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Highlights 

- We used a pantropical model to compute field-based biomass estimates in a 
high biomass forest in Osa peninsula, Costa Rica. 

- Small plot sizes cause high biomass variability between plots, leading to 
considerable model errors. 

- Maximum tree height is a good predictor for plot level biomass in small plots. 
- Applying a model based on maximum tree height generated biomass 

estimates with an uncertainty of ~ 30 %. 
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Résumé 1 

Afin d’évaluer l’impact de la déforestation sur le changement climatique, des 2 

estimations fiables de la biomasse aérienne sont nécessaires. Les techniques de 3 

télédétection permettent d’étendre les estimations basées sur les mesures de 4 

terrain à des échelles spatiales plus vastes. Bien que les limites de sensibilité du 5 

LiDAR (Light Detection And Ranging) soient largement supérieures à celles des 6 

systèmes optiques et radars, son comportement aux densités de biomasse 7 

extrêmement élevées (≥ 500 Mg ha-1) reste peu étudié. Le Parc National Corcovado 8 

(Costa Rica) représente un enjeu pour l’utilisation du LiDAR, dû aux conditions de 9 

très hautes biomasses et à la petite taille des placettes de terrain disponibles (0.07 10 

ha). Pour ce site, les données LiDAR ne prédisent pas significativement la hauteur du 11 

couvert en raison de la faible coregistration (chevauchement spatial) des placettes 12 

de terrain et des empreintes LiDAR. Les données LiDAR prédisent par contre 13 

significativement la biomasse mais avec une faible précision (RMSE > 50%). Afin de 14 

limiter la variabilité de la biomasse entre placettes, ce qui occasionne des erreurs de 15 

modèle considérables, nous suggérons une taille de placette minimale de 0.2 ha. De 16 

plus, il semblerait que la hauteur d’arbre maximale (Hmax) soit un bon indicateur 17 

de la biomasse à l’échelle de la placette lorsque les placettes sont petites, alors que 18 

la hauteur d’arbre dominante (Hdom) et moyenne (Hmoy) sont plus performantes 19 

quand la taille des placettes augmente. Un modèle basé sur Hmax est utilisé pour 20 

prédire la biomasse à l’échelle de l’empreinte et donne lieu à des densités de 21 

biomasse moyennes à l’échelle de la bande LiDAR de 281.5 Mg ha-1 pour Corcovado 22 

et de 194.8 Mg ha-1 pour un autre site d’étude, la Station Biologique de La Selva 23 
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(Costa Rica). Ces valeurs sont comparables à d’autres résultats trouvés dans la 24 

région néotropicale. 25 

 26 

Mots clés : Biomasse forestière, LiDAR, LVIS, hauteur de la canopée, haute 27 

biomasse, taille de placette 28 
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Abstract 47 

In order to assess the impact of deforestation on climate change, reliable 48 

estimates of aboveground biomass are needed. Estimates based on field 49 

measurements can be extended over broader spatial scales using remote sensing 50 

techniques. Although LiDAR (Light Detection And Ranging) shows no saturation at 51 

the biomass levels that represent the limits for optical and radar systems, it is not 52 

clear how it behaves at extremely high biomass densities (500 Mg ha-1 and above). 53 

Our study site in Corcovado National Park (Costa Rica) presents challenges for 54 

LiDAR use because of very high biomass conditions and the small size of the plots 55 

(0.07 ha). Because of the low co-registration (spatial overlap) between field plots 56 

and LiDAR footprints, LiDAR metrics could not significantly predict canopy heights. 57 

Biomass on the other hand was significantly predicted but with low accuracy (RMSE 58 

above 50%). We suggest that a plot size of at least 0.2 ha is needed to limit the 59 

biomass variability between plots, which may otherwise cause considerable model 60 

errors. Additionally, field maximum tree height (Hmax) proved a good predictor of 61 

plot level biomass in plots of small size, while dominant tree height (Hdom) and 62 

mean tree height (Hmean) seemed to outperform Hmax as plot size increased. We 63 

used a model based on Hmax to predict biomass at footprint level and obtained 64 

mean biomass densities at swath level of 281.5 Mg ha-1 for Corcovado and 194.8 Mg 65 

ha-1 for our other field site, the La Selva Biological Station in Costa Rica. These 66 

values are comparable to other results found in the Neotropics. 67 

 68 

Keywords: Forest biomass, LiDAR, LVIS, canopy height, high biomass, plot size 69 
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1.0 Introduction 70 

One of the greatest threats facing our planet is climate change, which is 71 

primarily caused by elevated atmospheric concentrations of greenhouse gases such 72 

as carbon dioxide (CO2). While forests help in mitigating climate change through 73 

carbon sequestration, deforestation causes the stored carbon to be released as CO2 74 

into the atmosphere (Le Toan et al., 2011). In order to assess the impact of 75 

deforestation on the climate, estimates of the forest carbon stocks before 76 

disturbance are needed (Drake et al., 2003). Aboveground biomass (hereafter 77 

biomass) is a direct indicator of forest carbon stocks and is often used to estimate 78 

other terrestrial carbon pools (e.g. litter, dead wood and below ground biomass; 79 

Goetz and Dubayah, 2011). Biomass can be estimated with allometric equations that 80 

relate field measurements, such as DBH and tree height.  Remote sensing techniques 81 

can extend these field-based estimates over broader spatial scales (Huang et al., 82 

2013). Passive optical and Synthetic Aperture Radar (SAR) instruments tend to be 83 

insensitive to changes in forest biomass above certain biomass levels, around 84 

150Mg ha-1 for radar systems and at even lower levels for the optical sensors 85 

(Mitchard et al., 2012; Zolkos, Goetz and Dubayah, 2013). LiDAR (Light Detection 86 

And Ranging), which is an active remote sensing technique using laser light, is able 87 

to overcome these saturation problems thanks to its high sensitivity to forest 88 

structure (Drake et al., 2002). This technique enables indeed to capture the complex 89 

three-dimensional (3-D) structure of forest canopies and the underlying ground 90 

surface topography at very high spatial resolutions (Frazer et al., 2011), even when 91 

canopy cover is up to 99% (Dubayah et al., 2010). LiDAR instruments record the 92 
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time between pulse emission and its return to the sensor after reflection by the 93 

objects within the area illuminated by the laser (Drake et al., 2002). It thus 94 

measures the range, i.e. the direct distance from the laser emitter to the reflecting 95 

surfaces (ground, vegetation, …; Dashora, Lohani and Deb, 2013).  96 

LiDAR sensors can be spaceborne (e.g. the Geoscience Laser Altimeter 97 

System = GLAS) or airborne (e.g. Laser Vegetation Imaging Sensor = LVIS). Airborne 98 

LiDAR systems use either discrete return or full return sensors. Discrete return 99 

LiDAR systems represent forested areas as three-dimensional point clouds, from 100 

which canopy height and canopy density estimates can be derived (Duncanson, 101 

Niemann and Wulder, 2010). However, these systems generally yield only between 102 

two (first and last returns) and six reflection points per laser shot (Magruder, 2010), 103 

which is insufficient to generate a detailed outline of the within-canopy and 104 

understory structure (Hancock et al., 2017). Full return LiDAR systems on the other 105 

hand record the energy of the reflected signal over time since pulse emission. The 106 

form of the resulting energy wave reflects the vertical distribution of the vegetation 107 

