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Abstract
Slamming impact on marine structures constitutes a major concern for designers. Charac-
terized by severe impulsive loads with short duration, this highly non-linear fluid-structure
interaction can lead to significant structural damage. Several analytical models have been
developed to predict the loads generated on slamming events. However, existent models
are still not sufficiently accurate to be applied on industrial level.

This thesis presents a numerical slamming model developed with the ALE/Eulerian
approach on LS-DYNA. Primarily, the classical two-dimensional rigid wedge is used for an
overview on the functioning of the applied penalty contact algorithm and calibration of
its governing parameters. The model is validated through comparison with experimental
results of the vertical slamming force available on the literature. Sensitivity analyses on
parameters such as the penalty factor, damping coefficient and number of coupling points
are performed. Additionally, simulations with a three-dimensional version of the rigid
wedge are presented with the objective of demonstrating the influence of 3D flow effects
on the resulting force. The models produce satisfactory results, reproducing fairly well the
slamming force and the free-surface behavior on the rigid structure.

On a third stage, the model is applied to an elasto-plastic flat plate. Good agreement
with experimental results is found for the hydro-elastic behavior of the plate. Accurate
measurements of the local pressure, however, could not be obtained.

The model is finally extended to a practical application proposed by the company Calcul-
Méca, a fiber reinforced composite sonar dome subjected to slamming. As a preliminary
approach, a two-dimensional model with an approximated parabolic rigid body is developed.
However, results obtained are not conclusive. Severe leakage occurs on the Lagrangian
structure and could not be properly fixed. The slamming force seems to be incoherent
with the expected physical behavior. These issues are probably associated to the low
deadrise angle of the parabola combined with the high imposed constant velocity, which
create extreme conditions for the penalty contact algorithm.
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1. Introduction 1

1. Introduction

1.1. Background

Slamming is a phenomenon that occurs when a structure impacts the water surface with
high accelerations, creating severe impulsive loads with very short duration. It can occur
in different situations in the marine environment. For instance, one of the most common
cases is hull slamming, where a section of the hull, aft or forward, exits the water due to a
wave crest and quickly reenters the surface.

Loads generated by slamming impact can be extremely dangerous, possibly resulting in
structural damage or even collapse, as illustrated by the accidents with the passenger
ferry Estonia in 1994 and the container ship MSCNapoli in 2007 (see Fig. 1), both
catastrophically damaged by slamming loads. Additionally, the global dynamic response
of marine structures subjected to slamming, called whipping, can lead to fatigue or high
local stresses in some cases (Faltinsen, 2005 [46]).

Figure 1: MSC Napoli stranded off the of coast of France after suffering catastrophic hull
damage on the crossing of the English Channel (From: [62]).

Slamming is an issue not only in a safety perspective, but also economically, as operators
frequently need to change speed and course in order to avoid the issue. It is known to be
one of the major reasons for change of speed and course in shipping operations, having
therefore an important influence on the margins of ship operators (Kapsenberg, 2011 [36]).

The topic of slamming has been under investigation since the beginning of the 20th century,
and there is extensive literature on the subject. However, it is a highly complex phenomenon
and reliable tools for the prediction of such impulsive loads and associated dynamic
responses are still not available. Most existent analytical models are limited, relying on
several simplified assumptions. Numerical methods are presented as an alternative, but
are still very time consuming and require validation through experimental or analytical
results. Moreover, experimental research on slamming is useful as a benchmark tool for
validating other methods, however, it is unpractical in an industrial context. So, even
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though a great amount of development has been done on the subject in the past decades,
it is still insufficient to properly advise designers on the issue.

Another aspect that adds to the challenge, is the fact that ships have grown larger and
more complex structurally, and advanced materials such as composites are becoming
common on marine applications. All these factors reaffirm the need for practical and
reliable tools capable of predicting slamming loads.

In this context, the project SUCCESS was created in France, through a cooperation
between ICAM Engineering School, private companies, such as Calcul-Méca (design office)
and Multiplast (composite vessel shipyard), and the French Navy. The main goal of the
project is the study of the behavior of composite marine structures such as sonar domes,
submarine acoustic windows or sailing ship hulls subjected to impulsive hydrodynamic
loads, including slamming.

This Master Thesis was performed under the supervision of Professor Hervé Le Sourne
(ICAM) and Jean Christophe Petiteau (Calcul-Méca) in the framework of the project
SUCCESS and the academic final dissertation of the ERASMUS MUNDUS program
EMSHIP (8th Cohort). During this project, the academic research was performed at
ICAM Nantes campus and at the engineering design office of Calcul-Méca.

1.2. Objectives

The main objectives of this work are listed bellow:

• To understand the physical phenomena involved on slamming impact, identifying
the most relevant factors that characterize this type of fluid-structure interaction.

• To develop a numerical model of slamming based on the Arbitrary Lagrangian Eule-
rian approach capable of reproducing the kinematics and kinetics of the phenomenon,
providing an estimation of hydrodynamic loads and structural response of bodies
subjected to water impact.

• To extend the model for Fiber Reinforced Composite structures, implementing
available failure criteria on LS-DYNA to assess damage.

1.3. Literature Review

1.3.1. Theoretical Models of Slamming

The first analytical formulation on slamming was presented by Von Karman (1929) [79],
who proposes an asymptotic solution based on momentum conservation to predict the
loads to which the floaters of hydroplanes were subjected in water landing. The theory is
based on the two-dimensional model of a wedge upon entry on calm water, assuming that
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the movement of the free surface can be neglected. When applied to wedges with small
deadrise angles, this idealization underestimates the impact loads.

Wagner (1932) [25] later modified the formulation, including a linear free-surface effect and
taking into account the piled-up water on the wedge due to the elevation of the surface. He
assumes that the wet portion of the body is approximated by a plate with an equivalent
width. This development is effective for predictions of the overall pressure loads at initial
stages of the entry. However, Wagner’s pressure formula is singular at the edges of the
idealized plate and results are only coherent if the deadrise angle of the wedge is lower than
20°. Besides, the air cushioning effect is not considered and the model is not applicable
for angles smaller than 3°, when there is air trapped between the two surfaces (Okada and
Sumi, 2000 [74]).

Several developments have followed these pioneering works. In particular, attempting to
implement the non-linear behaviour of the fluid at the interface between the wedge and the
free surface. For instance, Watanabe (1986) [30] and Zhao and Faltinsen (1993) [71] use
the method of matched asymptotic expansion to combine Wagner’s plate approximation
with a nonlinear solution for the splash region. Cointe (1989) [66] and Howison et al.
(1991) [18] propose a similar approach to the problem.

Models such as the one proposed by Logvinovich (1969) [81] were developed based on the
idea of adding extra terms to the velocity potential distribution in order to correct Wagner’s
formulation. According to Logvinovich (1969) [81], these additional terms describe more
precisely the flow in the periphery of the wetted region, where maximum pressures occur.
However, the solution can only be applied to the two-dimensional vertical entry of a blunt
and symmetric rigid body and the mathematical justifications of the model are still not
consolidated, as stated in Korobkin (2004) [5].

Zhao et al. (1996) [72] present a semi-analytical formulation based on the generalized
Wagner theory. By simplifying only the boundary conditions applied to the free-surface,
the water jet height and penetration depth can be calculated using Wagner’s assumption.
These parameters are then used to solve the boundary-value problem at each time-step
with the boundary element method. The evaluation of the free-surface profile is done by
integrating numerically the distribution of velocity obtained, which provides the height
of the water jet and penetration depth to be used in the next iteration. Due to the flow
singularity present at the extremity of the wetted region, pressures estimated on these areas
by nonlinear Bernoulli equation are negative. To overcome this issue, Zhao et al. (1996)
[72] proposes the integration of the hydrostatic pressure only where values are positive.
Results for the pressure distribution and hydrodynamic force obtained numerically with
the presented method agree well with experimental drop tests.

Alternatively, Mei et al. (1999) [82] develops a fully analytical formulation based on the
generalized Wagner theory by using the conformal mapping of the flow domain projected
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onto a half-plane. The solution can only be found analytically for entry problems with
known conformal mapping, such as a wedge or a cylinder. For general shapes, the solution
must be performed numerically.

Scolan and Korobkin (2001) [54], extend Wagner’s formulation to three-dimensional bodies
with exact solutions. These solutions approximate the body to an equivalent flat elliptical
disc analogous to Wagner’s flat plate.

1.3.2. Experimental Models of Slamming

An extensive number of experimental slamming tests have been developed for the assessment
of loading conditions and structural responses on plates, wedges and other more realistic
model sections, such as bow flares.

Earlier works on drop-tests of two-dimensional wedges can be traced back to the 1950s
with systematic experiments performed by Bisplinghoff and Doherty (1952) [39] to assess
the impact force. In the 1960s and 1970s, further developments on rigid and elastic wedges
have been done by Chuang (1966) [41], Chuang (1970) [40], where the relation between
maximum pressure and deadrise angle is observed. Ochi and Motter (1973) [38] carried
out several tests to derive the pressure-time distribution on a wedge.

Several relevant studies were developed in the 1990s. In particular, Kvalsvold and Faltinsen
(1993) [34] observed the influence of the hydro-elasticity of a flat plate supported by
stiffeners on the slamming loads, simulating the impact of a wave crest on the wet-deck of
a multi-hull vessel. It was showed that the lower deformation modes govern the maximum
strain. Zhao et al. (1996) [72] perform drop-tests with a 30° wedge and a bow flare section
in order to validate the theoretical formulations developed on the study for the prediction
of slamming loads. Three-dimenional flow effects in the experiments are theoretically
estimated. Analytical results agree well with experimental values. Faltinsen et al. (1997)
[49] performs similar tests with a flat plate, simulating wet-deck slamming. The hydro-
elastic behaviour of the plate is assessed. It is concluded that for small deadrise angles
the maximum pressures are very sensitive to external conditions and cannot be used as a
measure of maximum local bending stresses.

More recently, Tveitnes et al. (2008) [78] carried out drop tests on wedges with imposed
constant velocities. Various configurations of wedge geometries were analyzed for entry and
exit cases. Huera-Huerta and Gharib (2011) [33] present a series of experiments focused
on the characterization of the slamming loads on flat plates within the first phase of entry.
The significance of the effect of air entrapment in decreasing loads is demonstrated. Tassin
et al. (2011) [7] validate a simplified method for the analysis of hydrodynamic loads for
the water entry of three-dimensional solids using a hydraulic impact machine. An elliptic
paraboloid, a wedge with conical ends and a square pyramid are tested. The method
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is found to be able to predict slamming forces with relatively good accuracy. Yettou et
al. (2006) [20] and Tenzer et al. (2015) [56] further develop experimental literature by
presenting extensive results on free-falling and constant velocity slamming wedges.

Experiments performed by Vincent et al. (2018) [43] and Panciroli et al. [70] present
results on wedges, but with a special focus on the hydrodynamic phenomena involved
in slamming. High speed cameras are used to observe the formation of the splash and
cavitation zones.

1.3.3. Numerical Models of Slamming

More recently, increasing computing capability has enabled the use of numerical methods
to simulate the slamming phenomenon. Three main aspects are usually observed: the
prediction of slamming loads with rigid bodies, the effect of hydro-elasticity on the
slamming response and the effect of air cushioning.

An extensive number of numerical models based on the experimental drop-test carried out
by Zhao and Faltinsen (1996) [72] has been developed. Le Sourne et al. (2003) [23], for
example, reproduces the wedge drop-test using the ALE formulation in the Explicit FEM
code LS-DYNA. Two and three-dimensional models are compared in order to demonstrate
the effects of three-dimensional flow on the extremities of the wedge. Stenius (2006) [26]
and Luo et al. (2011) [24] apply a similar numerical approach to a 2D rigid wedge. The
influence of parameters such as mesh density and contact stiffness on the convergence
characteristics is observed. Stenius and Rosén (2007) [26] extends the model to an elastic
wedge. Aquelet et al. (2006) [61] develops a model for a 2D rigid wedge in LS-DYNA to
assess the capabilities of the penalty-contact algorithm.

Different numerical schemes, including Volume of Fluid (VOF) and Smoothed Particle
Hydrodynamics (SPH) methods have also been used in the modeling of the water-entry
problems; for example, on arbitrary bow sections (Ghadimi et al., 2013 [65]) and symmet-
ric/asymmetric wedges (Farsi and Ghadimi, 2015 [50]), respectively. Kamath et al (2016)
[4] uses a Reynolds-Averaged Navier-Stokes CFD (Computational Fluid Dynamics) solver
to analyze a free-falling wedge on water impact. Hwang et al. (2015) [73] presents a fully
Lagrangian coupled Fluid-Structure Interaction (FSI) solver based on the Moving Particle
Semi-implicit (MPS) method to model the water entry of flexible wedges.

Examples of numerical slamming models for alternative geometries are found in Vepa et
al. [76] and Tassin et al. (2012) [7]. The first studies a 2D composite cylinder impact
with the SPH model. The second analyzes different three-dimensional bodies, such as
an elliptical paraboloid, with the use of a numerical formulation developed with basis
on Wagner’s theory and the Boundary Elements Method (BEM). Yu et al. (2018) [84]
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recreates experiments for the elastic horizontal plate from Faltinsen et al. (1997) [49] using
ALE Explicit FEM.

More practical developments are found in Bae and Zakki (2011) [16] and Vezina and
Firoozrai (2010) [57], where ALE Explcit FEM is used for the drop test of a lifeboat and
a speedboat respectively.

1.4. Structure of the Report

This report is divided as following:

• Chapter 2: A theoretical background on slamming is presented.
• Chapter 3: The theoretical basis for the explicit finite element model developed in

this work is presented.
• Chapter 4: A theoretical review on fundamental concepts for Fiber Reinforced

Composites and the methodology for implementing such materials in LS-DYNA is
presented.

• Chapter 5: A two-dimensional model of a rigid wedge upon water-entry is developed.
Results for the numerical simulation are compared against experimental drop-tests
in order to validate the model. A study on the sensitivity of the main governing
parameters of the contact algorithm is performed.

• Chapter 6: A three-dimensional model of a rigid wedge upon water-entry is
developed in order to provide an overview on the limitation of the 2D case.

• Chapter 7: The slamming model is applied to an elastic flat plate. Localized
pressure and deflections are compared with experimental results.

• Chapter 8: The slamming of a fiber reinforced composite sonar dome is proposed.
No conclusive results are obtained.

• Chapter 9: The conclusion of the work and possible further developments are
presented.
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2. Slamming

2.1. Slamming Theory

Slamming is a highly non-linear multi-physical phenomenon that occurs when a structure
impacts a fluid at a small relative angle between the two surfaces, resulting in a sudden
acceleration of the fluid in the contact interface. Typically, the slamming force has a
duration of milliseconds, generating high localized pressure peaks with short duration.
This type of fluid-structure interaction (FSI) is similar to an explosion in terms of load
profiles and can lead to severe structural damage even at low impact speeds (Kapsenberg,
2011 [36]).

The phenomenon is an issue specially for ships sailing in rough seas, when steep waves
force the forward part of the vessel to emerge and reenter the water with high acceleration,
subjecting the bow to extreme impact loads (see Fig. 2). In the case of aft-body slam-
ming, appendages such as azimuth propellers and rudders can be particularly vulnerable
(Kapsenberg et al., 2006 [37]).

