [mm] [%]

8 1 – 10.3 (@) –
8 2 22.5 23.3 3.6
8 3 62.5 64.6 -3.3
8 4 – 85.7 –
8 5 92.5 87.9 5.2

10 1 – 8.5 –
10 2 32.5 32.9 -1.2
10 3 102.5 105.3 -2.7
10 4 – 156.2 –
10 5 162.5 166.4 -2.3
10 6 – 168.4 –

12 1 – 8.1 (@) –
12 2 37.5 28.4 32.0
12 3 97.5 79.7 22.3
12 4 – 122.9 –
12 5 – 136.0 –
12 6 142.5 137.0 4.0
12 – 157.5 – –

Results in Table 4.3 show that the estimations for internodes sometimes highly over-
estimate the nodes heights, even though a manual anti-offset term was added in the
computations to counter the offset mentioned in section 4.1. This is because the 3D scan
detected only leaves, so the height estimation is based solely on their position and not on
that of the petiole. For the case of plant 12, the high relative error rates are due to a very
low insertion angle of the petioles on the stem, making the petioles almost upright, and to
the inclination of the leaves that pointed upward. The point cloud thus contained all leaf
points higher than the nodes, introducing bias in the histogram interpretation.

We also note that some nodes are not detected in the point cloud histogram. This is
due to the insertion angle of the petiole on the stem and the inclination of leaves. Indeed,
a visual analysis of the point cloud shows that the undetected storeys are in fact present,
but they get mixed with neighboring nodes (see Figure 4.7b, where the leaves of the upper
nodes are roughly at the same level).

4.3 Graphical representation

A practical example of the implementation of the MTG approach introduced in section 2.2
is presented in Table 4.4, in the form required to serve as input in the XPLO software.
The entity column defines the ranks of the various plant components, visually by their
indentation and formally by their symbolic prefix. The + symbol indicates a branching
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link, and the < symbol a succession link (Godin & Caraglio, 1998). Input parameters are
internode length, petiole length, insertion angle on the stem and phyllotactic angle, leaf
length, width, and angle relative to the horizontal. The phyllotactic angle characterizes the
arrangement of the petioles around the stem. For instance, the phyllotactic angle between
two opposite leaves is 180°. Figure 4.7 illustrates the graphical output of the modeling tool.
The ability to reproduce a similar looking architecture validates the choice of parameters
that were manually measured.

This use of the XPLO software is a premise of many possibilities. In a scenario where
precise feature extraction is achieved with the help of the SR300, the extracted features
could serve as input parameters for the software and generate graphical representations
of plant architecture in real time. Furthermore, XPLO presents growth simulation capabil-
ities thanks to existing plugins, and the team maintaining the software encourages the
implementation of new ones (Griffon & de Coligny, 2014).

(a) XPLO graphical representation. (b) The real plant corresponding to the XPLO
representation.

Figure 4.7 – XPLO graphical representation and picture of the real plant.
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Table 4.4 – Example of MTG implementation. Input parameters are leaf length, width, petiole
length and insertion angle on the stem (YIns) and phyllotactic angle (XIns).

Entity Name Length Width YIns XIns
[mm] [mm] [°] [°]

/Scene0
ˆ /Individual0 Indiv.
ˆ /Axis0 Axis 1

ˆ /Internode0 Internode 7 4
+petiole0 petiole 0 0 0 90

+Leaf0 Leaf 0 0 0
+petiole0 petiole 0 0 0 270

+Leaf0 Leaf 0 0 0

ˆ <Internode0 Internode 18 4
+petiole0 petiole 9,9 1 45 0

+Leaf0 Leaf 28 56 79,8
+petiole0 petiole 9,9 1 45 180

+Leaf0 Leaf 33,8 50 79,2

ˆ <Internode0 Internode 45 4
+petiole0 petiole 12,7 1 45 90

+Leaf0 Leaf 49,1 92 41,5
+petiole0 petiole 16 1 30 270

+Leaf0 Leaf 47 94 62,4

ˆ <Internode0 Internode 33 4
+petiole0 petiole 19,3 1 15 0

+Leaf0 Leaf 49,3 80 69,2
+petiole0 petiole 15,5 1 15 180

+Leaf0 Leaf 52,4 80 46,5

ˆ <Internode0 Internode 9 4
+petiole0 petiole 3 1 0 90

+Leaf0 Leaf 48,7 42 70,8
+petiole0 petiole 3 1 0 270

+Leaf0 Leaf 48,7 40 70,8

ˆ <Internode0 Internode 1 4
+petiole0 petiole 3 1 0 0

+Leaf0 Leaf 8,1 10 60,3
+petiole0 petiole 3 1 0 180

+Leaf0 Leaf 8,5 10 45
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Chapter 5

