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A B S T R AC T

As part of the Cosmic Vision Programme, the Comet Interceptor mission was selected
in 2019 as a Fast-track mission programmed to be launched in 2028 together with
the ARIEL M4 mission. The objective of the mission is the interception of a pristine
comet on its way through the solar system. To accomplish this task the spacecraft
will be placed in a quasi-Halo orbit around the L2 Lagrangian Point where it will stay
until a suitable target is identified. At this point the spacecraft begins its journey to
the comet by departing from the parking orbit and escaping the Earth’s gravitational
field.

The aim of this thesis is the analysis of the first section of this journey, i. e., from the
detection of the comet to the moment of escape. The analysis is performed assuming
the validity of the Planar Circular Restricted Three-Body Problem (PCR3BP) and
focuses on the evaluation of the expected value of the escape velocity with respect
to the Earth. Initially the trajectory is computed by simply propagating a set of
initial conditions, however, in order to optimise the escape conditions, a lunar flyby
is introduced to alter the trajectory achieving higher v∞.

Via a Monte Carlo Simulation it is demonstrated that optimal flybys can be sys-
tematically targeted and exploited under different initial conditions, leading generally
to a substantial increase in escape velocity potentially reducing the ∆v budget that
needs to be provided by the spacecraft. Furthermore, it was proven that for some
of the transfers also a reduction of the time of flight can be achieved reducing the
required notice time, and thus increasing the success rate of the mission.

The obtained analysis serves as a starting point for the analysis of the interplan-
etary leg of Comet Interceptor. Moreover, the developed methodology can be used
for the analysis of trajectories involving multiple lunar flybys.

Keywords: Comet Interceptor; Moon flyby trajectory; Earth escape trajectory;
L2 departure
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1
I N T RO D U C T I O N

Comet Interceptor (CI) is a Fast-track mission selected in June 2019 as part of

ESA’s Cosmic Vision Programme. As it is a "fast" mission, it is expected to be

launched together with the ARIEL M4 mission in 2028. The objective of the mission

is to target and intercept a comet that is visiting the inner Solar System for the first

time, and therefore, its composition has not yet been influenced by the heating/cool-

ing of previous visits of the inner system or by the Solar wind. Possible examples

are comets coming from the Oort cloud [1], a spherical region that is theorised to

be located between Pluto’s orbit at 6× 109 km from the Sun and the limit of the

Sun’s gravitational field at ∼ 2× 1013 km, and to be the source of long-period comets

such as ISON and Siding Spring [2, 3]. Other potential flyby targets are Dinamically

New Comet (DNC) or interstellar bodies such as Oumamuamua [4]. These bodies are

thought to come from outside the solar system, and thus to have formed and evolved

in other star systems [5].

In the past, comets were already object of interest for missions like Giotto and

the more recent Rosetta [6, 7]. For these missions it was ’only’ possible to intercept

short-period comets, as a long notice period was necessary in order to design, build

and launch the spacecraft for its mission. Therefore, the traditional mission proce-

dure (target selection – spacecraft design and assembly – launch) is unsuitable for

targeting new comets which are observed for the first time only a few months or

years before perihelion. In order to avoid this problem, CI will be designed, built

and launched before even discovering the target. In fact, after launch, the spacecraft,

1



2 introduction

which comprises three separated modules, will be parked in a Halo orbit around the

Sun-Earth L2 Lagrange point located at 1.5 million kilometres ’behind’ the Earth

with respect to the Sun. Here it will wait for the discovery of a suitable target which

is then intercepted. As the spacecraft is already in space, ready to be sent to the

interception point, the entire time between discovery and perihelion can be exploited

to select the cheapest trajectory possible.

Prior to the arrival, the different modules will separate in order to make comple-

mentary observations of the comet from different points of view. In particular, there

will be a main module which will stay at a safe distance from the comet nucleus in

order to avoid the dust environment, this module will also serve as the communica-

tion hub between the other two modules and the ground segment. The other two

modules will dive closer to the nucleus in order to maximise the scientific outcome of

the mission. The so obtained multipoint measurements will give an unprecedented

3D description of the target and its coma [8].

1.1 COMET INTERCEPTOR TRAJECTORY REQUIREMENTS

Comet Interceptor, as previously mentioned, is a F-class mission, and as such, it will

be launched as a co-passenger together with ARIEL M4. This implies that it will be

a spacecraft of modest size, maximum weight of 1000 kg, which limits the amount

of propellant on-board and, as a consequence, also the available ∆v.