Figure 2: Slamming on the frigate De Grasse (From: Tassin, 2011 [6]).

Figure 3: Damage caused by wet-deck slamming in the high-speed catamaran HSS 1500
Stena (From: Lavroff et al., 2010 [35]).
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Critical slamming loads, possibly resulting in damage and loss of structural integrity, can
also be observed in situations such as the breaking of waves in the wet-deck of high-speed
catamarans (see Fig. 3) and columns of semi-submersible platforms.

Slamming is a relevant matter concerning marine safety and there is a great interest in
developing formulations for predicting slamming loads. The problem is commonly idealized
as a two-dimensional wedge, representing the section of a ship’s hull that impacts a calm
water surface, as shown in Fig. 4.

Figure 4: Schematic diagram of an idealized hull subjected to slamming. The free-surface
development and the pressure distribution are depicted (From: Stenius and Rosén,
2007 [27]).

The typical free-surface development and the characteristic pressure distribution can
be observed. As the wedge enters the surface, the fluid accumulates at the intersection
between body and fluid, creating a pile-up region. This accumulated volume later generates
a water jet that is launched away from the wedge. Two main stages are distinguished: a
dry-chine and a wet-chine stage. The first is characterized by a highly localized pressure
peak that occurs in the pile-up region, followed by a lower and fairly constant pressure
distribution in the submerged portion of the wedge (see Fig. 4). In the second stage,
the wedge is completely bellow the initial free-surface and the pressure is approximately
uniform (Stenius and Rosén, 2007 [27]).

According to Faltinsen (2000) [47], slamming is mainly governed by two parameters: the
impact velocity V and the impact angle β. Slamming loads are directly proportional to
the velocity of the impact, while inversely proportional to the angle of incidence. This
relation has been demonstrated in several experimental studies.

However, for angles below 5°, the phenomenon becomes more complex due to the occurrence
of the air cushioning effect. Air entrapment (termed as ventilation) combined with a
cavitation process, creates an air pocket between the structure and the fluid surface. As a
result of the high compressibility of this air volume, slamming pressures are decreased.
This phenomenon is difficult to reproduce accurately and in a controlled manner in scaled
experiments (Faltinsen, 2017 [48]), which affects the reliability of slamming experiments
in small deadrise angles.
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Furthermore, the hydro-elasticity of the structure has also an effect on the slamming
loads. This is further explained in Sec. 2.2. It is important to note that for bodies
undergoing severe deformations, even for higher deadrise angles, cavitation might originate,
as demonstrated by Panciroli et al. (2018) [70].

Figure 5: Experiment performed by Panciroli et al. (2018) [70]) on the water entry of an
elastic wedge. The development of an air-pocket created by cavitation is observed
as the wedge progresses into the water (β = 20°).

Several analytical methods have been developed to predict slamming loads. For instance,
the classical model developed by Wagner (1932) [25] estimates the hydrodynamic pressure
in the fluid with the use of the unsteady Bernoulli equation described by (Vincent et al.,
2018 [43]):

p = −ρ
(
∂φ

∂t
− 1

2 |
~∇φ|2

)
(1)

The velocity potential of the fluid acting on the wedge is given by:

φ = −V (t)
√
c(t)2 − x2 (2)

Where V (t) is the entry velocity and the wet portion of the body is approximated by a
horizontal plate with an equivalent width c(t) (see Figure 6).

Figure 6: Wagner’s wedge slamming formulation (Peseux et al., 2005 [10]).
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The parameter c(t) is actually the location point where the water jet initiates and is given
by Wagner’s condition:

c(t) = πV t

2tanβ (3)

Zhao and Faltinsen (1993) [71] propose a solution for small deadrise angles developed with
the asymptotic method. It is assumed that the flow is divided into an inner and outer flow
domains. This composite formulation allows the inclusion of the effects of the water jet
that occurs on the inner flow region (see Fig. 6). The pressure distribution is described as:

p = ρV c
dc

dt
(c2 − x2)− 1

2 − ρV cdc
dt

[2c(c− x)]− 1
2 + 2ρ

(
dc

dt

)2

|τ |
1
2 (1 + |τ | 12 )−2 (4)

The parameter τ relates the wetted surface length and the thickness of water jet. The
maximum slamming pressure on the wedge is given by Eq. 5.

pmax = 1
2ρV

2
(
π

4

)
cotα2 (5)

Alternatively, Faltinsen (1993) [63] proposes the solution of Eq. 1 as a simplified boundary
value problem. Since the rate of change of φ with time is larger than the rate of change of
φ with respect to position, the term ~∇φ is neglected. The obtained pressure distribution
is:

p = ρV
c√

c2 − x2

dc

dt
+ ρ

∂V

∂t

√
c2 − x2 (6)

Equation 6 is composed by two terms: the added mass pressure and the slamming pressure.
The first term is related to the rate of change of momentum of the added mass, while the
second describes the dynamic pressure contribution.

It is important to note that c(t) is not differentiable when the contact angle between
surface (α) and impacting body is zero. The slamming pressure goes to infinity as the angle
approaches zero, which is obviously not physical. Therefore, for an analytical solution of a
flat plate, the angle of impact considered must be larger than 0°, assuming for example an
initial imperfection of the plate.

A maximum pressure along the surface occurs in the middle of the plate. It can be
estimated with the formula presented in Eq. 7.

pmax = 1
2ρV

2π cotα (7)

Many other formulations have been developed for the slamming case, mostly based on
Wagner’s classical approach. However, the scope of this study is kept on the formulations
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by Zhao and Faltinsen (1993) [71] and Faltinsen (1993) [63], which were validated with
experimental results used in comparison with numerical models here developed.

2.2. Hydro-elastic Structural Response

Hydro-elastic slamming impacts occur when hydrodynamic loads cause the structure to
undergo elastic deformations, which simultaneously affects the fluid flow, decreasing the
resulting pressure field. This coupled interaction is generally significant for local impacts
at small relative surface-structure angles, if the resonance period of the structure is larger
than the impact duration (Kapsenberg, 2011 [36]). Typically the case for plates with
deadrise angles smaller than 5°, associated to highly concentrated short duration peak
pressures. For larger deadrise angles, such as in bow-flares, the hydro-elastic influence can
generally be neglected. Results from Faltinsen (1999) [47] on the experimental investigation
of water impact of elastic wedge sections demonstrates this relation.

According to Bereznistki (2001) [1], the ratio between the impact duration and the first
natural dry period (natural period of the structure on air) is also a key factor to define
whether hydro-elasticity effects are negligible or not. A numerical investigation on this
aspect is performed with a model of slamming for beams with different stiffness values and
deadrise angles. Responses are compared in terms of maximum deflections (see Fig. 7).

Figure 7: Results from the numerical model proposed by Bereznistki (2001) [1] to analyze
the role of hydro-elasticity on slamming. The maximum deflection increases as
incidence angle and natural frequency are decreased.

As the natural period increases (natural frequency decreases) the maximum deflection
increases. Additionally, it can be observed that the air entrapment has an influence on the
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response, further decreasing the slamming loads (as explained in Sec. 2.1) and resultant
deformations.

2.3. Experimental Slamming

Hull-water impact problems have been assessed experimentally in a number of studies.
Zhao and Faltinsen (1993) [71] and Faltinsen (1997) [49], in particular, carried out tests in
the facilities of MARINTEK, in Norway, to validate the theoretical methods developed in
their works.

A typical drop-test rig used in slamming experiments consists basically of a vertical guide
rail, a trolley and an attachment for the test section and ballast, as shown in Fig. 8. The
test section is driven to a calm water surface bellow the drop rig either on free-fall or with
the use of an impulsion mechanism, usually hydraulic. Velocity and impact angle can be
adjusted.

Figure 8: Free-fall drop rigs used in the experiments by Donguy et al. (2001a) [8] (left) and
Huera-Huarte et al. (2011) [33] (right).

Generally, these tests are focused on the measurement of pressure or hydrodynamic force
time-histories (see Fig. 9) and structural responses of the impacting bodies in terms of
deflections and stresses. Force and displacement transducers, pressure and strain gauges
and accelerometers are used for these applications. High speed cameras can be applied in
the analysis of the free-surface behavior and hydrodynamic phenomena such as cavitation
(see Fig. 5).
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Figure 9: Pressure time-history on a free-falling wedge (β = 25°;m = 94kg) obtained by
Yettou et al. (2006) [20]. Pressure transducers are placed sequentially from keel to
chine (1 to 12). A pronounced impulsive peak pressure at the first instants of the
impact gradually lowers and becomes relatively smooth as the wedge progresses
into the water.

A slamming experiment is complex; the duration of impact loads is very short and sensors
with high sampling rates, in the order of 5-10kHz, are required from the (Kapsenberg,
2011 [36]). Additionally, the concentrated peak pressures are very sensitive to small
differences in physical conditions and, therefore, the repeatability of the experiments is
compromised. It is reported by Faltinsen (2005) [46], that for small deadrise angles (< 5°),
the experimental measurement of maximum pressures becomes considerably inaccurate.
The results of maximum pressures for different velocities were very dispersed, as shown in
Fig. 10.

Figure 10: Experimental results obtained in the drop-test. (From: Faltinsen, 2005 [46]).
Maximum pressures measured at each velocity are highly dispersed.
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Furthermore, the effect of air cushioning, which also has a significant influence on the
results, is difficult to exactly reproduce at each test.

According to Faltinsen (2005) [46], from a point of view of structural response, the pressure
peaks are not relevant and the estimation of impulse, represented by the integral of the
pressure-time curve, is more reliable.
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3. Finite Element Analysis: Application to Slamming
Impact

Slamming impacts are phenomena that occur in short duration periods and involve highly
non-linear fluid-structure interactions (FSI) and material deformations. The use of robust
numerical models capable of dealing with these characteristics is crucial in the development
of accurate simulations of such events.

In this study, slamming models are developed with the explicit non-linear finite element
(FE) code LS-DYNA using the Arbitrary Lagrangian-Eulerian (ALE) formulation in
combination with the penalty contact algorithm, suitable for impact problems.

3.1. Explicit Finite Element Analysis

In a vast number of engineering problems, loads are applied at slow rates and acceleration
effects can be neglected. This class of problems can be described by quasi-static FE models
that are time-independent and generally rely on implicit solution schemes of the governing
motion equations. A simple cantilever beam with a distributed load is an example of
a quasi-static process. However, dynamic events such as slamming, are time-dependent
problems, where bodies are subjected to high accelerations that must be taken into account.
Explicit solutions are more suitable for these cases. The two approaches are explained in
this section, with focus on the explicit method used in this study.

In the case of a dynamic analysis, the governing equation of motion is:

[M ]{x′′}+ [C]{x′}+ [K]{x} = {F} (8)

where M is the mass matrix of the system, C is the damping matrix, K is the stiffness
matrix or in a more general case, for large displacements/deformations, K can be a function
of the displacement, and F is the external force. The three unknown variables x, x′ and
x′′ are, respectively, the displacement, velocity and acceleration of the system, which are
obtained with the use of one the numerical approaches aforementioned.

For instance, an explicit solution is a time-dependent scheme, on which the state of the
system in the current time-step is calculated with respect to the state achieved in the
previous step. In practice, that means that at time-step n, the governing equation (Eq. 8)
is solved for the acceleration x′′ through inversion of the mass matrix M . Usually, the
mass is defined as a lumped body, represented by a diagonal matrix which is relatively
simple and straightforward to invert. Once the acceleration is calculated at time-step n,
velocity and displacement for increment (n+ 1) can be obtained.
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The explicit solution is generally less costly in terms of computation time, since the inversion
of the mass matrix is less complex. However, it is not based an iterative integration scheme,
and therefore, it is not unconditionally stable. In other words, the algorithm requires
very small time-steps in order to be stable. According to Courant–Friedrichs–Lewy (CFL)
stability condition, the time-step must be small enough so that no information is able to
propagate through more than one element at each step (this will be further explained).

Alternatively, in an implicit solution, the displacement is not a function of time, so x is
constant, x” = 0 and x′ = 0, which cancels out the mass and damping terms in Eq. 8 and
yields:

[K]{x} = {F} (9)

The equilibrium of internal and external forces described by Eq. 9 is solved for x at each
time-increment. In this case, the solution requires the inversion of the stiffness matrix,
which is a highly expensive iterative process (Euler integration scheme). Differently from
the explicit method, an implicit solution is unconditionally stable and larger time-steps
can be used. This method is suitable for static analyses, where larger time-steps can be
applied, decreasing computation time without loss in numerical stability.

In summary, explicit analyses rely on several small time-steps to keep numerical stability
and reach convergence, while implicit analyses can be performed with a smaller number
of larger time-steps. For dynamic problems with large deformations, which take place in
a time frame of milliseconds and require great numbers of degrees of freedom, explicit
solutions are more practical, being capable of handling the large mass matrices more
efficiently.

Regarding the numerical stability of explicit solutions, it is explained in the LS-DYNA
Theory Manual [15] that the time-step size should be smaller than the propagation time of
an acoustic wave through an element using the shortest characteristic distance, defined as
the critical time-step ∆tcritical. This ensures the fulfillment of the CFL stability condition
and guarantees coherence between numerical and physical domains (Laney, 1998 [9]).
Effectively, a critical time-step size is given by:

∆tcritical = α

(
le
ce

)
(10)

Where le is the characteristic length of the element, ce is the wave propagation speed
for a specific material and α is a safety factor. In LS-DYNA, the time-step is defined
automatically, by searching the smallest time-step among all elements in the previous
increment. A scale factor (TSSFAC ) from the card CONTROL_TIMESTEP can be used
to calibrate the parameter.
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3.2. Fluid-structure Interaction Formulations

Different numerical formulations such as pure Lagrangian, Eulerian, Arbitrary Lagrangian-
Eulerian (ALE) and Smoothed Particle Hydrodynamics (SPH) can be applied in the
modeling of FSI problems. Each of these methods has particular advantages and drawbacks
depending on the application context. In this section, these methods are briefly presented
and compared. The ALE method used during the present master thesis work in the
modeling of slamming impact is explained in detail.

3.2.1. Lagrangian Formulation

In a pure Lagrangian formulation, the finite element mesh follows exactly the material
displacement. The nodes of the mesh are attached to the material and both translate,
rotate and deform together. The sequence shown in Fig. 11 illustrates the high speed
impact of a soft body upon a rigid fixed plate, where the moving impactor is described by
a Lagrangian mesh.

Figure 11: Sequence of impact of a soft body impact upon a fixed plate. Both parts are
described by Lagrangian meshes, but the impactor is in motion while the plate
is fixed (From: Day, 2010 [32]).

Material flow between adjacent elements is not allowed in the Lagrangian formulation and
material boundaries can be automatically and easily tracked. As a result of this, lower
computation time is required relative to other formulations. This method is usually applied
to problems where small deformations and smooth flows are expected, being accurate
and computationally efficient in these particular cases. However, in applications where
large material deformations are present, severe mesh distortions can occur, leading to low
accuracy, negative volume elements or excessively small time-steps.