Conclusion and Prospects

5.1 Conclusion

A large part of the work that went into this master’s thesis was of practical nature : the
development of the hydroponic system, the lighting system, the acquisition set up, the
programming of the regulation systems and acquisition sequence and many efforts to try
and figure out a way in the depths of the SR300 camera. Many obstacles were identified
and overcome.

A depth calibration procedure was proposed, as well as a way to semi-automatically
take measurements on plants after harvest. The processing of the depth frames was
explored and opened some leads for the future. The AMAPstudio suite was introduced
and used to reconstruct graphical representations of plants, validating the choice of
parameters that were measured and the choice of the software as a representation tool,
and possibly as a modeling tool in the long run.

5.2 Prospects

In view of what was accomplished during this study, a few recommendations come to
mind. Table 5.1 lists the bibliographic references that contain valuable material for future
research in this field.

Regarding data acquisition, a more robust set up should be implemented to handle
camera malfunction, which impaired the data acquisition schedule in a major way. Another
possible parameter to account for would be the light emitted by the LED array. In theory,
measurements are not disturbed by light irradiation outside of the wavelength range of
the IR projector, but verifying that could prove interesting in term of measurement quality
assessment. Also, Wasenmüller and Stricker (2017) indicate a possible impact of sensor
temperature on measurement quality for the Microsoft Kinect camera. This lead could be
explored to complement the study of the SR300. As for depth calibration, the procedure
could be improved by capturing several frames at each position instead of only one.

Regarding the method, it would probably be a good approach to try a 4D monitoring
with more data, for example by adding a side view to the top view that was used here.
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This would enable easier plant reconstruction by allowing access to plant parts that are
occluded from a camera in nadir view, before attempting it with the bare minimum that is
the nadir view.

In order to reconstruct plant architecture, the issue of organ multi-labeling must be
adressed (Y. Li et al., 2013; Paproki et al., 2012). However, the presented techniques rely
on complete plant scans, whereas our work aims to accomplish feature extraction based
on partial point clouds. The acquired data can be used in a more intensive manner, with a
focus on data processing instead of another master’s thesis where a full experiment would
have to be designed from scratch.

However, the experiment itself was not perfect and can also benefit from improvements,
the major part of the hardware being already available with the prototype still in working
order. The use of the SR300 for plant phenotyping purposes seems relevant, and a suitable
modeling tool has been identified. All the pieces have been brought together to build an
efficient phenotyping platform.

Table 5.1 – Summary of bibliographic references of outstanding interest for future research.

Reference Applications

Godin and Caraglio (1998) Functional structural plant modeling
Griffon and de Coligny (2014)

Dong et al. (2016)

4D reconstruction and organ labelingY. Li et al. (2013)
Paproki et al. (2012)
Paulus et al.

46



Bibliography

Arvidsson, S., Pérez-Rodríguez, P., & Mueller-Roeber, B. (2011). A growth phenotyping
pipeline for Arabidopsis thaliana integrating image analysis and rosette area model-
ing for robust quantification of genotype effects. New Phytologist, 191(3), 895–907.
doi: 10.1111/j.1469-8137.2011.03756.x

Azzari, G., Goulden, M. L., & Rusu, R. B. (2013). Rapid characterization of vegetation
structure with a microsoft kinect sensor. Sensors (Switzerland), 13(2), 2384–2398. doi:
10.3390/s130202384

Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual
review of plant biology, 59, 89–113. doi: 10.1146/annurev.arplant.59.032607.092759