(Duncanson, Niemann and Wulder, 2010), and allows estimation of various metrics 108 

such as top canopy height and relative heights (RH) to the ground elevation, at 109 

which different proportions of the total reflected energy are returned to the sensor 110 

(Zolkos, Goetz and Dubayah, 2013). For example, the RH75 metric is the height 111 

above the ground elevation below which 75% of the returned energy is situated in 112 

the waveform. These metrics have shown to be useful predictors of canopy vertical 113 

structure and biomass (Dubayah et al., 2010). The footprint of the full waveform 114 

LiDAR system refers to the size of the area sampled by a single pulse (Pirotti, 2011). 115 
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Most commercial systems have a small-footprint (0.2 – 3 m diameter, depending on 116 

flying height and beam divergence) with a high point density (Mallet and Bretar, 117 

2009). This allows the vegetation geometry to be modeled with greater detail as 118 

each laser pulse is reflected by a different part of the tree (Pirotti, 2011). 119 

Nevertheless, the laser beam has a high probability of missing the ground and the 120 

treetop which may lead to biased estimates of tree heights. On the other hand, large 121 

footprints systems (10 – 70m diameter) increase the probability of the laser beam 122 

to hit both the ground and the canopy top. However, as each echo results from the 123 

integration of several targets at different locations and with different properties 124 

(Mallet and Bretar, 2009), larger footprints lead to less detailed models of the 125 

vegetation geometry. 126 

The Global Ecosystem Dynamics Investigation (GEDI) mission from NASA 127 

and from the University of Maryland, due to launch in 2018, will deploy a multi-128 

beam full return LiDAR on the International Space Station (ISS) and provide billions 129 

of 25m-footprints of forest structure per year (Dubayah, 2015). The mission will 130 

cover areas between 50° north and 50° south and thereby include all tropical and 131 

subtropical forests (Qi and Dubayah, 2016). In anticipation of the mission, LVIS, the 132 

GEDI precursor airborne instrument (Mountrakis and Li, 2017), has been collecting 133 

large footprint LiDAR data over field plots in multiple forest types. However, while 134 

LiDAR has been shown to accurately estimate canopy height (e.g. Duncanson, 135 

Niemann and Wulder, 2010; Fatoyinbo and Simard, 2013), detailed analysis of its 136 

accuracy to estimate biomass in forests of very high biomass is still lacking.  137 
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In 2013, Zolkos, Goetz and Dubayah evaluated 71 different studies using 138 

LiDAR data to estimate forest biomass, with mean field-estimated biomass values 139 

varying from 15 to 602 Mg ha-1. These studies concerned both discrete return LiDAR 140 

(62% of the studies) and full return (either airborne or spaceborne) LiDAR (38%) 141 

and 89% of the studies were able to successfully predict biomass from LiDAR data 142 

(multiple R-squared “R²” value of 0.6 or more; mean R² of 0.75 across all studies). 143 

The authors showed that model performance decreases with increasing biomass. At 144 

mean field-estimated biomass values from 300 to 500 Mg ha-1, the Root Mean 145 

Square Error (RMSE) not only increases but also becomes more fluctuating (see fig. 146 

3A in Zolkos, Goetz and Dubayah, 2013). Above 500 Mg ha-1, we can only assume 147 

that the pattern is, if not intensifying, at least of the same order. 148 

Considering the imminent GEDI mission, the present study aims to highlight 149 

the challenges of using large footprint LiDAR data to produce accurate estimates of 150 

canopy height and biomass in tropical forests with very high biomass densities, in 151 

real world scenarios. Although LiDAR shows no saturation at the biomass levels that 152 

represent the limits for optical and radar systems (Mitchard et al., 2012), it is not 153 

clear how it behaves at extremely high biomass densities (500 Mg ha-1 and above). 154 

In addition, much of the tropics is persistently cloud-covered which makes the data 155 

acquisition sometimes very challenging (pers. comm. Michelle Hofton). 156 

Here, we (1) estimate biomass densities at plot level for three different field 157 

sites – including a very high biomass tropical forest - using existing allometric 158 

equations and assess how these estimates can be predicted by field measurements, 159 

(2) evaluate airborne LiDAR’s ability to estimate forest height and biomass in high 160 
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biomass and high cloud cover conditions ( via “area-based” models), and (3) 161 

estimate biomass densities at swath level and assess the associated uncertainties in 162 

high biomass tropical areas.  163 

 164 

2.0 Materials and Methods 165 

 166 

2.1 Study sites and field data  167 

Our primary study site is the Corcovado National Park, which is situated in 168 

the Osa Peninsula (Southwest Costa Rica) and is known to harbor one of the densest 169 

rain forests in Central America. The peninsula is also home to over 700 tree species, 170 

making it the most botanically diverse region in all Central America (Ankersen, 171 

Regan and Mack, 2006). The annual average temperature and average rainfall are 172 

25°C and 6000 mm per year respectively.  The rainy season, which last from August 173 

until December, is followed by a 4-month period of reduced rainfall, which last until 174 

April (Cornejo et al., 2012). The vegetation of the peninsula is classified according to 175 

Holdridge’s life zone system (Holdridge, 1967) as a “tropical wet forest”. Field data 176 

were collected for seventeen 15-m radius plots (0.07 ha) in the southern part of the 177 

Corcovado National Park in 2014 (see fig.1). These plots were located near the coast 178 

(at a maximum distance of 2.5 km) and the altitudes range from 15 to 150 m above 179 

the ellipsoid. At each plot, the species, the diameter at breast height (DBH) or, when 180 

necessary, above buttresses, and the height were recorded for all trees with a DBH 181 

above 5 cm.  182 



 

 11 

 183 

Fig. 1. Field data were collected in three different sites: Corcovado National Park 184 

(Costa Rica), La Selva Biological Station (Costa Rica) and Sonoma County 185 

(California). Waveform LiDAR data were collected with the Laser Vegetation 186 

Imaging Sensor (LVIS) for Corcovado (in blue at the bottom right corner of the 187 

image; laser swath of 33 km long) and La Selva (in blue at the top left; laser swath of 188 

5 km long). Airborne Laser Scanner (ALS) sensors collected wall to wall discrete 189 

return LiDAR data for Sonoma (not shown). See section 2.3 for more details on the 190 

LiDAR data. 191 

 192 

For a comparison, two other sites were included in the analysis. The La Selva 193 

Biological Station in northeast Costa Rica is also classified as a tropical wet forest by 194 
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Holdridge (1967) but has lower biomass densities as it comprises a mixture of old 195 

growth and secondary lowland rainforests, along with remnant plantations and 196 

various agroforestry treatments. Although its topography is similar to that of 197 

Corcovado (< 150 m), the region receives less rain (4000 mm on average per year; 198 

Dubayah et al., 2010). Field data are collected each year in eighteen 0.5-ha plots as 199 

part of the Carbono project, a long-term landscape-scale monitoring of tropical 200 

rainforest productivity and dynamics (Clark and Clark, 2000). We used the field data 201 

of 2005 to fit the LVIS data timewise. At each plot, the DBH (or when necessary the 202 

diameter above buttresses) and the species were collected for all trees with a DBH 203 

above 10 cm. As tree heights weren’t measured, we computed them using the 204 

pantropical diameter–height allometric model of Chave et al. (2014), which is based 205 

on the DBH and an environmental stress factor E, which integrates three bioclimatic 206 

variables (temperature seasonality, precipitation seasonality and climatic water 207 

deficit; see equation 6a in Chave et al., 2014). 208 

We compared our results from the two tropical sites with those from a 209 

temperate site located in California. Field data were collected during 2014 in 179 210 

variable radius plots across the Sonoma County, as part of a project included in 211 

