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Abstract (English)

Surface Nuclear Magnetic Resonance (SNMR) is a geophysical experiment that enables
to retrieve hydrogeological parameters of the subsurface with surface-based measurements.
However, the method suffers from a low signal-to-noise ratio. To overcome this impediment,
a new experimental configuration, called the multiple loops (or multi-central) configura-
tion, is introduced, benefiting from both a decreased signal-to-noise ratio and an increased
sensitivity to shallow subsurface. In order to take advantage of those improvements, an
adaptation of the state-of-the-art QT inversion is proposed. On the other hand, a novel
innovative approach to SNMR data interpretation is developed and tested. This approach,
called prediction-focused approach (PFA) imaging, is part of a broader alternative way to
exploit geophysical data: Bayesian evidential learning (BEL). PFA enables a quantifica-
tion of the uncertainty on model parameters issued from statistics-based relations between
simulated models and data. Finally, the QT inversion approach and the PFA imaging
are tested on synthetic and real multiple loops experiments, proving the usefulness of the
multiple loops configuration in specific contexts.
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Abstract (Français)

La résonance magnétique protonique (RMP) est une expérience géophysique qui permet
de récupérer les paramètres hydrogéologiques de la subsurface à l’aide de mesures de sur-
face. Cependant, la méthode souffre d’un faible rapport signal/bruit. Pour surmonter cet
obstacle, une nouvelle configuration expérimentale, appelée configuration à multi-boucles
(ou multi-centrale), est introduite, bénéficiant à la fois d’un rapport signal/bruit réduit et
d’une sensibilité accrue à la subsurface peu profonde. Afin de profiter de ces avantages,
une adaptation de l’inversion QT à la pointe de la technologie est proposée. D’autre part,
une nouvelle approche innovante de l’interprétation des données SNMR est développée et
testée. Cette approche, appelée imagerie par approche prédictive (prediction-focused ap-
proach, PFA), fait partie d’une méthode alternative, plus large, d’exploitation des données
géophysiques: l’apprentissage probant bayésien (Bayesian evidential learning, BEL). La
PFA permet une quantification de l’incertitude sur les paramètres de modèles à l’aide de re-
lations statistiques entre des modèles et des données simulés. Enfin, l’approche d’inversion
QT et l’imagerie PFA sont testées sur des expériences multi-boucles synthétiques et réelles,
prouvant l’utilité de la configuration multi-boucles dans des contextes spécifiques.
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Abstract (Nederlands)

Surface Nuclear Magnetic Resonance (SNMR) is een geofysisch experiment dat mogelijk
maakt hydrogeologische parameters van de ondergrond achter te halen met oppervlak
gebaseerde metingen. De methode heeft echter een lage signaal-ruisverhouding. Om
deze belemmering over te winnen, wordt een nieuwe experimentele configuratie geïntro-
duceerd, de multi-lussen (of multi-centrale) configuratie, die profiteert van zowel een ver-
laagde signaal-ruisverhouding als een verhoogde gevoeligheid voor ondiepe ondergrond.
Om van deze voordelen te kunnen genieten, wordt echter een aanpassing van de state-of-
the-art QT inversie ontwikkeld. Aan de andere kant is een nieuwe, innovatieve benadering
van de interpretatie van SNMR-gegevens ontwikkeld en getest. Deze benadering, genaamd
voorspelling-gerichte benadering beeldvorming (prediction-focused approach, PFA), maakt
deel uit van een bredere alternatieve manier om geofysische gegevens te exploiteren: Bayesian
evidential learning (BEL). PFA maakt een kwantificering mogelijk van de onzekerheid op
modelparameters die worden uitgegeven door op statistieken gebaseerde relaties tussen
gesimuleerde modellen en gegevens. Ten slotte worden de QT inversie-benadering en de
PFA-beeldvorming getest op synthetische en reële multi-lussen experimenten, die het nut
bewijzen van de configuratie van multi-lussen in specifieke contexten.
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Chapter 1

Introduction

Surface Nuclear Magnetic Resonance is a near-surface geophysical method used to retrieve
informations about groundwater in the subsurface up to 150 m. It exploits quantum
mechanics behavior of protons contained in water molecules in a magnetic field. At rest,
the spins of the protons precess about Earth’s magnetic field BE at a specific frequency
called the Larmor frequency. The SNMR experiment consists in disturbing the thermal
equilibrium by applying a secondary magnetic field for a short time, thus perturbing the
equilibrium. When the man-made secondary magnetic field is removed, the spins are
relaxed back to their thermal equilibrium, emitting a magnetic field that is registered
via the induced current in the receiver loop (free induction decay). This signal can be
interpreted in terms of water content and relaxation time. These parameters can also be
correlated to hydrogeological parameters such as pore sizes and hydraulic conductivities
using petrophysical relations (Behroozmand et al., 2015).

However, this type of experiment suffers from a significant drawback: the signal-to-noise
ratio is generally very low. In order to alleviate this impediment, Behroozmand, Auken,
Fiandaca, and Rejkjaer (2016) proposed the use of coaxial transmitter/receiver couples
instead of the classically used coincident transmitter/receiver couples. They demonstrated
that the behavior of inner receiver loops was superior to the classical configuration: they
were less prone to noise, resulting in a higher signal-to-noise ratio, but also they were more
sensitive to shallower zones of the subsurface. However, the in-depth sensitivity is slightly
reduced by this configuration. The subject of this work is to propose a method that fully
benefits from the advantages of both coincident and coaxial loops: the multiple loops (or
multi-central) configuration. This configuration uses both the classical transmitter/receiver
couples combined with other couples composed of coaxial receiver loops (Kremer et al.,
2018).

In SNMR, the QT inversion (Mueller-Petke & Yaramanci, 2010) is the state-of-the-art
approach for the interpretation of FID signals. However, this inversion scheme is not yet

1
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adapted to the use of multiple loops. Therefore, a new definition of the kernel functions
needs to be stated for this particular case.

On the other hand, quantification of uncertainty based on the classical inversion schemes
remains costly in CPU time and memory. Those methods mainly consist of repeated
inversions with slightly modified datasets. A second aim of this work is to propose a new
approach to uncertainty quantification based on SNMR data (Michel, Nguyen, Kremer, &
Hermans, 2018). This new method called Bayesian evidential learning (BEL) (Scheidt, Li,
& Caers, 2018) is based on statistical relationships derived from synthetic models. The
method has already proven efficient in geophysics (Hermans, Oware, & Caers, 2016). A
comprehensive description of the BEL framework, especially the prediction part of BEL,
prediction-focused approach (PFA) imaging, is proposed. Then the new method is tested
on numerous "classical" synthetic examples (i.e. single transmitter/receiver configuration).

Afterwards, the multiple loops configuration is tested on synthetic models using both
the adapted QT inversion and the PFA imaging process. Finally, the developed method-
ologies are exploited with a real dataset from a well-studied hydrogeological test site in
Germany: Schillerslage (Dlugosch, 2014; Mueller-Petke & Yaramanci, 2010). The results
will be extensively compared to analyze the effects of both methods for the interpretation
of SNMR data using more and more complex configurations.



Chapter 2

Nuclear Magnetic Resonance

Nuclear magnetic resonance is a widely used technique in sciences. From geo-sciences to
medicine, the method enables either to detect precise locations of a specific atomic structure
or to establish the composition of an object. NMR is based on quantum properties of the
matter (Levitt, 2008).

2.1 Basics of Nuclear Magnetic Resonance

The matter is composed of molecules, themselves composed of atoms, themselves composed
of electrons and nuclei. Each nucleus has several physical properties among which the most
important are the mass, the electric charge, the magnetism and the spin. The spin is the
property from which the NMR signal originates. In atoms, the particular combination
of different nuclei with different properties produces different energy states but, due to
the Pauli Principle that states that two fermions could not have identical quantum states
(set of characteristics of the fermion), the energy levels are degenerated. This means that
multiple fermions might have the same energy level because they have different spins.
When a magnetic field is applied, the degeneracy is broken. This is called the Zeeman
splitting (Levitt, 2008).

As the spin angular momentum and the magnetic moment are intimately related by
the gyromagnetic ratio (γ), any change in the magnetic field produces variations in the
spin precession. This is the property used in nuclear magnetic resonance (NMR) (Levitt,
2008).

The nuclear spins are naturally precessing around the existing magnetic field at the
Larmor frequency ω0, proportional to the gyromagnetic ratio (γ) and to the magnetic field
(B0). The bulk of nuclei that are present in a sample have microscopically different spin
polarization axes (the angular momentum axes of the nuclei). However, on a macroscopic

3
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scale, they produce a macroscopic magnetic moment that is measurable (Levitt, 2008).

In the absence of magnetic field, all spins are oriented differently, hence the resulting
macroscopic magnetic moment is close to zero. When the sample is suddenly set in a
magnetic field, the spins execute Larmor precession around this field. When the magnetic
field is applied using a radio frequency pulse tuned to the Larmor frequency of the particle
of interest, it produces a significant change in the spin polarization, i.e. a significant
macroscopic change (Levitt, 2008). Finally, when the applied magnetic field is removed,
the spins are relaxing back to their thermal equilibrium, producing a measurable magnetic
field at the Larmor frequency (Levitt, 2008).

Different experimental configurations are co-existing in the different fields of application
of the NMR methods. Most of the NMR experiments rely on a strong primary magnetic
field (tens of Tesla) produced by a magnet. This enables the primary field to be stable
and homogeneous on the scale of the tested sample (Levitt, 2008). However, in geology,
surface nuclear magnetic resonance (SNMR) rather uses Earth’s magnetic field (BE) as
the primary field (thousands of nano-Tesla) (Behroozmand et al., 2015). It differentiates
this experimental process from classical NMR experiments.

The NMR response is characterized by two fundamental parameters: the initial ampli-
tude and the relaxation time. The first consists in the amplitude of the NMR response to
a given excitation pulse at the very moment when the pulse is stopped. The relaxation
time originates from two different physical processes. The spin-lattice (or longitudinal)
relaxation is governed by the movement of the spins back to their original thermal equi-
librium. On the other hand, the spin-spin (or transverse) relaxation is related to the loss
of coherence of the spins (Levitt, 2008).

2.2 Nuclear Magnetic Resonance in geology

In geosciences, three NMR experiments coexist: Laboratory NMR (Lab-NMR), Borehole
NMR (BNMR) and Surface NMR (SNMR). All those methods are used for different pur-
poses.

Lab-NMR

The Lab-NMR experiment consists in the characterization of a small sample in search of
specific properties or in the development of petrophysical relations linking NMR parameters
to properties of interest for the characterization of larger samples using BNMR or SNMR
(Behroozmand et al., 2015).
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BNMR

Borehole NMR is a common tool in the petroleum industry to characterize the pore spaces
and fluids inside a petroleum reservoir. Due to the large pressures those instruments are
subject to, they have a significantly large diameter, reducing their applicability to near-
surface geophysics. However, recent works have been conducted to present technologies
that are adapted to smaller sites with reasonable diameters of probes as well as reduced
costs (Walsh et al., 2013). Those tools allow the characterization of the water content
distributions and other hydrogeologically-based parameters of the subsurface without the
limitations of the surface-based investigations lead commonly in near-surface geophysics.

SNMR

SNMR measurement is a non-invasive method to retrieve information about near-surface
water content and, to a given extent, other hydrogeological parameters. The development
of the method began in the early 1980s with the "HYDROSCOPE" instrument release
(Russia), the first ever instrument to register a signal from in-situ groundwater. Later,
the Russians collaborated with French scientists in order to develop a commercial SNMR
equipment (NUMIS). However, the method was still constrained by the limitations linked
to ambient noise and noise processing. Those impediments directed the research to multi-
channel NMR measurements that enabled the recording of, at the same time, the signal
originating from the NMR response of hydrogen in the subsurface and the noise originating
from identified sources. These measurements enable the use of the instrument in higher
noise environments (Behroozmand et al., 2015).

2.3 The SNMR experiment

Surface nuclear magnetic resonance (SNMR) experiments rely on the same principles as
any other NMR experiment. However, SNMR differs from the other NMR applications by a
significantly lower primary magnetic field (B0). Actually, the exploited primary magnetic
field is the natural Earth’s magnetic field (BE), which has an amplitude ranging from
25 to 70 µT , very low compared to the classically used magnet-produced fields of tens
of T . Above this first impediment, Earth’s magnetic field is also slightly fluctuating with
diurnal variations or solar activity. However, at the scale of the SNMR experiment, Earth’s
magnetic field can be considered homogeneous (Behroozmand et al., 2015).

From those informations, it is of prime concern to accurately measure Earth’s magnetic
field at the experiment location before any measurements, as it will govern the mea-
sured response via the Larmor frequency (ω0 = −γBE). Moreover, the declination of
the magnetic field is also important to compute the efficient part of the applied energizing
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Figure 2.1: Example of experimental design of a multi-channel SNMR experiment
accordingly with surrounding noise sources (From Behroozmand et al., 2015).

pulse (see Chapter 3) (Behroozmand et al., 2015). Those measurements are conducted
before the NMR measurements in order to gain in accuracy.

The experiment installation consists of the SNMR system coupled with a set of trans-
mitter/receiver loop(s) for signal recording and reference loops for noise recording. These
latter are generally placed accordingly with a priori knowledge of noise sources in the
surrounding of the experimental site (Figure 2.1).

The transmitter/receiver loops may have different shapes and sizes according to the
sites needs. The classical shapes are circles but other shapes as squares or eights are also
used in some typical situations. The eight-shape has the advantage of being less sensitive
to noise as the current passes both loops of the shape with opposite directions, naturally
canceling the effect of noise. However, those are rarely used due to their shallow depth of
investigation (Roy & Lubczynski, 2003).

P = Iτp (2.1)

The most classical experiment records the free induction decay (FID). This experi-
ment consists of the injection of a sequence of excitation pulses at the Larmor frequency
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Figure 2.2: FID pulse sequence (From Behroozmand et al., 2015).

(Equation 2.1) varying from tens of As to approximately 10 As with pulse lengths (τp) of
tens of ms followed by the recording of the NMR response, separated from the injection
phase by a dead time (τdead) of less than 5 ms (Figure 2.2). Each pulse moment probes
different volumes, enabling in the end the characterization of the subsurface distribution in
water content (linked to the amplitude of the registered signal, E0 in Figure 2.2) and the
relaxation time (linked to the decay of the registered signal) through an inversion process
(Chapter 4). From these distributions, it is also possible to retrieve other hydrogeological
parameters, such as the porosity or the hydraulic conductivity of the subsurface based on
petrophysical relations (Dlugosch, 2014).

After field acquisition, treatment of SNMR data plays an important role for further
steps. First of all, the used data consists of the envelope of the FID (black curve in
Figure 2.2) and not of the full induced current over time. It is thus required to sample this
envelope in accordance with the field parameters. Then, the data is commonly too noisy
to be exploited, even if the use of high numbers of stacks reduces the impact of Gaussian
noise on the data. It is thus required to apply signal processing to the data to recover a
better envelope of the FID. This signal processing generally first consists of despiking (i.e.
removing the random spikes that appear in the dataset). Then, depending on the available
data (reference loops to record noise or not), a removal of the ambiant noise is performed,
either using reference loops (remote reference based noise cancelation) or known harmonics
occurring in the dataset (harmonic noise cancelation). For more details on these steps, refer
to Müller-Petke et al. (2016).