3.2.2. Eulerian Formulation

A pure Eulerian formulation, on the contrary, relies on a mesh fixed in space and materials
are allowed to move and deform within this fixed computational grid. In the sequence shown
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in Fig. 12 the soft body advects, that is, travels through the Eulerian mesh, which remains
static. Small amounts of material flow from element to element at each time-step. In a
multi-material model, different materials can be contained in an element simultaneously,
e.g., water and air in slamming problems.

Figure 12: The soft body moves through the Eulerian mesh, which remains fixed in space
(From: Day, 2010 [32]).

The Eulerian formulation is more suitable for cases where large deformations occur. A
fixed mesh combined with a strong advection algorithm helps minimize the issue of mesh
distortion encountered in the Lagrangian method (see Fig. 13). However, the computational
cost is relatively higher due to the advection process required at each time-step. Another
disadvantage of this particular formulation lies on the fact that the whole spatial domain
covered throughout the simulation needs to be meshed, which reflects in computation cost.

Figure 13: Comparison of the two methods when applied to large deformation. It is possible
to observe highly distorted elements in the center region of the upper Lagrangian
mesh (From: Olovsson, 2003 [42]).

3.2.3. Arbitrary Lagrangian Eulerian Formulation

A third approach to FSI models, called Arbitrary Lagrangian Eulerian (ALE), consists
in combining characteristics of both Eulerian and Lagrangian methods. In Fig. 14, the
same impact scenario is presented with an ALE model. The fixed plate is composed of
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Lagrangian elements, while the impactor is defined by an Eulerian mesh. However, in
this case, the Eulerian grid is allowed to move along with the material, unlike the fully
Eulerian method where it remains fixed. A third moving mesh is placed on the background
of the fluid domain. This mesh describes an arbitrary motion that allows for a smooth
advection of the material, while decreasing computational cost, as it eliminates the need
for coverage of the entire spatial domain.

Figure 14: A soft body impact described with an ALE model. The Eulerian mesh moves
along with the body. An arbitrary background mesh is used to enable a smooth
advection process (From: Day, 2010 [32]).

It is noted that the Eulerian formulation is in fact a special case of ALE, where the velocity
of the arbitrary mesh is zero, so it remains fixed in the spatial domain. For slamming
models, the Eulerian particular case is generally used, as fluid domains are fixed in relation
to the impacting Lagrangian body and an adaptive mesh is not necessarily required (see
Fig. 15). Furthermore, a fully Eulerian approach eliminates the problem of mesh distortion.

Figure 15: Wedge slamming model in ALE. The water is described by a fixed Eulerian
mesh and the wedge is defined as a Lagrangian structure (From: Aquelet and
Souli, 2012 [59]).
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The ALE formulation is based on conservation laws described by the following governing
equations (Aquelet et al., 2006 [61]):

• Conservation of Mass
∂ρ

∂t
+ ρ∇.~v + (~v − ~w)∇ρ = 0 (11)

• Conservation of Momentum

ρ
∂~v

∂t
+ ρ(~v − ~w)∇~v = (~∇.σ + ~f) (12)

The stress tensor σ is given by:

σ = −pδ + µ(∇~v +∇~v T ) (13)

• Conservation of Energy

ρ
∂E

∂t
+ ρ(~v − ~w)~∇E = σ : ∇~v + ~f.~v (14)

Material density is denoted by ρ, p is the pressure, δ is the material deformation and µ is
the dynamic viscosity of the fluid. The external force is represented by f and the internal
energy is E. The term (v−w) describes the relative velocity between fluid and ALE mesh,
where v is the material velocity and w is the mesh velocity. In the Eulerian formulation,
the mesh is fixed, and therefore, w = 0.

In a single material model, the fully-coupled equations can be directly solved. On the
other hand, for a more complex multi-material ALE, a split operator is required. This
operator divides the calculations into two phases, Lagrangian and advection, uncoupling
Lagrangian and Eulerian domains at each time-step. Governing equations remain the
same as in a single material model, but in this case, calculations are performed iteratively
for each material group in the element.

Figure 16: Lagrangian and advection phases used in a split operator algorithm for multi-
material ALE. The model describes an explosion (From: Messahel and Souli,
2013 [69]).
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No material flow occurs across element boundaries in the Lagrangian phase, and so, mass
is automatically conserved. In the advection phase; mass, energy and momentum transport
between elements is computed. This process may be understood as a reconstruction of the
displaced mesh in the Lagrangian phase. Smoothing algorithms are used to redefine the
mesh back to the original Eulerian or ALE configuration, as shown in Figure 16 (Messahel
and Souli, 2013 [69]).

A typical multi-material ALE algorithm time-step is summarized as following (LS-DYNA
Theory Manual [15]):

• Lagrangian Phase: The equations of motion for the Lagrangian domain are solved
and the velocity fields are updated;

• Advection Phase: An advection algorithm with the typical following steps is per-
formed:

– Identification of the nodes which will be moved;
– Boundaries nodes are moved;
– Interior nodes are moved;
– Transport of the element-centered variables is calculated;
– Momentum transport is calculated and velocity is updated.

Smoothing algorithms remap the mesh in the first two stages of the advection phase. In
some particular approaches, the arbitrary computational grid conforms closely with the
external boundaries of the material. However, in more general and robust algorithms the
mesh usually does not match exactly (Day, 2010 [32]).

According to LS-DYNA Theory Manual [15], the advection step has a significant influence
both in the total calculation time and in the accuracy of the model, generally representing
from two to five times the cost of the Lagrangian time-step. This high computational cost
is mostly associated to the transport calculation of the element-centered variables (i.e.,
density, internal energy, the stress tensor and history variables).

An efficient algorithm must be capable of properly rezoning the arbitrary mesh, performing
as few advection time-steps as possible, whilst avoiding distortion. In LS-DYNA, the
element advection will only be performed if more than 20% of its volume is transported,
that is, when the gain in time-step size is greater than the advection calculation cost.
Advection algorithms such as first-order advection or Van Leer scheme are commonly used.

In LS-DYNA, the card CONTROL_ALE is used to configure the ALE model. The
parameter METH is used to define the advection method used in the algorithm. In this
case, the donor cell with Half Index Shift (HIS), first order accurate algorithm, LS-DYNA’s
is selected.
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3.2.4. Smoothed Particle Hydrodynamics Formulation

The Smoothed Particle Hydrodynamics formulation (SPH), first developed for application
in the field of astrophysics, was later extended to high velocity impact in solid mechanics,
Navier-Stokes governed CFD, fluid-structure interaction problems and other applications.
It is a mesh-free discretization scheme based on the Lagrangian formulation, where
materials are represented by sets of particles that interact with each other (see Fig. 17).
Each particle has its own mass and carries hydrodynamic and thermodynamic properties
of the fluid at that discrete point in the continuum (Guida, 2008 [52]).

Figure 17: Comparison of FEM (left) and SPH (right) meshes (From: Messahel and Souli,
2013 [69]).

SPH particles are, in fact, interpolation points where functions that define the instantaneous
material behaviour and their derivatives can be estimated. Connectivity between particles
is defined by a smoothing kernel function (Smith and Stojko, 2004 [14]).

This method is interesting in the modeling of high velocity impact (see Fig. 18); since,
due to its grid-free nature, it is relatively efficient to reproduce large deformations without
the issue of severe mesh distortion or element tangling associated to the Lagrangian
formulation (or ALE to a lesser extent). In general, SPH is well suited for impact problems.
Nonetheless, the method demands high computational cost and is prone to numerical
instabilities in some cases. In this study, the focus is kept on the ALE formulation, which
has been extensively applied to slamming and is well proven.

Figure 18: SPH impact model of a bird-strike. The impactor that represents the bird is
described by particles (From: Hedayati and Ziaei-Rad, 2013a [68]).
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3.3. Fluid-Structure Coupling: Penalty Contact Algorithm

One of the most important aspects of a dynamic fluid-structure interaction problem is
how to couple solid and fluid domains and properly track the transient contact interfaces.
The way structure and fluid interact is closely related to the accuracy of results.

This task is performed by specific coupling algorithms, such as the kinematic or the penalty
contact methods, which are the most common approaches. These algorithms designate
master and slave roles for the stationary and moving parts, respectively, in the case of FSI
problems (Aquelet et al., 2006 [61]). According to LS-DYNA Keyword User’s Manual [44],
the penalty contact algorithm is, in general, more accurate and should be preferred.

The first approach, the kinematic method, constrains master and slave nodes to the same
velocity. Total momentum is conserved, but not total energy. In the second approach,
the penalty contact, the Lagrangian and Eulerian meshes are allowed to interpenetrate at
a first stage and a resisting force proportional to the penetration depth is then applied
between the interacting nodes (Souli and Benson, 2013 [55]). This force acts in opposite
directions on the slave and master nodes in order to satisfy equilibrium.

Figure 19: Description of the penalty contact algorithm applied to an ALE model. The
Lagrangian mesh penetrates the surface of the Eulerian fluid in the first stage,
which is subsequently restored by an applied resisting force (From: Souli and
Benson, 2013 [55]).

In practice, a penalty coupling behaves like a virtual spring attached between the master
and slave nodes, as shown in Fig. 19. The coupling force is described by:

F = k.d (15)

Where k is the stiffness of the spring and d is the penetration. This resisting force acts
directly on the nodes of the structures, whereas for the fluid elements, it is distributed
among the nodes with the use of shape functions. The parameter k is defined as:
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k = pf
KA2

V
(16)

With K, V and A representing, respectively, the bulk modulus of the fluid, the volume of
the fluid element and the average area of the Lagrangian elements connected to the slave
node involved in the coupling. The scalar factor pf , 0 6 pf 6 1, is introduced to enable
the calibration of the k, since the contact stiffness is problem dependent (Aquelet et al.,
2006 [61]).

In fact, one of the main concerns when implementing this technique lies on how to define
properly the stiffness of the coupling. As the stiffness is increased, the interpenetration
of structure and fluid is decreased until a perfect interface condition, when d = 0, is
reached. However, numerical instabilities may arise from an excessively stiff contact,
affecting convergence stability and generating noise on the results (see Fig. 20). This is
mainly due to two factors: the high eigenfrequency associated to stiff elastic systems and
a phenomenon called release, on which slave and master nodes couple and separate in
the same time-step (From: Souli and Benson, 2013 [55]). The latter, can be avoided by
bounding the contact force by a contact force between two spheres. This method, called
pinball algorithm, is explained in detail in Belytschko and Neal (1991) [77]. The first
factor, however, is more complicated and will be further discussed.

Figure 20: Pressure time history obtained for a slamming model. Red curve: without
damping, green curve: with damping (From: Aquelet et al., 2006 [61]).

On the other hand, if the penalty contact is not high enough, large non-physical penetrations
occur, leading to disturbances on the flow filed and leakage on the Lagrangian structure
(Stenius and Rosén, 2007 [27]). This is specially problematic in high velocity impacts.

As mentioned previously, an important issue inherent to the penalty contact algorithm is
the numerical noise caused by high frequency oscillations generated in the coupling. In
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order to mitigate such problem, a viscous contact damping is added to the system (see
Fig. 21).

Figure 21: Penalty contact algorithm with added viscous damping (From: Souli and Benson,
2013 [55]).

With the addition of the damping term, Eq. 15 becomes:

F = k.d+ C.ḋ (17)

where the damping coefficient C is described by:

C = ξ
√
k.M (18)

M is the equivalent mass. The damping factor ξ is analogous to the penalty factor and is
used to scale the applied damping. According to Souli and Benson (2013) [55], when ξ is
critical, damping is optimal. For ξ = 2, numerical oscillations are completely damped out.
It is important to observe, however, that this approach, might affect physical characteristics
of the model if not correctly set. This occurs when numerical stiffness k is close to physical
stiffness, which is generally not the case.

In conclusion, the definition of the contact algorithm is a complex task that requires an
intensive process of trial and error. A previous notion of the overall behaviour of the
fluid and the structure combined with preliminary estimations of the maximum loads are,
therefore, essential in this process.

In LS-DYNA, the contact algorithm is defined through the card CONSTRAINED_LAG
RANGE_IN_SOLID, shown in Fig. 22.
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Figure 22: LS-DYNA card used to define the contact algorithm.

The card is explained in detail on the LS-DYNA Keyword User’s Manual [44]. However,
it is important to point out the main controlling parameters: PFAC, the penalty factor;
DAMP, the damping factor; and NQUAD, the number of coupling points per Lagrangian
element. These parameters are later investigated in this study.

Other parameters of interest for slamming models are: SLAVE and MASTER, used to
define the coupling parts; CTYPE, to select the coupling algorithm; and MCOUP, which
defines the ALE materials for coupling.

3.4. Equations of State

An Equation of State (EOS) is a thermodynamic relation that describes the state of a
material in a physical condition in function of variables such as temperature, pressure,
density and internal energy (Hedayati and Sadighi, 2015 [67]). In other words, the
thermodynamic behaviour of a fluid or solid in a given set of environmental conditions is
described by such equation. A well-known example is the ideal gas law.

In the case of non-ideal fluids, several semi-empirical EOSs have been developed for
different applications. For instance, the Linear Polynomial and the Gruneisen equations
of state are the most commonly used for fluid domains in the numerical modeling of
slamming. Both EOSs are available in LS-DYNA and are used in the development of the
models in this study.

The Linear Polynomial EOS, is a polynomial equation of state combined with a linear
internal energy per initial volume E (LS-DYNA Theory Manual [15]). The pressure p is
given by:

p = C0 + C1µ+ C2µ
2 + C3µ

3 + (C4 + C5µ+ C6µ
2)E (19)

Where C0, C1, C2, C3, C4, C5 and C6 are user defined constants. The parameter µ is
described by:

µ = 1
V
− 1 (20)
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With V as volume. For a gas model:

C0 = C1 = C2 = C3 = C6 = 0 (21)

C4 = C5 = γ − 1 (22)

Where γ is the ratio of specific heats (Cp/Cv). With Cp the specific heat of the fluid at
constant pressure and Cv at constant volume.

The Gruneisen EOS defines the pressure for compressed materials based on the cubic shock
velocity-particle velocity (LS-DYNA Theory Manual [15]). The pressure is defined as:

p =
ρC2µ

[
1 +

(
1− γ0

2

)
µ− α

2µ
2
]

[
1− (s1 − 1)µ− s2

µ2

µ+1 − s3
µ3

(µ+1)2

] + (γ0 + αµ)E (23)

Where E is the internal energy per volume unit, C is the intercept of the cubic shock
velocity-particle velocity curve, γ0 is the Gruneisen gamma and α is the first order volume
correction. Constants C, s1, s2, s3, γ0 and α are user defined parameters in LS-DYNA.
The parameter µ is given by Eq. 20.

A comparison of results of slamming impact with different EOSs is presented in Sec. 5.7.6.
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4. Fiber Reinforced Composite Materials

A composite material is a combination of two or more insoluble constituents that produce
a single material with improved properties. A composite ply is formed by a matrix and
a dispersed reinforcement, either fibers or particles, arranged in a random or structured
manner. The matrix is a continuous material; usually a polymer, that encases the dispersed
elements, defines the shape of the component and guarantees that loads are transferred
between reinforcements. The reinforcements, in most cases, provide the load-bearing
capability, being harder, stronger and stiffer than the matrix (Campbell, 2010 [13]).

