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Abstract

�e main objective of this �esis is to provide a more e�cient as precise alternative to
classic dynamic analysis. Conventionally, it is performed by means of Fourier Analysis,
in which time series of the loading are analysed, then brought into the frequency domain
(by Fourier Transform), applied to the speci�c structure (characterised by its Transfer
Function, which depend on structural parameters only) to get response in the frequency
domain, then Inverse Fourier Transform is applied to recover response in time domain.

As it can be clearly understood, this process becomes very heavy when dealing with
(real) structures having many degrees of freedom - because this double transformation
has to be done for each degree of freedom to be able to reconstruct the entire structural
response (supposing to perform analysis in the Modal Base, which is almost always the
case since with nowadays F.E.M. so�ware, recovering the Modal Matrix is no more time
consuming as it could have been some years ago).

�erefore, specially for the pre-design stages of a civil engineering project, an alterna-
tive method, faster as well as reliable, able to compute or characterise structural response
is needed. In this framework, this �esis takes its place.

It will be shown and proved, as in other previous works, an alternative dynamic anal-
ysis method based on the Background and Resonant responses, under the assumption
of stationary Gaussian loading. It is basically based on the decomposition of the re-
sponse in its two major components, which are by their own computed based on main
statistical quantities of the loading (mean value and Power Spectral Density Function
or, equally, variance). �is way, the previous Double time-frequency transformation is
avoided: once loading is known (i.e. measured or simulated), response can be recon-
structed by statistical analysis.

However, this decomposition is no more valid when the loading has non-Gaussian
distribution. �erefore, the aim of this �esis is to �nally validate an extension of the
previous approach to more general cases in which loading is non-Gaussian. Still, the
response will be decomposed in its Background and Bi-resonant components in the fre-
quency space, where they will be connected to higher order statistical quantities of the
loading.

14



1 Introduction

1.1 Introduction to wind loading

Wind loading has always played an important role in Structural Analysis. However,
since the last decades, it has acquired much more importance a�er the occurrence of
many wind damaging events (ex. Collapse of Tacoma Narrow Bridge, 1938), especially
when it comes to structures in which one dimension in much more predominant to the
other two (i.e. �exible structures, such as slender structures, suspended-span bridges).
�erefore, the �eld of wind loading on structures has had signi�cant research e�ort and
important scienti�c literature has been progressively built up.

�e design of buildings and structures for wind depends upon:

• Wind environment;

• Aerodynamic e�ects induced in the structural system by the wind environment;

• Response of structural system;

• Eventually, some safety requirements based on uncertainty analyses and expressed
in ‘wind load factors’ or ‘design mean recurrence intervals’ of the response.

For structural design purposes, wind environment must be described in terms of:

• Meteorological terms;

• Micro-meteorological terms (i.e., dependence of wind speeds upon averaging time,
dependence of wind speeds and turbulent �ow �uctuations on surface roughness
and height above the surface);

• Extreme wind climatological terms (directional extreme wind speed data at struc-
ture’s site, probabilistic modelling based on such data).

�e description of the wind �ow’s micro-meteorological features is needed for three
main reasons:

(i) �ey directly a�ect structure’s aerodynamic and dynamic response (e.g., wind
speeds increasing with height above the surface means that wind loads are larger
at higher elevations than near the ground);
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(ii) Turbulent �ow �uctuations strongly in�uence aerodynamic pressures, and pro-
duce in �exible structures �uctuating motions that may be ampli�ed by resonance
e�ects;

(iii) Micro-meteorological considerations are required to transform measured or simu-
lated wind speed data at meteorological stations or other reference sites into wind
speeds data at the site of interest.

However, micro-meteorological features are explicitly considered in structural analy-
sis if wind pressures or forces acting on the structure are determined by formulas speci-
�ed by codes for example. However, for design based on wind-tunnel testing (as in �is
Paper), this is no longer the case. Rather, it is made use of records of non-dimensional
aerodynamic pressure data.

To perform a design based on aerodynamic data obtained in wind-tunnel tests, struc-
tural engineer needs these three products:

1. Time series of pressure at large number of taps (also called “monitors”), adimen-
sionalised with respect to the wind tunnel mean wind speed at the reference height
(commonly, the elevation of the building roof);

2. Matrices of directional mean wind speeds at the site of interest, at the prototype
reference height;

3. Estimates of uncertainties in items (1) and (2).

1.2 Wind Nature

Wind, or more correctly the ‘motion of air with respect to the surface of the Earth’, is
fundamentally caused by variable solar heating of the Earth’s atmosphere.

It is initiated by di�erences of pressure between points of equal elevation. �e en-
ergy required for the occurrence of these phenomena is provided by the sun in the form
of radiated heat. More speci�cally, atmosphere is to a large extent transparent to the
solar radiation incident upon the Earth; that portion of the solar radiation that is not
re�ected or sca�ered back into space may be therefore assumed to be absorbed entirely
by Earth. �e Earth, upon being heated, will emit energy in the form of terrestrial ra-
diation (characterised by long wavelengths, order of 10 µ); the atmosphere, which is
largely transparent to solar but not to terrestrial radiation, absorbs the heat radiated by
the Earth and re-emits some of it toward the ground.

�e air motion is determined by di�erent forces:

• �e horizontal pressure gradient force per unit of mass, due to spatial variation of
horizontal pressures. �is force is normal to the lines of constant pressure (iso-
bars); it is directed from high-pressure to low-pressure regions;
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Pressure gradient force per unit of mass =
1

ρ
∗ ∂p
∂n

(1.1)

Figure 1.1: Pressure gradient force per unit of mass, see [2].

• �e deviating force due to the Earth’s rotation, also know as Coriolis Force or “ap-
parent” force:

Coriolis Force, Fc = mfv

Figure 1.2: Coriolis Force, see [2] .

• �e friction force that the surface of the Earth exerts on the moving air. It decreases
with elevation above the ground, as the imperviousness decreases. It becomes
negligible above a height δ known as gradient height.
�e atmospheric layer between the Earth’s surface and the gradient height is called
the atmospheric boundary layer.
�e wind velocity speed at height δ is called the gradient velocity.
�e atmosphere above the gradient height is called free atmosphere.
�e main e�ect of the friction force is that of retarding the �ow. �is e�ect is
di�used by turbulent mixing in the atmospheric boundary layer (ABL).

Figure 1.3: Friction force, see [7].
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It has to be noted that within the ABL, the mean wind speed varies as a function of
elevation.

Also, if �ow were laminar, wind speeds would be the same for all the averaging times.
However, due to turbulent �uctuations, the de�nition of wind speeds depends on aver-
aging time.

For example, the hourly wind speed is the wind speed averaged over 1 hour. Di�erent
would be the Ten-minute wind speeds, which are wind speeds averaged over 10 min (used
in World Meteorological Organization, WMO).

As it was already stated previously, wind speed varies with varying height above the
Earth’s surface. Basically, in almost all the case, two are the considered types of variation
of mean or time-averaged wind speed:

• Logarithmic Law, expressed as

U(z)

u∗
=

1

k
ln
z − d
z0

(1.2)

where
U(z) = mean wind velocity at height z [m] above the surface;
u∗ = friction velocity [m s−1];
k = Von Karman constant (≈ 0.41);
z = height in meters above the gorund;
d = zero plane displacement [m];
z0 = terrain roughness [m]

• Power Law which is strictly empirical, expressed as

U(z) = Ur ∗ (
z

zr
)α (1.3)

where
U(z) = mean wind velocity at height z [m] above the surface;
Ur = known speed at reference height zr;
zr = reference height [m];
α = empirical exponent which depends on terrain roughness.

NOTE: for sake of clarity, in the Database which will be presented in the following,
it has been used the Power-law wind pro�le.

Except for wind having very low velocities and under speci�c temperature conditions,
in all other cases wind �ow is not laminar (smooth); instead, it is turbulent. �is means
that it �uctuates in time and in space. In other words, wind speed is a random variable
which depends on time and space independent variables.

Atmospheric �ow turbulence characterisation is important for structural engineering
applications for many reasons:
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Figure 1.4: plot of both Logarithmic-law and Power-law, see [7].

• Turbulence a�ects de�nition of wind speed (which is one of the input data required
in engineering computations);

• By transporting particles from �ow regions with high momentum into low-speed
regions, turbulence can in�uence signi�cantly the wind �ow around a structure
and, therefore, the aerodynamic pressures acting on the structure;

• Last, but not least, turbulence produce resonant dynamic e�ects in �exible struc-
tures.

�e “longitudinal turbulence intensity” at a point with elevation z is de�ned as:

Iu(z) =
u2(z, z0)

1
2

U(z)
(1.4)

where

u2(z, z0)
1
2 =

√
β(z, z0) ∗ u∗ (1.5)

is the r.m.s. of the longitudinal wind speed �uctuations u(z, t), z0 is the surface rough-
ness,

β(z, z0) = β(z0) ∗ exp (−1.5 ∗ z
H

) (1.6)

β(z0) tabulated, H is the ABL depth, u∗ is the friction velocity, and �nally U(z) is the
mean speed at elevation z above the ground.

par

Very roughly it could be said that, the previous three fundamental forces which char-
acterise air movement (i.e. wind) will combine in di�erent ways, generating in�nite air
�ow con�gurations, for either large-scale circulations to local or exceptional events.
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Figure 1.5: Wind speed pro�le: mean component along with turbulent component illus-
tration, see [7].

Since it is not the scope of this Work, exceptional events will be not treated.

Is then clear that, for civil engineering applications, design wind speed is one of the
most critical data needed to perform required analysis.

�ere are basically two methods to asses the design wind speed [7]:

• Probabilistic assessment, the so-called “extreme value analysis”, covered in detail
by Gumbel (1954,1958). It consists in ��ing historical data with known (or as-
sumed) probability distribution function (Gumbel, . . . ). �e output of a probabilis-
tic assessment is a design wind speed corresponding to a given return period R
(expressed in years). However, this method has led in the past to underestima-
tions of mean wind speeds (e.g. Tracy cyclone in Australia);

• Parallel to this now “classical” approach, since last years in the wind engineering
�eld it has signi�cantly increased the availability, on the free Web, of data related
to external shape factors and pressure coe�cients on low-rise and high-rise build-
ings, obtained by means of Wind Tunnel Tests . In this context, a crucial role is
played by:

– �e National Institute of Standards and Technology (NIST) of the United
States which has provided data produced by the University of Western On-
tario on 37 di�erent con�gurations of low-rise gable roof buildings (no eaves);

– �e Wind Engineering Group of the Tokyo Polytechnic University which
provides a database on:

∗ 116 con�guration of low-rise buildings with gable hipped and �at roofs,
with or without eaves;

∗ 22 con�gurations of high-rise buildings.
�is Database constitutes the very Source of the whole Work presented in
�is Document.
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Figure 1.6: Example of ABL wind tunnel test.
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2 Recall On Dynamics �eory of
SDOF systems

In order to fully understand the content of this Document, it is important to have clear
in mind the theory of Dynamics.

However, since it is not the major content of this work, it will not be covered exten-
sively. �erefore, the reader is invited to clarify any possible doubts it may rise from
literature, which is very wide on this subject.

�at being said, we will start by exploiting the dynamic response of a SDOF system
(Single Degree Of Freedom) In the following it will be shown how to extend the results
to a general MDOF system (Multi Degree Of Freedom), which is the case for quite all
civil structures.

2.1 Response to Harmonic Loading

General dynamic equation of a SDOF is given by

m ẍ(t) + c ẋ(t) + x(t) = p(t) (2.1)

When it comes to Harmonic Loading (assume it sinewave)

m ẍ(t) + c ẋ(t) + x(t) = p0 sinωt (2.2)

where p0 = amplitude, ω = circular frequency [ rad
s

].

Dividing everything by the mass m of the system, and considering the exponential
form,

ẍ(t) + 2 ξ ω ẋ(t) + ω2 x(t) =
p0
m

exp (i ω t+ φ) (2.3)

�e complementary solution, which is the solution of the previous equation with
right-hand side equal to 0 (which means, no load applied), is the well-known damped
free-vibration response ([1])

xcomp(t) = [A cos (ωD t) +B sin (ωD t)] exp(−ξ ω t) (2.4)
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Figure 2.1: Variation of dynamic ampli�cation factor with damping and frequency [1].

where A and B are constants to be de�ned considering initial conditions.