NASA’s Carbon Monitoring System (CMS) program. This project focusses on 212 

developing empirical models relating field estimates of forest biomass to LiDAR 213 

metrics and on producing county-level biomass maps. Plot locations were 214 

distributed along various vegetation types among which conifer, deciduous and 215 

mixed forests but also non-forest ecosystems like wetlands, herb and shrub 216 

vegetation. In each plot, DBH and species were recorded for all trees with a DBH 217 
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above 5 cm, as well as the height of the tallest 1 to 3 trees (Duncanson et al., in 218 

revision). 219 

We used the stem diameters and heights measured on field to calculate 220 

quadratic mean stem diameter (QMSD), basal area (BA) and Lorey’s mean height 221 

(LH). QMSD1 was calculated to compensate for the different diameter thresholds 222 

(i.e. 5 vs. 10 cm) that were used in the different field campaigns. This mean gives 223 

greater weight to larger trees and is greater than the arithmetic mean by an amount 224 

that depends on the variance of diameters (Curtis and Marshall, 2000). We also 225 

calculated LH2 which is a basal area weighted mean height and has often shown high 226 

significant relationships with LiDAR metrics (Lefsky, 2010; Asner and Mascaro, 227 

2014). 228 

 229 

2.2 Field biomass estimation 230 

For the two tropical sites, we calculated field biomass using the R package 231 

“BIOMASS”. The package allows to correct the taxonomy of the trees, to retrieve an 232 

estimate of their wood density using the global wood density database and to 233 

compute their biomass and associated uncertainty (Réjou-Méchain et al., 2015). To 234 

estimate biomass, the package uses the pantropical allometric model of Chave et al. 235 

(2014) which is based on the DBH, the height and the wood density (WD) of 236 

individual trees (see equation 4 in Chave et al., 2014).  237 

                                                        

1 𝑄𝑀𝑆𝐷 (𝑐𝑚) = √(
∑ 𝐷2

𝑖
𝑗
𝑖=1

𝑁
)  with Di = diameter of tree i (cm) N = number of trees (Rondeux, 1993). 

2 𝐿𝑜𝑟𝑒𝑦′𝑠 𝑚𝑒𝑎𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚) =
∑ 𝑔𝑖 ℎ𝑖

𝑗
𝑖=1

𝐺
  with gi = basal area of tree (m²) i ; hi = height of tree (m) i ;  G 

= total basal area (m²) (Rondeux, 1993). 
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For the Californian plots, we used the allometric equations developed by 238 

Jenkins et al. (2003) for different hardwood and softwood species groups. These 239 

models are based solely on the DBH of the trees.  240 

We then calculated plot level biomass by summing the biomass of individual 241 

trees.  242 

 243 

2.3 LiDAR Data 244 

We used LiDAR data acquired by LVIS. This is a waveform digitizing, airborne 245 

laser altimeter which operates at altitudes around 10 km above ground and scans 246 

footprints with a nominal diameter of 25 m (Blair, Rabine and Hofton, 1999; see fig. 247 

2). The resulting waveforms first need to be processed before any height metrics 248 

can be derived. Latitude, longitude and altitude estimates are computed for each 249 

footprint by merging the laser data to the data received from the Global Positioning 250 

System (GPS) receiver that is coupled to the sensor. Footprints also receive an 251 

aircraft attitude (roll, pitch and yaw) estimate from the integrated Inertial 252 

Navigation System (INS). Various biases affect the laser ranges, one of which is 253 

linked to the refraction and velocity change of light in the atmosphere compared to a 254 

vacuum and can be accounted for by measuring the atmospheric pressure and 255 

temperature of the air during the flight. Systematic instrument biases are corrected 256 

by comparing the known elevation of a ground feature (e.g. base station antenna) 257 

with that obtained from the laser range measurement. Finally, the waveforms are 258 

geolocated by transforming the local reference system within the aircraft to the 259 
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global WGS-84 ellipsoidal system. For a complete description of the processing 260 

procedures, see Hofton, Minster and Blair, 2000.  261 

 262 

Fig. 2. An illustration of full return (waveform) LiDAR remote sensing equipped with 263 

the airborne Laser Vegetation Imaging Sensor (LVIS), from which data was used in 264 

the present study. The sensor emits laser pulses which are reflected by different 265 

surfaces (canopy, ground, …) and records the returned energy over time. Top 266 

canopy height (RH100) and other relative heights (RH), representing cumulative 267 

percentages of waveform energy (i.e. 25%, 50%, and 75%) are important metrics, 268 

which can be derived from the resulting waveform (Drake et al., 2002).  269 

 270 

After waveform processing, a noise threshold is chosen based on the 271 

background noise statistics recorded during the flight. The last mode of the 272 

waveform (or the first when starting from the trailing edge) over that noise 273 
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threshold is regarded as the ground return (pers. comm. Michelle Hofton). The 274 

elevation of the ground return is defined as the center of the ground return mode.  275 

When the ground return signal is strong, there is no possible misinterpretation of 276 

the ground elevation. However, in case of weak ground returns, e.g. when the cloud 277 

cover is important or in dense multi-storey forests, the automated ground finding 278 

algorithms can misplace the ground. This causes the RH metrics to be also wrong as 279 

they are all derived from the ground (Dubayah et al., 2010). The figure below (see 280 

fig.3) illustrates the problematic of finding the ground in case of weak ground 281 

returns. The left panel shows a waveform with a weak ground signal but still strong 282 

enough to be easily distinguished while on the right, a case is shown where the exact 283 

ground localization is more subject to interpretation. 284 

The LVIS data from Corcovado were collected in September 2015 at an 285 

altitude of approximately 12 km (40,000 ft) during a transit flight of the NSF/NCAR 286 

Gulfstream-V aircraft to Chile for the purpose of another mission. The swath width 287 

was 2.7 km. The LVIS data from La Selva were collected in March 2005 on board of 288 

the DOE King Air B-200 aircraft at an altitude of 10 km and with a swath width of 2 289 

km. For both sites, the nominal footprint diameters were 25 m with 20 to 30-m 290 

spacing along and across the track. With a reported horizontal accuracy of around 291 

0.1 m, the geolocation of the LiDAR footprints recorded by LVIS is very accurate 292 

(Blair et al., 1999). For each footprint, the following relative height metrics were 293 

retrieved from the LVIS datasets for the Corcovado site: RH10, RH15, RH20, RH25, 294 

…, RH95, RH96, RH97, RH98, RH99 and RH100 and the following for the La Selva 295 

site: RH25, RH50, RH75 and RH100. RH50 is equivalent to the HOME metric defined 296 
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by Drake et al. (2002), who suggest that its position in the waveform is sensitive to 297 

changes in the degree of canopy openness, including tree density. We therefore 298 

tested their HTRT metric, which is simply the HOME divided by canopy height (i.e. 299 

RH50/RH100). For the Corcovado site, the footprint density of the LiDAR data is 300 

very low (on average 3 footprints per plot; see table S1 in supplementary material) 301 

and the field plots are not perfectly aligned in space with the LiDAR footprints. We 302 

tested therefore two sets of RH metrics for each plot: from all footprints that were 303 

contained within the plot or partially overlap with it and from which the waveform 304 

had a distinguishable ground return (see fig.3), we took either the maximum RH 305 

value or the average RH value weighted by the area of the overlapping footprints. 306 