One of the main advantages of composites is their high stiffness and strength associated to
a low density. A composite component can be much lighter than a similar part fabricated
in a metallic alloy without loosing in terms of mechanical properties. Additionally, by
properly selecting the proportion matrix-reinforcement, the arrangement and orientation
of the reinforcements, the material can be specifically optimized for a certain application.

Composites have been widely applied in the marine industry since the mid 1940’s when they
first started being applied in the hulls of patrol boats (Selvaraju and Ilaiyavel, 2011 [75]).
These lightweight, strong, corrosion resistant materials present an attractive alternative to
steel and aluminum alloys in a number of applications, not only in the naval sector, but
also in the leisure, sporting and commercial shipbuilding industries.

Figure 23: Port bow view of the USS Cowpens (CG 63) shows its sonar dome (From: [80]).

An example of an advanced marine application for composites are bow sonar domes. These
hydro-dynamically shaped components are mounted on the keel of naval vessels, serving
as a protective case for the sensitive sonar equipment (see Fig. 23). Composite materials
are ideal for these elements, providing structural strength and durability, while being
lightweight, acoustically transparent and reducing resonance.
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Composites can be classified according to the type and arrangement of the reinforcements,
being fiber or particle reinforced. The first type is categorized into discontinuous or con-
tinuous long fibers with unidirectional, bidirectional or random orientation. Furthermore,
a basic composite element, formed by a single sheet of the combination matrix-fiber, is
called a ply or layer.

The current study is focused on Fiber Reinforced Plastics (FRP) with unidirectional
continuous long fibers, which are applied in components such as the sonar dome mentioned
previously.

An overview on the fundamental mechanical properties of these particular composites, the
corresponding modeling techniques used in LS-DYNA and the applied failure criteria is
presented in the next sections. The purpose is to provide a theoretical background for the
analysis of a composite sonar dome subjected to slamming performed in Sec. 8.

4.1. General Aspects

Materials that present different mechanical properties for each direction at a certain point
in the body are denominated anisotropic materials (see Fig. 24). As no material symmetry
planes exist, the response to loading is a function of the application direction (Campbell,
2010 [13]).

Figure 24: Schematic diagram showing the anisotropic behavior of a FR composite material.
The blue lines represent the fiber direction. The index on the parameters is
related to the material coordinate system.

Unidirectional fiber reinforced composites, in particular, are classified as orthotropic, a
subclass of anisotropic materials where three perpendicular axes define the mechanical
properties of the ply (see Fig. 25). These reference material axes are referred to as the
principal material coordinate system.

The moduli of elasticity E, shear G and the Poisson’s coefficient ν of the material are
shown with the corresponding indices for each direction of the principal material coordinate
system in Fig. 24.
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Figure 25: Principal material coordinate system describing the mechanical properties of a
unidirectional composite ply. (From: Campbell, 2010 [13]).

In a unidirectional ply, the fiber has the role of supporting longitudinal tension and
compression loads (parallel to axis 1), whereas the matrix guarantees the distribution of
the loading between the fibers in tension and prevents them from buckling in compression.
The matrix is the main carrier in inter-laminar shear and transverse tension (parallel to
axis 2).

Figure 26: Comparison of tensile properties for fiber, matrix and composite. (From: Camp-
bell, 2010 [13]).

So considering the ply in Fig. 25; for a load applied parallel to axis 1, the response is
governed by the high-strength fiber. In this case, the modulus of elasticity of the ply
in direction 1 E1 approximates that of the reinforcement, as demonstrated in Fig. 26.
However, if a load is applied perpendicular to the fiber direction in axis 2, the material
response is governed by the matrix, with a modulus of elasticity E2. Generally, E2 is lower
than E1. The stress-strain relation for composites is shown in Fig. 26, where the relative
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role of fiber and matrix is demonstrated.

A FR composite is generally formed by several single thin layers of material stacked on
top of each other, as illustrated in Fig. 27. When all the plies are aligned in a single
direction, the lay-up is called a lamina. However, since the material has direction dependent
properties, the plies can be stacked at different relative angles, thus reinforcing the material
in specific directions. This configuration is called a laminate.

Figure 27: Lay-up composite configurations. (From: Campbell, 2010 [13]).

The unidirectional lamina shown in Fig. 27 is stronger and stiffer in the 0° direction,
aligned with the fiber orientation. In the 90° direction, however, the polymeric matrix
must carry the load and the composite is weaker. A quasi-orthotropic laminate, on the
other hand, is strong and stiff in all four directions (0°, 90°, 45° and −45°). A laminate
can be assembled with different relative angles, number of layers and stack-up sequence
according to the structural requirements the application.

4.2. Fundamental Property Relationships

One of the most important factors governing the properties of composites is the relative
proportion of matrix (m) and fibers (f) in a ply. These values, defined as volume or weight
fractions (Vf , Vm, Wf , Wm) are given by the following equations:

Vf = vf
vc

and Vm = vm
vc

(24)
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Wf = wf
wc

and Wm = wm
wc

(25)

Where vf , vm, vc, wf , wm and wc are, respectively the volume and weight of the fiber, the
matrix and the composite.

The longitudinal modulus of elasticity E1 of a unidirectional FR lamina or laminate is
given by the following equation:

E1 = EfVf + EmVm (26)

Where Ef , Ef , VF and Vm are the moduli of elasticity and the volume fractions for fiber
and matrix.

For a longitudinal load, assuming that all the fibers fail at the same time and that the
matrix fails immediately after the fibers, the ultimate longitudinal strength σ1 of the
composite is given by:

σ1 = σfVf + σmVm (27)

σf and σm are the ultimate strengths of fiber and matrix. According to Barbero, 2017 [31],
as the properties of the fibers usually dominate in most loading situations, the volume
fraction of the matrix can usually be neglected. Therefore equations 26 and 27 are reduced
to:

E1 ≈ EfVf (28)

σ1 ≈ σfVf (29)

In the transverse direction, E2 is given by:

1
E2

= Vf
Ef

+ Vm
Em

(30)

The Poisson’s ratio ν12 and the shear modulus G12:

ν12 = νfVf + νmVm (31)

1
G12

= Vf
Gf

+ Vm
Gm

(32)

According to Campbell, 2010 [13]), these micro-mechanical relationships can be applied as
a first approach to estimate the properties of a lamina if no experimental data is available.
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However, the simplifying assumptions such as considering that all fibers are perfectly
aligned and homogeneous, have an impact on the accuracy of these equations.

In practice, micro-defects associated to manufacturing are not taken into account. For
design purposes, more accurate values are required and, therefore, laminate properties are
determined experimentally.

4.3. Failure Criteria on FR Composite Laminates

One of the most critical design aspects is the prediction of the limit loads to which a
structural element can be safely subjected and its failure behavior. As a general definition:
failure occurs when a component is no longer able to perform its designed function.
Depending on the application of the component, different failure modes might be more
or less important. For example, a specific structural element might be considered failed
when excessive deflections occur, even if the component has not sustained any damage. So
predicting not only when, but also how a component will fail is of extreme importance.

The failure of composites is a complex multi-stage process. Mechanical interactions that
take place at intra and inter-laminar levels have a key influence on the way damage and
fracture develop. A variety of failure modes that may interact or not results from these
mechanisms (Barbero, 2017 [31]). They can be generally divided into matrix cracking,
delamination and fiber failure. The most common modes are shown in Fig. 28.

Figure 28: Typical failure modes of a unidirectional ply (From: Bergan et al., 2016 [2]).

The prediction of failure consists essentially in determining the strength and failure mode
of a material subjected to a multi-axial stress state. For isotropic materials, the strength
of the material is independent of the direction, which rather simplifies the process. In a
composite, as a result of its orthotropicity, maximum stresses might not necessarily be
aligned with the direction of maximum strains. This property combined with the complex
failure mechanisms create a context where conventional failure criteria are insufficient.
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Several criteria for fiber reinforced composites have been developed in the last decades.
The World Wide Failure Exercises, for instance, were a international program established
to compare existent criteria for composites. Around 20 different criteria were compared
between themselves and against experimental data for bi-axial lamina and laminate tests.
No final conclusion, however, was reached for a definitive criterion capable of accurately
predicting rupture for all loading configurations (Gay, 2014 [17]).

Failure criteria are essentially polynomial equations adjusted to fit experimental results on
single unidirectional ply failure. A failure envelope is then built based on this approximation.
However, the criterion must also be extendable to laminates with varying fiber directions.
This is usually done by complementing the criterion with laminate failure analysis for
the first ply of the laminate (FPF). Further description of the material failure behavior
beyond the first ply failure can only be performed with an understanding of the progressive
damage mechanics, as stated by Barbero, 2017 [31].

Most of the existent criteria can be classified into two different approaches: directly
considering failure modes and not directly considering failure modes (Paris and Jackson,
2001 [21]). Criteria that use the first approach are, for example, Tsai-Hill and Tsai-Wu. In
the second approach, Maximum Stress and Strain, Hashin and Chang-Chang criteria can
be cited.

The current study addresses the Tsai-Wu and the Chang-Chang criteria, which are both
available in the material formulation used in LS-DYNA.

4.3.1. Tsai-Wu Failure Criterion

The Tsai-Wu criterion is an empirical model based on the maximum distortion energy
of the material, analogous to the Von Mises criterion for isotropic materials. It uses a
quadratic polynomial approximation and assumes the existence of a failure surface in the
stress space and strength similarity in plane shear (Gay, 2014 [17]).

A plane stress state for a unidirectional ply is described by:

( 1
Xt

− 1
Xc

)
σ1 +

( 1
Yt
− 1
Yc

)
σ2 + 1

XtXc

σ2
1 + 1

YtYc
σ2

2 + 1
S2
c

τ 2
12 −

σ1σ2√
XtXcYtYc

= 1 (33)

Where Xt and Xc are the longitudinal tensile and compressive strengths, Yt and Yc are
the transverse tensile and compressive strengths and Sc is the in-plane shear strength.

The criterion accounts for tensile and compressive stress through linear terms. It uses stress
invariants, being therefore, practical for implementation in computational algorithms.
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4.3.2. Chang-Chang Failure Criterion

The Chang-Chang criterion, unlike Tsai-Wu, evaluates the different modes that occur
during the progressive failure of the composite. This allows for a more detailed observation
of the failure mechanism in a composite laminate at ply-level, which can be desirable in
some contexts, e.g., analysis of fatigue and impacts (Chen et al, 2003 [83]).

The three in-plane failure modes considered are: matrix failure, fiber failure and a third
one termed fiber-matrix shearing, which is associated to fiber pull-out and debonding (see
Fig. 28). The defining equations are presented in Sec. 4.4.1, where the implementation of
the criterion in LS-DYNA is discussed.

4.4. Modeling of Fiber Reinforced Composites in LS-DYNA

There are three basic methods of modeling for laminate composite materials in FEM,
differing mainly on the type of elements used. A laminate can be modelled as a single shell
element with multiple integration points defining the layers along its thickness; as a stack
of 2D shell elements; or as a stack of 3D solid elements representing layers (see Fig. 29).

Figure 29: Methods of modeling for composites in FEM. (From: Galal, 2018 [51]).

The selection of the technique depends on the scope of the simulation. For instance,
the first approach is the most efficient in terms of computational cost, due to the use
of a single shell element. This approach is capable of modeling the elastic response and
intra-laminar failure. However, it is not applicable for modeling inter-laminar processes
such as delamination. In this case, an approach that uses individual layers of shell or solid
elements is required.

Figure 30: Inter-laminar cohesion techniques. (From: Galal, 2018 [51]).



4. Fiber Reinforced Composite Materials 36

In order to represent bonding mechanisms and allow the reproduction of inter-laminar
damage in these cases, cohesive elements or tie-break contacts can be defined in between
layers (see Fig. 30).

Nonetheless, these techniques require intensive calibration of the (de)bonding mecha-
nisms, which combined with the increased computational cost associated to multi-element
modelling methods, result in a less attractive alternative in an industrial context.

Several material models for composites are available in LS-DYNA. In fact, according to
Cherniaev et al. (2018) [3], more than 25 models for composites are suitable for general
impact simulations. Some of the most commonly used are summarized in Fig. 31.

Figure 31: Material models in LS-DYNA. The table demonstrates some commonly used
models (From: Galal, 2018 [51]).

The models presented in Fig. 31 rely on different elasto-plastic material behaviors and
strategies to predict failure, based either on Progressive Failure (PFM) or Continuum
Damage mechanics (CDM). They also vary according to the type of degradation scheme
used to reduce the material properties once failure has initiated. For the materials
using PFM (MAT022, MAT054, MAT058, MAT059, MAT158), failure criteria such as
Chang-Chang, Tsai-Wu or Modified Hashin can be applied.

Selecting the proper material depends on the objective and context of the analysis. This
study addresses exclusively MAT054, often utilized in dynamic simulations to assess
progressive damage failure. This material formulation is specifically designed to model
arbitrary orthotropic materials, such as unidirectional tape composite laminates. It
is relatively simple to configure and more computation efficient as opposed to other
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formulations, requiring a reduced number of experimental input parameters (Feraboli et
al., 2011 [64]).

4.4.1. MAT054 Enhanced Composite Damage

MAT054 Enhanced Composite Damage is a progressive failure material model that uses a
ply discount method to reproduce the degradation of the material due to damage. The
model is defined in LS-DYNA through the input card shown in Fig. 32.

Figure 32: LS-DYNA card used to define MAT054 (From: Osborne, 2013 [53]).

The formulation input is composed of a set of constitutive material properties, definition
parameters for the material coordinate system and other particular parameters that are used
to calibrate material erosion, crash-front softening and material behavior after initiation
of the failure. These model-specific parameters, such as TFAIL, SOFT, FBRT, YCFAC,
ALPH, BETA and EFS are either non-physical or cannot be measured experimentally.
Therefore, a process of trial and error is required to assess their influence on the model
responses (Jackson et al., 2014 [19]).

Input parameters highlighted in orange define the constitutive material properties in
tension/compression and shear: elasticity (EA and EB) and shear (GAB, GBC and GCA)
moduli, and Poisson’s ratio (PRBA). These parameters describe the stress-strain behavior
of the element in the elastic domain for fiber (1 or A-direction), matrix (2 or B-direction)
and shear (12 or AB-direction), respectively:

ε1 = 1
E1

(σ1 − ν12σ2) (34)

ε2 = 1
E2

(σ1 − ν21σ1) (35)
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2ε12 = 1
G12

τ12 + ατ 3
12 (36)

Where ε are the strains, σ and τ are the normal and shear stresses, E and G are the elastic
and shear moduli, and ν is Poisson’s coefficient. The parameter ALPH is a shear weighting
factor used to correct the non-linear shear stress term in the stress-strain relationship. It
must be calibrated by trial and error if shear is expected.

After the elastic limit is reached, two different failure criteria are available: Chang-Chang or
Tsai-Wu. The selection of the criterion is done with input CRIT, where 54 is Chang-Chang
and 55 is Tsai-Wu. Parameters highlighted in light blue on Fig. 32: XT, XC, YT, YC
and SC are, respectively, the ply longitudinal tensile strength, longitudinal compressive
strength, transverse tensile strength, transverse compressive strength, and shear strength.
They define the limit stresses on ply-level and mark the initiation of lamina degradation
(see Fig. 33). These parameters are obtained experimentally.