It is clear that the restricted ∆v budget has a direct influence on the trajectory

design, and in particular, on the reachable region in the ecliptic plane. As discussed

by Sánchez Pérez, Bucci, and Skuppin [8] and Sánchez [9], for increasing propulsive

budget the accessible heliocentric distance regions increase. For example, with a

budget of 1 km/s the reachable range would be [0.88 − 1.15] AU, while for 2 km/s

it would increase to [0.78 − 1.32] AU. Given the nature of the mission, targeting
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of a yet unobserved comet, increasing the regions which can be ’explored’ increases

the possibility of detecting a suitable object. In fact, it is observed that, looking

both at historical data, see Figure 1.1, and at numerical simulations [10], a greater

heliocentric distance range would lead to a larger population of theoretically possible

targets.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

5

10

15

20

25

30

35

Figure 1.1: Perihelion of long-period comet population observed between 145 BC and
1995 AD [11].

After the detection of a possible target, it is necessary to design the transfer tra-

jectory to understand if the available ∆v budget is sufficient for the planned target.

To do so a patched conic approach is used dividing the trajectory into three sections:

1. Departure from the periodic orbit around L2, analysed in this thesis;

2. Interplanetary trajectory between the Sphere of Influence of the Earth-Moon

system (SOIEM) and the interception point, preliminary analysis by Sánchez

[9];

3. Close approach and comet flyby, referring to the final phase of the transfer and

the flyby of the comet.
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The optimisation of the interplanetary trajectory is performed by considering two

Lambert Arcs divided by a Deep Space Manoeuvre (DSM), it follows that the mission

budget can be written as the sum of the departure and the DSM costs, respectively

∆vdep and ∆vDSM . The second term is mainly influenced by variables such as: tdep

(the departure time), tDSM (time between departure and the DSM and the overall

transfer strategy, which are impossible to evaluate without knowing the target. On

the other hand, ∆vdep is the cost required to escape the Earth’s gravitational attrac-

tion setting the spacecraft on the correct interplanetary trajectory. Its value is thus

mainly driven by magnitude of the desired escape velocity, v∞,. While under normal

circumstances ∆vdep is directly provided by the launcher during launch or shortly

after, here the fact that CI is placed around L2 plays in favour of the reduction of the

departure manoeuvre as the natural dynamics of the system facilitate the departure

trajectory.

Furthermore, by exploiting correctly the Earth’s and Moon’s gravitational fields,

it is possible to further increase the achievable ’free’ escape velocity greatly reducing

the amount of propellant required for the departure. It follows that, maintaining

fixed the total propulsive budget, this would lead to multiple benefits for the overall

trajectory design, for example:

• perform a larger DSM, potentially increasing the reachable region for the space-

craft or reducing the total Time Of Flight of a specific trajectory (tof) giving

the possibility to intercept comets with shorter notice time;

• after the completion of the primary mission, the mission could be extended by

targeting other objects consuming the propellant saved during the departure

phase.

This concept will be further discussed in Chapter 3 and Chapter 4.
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1.2 HISTORICAL BACKGROUND

Since the dawn of space missions, the main objective for scientists and engineers is

to collect as much information as possible from each specific mission. To do so, it

is fundamental to reach the highest mass fraction possible for the launched payload.

This cannot be obtained easily, in fact, as the missions are becoming more demanding

both for the payload size and for the trajectory design, also the amount of required

propellant increases.

In order to reach the set objectives, since 1972, gravity assists have been used

to perform ’free’ manoeuvres in space, reducing the amount of propellant, i. e., ∆v,

required for the mission. The first example is Pioneer 10 [12], an American space

probe targeted at Jupiter, where it performed a gravity assist to become the first

spacecraft to achieve escape velocity to leave the Solar System. After Luna 3, many

other missions, in particular interplanetary ones, have exploited the capabilities of

gravity assists. Some notable examples are Mariner 10 [13], which was the first probe

to reach another planet through a gravity assist at Venus, Voyager 1 [14], first mis-

sion to cross the heliopause and enter the interstellar medium after flybys of the

Jupiter and Saturn systems, and more recent examples like Rosetta and the Parker

Solar Probe [7, 15], which performed gravity manoeuvres to match the speed of

67P/Churyumov–Gerasimenko and to decrease its heliocentric velocity respectively.