There is no LVIS data available for the temperate site in Sonoma County. For 307 

this site, two discrete return sensors (an ALS50 aboard a Cessna Grand Caravan and 308 

an ALS70 aboard a Piper PA-31 Navajo flying at 900 m above ground) collected wall 309 

to wall LiDAR across the area in 2014. The nominal pulse density was 10.66 310 

pulses/m² at 105 kHz. The LiDAR point cloud was processed with the LAStools 311 

software (see https://rapidlasso.com/LAStools/). The LiDAR metrics were 312 

extracted over the field plots with a fixed 15-m radius by means of the tool “lasclip”. 313 

After classifying the ground points with the tool “lasground_new”, the height above 314 

the ground was computed for each non-ground point with “lasheight”. Finally, the 315 

forestry metrics (height percentiles “p10, p20, …, p90, p99” which are equivalent to 316 

the relative heights in full return LiDAR) were generated with “lascanopy” 317 

(Duncanson et al., in revision). 318 

 319 
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 320 

Fig.3. An illustration of the ground finding problematic in case of weak ground 321 

returns. On the left, the ground return can easily be distinguished while on the right, 322 

the placement of the ground return could be subject to interpretation. ZG: ground 323 

elevation; ZT: top canopy elevation; RH25, RH50, and RH75: LiDAR heights relative 324 

to the ground elevation, at which 25%, 50%, and 75% of the total reflected energy 325 

are returned to the sensor. 326 

 327 

2.4 Field heights and biomass modeling 328 

Before assessing the relationships between LiDAR metrics and field metrics, 329 

we examined if field metrics can predict plot-aggregated biomass by modeling 330 

biomass as a function of the following height metrics: mean tree height “Hmean”, 331 

maximum tree height “Hmax” and dominant tree height “Hdom”3. We also tested the 332 

metric LH and the product of Hmax and BA “Hmax*BA” to investigate if model 333 

                                                        
3 Mean height of the 100 largest trees per hectare (Rondeux, 1993). 
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performance improved when adding a factor that accounts for density (BA). At first 334 

sight, relating plot-aggregated biomass estimates and field metrics may appear 335 

circular because biomass densities were calculated using models based on tree 336 

measurements, which were then aggregated to the same plot level estimates. 337 

However, whereas biomass is estimated by applying tree allometry to all trees 338 

encountered in a plot, LiDAR-based models often apply “allometric” equations at the 339 

plot or stand level (the so-called plot-aggregated allometry defined by Asner and 340 

Mascaro (2014)). So, if forest structure and biomass do not follow consistent scaling 341 

patterns at plot level, we do not expect LiDAR-based “plot-aggregated allometries” 342 

to function properly either.  343 

Regressions were performed within the R environment (R Core Team, 2016). 344 

Ordinary least squares regression was applied to model field heights as a function of 345 

LiDAR RH metrics at plot level (linear regression). To predict biomass either by field 346 

metrics or LiDAR metrics, power or exponential regression (depending on which 347 

performed better) using non-transformed variables was preferred over linear 348 

regression with log transformed variables. This avoids the bias associated with back 349 

transformation of the data. To compensate for heteroscedasticity of the residuals, 350 

we used weighted least squares (Power Variance Function in R).  351 

We compared the model performances obtained with four different sets of 352 

plots: the Corcovado plots alone, the La Selva plots alone, all Costa Rican plots 353 

combined and the Sonoma plots alone. The Corcovado field data present challenges 354 

for LiDAR use because of the very high biomass conditions. In addition, the very 355 

dense forest canopy weakens the GPS signal causing the accurate geolocation of the 356 
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field plots to be delicate, which can result in low spatial overlap between field plots 357 

and LiDAR footprints. Moreover, due to the small plot size there is an increased 358 

importance of the so-called edge effects. These effects are attributable to trees, that 359 

are not included in the field measurements, because they are located just outside the 360 

plot boundary, but have some portion of their crowns falling within the plot and 361 

therefore are measured by LiDAR (Frazer et al., 2011).  362 

In contrast, the La Selva plots are much bigger, thus minimizing potential 363 

edge effects, and situated in lower biomass conditions, providing a suitable point of 364 

comparison.  365 

The Sonoma plots on the other hand are situated in a temperate site, where 366 

the smaller and more conical shaped canopies likely reduce the edge effects (pers. 367 

comm. Laura Duncanson). Moreover, the wall to wall LiDAR point cloud was 368 

extracted exactly over the field plots and by consequence, there is no possible 369 

geolocation error between both data sets. 370 

 371 

2.5 Biomass estimation at swath scale 372 

The model, which predicted plot level biomass with the best performance for 373 

the Corcovado data, is validated using the La Selva data. For both tropical sites, the 374 

model is then used to estimate biomass for each footprint composing the laser 375 

swaths (see fig.1). We then calculated the mean biomass of the forest at swath level, 376 

after filtering out the footprints that weren’t situated in forested areas (footprints 377 

with a biomass value of 0 and in a non-forested location according to Google maps). 378 

For Corcovado, we considered only the footprints inside the Corcovado National 379 
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Park.  Finally, we produced a biomass map by interpolating the biomass densities at 380 

footprint level to a raster of 25-m pixel resolution using the Natural Neighbor 381 

Interpolation tool of ArcGIS (3D Analyst Toolbox).  382 

 383 

2.6 Model comparison  384 

We compared the biomass densities of the La Selva plots predicted by our 385 

selected model with those predicted with the following model developed by Taylor 386 

et al. (2015) for the Osa Peninsula: 387 

ACD = 3.8358 (TCH)0.2807 (TCH * 0.6767)0.9721 (-0.0008 * TCH + 0.56)1.3763   388 

where ACD is aboveground carbon density (Mg ha-1) and TCH is LiDAR derived top-389 

of-canopy height (m), which is equivalent to RH100. This model is based on the 390 

general plot-aggregated allometry of Asner and Mascaro (2014) :  391 

ACD = aTCHb1 BAb2 ρBAb3  392 

where BA is plot-averaged basal area (m2 ha-1) and ρBA is basal-area weighted WD. 393 

Neither BA nor ρ can be directly estimated using LiDAR, so Asner and Mascaro 394 

(2014) prescribe to develop regional relationships with TCH to replace these 395 

parameters, which was done by Taylor et al. (2015) for the Osa Peninsula. 396 

We then convert the ACD in biomass by dividing it by 0.474, as in tropical 397 

forests 47.4% of biomass is carbon (Martin and Thomas, 2011). 398 

 399 

 400 

 401 

 402 
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3.0 Results 403 

 404 

3.1 Field and biomass estimation 405 

During the field surveys in Corcovado, researchers recorded 964 individual 406 

trees.  Although they found 159 different species, almost 20 % of the measured trees 407 

belong to the following four species: Simaba cedron (Simaroubaceae), 408 

Tetrathylacium macrophyllum (Salicaceae), Chrysochlamys glauca (Clusiaceae) and 409 

Nectandra umbrosa (Lauraceae). In the much larger La Selva plots, 6240 trees were 410 

measured and 344 tree species were recorded. The four dominant species (35% of 411 

the total number) were Pentaclethra macroloba (Fabaceae), Welfia regia 412 

(Arecaceae), Iriartea deltiodea (Arecaceae) and Socratea exorrhiza (Arecaceae). 413 