Examples of processed data are presented in Figures 2.3 and 2.4. In these figures, several
aspects of the signal are displayed. The left column presents the signal characteristics for
one given pulse moment, whereas the right column shows global characteristics of the
experiment. The bottom-left graph represents the signal in frequency domain. This graph
is centered on the field-measured Larmor frequency. The resonance of the signal is clearly
observable, even if noise is present.
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Figure 2.3: Example of noisy signal obtained after signal processing (case of the
Schillerslage Tx50/Rx50, see Chapter 7). The blue lines represent the processed data and

the red lines the raw data. Those results are obtained using the MRSmatlab tools
(Müller-Petke et al., 2016).
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Figure 2.4: Example of noisy signal obtained after signal processing (case of the
Schillerslage Tx30/Rx50, see Chapter 7). The blue lines represent the processed data and

the red lines the raw data. Those results are obtained using the MRSmatlab tools
(Müller-Petke et al., 2016).





Chapter 3

Forward modeling

The induced voltage in a given receiver loop is (e.g., Mueller-Petke and Yaramanci (2010))

V (q, t) =

∫
K(q, r)

∫
W (r, T ∗2 ) · e

−t
T∗
2 dT ∗2 d

3r (3.1)

where:

• V (q, t) is the voltage received in the loop as a function of the pulse moment (q) and
the time (t)

• K(q, r) is the kernel function, depending on the pulse moment (q) and the position
in space (r)

• W (r, T ∗2 ) is the partial water content, depending on the position (r) and the relaxation
time (T ∗2 )

The decay time (t) starts at zero, corresponding to mid the length of the pulse moment
(see Figure 2.2).

The kernel function is defined under on-resonance conditions (the excitation frequency
is equal to the local Larmor frequency) by Hertrich (2008) and Weichman, Lavely, and
Ritzwoller (2000):

K(q, r) = ω0M0 sin

(
−γ q

I0

∣∣B+
T (r)

∣∣)
× 2

I0

∣∣B−T (r)
∣∣ · ei|ζT (r,ω0)+ζR(r,ω0)|

×
[
b̂⊥R(r, ω0) · b̂⊥T (r, ω0) + ib̂0 · b̂⊥R(r, ω0)× b̂⊥T (r, ω0)

]
(3.2)

The different parameters in Equation 3.2 are (Behroozmand et al., 2015):
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• ω0 the Larmor frequency (supposed equal to the excitation frequency)

• r is the position in space of the sample

• M0 the specific magnetization of hydrogen protons

• γ the gyromagnetic ratio

• q the pulse moment

• I0 the transmitter loop current

• B+
T the co-rotating component of the projected transmitter field into the plane per-

pendicular to BE

• B−R the counter-rotating component of the virtual magnetic field from a unit current
in the receiver loop projected into the plane perpendicular to BE

• b̂0 a unit vector pointing in the direction of BE

• b̂⊥T and b̂⊥R unit vectors pointing in the direction of the components of BT and BR

perpendicular to BE respectively

• ζT and ζR the phase lags from the transmitter to the sample and from the sample to
the transmitter respectively

The full development of Equation 3.2 is presented by Hertrich (2005). In this equation,
the first line corresponds to the response of a spin system originating from the exciting
pulse. Then, the second part takes into account the sensitivity of the receiver, without
signal generation. The last part describes the behavior of the system for separated trans-
mitter/receiver couples. From this equation, it emerges that the time dependency of the
SNMR response only appears outside the kernel function. This means that the SNMR
problem is linear on water content but not on the full problem.

For the 1-D SNMR experiment, the previous formulations can be simplified by inte-
grating 3.1 along the x and y dimensions. The resulting equation is:

V (q, t) =

∫
K(q, z)

∫
W (z, T ∗2 ) · e

−t
T∗
2 dT ∗2 dz (3.3)

where K(q, z) is the result of the integration along the x and y dimensions of Equation 3.2.

This latter formulation can be written in matrix form at a given decay time (t) as follows
in Equation 3.4 (Mueller-Petke & Yaramanci, 2010). In this formulation, the dimensions
n, l, k and m correspond respectively to the number of parameters used for the multi-
exponential fit (mono-exponential = 1, bi-exponential = 2, etc.) of the FID, the number
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of pulse moments, the number of layers in the discretization of the subsurface along the
z-axis and the number of time-steps recorded during the experiment. mn

k stands for the
partial water content at the k − th discretization related to the n − th relaxation time.
This latter formulation is the one used for the inversion (Chapter 4).
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K(z1, q1)e
−t(1)/T (1)∗2 · · · K(zk, q1)e

−t(1)/T (1)∗2 K(z1, q1)e
−t(1)/T (2)∗2 · · · K(zz, q1)e

−t(1)/T (n)∗2

K(z1, q2)e
−t(1)/T (1)∗2 · · · K(zk, q2)e

−t(1)/T (1)∗2 K(z1, q2)e
−t(1)/T (2)∗2 · · · K(zz, q2)e

−t(1)/T (n)∗2

... · · · ...
... · · · ...

K(z1, ql)e
−t(1)/T (1)∗2 · · · K(zk, ql)e

−t(1)/T (1)∗2 K(z1, ql)e
−t(1)/T (2)∗2 · · · K(zz, ql)e

−t(1)/T (n)∗2

K(z1, q1)e
−t(2)/T (1)∗2 · · · K(zk, q1)e

−t(2)/T (1)∗2 K(z1, q1)e
−t(2)/T (2)∗2 · · · K(zz, q1)e

−t(2)/T (n)∗2

... · · · ...
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−t(m)/T (1)∗2 · · · K(zk, ql)e

−t(m)/T (1)∗2 K(z1, ql)e
−t(m)/T (2)∗2 · · · K(zz, ql)e

−t(m)/T (n)∗2
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m1
1

m1
2

...

m1
k

m2
1

...

mn
k



(3.4)



Chapter 4

Inversion methods

From the early developments of the use of SNMR to nowadays, inversion of the corres-
ponding data has largely evolved. At the beginning, the Initial Value Inversion (IVI)
(Legchenko & Shushakov, 1998) was used, for its simplicity. Later, the Time Step Inversion
(TSI) was introduced (Legchenko & Valla, 2002), involving a better fitting of the signal,
and larger parts of the dataset. Finally the QT inversion (the state-of-the-art inversion)
was introduced in 2010 by Mueller-Petke and Yaramanci. All those inversion methods
differ widely and are based on different schemes/data uses (Figures 4.1 and 4.2). The
diverse available inversion methods will be introduced in this chapter, with an emphasize
on the state-of-the-art QT inversion.
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Figure 4.1: Datasets used for the different types of inversions. The blue line represents
the initial value dataset, each red line represents one of the independent time-steps

datasets and the dashed black lines represent the full QT dataset.
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Figure 4.2: Flowchart of SNMR inversion (From Behroozmand et al. (2015)).
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4.1 Initial Value Inversion

The Initial Value Inversion (IVI) was introduced in 1998 by Legchenko and Shushakov. It
relies on a simplified form of Equation 3.3:

e0(q) =

∫ L

0

K(q, z) ·W (z)dz (4.1)

whereW (z) is the water content distribution and e0(q) is the initial amplitude of the signal
for a given pulse moment (q). This equation already presents the main weakness of the
IVI scheme: it requires the knowledge of the initial amplitude of the signal. However,
this value is not measured during the SNMR experiment and, therefore, needs to be esti-
mated (Mueller-Petke & Yaramanci, 2010). This latter operation is performed under the
assumption that the exponential decay follows a mono-exponential path.

The linear equation presented in Equation 4.1 can be written in matrix form assuming
a given spatial discretization:

E0 = Gm (4.2)

where E0 is a vector containing the initial amplitude of the signal for each l pulse moment q,
G is the discrete 1-D kernel function and m the model (i.e. the discrete water content).
With such a system, the inversion is conducted using the generalized singular-value decom-
position (GSVD) with Tikhonov regularization (see Mueller-Petke and Yaramanci (2010)).

4.2 Time Step Inversion

The Time Step Inversion (TSI) scheme uses a more complete part of the SNMR QT dataset.
It consists in a more complex form of the previously presented IVI. Multiple time steps (tn)
are independently defined and inverted using the exact same method as the one presented
for the IVI on each n equation (Legchenko & Valla, 2002; Mueller-Petke & Yaramanci,
2010):

Etn = Gmtn (4.3)

This results in a set of water contents w(z, t). Finally, the w(z, t) are used to fit a
relaxation time (T ∗2 ) value for each discrete layer of the subsurface. The proposed fit in
Legchenko and Valla (2002) is mono-exponential. Later, Mohnke and Yaramanci (2005)
introduced a multi-exponential fit using partial water content (w(z, T ∗2 )) which provides
an exact solution to the 1-D forward model (Equation 3.3).
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4.3 State-of-the-art: the QT inversion

The QT inversion uses the full QT dataset originating from field acquisition in order to
estimate both water contents (or partial water contents) and relaxation times. It was
first introduced by Mueller-Petke and Yaramanci (2010) as a result of a PhD research
(Müller-Petke, 2009). As the inversion process uses both time and pulse moment dimen-
sions simultaneously, the problem is very large, hence requiring more advanced inversion
schemes. The forward problem under the assumption that the T ∗2 corresponds to a smooth
distribution (i.e. a discretization of the relaxation time space is specified by the user -
default values between 5 and 500 ms with 30 steps ) is stated :

V (q, t) =

∫
G(z, T ∗2 , q, t)w(z, T ∗2 )dT ∗2 dz (4.4)

The matrix formulation of the 1-D forward modeling is presented in Equation 3.4. The
forward operator that is used is the kernel function (K(q, z)) developed in Equation 3.2
integrated along the x and y directions of the space and multiplied by e−t/T ∗

2 . Therefore,
it is computed using the 1-D kernel function presented in the matrix form:

q1 q2 q3 · · · ql

z1
z2
z3
...
zk


K1,1 K1,2 K1,3 · · · K1,l

K2,1 K2,2 K2,3 · · · K2,l

K3,1 K3,2 K3,3 · · · K3,l
...

...
... . . .

Kk,1 Kk,2 Kk,3 Kk,l


(4.5)

Once the forward operator is computed as presented in Equation 3.4, the problem
becomes linear. However, due to the use of the full QT dataset, the dimensions of the
problem are too large to apply the GSVD solver accepted for the other inversion methods
(Mueller-Petke & Yaramanci, 2010). This is the reason why the preferred process relies on
a conjugated gradient solver. The minimized functional is:∣∣(JA,T∆m−∆ |V|

)∣∣2
2

+ α2 |L∆m|22 (4.6)

In this equation, the different parameters are:

• JA,T the transpose of the Jacobian matrix corresponding to the forward operator G

• m the model (partial water contents: W (z, T ∗2 ))

• V the data containing the amplitude of the signal
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• α the regularization parameter

• L an operator that estimates the first derivative

The applied conjugated gradient least square solver, called Conjugated Gradient Least
Square solver using Constraints, Data weighting and Parametric mapping (CGLSCDP), is
presented by Günther, Rücker, and Spitzer (2006) (and fully defined by Günther (2004)).
This solver enables to avoid memory issues, which significantly improves the inversion
process feasibility.

The algorithm presented by Günther (2004) is used to solve an equation of the type:(
ATDTDA + λCTC

)
x = ATDTDb− λCTCδmk (4.7)

where A is the Jacobian of the forward operator, C is the constraint matrix and D is the
weighting matrix, x is the model increment, b the data and δmk = mk −m0 the current
model compared to the reference (initial) model (m0). The regularization parameter (λ)
is classically determined using the L-curve criterion (Aster, Borchers, & Thurber, 2013).

In the QT inversion, the system is similar, with a perfect correspondence between the
code of MRSmatlab (Müller-Petke et al., 2016) and the algorithm proposed by Günther
(2004).

The result of the CGLSCDP algorithm is the model gradient. Then, a line search
algorithm explores the direct surrounding of this solution to assess the best increment to
apply to the model (partial water contents), i.e. a multiple of the computed increment
that minimizes the norm of the residuum (Müller-Petke et al., 2016).

When the relaxation time is no longer discrete (i.e. the decay is characterized by one
unknown value and not a set of known multiple values associated with unknown partial
water contents), the problem becomes non-linear. This is the case when the T ∗2 distribution
is set to a smooth-mono distribution. In order to resolve this issue, the previously used
algorithm remains the same, but the forward operator is recomputed at each step, to
converge towards relevant relaxation time and water content distributions. This latter
option is the default choice of the MRSmatlab code (Müller-Petke et al., 2016) and is the
one used in later developments.

In order to estimate the uncertainty on the obtained distributions, it is possible to use
bootstrap resampling (Hertrich, 2008). This method consists of randomly resampling the
dataset with a predefined percentage, in order to carry out the inversion with the slightly
modified dataset.



Chapter 5

A new approach: PFA imaging

The Prediction-Focused Approach (PFA) is a recent tool used to interpret data. It is
part of a broader new way to acquire/interpret data based on statistics called Bayesian
Evidential Learning (BEL) (Scheidt et al., 2018). This latter consists in two different parts:
pre-acquisition and post-acquisition phases. The first part concerns experimental design
issues, whereas the second addresses the prediction of forecast variables from field-acquired
data. The prediction-focused approach is the main object of the second part of BEL.

Prediction-focused approach has been introduced in 2015 by Scheidt et al.. It emerges
from the need for a better way to assess uncertainty on forecast variables without requiring
a large number of full inversion of data with substantial variations. Moreover, the intention
of most inverse modeling methods is not especially their results but the ability of those
results to generate a prediction. In the proposed approach, Scheidt et al. are generating
some models that constitute the prior distribution of models and compute the full forward
modeling for all those models. As they describe the method:

"PFA does not require iteration, but rather relies on estimating a direct relationship
between the simulated data variables and prediction variables. This analysis requires the
creation of prior Earth models to calibrate that relationship, but these Earth models need

not match any data." (Scheidt et al., 2015)

The method is further described by Hermans et al. in 2016. In the case presented there,
the method uses 6 steps:

1. Generation of prior data and forecasts from the prior distribution

2. Dimension reduction of the data and the forecast variables, using principal component
analysis

3. Canonical correlation analysis to establish multivariate correlations between data and
forecast variables

21
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4. Gaussian process regression to derive the conditional mean and covariance matrix of
the forecast variables in the canonical component space

5. Sampling of the Gaussian model

6. Back-transformation of the samples into original space

In this work, such an approach is applied for the first time to SNMR measurements,
with free induction decay (FID) envelope as data, and water content (W ) and relaxation
time (T ∗2 ) as a function of depth as forecast variables (Figure 5.1).