Barthelemy, D., & Caraglio, Y. (2007, jan). Plant Architecture: A Dynamic, Multilevel
and Comprehensive Approach to Plant Form, Structure and Ontogeny. Annals
of Botany, 99(3), 375–407. Retrieved from https://academic.oup.com/aob/

article-lookup/doi/10.1093/aob/mcl260 doi: 10.1093/aob/mcl260
Blais, F., Rioux, M., & Beraldin, J.-A. (1988, nov). Practical Considerations For A Design Of

A High Precision 3-D Laser Scanner System. In R. J. Bieringer & K. G. Harding (Eds.),
Proceeding of spie (Vol. 959, pp. 225–246). Retrieved from http://proceedings

.spiedigitallibrary.org/proceeding.aspx?articleid=1253256 doi:
10.1117/12.947787

Blanchy, G., Hubert, G., Lahaye, M., Maron, H., & Taguem, E. (2014). Optimisation de la
culture du basilic bio en CEA. (Group project)

Carfagni, M., Furferi, R., Governi, L., Servi, M., Uccheddu, F., & Volpe, Y. (2017). On the
Performance of the Intel SR300 Depth Camera : Metrological and Critical Characteri-
zation. IEEE Sensors Journal, 17(14), 4508–4519. doi: 10.1109/JSEN.2017.2703829

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., . . . Klukas, C. (2014).
Dissecting the phenotypic components of crop plant growth and drought responses
based on high-throughput image analysis. The Plant Cell Online, 26, 4636–4655. doi:
10.1105/tpc.114.129601

Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., . . . Chapeau-
Blondeau, F. (2012). On the use of depth camera for 3D phenotyping of entire plants.
Computers and Electronics in Agriculture, 82, 122–127. doi: 10.1016/j.compag.2011.12
.007

Dong, J., Burnham, J. G., Boots, B., Rains, G. C., & Dellaert, F. (2016). 4D Crop Monitoring:
Spatio-Temporal Reconstruction for Agriculture. IEEE International Conference on
Robotics and Automation. Retrieved from http://arxiv.org/abs/1610.02482

47

https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcl260
https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcl260
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1253256
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1253256
http://arxiv.org/abs/1610.02482


BIBLIOGRAPHY

Fahlgren, N., Gehan, M. A., & Baxter, I. (2015). Lights, camera, action : high-throughput
plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 24, 93–
99. Retrieved from http://dx.doi.org/10.1016/j.pbi.2015.02.006 doi:
10.1016/j.pbi.2015.02.006

Fiorani, F., & Schurr, U. (2013). Future Scenarios for Plant Phenotyping. Annu. Rev.
Plant Biol, 64(February), 267–91. Retrieved from www.annualreviews.org doi:
10.1146/annurev-arplant-050312-120137

Folta, K. M., & Childers, K. S. (2008). Light as a growth regulator: Controlling plant
biology with narrow-bandwidth solid-state lighting systems. HortScience, 43(7),
1957–1964. doi: 10.1186/1471-2164-12-360

Fraden, J. (2010). Handbook of modern sensors : physics, designs, and applications. New York:
Springer Verlag.

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., . . .
Toulmin, C. (2012). The Challenge of Food Security. Science, 327(February), 812–818.
Retrieved from http://www.elgaronline.com/view/9780857939371.xml

doi: 10.4337/9780857939388
Godin, C., & Caraglio, Y. (1998, mar). A Multiscale Model of Plant Topological Structures.

Journal of Theoretical Biology, 191(1), 1–46. Retrieved from http://linkinghub

.elsevier.com/retrieve/pii/S0022519397905610 doi: 10.1006/jtbi.1997

.0561
Golzarian, M. R., Frick, R. a., Rajendran, K., Berger, B., Roy, S., Tester, M., & Lun, D. S.

(2011). Accurate inference of shoot biomass from high-throughput images of cereal
plants. Plant methods, 7, 2. doi: 10.1186/1746-4811-7-2

Griffon, S., & de Coligny, F. (2014). AMAPstudio : An editing and simulation software
suite for plants architecture modelling. Ecological Modelling, 290, 3–10. doi: 10.1016/
j.ecolmodel.2013.10.037

Guidi, G., Gonizzi, S., & Micoli, L. (2016). 3D capturing performances of low-cost range
sensors for mass-market applications. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 33–40. doi:
10.5194/isprsarchives-XLI-B5-33-2016