�e particular solution is of the form

xp(t) = ρ sin(ω t− θ) (2.5)

where ρ = amplitude

ρ =
p0
k

[
1√

(1− β2)2 + (2 ξ β)2

]
=
p0
k
D (2.6)

θ = phase angle

θ = arctan

(
2 ξ β

(1− β2)

)
(2.7)

D = dynamic ampli�cation factor.

NOTE:

β ≡ ω

ω
(2.8)

is the ratio between applied circular frequency and natural circular frequency (of the
system).

�e total response is �nally given by the sum of the two components, the complemen-
tary and the particular one.

However, it must be underlined that, between the two components, the one of major
interest is the particular solution (which is also called “steady-state harmonic response”),
since the complementary solution (also called “transient response”) damps out in accor-
dance with exp(−ξ ω t) [1].
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Figure 2.2: Variation of phase angle with damping and frequency [1].

Last but not least, a very important physical e�ect which needs to be taken into ac-
count when performing dynamic analysis is resonance. �is is because of the intrinsic
nature of the resonant e�ect: basically, it is a physical phenomena which signi�cantly
ampli�es the amplitude of response, even if amplitude of loading is very low.

�is happens when the natural circular frequency of the loading ω becomes very close
to the natural circular frequency of the structure ω, which means when the ratio

β = ω
ω
→ 1

tends to unity.

Figure 2.3: Response to resonant loading β = 1 for “at rest” initial conditions [1].

2.2 Response to Periodic Loading

Any periodic loading can be expressed as a series of harmonic loading terms ([4]). In
exponential form it is expressed as

p(t) =
∞∑

n=−∞

Pn exp(i ωn t) (2.9)
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where Pn = complex amplitude coe�cients

Pn =
1

T

∫ T

0

p(t) exp(−i ω t) dt n = 0,±1,±2, ... (2.10)

NOTE: from previous Eqs. 2.9 and 2.10, it can be noted that Pn and P−n are complex
conjugate pairs, necessary condition for the imaginary parts to cancel each other.

�erefore, the response of a linear system to this loading may be obtained by simply
adding up the responses to the individual harmonic loading, which is exactly what has
been presented in Section 2.1.

In the case loading is expressed in terms of individual harmonics of the exponential
form, the nth harmonic steady-state response of the viscously damped SDOF system will
be ([1])

xn(t) = Hn Pn exp(i ωn t) (2.11)

where Pn is given by Eq. 2.10 and

Hn =
1

k

[
1

(1− β2
n) + i (2 ξ βn)

]
(2.12)

is the ”complex frequency response coe�cient”.

2.3 Extension to Generic Loading

�e approach is similar to the one mentioned in previous Section 2.2. Both involve
expressing the applied loading in terms of harmonic components, and then superposing
the harmonic responses to obtain total structural response.

Figure 2.4: Example of a non-periodic loading [1].

�e spurious repetitive dashed-line loadings could be eliminated by le�ing the period
of the loading Tp → ∞. Introducing the notations
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1

Tp
=

ω1

2 π
≡ ∆ω

2 π
nω1 = n∆ω ≡ ωn Pn Tp ≡ P(iωn) (2.13)

the previous Eqs 2.9 and 2.10 become

p(t) =
∆ω

2 π

∞∑
n=− ∞

P(iωn) exp(iωnt) (2.14)

P(iωn) =

∫ Tp/2

−Tp/2
p(t) exp(−iωnt) dt (2.15)

However, if Tp → ∞ the frequency increment becomes in�nitesimal (∆ω → dω)
and the discrete frequencies ωn become a continuous function of ω. �us

p(t) =
1

2 π

∫ ∞
− ∞

P(iω) exp(iωt) (2.16)

P(iω) =

∫ ∞
−∞

p(t) exp(−iωt) dt (2.17)

also known as Inverse and Direct Fourier Transform respectively.

Hence, using the direct Fourier Transform, arbitrary loading p(t) can be expressed
as an in�nite sum of harmonics having known complex amplitude ([1]). �e function
P(iω represents the complex amplitude intensity at frequency ω per unit of ω. �en, it
is straightforward to notice that for general loading, in accordance to Section 2.2, total
response is

v(t) =
1

2 π

∫ ∞
− ∞

H(iω P(iω) exp(iωt) dω (2.18)

in which

H(iω =
1

k

[
1

(1− β2) + i (2 ξ β)

]
(2.19)

β ≡ ω
ω

.
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3 Dynamic Wind Loading Analysis

As a reminder, the very �rst goal of �is Work is that of constituting a very powerful
Pre-design Tool to asses dynamic response of Tall Structures subjected to the dynamic
action of Wind Loading.

3.1 Description of the Database: loading information

Everything is based on an Aerodynamic Database constructed by Tokyo Polytechnic
University as on part of the Wind E�ects on Buildings and Urban Environment the 21st

Century Centre of Excellence Program, funded by the Japanese Government [8]. In the
following, it will be only done reference to the high-rise building part of the aforemen-
tioned Database.

Its object is to provide structural design engineers with wind tunnel test data of wind
loads on high-rise buildings. �ese data can be used to calculate local wind pressures,
area averaged wind pressure coe�cients on wall surfaces, and even wind induced dy-
namic responses of high-rise buildings.

13 models of high-rise buildings have been tested (with a length scale of 1/400), 9
of which for two di�erent exposure factors1 (α = 1/4 and α = 1/6), for a total of 22
con�gurations.

Figure 3.1: 13 models. In yellow, the ones tested for both exposure factors.

Sample frequency f is given in the data, equal to

fsampling = 1000 Hz = 1 kHz.

1In this Work, only samples with α = 1/4 have been used.
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Figure 3.2: High-rise building con�guration (le�); wind speed pro�les used (right).
(source: www.wind.arch.t-kougei.ac.jp)

Also, the considered mean wind speed at the model reference height (40 cm) used to
de�ne the velocity pro�le is equal to

Uref = 11.017
m

s

Figure 3.3: Illustration of di�erent building samples.

NOTE: contrarily as shown in Figure 3.3, x and y axis are inverted! y-axis is normal
to Windward surface!

A�er having inserted all the required parameters of the desired sample to be analysed,
Figure 3.5 shows a sketch of the interface that appears.

From it, user can enter all the information and data available for the speci�ed con�g-
uration selected.
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Figure 3.4: Window from which choosing desired sample data. (source: www.wind.arch.
t-kougei.ac.jp)

�e most important section, where all measurements are stored, is the bo�om one. It
can be noticed that, for a be�er understanding of the dynamic behaviour, each sample
model has been tested for wind �ows at di�erent angle of a�ack between wind �ow and
normal to the Windward surface.

Figure 3.5: Figure of the interface from which accessing to all data referring to the spec-
i�ed con�guration. (source: www.wind.arch.t-kougei.ac.jp)

To clarify this aspect, 0 a�ack angle means wind �ow parallel to the normal to Wind-
ward surface (i.e. perpendicular to it). �en increasing Angle of A�ack follow coun-
terclockwise rotations, meaning that �ow is rotating towards being perpendicular to
Right-Sideward surface at 90 degrees. Figures 3.7 and 3.6 con�rms last statements.
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Figure 3.6: Example of local wind pressure coe�cients, case T115, 0° angle of a�ack.
(source: www.wind.arch.t-kougei.ac.jp)
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Figure 3.7: Example of local wind pressure coe�cients, case T115, 45° angle of a�ack.
(source: www.wind.arch.t-kougei.ac.jp)

31

www.wind.arch.t-kougei.ac.jp


NOTE: this implies that, for increasing value of the angle of a�ack, the structure will
exbit negative displacements along x direction (referring to Mode 2), due to the LRS
choice, as illustrated in Figure 3.11.

As it can be noticed from Figure 3.8, in the Database, the four Windward, Right-
Sideward, Leeward, Le�-Sideward surfaces are opened up in the same plane.

Figure 3.8: Example of �gure showing monitor positioning during test (case T115).
(source: www.wind.arch.t-kougei.ac.jp)

But clearly in reality they build up a closed rectangular prism. Hence, an operation
to bring them in the exact con�guration was needed in order to have the exact (x,y,z)
coordinates for each monitor.

An example of the result of this step can be seen in Figure 3.9 and Figure 3.10 for
Windward and Right-Sideward surfaces respectively. �e last three lines are referring
to x, y and z coordinate respectively.

Figure 3.9: Example of Windward surface node ordering.

It is straightforward to notice that in the case of the Windward surface (this holds for
Leeward surface also), y coordinate remains constant at a value of -0.05 m (with respect
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Figure 3.10: Example of Right-Sideward surface node ordering.

to LRS, see Figure 3.11) for all the monitors. �is is of course true since Windward surface
lay on x-z plane (for which y coordinate is �xed).

On the other hand, for the Right-Sideward surface (and therefore Le�-Sideward one)
it is the opposite. �e x coordinate remains constant, since it lays on the x-y plane.

Figure 3.11: Figure showing GRS (in blue) and LRS (red).

Figures 3.9 and 3.10 show the ordering of the monitors belonging to the same surface.
�ey have been piled into a row vector, which has then as many columns as the number
of nodes for each surface. �e �rst row contains the progressive monitors number (for
each surface as said) in descending order from le� to right – as check, see Figure 3.8
and start counting from up-le� monitor, toward the right and the going downward; you
should �nd the same order in both cases (this for each of the four surfaces).
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3.2 Fourier Numerical Analysis

3.2.1 Computing Forces (model scale)

In Section 3.1 a general overview of the Database upon which this Work is based has
been presented.

Among all, the most important info used to initialise the analysis have been the record-
ing of the adimensionalised (with respect to reference height, which in model scale was
set to 40cm) pressure coe�cients at each monitor (for each of the four surfaces). �e
Database furnishes these values in matrix form


Cp1(t0) · · · Cpj(t0) · · · Cpn(t0)

· · · . . . · · · · · · · · ·
Cp1(ti) · · · Cpj(ti)

. . . Cpn(ti)
Cp1(tf ) · · · Cpj(tf ) · · · Cpn(tf )


where

Cpj(ti) = pressure coe�cient at nodej at ith time step;
n = number of monitors (hence, number of columns);
tf = sampled period (32.768 s in model scale).

NOTE: number of rows is given by

Sample period × Sample frequency = 32.768× 1000 = 32768.

However, the goal, as it will be well explained in the following, is to compute modal
forces, hence it is needed to convert pressures into force. To do so, an area relative to
each monitor pressure needs to be de�ned.

�ere are basically two way of de�ning a reference area:

• In�uence area of each node;

• Area of surface’s element delimited by four nodes.

In this speci�c case, the second approach has been adopted. �is way, the average
pressure on the element’s geometric centre will be given by the average of the pressure
on the four delimiting nodes:

pelem =
pnode1 + pnode2 + pnode3 + pnode4

4
(3.1)

�en, having area and relative pressure acting on each surface’s element, force can be
computed simply by

force = pressure× area.
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3.2.2 MDOF systems Dynamic Analysis: solving in modal base

In Section 2 a brief introduction to Dynamic �eory of SDOF systems has been dra�ed.

However, in quite all the real structural engineering applications, real buildings are
characterised by many degrees of freedom, hence they are MDOF (Multi Degree Of Free-
dom) systems.

�erefore, SDOF theory has to be extended to MDOFs systems. Still, and fortunately
enough, this extension is quite straightforward 2.

�e general dynamic relation of a damped MDOF system is nothing but the one related
to an SDOF system in which structural properties are expressed in matrix form:

M ẍ(t) + C ẋ(t) + K x(t) = p(t) (3.2)

where m, c and k are mass, damping and sti�ness matrix respectively.

In theory, there are basically two ways of solving that system of N di�erential equa-
tions in the N xn unknown:

• Direct solving of the N coupled equation;

• Solving the uncoupled problem, by means of a Modal Analysis.

As it can be imagined, the second approach is much faster in computation, since it
is based on the solving of N uncoupled equations, which can then be treated as single
equations belonging to a SDOF system.

Speci�cally

x(t) = Φ ∗ q(t) (3.3)

where
x(t) = displacement vector (unknown) ;
q(t) = vector of modal amplitudes (or ′′generalised coordinates′′).
Φ = Modal Matrix

Φ = [φ1, . . . , φi, . . . , φn] (3.4)

φi = ith column of Φ, ith modal shape vector;
2In most of the cases.
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Φ =



φ11,x . . . φ1i,x . . . φ1n,x

φ11,y . . . φ1i,y . . . φ1n,y
... ... ...