In this chapter, the development of the method used to achieve a PFA imaging of
SNMR data is detailed. The method is roughly the same as the one developed by Hermans
et al. in 2016, but some parts of the process needed to be adapted to achieve a convenient
result (Figure 5.1). The principle component analysis applied to the models parameters
is inefficient (step 2) and the Gaussian process regression is replaced by a kernel density
function (step 4). The different steps defined here are coded in MATLAB (MATLAB,
2016a). The developments of this chapter are discussed in an extended abstract submitted
to the "7th International Workshop on Magnetic Resonance" by Michel et al. (2018).
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Figure 5.1: Work-flow of the developed PFA imaging process.
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5.1 Generation of prior data and models (step 1)

5.1.1 Model generation

The model generation is the first step of the PFA. It consists in creating models with
physical parameters that can generate a response according to the same protocol as for
the field measurements. In the case that concerns us, multiple possibilities exist to create
these prior models. Those are listed below:

1. A multiple layer model with constant parameters
This approach consists in creating models with a given number of layers (generally
low, noted Nlayers) of unknown thickness. For each layer, the parameters are totally
independent.
In this approach, the number of parameters is reduced:

• The thickness of the layers (ei, i = 1, . . . , Nlayers − 1)

• The water content of the layers (Wi, i = 1, . . . , Nlayers)

• The relaxation time of the layers (T ∗2,i, i = 1, . . . , Nlayers)

• The resistivity of the layers (ρi, i = 1, . . . , Nlayers)

This results in a total of 4 ·Nlayers − 1 variables that are independent.

2. A fixed layered model with varying parameters
This approach consists in discretizing the soil into a given number of layers (generally
high, noted Nlayers) of known thickness. In each layer, the parameters are fixed but
not totally independent (the idea is to create geologically realistic models). There-
fore, the number of parameters is higher, but due to correlations between them, the
expected reduction of the dataset should perform better. The parameters are listed
below:

• The water content of the layers (Wi, i = 1, . . . , Nlayers)

• The relaxation time of the layers (T ∗2,i, i = 1, . . . , Nlayers)

• The resistivity of the layers (ρi, i = 1, . . . , Nlayers)

This results in a total of 3 · Nlayers variables that are correlated with one another
(through a variogram for example).

Currently, for the sake of testing the developed method, the retained approach is to use
the first type of models with only two layers. Later, the prior model space will be discussed
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case-by-case in order to correspond to the best of our prior understanding of the geology on
the tested site (Chapter 7). This approach enables to understand the physical relationships
between the parameters and the response. For numerical and time limitations, the models
have been set with a uniform resistivity along the whole 1-D profile. This hypothesis has
been confirmed via a sensitivity analysis (5.7 Sensitivity analysis). Therefore, the exploited
model was relatively simple:

• Two layers (therefore, one unknown thickness)

– The thickness of the first layer is limited to the injection loop diameter

• The water content is separated into two distinct zones

– The first layer is supposed unsaturated (W1 ∈ [0.035 0.1])
– The second layer is supposed saturated (W2 ∈ [0.035 0.35])

• The relaxation time is independent in both layers (T ∗2,i ∈ [10 1000] ms)

Three options are proposed to randomly generate the model:

• Variables uniformly distributed (rand function in MATLAB)

• Variables uniformly distributed with a Latin-hypercube sampler (McKay, Beckman,
& Conover, 1979) (lhsdesign function in MATLAB)

• Variables normally distributed (randn function in MATLAB)

– The mean is set as the mean of the interval
– The standard deviation is set as one-fourth of the size of the interval

This way, 95% of the values taken are inside the predefined interval. On the other
hand, the normal distributions had to be truncated to ensure a null probability of
negative values for the parameters.

As no prior information was available to justify one choice or another, they have all
been tested. It appeared that the Latin-hypercube sampler (McKay et al., 1979) applied
on the uniform distribution performed similarly to the "simple" uniform distribution sam-
pler. Therefore, this option has not been explored any further. The difference between
the uniform and normal laws is that the uniformly distributed variables give less prior
information on the model (the models are evenly spread along all the dimensions), whereas
in the Gaussian sampler, most of the models will approach the mean parameters. This
latter option, therefore, assumes more prior information to the process than the uniformly
distributed sampling procedure.

For the reasons exposed above, it has been chosen to work mainly with uniformly
distributed variables (Figure 5.2) rather than with normally distributed ones (Figure 5.3).
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Figure 5.2: Examples of models generated using uniformly distributed variables.

Figure 5.3: Examples of models generated using normally distributed variables.
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Type of simulation Time with constant resistivity Time with variable resistivity
Single transmitter/

receiver loop 2 minutes 10.5 hours

Receiver outside
transmitter loop 5 minutes 2.7 days

Receiver inside
transmitter loop 6.5 minutes 4 days

Table 5.1: Estimated computation time for different forward modelings.

5.1.2 Model response

NOTE: The forward modeling as well as the kernel computation is performed using the
dedicated functions in MRSmatlab (Müller-Petke et al., 2016).

The forward modeling of the FID response to a typical pulse moment q needs several
elements. A first step is to generate the kernels corresponding to the experiment con-
figuration. Then, using the kernels, the direct model is solved for each model. As the
kernels only depend on the experiment configuration (size of loops, disposition) and the
earth resistivity, it is only needed to compute their value once, as it has been chosen to
fix the resistivity to a representative value of 100Ω.m. This hypothesis is comforted in
the sensitivity analysis performed later in section 5.7 (Sensitivity analysis) and permits a
significant gain of computation time. It has been measured that computing the kernels
takes from 40 seconds for the simplest case (single transmitter/receiver configuration) to
200 seconds (transmitter inside the receiver loop) or even 350 seconds (transmitter outside
the receiver loop) on an Intel i7-6700HQ. Since it has been said that 1000 random mod-
els will be simulated, choosing for a variable resistivity in the models will require a huge
computation time, as shown in Table 5.1.

In order to correctly simulate the real field experiment, the general configuration of the
experiment is retrieved from the "proclog" file generated by MRSmatlab when reading raw
data (Müller-Petke et al., 2016). Therefore, the similarity between the configuration of the
experiment and the numerical simulations is complete, enabling an efficient comparison
between the simulated models and the real data.

Kernels for different configurations are shown in Figure 5.4. The kernels already inform
us on the sensitivity of the signal to a given depth. Whereas the 30 m transmitter/30 m
receiver configuration shows a sensitivity increasing in depth with pulse moment, the sen-
sitivity to shallow layers is much higher in the two other configurations.
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Figure 5.4: Kernels for different experimental configurations:
transmitter loop diameter = 30 m and receiver loop diameter = 30 m (top left),

50 m (top right) and 10 m (bottom). The red line represents the maximum of sensitivity.

5.2 Reduction of the dimensionality (step 2)

Now that the different models are computed as well as their associated FID responses (step
1, Section 5.1) the dataset containing the model parameters and the FID response should
be reduced. This step is not necessarily mandatory, but it will enable faster computation
in the next steps of the process, because it enables to manipulate smaller datasets.

A first reduction of the dataset is performed using a principle component analysis (PCA,
pca function in MATLAB) (Jolliffe, 2002). PCA seeks for orthogonal dimensions (linear
combination of parameters) that maximize the explained variability in the dataset. The
first principle components are the ones that describe most of the variability, whereas the
last dimensions are the ones of less importance. This procedure has been applied to both
the model parameters and the corresponding FID responses (whose real and complex parts
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are separated prior to this operation) with mitigated results.

Whereas the PCA performed satisfyingly on the FID part of the problem, enabling a
reduction of the dataset, from more than 50 000 dimensions to less than 10, keeping more
than 99% of the variation (Figures 5.5 and 5.6), the method appeared less efficient for the
model parameters.

Figure 5.5: Results of the PCA on the FID: explained variance
for the most significant dimensions.

From Figure 5.6, it can be observed that the highest load is always given to the first
time-step of each pulse moment. This seems logical since the decay of the signal is quite
rapid and thus, the main part of the information is found here. Choosing for a level of
total explained variance above 99.9%, the initial 74 360 dimensions are explained with only
seven principle components.

For the model parameters, the same "raw" process has been applied (Figure 5.7).
Whereas no dimension reduction was expected due to the fact that every parameter in the
model is significant (see Section 5.7 Sensitivity analysis), apparently, the five dimensions
could be reduced to three, still keeping 99.9% of the variance explained. This could have
been interesting, even if difficult to understand, but another problem with this process was
pointed out: very few loads were given to the water contents, whereas those variables are
the main outcomes of the developed process.

The reason for those low loads is probably that the water content values are very small
compared to the other parameters. Another approach has thus been tested: the model
parameters could be weighted according to the variance observed in each parameter. This
method should overcome the low loads given to the low valued parameters. Whereas the
low loads problem is significantly resolved using this approach (Figure 5.8), the loads given
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Figure 5.6: Results of the PCA on the FID: loads attributed to the main dimensions.
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Figure 5.7: Results of the PCA on the model parameters:
loads attributed to the different dimensions.

to the water contents still remain low. Moreover, in order to keep a good level of explained
variance, no reduction of the model parameters dimensions could be achieved.

Therefore, the choice has been made not to reduce the dimensions of this part of the
problem. This remains possible seeing the very small number of parameters, but could
trigger problems in further steps (for example when the other model generation method
will be applied (see Section 5.1.1 Model generation)).
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Figure 5.8: Results of the PCA on the model parameters weighted by their variance:
loads attributed to the different dimensions.

5.3 Canonical correlation analysis (step 3)

Canonical correlation analysis (CCA, canoncorr function in MATLAB, Statistics and Ma-
chine Learning Toolbox) seeks for linear combinations of model parameters and data (in
our case reduced data from PCA) that maximizes the canonical correlation (ρ∗) between
the i-th components of the resulting model space and data space. The global aim is to get
reduced variables that can be easily observed. Moreover, sometimes "simple" relationships
can be found between the obtained variables (Jolliffe, 2002).

It turns out that in our case, the variables were clearly not associated through a linear
relationship, nor were they with a more complicated law. Most of the dimensions of
the problem seem to be scattered (Figure 5.9). Whereas a linear (or, at least a simple)
relationship could be seen for the first dimensions, for the two last dimensions, a law
relating hc4,5 to dc4,5 is impossible to target as the resulting points are scattered all along
the space.

As a result, further steps of the PFA imaging had to be adapted to this reality. Instead
of using the Gaussian regression model in later steps, which requires a high correlation
and a linear trend between the variables, it was chosen to work with a kernel density
function. This adaptation is critical for the PFA has it needs to perform satisfyingly, since
the whole process relies on the constitution of this statistically-based relationship between
the forecasts and the data.
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Figure 5.9: Example of results of the Canonical correlation analysis. The orange line
represents the benchmark data of this example.

5.4 Constitution of the posterior distribution in reduced
space (step 4)

As described in the previous section, the correlation between the canonically correlated
variables is somewhat high, but the variables are not linearly linked. This leads to a
problem to estimate the posterior distribution using the classical PFA process. Actually, if
the variables were Gaussian in model space and the model space could be linked to the data
space linearly, it was possible to associate a given value in the data space to a Gaussian
distribution in the model space. Moreover, sampling a Gaussian distribution is fast and
efficient, which reduces the computing time in further steps. This is the classical way to
perform PFA (Hermans et al., 2016).

In our case, as the variables are scattered, it is unaccurate to perform such a com-
putation. Therefore, it has been decided to use the kernel density (ksdensity function in
MATLAB, Statistics and Machine Learning Toolbox) as a way to approach the posterior
distribution . This method transforms a set of points in a 2-D space into a statistical
probability density function, assigning to each point a multi-Gaussian distribution (Wand
& Jones, 1993). More precisely, the algorithm computes, for a given position in the space,
the sum of the contributions of all the points in the dataset. The contribution of each
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point is defined as a multi-Gaussian distribution centered on that point. The concept is
graphically presented for a 1-D dataset in Figure 5.10. From this 2-D distribution, it is
easy to retrieve the conditional distribution of the model space, knowing the value of the
field data in the reduced data space.

Figure 5.10: Illustration of the kernel density estimation for a 1-D dataset.

As a result, a full discretized probability density function of the posterior model space
is obtained (Figure 5.11). This distribution can be Gaussian (as shown in the example) but
is not constrained to this shape. This enables to take into account the non-linear aspect
of the relationships.
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Figure 5.11: Posterior distribution on the canonical correlation space,
the probability density function is shown in blue and the cumulative density function is

displayed in orange.

5.5 Constitution of the posterior in parameter space
(steps 5 and 6)

Then, from the posterior distribution in reduced model space, it is required to find the
distribution of the posterior in the initial model space. This is done by sampling the cu-
mulative distribution function associated to the probability density function of the posterior
in reduced model space, transforming the obtained values in CCA-model space back into
initial model space. This leads to the posterior distribution in model space. This posterior
distribution is not restrained to a given shape.

The cumulative distribution function (cdf) defines the probability of a random variable
to be below a given value. This probability is between 0 and 1. Hence, sampling the
cdf requires to randomly select a value between 0 and 1 (rand function in MATLAB)
and then, recover the associated value in the cdf (Figure 5.12). Once achieved for all the
reduced variables, the obtained set can be related to the original space by using back-
transformation.
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Figure 5.12: Illustration of the sampling process.

Figure 5.13: Estimated posterior distribution. The benchmark model for this example is
represented by the orange lines.
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5.6 Analysis of the results

Some models of the posterior model space are not physically consistent. This is due to the
kernel density that in fact never reaches null values (a Gaussian distribution tends towards
zero far from the mean). As a result, some models from the posterior must be discarded
to obtain a physically consistent posterior model space. Globally, this is done by checking
that no value of the model parameters is negative (thickness, water content and relaxation
time are all defined positive). For mean models (models for which the parameters are in
the middle of their possible values), this is not such a problem as few models from the
posterior are non-physical, but this may cause issues for more exotic models, which are not
especially well represented in the prior distribution.

Finally, the obtained results must be displayed in an efficient way. In order to assess
the relevance of each model constituting the posterior, it has been decided to use a forward
modeling and to compare the simulated data to the observed data. Although this is not
required by PFA, it yields confidence in the obtained results. The root-mean squared
(RMS, rms function in MATLAB) error is computed for each of the models. Then, all
models are presented with a color associated to their RMS. Two examples of such results
are presented in Figures 5.14 and 5.15.
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Figure 5.14: Estimated posterior distribution, user-friendly display
(Example of model 96 out of 1000). The benchmark model for this example is

represented by the black line.
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Figure 5.15: Estimated posterior distribution, user-friendly display
(Example of model 446 out of 1000). The benchmark model for this example is

represented by the black line.
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5.7 Sensitivity analysis

AS multivariate sensitivity analysis has been performed using the DGSA (Distance based
global sensitivity analysis) MATLAB toolbox provided by Stanford University (Park, Yang,
Satija, Scheidt, & Caers, 2016) at: https://github.com/SCRFpublic?tab=repositories.
This toolbox enables the multivariate analysis of the sensitivity of a response to a given
parameter using a distance based sensitivity analysis. The method is built on clustering
of models into groups that differ in response. Then, the distance between those groups is
evaluated and summarized into a Pareto index (Park et al., 2016).

Multivariate sensitivity analysis concerns the first part of BEL on experimental de-
sign, ensuring that an experiment is sensitive to the parameters of interest (Scheidt et
al., 2018). Since experimental design was not the main objective of this work, this part
on the sensitivity analysis is mainly an introduction to the methodology. The sensitivity
analysis will be conducted on synthetic 2-layer models with multiple loops configuration.
It is introduced in this section, since the different configurations presented in the real case
field study (Section 7.3) are explored for an illustrative purpose.