Henke, M., Kurth, W., & Buck-Sorlin, G. H. (2016, dec). FSPM-P: towards a gen-
eral functional-structural plant model for robust and comprehensive model de-
velopment. Frontiers of Computer Science, 10(6), 1103–1117. Retrieved from
http://link.springer.com/10.1007/s11704-015-4472-8 doi: 10.1007/
s11704-015-4472-8

Jones, H. G., Serraj, R., Loveys, B. R., Xiong, L., Wheaton, A., & Price, A. H. (2009). Thermal
infrared imaging of crop canopies for the remote diagnosis and quantification of
plant responses to water stress in the field. Functional Plant Biology, 36(11), 978–989.
doi: 10.1071/FP09123

Kalantar-zadeh, K. (2013). Sensors. Boston, MA: Springer US. Retrieved from http://

ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://

link.springer.com/10.1007/978-1-4614-5052-8http://link

48

http://dx.doi.org/10.1016/j.pbi.2015.02.006
www.annualreviews.org
http://www.elgaronline.com/view/9780857939371.xml
http://linkinghub.elsevier.com/retrieve/pii/S0022519397905610
http://linkinghub.elsevier.com/retrieve/pii/S0022519397905610
http://link.springer.com/10.1007/s11704-015-4472-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8


BIBLIOGRAPHY

.springer.com/10.1007/978-1-4614-5052-8 doi: 10.1007/978-1-4614
-5052-8

Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Die
Naturwissenschaften, 19(48), 964. doi: 10.1007/BF01516164

Kozai, T. (2016). Led lighting for urban agriculture. Singapore: Springer.
Leemans, V., Marlier, G., Destain, M.-F., Dumont, B., & Mercatoris, B. (2017). Estimation

of leaf nitrogen concentration on winter wheat by multispectral imaging. , 10213,
102130I. Retrieved from http://proceedings.spiedigitallibrary.org/

proceeding.aspx?doi=10.1117/12.2268398 doi: 10.1117/12.2268398
Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyp-

ing. Sensors (Switzerland), 14(11), 20078–20111. doi: 10.3390/s141120078
Li, Y., Fan, X., Mitra, N. J., Chamovitz, D., Cohen-Or, D., & Chen, B. (2013).

Analyzing growing plants from 4D point cloud data. ACM Transac-
tions on Graphics, 32(6), 1–10. Retrieved from http://dl.acm.org/

citation.cfm?doid=2508363.2508368{%}5Cnpapers3://publication/

doi/10.1145/2508363.2508368 doi: 10.1145/2508363.2508368
Liaros, S., Botsis, K., & Xydis, G. (2016). Technoeconomic evaluation of urban plant facto-

ries: The case of basil (Ocimum basilicum). Science of the Total Environment, 554-555,
218–227. Retrieved from http://dx.doi.org/10.1016/j.scitotenv.2016

.02.174 doi: 10.1016/j.scitotenv.2016.02.174
LibRealSense. (2017). Librealsense : Cross-platform api for intel realsense devices.

GitHub repository. Retrieved from https://github.com/IntelRealSense/

librealsense

Lobet, G., Draye, X., & Périlleux, C. (2013). An online database for plant image analysis
software tools An online database for plant image analysis software tools. Plant
methods, 9, 1–7. doi: 10.1186/1746-4811-9-38

Marti, J., Bort, J., Slafer, G. A., & Araus, J. L. (2007). Can wheat yield be assessed by early
measurements of Normalized Difference Vegetation Index? Annals of Applied Biology,
150(2), 253–257. doi: 10.1111/j.1744-7348.2007.00126.x

Najla, S., Vercambre, G., Pagès, L., Grasselly, D., Gautier, H., & Génard, M. (2009,
oct). Tomato plant architecture as affected by salinity: Descriptive analysis and
integration in a 3-D simulation model. Botany, 87(10), 893–904. Retrieved from
http://www.nrcresearchpress.com/doi/abs/10.1139/B09-061 doi: 10
.1139/B09-061

Paproki, A., Sirault, X. R. R., Berry, S., Furbank, R. T., & Fripp, J. (2012). A novel mesh
processing based technique for 3D plant analysis. BMC Plant Biology, 12(1), 63.
Retrieved from http://www.biomedcentral.com/1471-2229/12/63 doi:
10.1186/1471-2229-12-63