Gravity assists consist in the exploitation of the relative motion and the gravity

field of another body, planet or moon, in order to alter the trajectory and speed of

the spacecraft around the main body (e. g., Sun or principle planet). This variation

can be desirable for different reasons, in fact, it is possible to increase/decrease the

spacecraft as well as rotate the velocity vector outside the initial plane of motion (in

general the ecliptic plane). The possibility to design the trajectory including various
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gravity assists has allowed the development of mission which with existing propulsion

systems would have been impossible.

Figure 1.2: Mariner 10’s heliocentric trajectory through the inner solar system [13].

For all the above mentioned missions, it was possible to describe the trajectory,

at least for the preliminary design, following the a patched conic approach. This

approach gave accurate results as the trajectory can be divided into a series of seg-

ments. Each segment follows the dynamics of the Two-Body Problem (2BP) (i. e.,

conic sections) around the instantaneous principal body. The main advantage of this

approach is the description of the gravity assists, as they are described as hyperbolic

segments inside the sphere of influence of the exploited body. Looking at Figure 1.2,

it is possible to observe that the spacecraft follows elliptical arcs between each ’plan-

etary segment’, in fact, for the patched conic approach, the sphere of influence of the

different planets are considered of infinitesimal radius with respect to the heliocentric

distances. As a result of this approximation, the gravity assists are considered as pure

rotations of the velocity vector relative to the planet used for the gravity assist. Note
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that the magnitude and the direction of the rotation depend on the characteristics

of the hyperbolic arc inside the sphere of influence [16].

The problem at hand is fundamentally different, the first peculiarity is that the

spacecraft departs from a periodic orbit located around L2. These orbits are not

possible in a 2BP analysis of the trajectory, in fact, they ’appear’ only as solutions of

the Restricted Three-Body Problem (R3BP). This implies that the first part of the

trajectory, i. e., the trajectory inside the SOIEM , cannot be studied as a 2BP around

the Earth.

The second particularity of this problem is that the lunar gravity assists do not

occur between one interplanetary leg and another, as in the cases above, but are

supposed to be exploited before departing for the interplanetary leg. This means that

the spacecraft is expected to spend a considerable amount of time in the vicinity of

the Earth-Moon system. Using the patched conics approach, in this case, does not

give accurate results as the Sun’s influence on the trajectory is neglected, while the

spacecraft is inside the SOIEM , over a long period of time. This leads to increased

errors, negligible in the before mentioned cases, as they are integrated over time.

This is particularly true when the trajectory reaches high perigees, as here the Sun’s

gravity has a much larger influence on the trajectory and can even be exploited

during the design as described by Yagasaki [17] and Kawaguchi et al. [18].

1.3 THES I S A IM

The main objective of this thesis is the analysis of the first section of trajectory,

leading the spacecraft from the orbit around L2 to the interplanetary space. As dis-

cussed in Section 1.1, the understanding of the departure conditions is fundamental

to define the reachable regions for the spacecraft. In fact, this directly translates in

a theoretical success probability of the mission as increasing the reachable region
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would increase the probability of intercepting a desired target in the available du-

ration of the mission. To finally asses a range of achievable v∞ the departure is

analysed in different steps with increasing complexity until finally the an expected

value is obtained.

Initially, in order to set a reference, the departure following directly the unsta-

ble manifolds associated with the Planar Lyapunov orbit, i. e., direct escape/strategy,

will be studied. This result will be used to quantify the advantages of more com-

plex strategies, such as, single flyby trajectories. After the reference is set, different

methods to study lunar flybys are studied and implemented in order to get a better

understanding of the problem at hand and to obtain a framework for the analysis of

not only single flybys, but eventually also multiple flybys, which are not the scope of

this thesis. As described in Chapter 3, lunar flybys can be efficiently used to increase

the hyperbolic escape velocity with respect to the Earth and to slightly change the

direction of vvv∞. Given the limited amount of ∆v, even a slight increase of ’free’ es-

cape velocity is desirable. Finally, as the initial and final conditions are not known

a priory, a statistical analysis will be performed in order to identify the expected

values for vvv∞.

This work will cast some light on the real range of initial conditions that can be

expected, laying the foundations for a more detailed analysis of the interplanetary

trajectory, since its preliminary design has been performed by assuming that escape

velocities under 800 m/s are available for any direction, which is not necessarily true

[9].



2
M O D E L S

In this chapter the different dynamical models are introduced in order to give the

reader sufficient insight in the hypotheses and approximations that are considered

during the development of the thesis. In addition, the needed reference systems are

defined in order to have a clear view of the variables that are introduced later on

during the analysis of the methodology and of the obtained results.