φk1,x . . . φki,x . . . φkn,x
φk1,y . . . φki,y . . . φkn,y

... ... ...
φN1,x . . . φNi,x . . . φNn,x
φN1,y . . . φNi,y . . . φNn,y


(3.5)

in which φki,x (φki,y) are ”displacement along x (y) direction of kth node in ith mode
shape (respectively)”.

NOTE: since Mode-shape matrix Φ consists of N independent modal vectors, it is
non-singular and it can be inverted.

Inserting Eq. 3.3 inside Eq. 3.2 and doing some maths, we end up having (for each
mode)

m∗i q̈i(t) + c∗i q̇i(t) + k∗i q(t) = p∗i (t) (3.6)

where:

m∗i = ΦT
i M Φi; (3.7)

c∗i = ΦT
i C Φi; (3.8)

k∗i = ΦT
i K Φi; (3.9)

are respectively generalised modal mass, damping3 and sti�ness (referring to ith mode).

Dividing by the generalised mass m∗i we end up with:

q̈i(t) + 2 ξ ωi q̇i(t) + ω2
i q(t) =

p∗i (t)

m∗i
(3.10)

where

ξi =
c∗i

2 ωi m∗
i

= modal viscous damping ratio

which solved gives the modal amplitude qi(t) for mode i.

Regarding the Modal Matrix Φ, it could be computed analytically by considering some
structural characteristics. However, since it is not the scope of �is work, three basic

3In reality, this is an assumption made to simplify the problem, since theoretically it would be very
di�cult to precisely evaluate the damping matrix c of a MDOF system.
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structural mode shapes will be assumed so to be able to perform dynamic modal analysis.
�is avoids the solving of the classical eigenvalues problem involving mass and sti�ness
characteristics of the structure. �erefore, in detail, the three assumed mode shapes are:

• Unitary roof displacement along y direction (Mode 1)

• Unitary roof displacement along x direction (Mode 2)

• Unitary roof rotation4 in the x− y plane (Mode 3)

Following some �gures showing some examples.

Figure 3.12: Sample T115 (model
scale).

Figure 3.13: Sample T215 (model
scale).

4With respect to Origin of LRS, see Fig 3.11.
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Figure 3.14: Mode 1, sample T115
(model scale).

Figure 3.15: Mode 1, sample T215
(model scale).
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Figure 3.16: Mode 2, sample T115
(model scale).

Figure 3.17: Mode 2, sample T215
(model scale).
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Figure 3.18: Mode 3, sample T115
(model scale).

Figure 3.19: Mode 3, sample T215
(model scale).
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3.2.3 Computation of Modal Masses

De�nition of Modal or Generalised Masses of the structure is a fundamental step needed
to be able to solve the uncoupled equations of motion.

In this Work some assumptions have been made to ease their computation, since their
exact estimation is not the scope of this work5.

�erefore, structures are thought to be framed, with lumped mass model and shear
type behaviour.

Floors are supposed 4m height, with Table 3.1 de�ning the parameters needed to de-
�ne their respective mass.

Building parameters
Slab �ickness tslab 0.30 m

Concrete density ρc 2500 kg
m3

Table 3.1: Floor building parameters.

�erefore, mass of each �oor is given by

mfloor = tslab B D ρc [kg] (3.11)

�en, matrix of generalised masses can be easily computed as

M∗ = ΦT
floor M Φfloor (3.12)

where the mass matrix M is diagonal and has dimension 3 f × 3 f , with f =
number of �oors. �e elements mi and Ji are mass and intertia of ith �oor respectively.

5Also considering that modal masses, although structural properties, constitute somehow only a scal-
ing in the solving of the modal equations of motion.
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M =



mf

. . .
mi

. . .
m1

mf

. . . 0
mi

0 . . .
m1

mf

. . .
mi

. . .
m1


(3.13)

�e modal shape matrix is obtained the same way as stated before in Section 3.2.2, Eq
3.5. In this speci�c case, it will take the following shape:

Φfloor =



vtop
H
∗ zf 0 0
... ... ...

vtop
H
∗ zi 0 0
... ... ...

vtop
H
∗ z1 0 0
... ... ...
0 utop

H
∗ zf 0

... ... ...
0 utop

H
∗ zi 0

... ... ...
0 utop

H
∗ z1 0

... ... ...
0 0 rtop

H
∗ zf

... ... ...
0 0 rtop

H
∗ zi

... ... ...
0 0 rtop

H
∗ z1



(3.14)
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3.2.4 Computation of Modal Forces: projection in real scale

Once Modal Matrix Φ has been de�ned, computing modal forces is quite straightfor-
ward:

p∗(t) = ΦT ∗ p(t) (3.15)

In previous section, in Eq 3.5 each column of Φ φi was de�ned as the vector of the
ith modal shape, which dimension is 2 ∗ numbernodes × 1: this because each node
was counted for its x and y displacement, hence twice. Because of this, for dimension
congruence making the matrix product in Eq 3.15 possible, p(t) has to have �rst dimen-
sion equal to �rst dimension Φ: this implies that also p(t) has to count twice for each
node. �is is done by simply considering the relative pressure along x and y direction
respectively for each node. Of course, this is just a tricky operation to make the product
possible: it is obvious that, depending on the considered surface, either pressures along
x or y direction will be equal to 06.

However, up to now, everything was based on model scale, which parameters (refer-
ence wind speed at the reference height) were introduced in Section 3.1.

To bring everything in real scale, a scaling operation is needed. Scaling is based on
the conservation of the Strouhal Number, which is de�ned as

St =
f L

v
(3.16)

where
f = frequency of vortex shedding;
L = characteristic length;
v = �ow velocity.

Conservation if the Strouhal Number implies that

Stmodel =
fmodel Lmodel

vmodel
=
freal Lreal
vreal

= Streal (3.17)

Solving for the ratio of vortex shedding frequencies, we end up having:

fmodel
freal

=
Lreal
Lmodel

vmodel
vreal

(3.18)

6�is is simply due to the fact that pressure taps used in Wind Tunnel Test are able to measure only
pressure perpendicular to the relative surface.

43



Se�ing as reference mean wind speed in real scale78 to

vm,real = 30
m

s

and noting that

T =
1

f
= period [s] (3.19)

we �nally have as time scale9

Treal = Tmodel ∗
Lreal
Lmodel

vmodel
vreal

= Tmodel ∗
400

1
∗ 11.016

30
[s] (3.20)

Surface elements’ forces in real scale are related to the reference pressure in real scale

phreal =
1

2
ρair vm,real (3.21)

by the relation

Freal(t) = Fmodel(t) × phreal × lengthscale2 (3.22)

�us �nally, modal forces in real scale (in time) are recovered by simply premultiply-
ing Eq 3.22 by ΦT

p∗(t) = ΦT ∗ Freal(t) (3.23)

At the end of the section, Figures 3.20, 3.21, 3.22, 3.23 and 3.24 show some example of
time history of modal forces for di�erent con�gurations and angle of a�ack.

3.2.5 Solving the equation of motion: Fourier Analysis

Having computed the modal forces, it is then possible to solve the three10 uncoupled
equations of motion as Eq 3.6 (or 3.10 in its adimensionalised form).

7NOTE: this is an assumption: however, it has to be performed carefully, since then pressures depend
on the square of the reference wind speed, as it will stated in the following.

830 m
s is a quite high value of mean wind speed. However, it has been kept to be on the safe side,

since this will lead to light overestimation of response.
9Important is to note that a shi� in time axis, hence a di�erent time scaling (which depends on the

assumed value of wind speed at real scale), may modify the frequency content of the Fourier Transform
of the modal forces, which will be detailed in the following.

10Following the assumption on the modal shapes.
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It can be done either in time domain (Duhamel Integral) or in frequency domain
(Fourier Analysis). �e second approach will be followed, since it exploits the frequency
content of the input signal (i.e. the dynamic wind loading, under the form of modal
forces) and puts it in relation with the frequency content of the output signal (modal
responses), and it can also be applied in case of non linear systems.

�erefore, for sake of clarity we recall the equation of motion in the time domain:

m∗i q̈i(t) + c∗i q̇i(t) + k∗i q(t) = p∗i (t) (3.24)

which can be solved once natural modal circular frequencies ωi and damping ratio
coe�cients ξi are known (or estimated).

Multiplying both members on the right by exp(−i ω t) and taking the integral between
−∞ and +∞ in time, we have

∫ ∞
− ∞

(m∗i q̈i(t) + 2 ξ ωi m
∗
i q̇i(t) + ω2

i m
∗
i q(t)) exp(−i ω t) dt =

=

∫ ∞
− ∞

p∗i (t) exp(−i ω t) dt (i = 1,2,3) (3.25)

which can be rewri�en as11

−m∗i Ω2 Qi(Ω) + 2 i ξi ωi m
∗
i Ω Qi(Ω) + ω2

i m
∗
i Qi(Ω) = P ∗i (Ω) (3.26)

where

Qi(Ω) =

∫ ∞
−∞

qi exp(−i ω t) dt (3.27)

P ∗i (Ω) =

∫ ∞
−∞

p∗i (t) exp(−i ω t) dt (3.28)

are Fourier Transforms of the modal coordinate qi and modal force p∗i (t) respectively.

Eq 3.26 can be rewri�en as

Qi(Ω) =
1

k∗i

1

−Ω2 + 2 i ξi ωi Ω + ω2
i

P ∗i (Ω) (3.29)

Calling

Hi(Ω) =
1

k∗i

1

−Ω2 + 2 i ξi ωi Ω + ω2
i

(3.30)

11Including integration by parts.
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whereHi(Ω) is the ”complex frequency response function” or ”Transfer Function”, which
only depends on structural characteristics (hence, it does not depend on external load-
ing), we end up with

Qi(Ω) = Hi(Ω) P ∗i (Ω) (3.31)

NOTE: Ω denotes the frequency of the input signal (dynamic wind loading), also
called ”forcing frequency”, which is di�erent from the natural modal circular frequencies
of the structure ωi.

Solving Eq 3.31 will lead in the determination of the complex modal amplitudesQi(Ω)
in the frequency domain (i.e. their frequency content).

To step back into the time domain, the Inverse Fourier Transform is applied to the
complex modal amplitudes in the frequency domain, hence obtaining the time history
of the modal amplitudes

qi(t) =

∫ ∞
−∞

Qi(Ω) exp(i ω t) dΩ (3.32)

or in its discrete form (which is the case in the actual computation)

qi(t) =

Nf∑
f=1

real(Qi(Ω) exp(i ω t) ) (3.33)

�en, having time history of modal amplitudes, by means of modal recomposition, it
is possible to compute time history of displacements, as given in Eq 3.3.
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Figure 3.20: Time history of Modal Forces, case T115, angle of a�ack 0°.

Figure 3.21: Time history of Modal Forces, case T115, angle of a�ack 45°.
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Figure 3.22: Time history of Modal Forces, case T215, angle of a�ack 0°.

Figure 3.23: Time history of Modal Forces, case T215, angle of a�ack 45°.
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Figure 3.24: Time history of Modal Forces, case T215, angle of a�ack 90°.

Next they will be shown some results of the Fourier Analysis regarding the most rel-
evant cases that have been studied.

Figure 3.25: Transfer Functions, sample
T115, case 1.

Figure 3.26: Transfer Functions, sample
T115, case 2.

Figure 3.27: Modal amplitudes, sample
T115, a�ack angle 0°, case 1.

Figure 3.28: Modal amplitudes, sample
T115, a�ack angle 0°, case 2.
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Figure 3.29: Displacements, sample
T115, a�ack angle 0°, case 1.

Figure 3.30: Displacements, sample
T115, a�ack angle 0°, case 2.

Figure 3.31: Modal amplitudes, sample
T115, a�ack angle 45°, case 1.

Figure 3.32: Modal amplitudes, sample
T115, a�ack angle 45°, case 2.

Figure 3.33: Displacements, sample
T115, a�ack angle 45°, case 1.

Figure 3.34: Displacements, sample
T115, a�ack angle 45°, case 2.

Figure 3.35: Modal amplitudes, sample
T215, a�ack angle 0°, case 1.

Figure 3.36: Modal amplitudes, sample
T215, a�ack angle 0°, case 2.
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Figure 3.37: Displacements, sample
T215, a�ack angle 0°, case 1.

Figure 3.38: Displacements, sample
T215, a�ack angle 0°, case 2.

Figure 3.39: Modal amplitudes, sample
T215, a�ack angle 45°, case 1.