As a result from this sensitivity analysis, made on all the six responses to a model
(two possible transmitters and three receivers), the impact of a variation in a parameter is
explored, both individually as well as conditionally.

From Figure 5.16, one can observe that the order of significance of each parameter is
nearly always the same:

T ∗2,1 > W1 > e1 > W2 > T ∗2,2

Despite some differences between the scenarios, a general rule is that the characteristics
of the first layer always influence the results in a very significant way, whereas the FID
response is less sensitive to the second layer characteristics. Nonetheless, except in the
case with a 30 m transmitter/receiver where the water content of the second layer is less
influencing (important parameter), the whole set of parameters are classified as critical.
This classification is performed regarding the localization of the Pareto bars compared to
the confidence interval (Park et al., 2016).

Globally, one can also observe that the sensitivity to in-depth parameters decreases
when the receiver loop is smaller. This is logical since the depth of investigation is
empirically linked to the loop diameter.

When analyzing the combined effect of the different parameters, the DGSA toolbox
displays what is called a "Bubble plot". Those so-called bubble plots present both the
main effect due to a parameter, as well as its conditioned/conditioning aspect. The size
of the bubbles indicates the main effect, whereas the relative distance of bubbles indicates
their interaction, either as a conditioning parameter (purple bubbles) or a conditioned

https://github.com/SCRFpublic?tab=repositories
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Figure 5.16: Pareto plots with confidence bars for the different experimental scenarios:
50 m transmitter loop (left column) and 30 m transmitter loop (right column), with a

50 m (first row), 30 m (second row) and 10 m (last row) receiver loop.
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parameter (green bubbles) (Park et al., 2016). Those graphs are presented in Figure 5.17.

In Figure 5.17, its is shown that the combined effects are mainly observed between
parameters defining the first layer. On the other hand, no conditioning (or conditioned)
effects are observed between the second layer parameters. This is probably due to the
limited sensitivity of the models to those parameters. Another observation is that the
main effects are larger when the transmitter is the same as the receiver.

As a conclusion, the FID response is mainly controlled by the shallow part of the ground
(as a reminder, the first layer is defined here with a maximal thickness corresponding to the
diameter of the transmitter loop). This was already deduced from the computed kernels
(Figure 5.4 in section 5.1.2 Forward modeling) where the kernels showed lower values in
depth, especially for the in/out-loop configurations. Conditioning and conditioned effects
seem relatively similar, inducing a probable symmetry in the system.
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Figure 5.17: Bubble plots for the different experimental scenarios: 50 m transmitter loop
(left column) and 30 m transmitter loop (right column),

with a 50 m (first row), 30 m (second row) and 10 m (last row) receiver loop.
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5.7.1 Sensitivity to resistivity

As mentioned before, it has been chosen, mainly for computing time reasons, that the
resistivity of the synthetically generated models should neglect variations in resistivity.
This enabled a relatively fast computation of the forward modeling and seemed to provide
acceptable results. Nonetheless, this hypothesis needs to be comforted. Therefore, the
sensitivity analysis exposed in the previous part has been applied to the case where the
transmitter loop has a 50 m diameter and is the same as the receiver loop, but this time
with the resistivity that may change in a given, large, interval (ρ ∈ [50 . . . 1000] Ω.m). The
forward modeling has been performed in order to get a FID response corresponding to all
those models.

The results showed that the FID response was not significantly impacted by resistivity
changes, nor was it by combined effects (Figure 5.18).

Figure 5.18: Sensitivity analysis of FID response to changes in model resistivity.
The left graph presents a Pareto plot with the main effect of all parameters

independently, whereas the right graph shows the combined effects.

The left graph in Figure 5.18 clearly shows that the main effect of the resistivity is very
small, in absolute value as well as compared to other parameters sensitivity. The right
graph proves, on the other hand, that there are no interactions between ρ and the other
parameters.
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The multi-central loop configuration

In 2016, Behroozmand et al. published a paper establishing the bases for the use of coaxial
receiver loops in the acquisition of SNMR data (for 1-D soundings). In the article, they
showed that the use of central loops was beneficial, especially in the improvement of the
signal-to-noise ratio. With numerical and field examples, they showed that the central loop
lead to similar or stronger sensitivities compared to the classically exploited coincident
loops, when accounting for noise. Moreover, a stronger sensitivity to the shallowest part
of the soil was noticed for higher pulse moments. However, it was also demonstrated that
the use of central loops achieved lower depth resolutions.

From those observations, Kremer et al. (2018) proposed a possibility to benefit from the
advantage of such configurations to their full extent. The proposed idea suggested that,
instead of only using the data originating from the central loop to retrieve information on
the groundwater distribution, it could be interesting to explore the use of multiple coaxial
loops in a bigger dataset that contains both coincident and central loops. The use of
outer coaxial loops was also proposed. This new method allows to maximize the acquired
information in one field, permitting the combined use of multiple datasets with different
sensitivities. Figure 6.1 graphically shows this sensitivity advantage, without taking into
account the fact that the inner-loops datasets are subject to lower noise levels. It is clear
that the merged case has the highest sensitivity.

However, to properly benefit from the increased sensitivity of those multiple datasets,
it is required to adapt the QT inversion process, the weighting of the data originating from
different loops, as well as the used bootstrap algorithms. Among those three issues, only
the first one will be discussed in this work.

45
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Figure 6.1: Illustration of the sensitivity gain from the use of the multi-central
configuration. This gain is purely retrieved from the sensitivity kernels and therefore does
not take into account the gain originating form the signal-to-noise ratio improvement.
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6.1 QT inversion for multiple loops SNMR data

The adaptation of the QT inversion method requires to specifically assemble the kernels
and the datasets. This needs to be consistently performed, as each adaptation in the kernels
definition will impact the datasets format and reversely. In this section, the adaptations
of the kernels and the datasets are stated.

6.1.1 Assembly of kernels

It has been previously shown that the kernel and the data are linearly linked (if the time
dependency is properly expressed, see Chapter 3). Therefore, the assembly of data/kernel
is straightforward, but attention needs to be paid to the actual computability of the kernels
with extended models, in the case of small receiver loops combined with large transmitter
loops.

As a reminder, the time-independent kernels for a unique receiver are in the form
presented in Equation 6.1.

q1 q2 q3 · · · ql

z1
z2
z3
...
zk


K1,1 K1,2 K1,3 · · · K1,l

K2,1 K2,2 K2,3 · · · K2,l

K3,1 K3,2 K3,3 · · · K3,l
...

...
... . . .

Kk,1 Kk,2 Kk,3 Kk,l


(6.1)

The form is exactly the same for the cases where the loop acts as a transmitter and a
receiver and when the loop only acts as a receiver. To adapt the kernels to multiple receiver
loops, one should only use the other loop as a new set of pulse moments (qi). The issue
with such an approach is the fact that, in order to be consistent, the depth model must
be exactly the same for all kernels, since the merged kernels that result from the assembly
only takes one depth model (zj) into account.

This issue results in a trade-off between depth information and shallow layers discretiza-
tion. Actually, problems occurred when trying to compute the kernel values for cases with
large transmitter/small receiver configurations (or the reverse). The values are too small
to be stored within machine precision, which leads to errors in the integration process for
in-depth values. It is therefore required to limit the depth to an acceptable level, con-
strained by the smallest receiver loop. This limits both the available information in depth
and possibly the accuracy of the results, due to the ignorance of the possible response from
in-depth water. As shown by Kremer et al. in 2018, the main advantage of the multi-central
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configuration is observed when searching for shallow boundaries; therefore, this problem
should not represent such an issue in the next steps.

Nonetheless, it is required to quantify the maximal investigated depth as a function
of the experimental configuration. To do so, multiple experimental configurations have
been tested, from basic cases (relatively similar transmitter and receiver loops) to extreme
configurations with opposite sizes for receivers and transmitters (all in the range between 5
and 150 meter diameter). The maximal depth for the model discretization has been chosen
as a multiple of the size of the transmitter loop.

An attempt was made to compute the kernels for each case presented in Table 6.1 with
the pulse moments corresponding to a given specific experiment. If the kernel was success-
fully computed (i.e. MATLAB did not return an error), it was recorded as a success (1)
and, on the other hand, if the computation failed (i.e. MATLAB returned an error), it was
registered as a fail (0).

dRx [m] From 5 to 150 by steps of 5
dTx [m] From 5 to 150 by steps of 5
Multiplier [/] From 0.1 to 2.0 by steps of 0.1

Table 6.1: Parameters for the search of kernel computability.

As a result of this exploration, it turns out as expected that the extreme cases were the
most problematic (Figure 6.2 and Appendix A for more details). In further steps, it will
thus be required to check the computability of the kernel previously to any computation.
As the computability of the kernel is dependent on the loops configurations but also on the
sequence of pulse moments chosen, which can vary from one experiment to another, it is
impossible to assess the computability of kernels only from the loops configuration (which
would only require a simple verification in a previously acquired matrix). A converging
algorithm needs to be applied.

This algorithm simply tries to compute the kernel until the deepest useful position
(typically 1.5× dTX) and if the computation fails, the number of layers of the earth model
is diminished. The suppression of the last layers decreases the actual depth computed
until computation is possible. Then, the uncomputed layers are replaced by zero values.
In short:

1. Set the maximal depth (classically 1.5 · dTX) for the global model discretization.

2. Try to compute the kernel with this z model.

(a) If the computation succeeded:

i. Exit loop
ii. Replace all uncomputed values by zeros
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(b) If the computation failed:

i. Remove the last layer of the discrete z model.
ii. Repeat from item 2.

With this method, we enable the use of very large transmitter loops (hence, large per-
turbed zones) coupled with small receiver loops, without limitations on the depth computed
for the kernel.

Finally, the assembled time-independent kernels are of the form presented in Equa-
tion 6.2. In this equation, the indices n, k and li correspond respectively to the number of
transmitters/receivers couples, the number of layers in the discrete model and the number
of pulse moments of the i-th transmitter/receiver couple. Thus, the component Kj

k, i cor-
responds to the value of the discrete time-independent kernel for the i-th pulse moment of

Figure 6.2: Computability of the kernels for different experimental configurations.
Blue represents kernels that are computable and red, kernels that are not computable.

For more details, see Appendix A.
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the j-th transmitter/receiver couple at the k-th layer of the discrete model.

q11 · · · q1l1 q21 · · · q2l2 · · · qn1 · · · qnln

z1
z2
z3
...
zk


K1

1,1 · · · K1
1,l1

K2
1,1 · · · K2

1,l2
· · · Kn

1,1 · · · Kn
1,ln

K1
2,1 · · · K1

2,l1
K2

2,1 · · · K2
2,l2

· · · Kn
2,1 · · · Kn

2,ln

K1
3,1 · · · K1

3,l1
K2

3,1 · · · K2
3,l2

· · · Kn
3,1 · · · Kn

3,ln
... . . . ...

... . . . ...
...

... . . . ...
K1
k,1 · · · K1

k,l1
K2
k,1 · · · K2

k,l2
· · · Kn

k,1 · · · Kn
k,ln


(6.2)

6.1.2 Assembly of data

As the assembly of kernels simply uses new transmitter/receiver couples as if they were new
pulse moments, the merging of data needs to be performed under the same assumption.
Therefore, the data is formatted as if each transmitter/receiver couple acted as a set of new
pulse moments. The assembled data is presented in Equation 6.3, where the Vj

i represents
vectors containing the data of the i-th pulse moment of the j-th couple transmitter/receiver.



V1
1
...

V1
l1

V2
1
...

V2
l2...

Vn
1
...

Vn
ln



(6.3)

6.2 PFA imaging adaptations for multiple loops

The PFA imaging algorithm is adaptable to multiple loops data. It only requires to format
the data specifically, in order to merge the different datasets in a way that could enable
multiple transmitters/receivers to be taken into account. This adaptation is similar to the
one performed in the assembly of data made for the QT inversion. Actually, each pulse
moment from a given loop can be assumed as if it was a pulse moment from the experiment,
as soon as the corresponding kernel is correctly computed. As the computation of the
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kernels does not need the same discretization for each couple, contrarily to the adaptation
of the QT inversion algorithm, no particular attention is drawn on this last point.

The adaptation of the algorithm leads to some issues. The fact that multiple datasets
are merged leads to significantly larger memory needs for the storage of the simulated free
induction decays from the numerous models used. The principle component analysis on the
data also requires a significant amount of random access memory (RAM). Therefore, the
specifications of the computer happen to be very important. My computer (Intel Core i7-
6700HQ CPU and 8Gb of RAM) was barely sufficient for the computation of the posterior
distribution using the PFA algorithm on the Schillerslage dataset (Chapter 7, Section 7.3).
Hence, further research could be necessary to reduce the memory used during computation.





Chapter 7

Results

This chapter will present different results obtained with the PFA and the multiple loops
configurations. At first, synthetic models are explored. As the PFA imaging developed in
this work was never applied to SNMR data (and thus, to multiple loops configurations as
well), a large part of this section will be dedicated to confirmation of the exposed process.
To do so, a benchmarking is proposed on synthetic models and their associated data. The
use of the process on noise-free data will be explored. Then, the effect of the addition
of Gaussian noise to the datasets will be tested, and a synthetic model with noise will be
studied. Finally, a synthetic multiple loops example will be investigated. This example will
be interpreted using both the QT inversion and the PFA imaging, in order to demonstrate
the advantage of the proposed configuration.

Later, a first real dataset will be explored. This dataset corresponds to a simple two-
layer model, which makes it easy to analyze. The interpretation will be performed using
both the QT inversion and the PFA imaging.

Finally, both processes are applied to a real multiple-loop dataset acquired at a hydroge-
ological test site (Germany), where previous deterministic inversions have been conducted
(Dlugosch, 2014).

7.1 Synthetic

In this section, synthetic examples are proposed to test the QT inversion method as well
as the PFA imaging, as exposed in Chapter 5. Since the QT inversion has already been
proven efficient in multiple synthetic and real scenarios in the case of simple configurations
(see, for example, Müller-Petke (2009), Yaramanci and Müller-Petke (2009), Grombacher
and Auken (2018) or Dlugosch (2014)), no synthetic data on classical configurations were
interpreted using the latter. The PFA imaging needs to be validated for the interpretation
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of SNMR data and its efficiency to retrieve well-known models.

Therefore, this section mainly proposes a statistical analysis of numerous results on
synthetic simple-loops SNMR data interpretation with 2-layer and 3-layer models. More-
over, a synthetic example is exposed and explored in its full complexity, containing data
from one single transmitter but three receivers. This last example will be analyzed using
both the QT inversion and the PFA imaging.

7.1.1 Benchmarking PFA for SNMR using synthetic models and
data

7.1.1.1 Use on synthetic noise-free data

To begin with, no noise was applied in order to test the applicability and the efficiency
of the obtained results on very simple models. This has been done on 2-layer and 3-layer
models.