During the Sonoma campaign, 1228 trees were measured. Although species 414 

information is unavailable, we know that the plots consisted of mostly hardwood 415 

tree species (51.7 % of the counts) and softwood tree species (45.6%). The 416 

remaining 2.7 % were non-tree species.  417 

Table 1 summarizes the main plot parameters and the forest structural 418 

characteristics of the three sites. The two tropical sites have a similar forest 419 

structure with a well-developed sub-canopy and a relative small proportion of very 420 

large trees, which are generally a lot bigger in Corcovado (see fig. 4).  421 

The Corcovado site has the highest biomass, with a large variability between 422 

plots (range: 66.9 – 1892.4 Mg ha-1; see fig. 5). These extreme biomass densities are 423 

also a result of the small plot size (0.07ha) which induces high variability between 424 

plots and hence increases the biomass range across plots. The tree size distribution 425 
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in fig. 6 shows that the great difference in biomass between the plots 9 (66.92 Mg 426 

ha-1) and 8 (1892 Mg ha-1), which are less than 50 m apart, is mainly due to the 427 

presence of 3 large trees in plot 8.  428 

While the mean biomass for the other two field sites are equivalent, the 429 

Californian site shows much more variability than the La Selva site, as the field 430 

campaign involved different vegetation types (see fig. 5).  431 

 432 

Table 1. Plot parameters and forest structural characteristics of the three field sites.  433 

 434 

*1 standard deviation; *2 NASA Goddard Space Flight Center 435 

 436 

3.2 Height modeling 437 

We tested field heights versus LiDAR RH metrics for the Corcovado plots 438 

alone, for the La Selva plots alone and for all Costa Rican plots combined.  439 

Huang et al. (2013) showed that RH metrics are highly correlated as they all 440 

are computed relative to the ground elevation. By consequence, only single term 441 

regression models could be developed. For further analysis, we used the maximum 442 

RH value of all footprints contained within or overlapping with the plots, as it 443 

Site Corcovado La Selva Sonoma

Number of plots 17 18 151

Number of measured trees 964 6240 1228

Plot size (ha) 0.07 0.5 variable radius plots

Forest type Tropical wet forest Tropical wet forest Various temperate vegetation types

Trees per ha (DBH ≥ 10 cm) 459 510 -

Height (m) 13.8 ± 8.8 (mean ± sd*1) 18.1  ± 5.5 (mean ± sd*1) -

Hmax (m) 55.1 47.7 78.8

QMSD (cm) 28.7 ± 9.3 (mean ± sd*1) 25.0  ± 3.0 (mean ± sd*1) -

DBHmax (cm) 225 132.5 303.1

Basal area (m² ha-1) 53.6 ± 30.3 (mean ± sd*1) 24.6  ± 3.0 (mean ± sd*1) 35.5  ± 25.5  (mean ± sd*1)

Biomass (Mg ha-1) 599.3 ± 462.5 (mean ± sd*1) 241.8  ± 50.6 (mean ± sd*1) 228.3  ± 172.3 (mean ± sd*1)

Biomass range of plots  (Mg ha-1)  66.9 - 1892.4 (min. - max.) 177.5 - 352.0 (min. - max.) 6.25 - 955.6 (min. - max.)

Data source NGSFC*2 Clark & Clark (2000) NGSFC*2
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generated better model performances than the area weighted average. Regarding 444 

the Corcovado plots, none of the tested relationships were significant (see table 2).  445 

 446 

 447 

Fig. 4. Size class distribution of tree stems in Corcovado National Park and in La 448 

Selva Biological Station, Costa Rica.  Stem density in Corcovado is 459 stems/ha and 449 

in La Selva is 510 stems/ha (DBH ≥ 10 cm). 450 

 451 

Regression plots are shown in supplementary material (see figure S2). The 452 

La Selva plots, which are situated in forests of lower biomass, showed more 453 

encouraging results. Hmean and Hdom were accurately predicted by LiDAR metrics 454 
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with more than 60% of the variance explained by the models and relative RMSE 455 

values ranging between 2 and 4 % (see table 2). However, we only have modeled 456 

heights for this site (tree heights were not recorded on field) and as such, these 457 

results should be taken with caution. The H-DBH model (Chave et al., 2014), which 458 

we used to compute the heights, has indeed a residual variance on its own. Yet, 459 

these models were not used for real predictions and were tested exclusively to allow 460 

comparison of performances with the other field sites.  461 

 462 

 463 

Fig. 5. Biomass variability across field plots in a) Corcovado National Park (blue 464 

bars) and La Selva Biological Station (red bars) and in b) Sonoma County.  465 

 466 

The combination of all Costa Rican plots enhanced the performance of most 467 

models compared to the situation with the Corcovado plots alone. The R² values 468 

were all however beneath the 0.5.  469 

 For the Sonoma plots, as the height was available for only the three tallest 470 

trees, we only tested the regression of Hmax as a function of height percentiles (p10, 471 
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p20, …, p90, p99). P99 generated the most significant regression model with a R² of 472 

0.810 and a relative RMSE of 26.9%. 473 

 474 

 475 

Fig 6. Tree size distribution of the two plots in the Corcovado National Park that 476 

show extreme biomass densities. Plot 9 (red bars) has the lowest biomass density 477 

(66.92 Mg ha-1), while plot 8 (blue bars) has the highest biomass density (1892 Mg 478 

ha-1). Small plot sizes (0.07 ha for Corcovado plots) make the impact of big trees 479 

more substantial, which cause high variability between plots and generate 480 

exploding biomass densities at the 1-ha scale. 481 

 482 

 483 

 484 
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Table 2. Summary of single term regression models between field (heights and 485 

biomass) and LiDAR metrics for the Corcovado plots alone, the La Selva plots alone, 486 

all Costa Rican plots combined and the Sonoma plots alone. 487 

 488 

N: number of samples. (1) RH70 for Corcovado. Bolded data are statistically 489 

significant models. Mean field-estimated biomass: 599.3 Mg ha-1 (Corcovado), 241.8 490 

Mg ha-1 (La Selva), 415.4 Mg ha-1 (Costa Rica) and 228.3 Mg ha-1 (Sonoma). Different 491 

LiDAR metrics (RH metrics and RH50/RH100 ratio for the Costa Rican plots, height 492 

percentiles for Sonoma plots) were tested but only those which gave the most 493 

significant results are shown. * p-value < 0.05 ** < 0.01 *** < 0.001. 494 
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AIC 67.2 123.6 112.1 119.8 244.2

R2 0.048 0.102 0.098 0.184 0.406

RMSE (units) 1.46 (m) 7.68 (m) 5.49 (m) 6.88 (m) 345.7 (Mg/ha)

RMSE (%) 10.6 18.2 18.3 22.2 57.7

Bias (units) -0.00 (m) 0.00 (m) -0.00 (m) 0.00 (m) -110.6 (Mg/ha)

p-value 0.399 0.212 0.222 0.086 7.13e-08***

AIC 31.5 103.5 54.0 74.8 189.5

R2 0.636 0.060 0.611 0.486 0.412

RMSE (units) 0.49 (m) 3.63 (m) 0.92 (m) 1.64 37.72

RMSE (%) 2.69 9.22 3.34 6.29 15.6

Bias (units) 0.00 (m) -0.00 (m) -0.00 (m) 0.00 (m) 0.09

p-value 7.40e-05*** 0.326 1.27e-04*** 1.30e-03*** 0.004**

AIC 166.2 230.7 200.6 218.5 485.9

R2 0.103 0.126 0.192 0.316 0.536

RMSE (units) 2.39 (m) 6.00 (m) 3.90 (m) 5.04 (m) 246.6 (Mg/ha)