Figure 3.40: Modal amplitudes, sample
T215, a�ack angle 45°, case 2.

Figure 3.41: Displacements, sample
T215, a�ack angle 45°, case 1.

Figure 3.42: Displacements, sample
T215, a�ack angle 45°, case 2.

Figure 3.43: Modal amplitudes, sample
T215, a�ack angle 90°, case 1.

Figure 3.44: Modal amplitudes, sample
T215, a�ack angle 90°, case 2.
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Figure 3.45: Displacements, sample
T215, a�ack angle 90°, case 1.

Figure 3.46: Displacements, sample
T215, a�ack angle 90°, case 2.
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4 Background and Resonant (B&R)
response

In this section, a stochastic approach to the problem will be presented and detailed, with
the objective of con�rming the validity of it when applied to Dynamic Wind Loading
Analysis.

Firstly, a theoretical background on the topic will be presented, such that the reader
can have a be�er understanding of the key concepts that it is intended to con�rm by
numerical analysis.

�en, results will be presented.

4.1 Random Processes: Autocorrelation and
Power Spectral Density Functions

A random process p is de�ned as a ”family (or ’ensemble’) of N random variables pn
related to a similar phenomenon which might be function of one or more independent vari-
ables1”. [1]

Figure 4.1: Example of a random process, depending on the sole variable time t, [1].

�is is the case of quite all natural (and non) phenomena which surround us every day.
1i.e., time, space, etc.
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Consider, for example, the throw of a dice2, the di�erence in temperature (°C) between
Liège and Bologna the Christmas day, as well as the dynamic response of a point of a
structure, the evolution of the roughness along a road, the ground acceleration during
an earthquake, etc.

One of the main features of random process is that, a measurement of it (which rep-
resents a random variable, one of the N constituting the ensemble) is unique and cannot
be reproduced.

Of course, in this category falls also the time evolution of the wind speed in a given
point in space. When someone, for example, measures the wind speed in a point in a
time interval of 10 minutes, which is an aleatory process, it has nothing but that single
measurement.

However, there exist some general features of that measurement such that, repeating
an high number of times the same aleatory process (i.e. 10 minutes wind speed mea-
surement at the same point in space), it is possible to obtain a statistical estimation of
the probabilistic quantity used, then, to model the process [3].

As a ma�er of fact, since it can be considered for the majority of the real phenomena,
only stationary processes will be considered in this discussion. A process is de�ned
stationary if all ensemble averages of the process (mean, mean square values, variance,
covariance, correlation coe�cient, among the most important) do not depend on time t.

If additionally, for the process, any average obtained with respect to time t along
any member r of the ensemble is exactly equal to the corresponding average across the
ensemble at an arbitrary time t, the process is also said to be ergodic.

�erefore, considering, for sake of simplicity, a random process3 depending on a sin-
gle variable, which may be time t (as the one shown in Figure 4.1), the autocovariance
function4

E[p∗(t) p∗(t+ τ)] (4.1)

will be independent of time t (for the stationary property) and therefore will be only
function of the time lag τ [1].

Consequently, this function of τ only will be referred as “autocorrelation function5”
and is de�ned as

Rp∗(τ) = E [p∗(t) p∗(t+ τ)] (4.2)
2�is case is monodimensional.
3NOTE: In the following, random process will refer to the modal forces p∗i .
4Which is an ensemble average of order 2.
5�e autocorrelation functionR∗

p(τ) computes namely the correlation, “inside” the same process (this
is why “auto”), of the values assumed by the random process p∗(t) at time t andt+ τ . However, being it
independent of t, it then only depends on the “distance” in time for which computing the autocorrelation
function of the random process. �e longer the time lag (i.e. the greater τ ), the lower the correlation
between the values assumed by the random process.
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Autocorrelation function has some important properties:

Rp∗(0) = σ2
p∗ (variance of p∗(t)) (4.3)

Rp∗(−τ) = R∗p(τ) (4.4)
|Rp∗(τ)| < Rp∗(0) (4.5)

�us, considering stationary processes, the autocovariance function (which is the cen-
tered autocorrelation function) is given by

Rp∗p∗(τ) = lim
T → ∞

1

T

∫ T/2

−T/2
p∗(t) p∗(t+ τ) dτ (4.6)

NOTE: the �eorem of Ergodicity shows that also for stationary non-ergodic random
processes the Autocorrelation Function of the random process (made by many random
variable, e.g. wind speed measurements) does not change whether it is computed across
the whole process (i.e. across the ensemble) or along one single random variable (i.e. a
single measurement). �is allows to fully characterise the process by simply character-
ising a single random variable.

As it has been said in Section 2.2, any random variable p∗r(t) of a real stationary random
process p∗(t) (i.e. wind speed) can be separated into its frequency components by means
of Fourier Analysis.

Considering the same time interval −s/2 < t < s/2, it can be expressed as

p∗r(t) =
∞∑

n=−∞

Cnr exp(i n ω0 t) (4.7)

in which

Cnr =
1

s

∫ s/2

−s/2
p∗r(t)

2 exp(−i n ω0 t) dt (4.8)

are the complex coe�cients, ω0 = 2 π
s

.

In most cases, the quantity of most interest when analysing stationary random pro-
cesses is the mean square value of each of the r random variables constituting the random
process p∗(t), over the interval −s/2 < t < s/2

〈p∗r(t)2〉 =
1

s

∫ s/2

−s/2
p∗r(t)

2 dt (4.9)

Merging Eqs 4.7, 4.8 and 4.9 we obtain
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〈p∗r(t)2〉 =
∞∑

n=−∞

|
∫ s/2
−s/2 p

∗
r(t)

2 exp(−i n ω0 t) dt|2

2 π s
(4.10)

Le�ing s → ∞, ∆ω → dω and n ω0 → ω the summation becomes an integral

〈p∗r(t)2〉 =

∫ ∞
−∞

Sp∗r(ω) dω (4.11)

where

Sp∗r(ω) ≡ lim
s→ ∞

|
∫ s/2
−s/2 p

∗
r(t)

2 exp(−i n ω0 t) dt|2

2 π s
(4.12)

is de�ned as the ”Power Spectral Density Funtion” of the random variable p∗r(t)6.

It is then straightforward to a�rm that the power spectral density function for the
entire stationary random process p∗(t) is given by averaging the power spectral density
functions for individual members across the ensemble ([1])

Sp∗(ω) = lim
n → ∞

1

n

N∑
r=1

Sp∗r(ω) (4.13)

�us

〈p∗r(t)2〉 =

∫ ∞
−∞

Sp∗(ω) dω (4.14)

Very interesting is the correlation, for stationary random process p(t), between Auto-
correlation Rp∗(τ) and Power Spectral Density functions Sp∗(ω).

It can be demonstrated that the Power Spectral Density function is nothing but 1/2 π
times the Fourier Transform of the Autocorrelation function, that is ([4])

Sp∗(ω) =
1

2 π

∫ ∞
−∞

Rp∗(τ) exp(−i ω t) dτ (4.15)

and consequently

Rp∗(τ) =

∫ ∞
−∞

Sp∗(ω) exp(i ω t) dω (4.16)

6Where we remember that random variable p∗r(t) is the rth sample of the random process p∗(t).
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Remembering the �rst property of the Autocorrelation functionRp(τ) given in Eq 4.3

Rp∗(0) =

∫ ∞
−∞

Sp∗(ω) dω = σ2
p∗ (4.17)

which states that the “integral of the Power Spectral Density Function across the fre-
quency domain equals the variance of the considered random process” ([1]). It then
represents the frequency distribution of the energy (i.e. the variance) contained in the
random process ([6]).

However, of major interest is the link that exists between Power Spectral Density
Function (or Autocorrelation Function) of input process p∗(t) and the output process
q(t) (modal structural responses).

Figure 4.2: Input and output processes of a stable linear SDOF system,

As already stated for the input signal, relation between Power Spectral Density and
Autocorrelation Functions are also valid for output signal, that is

Sq(ω) =
1

2 π

∫ ∞
− ∞

Rq(τ) exp(−i ω τ) dτ (4.18)

Substituting Eq 4.16 into Eq 4.18 and doing some math, we can �nally ascertain that
Power Spectral Density Function of output system is linked to the Power Spectral Den-
sity Function of the input process by the relation ([1])

Sq(ω) = H(−i ω) H(i ω) Sp∗(ω) (4.19)

in which H(iω) is the “frequency-domain complex transfer function between loading
and response”.
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Extending to MDOFs systems is quite straightforward.

Recalling Section 3.2.5 in which was stated that dynamic response of a linear MDOF
system can be determined by the solving of the modal equations of motion as expressed
by Eq 3.24. �en, total response is given by superposition of modal responses by means
of modal shapes,

x(t) =
3∑

n=1

φn qn(t) (4.20)

If random excitations (dynamic wind loading) are assumed to be stationary (which is
the quite always the case), the response will also be stationary, which allows to a�rm
that, based on what has been stated in this section at page 44, Eq 4.2, autocorrelation
function of response, given by

Rx(τ) = E [x(t) x(t+ τ)] (4.21)

is independent of variable time t, hence only dependent on time shi� τ .

A�er doing some maths, it can be demonstrated that

Rx(τ) =
∑
m

∑
n

Rxmxn(τ) m,n = 1, 2, 3 (4.22)

where

Rxm xn(τ) =

∫ ∞
0

∫ ∞
0

φm φn Rpmpn(τ − u2 + u1) hm(u1) hn(u2) du1 du2 (4.23)

Rpmpn(τ) is the covariance funtion of random variables pm(t) and pn(t+τ),Rxm xn(τ)
is the covariance function of modal responses xm(t) and xn(t+ τ) [1].

However, for systems with very low damping (i.e. for ξi � 1) and well-separated
modal frequencies7, response process xm(t) produced by mode m is almost statistically
independent of response xn(t) produced by mode n. �is means that cross terms in Eq
4.22 are almost equal to zero. �erefore, autocorrelation function of total response can
be approximated by the relation

Rx(τ)
.
=
∑
m

Rxmxm(τ) (4.24)

where
Rxmxm(τ)

7As is usually the case in Structural Engineering.
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is the Autocorrelation Function for process xm(t). When τ is equal to 0, recalling the �rst
property of the Autocorrelation Function given by Eq 4.3, Eq 4.24 can be expressed in
terms of standard deviations, that is ([1])

σx =
(
σ2
x1

+ σ2
x2

+ σ2
x3

)1/2 (4.25)

which supports the common square-root-of-the-sum-of-squares (SRSS) method of weight-
ing the maximum normal mode responses when estimating maximum total response8.

�en, Power Spectral Density Function of the response is 1/2π the Fourier Transform
of the Autocorrelation Function (of the response) [1].

Sx(ω) =
1

2π

∫ ∞
−∞

Rx(τ) exp(−iωτ) dτ (4.26)

Substituting Eq 4.23 into Eq 4.22 and then 4.22 into Eq 4.26, a�er doing some maths,
it is possible to demonstrate that

Sx(ω) =
∑
m

∑
n

Sxmxn(ω) (4.27)

in which

Sxmxn(ω) = φm φn Hm(−iω) H(iω) Spmpn(ω) (4.28)

is the cross-spectral density function for modal responses xm(t) and xn(t), Spmpn(ω) is
the cross-spectral density function for processes pm(t) and pn(t), and

Hm(−iω) =
1

k∗m [1− 2iξm(ω/ωm)− (ω/ωm)2]
(4.29)

Hn(iω) =
1

k∗n [1 + 2iξn(ω/ωn)− (ω/ωn)2]
(4.30)

Again, for lightly damped systems with well-separated modal frequencies Eq 4.27 can
be approximated by

Sx(ω)
.
=
∑
m

Sxmxm(ω) (4.31)

8Instead of complete-quadratic-combination (CQC) method.
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where

Sxmxm(ω) = φ2
m |Hm(iω)|2 Spmpm(ω) (4.32)

|Hm(iω)|2 =
1

k∗n
2 [1 + (4ξ2m − 2)(ω/ω)2 + (ω/ω)4]

(4.33)

and Spmpn(ω) is the Power Spectral Density Function for process pm(t).

4.2 FFTvs. B&R (Background andResonant) responses:
numerical comparison

�is section is aimed at presenting results which were obtained by performing numerical
analysis on some selected samples9 (from the Database) under di�erent wind con�gura-
tions.

In previous Section it has been shown the relationship between the PSDs of input and
output signal, which was given by Eq 4.19.