One thousand models randomly generated have been tested. Those models are sampled
into a uniformly distributed prior model space. The first layer (between 10 and 20 meters
thick) has a low saturation (water content between 3 and 10%) and the second layer is
saturated (water content between 10 and 35%). The relaxation time ranges from 5 to
350 ms for both layers. The different results were then assessed using the RMS on modeled
data (Figure 7.1).

The first analysis that has been performed aims at observing the different representative
RMS values. Those consist of the percentiles 5, 25, 50, 75 and 95 (Figure 7.1). The higher
the percentile, the larger the spreading of the RMS values. Whereas the RMS values for
the 5th percentile are all between 4.46 and 16.19 nV, with a range of 11.73 nV, the 95th

percentile shows values ranging from 29.18 to 81.59 nV (i.e. a total range of 52.41 nV).

One could thus search for a reason for the goodness of the fit (low or high RMS values).
From the methodology that has been applied, extreme models should lead to worse results,
due to the lack of models in this part of the model space. Consequently, a definition of
eccentricity had to be set. Eccentricity could be defined both in model space and in data
space.

In the model space, eccentricity should be defined as a function of the whole set of
parameters, which means that different units will be mixed. Thus, a conversion to dimen-
sionless values should be performed first. As an outcome of this, a definition of eccentricity
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Figure 7.1: Estimated probability density functions of the representative RMS values
for all 1000 models (2-layer model).

in model space is set to the expression:

Eh =

∣∣∣∣e1 − e11 m

∣∣∣∣+
∣∣(W1 −W1)× 100

∣∣+
∣∣(W2 −W2)× 100

∣∣+

∣∣∣∣∣T ∗2,1 − T ∗2,110 ms

∣∣∣∣∣+

∣∣∣∣∣T ∗2,2 − T ∗2,210 ms

∣∣∣∣∣
(7.1)

The same definition can be constructed for eccentricity in data space. In this case, the
dimensionality issue does not exist and the definition can simply be:

Ed =

tregister∫
0

[
FID(t)− FID(t)

]
(7.2)

In equations 7.1 and 7.2, each parameter (or value) is compared to the mean value
(value). Therefore, a model that lies in the middle of the space will get a low eccentricity
and vice-versa.

In order to better understand the following developments, a model has been randomly
chosen among the 1000 explored and is always displayed in black above all the other models
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Figure 7.2: Effect of eccentricity in model space (h) on localization of FID (data space d).

in the graphs (Figures 7.2 to 7.8). This model is only displayed for continuity but has no
particular features.

In a first attempt to understand the behavior of PFA imaging, Figure 7.2 shows that
the least extreme models (warmer colors) are the ones that are close to the median data.
On the opposite side, high eccentricity tends to lead to either very slow or very rapid decays
(cooler colors). However, this is not seen in the scatter plot representing eccentricities in
model space versus data space (Figure 7.3).

The influence of those eccentricities on the RMS values is then explored. Scatter plots
showing the RMS percentiles versus the eccentricities as defined above are presented in
Figures 7.4 and 7.5. The correlations between eccentricities and RMS are always low.
This means that, even if a model is extreme, both in model and data space, this does
not necessarily lead to a bad resolution of the problem. On the other hand, one can
observe that, for the highest percentiles (namely 75, 95 and 100), the models that get the
largest RMS values are systematically in the upper part of the graphs, which means they
correspond to extreme models. This can be expressed as follows: badly resolved models
correspond to extreme models, whereas the opposite is untrue.

In terms of correlation, it seems that eccentricity in the data space achieves better
correlations with RMS values than the eccentricity in the model space. This is logical
since the RMS error is relative to the data misfit, defined in the same units as the data.
Although higher, these correlations are still below significant levels for correlations.
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Figure 7.3: Effect of eccentricity in model space (h) on eccentricity in data space d.

Figure 7.4: Effect of eccentricity in model space (h) on the goodness of the results
(2-layer models).
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Figure 7.5: Effect of eccentricity in data space (d) on the goodness of the results
(2-layer models).

The same analysis has been performed with data originating from 3-layer models.
Globally, the results were very similar, with no statistical evidence that the methodol-
ogy performed worse on one category than on the other.

Whereas the RMS values for the 5th percentile are still reasonable, with values ranging
from 5.47 to 18.27 nV, it is observed that those values are slightly higher than in the 2-layer
case. The 95th percentile is on the other hand very similar in the 2-layer and in the 3-layer
cases with values ranging from 31.32 to 74.70 nV. Taking the extreme values originating
from the process does not provide evidence of similarities but the 10th and 90th percentile
of the 95th percentile showed that the ranges are very similar in the two explored cases.

The same analysis as the one performed with the 2-layer models has been applied. It
turns out that the link between extreme models and bad resolution is slightly lower than
in the previous case. This means that even models that are located in the middle of the
model space could be badly resolved (see Figure 7.7). The same conclusion can be reached
when analyzing the graphs presenting the effect of eccentricity in data space on RMS
(Figure 7.8): badly resolved models do not necessarily mean that the model is extreme in
data space.

All those results imply a possible issue with the exposed process: the model space is not
sufficiently explored. As the number of layers increase, the number of parameters increase
as well. This means that, with the same number of models randomly sampled from the
model space, fewer parts of the space are explored. To overcome this possible impediment,
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one could use a larger model space sampling.

Figure 7.6: Estimated probability density functions of the representative RMS values
for all 1000 models (3-layer models).
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Figure 7.7: Effect of eccentricity in model space (h) on the goodness of the results
(3-layer models).

Figure 7.8: Effect of eccentricity in data space (d) on the goodness of the results
(3-layer models).
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Figure 7.9: Propagation of noise in PCA scores: relative error on mean PCA score
(upper left), difference in mean PCA score (upper right), covariance of score differences

(lower left) and covariance of scores (lower right).

7.1.1.2 Noise contaminated datasets

Here, we will analyze the noise propagation in the PFA imaging. This is done by analyzing
the variation of the PCA scores (i.e. the factors constituting the linear combination of the
principle component analysis) when noise is added in the data (Hermans et al., 2016). To
do so, 500 out of the 1000 models from the previous section (Subsection 7.1.1.1) have been
exploited. A random Gaussian noise has been added to the data corresponding to each
model. The tested noise level is 200 nV (standard deviation of the noise), which is already
significant for NMR data acquired in good conditions (the amplitude of the signal is of the
same order), but remains in a reasonable range.

From the graphs in Figure 7.9, even if the relative error on PCA score is significant,
it turns out that the covariance of the scores is very small (less than 5 × 10−10). This is
insignificant and therefore, the noise has a negligible effect on the PCA scores. This finally



62 Chapter 7. Results

means that no particular attention should be drawn to the noise, as long as it is Gaussian
(preprocessing of data is still recommended to remove spikes and harmonics).

In the light of this, an attempt to test noisy synthetic data was performed. The used
model consists of a 2-layer model with its characteristics given in Table 7.1. The transmitter
and receiver loops are the same and consist of a 50 m diameter loop. The noise level is set
to 100 nV. The prior model space is defined as follows (uniform distributions):

• Thickness:

– Layer 1: [10 20] m

• Water content:

– Layer 1: [0.035 0.1]

– Layer 2: [0.035 0.35]

• Relaxation time:

– Layer 1: [5 350] ms

– Layer 2: [5 350] ms

Thickness [m] Water content [%] T ∗2 [ms]
Layer 1 15 5 50
Layer 2 Inf 25 200

Table 7.1: Noisy model description.

The obtained posterior distribution is presented in Figure 7.10 and the corresponding
models with their RMS are displayed in Figure 7.11.

From the results, it is observed that the water content is satisfactorily solved (the first
layer, even better than the second), whereas the relaxation time distribution still remains
wide. The true parameters are always present in the posterior distribution, proving the
consistency of the applied scheme. The error on the estimated data originating from the
models (RMS) is of the order of magnitude of the noise level, which again means that the
model is well solved. On the obtained distributions of the parameters, the main effect of the
PFA scheme is (1) to reduce the range of possible values and (2) to turn the prior uniform
distributions into posterior Gaussian distributions. Therefore, the global uncertainty on
the model parameters is actually reduced for all the parameters, even if the range of the
posterior is as wide (or wider due to the use of kernel density) as the prior in some cases.

In order to demonstrate the ability of the PFA imaging process to handle Gaussian
noise properly, it has been chosen to also present the results of the PFA imaging applied to
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Figure 7.10: Posterior distribution for the 2-layer synthetic model. The solid black lines
correspond to the true parameter values. Both the results from the clear and

contaminated data are presented.

noise-free data from the same model. The obtained posterior distributions are displayed in
Figure 7.10, where both results from the noise-free and the noise-contaminated datasets are
presented. It appears that the two sets of distributions are very similar. This is consistent
with the negligible impact of Gaussian noise on the process.
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Figure 7.11: Models from the posterior distribution for the 2-layer noisy synthetic model.
The true model is presented in solid black lines and the extent of the prior model space

is defined with the dashed black lines.
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7.1.2 Synthetic multiple loops

The example presented in this part is a 3-layer model (Table 7.2). The particularity of
this synthetic data consists in the imposed acquisition context, which has been determined
as a noisy environment (standard deviation of the Gaussian noise is 50 nV for the largest
loop), with a proposed experimental configuration described in Table 7.3. The measured
ambient magnetic field is the default one (48 000 nT) and the resistivity is constant across
the model and equal to 100 Ω.m.

Layer 1 2 3
Depth [m] 5 30 Inf

Water content [%] 5 30 10
Relaxation time [ms] 100 200 50

Table 7.2: Synthetic multiple loops example: description of the model.

Loop 1 2 3
Diameter [m] 100 50 10
Transmitter X
Receiver X X X

Noise level [nV] 50 12.5 1

Table 7.3: Synthetic multiple loops example: acquisition parameters.

This model will explore the advantages of the multiple-loop configuration discussed in
Chapter 6. The first layer is very shallow and should therefore benefit from the increased
sensitivity of the inner loops kernels in this zone.

Seven different configurations are possible, as presented in Table 7.4.

Name Receiver
100 m 50 m 10 m

Independent 1 X
Independent 2 X
Independent 3 X

Joint 1 X X
Joint 2 X X
Joint 3 X X
Joint 4 X X X

Table 7.4: Possible configurations for the synthetic example.

The corresponding sensitivity kernels for this experimental configuration are presented
in Figure 7.12. They show the classical characteristics of kernels. The Tx100/Rx100 kernel
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has a unique depth sensitivity for each pulse moment, whereas the two others show a
bimodal behavior for larger pulses with an increased sensitivity for shallow depth.

Figure 7.12: Sensitivity kernels for the multiple loops synthetic example. The sensitivity
values are scaled to the diameter of the receiver loop for visualization.
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7.1.2.1 QT inversion

Figure 7.13: Results of the QT inversion applied to the synthetic data simulated from the
model described in Table 7.2. The black lines correspond to the true model.

On the left, the results of independent inversions (one transmitter/one receiver) are
presented. On the right, the results of the joint inversions (one transmitter/multiple

receivers) are presented (see Table 7.4 for configuration details).

The choice of the regularization parameter (Table 7.5) was made in order to provide a
similar amplitude on the norm on the data error and the norm on the model, combined
with the L-curve criteria (when consistent).

The results are presented in Figure 7.13. The "Independent" inversions perform poorly
on the determination of the first transition (5 m depth) and present an inconsistent re-
laxation time distribution. The "Independent 1" (100 m transmitter/100 m receiver) and
"Independent 2" (100 m transmitter/50 m receiver) are unable to provide accurate in-
formation on the shallowest part of the model. On the other hand, the "Independent
3" (100 m transmitter/10 m receiver) inversion provides information highlighting the low
water content of the first meters of the subsurface. Globally, it seems that from all the
independent inversions, the "Independent 3" (10 m receiver) leads to the most satisfactory
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Configuration Regularization parameter
Independent 1 5000
Independent 2 15 000
Independent 3 2000

Joint 1 8000
Joint 2 2500
Joint 3 10 000
Joint 4 15 000

Table 7.5: Regularization parameters for the multiple loops synthetic example.

results, yielding consistent water content and relaxation time distributions, even at shallow
depth where other inversions provide too high water contents. This is logical, since this
latter configuration benefits from a good sensitivity from 0 to 40 meters with a relatively
high sensitivity at shallow depths. In terms of goodness of the fit on the simulated data,
the χ2 values are all slightly above 1, with the highest misfit attributed to the "Independent
2" and its 1.2 χ2. This latter misfit is otherwise observed in the water content distribution
where the obtained model shows a deeper unsaturated layer and a larger water content in
the second layer.

The "Joint" inversions provide a more accurate distribution of the water content. The
obtained results are very similar, at the exception of the "Joint 3" inversion (50 and 10 m
receivers) that provides a too large relaxation time for the first layer, this latter inversion
once again provides the highest misfit with a χ2 value of 1.12, slightly above the others
with values below 1.08. From all the inversions, it appears that the "Joint 4" is superior to
all other results because it properly solves all the aspects of the model, without producing
an artefact at surface (large relaxation time).

7.1.2.2 PFA imaging

The PFA imaging on the synthetic data presented above (Table 7.2) requires the definition
of a prior model space. We will assume well-known that the subsurface can be separated
into 3 layers. The thickness, water content and relaxation time of the three layers are
uniformly distributed in the intervals presented below:

• Thickness:

– Layer 1: [2.5 7.5] m

– Layer 2: [20 30] m

• Water content:
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Figure 7.14: Posterior distributions after PFA imaging on the synthetic data,
results from the "Independent" imaging.
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Figure 7.15: Posterior distributions after PFA imaging on the synthetic data,
results from the "Joint" imaging.
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– Layer 1: [0.035 0.15]

– Layer 2: [0.035 0.35]

– Layer 3: [0.035 0.15]

• Relaxation time:

– Layer 1: [5 350] ms

– Layer 2: [5 350] ms

– Layer 3: [5 350] ms

The results (Figures 7.14 and 7.15) show that the PFA imaging is able to provide con-
sistent posterior distributions for all the parameters, but deliver very similar distributions
with all configurations in the case of this low noise example. When analyzing the ob-
tained distributions in terms of mean values and standard deviations, the values are barely
changing with the different configurations, as opposed to the deterministic QT inversion
results. This is demonstrated in Figure 7.16 where one can observe that the normalized
standard deviation values are very close and that no configuration seems superior to the
others.

Figure 7.16: Evolution of the standard deviation of each posterior distribution,
normalized to the mean value of the standard deviation of each result for each parameter.
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The fact that all the distributions are already very similar brings the conclusion that
each dataset has the same information level on the parameters, hence, no significant reduc-
tion should be obtained by merging the different datasets. As expected from this observa-
tion, the only parameter for which the distributions are not identical in the "Independent"
configuration, T ∗2,3, is globally better resolved in the "Joint" imaging.

The results presented in this section showed once again that the innovative PFA imaging
process is working properly, even on noisy data. On synthetic models and datasets, the
PFA imaging always produced consistent posterior distributions of parameters, with a
narrowing of the ranges and a transformation from uniform to Gaussian distributions.
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Figure 7.17: Data after noise processing at the Mont Rigi.
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7.2 Real classical data:
The case of Mont Rigi

The geological context of the Fagnes (Gilson, Briers, Ruthy, & Dassargues, 2017) offers a
unique opportunity to test a two-layer model set-up. As peat exhibits high water contents
(total porosity of 90% and 10 to 30% of effective porosity (Wastiaux, 2008)), we should
get a significant response from this. On the other hand, in this specific geological context,
the peat layer is lying on a Cambrian bedrock (La Venne formation) which is known as an
aquiclude with very low water content (Gilson et al., 2017).