RMSE (%) 14.8 14.7 13.6 17.7 59.4

Bias (units) 0.00 (m) 0.00 (m) 0.00 (m) 0.00 (m) -53.03 (Mg/ha)

p-value 0.060 0.036* 0.008** 4.42e-04*** 3.00e-15***

AIC 1017.5 1859.5

R2 0.810 0.407

RMSE (units) 6.89 (m) 132.1 (MG/ha)

RMSE (%) 26.9 57.5

Bias (units) 0.00 (m) 0.96 (Mg/ha)

p-value 1.56e-55*** 6.90e-23***

N°

Relationship

Corcovado (N = 17)

Sonoma (N = 151)

La Selva (N =  18)

All Costa Rican plots (N = 35)
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3.3 Biomass Density Modeling 495 

To assess if forest structure and biomass follow consistent scaling patterns at 496 

plot level, we first examined how field metrics predict plot level biomass. Regression 497 

plots are shown in supplementary material (see figure S3).  498 

For the Corcovado plots, the plot level biomass showed a good correlation 499 

with field metrics (overall mean R² of 0.694), although the relative RMSE were quite 500 

high (overall mean of 39.3%), which can be explained by the wide range of biomass 501 

values (see table 3). Of all models considering only a height factor (without BA, 502 

directly or through LH), the best performance was obtained with Hmax (R² of 0.730 503 

and relative RMSE of 38.9 %). LH and BA are known to be good predictors of 504 

biomass (e.g. Saatchi et al., 2011; Torres and Lovett, 2013) and the models which 505 

integrated these metrics gave indeed better performances (R² of 0.890 and 0.885 506 

and relative RMSE of 24.9 and 25.3% respectively).  507 

For the La Selva plots, we only tested the height metrics (Hmean, Hmax, 508 

Hdom and LH) against the plot level biomass (see table 3). The relative RMSE were 509 

much lower than for Corcovado, which can be explained by the lower biomass 510 

variability among plots (see fig. 5). Hdom predicted biomass with the best 511 

performance (R² of 0.843 and relative RMSE of 8.1 %), even better than LH, while 512 

Hmax scored less well (R² of 0.468 and relative RMSE of 14.8%). When taking all 513 

Costa Rican plots into account, Hmax performed again better than Hdom, although 514 

with a quite high RMSE (R² of 0.718 and relative RMSE of 46.3%).  515 
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For Sonoma, only Hmax could be computed as only the 1 to 3 tallest trees 516 

were measured. The model performance was mixed with a R² value of 0.396 and a 517 

relative RMSE of 57.7%.  518 

 519 

Table 3. Summary of single term regression models to predict plot-aggregated 520 

biomass from field metrics for the Corcovado plots alone, the La Selva plots alone, 521 

all Costa Rican plots combined and the Sonoma plots alone. 522 

523 

N: number of samples. Bolded data are models with best performance. Mean field-524 

estimated biomass: 599.3 Mg ha-1 (Corcovado), 241.8 Mg ha-1 (La Selva), 415.4 Mg 525 

ha-1 (Costa Rica) and 228.3 Mg ha-1 (Sonoma) * p-value < 0.05 ** p-value < 0.01 *** < 526 

0.001. 527 

 528 

We applied power or exponential regression (depending on which 529 

performed better) between field biomass and LiDAR metrics (RH metrics and 530 

RH50/RH100 ratio for Costa Rican plots, height percentiles for Sonoma plots) to 531 

Relationship b z AIC R2 RMSE (Mg/ha) RMSE (%) Bias (Mg/ha)

8 AGB (Mg/ha) ~ (b*Hmean)^z (m) 0.249** 5.076*** 246.4 0.575 292.4 48.8 -0.05

9 AGB (Mg/ha) ~ (b*Hmax)^z (m) 0.119*** 3.823*** 228.7 0.730 233.2 38.9 -26.25

10 AGB (Mg/ha) ~ (b*Hdom)^z (m) 0.209*** 3.360*** 233.0 0.391 350.3 58.4 -56.02

11 AGB (Mg/ha) ~ (b*LH)^z (m) 0.223*** 3.201*** 211.0 0.890 149.1 24.9 -2.69

12 AGB (Mg/ha) ~ (b*(Hmax*BA)^z (m) 0.157*** 1.070*** 203.2 0.885 151.9 25.3 -8.78

13 AGB (Mg/ha) ~ (b*Hmean)^z (m) 0.258* 3.531*** 186.0 0.508 34.5 14.3 -2.16

14 AGB (Mg/ha) ~ exp (b + z*Hmax) (m) 3.804*** 0.042*** 185.1 0.468 35.9 14.8 -3.01

15 AGB (Mg/ha) ~ (b*Hdom)^z (m) 0.164*** 3.633*** 152.3 0.843 19.5 8.1 -0.65

16 AGB (Mg/ha) ~ (b*LH)^z (m) 0.580* 2.019*** 173.2 0.765 23.9 9.9 0.02

17 AGB (Mg/ha) ~ (b*Hmean)^z (m) no significant relation and R2 under 0

18 AGB (Mg/ha) ~ exp (b + z*Hmax) (m) 2.090*** 0.092*** 450.5 0.718 192.3 46.3 -2.23

19 AGB (Mg/ha) ~ (b*Hdom)^z (m) 0.170*** 3.667*** 447.0 0.472 263.0 63.3 -41.56

20 AGB (Mg/ha) ~ (b*LH)^z (m) 0.214*** 3.234 399.7 0.904 112.4 27.1 -9.28

21 AGB (Mg/ha) ~ (b*Hmax)^z (m) 23.011 0.854*** 1837.5 0.396 133.9 57.7 0.38

N°
Corcovado (N = 17)

La Selva (N = 18)

All Costa Rican plots (N = 35)

Sonoma (N = 151)
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avoid bias associated with back transformation of the data. Regression plots are 532 

shown in supplementary material (see figure S2). Unlike for the field heights, some 533 

LiDAR RH metrics (e.g. RH70) did significantly predict field biomass when 534 

considering the Corcovado plots alone (p-value < 0.05) but with weak model 535 

performances (R² = 0.406 and relative RMSE = 57.7%; see table 2). Adding the La 536 

Selva plots resulted in a R² value above 0.5 and a mean bias decreased by half. 537 

However, the relative RMSE was almost 60% because of a lower mean biomass for 538 

all Costa Rican plots combined compared to the Corcovado plots alone.  539 

Considering only the La Selva plots, biomass was significantly predicted by 540 

RH75 with a R² value of 0.414 and a relative RMSE slightly above 15%.    541 

 For the Sonoma plots, the models between biomass and the height 542 

percentiles had moderate performances, the best being the power model between 543 

biomass and p70 with an R² of 0.502 and a relative RMSE of 59.6% (see table 2). 544 

 545 

3.4 Biomass estimation at the swath scale 546 

Some LiDAR relative heights significantly predicted plot level biomass for the 547 

Corcovado plots but with weak model performances (see table 2). Considering the 548 

field-based models, Hmax performed quite well (see relationship n° 9 in table 3). 549 