Figure 33: Stress-strain behavior of a lamina. Stress-strain curves for matrix, the fiber and
the average are shown (From:Osborne, 2013 [53]).

The failure modes for the strength-based Chang-Chang criterion for a linear elastic material
are given by (LS-DYNA Theory Manual [15]):

• for the tensile fiber mode, where σ1 ≥ 0:

e2
f =

(
σ1

Xt

)2
+ β

(
τ12

Sc

)2
− 1

e
2
f ≥ 0 failed

e2
f < 0 elastic

(37)

Upon failure: E1 = E2 = G12 = ν12 = ν21 = 0
• for the compressive fiber mode, where σ1 < 0:

e2
c =

(
σ1

Xc

)2
− 1

e
2
c ≥ 0 failed

e2
c < 0 elastic

(38)

Upon failure: E1 = ν12 = ν21 = 0
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• for the tensile matrix mode, where σ2 ≥ 0:

e2
m =

(
σ2

Yt

)2
+ β

(
τ12

Sc

)2
− 1

e
2
m ≥ 0 failed

e2
m < 0 elastic

(39)

Upon failure: E2 = ν21 = G12 = 0
• for the compressive matrix mode, where σ2 < 0:

e2
d =

(
σ2

2Sc

)2
+
[(

Yc
2Sc

)2
− 1

]
σ2

Yc
+
(
τ12

Sc

)2
− 1

e
2
d ≥ 0 failed

e2
d < 0 elastic

(40)

Upon failure: E2 = ν12 = G12 = 0

In the Tsai-Wu criterion, tensile and compressive fiber modes are treated in the same way
as in the Chang-Chang criterion, according to LS-DYNA Theory Manual [15]. For the
matrix tensile and compressive failure modes, the following formulation is given:

e2
md = σ2

2
YcYt

+
(
τ12

Sc

)2
+ (Yc − Yt)σ2

YcYt
− 1

e
2
md ≥ 0 failed

e2
md < 0 elastic

(41)

Parameters ef , ec, em, ed and emd are history variables that mark the failed plies for each
of the modes (see Fig. 34).

Figure 34: Definition of history variables in LS-DYNA (LS-DYNA Theory Manual [15]).

Where the index i defines corresponding integration point.

The parameter β (BETA in the input card) is a user-defined shear weight factor that
determines the influence of shear in the tensile fiber mode. For BETA=1, the original
Hashin failure criterion is applied. For BETA=0, the Maximum Stress criterion is selected.

The failure process occurs in the following manner: as one of the failure conditions is
reached in a ply within the element, the elastic properties of the ply are set to zero. This
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reduction of properties, is done by imposing the stress state just before failure on the
next time-steps and preventing the failed ply to support any additional stress, instead of
reducing stresses to zero (see Fig. 35).

Figure 35: Three basic stress-strain behaviors defined by MAT054. The first and second
one on the left present a low strain failure limit and the third one, on the right,
presents a high failure strain and an artificial plastic behavior (From:Wade et
al., 2012 [11]).

In this numerical process, the ply is not actually failed, but rather remains intact and loses
its load carrying capacity, differently from what would occur in reality. This is clearly
demonstrated in the third case in Fig. 35. A sort of artificial plasticity is maintained
beyond the elastic limit until a determinate limit strain value (DFAIL) triggers ply deletion,
reducing stresses in the ply to zero.

The five critical strain parameters observed in pink on Fig. 32: DFAILT, DFAILC, DFAILM
and DFAILS are, respectively, the strain failure in fiber tension, fiber compression, in
the matrix direction and in shear. These values are obtained experimentally through
coupon-level tests (Osborne, 2013 [53]). However, if these values are not known beforehand,
an alternative non-physical parameter available in LS-DYNA can be used, the Effective
Failure Strain (EFS), given by (LS-DYNA Theory Manual [15]):

EFS =
√

4
3(ε2

1 + ε1ε2 + ε2
2 + ε2

12) (42)

By calculating ε1, ε2 and ε12 at element failure and applying Eq. 42, a critical EFS can be
determined. The default value of EFS is zero.

The deletion of a shell element with MAT054 occurs when all the integration points (plies)
in the element exceed one of the strain parameters (DFAIL or EFS). Additionally, element
deletion can also be imposed to elements that present severe distortion, in which case the
required time-step size becomes very small. This optional method of element deletion can
be calibrated with the parameter TFAIL.

After an element is deleted, an algorithm of strength reduction of the surrounding elements
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takes place in order to reproduce damage propagation. The surrounding elements become
part of a crash-front region (see Fig. 36), where the strength reduction is controlled through
parameters SOFT, FBRT and YCFAC, highlighted in green in Fig. 32.

Figure 36: Crash-front algorithm used to perform the strength reduction of elements affected
by surrounding damage (From:Andersson and Liedberg, 2014 [45]).

From Fig. 36, in (a) the elements in blue are failed through the strength based criterion.
In (b) these elements reach critical strain and are deleted. Elements in red become part
of crash-front region. The damage factor SOFT is applied in crush simulations, whereas
FBRT and YCFAC are required for matrix compressive failure. These parameters cannot
be obtained experimentally and, therefore, need to be tuned by trial and error.

In conclusion, according to Feraboli et al. (2011) [64], MAT054 is commonly applied on
impact simulations on composites due to its relative simplicity and low computational
cost. However, the model also presents significant drawbacks regarding the non-physical
parameters. The process of calibrating these values requires an intensive sensitivity analysis,
which can become quite challenging. Nonetheless, the model can be used with reasonable
accuracy to predict the behavior at higher structural level, such as components or full-scale
models. This material is further applied in this study.

4.4.2. Coordinate Systems for Composites in LS-DYNA

There are three different coordinate systems (CS) considered for reference in the modeling
of composite materials in LS-DYNA: the global CS [X,Y,Z], the element or local CS [x,y,z]
and the material CS [a,b,c], as presented in Fig. 37.

Figure 37: Coordinate systems used for composite shell elements (From: Galal, 2018 [51]).
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In order to properly model a laminate, it is critical to define the correct material CS for
each element, since the ply direction is set according to this specific reference. Additionally,
in LS-DYNA, the results for stresses and strains can be displayed in any one of the
coordinate systems, and post-processing these values in the material CS is generally more
comprehensive. This is specially the case for more complex geometries, where global and
material stresses/strains can be greatly different.

Figure 38: Material Coordinate System defined for a shell element AOPT=2 (From: Galal,
2018 [51]).

The selection of the coordinate system on which results are displayed is done in card
DATABASE_EXTENT_BINARY. Moreover, according to the element type, the material
CS is formulated in different manners. For globally orthotropic shell elements, the CS is
designated as shown in Fig. 38. The parameter AOPT in MAT054 defines the type of
material CS. The direction of each ply is defined in the card PART_COMPOSITE.
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5. Case Study 1: 2D Rigid Wedge
As a first approach to validate the settings of the ALE formulation in LS-DYNA, a 2D
model of the slamming of a rigid wedge is developed and compared against experimental
results obtained in the drop test study by Zhao et al. (1996) [72].
Finite Elements models of the experiment developed in Stenius and Rosén (2007) [27], Yu
et al. (2019) [84] and Aquelet (2004) [58] are used as reference for the numerical setup.

Once the results obtained with the 2D rigid wedge are satisfactory, the complexity of the
simulation can be further increased by implementing elasto-plastic materials, extending to
a three-dimensional model and finally implementing anisotropic materials.

5.1. Experimental Setup

Zhao et al. (1996) [72] carried out drop tests in order to validate the two proposed
theoretical methods for slamming prediction. The experimental drop rig is described in
detail in Sec. 2.3. The compared test section consists of a V-shaped wedge with a deadrise
angle (α) of 30°. It has a total length of 1m and a breadth of 0, 5m, with a defined
measuring section of 0, 2m in the center (see Fig. 39). The maximum drop height is 2m.

Figure 39: Transverse and longitudinal dimensions of the test section.

Table 1: Wedge dimensions and mass distribution from Zhao et. al (1996) [72].

Breadth of section 500 mm
Length of measuring sections 200 mm
Length of each dummy sections 400 mm
Total length 1000 mm
Weight of drop rig (without ballasts) 141 kg
Ballast weight 100 kg
Total weight of the drop rig 241 kg
Weight of the measuring section 14,5 kg
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Ballast can be added to the horizontal attachment so weight adjustments are possible.
General dimensions and weights are presented in Table 1:

The ends of the measuring section are connected to the rig with two force transducers,
which register the impact force. To assess the pressure distribution along the wedge,
transducers are placed in specific points on the measuring section, as shown in Fig. 40.

Figure 40: Transversal dimensions of the wedge and position of pressure transducers. (From:
Zhao et al. (1996) [72])

5.2. Model Geometry and Boundary Conditions

The model geometry, presented in Fig. 41, is composed of the wedge and the fluid domain
divided in two parts: water and air. General dimensions of the fluid domain are defined
primarily according to the geometry in Yu et al. (2019) [84]. However, a sensitivity study
on the geometry is presented in Sec. 5.7.7.

Figure 41: Model setup of the rigid wedge. CL is the symmetry axis. Top, left and bottom
edges are non-reflecting boundaries. Dimension t is defined by the minimum
mesh element size.
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The problem is symmetric, and therefore only half of the geometry is modeled. The nodes
of the fluid domain located in the symmetry axis are constrained in X direction. Non-
reflecting boundaries are applied at all edges, except on the middle plane. This condition
assures that there is no influence of reflected waves on the pressure field generated by the
impact. Furthermore, to enforce the two-dimensional assumption, all nodes are constrained
in Y direction.

An initial velocity of 6, 15m/s is applied to the wedge, corresponding to the velocity of
the body just before impact, as observed in the experiment by Zhao et. al (1996) [72].

5.3. Material Properties and Equations of State

Material properties for the fluids are set with the card MAT_NULL, while the wedge
is defined with MAT_RIGID, as presented in Table 2. The pressure cutoff coefficient is
initially set to zero. Gravity and viscosity of the water are neglected.

Table 2: Material properties.

Material Type Density (kg/m3)
Wedge RIGID 2700
Water NULL 1026
Air NULL 1,23

For an observation of the effects of the Equation of State (EOS) in the results, two
formulations are tested: Gruneisen and linear polynomial. Parameters for both formulations
are listed in Tables 3 and 4.

Table 3: Coefficients for the Gruneisen EOS. (From: Wu et al. 2018) [12])

C S1 S2 S3 γ0 A E0 V0

Water 1480 1,92 0 0 0 0,1 0 0
Air 0 0 0 0 0 0 0 0

Table 4: Coeffcients for the linear polynomial EOS. (From: Bae and Zakki [16])

C0 C1 C2 C3 C4 C5 C6 E0 V0

Water 0 2002 8436 8010 0,4394 1,3937 0 0,2086 1,0
Air 0 0 0 0 0 0 0 0,25 1,0

The card ELEMENT_MASS is used to distribute the mass of the wedge between all the
nodes of the Lagrangian mesh. It is noted that the mass must be defined proportionally to
the size of the model with a simple ratio calculation between the total length of the wedge
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(1000mm), the total ballasted weight of one half wedge (241kg/2) and the longitudinal
length of the 2D model (size of minimum element).

5.4. Selection of Mesh

A parameter of critical relevance is the mesh density. Discretization must be sufficiently
fine in order to capture correctly pressure gradients and still reasonably coarse in order to
be efficient in terms of computational cost (Stenius and Rosén, 2007 [27]).

Both fluids are represented by uniform multi-material Eulerian meshes of 8-node brick
elements, while the wedge is described by a Lagrangian strip of uniform shell elements.
The chosen element formulation for the shells is Belytschko-Tsay. Lagrangian and Eulerian
meshes have a longitudinal thickness of one element as only a section of the model is
considered in the 2D setup.

According to the model proposed by Yu et al. (2019) [84], an element size of 2, 5mm yields
a good compromise between accuracy and computation cost. Nevertheless, a sensitivity
analysis is performed with 2, 5mm, 5mm and 10mm meshes. The wedge and the fluids
are meshed with elements of the same size.

5.5. FSI Settings

One of the main concerns of the modeling of slamming is the calibration of the parameters
that govern the fluid-structure interaction. According to Olovsson (2003) [42], the penalty-
based contact formulation is the most appropriate for hull-water impact problems. However,
defining the governing parameters of the algorithm, such as the penalty factor (PFAC ),
damping coefficient (DAMP), time-step scaling (TSSFAC ) and number of coupling points
per element (NQUAD), can be challenging. The calibration depends on the problem being
analyzed and results can be very sensitive.

The simulations are performed with a penalty coupling for shell and solid elements
(CTYPE=4 in LS-DYNA) using different combinations of parameters for an overview of
the effect of the FSI configurations on the results. Values used are summarized in Table 5.

Table 5: Tested FSI parameters.
PFAC 0,002 0,01 0,1 0,5
DAMP 0,1 0,5 1,0 2,0
NQUAD 2 4 6

Moreover, regarding the ALE control settings, the default advection method is chosen;
donor cell with Half Index Shift (HIS), first order accurate.
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5.5.1. Penalty Factor

One particularly important parameter is the penalty factor, which defines the contact
stiffness. If the penalty factor is too high, the contact stiffness might become excessive,
leading to numerical instabilities. On the other hand, a too low contact stiffness produces
leakage in the Lagrangian structure (Aquelet and Souli, 2003 [60]). Tuning the penalty
factor is a trial and error process and a previous knowledge of the magnitude of the
involved loads is necessary (Stenius and Rosén, 2007 [27]).

In the case of slamming, the impact force or the contact reaction of the fluid on the
structure, is a function of the angle of incidence of the wedge, the velocity and the mass
of the body. Aquelet (2004) [58] performs a study where the appropriate penalty factor
associated to different deadrise angles is assessed. Results from the study are provided
in Table 6. Alternatively, Yu et al. (2019) [84] applies the default value of the card
(PFAC=0,1).

Table 6: Penalty factor values in function of the wedge angle (Aquelet, 2004 [58]).

Angle [°] 0 1 2 3 4 5 10 20 30
PFAC 10 7 0,340 0,085 0,034 0,018 0,009 0,008 0,002

5.5.2. Damping Coefficient

On slamming simulations, numerical noise in the results might appear, either due to the
incompressibility of the fluid that generates high frequency oscillations on the structure or
due to an excessive contact stiffness that might affect the eigenfrequency of the virtual
coupling system. This numerical instabilities have a negative effect on the accuracy of
results. Estimated loads can be unreliable when high levels of numerical noise are present.

Therefore, introducing damping in the algorithm filters out these high frequency oscillations
and improves results. Nevertheless, it is important to set the parameter accordingly to
the chosen penalty factor. An excessively high coefficient can alter the behaviour of the
system by damping out the actual physical oscillations, leading to inaccurate results as
well. This occurs if the numerical contact stiffness is close to the highest physical stiffness.