NMR is, therefore, a good candidate to retrieve the thickness of the peat layer and
has been tested in February 2018. The data (Figure 7.17) showed a low noise level (about
13 nV for a 20 m diameter loop).

The kernel for this experiment (Figure 7.18) already shows us that the experimen-
tal design was probably not that efficient to retrieve information for shallow layers: the
sensitivity to the first meters of soil is very small. Therefore, the results in terms of wa-
ter content and relaxation time for the first layer might be inconsistent. However, the
sensitivity to in-depth water is important, which means that the second layer should be
reasonably resolved.

Figure 7.18: Kernel for the Mont Rigi experiment (Tx = Rx = 20 m diameter).
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7.2.1 QT inversion of the Mont Rigi data

Standard processing of the data has been applied using despiking and noise removal from a
reference loop available on the field (Müller-Petke et al., 2016). No further treatment was
needed due to the exceptionally low noise level on site. Inversion using gate integration
gave much better results than inversion on the raw data. This is due to the fact that the
signal is very low and therefore, gate integration enables to retrieve more efficiently trends
for the observed decay (noise has less impact on gated data than on raw data). Therefore,
the use of gate integration has been chosen in further developments.

The kernel computation (Figure 7.18) was made under the assumption that the earth
was resistive (infinite resistivity), which leads to a zero imaginary part of the kernels.
This is not problematic in our case, as the shown signal is very low and the use of the
imaginary part of the complex signal would significantly increase the noise in the dataset
(the amplitude of the imaginary part is systematically lower, but the noise in the imaginary
part and the real part of the signal are of similar amplitudes).

Figure 7.19: L-curve for the Mont Rigi dataset.

The optimum regularization parameter was obtained according to the L-curve criteria
(the maximum of curvature in the curve corresponds to the best regularization parameter)
and is around 775 (Figure 7.19).

The results of the deterministic inversion are shown in Figure 7.20 (black curve). The
deterministic result clearly shows a two-layer structure with the first layer depth around



76 Chapter 7. Results

Figure 7.20: Left: QT Inversion results for the Mont Rigi data. The black curve
represents the deterministic inversion results and the grey curves show the results of

bootstrap inversion (first approximation of the uncertainty). Right: Forward model and
error associated to the deterministic inversion result.

2 meters. Moreover, decay time tends to present another structure in depth (10 m) that
could be linked to fractures filling or other unknown geological features.

The bootstrap inversion (testing numerous subsamples of the dataset) shows that the
presence of the layer is highly uncertain (even if, from previous geological studies, we know
that a peat layer is present with a high water content).

As a conclusion, it appears that the dataset is probably not containing enough infor-
mation about the first meters to precisely demonstrate the presence of the peat layer using
NMR. Nonetheless, the purely deterministic inversion seems to demonstrate the presence
of a first layer with a thickness around 2 meters, even if its characteristics are uncertain.
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This is coherent with the presence of a peak at Larmor frequency in the Fourier transform
of the FID signal (Figure 7.17), that implies the presence of water.

7.2.2 PFA imaging of the Mont Rigi data

PFA imaging based on the dataset acquired in the Mont Rigi has been performed with the
prior defined in Table 7.6.

Thickness [m] Water content [%] T ∗2 [ms]
Layer 1 [0, 5] [0.035, 0.35] [5, 500]
Layer 2 Inf [0.035, 0.1] [5, 500]

Table 7.6: Prior model space for Mont Rigi.

The results from this experiment are presented for the PFA in Figure 7.21. From a prior
uncertainty on the thickness of the peat layer from 0 to 5 meters, the PFA scheme obtained
a slightly smaller range with a Gaussian distribution instead of the uniform distribution
of the prior. The water content of the second layer is also well solved: between 0.03 and
0.10, which is plausible regarding the context of the site.

The predicted values for the relaxation time, as well as the water content of the first
layer are way more spread. This is caused by two different effects. The first layer is
badly resolved due to the lack of sensitivity of the experiment to the first 2 meters (cfr.
kernel, Figure 7.18). For the relaxation time, the large range of observed values may be
caused by the very low water content, leading to an intrinsic insensitivity to this parameter
(Appendix B). It is also observed that the posterior distribution for those parameters is
wider than the prior distribution. This is due to the use of the kernel density function that
naturally widens the distributions in CCA space.

Finally, the RMS values are slightly higher than the noise level (10 nV) with values
between 10 and 20 nV.

The results obtained in this section proved that the discussed schemes to exploit SNMR
data (QT inversion and PFA imaging) are reliable. They produced relevant results, even if
the amplitude of the registered signal was very low. A major divergence between the two
approaches is already observed: the QT inversion provides a deterministic result (which
can be somewhat extended to a first approximation of uncertainty using the bootstrap
inversion), whereas the PFA imaging provides a full posterior distribution of parameters,
hence, a full image of the uncertainty. The results of the QT inversion are included in the
distributions obtained through the PFA imaging.
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Figure 7.21: Results for the Mont Rigi experiment.
Top: Model distributions, Bottom: Parameters distributions. The black lines represent

the QT inversion results.
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7.3 Real multi-loops data:
The Schillerslage site (Germany)

The Schillerslage hydrogeophysical test site is located in Germany, near Hanover. It has
been studied since 2009 by the Liebniz Institute for Applied Geophysics (LIAG) (Dlugosch,
2014). The site is equipped with multiple boreholes and is widely studied using several
geophysical techniques, among which electromagnetic, induced polarization, ground pene-
tration radar and seismic measurements (Holland et al., 2011). Surface Nuclear Magnetic
Resonance has been used on this site previously (Dlugosch, 2014) combined with ERT
measurements (Figure 7.22).

Figure 7.22: Configuration of the NMR experiments lead by Dlugosch (2014).

The geology of the site consists of a succession of sub-horizontal layers from the glacial
periods Elsterian, Saalian and Weichselian above a marl bedrock from the Late Cretaceous
(Binot, 2008). Three lithological profiles are available at the boreholes Eng20, Eng08
and Eng03. They show few vertical variations (less than 1 meter changes for interfaces)
and could therefore be summarized in one lithological profile. The lithological profile
(Figure 7.23) can be described as follows (from top to bottom):

• Medium sand from the Weichselian for 5 meters (+/- 1 meter)

• Fine to medium sand from the Saalian for 5 meters (+/- 2 meters)

• Silt, sand and gravels from the Elsterian for 5 meters (+/- 1 meter)
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• Till and boulder clay from the Elsterian for 3 meters (+/- 1 meter)

• Medium to coarse sand from the Elsterian for 5 meters (+/- 1 meter)

• Marl bedrock from the Late Cretaceous of unknown thickness

Figure 7.23: Summary of the lithological profiles from the boreholes on the Schillerslage
test site (see Figure 7.22 for the localization of the boreholes) (from Dlugosch, 2014).

Hydrogeologically, the soil is characterized by a shallow unsaturated zone (2 meters
+/- 0.5 meter inter-seasonal variations) and is then saturated until the bedrock (which is
also saturated). The aquifer is split into two different zones by the clay layer from the
Elsterian (on the site, this acquiclude is present around 15 meters depth) but on a large
area, the confining layer is sometimes not present and its thickness can vary widely.

The dataset analyzed in this work has been acquired approximately at the location of
the Eng20 borehole, where previous water content measurements were available (Dlugosch,
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Figure 7.24: Different water contents obtained with different NMR methods
(from Dlugosch, 2014).

2014). Those water contents are presented in Figure 7.24. The experimental configura-
tion consisted of three loops disposed concentrically and one reference loop for the noise
acquisition (Figure 7.25).

Three sequences of acquisition have been tested:

1. Injection on the 50 m loop and reception of the signal on the 50, 30 and 10 m loops
with pulse length of 20 ms.

2. Injection on the 50 m loop and reception of the signal on the 50, 30 and 10 m loops
with pulse length of 10 ms.

3. Injection on the 30 m loop (two turns instead of one previously) and reception of the
signal on the 50, 30 and 10 m loops with pulse length of 20 ms.
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Figure 7.25: Multiple loops experimental configuration used on the Schillerslage test site.

The different configurations were not all explored in this work. Actually, the dataset
originating from the 10 ms acquisition (2) showed less precise peaks around the Larmor
frequency, meaning they were less trustful. Therefore, this latter has been discarded in
further developments and the acquisitions with pulse length of 20 ms (1 and 3) were the
only ones kept for analysis.

One can enumerate the different options for the configurations of the datasets. This is
performed in Table 7.7. In total, there are 21 possible transmitter/receiver combinations
to interpret. Normally, all those combinations should lead to similar models, even if the
sensitivity changes with the configuration. Different types of configurations are proposed:
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Name Transmitter Receiver
50 m 30 m 50 m 30 m 10 m

Independent 1 X X
Independent 2 X X
Independent 3 X X
Independent 4 X X
Independent 5 X X
Independent 6 X X

Joint 1 X X X
Joint 2 X X X
Joint 3 X X X
Joint 4 X X X X
Joint 5 X X X
Joint 6 X X X
Joint 7 X X X
Joint 8 X X X X

General 1 X X X
General 2 X X X
General 3 X X X
General 4 X X X X
General 5 X X X X
General 6 X X X X
General 7 X X X X X

Table 7.7: Possible configurations on the Schillerslage dataset.

• Independent: one transmitter combined with one receiver (6 possibilities)

• Joint: one transmitter but multiple receivers (8 possibilities)

• General: multiple transmitters and one or multiple receivers (7 possibilities)

Each proposed configuration will be interpreted using the classical QT inversion al-
gorithm as well as the newly proposed PFA imaging process. The addition of new data
will be discussed and the usefulness of each inversion will be demonstrated. The main
object of this research is to prove the superiority of the "General" configuration in terms
of sensitivity and results, compared to the classically used independent inversion.

7.3.1 Sensitivity kernels at Schillerslage

In order to compute the kernels, the experimental design must be taken into account as
well as the characteristics of the site. On-site measurements have shown that the ambient
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Earth’s magnetic field (B0) has an intensity of 49 380 nT. The inclination is of 68◦(Dlugosch,
2014).

Dlugosch (2014) measured the electrical resistivity on-site using ERT. The results
showed that no particular structures were present except for the ones identified in the
1-D lithological profiles (Dlugosch, 2014). Therefore, the resistivity model obtained in this
experiment (Figure 7.26) can be transformed into a 1-D model of the subsurface resistivity.

Figure 7.26: 2-D resistivity profile at the Schillerslage experimental site (Dlugosch, 2014).

The 1-D resistivity profile can be described as follows (from top to bottom, Dlugosch
(2014)):

• 500 Ω.m from 0 to 4.5 meters (Weichselian sand)

• 300 Ω.m from 4.5 to 10 meters (Saalian sand)

• 85 Ω.m from 10 to 16 meters (Elsterian silt, sand, gravels and clay)

• 200 Ω.m from 16 to 22 meters (Elsterian sand)

• 20 Ω.m from 22 meters to an undefined boundary (Late Cretaceous marl bedrock)

As it has been shown that the kernels are sensitive to resistivity values below 100 Ω.m

(Behroozmand et al., 2015), our case will require the use of a consistent (even if not exact)
resistivity model to compute the sensitivity kernels. In the absence of a resistivity model,
the results of the experiment could slightly differ. For example, if the choice was to use a
resistive earth model, the imaginary part of the kernels would have been non-existent. On
the other hand, the use of a constant 100 Ω.m resistivity could still provide efficient results,
but the accuracy could change, since the value of the kernels would differ, especially in the
imaginary part (the most sensitive to resistivity).

From those kernels, it is easy to compute the cumulative sensitivity of a given config-
uration method with depth. This already provides a first insight of the advantages and
the superiority of a method above another. The sensitivity here is simply defined as the
sum along all pulse moments of sensitivity kernels for each depth. This is presented in
Figure 7.29.
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Figure 7.27: Sensitivity kernels (in V/m) for the different receiver loops
with the 30 m transmitter loop.
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Figure 7.28: Sensitivity kernels (in V/m) for the different receiver loops
with the 50 m transmitter loop.
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Figure 7.29: Sensitivity of the different configurations proposed according to the
sensitivity kernels (absolute value), the names of the configuration refers to names

presented in Table 7.7.

From Figure 7.29, it is easily understood that the so-called general inversion is supposed
superior to every other type of inversion explored. It gives a much larger sensitivity to the
whole depth. The joint inversions with the 30 m loop as unique transmitter tends to show
that this configuration gives more load to the shallow layers. This makes sense since the
perturbed volume of soil is shallower.

The sensitivity is globally one order of magnitude higher in the real part than in the
imaginary part of the kernels. Nonetheless, it is observed that the in-depth sensitivity is
larger for the imaginary part than for the real part of the signal. This is due to the highly
conductive marl bedrock (20Ω.m).

A further analysis of the sensitivity kernels reveals that the sensitivity as a function of
the pulse moments is not straightforward in the cases where the receiver (Rx) is not of the
same size as the transmitter (Tx). According to Figures 7.27 and 7.28, the sensitivity tends
towards a bimodal distribution as a function of depth, with a first peak in the shallowest
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zones and a second peak in the lower part, closer to the path of the sensitivity attributed to
the case where the transmitter and the receiver are of the same size. This is also observed
in the sensitivity plots (Figure 7.29) where a first peak is observed at 0 meter and then, a
second one (of slightly larger amplitude) takes place around 5 meters. Therefore, we can
assume that the experimental design gives us access to more detailed information about
those two zones.

Proportionally, it is observed that the 30 meter diameter transmitter (Independent 4
to 6 and Joint 5 to 8) results in higher sensitivities than the 50 meter one (Independent 1
to 3 and Joint 1 to 4).
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7.3.2 QT inversion

7.3.2.1 Independent inversion: 1 transmitter/1 receiver

The results of the independent inversions are displayed in Figure 7.30. Some characteristics
of those results are presented in Table 7.8.

Figure 7.30: Results for the "Independent" inversions. The names of the configurations
refer to names presented in Table 7.7. The results are compared to the simplified
1-D geological profile proposed by Dlugosch (2014) and laboratory and borehole

measurements of the water contents exposed by Dlugosch (2014).
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Name Regularization Noise Error
Minimum Maximum Mean χ2

nV % nV % nV % nV /
Independent 1 50 28.35 1.1 0.3 1010.6 214.8 43.9 26.4 1.13
Independent 2 100 10.33 1.5 0.1 5026.9 89.8 55.3 9.5 1.09
Independent 3 25 7.59 1.0 0.1 2269.6 97.0 43.9 8.8 1.52
Independent 4 25 23.95 1.7 0.3 533.3 218.5 36.1 32.2 1.54
Independent 5 100 22.70 0.4 0.4 933.2 200.3 24.0 23.2 1.14
Independent 6 80 7.30 0.3 0.2 1557.4 104.2 54.3 20.4 3.15

Table 7.8: Characteristics of the independent inversions results. The χ2 value is the one
given by MRSmatlab and may therefore differ from the value induced by the different

parameters presented in this table.