Paulus, S., Behmann, J., Mahlein, A. K., Plümer, L., & Kuhlmann, H. (2014). Low-
cost 3D systems: Suitable tools for plant phenotyping. Sensors (Switzerland). doi:
10.3390/s140203001

Paulus, S., Dupuis, J., Mahlein, A.-K., & Kuhlmann, H. (2013). Surface feature based

49

http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009{%}5Cnhttp://link.springer.com/10.1007/978-1-4614-5052-8http://link.springer.com/10.1007/978-1-4614-5052-8
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2268398
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2268398
http://dl.acm.org/citation.cfm?doid=2508363.2508368{%}5Cnpapers3://publication/doi/10.1145/2508363.2508368
http://dl.acm.org/citation.cfm?doid=2508363.2508368{%}5Cnpapers3://publication/doi/10.1145/2508363.2508368
http://dl.acm.org/citation.cfm?doid=2508363.2508368{%}5Cnpapers3://publication/doi/10.1145/2508363.2508368
http://dx.doi.org/10.1016/j.scitotenv.2016.02.174
http://dx.doi.org/10.1016/j.scitotenv.2016.02.174
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
http://www.nrcresearchpress.com/doi/abs/10.1139/B09-061
http://www.biomedcentral.com/1471-2229/12/63


BIBLIOGRAPHY

classification of plant organs from 3D laserscanned point clouds for plant phenotyp-
ing. BMC Bioinformatics, 14. Retrieved from http://www.biomedcentral.com/

1471-2105/14/238

Paulus, S., Schumann, H., Kuhlmann, H., & Léon, J. (2014, may). High-precision
laser scanning system for capturing 3D plant architecture and analysing growth
of cereal plants. Biosystems Engineering, 121, 1–11. Retrieved from http://

linkinghub.elsevier.com/retrieve/pii/S1537511014000166 doi: 10
.1016/j.biosystemseng.2014.01.010

Rovira-Más, F., Zhang, Q., & Reid, J. F. (2005). Creation of three-dimensional crop
maps based on aerial stereoimages. Biosystems Engineering, 90(3), 251–259. doi:
10.1016/j.biosystemseng.2004.11.013

Rusu, R., Blodow, N., Marton, Z., Soos, A., & Beetz, M. (2007). Towards
3D Object Maps for Autonomous Household Robots. Iros ’07, 3191–3198.
Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper

.htm?arnumber=4399309 doi: 10.1109/IROS.2007.4399309
United Nations. (2017). World Population Prospects: The 2017 Revision, Key Findings and

Advance Tables (Tech. Rep.).
Wasenmüller, O., & Stricker, D. (2017). Comparison of Kinect V1 and V2 Depth Images

in Terms of Accuracy and Precision. In (pp. 34–45). Retrieved from http://

link.springer.com/10.1007/978-3-319-54427-4{_}3 doi: 10.1007/978
-3-319-54427-4_3

Wikipedia. (2017). Nadir — Wikipedia, the free encyclopedia. http://en.wikipedia.org/
w/index.php?title=Nadir&oldid=794800554. (Online; accessed July 2017)

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance. Climate
Research, 30(1), 79–82. doi: 10.3354/cr030079

Woebbecke, D., Meyer, G., Von Bargen, K., & Mortensen, D. (1995). Color indices for
weed identification under various soil, residue, and lighting conditions. Transactions
of the ASAE, 38(1), 259–269. Retrieved from http://cat.inist.fr/?aModele=

afficheN{&}cpsidt=3503524 doi: 10.13031/2013.27838
Zanuttigh, P., Marin, G., Dal Mutto, C., Dominio, F., Minto, L., & Cortelazzo, G. M.

(2016). Time-of-Flight and Structured Light Depth Cameras. Cham: Springer Inter-
national Publishing. Retrieved from http://link.springer.com/10.1007/

978-3-319-30973-6 doi: 10.1007/978-3-319-30973-6
Zhang, Z. (2002). A Flexible New Technique for Camera Calibration (Technical Report).