Given its close relation with RH100 reported in the literature (see section 4.1 550 

below), we used the model that related Hmax to biomass for further analysis.  551 

The model was evaluated using the La Selva plots. Fig. 7a shows the scatter 552 

plot of predictions against field-estimated biomass densities, which indicates that 553 
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the model tends to underestimate the biomass densities, at least for lower values. 554 

The relative RMSE is 30.1 %. 555 

 556 

 557 

Fig. 7. Estimated values of aboveground biomass (AGB) of the La Selva plots using 558 

(a) the selected model based only on the field tree maximum height “Hmax” and (b) 559 

the regional model of Taylor et al. (2015) based on the LiDAR height “RH100” and 560 

other metrics that account for density (BA and WD), compared to plot-estimated 561 

AGB, using field measurements and allometric equations. The blue dashed one-to-562 

one line is provided for reference.  563 

 564 

The model was applied to each footprint of the laser swaths by substituting 565 

Hmax with RH100. The resulting mean forest biomass densities are 281.5 ± 299.4 566 

Mg ha-1 (mean ± sd) for Corcovado and 194.8 ± 180.3 Mg ha-1 (mean ± sd) for La 567 

Selva. Fig. 8 shows the biomass map created by interpolation of the footprint level 568 

biomass densities.  569 

 570 
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 571 

Fig. 8. Biomass maps (25-m pixel resolution) at laser swath level for the Corcovado 572 

National Park (on the left) and the La Selva Biological Station (on the right). As the 573 

laser swath for Corcovado cover the whole width of the Osa peninsula, we only 574 

show the part in the Corcovado National park for visualization purposes. The grey 575 

dashed line is the park boundary. Empty spots on the maps result from the footprint 576 

filtering process (removal of the footprints that were reflected off clouds or that did 577 

not have a ground return).  578 

 579 

3.5 Model comparison  580 

Our model for biomass prediction includes only Hmax, which accounts for 581 

the vertical distribution of biomass, but ignores its spatial distribution within plots 582 

(Duncanson et al., 2015).  The model developed by Taylor et al. (2015) includes 583 

terms, that account for stand and tree density (BA and WD), by means of 584 

relationships with TCH (equivalent to RH100). When we used this model to predict 585 

biomass for the La Selva plots, the results were not better than those found with our 586 

single term model (relative RMSE of 30.8%; see fig. 7b). The model underestimates 587 
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rather strongly the biomass densities and the trend worsens with increasing 588 

biomass values. This can be explained by the bad correlation, which is observed 589 

between TCH (RH100) and BA for the La Selva plots (R² = 0.292 and relative RMSE 590 

of 10.0 %; see fig. S4 in supplementary material), whereas the modeling approach of 591 

Asner and Mascaro (2014) assumes a linear relationship between both metrics.  592 

 593 

4.0 Discussion 594 

 595 

4.1 Relationship between field heights and LiDAR RH metrics 596 

LiDAR metrics have proven capable of predicting canopy height by using 597 

both single term linear regression models (Means et al., 1999; Anderson et al., 2006; 598 

Park et al., 2014) and regression models relying on multiple LiDAR derived 599 

variables (Hyde et al., 2006; Duncanson, Niemann and Wulder, 2010). The simpler 600 

single term models often use RH100 to predict field maximum height (Hmax). For 601 

example, Anderson et al. (2006) found strong agreement between RH100 from LVIS 602 

and Hmax (R² = 0.80; RMSE = 3.49 m; relative RMSE = 13.2 %) in a forest of central 603 

New Hampshire (USA). Park et al. (2014) showed also for various North American 604 

forests, that LVIS RH100 can satisfactorily provide a proxy for forest canopy heights 605 

(R² = 0.78; RMSE = 4.99 m; relative RMSE = 11.2 %). Our findings in Sonoma 606 

support these results as we obtained a good model performance between Hmax and 607 

the LiDAR 99th height percentile, which is the discrete return equivalent of the full 608 

waveform RH100 metric (R² = 0.810; relative RMSE = 26.9 %; see relationship n° 6 609 

in table 2).  610 
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The fact that no good relationships were found between field heights and 611 

LiDAR RH metrics for the Corcovado plots is mostly due to the low spatial overlap 612 

between the field plots and the LiDAR footprints. Even when the plots and 613 

footprints perfectly overlap, geolocation errors occur, especially because dense 614 

forest canopies block or scatter the GPS signal, which makes it difficult to locate field 615 

plots with planimetric accuracies better than 1-5 m (Frazer et al., 2011). The 616 

geolocation of the LiDAR footprints is much more accurate as, for LVIS, the 617 

horizontal accuracy is reported to be around 0.1 m (Blair, Rabine and Hofton, 1999). 618 

A simulation study by Frazer et al. (2011) analyzed the impact of GPS errors from 1 619 

to 6 m on goodness-of-fit statistics (R² and RMSE) for plots from 300 to 1300m². For 620 

plots of 15-m radius like the Corcovado plots, an increase in the GPS error from 3 to 621 

6 m resulted in a decline of 1.4 % in median R² and an increase of 9.1 % in median 622 

RMSE. These are acceptable results, although the range of values associated with 623 

each of these two fit statistics also increased markedly with increasing GPS error 624 

(see fig. 8 in Frazer et al. 2011). For the Corcovado plots, the GPS precision is 625 

estimated at 1.4 ± 0.7 m (mean ± sd), which is not bad for a very dense forest. 626 

However, the spatial overlap between the field plots and the LiDAR footprints is low 627 

because of the small plot size and the low footprint density (on average 3 footprints 628 

per plot; see table S1 in supplementary material). The spacing between footprints is 629 

often greater than the footprint diameter, which limits overlap between shots. In 630 

addition, there were few overlapping flight lines and a lot of laser shots were 631 

eliminated, either because they were reflected off clouds or because of the absence 632 

of ground return. This results in a quite large distance between the footprint and 633 
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plot centroids, with the minimum distance averaged over the plots being 11.3 ± 3.5 634 

m (mean ± sd). For plot sizes of about the size of only one footprint, this distance 635 

should be restricted to a maximum of 3 m (pers. comm. Steven Hancock), as 636 

otherwise the edge effects become too strong. Hmax is especially sensitive to edge 637 

effects as it corresponds to a single tree and can easily be missed in case of limited 638 

overlap between footprints and field plots. 639 

By comparison, in the La Selva site, the minimum distance between plot and 640 

footprint centroids is 5.0 ± 2.5 m (mean ± sd), although with plot sizes of 0.5 ha and 641 

a higher footprint density, the impact of edge effects and positional errors is 642 

dampened (Frazer et al., 2011). 643 

 644 

4.2 Prediction of plot level biomass  645 

For our three field sites, our results indicate that single term models based 646 

on LiDAR height metrics fail to provide accurate predictions of plot level biomass 647 

even though the relationships are significant. This cannot solely be attributed to the 648 

low co-registration of the field plots and LiDAR footprints as we obtained similar 649 

model performances for all three sites. Adding terms accounting for density (BA and 650 

WD), did not improve plot level biomass predictions for La Selva (see fig. 7b). 651 

However, this was likely caused by a bad correlation between RH100 and BA (see 652 

fig. S4), while a good correlation between both metrics is a prerequisite for using the 653 

modeling approach of Asner and Mascaro (2014). 654 

On the other hand, our Corcovado data indicate that the field maximum 655 

height (Hmax) is a good predictor of plot level biomass. The fact that Hmax did not 656 
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predict biomass equally well for the La Selva plots is probably related to the much 657 

larger plot size. Hmax corresponds to a single tree and, with 250 trees on average 658 

per plot, this metric does not relate well to plot-aggregated biomass. Not 659 

surprisingly, Hdom, which is averaged on 50 trees, is a more suitable candidate. 660 