From those results, it appears that none of the inversion methods can pretend to produce
a full and consistent image of the subsurface. Whereas the depth to the first aquifer is
reasonably well solved in two cases ("Independent 4" and "Independent 6"), it is very
badly reproduced by the four others. The "Independent 1" and "Independent 5" are the
configurations classically used (hence, the same transmitter/receiver). However, it has
been previously shown that the kernel corresponding to those experimental designs did not
present a high sensitivity for the very first meters, hence, for the unsaturated layer. The
observed high water content for the first two meters of the profile is probably due to this
lack of sensitivity, resulting in the creation of artefacts. In contrast, the "Independent 3"
behaviour is more problematic, as the proposed model tends to present an unsaturated zone
which is thicker than what is geologically expected, whereas the sensitivity is supposedly
much higher in this area due to the bimodal shape of the kernels.

However, according to Table 7.8, the results from the "Independent 6" method (30 m
transmitter and 10 m receiver) are more an artefact than a result from the data. This is
for example proven by the χ2 value which is very high (3.15) but also the value of the mean
error (20.4 nV) compared to the very low noise level observed on this loop. Therefore, even
if the unsaturated zone seems very well solved, if no borehole was present, the operator
using this configuration could not trust this result. As none of the 10 m diameter receiver
loops from the experimental designs produced trustable results, which is probably due to
the very low amplitude of the recorded signal and perhaps also to issues in the dataset, those
two datasets are withdrawn from further interpretations. This choice is also supported by
the resolution matrices, computed according to Müller-Petke and Yaramanci (2008). The
matrices showed that the inversion of dataset originating from 10 m receiver loops were
leading to significantly smaller confidence depth and large spreading of the resolution along
the diagonal (for more details on the resolution matrices, refer to Appendix C). This means
that only 9 configurations remain:
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• Independent 1 : 50 m transmitter and 50 m receiver

• Independent 2 : 50 m transmitter and 30 m receiver

• Independent 4 : 30 m transmitter and 50 m receiver

• Independent 5 : 30 m transmitter and 30 m receiver

• Joint 1 : 50 m transmitter and 50 m/30 m receiver

• Joint 5 : 30 m transmitter and 50 m/30 m receiver

• General 1 : 50 m/30 m transmitter and 50 m receiver

• General 2 : 50 m/30 m transmitter and 30 m receiver

• General 4 : 50 m/30 m transmitter and 50 m/30 m receiver

7.3.2.2 Joint inversion: 1 transmitter/multiple receivers

The results of the two remaining joint inversions are presented in Figure 7.31. The
corresponding parameters are presented in Table 7.9.

Name Regularization Noise Error
Minimum Maximum Mean χ2

nV % nV % nV % nV /
Joint 1 150 19.34 1.3 0.1 4862.1 225.2 51.0 18.7 1.15
Joint 5 200 23.32 0.5 0.2 784.2 238.4 34.7 33.9 1.69

Table 7.9: Characteristics of the joint inversions results. The χ2 value is the one given by
MRSmatlab and may therefore differ from the value induced by the different parameters

presented in this table.

From both inversions, multiple structures are observed. The depth to the saturated
zone seems reasonably solved (the interface is placed 0.5 meter higher than the measured
depth to the aquifer issued from the borehole but this remains in a reasonable range for sea-
sonal variations (Dlugosch, 2014)). Moreover, other structures are observed in Figure 7.31.
For example, the transition between the Saalian and the Elsterian is well marked in the
"Joint 1" configuration. One could also argue that the interface between the clayey layer
and the medium to coarse sand is observable in both "Joint 1" and "Joint 5" configurations.

Globally, none of those inversions provides a satisfactory profile. Both spot the presence
of the unsaturated layer relatively precisely (even if the associated relaxation time does
not converge to a unique value). On the other hand, the clayey layer (Elsterian) results in
mitigated distributions. It is observed that the water content of this layer is not significantly
different from the other layer; however, the relaxation time is drastically reduced, which is
consistent with the physics of the problem. Moreover, compared to the previously obtained
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profiles using the "Independent" inversions, the results tend to converge towards similar
profiles, which is consistent since the profile is supposed to be exactly the same.

Figure 7.31: Results for the "Joint" inversions. The names of the configurations refer to
names presented in Table 7.7. The results are compared to the simplified 1-D geological
profile proposed by Dlugosch (2014) and laboratory and borehole measurements of the

water contents exposed by Dlugosch (2014).
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7.3.2.3 General inversion: multiple transmitters/multiple receivers

Name Regularization Noise Error
Minimum Maximum Mean χ2

nV % nV % nV % nV /
General 1 50 25.90 1.4 0.3 1586.0 220.5 40.3 32.4 1.48
General 2 350 17.35 0.5 0.2 6369.1 180.0 48.4 22.1 1.43
General 4 500 21.62 0.6 0.1 5192.7 266.8 45.9 29.9 1.58

Table 7.10: Characteristics of the general inversions results. The χ2 value is the one given
by MRSmatlab and may therefore differ from the value induced by the different

parameters presented in this table.

Three "General" inversions are proposed:

• General 1 : 50 m/30 m transmitter and 50 m receiver

• General 2 : 50 m/30 m transmitter and 30 m receiver

• General 4 : 50 m/30 m transmitter and 50 m/30 m receiver

Each of those inversions produces different results presented in Figure 7.32 with the
corresponding characteristics in Table 7.10.

The results are very similar whatsoever the dataset used, at the exception of the
relaxation time of the lower part. The "General 2" and "General 4" cases are the most
precise to determine transitions. The "General 1" seems slightly worse, with the beginning
of the saturated layer displaced lower and the transition between the clayey layer and the
sand from the Elsterian slightly upward.
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Figure 7.32: Results for the "General" inversions. The names of the configurations refer
to names presented in Table 7.7. The results are compared to the simplified 1-D

geological profile proposed by Dlugosch (2014) and laboratory and borehole
measurements of the water contents exposed by Dlugosch (2014).



7.3. Real multi-loops data:
The Schillerslage site (Germany) 95

7.3.3 PFA imaging

In order to perform a PFA imaging on the Schillerslage dataset, it is first required to define
the prior model space. This is done using the data from the borehole. An uncertainty on
the thickness of the layers is set to +/- 2 meters (at the exception of the unsaturated layer,
for which the uncertainty had been set to +/- 1 meter). The other parameters are chosen
in a reasonable range according to the available data. A description of the prior model
space is presented in Figure 7.33

A sampling was then made in the model space. Five thousand models were randomly
sampled using the latin-hypercube sampler, ensuring a good coverage of the whole model
space. The different configurations made in the Subsection 7.3.2 are repeated in this part of
the work. Hence, nine imagings are performed: 4 "Independent" configurations, 2 "Joint"
and 3 "General" (for more details on the names and corresponding characteristics of the
used configurations, refer to Table 7.7).

The PFA imaging was performed with the same parameters for each type of configura-
tion:

• The data were used in absolute value (amplitude of the signal)

• The resistivity was set in the kernels and has not been re-computed for each model

• The models parameters were not reduced using PCA (cfr. issue with the load given
to the water content discussed in Chapter 5, Section 5.2)

• When the dataset falls outside the explored space in CCA-space, the full distribution
is used (no reduction)

7.3.3.1 Independent: 1 transmitter/1 receiver

The results of the prediction-focused approach imaging on the independent datasets is
presented in Figure 7.34.

Those results showed that the main outcome of the process is to transform the uniformly
distributed variables from the prior model space into Gaussian (or Gaussian-like) distribu-
tions. Basically, few to no reduction of the possible ranges of values for the parameters is
observed, but in each and every case, the distribution is centered (not necessarily on the
mean value of the prior distribution) and there is a reduction of the standard deviation.

For some of the parameters, the obtained distributions are very similar whatever the
used dataset. This is the case for the characteristics of the first layer (the unsaturated
part of the log) and for the thickness of the layers at the exception of the first. On the
other hand, the resulting distributions for the remaining parameters are spread along the
possible values. Sometimes, different configurations converge towards similar distributions,
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Figure 7.33: Description of the prior model space inspired by the knowledge of the
geology of the site and informations from the deterministic inversions.

but globally, different datasets provide different distributions. Otherwise, it is important
to notice that all the obtained distributions are somewhat overlapping, which is absolutely
required since they all represent the same parameter.

In a nutshell, the obtained distributions can be summed up in terms of mean values and
standard deviations (assuming a Gaussian distribution). This is presented in Table 7.11.
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Figure 7.34: Results for the "Independent" configurations using the PFA imaging
process. The names of the configurations refer to names presented in Table 7.7.

The dashed black lines in the thickness column represent the depth obtained from
boreholes in the surrounding. The dashed red lines in the water content and relaxation
time columns represents the approximated value obtained through the QT-inversion.
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The Gaussian character of the distributions is tested using a "One-sample Kolmogorov-
Smirnov test" (Massey, 1951). Table 7.11 enhances the observed disparities between the
different configurations, with similar standard deviations for each parameter but somehow
different mean values.

Name Independent 1 Independent 2 Independent 4 Independent 5
Mean Std Mean Std Mean Std Mean Std

W1 [/] 0.0619 0.0153 0.0588 0.0175 0.0633 0.0134 0.0722 0.0190
W2 [/] 0.1411 0.0493 0.2264 0.0497 0.4381 0.0576 0.1456 0.0515
W3 [/] 0.0939 0.0614 0.1018 0.0584 0.3508 0.1054 0.2323 0.0570
W4 [/] 0.0843 0.0592 0.2805 0.0788 0.3030 0.0974 0.1313 0.0753
W5 [/] 0.0440 0.0342 0.0516 0.0420 0.3299 0.0418 0.2813 0.0468
T ∗2,1 [ms] 229.8733 109.4502 196.6098 103.9810 179.6282 93.2683 228.9658 111.3608
T ∗2,2 [ms] 145.5474 63.7455 400.1678 58.6325 479.9594 83.5481 194.1114 98.0162
T ∗2,3 [ms] 96.2625 63.8813 269.9411 78.8953 352.0178 99.0763 333.9914 77.1320
T ∗2,4 [ms] 98.8175 68.2816 220.0207 96.2240 211.6924 96.3135 187.5569 86.5770
T ∗2,5 [ms] 315.9668 68.3233 283.3383 54.9341 157.0893 54.8658 140.3315 62.1770
e1 [ms] 1.7224 0.5553 2.1027 0.5666 1.8001 0.5463 1.2203 0.3802
e2 [m] 8.0296 1.2060 8.0200 1.2107 8.0335 1.1679 7.9329 1.2448
e3 [m] 7.3131 1.0961 7.1839 1.0956 6.8713 1.1578 6.9174 1.1260
e4 [m] 4.9052 1.1006 5.1364 1.1396 4.9199 1.1857 5.1988 1.1497

Table 7.11: Results from the "Independent" PFA imaging: characteristics of the posterior
distributions of parameters. The red values correspond to non-Gaussian distributions

("One-sample Kolmogorov-Smirnov test" with significance level of 5%).

7.3.3.2 Joint: 1 transmitter/multiple receivers

The two joint configurations results are presented in Figure 7.35. Globally, there is less
spreading of the obtained values. The obtained distributions are closer one-another and
they are restrained to smaller ranges. This is presented in Table 7.12. The standard
deviation is globally smaller for most of the parameters. This proves that the use of
multiple datasets at once enables to better restrain the possible values of the parameters,
especially for the relaxation time.

Again, the spreading is larger for the relaxation time than for the other parameters.
This could signify that the experiment, even if highly controlled by this last parameter,
could not provide a reasonable range for this parameter, hence is not sensitive enough.
This may be due to the noise level, which enables the presence of models with relatively
larger distributions and an obtained error still below the noise level.

It is also observed that the thickness of the first layer is mostly overestimated in both
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cases. Otherwise, the thickness of the other layers is relatively well estimated with con-
sistent distributions centered on the values measured in the boreholes. The distributions
for the water content are also closer, depending on the configuration, than in the "Inde-
pendent" configurations. The distributions for the water content are much closer for the
shallowest parts than for the least sensitive, in-depth, layers.

Name Joint 1 Joint 5
Mean Std Mean Std

W1 [/] 0.0579 0.0184 0.0590 0.0157
W2 [/] 0.2793 0.0507 0.2287 0.0495
W3 [/] 0.1012 0.0592 0.1280 0.0559
W4 [/] 0.1045 0.0617 0.1922 0.0882
W5 [/] 0.0411 0.0340 0.2088 0.0506
T ∗2,1 [ms] 170.0767 95.7939 135.4757 85.7335
T ∗2,2 [ms] 440.3852 60.2151 171.9341 91.1135
T ∗2,3 [ms] 260.8610 75.6438 372.8993 73.8005
T ∗2,4 [ms] 318.2677 84.2818 207.5173 98.3966
T ∗2,5 [ms] 238.4132 54.2860 165.9978 75.7185
e1 [m] 2.8475 0.3835 2.5039 0.3358
e2 [m] 8.0177 1.2167 7.9867 1.2271
e3 [m] 7.0238 1.1960 6.6813 0.9043
e4 [m] 4.9964 1.1969 5.1543 1.2143

Table 7.12: Results from the "Joint" PFA imaging: characteristics of the posterior
distributions of parameters. The red values correspond to non-Gaussian distributions

("One-sample Kolmogorov-Smirnov test" with significance level of 5%).



100 Chapter 7. Results

Figure 7.35: Results for the "Joint" configurations using the PFA imaging process.
The names of the configurations refer to names presented in Table 7.7.

The dashed black lines in the thickness column represent the depth obtained from
boreholes in the surrounding. The dashed red lines in the water content and relaxation
time columns represents the approximated value obtained through the QT-inversion.
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7.3.3.3 General: multiple transmitters/multiple receivers

The results from those three configurations are presented in Figure 7.36. The characteristics
of the distributions are presented in Table 7.13. The results appear very similar to the
ones obtained with the "Joint" inversion, with the exception that now, some spreading
of the values is observed. The "General 4" distributions appear to be the closest to the
distributions obtained in the "Joint" configurations, meaning that the addition of a second
transmitter to the dataset is probably not that informative compared to the first transmit-
ter.

Name General 1 General 2 General 4
Mean Std Mean Std Mean Std

W1 [/] 0.0649 0.0142 0.0695 0.0194 0.0595 0.0184
W2 [/] 0.3118 0.0557 0.1411 0.0482 0.2485 0.0488
W3 [/] 0.0644 0.0487 0.2015 0.0567 0.1226 0.0598
W4 [/] 0.2254 0.0784 0.1724 0.0720 0.0872 0.0575
W5 [/] 0.0786 0.0447 0.1126 0.0465 0.0552 0.0368
T ∗2,1 [ms] 87.8501 62.8548 227.4293 113.7065 155.9846 93.8796
T ∗2,2 [ms] 270.2070 96.8257 365.5081 49.6566 392.8048 51.3491
T ∗2,3 [ms] 101.0280 59.9339 358.2498 74.9690 354.3126 72.6487
T ∗2,4 [ms] 196.5505 85.5137 279.6420 89.4141 161.4683 81.0649
T ∗2,5 [ms] 206.4122 83.3995 220.0561 59.2157 229.6353 58.0003
e1 [m] 1.8120 0.4218 1.4890 0.4916 2.6672 0.3886
e2 [m] 9.2524 0.9464 8.0290 1.1677 8.0034 1.2172
e3 [m] 6.5330 0.9505 7.0590 1.2266 7.0881 1.1222
e4 [m] 4.9738 1.0831 5.1923 1.1679 5.0618 1.1859

Table 7.13: Results from the "General" PFA imaging: characteristics of the posterior
distributions of parameters. The red values correspond to non-Gaussian distributions

("One-sample Kolmogorov-Smirnov test" with significance level of 5%).