In LS-DYNA, the parameter DAMP is a damping scaling factor ranging from 0 to 1,
where 1 represents a critically damped case. Stenius (2006) [28] recommends a value of
0,9 times the critical damping. Aquelet et al. (2006) [61] proposes the use of DAMP=2.
Even though this value is not predicted in LS-DYNA Keyword User’s Manual [44], it is
used in the study for a better understanding of the influence of the parameter.
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5.5.3. Number of Coupling Points

The parameter NQUAD defines the number of quadrature points that connect the La-
grangian slave part to the Eulerian master part. Depending on the relative mesh size
between the parts, more or less coupling points are required. As a general guideline,
LS-DYNA Keyword User’s Manual [44] recommends using 2 or 3 coupling points per each
Eulerian/ALE element. In general, the bigger the Lagrangian element in relation to the
Eulerian, the more coupling points are needed. Moreover, the expansion and contraction
of the meshes also need to be taken into account.

5.5.4. Time-step Scaling Factor

Even though the time-step size is of great importance in the stability of the numerical
algorithm, this study focus on the settings of the FSI contact card. So as a preliminary
approach, the time-step scaling factor is set to default, as recommended in LS-DYNA
Keyword User’s Manual [44].

5.6. Geometry of the Fluid Domain

The initial set-up for the geometry of the fluid domains is based on Yu et al. (2019) [84],
as previously mentioned. The boundaries of the domains have an influence on the fluid
behaviour, given that the flow is limited at these areas. Therefore, loads on the wedge are
also linked to the their sizes. So in order to obtain a more detailed idea of the influence of
the boundaries of the geometry on the results, a sensitivity study is performed.

By varying one of the dimensions of the fluid domain, either in the horizontal direction
(X) or in the vertical direction (Z), while keeping the other value fixed, the convergence of
the vertical slamming force is assessed. The longitudinal in-plane direction (Y) is kept
constant.

Figure 42: Dimensions Z and X are varied in this analysis (t = 2, 5mm).
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Additionally, the vertical dimension of the air domain is also fixed (see Fig. 42). The space
required for this domain is only enough to allow for the motion of the wedge at the wet
stages and the correct reproduction of the water splash resulting from the impact. This is
also a way to optimize the simulation in terms of computational cost.

The dimensions used in the study are summarized in Table 7. It is noted that for a fixed
X, convergence is reached at Z = 1000mm.

Table 7: Dimensions used in the sensitivity study.

Fixed Z Fixed X
X [mm] Z [mm] X [mm] Z [mm]
300 700 750 200
500 700 750 500
700 700 750 700
1000 700 750 1000
1250 700 - -
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5.7. Results and Discussion

5.7.1. Overall Behaviour

The progression of the wedge into the water and the behaviour of the free-surface is
presented in Fig. 43. As the wedge enters the water, the fluid piles up at the intersection
between the wedge and the free-surface, forming a water jet that is projected away from
the body. The figure was created by plotting the volume fraction. Red represents water,
blue represents air and green the smoothed transition.

Figure 43: Interaction of the free-surface with the wedge at different instants.

Figure 44 shows a comparative diagram of the simulation at around t = 20ms, when the
chine is almost completely submerged. The model developed in this work and the result
from Yu et al. (2019) [84] yield a similar behaviour. The water jet formed with the fluid
detachment can be seen.

Figure 44: Comparative of the free-surface at t = 20ms. Present (upper), Yu et al. (2019)
[84] (lower).
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Two distinct stages can be observed (see Fig. 45): before the entrance of the chine into
the water and after it enters the surface. These two phases are characterized by different
pressure distributions.

Figure 45: Average pressure evolution. Dry chine stage (t = 4ms and t = 9ms) and wet
chine stage (t = 18ms and t = 22ms).

In the first stage, a localized pressure peak occurs on the pile-up region, while the remaining
submerged part of the wedge experiences lower and fairly constant pressures (t = 4ms and
t = 9ms). In the second phase (t = 18ms and t = 22ms), a relatively uniform pressure
distribution is observed, decreasing until reaching hydrostatic pressure.

Figure 46: Free surface upon wedge entry and local pressure at the middle of the half wedge
(t = 9ms).

The local pressure distribution measured at the middle of the half wedge agrees with the
expected behaviour (see Fig. 46). A sudden peak pressure occurs when the measurement



5. Case Study 1: 2D Rigid Wedge 52

point is at the junction of the wedge and the free-surface. As the point moves into the
water, a lower pressure plateau gradually develops. Measuring local pressures accurately
in LS-DYNA proved very difficult, a high level of numerical oscillations is observed. So
in order to facilitate the visualization of the pressure distribution, the curve presented in
Fig. 46 is a plot of the peak pressures, excluding the zero values that occur between each
time-step.

5.7.2. Slamming Force

The slamming vertical force history obtained numerically is compared against the experi-
mental data by Zhao et al. (1996) [72] as well as numerical results presented in Yu et al.
(2019) [84], Stenius and Rosén (2007) [27] and Le Sourne et al. (2003) [23].

Results in this section refer to the optimal geometry of the fluid domain and FSI settings
assessed in Sections 5.7.7 and 5.7.4. The contact card is configured with PFAC=0,002 and
DAMP=0,1 and the water domain has 1250X2, 5X750mm. The calibration of parameters
is further discussed in following the sections.

Figure 47 shows the evolution of the vertical force with time. A peak of 5328N is reached
at around 15ms in the simulation, as opposed to 5126N at 13ms in the experimental
drop-test, an overestimation of approximately 4% for the maximum force. Zhao et al.
(1996) [72] estimates a maximum force 20% lower when three-dimensional flow effects are
considered, which can be understood by the fact that the fluid flow is not constrained in
the longitudinal extremities of the wedge on the 3D case as opposed to the 2D idealization.

Figure 47: Comparison of the results for the slamming force.
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Reference numerical studies are within an average error of 7% and therefore, the current
numerical model can be validated within a reasonably good margin of error and an overall
well matched profile.

It is important to note that the sensitivity studies presented in the following sections are
performed with the initial selected geometry by Yu et al. (2019) [84]. Even though the
discrepancy on the magnitude of the maximum force is slightly higher with this model
(9%), the assessment of the sensitivity of calibration parameters remains valid.

5.7.3. Mesh Sensitivity

Details of the implemented meshes are summarized in Table 8.

Table 8: Details of the applied meshes.

Elem. size (mm) 2,5 5 10
Number of Elements 108230 27057 6779
CPU Time (min) 38 5 1,2

A comparison of the slamming force for the different meshes is presented in Fig. 48. The
2, 5mm mesh converges to the expected result. Some numerical noise is observed in the
beginning of the simulation, but the curve is overall fairly stable. For the 5mm mesh, the
curve seems to converge, however, considerable oscillation is present. The 10mm mesh
differs significantly from the expected result.

Figure 48: Mesh sensitivity of the slamming force.

The 2, 5mm mesh is selected for the model, since it yields good results and runs at a
reasonable CPU time (around 40 min). A finer mesh would not be practical and necessary
for this case.
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5.7.4. FSI Settings

Figures 49, 50, 51 and 52 present variations of the curve for the slamming force obtained
with different combinations of penalty factors and damping coefficients. In general, except
for the cases when numerical instabilities are significant, the maximum force as well as the
overall shape of the curve do not change significantly for different FSI configurations.

Figure 49: Damping sensitivity analysis with PFAC=0,02.

Figure 50: Damping sensitivity analysis with PFAC=0,01.
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Figure 51: Damping sensitivity analysis PFAC=0,1.

Figure 52: Damping sensitivity analysis PFAC=0,5.

As the penalty factor increases, numerical instabilities arise. The lowest levels of numerical
noise are observed with the combination PFAC=0,02 and DAMP=0,1. With a 0, 5 penalty
factor and damping coefficients higher than 0, 5, the simulation does not converge.

According to Aquelet et al. (2006) [61], the higher the penalty factor, the smaller the
interpenetration allowed at the nodes of the contact interface. At a very high contact
stiffness, when penetrations are zero, the interface boundary condition is satisfied. However,
with this excessively stiff contact, the frequency of the virtual spring-damper system of
the contact algorithm increases and numerical instabilities might appear. In order to
prevent this effect, a lower stiffness with the presence of some leakage in the Lagrangian
component is acceptable.

It is observed that similarly to the penalty factor, an excessively high damping coefficient
can generate unstable coupling. This behaviour can be well observed when the combination
PFAC=0,1 and DAMP=2,0 is used (Fig. 51).
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In summary, for defining the FSI in the case of wedge slamming, the best approach is to
define a contact stiffness based on the angle of incidence and tune the damping coefficient
accordingly. This procedure can be probably extended to more practical scenarios involving
similar geometries.

For the simulations performed in the next section, PFAC=0,02 and DAMP=0,1 are used.

5.7.5. Number of Coupling Points

Except for a certain amount of numerical noise in the beginning of the simulation, the
number of quadrature points does not have a major influence on the slamming force (see
Fig. 53). The optimal configuration occurs for NQUAD=2, producing a fairly stable curve.
The Lagrangian and Eulerian meshes have a similar size and two coupling points seem to
be sufficient for this relative mesh resolution.

Figure 53: Influence of the number of coupling points in the slamming force.

By increasing the number of coupling points, the stiffness of the contact is consequently
increased, which may lead to higher numerical instabilities.

5.7.6. Equation of State

The implemented Equations of State yield an overall similar result. However, the linear
polynomial EOS is less stable. A significant oscillation occurs at around t = 8ms (see
Fig. 54).
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Figure 54: Comparison of the influence of the EOS in the slamming force.

Observing the pressure field at this specific instant (see Fig. 55), it is possible to see an
abrupt shock-wave that begins in the middle of the fluid and expands towards the wedge,
causing this oscillation on the impact load. This effect is likely not a physical behaviour
and is probably associated to numerical errors caused by the polynomial approximation.
In general, the linear polynomial EOS is indicated for linear deformations and might not
be suitable for large deformations, as in this case.

Figure 55: Pressure field observed for both EOS at t = 8ms. (Left: linear polynomial/Right:
Gruneisen)

Since the Gruneisen EOS appears to be more stable in comparison with the linear
polynomial EOS, it is used for the final model.
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5.7.7. Geometry of the Fluid Domain

Results for the convergence of the vertical slamming force are presented in Fig. 56.

Figure 56: Slamming force for different dimensions of Z and X. Fixed Z = 700mm and
fixed X = 750mm.

For a constant Z = 700mm it is possible to observe that as X is increased the slamming
force approaches the experimental curve. The optimal value is X = 1250mm resulting in
a discrepancy of 4% in the maximum force, as already described in Sec. 5.7.2. Since values
from X = 1000mm and X = 1250mm are very close, it can be assumed that convergence
is reached at X = 1250mm.

For a fixed X = 750mm the same behavior is observed: as Z is increased, the curve
approaches the experimental result. However, in this case, convergence is reached for
Z = 700mm. Increasing Z to 1000mm does not alter the profile and curves for Z = 700mm
and Z = 1000mm match exactly. It is also noted that the red curve (Z = 500mm)
corresponds to the geometry proposed by Yu et al. (2019) [84].

The slamming force seems to be more sensitive to the size of the horizontal dimension of
the domain. This is likely associated to the development of the free surface. As the wedge
enters the water, the fluid is piled-up on the structure and pushed horizontally against the
borders of the domain. This interaction between the free-surface and the border influences
the resulting pressure profile. So in order to mitigate this effect, a reasonable distance
between the impacting structure and the edge of the domain is required. However, for
the vertical dimension, the interaction of the pressure field with the border appears to be
slightly less significant.

It is noted that the optimal geometry (1250x700mm) has dimensions X and Z approximately
five times larger than the breadth and depth of the wedge (250x144mm). Even though
other factors, such as the geometry of the impacting body, impact speed, mesh size and
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FSI parameters also have an important influence on the results, this notion might be useful
in an initial approach.

Another important factor is the computational time. The accuracy of the simulation
depends on the size of the domains and, obviously, larger domains are more expensive in
terms of computational cost. Computation time required for each of the geometries is
presented in Table. 9.

Table 9: Computation time required for each geometry.

Fixed X Fixed Z
X [mm] Z [mm] CPU Time X [mm] Z [mm] CPU Tme
300 700 24min 750 200 22min
500 700 37min 750 500 41min
700 700 52min 750 700 51min
1000 700 1h 12min 750 1000 1h 10min
1250 700 1h 20min 750 - -

As observed in Table. 9, the impact of increasing the domain size does not have a critical
importance on the cost of a 2D wedge simulation, since total calculation time is relatively
low. However, this factor might be critical in 3D models, where computational cost might
become very high.

In conclusion, the horizontal and vertical dimensions of the water domain have a significant
influence on the slamming force. Setting up proper dimensions for models of slamming is,
therefore, of important in both the accuracy and computational efficiency.

Further studies on the 2D wedge with a low deadrise angle and prescribed constant velocity
are presented as additional material on Appendices
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6. Case Study 2: 3D Rigid Wedge
A 3D model of the drop-test has been developed for a more realistic investigation on
the phenomenon, since 3D effects might have significant influence on the slamming loads.
Furthermore, the analysis of the stress-strain response of anisotropic materials in later
stages of this work requires a three-dimensional setup, given the directional dependence of
the results.

6.1. Model Setup

A higher number of finite elements is required for the 3D case and computational cost
becomes significant. One of the measures taken to reduce computation time is modeling a
quarter of the problem, taking advantage of its symmetry on the planes y-z and x-z (see
Fig. 57). The fluid domain is extended in the Y direction so that the 3D flow close to
the extremities of the wedge can be reproduced without influence of the boundaries. The
wedge has 500mm Y direction and additional 300mm are kept empty.

Figure 57: 3D model with refined mesh. Right and front views. The air domain is hidden
for a better comprehension.

It is noted that in the 3D case, the influence of the transverse dimension of the fluid is
expected to be less significant, since the domain is extended in the longitudinal direction.
Therefore, in order to save computation time, the dimensions proposed by Yu et al. (2019)
[84] are used.

Non-reflecting and axisymmetric boundary conditions are applied similarly to the 2D
model. In addition, previously validated FSI settings (PFAC=0,002, DAMP=0,1 and
NQUAD=2), material properties and Equations of State are implemented.
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Regarding discretization, a minimum element size is defined based on the validated mesh
used for the two-dimensional case (2, 5mm). In this case, a non-uniform mesh is used in
order to reduce computational costs. The mesh is refined only on the measurement area
close to the symmetry axes of the model, gradually coarsening up to the extremities of
the fluid domain. This approach decreases considerably the number of elements, whilst
maintaining accuracy in the most relevant regions of the model. Details of the mesh are
presented in Table 10.

Table 10: Details of the applied mesh.

Min. elem. size (mm) 2,5
Max. elem. size (mm) 15
Number of Elements 2637272
CPU Time 15h 15min

The total CPU time running in a 64GB 2,2GHz workstation with 8 cores is around 15
hours. Additionally, it is noted that the geometry and the meshing of the model were
done in the software PATRAN, which offers better pre-processing tools more capable of
handling sizable meshes.
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6.2. Results and Discussion

6.2.1. Overall Behaviour

Figure 58 presents the evolution of the free-surface as the wedge enters the water. The
transverse section view shows the same predicted behaviour obtained in the 2D model,
with the expected pile-up effect and water jet. It is possible to observe in the longitudinal
view, the rise of the water level on the left end of the wedge. Lower slamming loads are
expected due to the unconstrained flow at this region, which is not reproduced in the 2D
simulation.

Figure 58: Free surface profile. (Upper: transv. view; lower: long. view.)