However, there exist a strict correlation between the frequency content of the loading
and the intrinsic characteristics of the structural system, particularly in the name of its
natural modal frequencies.

�at is, the more the forcing frequency is close to the natural modal frequency, the
higher the modal response will be. �is is because loading and response get in phase,
and if structure is not damped (i.e. energy dissipation), response would increase tending
to in�nity with elapsing of time (resonant response, see Fig 2.3).

�is is at the base of the B&R decomposition of the response. �e idea is that response
is mainly expressed by the Background component, which highlights the quasi-static
response of the structure, expressed as

qB(t) =
p∗(t)

k∗
(4.34)

or in the frequency domain

QB(ω) =
P ∗(ω)

k∗
(4.35)

that in terms of Power Spectral Density function, recalling the relationship that exists
between PSDs of input and output signal, gets

9�e most relevant ones.
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SBq (ω) =
Sp∗(ω)

k∗2
(4.36)

and the Resonant component, given by

SRq (ω) = H(iω) H(−iω) SP ∗(ω0) (4.37)

where this case SP ∗(ω0) is the Power Spectral Density of P ∗(ω) computed at the nat-
ural modal frequency ω0.

Hence �nally, the actual PSD of the response which is analytically given by Eq 4.19
can be approximated by the sum the two components, that is

SBRq (ω) = SBq (ω) + SRq (ω) (4.38)

�ey will be presented result for two main con�gurations, namely T115 0° a�ack angle
and T115 45° a�ack angle.

In Appendix A results for other relevant cases can be found.

4.2.1 Sample T115, 0° attack angle

As said in previous Section, the objective of the Background and Resonant decomposi-
tion of the response is that of characterising the la�er having info only on the loading
function, thus avoiding the classical Fourier Analysis.

Figure 4.3: Plot of time history of Modal Forces, sample T115, 0° a�ack angle.

Hence, the most important quantity is the input signal, namely the time history of the
modal forces, discussed in Section 3.2.4. We therefore recall their plot for sake of clarity
in Fig 4.3.

�e �rst step of the B&R analysis is then that of computing the Power Spectral Density
Function of the modal forces with respect to frequencies.
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Figure 4.4: Plot of PSD of Modal Forces, sample T115, 0° a�ack angle.

Figure 4.5: Plot of PSD of Modal Forces, sample T115, 0° a�ack angle (log scale).
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�en, following the plots of the PSDs modal amplitudes and an arbitrary monitoring
displacement (Up-Right element of Windward surface in this case) from Fourier Analy-
sis:

Figure 4.6: Plot of PSD of Modal Amplitudes, sample T115, 0° a�ack angle.

Figure 4.7: Plot of PSD of Modal Amplitudes, sample T115, 0° a�ack angle (log scale).
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Figure 4.8: Plot of PSD of x and y displacements of UL elements on W surface, sample
T115, 0° a�ack angle.

Figure 4.9: Plot of PSD of x and y displacements of UL element on W surface, sample
T115, 0° a�ack angle (log scale).
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Finally, the plots which show the comparison between PSDs of modal amplitudes com-
puted with classical Fourier Analysis and the Background and Resonant B&R decompo-
sition of the response.

Figure 4.10: Superposition of FFT and B&R modal responses for Mode 1, sample T115, 0°
a�ack angle.

Figure 4.11: Superposition of FFT and B&R modal responses for Mode 1, sample T115, 0°
a�ack angle (log scale).
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Figure 4.12: Superposition of FFT and B&R modal responses for Mode 2, sample T115, 0°
a�ack angle.

Figure 4.13: Superposition of FFT and B&R modal responses for Mode 2, sample T115, 0°
a�ack angle (log scale).
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Figure 4.14: Superposition of FFT and B&R modal responses for Mode 3, sample T115, 0°
a�ack angle.

Figure 4.15: Superposition of FFT and B&R modal responses for Mode 3, sample T115, 0°
a�ack angle (log scale).
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It can be clearly seen that two methods match quite well. Modal Response is well
reproduced by the B&R decomposition.

One could argue that, looking at Figs 4.10 4.12 and 4.14, the resonant component
(coloured in yellow) has an higher peak with respect to the one coming from the Fourier
Analysis (blue line). However, this is only due to local approximation. In Eq 4.36 it
has been shown how the resonant component is computed: it depends on the value of
the power spectral density function of the modal force at the natural modal frequency
SP ∗(ω0). �erefore, a change in its value would produce a change in the �nal values of
the resonant component. Clearly, the plot of the PSD of the modal forces in Fig 4.4 (4.5 in
log scale) are not smoothed; in 4.16 a zoom can be appreciated. �is is the source of the
not exact computation of SP ∗(ω0); however, variability is low enough such to produce
negligible relative errors.

Figure 4.16: Zoom on the graph of modal amplitudes, sample T115, 0° a�ack angle.
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4.2.2 Sample T115, 45° attack angle

�is section, additionally to present results on B&R decomposition applied to this con-
�guration, has also, and more importantly the purpose of showing that it is valid inde-
pendently to any possible in�uencing parameter, such among the most important the
natural modal frequencies.

Hence, in analysing this con�guration, modal frequencies will be varied with respect
to previous case, in which they were equal to

ω1 = 0.5 Hz

ω2 = 0.5 Hz

ω3 = 2 Hz

.

In this case, we will set them, arbitrarily, to 0.1 Hz, 0.2 Hz10 and 1 Hz.

Figure 4.17: Plot of time history of Modal Forces, sample T115, 45° a�ack angle.

10In reality, considering the symmetry of the structure, mode 1 and mode 2 should have same natural
modal frequency since they are basically de�ned the same. However, this di�erentiation is only with the
scope of showing the consistency of the method with respect to natural modal frequencies.
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Figure 4.18: Plot of PSD of Modal Forces, sample T115, 45° a�ack angle.

Figure 4.19: Plot of PSD of Modal Forces, sample T115, 45° a�ack angle (log scale).
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Figure 4.20: Plot of PSD of Modal Amplitudes, sample T115, 45° a�ack angle.

Figure 4.21: Plot of PSD of Modal Amplitudes, sample T115, 45° a�ack angle (log scale).
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Figure 4.22: Plot of PSD of x and y displacements of UL element on W surface, sample
T115, 45° a�ack angle.

Figure 4.23: Plot of PSD of x and y displacements of UL elements on W surface, sample
T115, 45° a�ack angle (log scale).
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Figure 4.24: Superposition of FFT and B&R modal responses for Mode 1, sample T115,
45° a�ack angle.

Figure 4.25: Superposition of FFT and B&R modal responses for Mode 1, sample T115,
45° a�ack angle (log scale).

73



Figure 4.26: Superposition of FFT and B&R modal responses for Mode 2, sample T115,
45° a�ack angle.

Figure 4.27: Superposition of FFT and B&R modal responses for Mode 2, sample T115,
45° a�ack angle (log scale).
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Figure 4.28: Superposition of FFT and B&R modal responses for Mode 3, sample T115,
45° a�ack angle.

Figure 4.29: Superposition of FFT and B&R modal responses for Mode 3, sample T115,
45° a�ack angle (log scale).
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4.3 Validation: integration in the frequency domain

�is section is an extension of the previous two ones, in which we have demonstrated
as the B&R decomposition of the response well reproduced the actual behaviour of the
modal responses got from classical Fourier Analysis.

Still, those two examples cannot be taken as general validation of the method, since
they rely on two set of �xed values of natural modal frequencies.

�erefore, a general and de�nitive validation will be performed, by le�ing the �rst
two natural modal frequencies (keeping the third �xed, as it is of minor interest in this
case) varying in a range from 0.05 Hz to 2 Hz. Just to mention that, in reality these
are very low natural frequencies (normal civil structures have as for the �rst mode a
natural frequency of 1 Hz, then higher modes have higher frequencies, which means
lower periods): still, it has been chosen this range so to empathise resonant response,
since generally the frequency content of the input signal (i.e. the dynamic wind loading)
is characterised by high content in the very low range of frequencies, which means high
periods. Figures 4.30 and 4.31 clearly shows this statement.

Figure 4.30: Low natural modal frequencies, ampli�cation of resonance response.
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Figure 4.31: High natural modal frequencies, tendency to quasi-static response.

Clearly, looking at the bo�om graphs, depicting the modal response in the frequency
domain, amplitudes are way higher in values in the �rst case (resonance) with respect
to the second one (quasi-static).

�at being said, we will now report the results of the validation. As stated in the
title of this section, it will be done in terms of integrating in the frequency domain. For
this purpose, we brie�y recall Eq 4.17, in which it was shown how the integral of the
power spectral density function in the frequency domain was equal to the variance of
the random process considered.

�is means that, integrating the PSD functions introduced in previous section in the
frequency domain, we can compute the variance of the modal responses from the B&R
decomposition as

σ2
q
BR

= m2,q,BR =

∫ ∞
−∞

SBRq (ω) dω (4.39)

which split in the two components becomes

m2,q,BR =

∫ ∞
−∞

(
SBq (ω) + SRq (ω)

)
dω =

∫ ∞
−∞

SBq (ω) dω +

∫ ∞
−∞

SRq (ω) dω

= m2,q,B +m2,q,R

(4.40)

in which m2,q,B is the second central moment (i.e. variance) of the background com-
ponent of the response

m2,q,B =
m2,p∗

k∗2
(4.41)
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and m2,q,R is the second central moment of the resonant component

m2,q,R =

∫ ∞
−∞

SRq (ω) dω =

∫ ∞
−∞

H(iω) H(−iω) SP ∗(ω0) dω (4.42)

and remembering that SP ∗(ω0) is a constant, thus taken out from the integration,

m2,q,R = SP ∗(ω0) ∗
∫ ∞
−∞

H(iω) H(−iω) dω = SP ∗(ω0) ∗
∫ ∞
−∞
|H(iω)|2 dω

m2,q,R =
πωi

2ξik∗i
2 SP ∗(ω0) (4.43)

On the other hand, it is possible to compute the second central moment of the modal
responses computed by means of Fourier Analysis, which in MATLAB11 can be easily
done by recalling the function var, that is

m2,q,FFT = var(q(t))

.

�en, last step of validation is to compare the second central moments got from the
two di�erent approach, with varying natural modal frequencies. Following they will be
reported results for the sample T115, at 0° a�ack angle.

11�e sofware which has been used to write the code.
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Figure 4.32: Variance of q1 (FFT vs. B&R) in the frequency space.

Figure 4.33: Variance of q2 (FFT vs. B&R) in the frequency space.

As it can be noticed, either q1 and q2 vary only with respect to ω1 and ω2 respectively.
�is makes sense under the assumption of fully independent modal shapes, that we dis-
cussed in Section 3.2.2. On the other hand, the second central moment of q3 referring to
the third mode (�g 4.34) does not vary in the frequency space since it has been assumed
a constant and �xed value12.

Yet, in both cases, we notice that the two methods compute almost identical values
of the variance when modal frequencies increases, while relative di�erence (sketched
in the right graphs) increases with natural frequencies approaching zero, for which also
variance, in both cases, increases. Of course this makes sense, since the lower the natural

12Because higher modes have minor e�ects on total response with respect to �rst main ones, therefore
allowing skipping, in this context, the analysis with respect to variation of their natural modal frequencies.
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modal frequency, the higher the possibility of occurrence of resonant e�ect, which makes
response much more sensible and unstable (i.e. more variable with respect to mean
value).

Figure 4.34: Variance of q3 (FFT vs. B&R) in the frequency space.

Figure 4.35: max(q1) (FFT vs. B&R) in the frequency space.
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Figure 4.36: max(q2) (FFT vs. B&R) in the frequency space.

Figures 4.35, 4.36 and 4.37 refer to the maximum values of the modal responses, and
clearly they show the same trend as in Figs 4.32, 4.33 and 4.34. For the FFT method, it
has been simply computed using the MATLAB function max, that is

maxq,FFT = max(q(t))

.

For the B&R decomposition, maximum value of the variance has been computed as

qi,max,BR = qi + g
√
m2,qi,BR (4.44)

in which qi is the mean value of ith modal response (of B&R method), given by

qi =
p∗i
k∗i

(4.45)

p∗i mean value of the ith modal force, k∗i ith modal sti�ness,

√
m2,qi,BR = σqi =

1

k∗i

√
m2,p∗ + Sp∗i (ωi)

πωi
2ξi

(4.46)

is the standard deviation of the ith modal amplitude (by means of B&R method), g is
de�ned as peak factor, and it generally varies between 3.5 and 4. In this case, a value of
3.5 has been selected.
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Figure 4.37: max(q3) (FFT vs. B&R) in the frequency space.