If we compare the obtained spreading of the different configurations used, it appears
that, for most of the parameters, the standard deviations of the distributions are diminished
with the larger datasets, proving the advantage of the multiple loops configuration. This
is done in Figure 7.37, where the mean standard deviation for each cluster of configura-
tion ("Independent", "Joint" and "Global") is used as an indicator of the spreading. The
values are compared to the value corresponding to the prior standard deviation. It ap-
pears that most of the parameters benefit from the larger constraints offered by multiple
loops datasets. Even better, when the spreading tends to increase, it is in much smaller
amplitudes than when it decreases (at the exception of the relaxation time).



102 Chapter 7. Results

As a conclusion, it seems that the "Global" configuration method is the one that
offers posterior distributions with less uncertainty, even if the "Joint" configuration al-
ready significantly improves the possible ranges.

Figure 7.36: Results for the "General" configurations using the PFA imaging process.
The names of the configurations refer to names presented in Table 7.7. The dashed black

lines in the thickness column represent the depth obtained from boreholes in the
surrounding. The dashed red lines in the water content and relaxation time columns

represents the approximated value obtained through the QT-inversion.
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Figure 7.37: Evolution of the spreading with the configuration. Top left: water content,
Top right: relaxation time and Bottom: thickness.
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7.3.4 Discussion

Figures summarizing the different results are presented in Figures 7.38 and 7.39 along
with groundtruth data from Dlugosch (2014). From Figure 7.38, it is easily observed that
the "General 4" configuration is the one that performs best. It produces a well-marked
first unsaturated layer consistent with the knowledge of the site. Moreover, the remaining
part of the distribution is more comparable to the results obtained by Dlugosch (2014) on
the same site, both in terms of water content and relaxation time. On the other hand,
the gains observed between the "Independent 1" and "Joint 1" inversions are difficult to
assess. It seems that the addition of the smaller receiver loop tends to better constrain the
water table by reducing the water content of the first meters, but otherwise, the results
are very similar in terms of water content. Again, in terms of relaxation time, the "Joint
1" inversion presents lower values for the first meters. This is probably the effect of the
smaller loop. In conclusion, for the QT inversion, it appears that the addition of specific
loops, sensitive to specific aspects of the model, are beneficial.

The PFA imaging process (Figure 7.39) shows similar results. However, improvements,
in terms of uncertainty reduction, due to the addition of loops in the dataset are barely
noticeable when directly observing the distributions. The use of the graphs representing
the evolution of the standard deviation from the obtained distributions is more convenient
in order to analyze the specific advantages of the different configurations (Figure 7.37).
From those graphs, it appears that the standard deviation tends to globally decrease when
a large dataset is used, meaning that the use of multiple transmitter/receiver loops is
beneficial to better constrain the uncertainty on the different parameters. However, it also
appears that, for some parameters, the effect of the addition of transmitter/receiver loops
is reversed and an increase of the standard deviation is observed. This is probably linked
to the fact that some datasets are less sensitive to those parameters, and therefore their
addition in the process does not improve the reduction of uncertainty. This is mostly the
case for the in-depth layers, were inner loops show few sensitivity (see the sensitivity kernels,
Section 7.3.1). Nonetheless, those increases are significantly lower than the decreases. On
the other hand, the dramatic increase of uncertainty observed for the relaxation time of
the first layer is due to a relative insensitivity of the experiment to this parameter, linked
to the low water content in this layer (Appendix B).

As a conclusion, the results from the addition of transmitter/receiver loops is mitigated
for the PFA imaging process. Even though, the parameters that benefit from the addition
of sensitive couples are mainly observed in very sensitive areas of the subsurface (i.e. large
extent layers with high water content at an intermediate depth). On the other hand, it
appears that the water content is always better solved than the relaxation time.

Finally, the results of the QT inversion are very difficult to compare to the results of
the PFA imaging, due to the different nature of the emerging image of the subsurface. It
is reassuring to observe that the results of the QT inversion are always contained inside
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Figure 7.38: Comparison of the main QT inversion results. The "Independent 1"
inversion corresponds to the commonly applied experimental design, with a 50 m

transmitter/receiver loop. The "Joint 1" inversion is the first multiple loops approach:
one 50 m transmitter with two receivers (50 and 30 m diameter). Finally, the "General

4" inversion constitutes the most general inversion carried on in this project: two
transmitter loops (50 and 30 m diameter) coupled with two receiver loops (50 and 30 m
diameter). The results are compared to laboratory measurements of the water contents

(black dots) exposed by Dlugosch (2014).
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Figure 7.39: Comparison of the main PFA imaging results. The "Independent 1"
configuration corresponds to the commonly applied experimental design, with a 50 m

transmitter/receiver loop. The "Joint 1" configuration is the first multiple loops
approach: one 50 m transmitter with two receivers (50 and 30 m diameter). Finally, the

"General 4" configuration constitutes the most general inversion carried on in this
project: two transmitter loops (50 and 30 m diameter) coupled with two receiver loops
(50 and 30 m diameter). The dashed black lines in the thickness column represent the
depth obtained from boreholes in the surrounding. The dashed red lines in the water

content and relaxation time columns represents the approximated value obtained through
the QT-inversion.
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the obtained ranges of possibilities from the PFA imaging (with the exception of the first
unsaturated layer, absent of most of the "Independent" and "Joint" inversions). However,
the two approaches showed complementarity. The PFA imaging proposed a way to retrieve
a full posterior distribution of parameters. This result is more complete than the results
obtained from the QT inversion (a deterministic approach), but this also means that those
results are more complex to integrate. Albeit simpler to interpret, the results of the QT
inversion relies on a highly discussed parameter: the regularization parameter. This latter
guarantees a smoother model, avoiding the creation of artefacts due to noise in the dataset.
This parameter is therefore critical, but very difficult to assess objectively. The use of
the L-curve criteria, even if widely spread, is not always consistent and shows mitigated
results. Hence, the logs obtained from the QT inversion algorithm are still subject to a large
uncertainty on this parameter. On the other hand, the PFA imaging does not require such
parameters, as it only relies on the definition of a consistent prior. In terms of computation,
both approaches have their strengths and weaknesses. Where the QT inversion relies on
an algorithm that has evolved in the past years, hence optimized for recent computers, the
PFA imaging process is still under development and therefore requires more CPU time and
memory. Moreover, even if the PFA algorithm was highly optimized, it will still require
larger amounts of CPU time and memory than the QT inversion, due to the use of very
large datasets.





Chapter 8

Conclusion

This work has developed the potential of the multiple loops SNMR experimental configu-
ration. This configuration benefits from the increased sensitivity to shallow subsurface of
coaxial loops while conserving the information issued from the classical coincident loops.
In order to benefit from this configuration, an adaptation of the state-of-the-art QT inver-
sion scheme has been developed to enable the use of larger datasets originating from those
hybrid datasets (Chapter 6).

On the other hand, a new innovative method to interpret SNMR data has been pro-
posed: the prediction-focused approach (PFA) imaging. This latter is the prediction part
of a larger new framework for the analysis of data: Bayesian evidential learning (BEL).
This approach relies on the constitution of statistics-based relations between synthetic
model parameters issued from a prior model space and their corresponding data, enabling
the production of the full posterior distribution constraint to field-acquired data. As this
method was never applied to SNMR data in the past, a fully functioning MATLAB code
has been developed for this purpose. The different steps constituting the PFA imaging pro-
cess have been detailed and discussed, with an emphasize on the divergences between the
developed process and previous similar processes applied to other types of data (Hermans
et al., 2016) (Chapter 5).

Then, the developed PFA scheme has been tested on several synthetic examples, demon-
strating the potential of this new configuration method (Chapter 7, Section 7.1). In a
nutshell, the main outcomes of those extensive analyses showed that the use of principle
component analysis as a dimension reduction tool was nearly insensitive to Gaussian noise,
meaning that no particular attention was needed for the treatment of noise. The method
performed satisfyingly with both noise-free and noisy data. However, it appeared that
the resolution of the water content and thickness of the layers was always more performing
than the resolution of the relaxation time, even if a multivariate sensitivity analysis demon-
strated that the experiment was highly sensitive to those parameters.
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Knowing that the PFA imaging process was working correctly, the QT inversion and the
PFA imaging were applied to a synthetic noisy multiple loops dataset. It demonstrated that
the developed schemes adapted for the use of those particular datasets were consistent and
that both methods performed satisfyingly. For this dataset, "Independent" configurations
(1 transmitter/1 receiver) and "Joint" configurations (1 transmitter/multiple receivers)
were carried out successfully.

Then, the two methods were applied to a real multiple loops dataset from the Schiller-
slage hydrogeological test site (Section 7.3). There, the previously tested "Independent"
and "Joint" configurations have been conducted with both the QT inversion and the
PFA imaging and another case was added: the "General" inversion (multiple transmit-
ters/multiple receivers). This study showed that the main advantage of the use of multiple
loops configurations originates from the increased sensitivity of the dataset to the shallow
layers, hence results in a better resolution for the shallowest layers.

Finally, a comparison between the different methods showed that both interpretation
methods had advantages. The QT inversion results are more comprehensive compared
to full posterior distributions in several parameters. However, the PFA imaging does
not require the difficult determination of a regularization parameter. On computational
aspects, the QT inversion is far superior albeit not producing a full posterior distribution
of models. The PFA imaging requires around 10 minutes to produce 1000 models of the
posterior distribution. This computation time may seem substantial but, compared to the
similar process in the QT inversion (bootstrap inversion), is way better and adapted to
multiple loops datasets.

Further works will consist in improvements of the PFA imaging process, and in the full
development of the BEL approach to acquire/interpret SNMR data and better constrain
the prior model space, crucial for the PFA imaging. On the other hand, researches should be
conducted on the development of stochastic methods based on the deterministic inversion
of data to assess uncertainty-based SNMR multiple loops data, via an adapted sampling
scheme for the bootstrap inversion.
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Appendix A

Computability of kernels according to
the experimental configuration

Details of the results for the kernels computability are presented in this appendix. The
blue dots represent successful attempts to compute the kernel for the given configuration
(size of transmitter/receiver and multiplier applied to the transmitter size to obtain the
maximal depth of the kernel).

The results show two cases where the computation of the kernel is impossible:

• A much too small maximal depth (multiplier = 0.1)

• A too large maximal depth for the receiver size
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Appendix A. Computability of kernels according to the experimental

configuration

Figure A.1: Computability of the kernels for different experimental configurations. Red
dots represent uncomputable combinations and blue dots represent computable kernels.



Appendix B

Sensitivity to relaxation time at low
water content

In order to demonstrate the intrinsic insensitivity of the SNMR response to the relaxation
time under very low water content, 1000 models have been generated and their corres-
ponding free induction decays computed (50 m transmitter/receiver loop). Then, the
SNMR response has been submitted to the DGSA algorithm (Park et al., 2016), in order
to analyze the influence of the relaxation time in the response.

The models were generated with two layers. The first layer (thickness between 8 and
12 m) has a water content ranging from 1 to 3 %. The second layer has a water content
between 3.5 and 35 %. The relaxation time is ranging from 5 to 500 ms.

The results of the DGSA are presented in Figure B.1. It clearly demonstrates that, in
the case of a very low water content in a given layer, the relaxation time relative to this
layer is a low sensitivity parameter.
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Figure B.1: Pareto plot for the sensitivity of the FID response to relaxation time.



Appendix C

Deterministic inversion: Resolution
matrices

A way to assess the ability of the model to retrieve correct data in a deterministic way
is to compute the associated resolution matrix. To do so, Müller-Petke and Yaramanci
proposed in 2008 an approach based on the singular-value decomposition (SVD) of the
forward operator:

dobs = Gm = USVTm (C.1)

They suggested the use of the Picard conditions (linked to Picard plots) to assess the
right truncation to apply to the decomposed problem in order to avoid noise propagation
in the model. The use of the Picard condition is supposed to account for the noise level
and avoid noise propagation, similarly to regularization parameters in the QT inversion
(Müller-Petke & Yaramanci, 2008). It states that the value of :

ai = |ui
Td|/σi (C.2)

where,

• ui
T is the transpose of the ith column of the matrix U

• d is the data (here, the amplitude at t=0 to comply with the linearity of the problem)

• σi is the ith singular value (diagonal of S)

should remain more or less constant or decrease with the value of the index i (Fedi, Hansen,
& Paoletti, 2005).

From the Picard plot, it is possible to establish a reasonable truncation. In this work,
it has been chosen to use a simple algorithm to compute the "best" truncation index:
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1. Compute the means of the ai values from i− 10 to i

2. Compute the relative increment of each mean value

3. Find the first relative increment larger than 25%

Then, the resolution matrices were computed using:

Rm = VpV
T
p (C.3)

with p, the truncation index (Vp is the matrix constituted of the p first columns of the
V matrix from the SVD) (Müller-Petke & Yaramanci, 2008).

This process has been applied to all the inversions presented in the Subsection 7.3.2
(Chapter 7). The results of such analyses are presented in Figure C.1.

From those matrices, it is interesting to point out that the "Independent 1" and "In-
dependent 5" datasets (hence the same transmitter/receiver) are producing the clearest
resolution matrices with a very narrow resolution at the top and a spreading with depth.
The other inversions are susceptible to a larger spreading of the resolution, even at low
depth. However, the "depth of confidence", marked with the dashed red line, is changing
with the type of transmitter/receiver couple in the "Independent" inversions, whereas this
depth is not significantly changing with the "Joint" and "General" inversions. The use of
the "Joint" and, to a larger extent, the "General" inversions tends to decrease the spreading
of the resolution matrix along the diagonal, hence to recover the behavior of the classical
inversions.

The use of the 10 m loop is also questionable from the analysis of the observation of
the resolution matrices. Actually, it seems that the corresponding "Independent 3" and
"Independent 6" are the ones that lead to smaller confidence depths (respectively 13.5 and
30.5 m) compared to the classical inversions. It is also observed that the "Independent 4"
(30 m transmitter but 50 m receiver) resolution matrix has a large spreading around 20 m,
which limits the confidence depth to 21.0 m. However, contrary to the two other limited
resolution cases, the resolution of this model shows very few spreading around the diagonal
above this confidence depth, which ensures a better model.
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Figure C.1: Resolution matrices (absolute value) and Picard plots for the different
inversions proposed in the Subsection 7.3.2. The black line represents the maximum of
resolution and the dashed red line represents the maximal depth where the deviation

from the diagonal is less than 10% (Müller-Petke & Yaramanci, 2008).
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