The pressure distribution on the wedge on the transverse view (Fig. 59) corresponds to
the 2D model prediction, with an abrupt peak on the pile-up region. On the longitudinal
section, the pressure distribution is fairly constant along the keel.

Figure 59: Pressure distribution. (Upper: transv. view; lower: long. view.)
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6.2.2. Slamming Force

The predicted slamming force history is in fairly good agreement with the experimental
results by Zhao et al. (1996) [72], as verified from Fig. 60. A peak force of 5236N is
obtained, an overestimation of 2% of the experimental value.

Figure 60: Comparison of the results for the slamming force for the 3D case.

Some numerical instability is observed in the beginning. It is also noted that the simulation
approximates better before the peak, whereas after around t = 15ms it shifts slightly
forward. The discrepancy is likely related to the calibration of the FSI algorithm and does
not represent a major issue. Overall, the prediction is fairly accurate.
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7. Case Study 3: 2D Elastic Flat Plate
In this section, the objective is to validate a numerical model capable of predicting
accurately the hydro-elastic behaviour of a horizontal plate subjected to slamming loads
with a comparison with the experiment proposed by Faltinsen et al. (1997) [49]. The
simulation developed in LS-DYNA combines an elasto-plastic material and previously
assessed FSI configurations adapted to a flat horizontal plate. The numerical model
developed in Yu et al. (2019) [84] is used as reference for the setup.

7.1. Experimental Setup

Faltinsen et al. (1997) [49] proposes theoretical methods for the prediction of slamming-
induced loads in the wet-deck of a multihull vessel and performs a series of experimental
drop-tests of horizontal plates to validate the formulations.

A drop rig similar to the one applied in the wedge drop-test by Zhao et al. (1996) [72]
is used. The tested plate has a length of 1000mm and a breadth of 500mm with a
100mm measurement section in the middle. It is 8mm thick, made of high-strength steel.
Measurements are performed with the use of strain gauges, pressure and force transducers
and accelerometers placed strategically in the assembly. The complete drop rig weights
500kg. Main dimensions of the rig and configuration of the sensors are shown in Fig. 61.

Figure 61: General dimensions of the test plate and configuration of sensors. (From:
Faltinsen et al., 1997 [49]).
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The test plate is connected to a rigid assembly with rotational springs at the edges. The
springs allow the test plate to deflect a certain amount, while the relative translation be-
tween the rigid assembly and the plate on the fixing points is restrained. This configuration
reproduces the behaviour of a typical wet-deck structure subjected to slamming. However,
it is critical to define a proper rotational stiffness in order to reproduce accurately the
expected behaviour. A rotational stiffness (kθ) of 102144Nm/(rad.m) is used.

7.2. Model Geometry and Boundary Conditions

A two-dimensional setup similar to the one previously developed for the rigid wedge is
used in this study (Fig. 62). Half of the drop-test model is prepared, taking advantage
of the axisymmetry of the problem. The fluid domain is divided into air and water with
dimensions based on the study by Yu et al. (2019) [84]. The complete model has a
longitudinal thickness of t = 10mm.

Figure 62: Model setup of the horizontal plate. Dimension t is defined by the minimum
mesh element size.

Nodes on the right edge of the fluid domain are constrained in X direction, all the nodes
are constrained in Y direction and non-reflecting boundaries are applied in the top, left
and bottom edges of the model. Additionally, the nodes of the plate assembly located at
the symmetry axis are constrained in X direction. Rotational degrees of freedom in X and
Z are constrained to all nodes.

The plate assembly, shown in Fig. 63, is composed of a rigid plate, a connecting spring
and an elastic plate. It is placed on the surface of the water with an initial velocity of
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3, 030m/s, reproducing the instantaneous state of the assembly in the experiment right
before impact.

Figure 63: Numerical model of the drop assembly. Elastic plate (1), rigid plate (2) and
spring (3).

The card ELEMENT_MASS is used to define the mass of the drop rig, which is calculated
proportionally to the simulation section and is applied as lumped masses on the leftmost
nodes of the rigid plate.

It is important to note that the three parts of the drop assembly are composed of shell
elements. In the case of the connecting spring and the rigid plate, very small thicknesses
are defined so the weight of the parts are negligible compared to total weight applied with
ELEMENT_MASS.

7.3. Material Properties and Equations of State

Material properties for the fluids are set with the card MAT_NULL, while the rigid
plate is defined with MAT_RIGID. Used parameters are described in Sec. 5.3. For the
elasto-plastic plate, MAT_PLASTIC_KINEMATIC is used with the properties given in
Table 11.

Table 11: Properties for HSLA steel plate used in the experiment.

Density (kg/m3) 7850
Yield Strenth (MPa) 355
Young’s Modulus (GPa) 210
Poisson’s Coefficient 0,33
Tangent Modulus (MPa) 400
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A MAT_ELASTIC card defines the spring. It must be carefully calibrated to reproduce
the expected behaviour of the plate, as previously mentioned. The required stiffness is
obtained by inputting a corresponding Young’s modulus to the material; which is calculated
with Eq. 43, where I is the section moment of inertia, L is the length of the spring and E
is the Young’s modulus.

kθ = 4EI
L

(43)

For a rectangular section with 10mmx10mm and L = 10mm, E = 3065MPa.

Finally, EOS Gruneisen with parameters from Table 3 in Sec. 5.3 are used for both water
and air, since good results were obtained for the rigid wedge.

7.4. Selection of Mesh

A uniform mesh with an element size of 2, 5mm is used in the complete model. This
mesh yields a good compromise between accuracy and computational cost as validated
by Yu et al. (2019) [84]. The Eulerian parts are composed of solid elements and the
Lagrangian structure is composed of shell elements, as explained before. The chosen
element formulation for the shells is Belytschko-Tsay with 6 integration points through
the thickness. Details are summarized in Table 12.

Table 12: Details of the applied mesh.

Elem. size (mm) 2,5
Number of Elements 224416
CPU Time 3h 40min

The simulation runs in around 3 hours and 40 minutes in a 16GB 3,0GHz workstation.

7.5. FSI Settings

Regarding the setting of the fluid-structure interaction algorithm, main parameters are
defined as in Yu et al. (2019) [84], where LS-DYNA’s default configuration is used
(Table 13).

Table 13: FSI parameters used in the model.
PFAC DAMP NQUAD
0,1 0,0 2

Although Aquelet (2004) [58] proposes a penalty factor for a horizontal plate (Table 6),
the value results in non-convergence when applied to the current model. Therefore, it
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seemed more reasonable to follow the configuration by Yu et al. (2019) [84], since good
results were obtained and geometries and meshes are essentially the same in both models.

Furthermore, the ALE control settings are defined with the default advection method.
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7.6. Results and Discussion

7.6.1. Fluid Behaviour

The simulation reproduces well the expected behaviour of the free-surface upon impact, as
observed in Fig. 64. The plate assembly gradually enters the surface and a water jet forms
on the left edge, growing away from the structure.

Figure 64: Development of the free-surface with the plate entry.

Air entrapment can be observed in the middle of the plate, represented by a blue (air)
and green (multi-material transition) gap between the plate and the free-surface. This
phenomenon, also referred as air cushioning, usually occurs for impact angles smaller than
5°. It is caused by air forced in between the plate and the free-surface at initial stages of
the impact (ventilaton) and vapour created by cavitation in the region. This pocket of air
and vapour significantly reduces impact pressures and produces quasi-uniform pressure
distributions along the plate (Okada and Sumi, 2000 [74]).

This effect is better observed when a high negative cut-off pressure is set for the water
domain. In this case, the vapour pressure is not reached and cavitation is avoided (see
Fig. 65). As expected, there is no ventilation, since the plate is initially placed exactly on
the water surface, impeding any air from accessing the region in between, as would occur
in a free-fall with an initial height.

Figure 65: Comparison of the surface without (left) and with (right) cavitation. The
formation of an air-pocket associated to the cavitation is seen on the right
(t = 24ms).
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7.6.2. Slamming Pressure

Figure 66 shows the average pressure distribution on the plate over time. As expected, in
the first instants of the impact a shock wave is produced (see Fig. 67) and generates a
highly accentuated and localized pressure peak. The maximum pressure reaches around
10MPa, but this value is not accurate due to numerical issues which will be further
discussed. For better visualization of the pressure profile, the absolute maxima are not
shown in the diagram. The pressure decreases and remains more or less constant for the
rest of the entry. Negative values are captured in the simulation where a cut-off pressure
higher than the water pressure vapour is defined.

Figure 66: Average pressure distribution on the plate over time with and without cavitation.
Negative pressures are registered for the model with no cavitation.

Figure 67: Pressure distribution over the first instant of the impact. The shock wave
propagation can be observed.

The local pressures measured at the middle of the plate and at 100mm away from the
midpoint are presented in Fig. 68. Highly accentuated peak pressures characteristic of
flat-plate slamming are observed on both experimental and numerical results. Even though
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the simulation produces a good distribution in terms of shape, the magnitudes are not
well captured. Values estimated numerically are more than ten times higher the maximum
experimental pressures.

Figure 68: Comparison of obtained local pressure over time measured on mid-plate (P1)
and 100mm from mid-plate (P3). Left: Experimental results from Faltinsen et
al. (1997) [49]; right: numerical results.

It proved very difficult to correctly obtain the local pressure distributions in LS-DYNA.
This may be associated to the way the pressures are calculated within the numerical
algorithm. By applying sensors on the elements of a small region and assessing the average
pressure on the local instead of measuring on a single element, the quality of results
improved slightly. However, the magnitudes were still far from the expected.

Furthermore, according to Faltinsen et al. (1997) [49], the measurements of peak pressures
during wetdeck slamming do not provide useful information about maximum stresses on
the plate. The peak pressures are highly concentrated in time and space and were difficult
to be accurately measured on the experiment. External conditions have great influence on
the pressure distribution, which resulted in considerable dispersion of the experimental
results (see Fig. 10).

And finally, when the peak pressures are very sharp compared to the natural period of
the structure, as in this case, the response is mainly governed by the pressure impulse.
Pressure magnitudes will have a negligible effect on the structure. The impulse is related to
the momentum of the plate and can be estimated by integrating the pressure distribution
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curve, which is a better way to estimate the maximum structural response (Yu Z., personal
communication, September 28, 1998).

7.6.3. Hydro-elastic Behaviour of the Plate

A comparison of numerical and experimental results for the deflection over time measured
on the middle of the plate is presented in Fig. 69.

Figure 69: Comparison of the deflection registered on the middle of the plate.

The maximum deflection and oscillation period are in good agreement during the first
oscillation. However, it is possible to observe a significant difference for the second
oscillation period. According to Faltinsen et al. (1997) [49], the reduction of the oscillation
period on the experiment is most likely related to the occurrence of air cushioning. Even
though cavitation is generated in the numerical model, there is no coupling between the
air domain and the Lagrangian structure, and the effect of air cushioning is not completely
reproduced. For the case where no cavitation is present, it is possible to observe that
the oscillation period remains fairly constant. Further models will take into account the
cavitation.

In Fig. 70 the deflection velocity post-processed at the middle of the plate is compared
to Faltinsen’s experimental results. Although high levels of numerical fluctuations are
present, results appear to be fairly well matched up to the first oscillation period. Similarly
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to the results obtained for the deflection, a phase lag appears from around 15ms due to
the same effects explained before.

Figure 70: Comparison of the nodal velocity registered a the middle of the plate.

Regarding the fluctuations on the curve, Faltinsen et al. (1997) [49] explains that the
first and second symmetric vibration modes combine in the analyzed impact response,
which results in this complex wave and becomes evident in particular for the numerical
model. However, some numerical noise is likely also present and increasing damping might
improve results.

Overall, the model works well and is validated to be applied in other hydro-elastic slamming
simulations.
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8. Case Study 4: FRC Sonar Dome
Case Study 4 is proposed by the company Calcul-Méca. The numerical models presented
in Sections 5, 6 and 7 are used as basis for the development of a slamming simulation for
the fiber reinforced composite sonar dome shown in Fig. 71.

Figure 71: CAD model of the presented sonar dome.

The main goals are to assess the slamming loads and structural response of the component.
Additionally, the Tsai-Wu failure criteria is observed. Results for the structural response will
be compared against a quasi-static FE model developed by the company. This comparative
model uses a pressure profile estimated with the Original Logvinovich analytical formulation
(Logvinovich, 1969 [81]).

Preliminarily, a two-dimensional version is developed for a quicker and more practical
overview of the problem and for the initial calibration of the contact algorithm. Once
reasonable results are obtained, the configuration can be extended to a more costly 3D
case.

It is noted that even though the final objective of this study was the development of the
3D slamming model for the composite sonar dome, issues associated to the limitations
of the ALE method were encountered in the preliminary phase. The 3D model was not
implemented since no conclusive results were found during the available time for the
project. This matter will be further discussed.

In the next sections, the problem statement, the preliminary calibration and troubleshooting
process is presented. These developments can be used as reference for further work.

8.1. Model Geometry and Boundary Conditions

In order to simplify the 3D model, the geometry of the sonar dome is approximated to
an elliptical paraboloid, as illustrated in Fig. 72. This simplified shape is symmetric on
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planes x-y and x-z, and can be modeled simply as a quarter of the full geometry, which
allows for a significant reduction in computational cost.

Figure 72: Sonar dome approximation with an elliptical paraboloid.

The general dimensions of the paraboloid are given in Fig. 73.

Figure 73: General dimensions of the elliptical paraboloid.

The preliminary 2D model is presented in Fig. 74.

Figure 74: Two-dimensional model of the sonar dome. t is the minimum mesh size.
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The size of the fluid domains is chosen according to the notions obtained in the sensitivity
study performed in Sec. 5.7.7. The dimensions of the 2D parabola were provide by the
company, where the height is the same as the 3D geometry and the breadth is roughly an
average of the major and minor breadths of the elliptical paraboloid.

Boundary conditions are defined similarly to the previous models for the wedge and the
plate (Sections 5.2 and 7.2). However, in this case, there is no previous knowledge of the
masses involved in the impact. Therefore, instead of a free-fall with initial velocity and
applied mass, as for the wedge and the plate models, a constant velocity V = 10m/s is
imposed on the sonar dome (parabola).

8.2. Material Properties and Equations of State

For both the fluids, material properties and EOS are described in Sec. 5.3. For the sonar
dome, the composite laminate is modeled with LS-DYNA material MAT054 (Material
Enhanced Composite Damage). The laminate has a total thickness of approximately
20mm, with 32 plies of unidirectional E-glass fiber/epoxy alternating 0° and 90° directions.
The main characteristics of the laminate are summarized in Table 14.

Table 14: Composite material of the sonar dome.

Type Unidirectional
Matrix Epoxy
Fiber E-Glass Fiber
Stack-up Sequence [0°; 90°]32

Thickness 19,98 mm

Detailed properties for the matrix, fiber, ply and laminate are provided in Tables 17, 18,
19, 20 and 21 in Appendix C.

The configuration of the LS-DYNA card MAT054 is shown in Fig. 75.

Figure 75: Configuration of the LS-DYNA card MAT054.
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Main assumptions for the composite material are:

• Intra-laminar degradation is the only energy dissipation mechanism considered.
• The Maximum Stress criterion governs the fiber rupture, BETA=0.
• Strain failure criteria is not used (DFAIL). That means no element deletion occurs.
• Softening reduction factor in the crash front is not considered.
• Time step criterion for element deletion is not used.
• Softening for fiber tensile or compressive strength after matrix compression failure

(FBRT or YFAC) is not used.
• Effective failure strain (EFS) for element deletion is not used.