Figure 4.38: Max absolute displacement (FFT vs. B&R) of UR element on W surface in
the frequency space.
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Figure 4.39: Max absolute displacement (FFT vs. B&R) of UR element on RS surface in
the frequency space.

Same approach has been adopted for the computation of maximum values of the ab-
solute displacements. For the FFT method, maximum absolute displacement has been
computed by means of the MATLAB function max applied to the absolute displacement
(of some selected elements, ex. Up-Le� element of Windward surface) got as the square
root of the sum of the square of the x and y displacements of the same element, that is

maxd,FFT = max(
√
x2FFT + y2FFT )

.

For the B&R method, approach has been similar to the one applied in the case of
evaluation of maximum values of modal amplitudes, that is

maxdi,BR = di + g σdi (4.47)

where

di = Φ qi (4.48)

qi de�ned by Eq 4.45, σdi is the standard deviation of the ith absolute displacement, g
is the peak factor previously de�ned.

To compute standard deviation of absolute displacement σdi , at �rst variance matrix
of modal responses has been constructed as

ΣqBR
=

σ2
q1,BR

0 0

0 σ2
q2,BR

0

0 0 σ2
q3,BR

 (4.49)
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from which

ΣdBR
=

(
σ2
xBR

0
0 σ2

yBR

)
= Φ ΣqBR

ΦT (4.50)

in which σ2
xBR

and σ2
yBR

are variance of x and y displacements of selected element
respectively.

Important to note that o� diagonal elements in Eq 4.49, which refer to covariances,
equal to zero means that there is no correlation between two di�erent modal responses,
as it is the case in this Work as they have been assumed independent modal shapes.

�en

maxdBR
= Φ q + g

√
ΣdBR

(4.51)

Figures 4.38 and 4.39 show an example of this application for the maximum absolute
displacements of Up-Le� on Windward and Up-Right element on Right-Sideward surface
respectively.

From them we can notice some important features:

1. As expected, maximum absolute displacement increases with decreasing of natural
modal frequencies, which means higher probabilities of resonance e�ects;

2. Additionally, remembering that these graphs are related to the sample T115 at 0°
a�ack angle, we notice that there is a higher sensibility along the �rst mode. �is
makes sense since 0° a�ack angle means wind �ow perpendicular to Windward
surface, i.e. exciting mostly mode 1 (that causes displacements along y axis);

3. From both graphs, it can be noticed that maximum absolute displacements com-
puted with FFT method are higher than the ones computed with B&R decomposi-
tion of the response. �is is mathematically due to the fact that with FFT method,
maximum value is given by the very maximum value registered in the time his-
tory; this means that even if average value is very small, if at a given point in
time something would have caused a sharp peak in the recording, that would then
represent the maximum value. On the other hand, the max values computed with
B&R decomposition are based on the two main statistical properties, that are mean
value and standard deviation. �is approach clearly cuts o� any possible local per-
turbation, since the average would not be that highly a�ected by some local peaks
in a long time series of a random signal. However this is no more valid accord-
ingly to Figures 4.38 and 4.39 for very low natural modal frequencies: this could
be caused by the resonant component of the B&R decomposition, precisely by the
local approximation error in its computation (which in almost all cases tends to
overestimate it) discussed in Section 4.2.1, Fig 4.16.

84



4.4 Parametric analysis

Once Background and Resonant decomposition method has been validated, it is then
possible to build response spectra by means of a parametric analysis, that is le�ing struc-
tural parameters changing, such as natural modal frequencies, damping ratio etc.

Of course, under a Structural Engineering point of view, the most signi�cant quantity
is the maximum displacement that the structure undergoes under a given loading, spe-
cially in a pre-design phase. �us, in the following they will be shown response spectra
regarding maximum absolute displacement of some signi�cant reference points13 for the
most relevant con�gurations.

Figure 4.40: Response spectra of absolute displacement of UL element on W surface,
sample T115, 0° a�ack angle.

13�e ones at the top of the structure.
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Figure 4.41: Response spectra of absolute displacement of UL element on W surface (log
scale), sample T115, 0° a�ack angle.

Figure 4.42: Response spectra of absolute displacement of UR element on RS surface,
sample T115, 0° a�ack angle.
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Figure 4.43: Response spectra of absolute displacement of UR element on RS surface (log
scale), sample T115, 0° a�ack angle.

Figure 4.44: Response spectra of absolute displacement of UL element on LS surface,
sample T115, 0° a�ack angle.
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Figure 4.45: Response spectra of absolute displacement of UL element on LS surface (log
scale), sample T115, 0° a�ack angle.

Figure 4.46: Response spectra of absolute displacement of UL element on W surface,
sample T115, 45° a�ack angle.
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Figure 4.47: Response spectra of absolute displacement of UL element on W surface (log
scale), sample T115, 45° a�ack angle.

Figure 4.48: Response spectra of absolute displacement of UR element on RS surface,
sample T115, 45° a�ack angle.
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Figure 4.49: Response spectra of absolute displacement of UR element on RS surface (log
scale), sample T115, 45° a�ack angle.

Figure 4.50: Response spectra of absolute displacement of UL element on LS surface,
sample T115, 45° a�ack angle.
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Figure 4.51: Response spectra of absolute displacement of UL element on LS surface (log
scale), sample T115, 45° a�ack angle.

At this point we can do some considerations:

• Response, in terms of maximum absolute displacement, increases with the decreas-
ing of both natural modal frequencies;

• Also, with same natural modal frequencies, response is higher with decreasing
values of damping ratio;

• In con�guration T115, 0° a�ack angle, response is more sensible to high decreasing
of the second natural modal frequency ω2 with respect to �rst mode. �is is some-
how the contrary of what someone would expect (considering that this speci�c
con�guration excites directly the �rst mode, being the wind �ow perpendicularly
to Windward− along-wind − surface). However, this is explained by the fact that
vortex shedding e�ects are much higher on across-wind surfaces (Right and Le�-
Sideward surfaces) with respect to Leeward surfaces (back along-wind surface).
Additionally to these minor vortex shedding e�ects on Leeward surface there is
the fact that along-wind motion is somehow stabilised (in terms of variability of
displacements) by the constant and perpendicular �ow blowing on Windward sur-
face, while it is not the case in across-wind motion. �erefore, le�ing the natural
modal frequencies approaching zero (i.e. making the structure very slender), in-
stability occurs in higher amplitude in the second mode.
On the other hand, when it comes to the con�guration T115 45° angle of a�ack,
one would expect perfect symmetry of the response (following the symmetry of
the geometry of the problem). However, clearly response is more sensible with
respect to �rst natural modal frequency. �is is simply due to randomness of mea-
surements (of adimensionalised pressure coe�cients), which by their side are not
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perfectly symmetric (e.g. if, during test, for a very li�le time window, angle of the
rotating plate was not exactly at 45°);

• Response (maximum absolute displacements) exhibits very high values (order of
some meters in real scale) for natural modal frequencies approaching 0, specially
for values lower than 0.5 Hz. However, in reality 0.5 Hz is already a very low nat-
ural frequency, which for most civil engineering structures is quite never reached
(�rst mode has generally natural modal frequency of 1 Hz or above; than higher
modes have increasing natural modal frequencies). �erefore, following represen-
tations will space in a more reasonable range of natural modal frequencies, such
to represent more realistic values of structural response.

In Appendix B response spectra for other relevant con�gurations are reported.
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5 Bispectrum and Bicorrelation

It has been said in previous chapters that when loading has Gaussian distribution1 of
the probability density function, mean value and Power Spectral Density Function (or
equally variance) fully characterise a random process. Also, if loading is Gaussian, then
also response is Gaussian.

Figure 5.1: Example of Gaussian Distribution of the probability density function. (source:
h�ps://towardsdatascience.com)

In Chapter 4 we then showed, based on this concept, as dynamic response can be
decomposed into its two basic components: a background component, which accounts
for the quasi-static response (i.e. mean response, when loading has very low frequencies,
hence high periods), and a resonant component, which happens when frequency of the
excitation is well close to the natural frequency of the structure (in a speci�c mode) (see
Eqs 4.44 and 4.47).

However, when a random process (i.e. loading or response) is no more Gaussian, mean
value and PSD are no more su�cient to fully characterise the random process. �is is
because the loss of the Gaussianity property (i.e. symmetry of the probability density
function with respect to y axis in correspondence of the mean value µx along the x axis)
causes the needing of an additional info regarding the asymmetry of the process.

In this context, there exist quantities, similar to the PSD, that are correlated to statis-
tical moments higher than two2 in the frequency space. In particular, the bispectrum
Bp∗(ω1, ω2) “represents the distribution of the third central moment of the modal force p∗
in a 2-D frequency space” [?]. �e Bicorrelation is obtained by means of Inverse Fourier

1p(x) = 1√
2πσ2

x

exp(− (x−µx)
2

2σ2
x

)

2�e statistical moment of order 2 is the variance, which has been seen coming from the integration
of the PSD in the frequency domain.
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Figure 5.2: Comparison of non-Gaussian p.d.f. (dashed line) with respect to a Gaussian
one (continuous line). (source: h�ps://ned.ipac.caltech.edu)

Figure 5.3: Histograms of modal forces, sample T115, 0° a�ack angle.

Transform (in the frequency space) of the bispectrum.

In other words, B&R and B&bR decompositions go together. �e �rst is related to the
variance of the random process, linked to the “dispersion” in the p.d.f., while B&bR which
refer to the third statistical central moment gives information about the asymmetry of
the p.d.f. (i.e. non-Gaussianity).
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Figure 5.4: Histograms of modal forces, sample T215, 0° a�ack angle.

Moreover, in the framework of non-Gaussian random input process, previous Eqs 4.44
and 4.47 are no more valid because of the assumed value given to the peak factor g (whose
range is based on Gaussian processes). �is because , if input process is strongly non-
Gaussian, previous assumption on conventional peak factor leads to non-conservative
estimates estimates due to failure to include long tail regions inherent to non-Gaussian
processes (Kwon DK et al. 2010). �erefore, when loading is non-Gaussian, it is needed
to be�er investigate on the peak factor g in order to be able to compute more realistic
extreme values of the response, because in this case

g = g(γ3, γ4) (5.1)

γ3 and γ4 being skewness and excess kurtosis of the non-Gaussian input random signal.

However, that being said, this Work will not further exploit its application in deter-
mining its e�ect in the computation of extreme value of the response, even if it would
have been of interest then the comparison with extreme values obtained by B&R decom-
position. Still, this could be topic of further studies on this topic.

Nonetheless, everything here is based on the computation of the third statistical cen-
tral moment of the response m3,q. In the following they will be compared analytical and
numerical solutions of the la�er entity, in order to validate a cost-e�ective method that
can be applied in early stages of a structural analysis.

Accordingly, the third central moment of the response is obtained as

m3,q =

∫ ∫ ∞
−∞

Bq(ω1, ω2) dω1dω2 (5.2)

in which Bq(ω1, ω2) is the Bispectrum of the modal response given by

95



Bq(ω1, ω2) = K2(ω1, ω2) Bp∗(ω1, ω2). (5.3)

Bp∗(ω1, ω2) is the Bispectrum of the modal force, K2(ω1, ω2) is the second Volterra
Kernel expressed as

K2(ω1, ω2) = H(ω1) H(ω2) H(ω1 + ω2) (5.4)

where the overbar denotes the complex conjugate. Nonetheless, only the real part of
K2(ω1, ω2) is of interest.

However, it can be soon realised that higher order statistical analysis would not be
applied if the double integral in Eq 5.2 has to be performed numerically, since, for huge
structures �nite element models (as it is quite always the case), computational costs (i.e.
time) would be out of reason.

�en, the objective of this chapter, as well as �is Work, is to provide an approximate
numerical solution of the computation of the third central moments of the response
based on the one of the loading, as an extension of the Background and Resonant (B&R)
response (with respect to second central moments, i.e. variance).

�e basic concept is identical to the previous one: spli�ing the total response in two
components, that is

Bq,BbR = Bq,B +Bq,bR (5.5)

where

Bq,B(ω1, ω2) =
Bp∗

k∗3
(5.6)

is the bispectrum of the background component referring to the quasi-static behavior,
and Bq,bR is the bispectrum of the biresonant one.