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334. doi:
10.1109/34.888718

50

http://www.biomedcentral.com/1471-2105/14/238
http://www.biomedcentral.com/1471-2105/14/238
http://linkinghub.elsevier.com/retrieve/pii/S1537511014000166
http://linkinghub.elsevier.com/retrieve/pii/S1537511014000166
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399309
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399309
http://link.springer.com/10.1007/978-3-319-54427-4{_}3
http://link.springer.com/10.1007/978-3-319-54427-4{_}3
http://en.wikipedia.org/w/index.php?title=Nadir&oldid=794800554
http://en.wikipedia.org/w/index.php?title=Nadir&oldid=794800554
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=3503524
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=3503524
http://link.springer.com/10.1007/978-3-319-30973-6
http://link.springer.com/10.1007/978-3-319-30973-6


Appendix A

LED intensity control

1 #!/bin/env python
2

3 import serial
4 import time
5 import io
6 import numpy as np
7

8

9 def openSerial():
10 ser = serial.Serial('/dev/ttyUSB0') # open serial port
11 print(ser.name) # check which port was really used
12 ser.baudrate = 115200
13 ser
14 return ser
15

16 def closeSerial():
17 ser.close() # close port
18

19 def setDMX(channelStr, intensity, ser, t_pause): # select the DMX channel
20 if channelStr == 'r':
21 channel = range(9,17)
22 elif channelStr == 'b':
23 channel = range(1,9)
24 elif channelStr == 'w':
25 channel = range(17,33)
26 elif channelStr == 'all':
27 channel = range(1,33)
28

29 sz = len(channel) ;
30

31 for i in np.nditer(channel,op_flags=['readonly']) : # set the ...
intensity for the channel

32 for j,value in np.ndenumerate(i) :
33 intensiteToInt = intensity[0,j]
34 intensityToInt = intensityToInt.item(0)
35 strWrite = 's{}v{}'.format(i[j[0]],intensityToInt )
36 print(strWrite)
37 ser.write('b{}\r'.format(strWrite))
38

39 def zeroslistmaker(n):
40 return [0] * n
41

42 def oneslistmaker(n):
43 return [1] * n
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44

45 t_pause = .1
46

47 ser = openSerial()
48

49

50 # blue channels (8)
51 intensity = np.matrix( (200, 200, 200, 200, 0, 0, 0, 0) ) # definition ...

of wanted intensity in selected channels
52 setDMX('b', intensity, ser, t_pause)
53

54 # red channels (8)
55 intensity = np.matrix( (0, 0, 0, 0, 200, 200, 200, 200) )
56 setDMX('r', intensity, ser, t_pause)
57

58 # white channels (16)
59 intensity = np.matrix( (100, 100, 100, 100, 100, 100, 100, 100, 100, ...

100, 100, 100, 100, 100, 100, 100) )
60 setDMX('w', intensity, ser, t_pause)
61

62 closeSerial()
63 print('%%%%% DONE %%%%%')
64

65 import sys
66 sys.exit()
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Appendix B

Basil scan form

The form used to lay out and scan plant material is presented on the next page.
The header contains measurement metadata :

• batch number ;
• plant ID ;
• checkbox to make sure that side view RGB pictures were indeed taken ;
• color recipe ;
• page number / total pages number for the plant ;
• date.

Black crosses are present in the corners, with their respective center at known distances (17.5 cm horizon-
tally, 26.6 cm vertically) to compute the scale factor between pixels and real-world units for image analysis
measurements, in the case where image resolution is not known. If it is known, the computation of the scale
factor is trivial as it is given by the number of dots per inch.

The rest of the grid is annotated.
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+    + 
Batch : __ ID : __  Sideways pic □ Modality : □ red □ blue Page : _ /_ Date : 201_ / __ / __ 
 

+    + 

ID Leaves and internodes  Shoots Infos 
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 [internode]
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Appendix C

Example of full scan form

On the next page is displayed a full scan form. All plant material was laid flat in a similar manner, with
incisions to ensure the flatness of the leaves. Some reflections are present on the resulting image because of
the plastic covering the leaves and internodes but they did not impair the quality of the image analysis.
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APPENDIX C. EXAMPLE OF FULL SCAN FORM

Figure C.1 – Full scan form for batch 4, plant 8, modality = blue, page 2/3 at the date of the end of
the experiment : July 7th, 2017.
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