Additionally, simulations using the rigid and isotropic elasto-plastic materials described in
Sections 5.3 and 7.3 are also performed for comparison.

8.3. Selection of Mesh

Preliminary simulations with the 2D sonar dome are performed with 20mm and 10mm
uniform meshes for a more practical overview of the functioning of the model and calibration
of contact parameters. The Eulerian parts are composed of solid elements and the
Lagrangian structure is composed of shell elements. For the final 2D model, a minimum
element size of 2, 5mm is used in a structured mesh (see Fig. 76). Details are summarized
in Table 17.

Figure 76: Detail of the 2, 5mm structured mesh used in the final 2D model. The mesh is
refined close to the impact region on the parabola/fluid interface.

Table 15: Details of the used meshes for the 2D model.

Min. Element Size [mm] 20 10 2,5 2,5 (Comp.)
Number of Elements 94133 350664 615729 615729
CPU Time 47min 3h 27min 86h 36min 126h 39min
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CPU times shown refer to the simulations with the elastic isotropic material, except for the
last one on the right, which refers to the model with the composite material implemented.
A 32GB 3,7GHz workstation with 4 cores is used.

8.4. FSI Settings

Initial FSI configurations are summarized in Table 16. Parameters are further calibrated
depending on the obtained fluid-structure interaction.

Table 16: FSI parameters used in the model.
PFAC DAMP NQUAD
0,1 0,5 2
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8.5. Results and Discussion

Simulations with the presented 2D sonar dome are firstly performed on a full scale model.
On the second stage, in order to test a more refined mesh whilst maintaining a practical
computation time, a scaled version is developed.

8.5.1. Full Scale 2D Model

Results presented in this section refer to the full scale 2D parabola model performed with
20mm and 10mm meshes. Figure 77 shows the free surface behavior with a rigid parabola.

Figure 77: Development of the free surface for the water entry of a rigid parabola.

Severe leakage can be observed on the Lagrangian structure, specially on the fluid pile-up
region, where expected pressures are higher. It starts on the very beginning of the impact
and stabilizes closer to the end, as pressure gradients decrease.

The leakage is likely associated to the high imposed constant velocity (V = 10m/s)
combined with the low deadrise angle of the parabola, resulting in large contact forces. In
order to mitigate this issue, the contact algorithm is recalibrated by increasing the penalty
factor until almost no fluid penetration is observed. Other strategies, such as increasing the
number of coupling points and enabling the leakage control parameter ILEAK (described
in LS-DYNA Keyword User’s Manual [44]) are also used.

However, fluid leakage is only reasonably reduced with an extremely high penalty factor
(PFAC=9 ), which leads to another issue: numerical instability. The vertical slamming
force over time is shown in Fig. 78.
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Figure 78: Vertical slamming force obtained for the parabola. Two different mesh sizes
were applied.

For the 20mm mesh, the peak force is reached at around 9ms, gradually decreasing until
almost zero. It then starts to rise again at around 20ms. For the 10mm mesh, a similar
oscillating behavior is observed, but with a higher frequency. It is also noted that the
amplitude seems to decrease over time.

A certain amount of high frequency oscillations associated to the virtual contact springs
is expected. However, in the current simulation, for both mesh sizes, the vertical force
oscillates with a low frequency and drops unexpectedly to almost zero. This indicates that
the mesh is not refined enough to capture the actual physical behavior of the fluid-structure
interaction. The solution to improve convergence and decrease the need for a high penalty
factor is, therefore, applying smaller size elements.

Since the 2, 5mm structured mesh (see Fig. 76) is very costly for this preliminary stage of
the analysis, a scaled version is prepared. This smaller model enables the use of a finer
mesh while maintaining practicality in terms of computation time. Results are presented
in the following section.

Additionally, results for the full size 2D flexible parabola are presented in Appendix D.
These results are not conclusive and, therefore, are not presented in the main part of this
report.
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8.5.2. Scaled 2D Model

The scaled version of the model is presented in Fig. 79. This version allows a quicker
and more practical way of observing the behavior of the parabola under slamming and
calibrating the contact algorithm. The minimum mesh size is 2, 5mm.

Figure 79: Two-dimensional scaled model of the sonar dome. Minimum mesh size t =
2, 5mm.

Even with a finer mesh, difficulties were encountered to control the leakage problem with
a velocity V = 10m/s. A PFAC = 2 was required to prevent reasonably the issue.

The influence of the structure velocity on the slamming vertical force over time for different
constant velocities is shown in Fig. 80.

The same non-physical oscillating behaviour is observed, even though the penalty factor
could be decreased for lower velocities. Amplitude and oscillation frequency increase with
higher velocities. The orange curve for V = 3m/s is not complete, because the simulation
was terminated prematurely. However, a similar profile can be expected.

Results for the full size and the scaled parabola are not coherent and decreasing the impact
velocity does not yield improvements. This might indicate that the issue is related to
the application of an imposed constant velocity, instead of the initial velocity and mass
configuration used on the wedge and plate models. Moreover, further refining the mesh
could help improve results.

Given the presented complications with the current model, it was not considered reasonable
to proceed with the 3D sonar dome simulation. Further analysis on the effectiveness and
accuracy of the ALE method and the penalty contact algorithm is required for this specific
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geometry. This was not possible on the time-frame of this project. Suggestions for future
developments on the subject are presented in Sec.10.

Figure 80: Vertical slamming force obtained for the scaled parabola with different imposed
constant velocities.
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9. Conclusion
Models for slamming on wedges and flat horizontal plates have been developed in this
study with the use of ALE algorithm on LS-DYNA. The idea is to prepare basic models
that could be validated by comparison with experimental results present in the literature.
These models will be further applied to more complex marine structures and materials.

One of the main difficulties in modelling fluid-structure interaction is calibrating the
contact algorithm. In this case, the penalty factor method is used with LS-DYNA’s
contact card CONSTRAINED_LAGRANGE_IN_SOLID.

As a first approach, a 2D model of a wedge slamming is developed and compared against
experimental results from Zhao et al. (1996) [72]. The focus is on adjusting properly the
FSI parameters, mainly the penalty factor, damping coefficient and number of coupling
points. Several tests are performed with different combinations of parameters. The
influence of the Equations of State and the geometry of fluid domains is also observed.
Overall, results are good. An overestimation of 9% is observed for the slamming force,
which can be explained by the fact that the two-dimensional model does not represents
3D flow effects. The resulting free-surface behaviour and overall pressure distribution are
well reproduced.

The second stage is the development of a three-dimensional model of the wedge experiment.
The objective is to assess the influence of the 3D flow effects on the slamming force and
prepare a model capable of reproducing realistically the directional dependent structural
response of composite material. Results for the slamming force, free-surface behaviour
and pressure distribution are in very good agreement with experimental results.

Third, the drop-test of a flat deformable plate performed by Faltinsen et al. (1997) [49]
is simulated with a similar 2D model. The goal is to assess the suitability of the model
to elasto-plastic materials. Good results are obtained for the elastic behaviour of the
plate in terms of deflection over time. But measuring local pressures proved very difficult
in LS-DYNA and important discrepancies between numerical and experimental results
are observed. However, it is worth to note that, according to the author, local pressures
measured by Faltinsen et al. (1997) [49] are questionable, as large variations in peak levels
have been documented.

Lastly, a slamming model for a fiber reinforced composite sonar dome is proposed. The
first approach is to perform the calibration of the contact algorithm in a simplified two-
dimensional rigid body version before implementing the three-dimensional composite
material model. However, severe fluid leakage is observed in the structure and an unex-
pected behavior is obtained for the vertical slamming force. An oscillatory profile that
does not appear to be physically coherent is found. This result is likely associated to
the low deadrise angle of the parabola combined with the high imposed constant impact
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velocity, a specific configuration that leads to high tangential fluid velocities. The penalty
contact algorithm is ineffective for this situation and a kinematic contact method would
probably work better.

In an attempt to correct the issue within a practical computational cost for this preliminary
stage, a refined mesh is implemented in a scaled version of the 2D sonar dome. Nonetheless,
the same behavior is encountered even for lower impact velocities. Conclusive results were
not found and the implementation of the final 3D model with composite materials was not
possible.

Overall, the study yields a reasonable outcome. A detailed investigation of the implemen-
tation of LS-DYNA to slamming is done. Models here developed are validated and can be
applied to further studies in which the deadrise angle is not too small.
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10. Further Work
Possible future developments on the subjects presented in the current work are suggested:

• Sensitivity study on the mesh size and parameters of the penalty contact algorithm
for the 2D parabola in order to confirm the limitations of the contact method under
the specific conditions presented.

• A comparison between the penalty contact and the kinematic method can be
performed on the validated wedge model.

• Once the issues encountered in the current work can be solved, the 3D simulation of
the fiber reinforced composite sonar dome can be performed. In the framework of
the SUCCESS project, the major objective of such simulations is to obtain the strain
field of the composite structure. This numerical model will be use as a preliminary
study in preparation for the future slamming experimental tests.

• Implementation of the composite material model MAT054 on the wedge. The
numerical simulation can be compared against experimental and numerical results
obtained respectively in Stenius et. al (2013) [29] and Hassoon et. al (2017) [22].
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Appendices

A. Wedge with Low Deadrise Angle
Results on the influence of the penalty contact parameters on the vertical slamming force
for a 5° wedge are presented in Fig. 81.

Figure 81: Sensitivity analysis of the penalty contact parameters for a 5° wedge.



B. Prescribed Constant Velocity and Initial Velocity 94

B. Prescribed Constant Velocity and Initial Velocity
A comparison of the slamming force for an applied prescribed constant velocity and an
initial velocity in a 30° wedge is shown in Fig. 82.

Figure 82: Comparison of applied prescribed constant velocity and initial velocity in a 30°
wedge.
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C. Properties of the composite laminate

Table 17: Properties of the matrix (Epoxy).

Physical properties at 23°C
Density 1200 kg/m3

Glass transition temperature 120 °C
Thermal expansion 68 µm/m/°C
Thermal conductivity 0,20 W/m/°C

Stiffness
Young modulus 3200 MPa
Poisson ratio 0,37

Strength
Tensile 74,4 MPa
Compressive 126,5 MPa
Shear 43,0 MPa
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Table 18: Properties of the fiber (E-Glass).

Density
Density 2540 kg/m3
Thermal expansion 5,30 µm/m/°C
Transverse thermal expansion 5,30 µm/m/°C
Thermal conductivity 1,05 W/m/°C
Transverse thermal conductivity 1,05 W/m/°C

Stiffness
Axial Young modulus 73000 MPa
Axial Poisson ratio 0,22
Transverse Young modulus 73000 MPa
Transverse Poisson ratio 0,22
Axial shear modulus 29900 MPa
Transverse shear modulus 29900 MPa

Strength
Tensile 1916 MPa
Compressive 1155 MPa
Shear 1155 MPa



C. Properties of the composite laminate 97

Table 19: Properties of the ply.

Volumetric properties
Volume fiber fraction 44,1%
Density 1779 kg/m3

Thickness for 100g/m2 0,089 mm

Stiffness
Young Modulus X 33974 MPa
Young Modulus Y 9286 MPa
Young Modulus Z 9286 MPa
Shear Modulus XY 2779 MPa
Shear Modulus XZ 2779 MPa
Shear Modulus YZ 3295 MPa
Poisson Ratio XY 0,300
Poisson ratio XZ 0,300
Poisson Ratio YZ 0,409

Strength
Tensile strength X 891,7 MPa
Compressive strength X 579,2 MPa
Tensile strength Y 55,9 MPa
Compressive strength Y 95,1 MPa
Tensile strength Z 55,9 MPa
Compressive strength Z 95,1 MPa
Shear strength XY 32,2 MPa
Shear strength XZ 32,2 MPa
Shear strength YZ 32,2 MPa
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Table 20: Stack-up sequence of the laminate.

Id Ply Angle Weight Thickness
- - ° g/m2 mm
1 UD_E-Glass_Epoxy 0 700 0,624
2 UD_E-Glass_Epoxy 90 700 0,624
3 UD_E-Glass_Epoxy 0 700 0,624
4 UD_E-Glass_Epoxy 90 700 0,624
5 UD_E-Glass_Epoxy 0 700 0,624
6 UD_E-Glass_Epoxy 90 700 0,624
7 UD_E-Glass_Epoxy 0 700 0,624
8 UD_E-Glass_Epoxy 90 700 0,624
9 UD_E-Glass_Epoxy 0 700 0,624
10 UD_E-Glass_Epoxy 90 700 0,624
11 UD_E-Glass_Epoxy 0 700 0,624
12 UD_E-Glass_Epoxy 90 700 0,624
13 UD_E-Glass_Epoxy 0 700 0,624
14 UD_E-Glass_Epoxy 90 700 0,624
15 UD_E-Glass_Epoxy 0 700 0,624
16 UD_E-Glass_Epoxy 90 700 0,624
17 UD_E-Glass_Epoxy 0 700 0,624
18 UD_E-Glass_Epoxy 90 700 0,624
19 UD_E-Glass_Epoxy 0 700 0,624
20 UD_E-Glass_Epoxy 90 700 0,624
21 UD_E-Glass_Epoxy 0 700 0,624
22 UD_E-Glass_Epoxy 90 700 0,624
23 UD_E-Glass_Epoxy 0 700 0,624
24 UD_E-Glass_Epoxy 90 700 0,624
25 UD_E-Glass_Epoxy 0 700 0,624
26 UD_E-Glass_Epoxy 90 700 0,624
27 UD_E-Glass_Epoxy 0 700 0,624
28 UD_E-Glass_Epoxy 90 700 0,624
29 UD_E-Glass_Epoxy 0 700 0,624
30 UD_E-Glass_Epoxy 90 700 0,624
31 UD_E-Glass_Epoxy 0 700 0,624
32 UD_E-Glass_Epoxy 90 700 0,624

19,98
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Table 21: Properties of the laminate.

Volumetric properties
Area density 35556 g/m2

Thickness 19,98 mm

In-plane stiffness
Young Modulus X 21787 MPa
Young Modulus Y 21787 MPa
Shear Modulus XY 2779 MPa
Poisson Ratio XY 0,129

Flexural stiffness
Young Modulus X 21787 MPa
Young Modulus Y 21787 MPa
Shear Modulus XY 2779 MPa
Poisson Ratio XY 0,129

In-plane strength
Tensile strength X 125 MPa
Compressive strength X 213 MPa
Tensile strength Y 125 MPa
Compressive strength Y 213 MPa
Shear strength XY 32 MPa

Flexural strength
Tensile strength X 129 MPa
Compressive strength X 143 MPa
Tensile strength Y 143 MPa
Compressive strength Y 129 MPa
Shear strength XY 32 MPa
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D. Results for the 2D Full Size Elasto-plastic
Parabola Model

Figure 83: Development of the free surface for the water entry of an elasto-plastic parabola.
The deformation of the structure can be observed.

Figure 84: Vertical slamming force obtained for the elasto-plastic parabola. Two different
mesh sizes were applied.
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