Computation of the third statistical moment of the background component is straight-
forward: by integrating Eq 5.6

m3,q,B =

∫ ∫ ∞
−∞

Bq,B(ω1, ω2) dω1dω2 =

∫ ∫ ∞
−∞

Bp∗(ω1, ω2)

k∗3
dω1dω2

=
1

k∗3

∫ ∫ ∞
−∞

Bp∗(ω1, ω2) dω1dω2 =
m3,p∗

k∗3

(5.7)

On the other hand, it is not that simple when it comes to the third statistical moment
associated with the biresonant component, since it would require the double integration
of the second Volterra Kernel:
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m3,q,bR =

∫ ∫ ∞
−∞

Bq,bR(ω1, ω2) dω1dω2 =

∫ ∫ ∞
−∞

(Bq −Bq,B)(ω1, ω2) dω1dω2

=

∫ ∫ ∞
−∞

[
K2(ω1, ω2)−

1

k∗3

]
Bp∗(ω1, ω2) dω1dω2

(5.8)

In this perspective, Denoël has studied ([6]) the problem in order to be able to com-
pute an approximate value of the third statistical moment of the biresonant component
avoiding the double integration in the frequency space.

More speci�cally, noticing that biresonant component is characterised by six peaks, he
focused on the peak located at (ω1, ω2) = (ω0, 0), for which the approximate bispectrum
is given by

B̂q,bR1(ω0 (1 + ξη1), ω0ξη2) =
1

4k∗3ξ2
η21 + η1η2 + 1

(η21 + η1η2 + 1)
2

+ η22
Bp∗(ω0, ξη2ω0) (5.9)

in which η1 and η2 are stretched coordinates de�ned such that

ω1 = ω0 (1 + ξη1) (5.10)
ω2 = ω0ξη2 (5.11)

�us

m̂3,q,bR1 =

∫ ∫ ∞
−∞

B̂q,bR1(ω0 (1 + ξη1), ω0ξη2) ω
2
0 ξ

2 dη1dη2 (5.12)

or, in a more simpli�ed way which avoids the double integration

m̂3,q,bR1 =
ω2
0

4k∗3

∫ ∞
−∞

Bp∗(ω0, ξη2ω0)

∫ ∞
−∞

η21 + η1η2 + 1

(η21 + η1η2 + 1)
2

+ η22
dη1dη2

= π
ξω3

0

k∗3

∫ ∞
−∞

Bp∗(ω0, ω2)

(2ξω0)2 + ω2
2

dω2

(5.13)

We are now ready to step to the numerical analysis, in which the above explanation
will be applied to the speci�c case.

�e two only needed quantities to perform such computation are the time histories of
input (modal forces) and output signal (modal responses, from FFT analysis), as well as
all the structural parameters. Yet, it has been underlined many times that the objective
of these decomposition is that of being able to predict with high accuracy extreme values
of response by only analysing statistically the input random process: to do so of course
it is needed to compare numerical approximations with analytical ones (FFT).
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Sample T115, 0° attack angle

Firstly, the bispectrum3 of the input signal is built.

Figure 5.5: Bispectrum of �rst modal force, sample T115, 0° a�ack angle.

3For the computation of the various bispectrum, a function from the MATLAB File Exchange Database
has been used.
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As it can be seen, it shows a sharp (almost) circular peaks at the centre of the frequency
space, when two modal frequencies approaches zero. �is is simply an extension of the
previous PSD of the input in Fig 4.4, which we hereby report for sake of clarity and
easiness in seeing the likeness.

Figure 5.6: Plot of PSD of �rst modal force (blue), sample T115, 0° a�ack angle.

�en, having the time history of the respective modal amplitude coming from FFT
analysis, we can build its bispectrum.

Figure 5.7: Bispectrum of �rst modal amplitude (FFT), sample T115, 0° a�ack angle, f1 =
0.26 Hz.
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Having a �rst look at it, it can be clearly noticed how it has 6 peaks located at (0,±ω0),
(±ω0, 0) and ±(ω0,−ω0) being ω0 the natural frequency of the considered mode.

�is is the one that should be compared with the numeric approximation which we
discussed earlier.

Figure 5.8: Comparison of numerical approximation with analytical and FFT bispectrum
of modal response, sample T115, 0° a�ack angle, mode 1, f1 = 0.26 Hz.

In la�er �gure, at the top-right corner the bispectrum of the modal amplitude com-
puted with FFT is reported (previous Fig 5.7). On the top-le� corner is the approxi-
mate bispectrum computed by means of the analytical solution, give by Eqs 5.2 and 5.3.
�e bo�om two are represent the approximation of the peak (among the six) located at
(ω1, ω2) = (ω0, 0). �ey both refer to the local approximation as given in Eq 5.9, how-
ever with a slight di�erence in the computation of the local behaviour of the bispectrum
of the modal force Bp∗(ω0, ξη2ω0 in correspondence of the considered peak.

For the bo�om-le�, la�er quantity (which for clarity of the reader, we underline that
represent a cut of bispectrum of the modal force at ω1 = ω0, i.e. a 2-D line) has been
obtained by �nding the index in the vector of frequencies at which the di�erence, in
absolute value

|ω1 − ω0|

was minimum, that is in other words, a cut of the bispectrum of the modal force at

ω1 = ω̂0

where ω̂0 is the closest value in the frequency vector ω1 (de�ned automatically by the
desired re�nement with which ge�ing the results) with respect to the natural modal
frequency ω0. Of course, this is clearly an approximation because depending on the
value of the absolute di�erence, the position index might lead to take a slice cut which
could be either at a lower or higher frequency with respect to the natural one: and we
are now able to understand that, considering also the high variability in amplitudes of
the bispectrum at low frequencies, this could lead in over or underestimation of the
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approximated ones of the modal amplitude which rely on it (which is the �nal objective
of the B&bR decomposition).

On the other hand, for the bo�om-right, it has been tried to exact the slice cut of
the bispectrum of the modal force at the exact natural modal frequency ω0 by using the
interp2 function in MATLAB. However, it has to be said that even if this method tries to
get the info at the right value, is still an approximation as the previous one, which comes
purely by the fact that interpolation method is not of the same order of the analytical
expression of the bispectrum locally (which would be very tough, if not impossible, to
know it exactly). For sake of clarity, a linear method of interpolation4 has been used.
Figures 5.9 and 5.10 show an example of the slice cut of the bispectrum of the modal
force for both aforementioned methods.

Figure 5.9: Example a slice cut of Bp bispectrum of modal force, �rst approximation.

Figure 5.8 also shows how analytical computation ( see Eq 5.3) of the bispectrum of the
modal response (up-right surface) well capture the background and biresonant response,
having the same six peaks at the right locations. Also, background component matches
quite perfectly. However, a slight di�erence in height of the biresonant peaks occurs
between analytical and the one built from the time history of the modal amplitude (FFT).
�is can be related to the non-negligible contribution that gives the imaginary part of
both the bispectrum of the modal force and the second Volterra Kernel. In fact, in �gure
5.11 we can clearly notice the di�erence in amplitude between real and imaginary parts
of the analytical solution of the bispectrum of the modal response.

�e bo�om two graphs show the numerical approximation of the biresonant peak
located at (ω0, 0): noticeably, the match quite well with the corresponding peak of the
analytical solution, yet, having a slight di�erence in amplitude with the one coming
from the FFT analysis. �is could be also caused by the fact that these two approximated
solution are based on the slice cut we introduced above: the precision in reproducing the

4To note that choice was arbitrary. Even a cubic method of interpolation, although more precise,
would have led to same approximation errors as for the linear one.
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Figure 5.10: Example a slice cut ofBp bispectrum of modal force, second approximation.

Figure 5.11: Imaginary and real parts of Bq computed analytically, sample T115, 0° a�ack
angle, mode 1, f1 = 0.26 Hz.

actual shape of the cut line depends on how re�ned the mesh of the bispectrum of the
modal force is.

In fact, we can notice form Figures�� how results are sensible to a decreasing (either
an increasing) in the re�nement of the mesh of Bp:
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Figure 5.12: Comparison of numerical approximation with analytical and FFT bispec-
trum of modal response, sample T115, 0° a�ack angle, mode 1, f1 = 0.26 Hz, decreased
mesh re�nement.

Figure 5.13: Imaginary and real parts of Bq computed analytically, sample T115, 0° a�ack
angle, mode 1, f1 = 0.26 Hz, decreased mesh re�nement.

Interesting is to monitor what happens further decreasing the natural modal fre-
quency, that is more in the resonance domain. Decreasing the modal frequency down to
0.05 Hz we observe:

It can be seen how in this case, the six peaks, which are now at lower frequencies as
expected, are much higher in amplitude with respect to previous case, sign that, as it
was also the case for the PSD (see Figs 4.30 and 4.31), resonant e�ects are more likely to
happen. In fact, recalling the Bispectrum of the modal force in Fig 5.5 in which it was
shown how it exhibits a very sharp peak at low frequencies, it can be clearly understood
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Figure 5.14: Bispectrum of �rst modal amplitude, sample T115, 0° a�ack angle, f1 =
0.05 Hz.

that as soon as the natural modal frequency gets low enough such to ”fall” inside that
region, response will be then for sure a�ected by resonant e�ects.

Figure 5.15: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T115, 0° a�ack angle, mode 1, f1 = 0.05 Hz.

Finally reported a parametric analysis in which the computation of the third statisti-
cal central moment of the modal response m3,q has been computed for varying natural
modal frequencies, in order to be�er capture the behaviour of each of the approximate
solutions here discussed.
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Figure 5.16: Imaginary and real parts of Bq computed analytically, sample T115, 0° a�ack
angle, mode 1, f1 = 0.05 Hz.

Figure 5.17: Parametric analysis of m3,q, mode 1, sample T115, 0° a�ack angle.

in which:

m3q bispectrum comes from the integration in the frequency space of the bispectrum
of q coming from FFT analysis;

m3q skewness is obtained, following the de�nition of the third statistical central mo-
ment, as
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m3q skewness = γ3,q ∗ σ3
q (5.14)

where γ3,q is the skewness and σ3
q the third power of the standard deviation of q(t);

m3q real Bp K comes from the integration in the frequency space of the bispectrum
of q computed analytically as

m3q real Bp K =

∫ ∫ ∞
−∞

real(Bp∗ ∗ K) dω1dω2 (5.15)

m3q realBp realK comes from the integration in the frequency space of the bispec-
trum of q computed analytically as

m3q real Bp K =

∫ ∫ ∞
−∞

(real(Bp∗) ∗ real(K)) dω1dω2 (5.16)

m3q B is the background component of the response, as in Eq 5.7 (constant as ex-
pected);

m3q bR approx andm3q bR approx try are the biresonant component coming from
�rst and second approximation (in the slicing of Bp) respectively;

m3q approx and m3q approx try are the correspondent values to which the back-
ground component has been added, such to get the �nal approximated value of the third
central moment;

m3q oneintegration is the same as m3q approx but based on Eq 5.13 instead of Eq
5.12.

We can evidently see how behaviour tends to quasi-static (i.e. only background com-
ponent participates to total response) for increasing natural frequencies, starting from
around 0.75 Hz.

Under this value, resonance is not negligible. Red and black (which is not visible since
it is right behind the red one, meaning that there is perfect matching) lines refer to the
target solution. All the others are obtained through numerical analysis. Clearly, be-
haviour is not stable for decreasing natural frequencies. Still, we have earlier mentioned
some of the possible reasons of this instability, however further investigation is needed
to be�er understand the real source and reason of it.
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Still, all this was referring to the �rst mode only. Analysing second mode, we will
notice some di�erences. To mention that following graphs will refer to second modal
frequency of 0.05 Hz.

Figure 5.18: Bispectrum of second modal force, sample T115, 0° a�ack angle.

Figure 5.19: Bispectrum of second modal amplitude (FFT), sample T115, 0° a�ack angle,
f2 = 0.05 Hz.

Di�erently to previous case, bispectrum of modal amplitude has more than the previ-
ous six peaks. Still, we can observe the main six peaks (signed by the red arrows in Figs
� and �) together with other six minor peaks located at ±(ω0, ω0), ±(−2ω0, ω0) and
±(−ω0, 2ω0).

�is could be consequence of the fact that, with respect to mode 1, in mode two the
bispectrum of the modal force has a wider extension of its energy content in the fre-
quency space (see Fig 5.5 compared with Fig 5.18), even if smaller in amplitude.
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Figure 5.20: Identi�cation of six major and minor peaks, mode 2, sample T115, 0° a�ack
angle, f2 = 0.05 Hz.