Hmax performs also less well for the Sonoma plots but as it is a temperate site with 661 

variable radius plots, allometric relations at plot level are logically very different.   662 

As Hmax is a good predictor of plot level biomass and given its close relation 663 

with RH100, it seems reasonable to apply model n° 9 (see table 3) to all footprints of 664 

the swaths by substituting Hmax with RH100. We obtained mean biomass densities 665 

at swath level of 281.5 Mg ha-1 for Corcovado and 194.8 Mg ha-1 for La Selva. A study 666 

by Malhi et al. (2006), based on data from 227 plots of 0.8 - 22.5 ha, found that the 667 

regional mean biomass in South American forests varied between 200 and 350 668 

Mg ha-1. Our mean biomass value for the Corcovado National Park falls inside that 669 

range, while the value for the La Selva Biological Station is very close to the lower 670 

limit. Although Taylor et al. (2015) found a lower biomass density for the Osa 671 

Peninsula (mean of 150 - 200 Mg ha-1, depending on the soil type), we have shown 672 

that their model tends to underestimate plot level biomass (see fig. 7b).  673 

Our interpolated biomass maps (see fig. 8) show broad biomass ranges (0 – 674 

2500 Mg ha-1 for Corcovado and 0 – 1700 Mg ha-1 for La Selva), although the highest 675 

biomass levels only occur very locally, usually over only one or a few pixels. These 676 

extreme biomass densities are a result of the small plot size and in reality, few 677 

forests support biomass densities this high except over very small areas (Zolkos, 678 

Goetz and Dubayah, 2013). Some studies (Réjou-Méchain et al., 2015; Kim et al., 679 
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2016) showed that, in the same study site, a smaller plot size results in a higher 680 

standard deviation (sd) of plot biomass and thus in increased biomass ranges. For 681 

example, in a recent study, which used discrete return LiDAR to estimate biomass of 682 

a lowland rainforest in Brunei Darussalam, the biomass range in 20 x 20-m and 30 x 683 

30-m plots were 77.4 - 904.6 Mg ha-1 and 154.1 – 585.9 Mg ha-1 respectively, while 684 

the average remained equivalent (313.8 Mg ha-1 for 20-m plots vs. 302.7 Mg ha-1 for 685 

30-m plots; Kim et al., 2016). As plot size decreases, large trees have a greater 686 

impact and cause high variability between plots, which generates exploding biomass 687 

densities at the 1-ha scale (see fig. 6). Increasing the size of the field plots will 688 

therefore reduce this artefact. Indeed, when Drake et al. (2002) used 1998 LVIS data 689 

for the permanent 0.5 ha field plots of the Carbono project (see section 2.1), they 690 

predicted biomass values for La Selva with a much narrower range (0-300 Mg ha-1). 691 

Furthermore, through its effect on the biomass variability across plots (see 692 

fig. 5), plot size has a major impact on model errors (Mascaro et al., 2011; Zolkos, 693 

Goetz and Dubayah, 2013). Although the R² value of the models using LiDAR metrics 694 

to predict biomass is around 0.4 for both tropical sites, the RMSE is much higher for 695 

Corcovado which has a smaller plot size (see equation n°5 in table 2). Zolkos, Goetz 696 

and Dubayah (2013) showed that RMSE values decrease with increasing plot size 697 

and estimated that a minimum plot size of approximately 0.2 ha is required to 698 

achieve biomass prediction accuracies of 20 %. On the other hand, the study by Kim 699 

et al. (2016) showed that relative errors below 20% are achievable with much 700 

smaller plot sizes. Using four LiDAR metrics to predict biomass, they found that 701 

plots with sizes of 30m x 30m (0.09 ha) allowed for much more accurate predictions 702 
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than plots with sizes of 20m x 20m (0.04 ha) with a relative RMSE value of 11.6% 703 

and 34.3% respectively (Kim et al., 2016). However, considering our results, we 704 

argue that in forests with large trees as in Corcovado or in Sonoma, the plot size 705 

should be at least 0.2 ha, to limit biomass variability between plots and to avoid 706 

exploding biomass densities at higher scales. 707 

Finally, plot size also affects the uncertainty of the field-based biomass 708 

estimates at plot level computed by the pantropical allometric model of Chave et al. 709 

(2014). The model developers argue that tree-level uncertainty in biomass 710 

estimation from their model is about 50% of the mean but that at plot level, 711 

uncertainty drops to ca. 5-10% for a 1-ha plot. When we apply equation 8 in Chave 712 

et al. (2014) to the Corcovado plots, mean plot-level uncertainty scores about 23 %. 713 

In contrast, the uncertainty for the La Selva plots is around 8 %. These results show 714 

that the allometric model has a considerable bias when applied to small plot sizes. 715 

 716 

4.3 Recommendations for future studies 717 

Our findings suggest that small field plots are not suitable for biomass 718 

estimation in tropical forests. Even if the spatial overlap is perfect between field 719 

plots and LiDAR footprints, a small plot size will introduce high variability in 720 

biomass densities between plots and will lead to large model errors (RMSE).  To 721 

minimize this effect, we prescribe using plots with a minimum size of 0.2 ha.  722 

If smaller plots are chosen (same size as the footprint for example), it is imperative 723 

that the plot centroids perfectly match with those of the footprints. 724 
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Also, geolocation of the measured trees would enable one to generate models 725 

at footprint level instead of solely at plot level. 726 

Finally, further studies should investigate whether introducing other LiDAR 727 

metrics improves model performances, e.g. canopy cover (Hyde et al., 2006) for 728 

biomass prediction, waveform extent (Lefsky et al., 2007; Duncanson, Niemann and 729 

Wulder, 2010; Lefsky, 2010) or energy quartiles, i.e. the proportion of energy in four 730 

equal elevation divisions of the waveform (Duncanson, Niemann and Wulder, 2010), 731 

for canopy height prediction. 732 

 733 

5.0 Conclusion 734 

Even though LiDAR is thought not to saturate at higher biomass, areas of 735 

dense canopy cover and of very high biomass as found in Corcovado, may 736 

sometimes present a challenge for LiDAR.  737 

In conclusion, we address the three objectives as set out in the introductory 738 

section.  739 

We first calculated plot level biomass for which we found that, while Hmax is 740 

a good predictor in case of small plot size, Hdom and even Hmean seem to 741 

outperform Hmax as plot size increases. This finding is important to consider when 742 

planning future field campaigns, as not all field designs (e.g. Sonoma in our study) 743 

allow calculation of Hdom or Hmean.   744 

Upon assessing how LiDAR performs in high biomass tropical forests, we 745 

concluded that perfect spatial overlap is very important in case of small plot size. 746 

We suggest to consider a plot size of at least 0.2-ha, as smaller plot sizes introduce 747 
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high biomass variability between plots and lead to considerable model errors. 748 

Larger plot sizes will also diminish the plot-level uncertainty on field-based biomass 749 

estimates. 750 

Finally, our swath level biomass values are within the range of values 751 

reported by other studies in the Neotropics. It should be noted that the associated 752 

uncertainty is about 30% and our results should therefore be taken with caution.     753 
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