Figure 5.21: Above view of the six major and minor peaks, mode 2, sample T115, 0° a�ack
angle, f2 = 0.05 Hz.
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Figure 5.22: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T115, 0° a�ack angle, mode 2, f2 = 0.05 Hz.

Figure 5.23: Imaginary and real parts of Bq computed analytically, sample T115, 0° a�ack
angle, mode 2, f2 = 0.05 Hz.
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Figure 5.24: Parametric analysis of m3,q, mode 2, sample T115, 0° a�ack angle.

Yet, although instability starts to occur at a lower value of the natural frequency
(around 0.25 Hz), precision in numerical approximation of m3,q is not reached. One
arrow in our favour could be that in this case amplitudes are considerably lower than in
mode 1 (factor of 10−4), but still does not justify the fact that trend is not even close to
the one of the target one (red and black lines).

Increasing the natural modal frequency up to 0.26 Hz, we can notice a much bet-
ter matching between analytical and FFT bispectrum of modal response, as well as the
biresonant peak got from the two approximated numerical methods.

Figure 5.25: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T115, 0° a�ack angle, mode 2, f2 = 0.26 Hz.
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Figure 5.26: Imaginary and real parts of Bq computed analytically, sample T115, 0° a�ack
angle, mode 2, f2 = 0.26 Hz.

Sample T215, 0° attack angle

Figure 5.27: Bispectrum of �rst modal force, sample T215, 0° a�ack angle.

From �gure 5.29 we can see how the analytical and numerical solutions match quite
well. Yet, the bispectrum coming from FFT analysis of modal response seems to show
slightly higher biresonant peaks.

Increasing the natural modal frequency up to 0.26 Hz, we notice an inversion in the
behaviour: the bispectrum coming from the FFT analysis of the modal response shows
this time lower biresonant peaks than the ones of both analytical and numerical solu-
tions.
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Figure 5.28: Bispectrum of �rst modal amplitude (FFT), sample T215, 0° a�ack angle,
f1 = 0.05 Hz.

Figure 5.29: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T215, 0° a�ack angle, mode 1, f1 = 0.05 Hz.

Analysing second mode5, we can notice how both analytical and numerical solutions
overestimate the biresonant peaks.

5For which we remember Eq B.1, for which we have considered modal frequencies proportional to
depth and breadth respectively, in order to be�er reproduce actual structural behaviour.
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Figure 5.30: Comparison of numerical approximations of Bispectrum of modal response
with analytical one (2), sample T215, 0° a�ack angle, mode 1, f1 = 0.05 Hz.

Figure 5.31: Bispectrum of �rst modal amplitude (FFT), sample T215, 0° a�ack angle,
f1 = 0.26 Hz.
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Figure 5.32: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T215, 0° a�ack angle, mode 1, f1 = 0.26 Hz.

Figure 5.33: Comparison of numerical approximations of Bispectrum of modal response
with analytical one (2), sample T215, 0° a�ack angle, mode 1, f1 = 0.26 Hz.
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Figure 5.34: Parametric analysis of m3,q, mode 1, sample T215, 0° a�ack angle.

Figure 5.35: Bispectrum of second modal force, sample T215, 0° a�ack angle.
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Figure 5.36: Bispectrum of second modal amplitude (FFT), sample T215, 0° a�ack angle,
f1 = 0.1 Hz.

Figure 5.37: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T215, 0° a�ack angle, mode 2, f1 = 0.1 Hz.
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Figure 5.38: Imaginary and real parts of Bq computed analytically, sample T215, 0° a�ack
angle, mode 2, f2 = 0.1 Hz.

Figure 5.39: Bispectrum of second modal amplitude (FFT), sample T215, 0° a�ack angle,
f1 = 0.52 Hz.
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Figure 5.40: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T215, 0° a�ack angle, mode 2, f1 = 0.52 Hz.

Figure 5.41: Imaginary and real parts of Bq computed analytically, sample T215, 0° a�ack
angle, mode 2, f2 = 0.52 Hz.

118



Figure 5.42: Parametric analysis of m3,q, mode 2, sample T215, 0° a�ack angle.
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6 Conclusions

�e main objective of this Work was to provide a faster as accurate method to evaluate
dynamic response of a structural system. Classic approach is based on Fourier Analy-
sis, which consist in analysing time history of loading by computing its frequency con-
tent (Direct Fourier Transform), applying complex transfer function (which depends on
structural parameters only) obtaining the response in the frequency domain, then time
history of response is recovered by means of Inverse Fourier Transform. However, this
is highly costly when it comes to structural systems with many degrees of freedom. In
this framework, specially when it comes to early stages of a civil engineering project, a
more e�cient analysis would be preferred.

�at is what this �esis is aim at. We tried to prove that structural response can
be quite well reproduced even avoiding that time expensive procedure of the Fourier
Analysis, by just relating it to statistical quantities of the loading. Yet, at the costs of
something: in fact, with this approach it not possible to recover time histories of the
response. However, this can be considered as a minor downside since specially for de-
sign purposes the most important and signi�cant quantities are represented by extreme
values (max displacement, velocity, acceleration, de�ection etc.).

�erefore, in a �rst instance we showed how response can be very well reproduced
by its Background and Resonant decomposition. Once validation was proved, we were
then able to build response spectra by means of parametric analysis, in which we made
structural parameters (i.e. natural modal frequencies, damping etc.) varying such to
evaluate how response was a�ected by a changing of them. To make it clear the advan-
tage in cost e�ciency with respect to conventional method, B&R decomposition is of
order 2×102 faster than FFT. �is means for example, that if B&R computes response in
1 hour, FFT would need 200 hours for computing the response of the same con�guration
(that is more than one week!).

However, the background and resonant decomposition of the response can be applied
only under the assumption that loading has a Gaussian distribution of the probability
density function. Once gaussianity is lost, this decomposition causes underestimation
of the response (non-conservative), in terms of the peak factor g used to recover the
response.

�erefore, we �nally tried to extend this approach to a higher order, such to be�er
characterise the loading considering its non-gaussianity. �e idea was anyway based
on the same principle: decomposing the response in its two major components, a back-
ground accounting for the quasi-static behaviour, and a biresonant. Everything has been
brought into the frequency space, building 3-D surfaces, namely the bispectrum.

However, contrarily as veri�ed for the case in which loading was Gaussian, increasing
the order of analysis has brought some more instability in the accuracy of the approx-
imation of the response. Yet, it has to be noted that in this case actual response was
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not recovered explicitly: we just focused on its application to the evaluation of the third
statistical moment of the response (which is then used in the computation of the peak
factor g, by its own then used to compute response). Still, it has been shown that actual
outcome is in�uenced by many factors, as for instance the re�nement of the mesh of the
modal forces, used by their side to compute analytical and numerical solutions.

Finally we can conclude saying that overall the approach is physically admissible,
since it shows the expected behaviour in terms of both background and biresonant peaks,
which occur at the right points in the frequency space. However, it needs to be further
exploited in order to be�er understand and consequently reproduce local behaviour,
specially at low frequency for which resonance e�ects play an important role.
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A B&Rresponses: numerical compar-
ison

Sample T215, 0° attack angle

Figure A.1: Plot of PSDs of Modal Forces, sample T215, 0° a�ack angle (log scale).

Figure A.2: Plot of PSDs of Modal Amplitudes, sample T215, 0° a�ack angle (log scale).
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Figure A.3: Plot of PSDs ofx and y displacements of UL element on W surface, sample
T215, 0° a�ack angle (log scale).

Figure A.4: Superposition of FFT and B&R modal responses for Mode 1, sample T215, 0°
a�ack angle (log scale).

Sample T315, 0° attack angle
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Figure A.5: Superposition of FFT and B&R modal responses for Mode 2, sample T215, 0°
a�ack angle (log scale).

Figure A.6: Superposition of FFT and B&R modal responses for Mode 3, sample T215, 0°
a�ack angle (log scale).
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Figure A.7: Plot of PSDs of Modal Forces, sample T315, 0° a�ack angle (log scale).

Figure A.8: Plot of PSDs of Modal Amplitudes, sample T315, 0° a�ack angle (log scale).
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Figure A.9: Plot of PSDs ofx and y displacements of UL element on W surface, sample
T315, 0° a�ack angle (log scale).

Figure A.10: Superposition of FFT and B&R modal responses for Mode 1, sample T315,
0° a�ack angle (log scale).
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Figure A.11: Superposition of FFT and B&R modal responses for Mode 2, sample T315,
0° a�ack angle (log scale).

Figure A.12: Superposition of FFT and B&R modal responses for Mode 3, sample T315,
0° a�ack angle (log scale).
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B B&Rdecomposition: response spec-
tra

Following spectra coming from B&R decomposition of the response are reported.

NOTE: in the unsymmetrical samples (i.e. T21x and T31x), natural modal frequencies
of the second mode (hence, displacements along x direction, which is parallel to the
breadth b of the structure) have been taken as

ω2 = b ∗ ω1 (B.1)

where b is the breadth (in model scale), in order to be�er model the fact that in second
mode structure is displaced along its longest dimension (i.e. having higher sti�ness).

Sample T215, 0° attack angle

Figure B.1: Response spectra of absolute displacement of UL element on W surface (log
scale), sample T215, 0° a�ack angle.
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Figure B.2: Response spectra of absolute displacement of UR element on RS surface (log
scale), sample T215, 0° a�ack angle.

Figure B.3: Response spectra of absolute displacement of UL element on LS surface (log
scale), sample T215, 0° a�ack angle.
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Sample T215, 45° attack angle

Figure B.4: Response spectra of absolute displacement of UL element on W surface (log
scale), sample T215, 45° a�ack angle.

Figure B.5: Response spectra of absolute displacement of UR element on RS surface (log
scale), sample T215, 45° a�ack angle.
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Figure B.6: Response spectra of absolute displacement of UL element on LS surface (log
scale), sample T215, 45° a�ack angle.

Sample T215, 90° attack angle

Figure B.7: Response spectra of absolute displacement of UL element on W surface (log
scale), sample T215, 90° a�ack angle.
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Figure B.8: Response spectra of absolute displacement of UR element on RS surface (log
scale), sample T215, 90° a�ack angle.

Figure B.9: Response spectra of absolute displacement of UL element on LS surface (log
scale), sample T215, 90° a�ack angle.
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Sample T315, 0° attack angle

Figure B.10: Response spectra of absolute displacement of UL element on W surface (log
scale), sample T315, 0° a�ack angle.

Figure B.11: Response spectra of absolute displacement of UR element on RS surface (log
scale), sample T315, 0° a�ack angle.
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Figure B.12: Response spectra of absolute displacement of UL element on LS surface (log
scale), sample T315, 0° a�ack angle.
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C Background andBiresonant decom-
position

C.1 Sample T315, 0° attack angle

Figure C.1: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T315, 0° a�ack angle, mode 1, f1 = 0.05 Hz.

Figure C.2: Imaginary and real parts of Bq computed analytically, sample T315, 0° a�ack
angle, mode 1, f2 = 0.05 Hz.
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Figure C.3: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T315, 0° a�ack angle, mode 1, f1 = 0.26 Hz.

Figure C.4: Imaginary and real parts of Bq computed analytically, sample T315, 0° a�ack
angle, mode 1, f2 = 0.26 Hz.
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Figure C.5: Parametric analysis of m3,q, mode 1, sample T315, 0° a�ack angle.

Figure C.6: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T315, 0° a�ack angle, mode 2, f1 = 0.15 Hz.
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Figure C.7: Imaginary and real parts of Bq computed analytically, sample T315, 0° a�ack
angle, mode 2, f2 = 0.15 Hz.

Figure C.8: Comparison of numerical approximations of Bispectrum of modal response
with analytical one, sample T315, 0° a�ack angle, mode 2, f1 = 0.78 Hz.
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Figure C.9: Imaginary and real parts of Bq computed analytically, sample T315, 0° a�ack
angle, mode 2, f2 = 0.78 Hz.

Figure C.10: Parametric analysis of m3,q, mode 2, sample T315, 0° a�ack angle.

140



Bibliography

[1] Ray W. Penzien and Joshep Clough. Dynamics of Structures. Computers & Struc-
tures, Inc., 2003.

[2] Emil Simiu and DongHun Yeo. Wind E�ects on Structures: modern structural design
for wind. John Wiley & Sons, 2019.
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