Given the particular nature of the problem (i. e., waiting phase around L2, naviga-

tion in the vicinity of the Earth-Moon system and escape towards the interplanetary

space) it is necessary to consider the gravitational influence of three massive bodies.

As described by Koon et al. [19] the Sun-Earth-Moon system can be described as a

Planar Bi-Circular Model (PBCM). As such, the Earth and the Moon are considered

to revolve around their center of mass (EMB) and together they rotate with the Sun

around the Sun-(Earth-Moon) barycentre. This description arises from a simplifica-

tion of the more general restricted four-body problem and it is possible given the

low eccentricity values of the lunar orbit around the Earth (eK = 0.0549) and of the

Earth’s orbit around the Sun (eC = 0.0167). Furthermore, the motion is assumed to

happen entirely inside the ecliptic plane, this description is again only possible given

the peculiar characteristics of the system.

While the PBCM description gives the more accurate results, between the consid-

ered models, it is not suited for an initial analysis; thus, further simplifications are

considered to facilitate the study of the problem. In particular, as suggested by vari-

ous authors (see [20, 21]) the four body problem can be simplified by approximating

9
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it as two PCR3BP problems patched together. This concept is further explained in

Section 2.2.

2.1 PLANAR CIRCULAR RESTRICTED 3 -BODY PROBLEM

The main model adopted in this thesis is the PCR3BP, which is a simplified version of

the General Three-Body Problem. While the more general problem describes the mo-

tion of three bodies with comparable mass subjected to their respective gravitational

forces, the restricted problem relies on three main assumptions:

• the mass of the third body is negligible with respect of the one of the two main

bodies, which subsequently are called primaries (i. e., m1,m2�m3);

• the two primaries follow circular paths around their common centre of mass;

• the motion of the third body is restricted to the orbital plane of the primaries.

As a consequence of the first assumption, it is possible to neglect the gravitational

effect of the third body, the spacecraft, onto the two primaries, which persist in their

circular motion.

In light of the third assumption, it is possible to simplify the mathematical de-

scription as the z coordinate can be neglected. While this assumption is acceptable

for current design, the obtained results need to be validated in the more general

non-planar case as CI will be placed in a quasi-Halo orbit around L2 which, by def-

inition, lives in the 3D space. As this analysis is outside the scope of this thesis, a

brief description of the issues which arise from the 3D analysis is presented in the

concluding Chapter 7.

Whilst for the description of a keplerian orbit, e. g., heliocentric motion, the use of

the inertial reference frame, i. e., x-y axes fixed in time (planar case), is well suited,

when describing a trajectory in the PCR3BP it is convenient to change description
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by moving to a rotating or synodic reference frame. This arises from the particular

selection of ’relative’ coordinates used in the literature, Koon et al. [19], Marchal

[22], and Valtonen and Karttunen [23]. The origin of the reference system is located

at the barycentre of the two primaries, e. g., Sun and Earth, the x-axis is defined by

the vector connecting the two primaries, in general pointing from the larger to the

smaller one. In order to complete the reference system the z-axis is selected to be

perpendicular to the orbital plane and the y-axis is selected in order to obtain a right-

handed coordinate-system. As opposed to the traditional inertial reference system,

here the x and y axes rotate together with the two primaries, allowing for a better

description of the motion relative to the main bodies. In addition, this description is

the more natural to detect features like the Lagrangian points.

Figure 2.1: Rotating or synodic reference frame for the PCR3BP.

Once the reference system is selected, the problem is normalized by selecting par-

ticular units for mass, length and time, see Section 2.2. This selection depends on

the considered bodies, but in general, the unit mass is considered to be m1 +m2,

the length unit is the distance between the two primaries and, finally, the time unit

is selected such that the orbital period of m1 and m2 around their barycentre is

2π. Since the reference system is synodic, the two primaries are fixed in position at
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y1,2 = 0, as the problem is planar, a single parameter, the mass parameter (µ), is

required to fully describe the position of the primaries,

µ=
m2

m1 +m2
(2.1)

in fact, as can be observed in Figure 2.1, they are located at x1 =−µ and x2 = 1−µ

respectively.

Hereafter, the derivation of the nondimensional equations of motion is summarized

based on the work of Koon et al. [19] and Marsden and Ratiu [24]. The equations

of motion are derived as the Euler-Lagrange equations, see Eq. 2.6, where the La-

grangian of the system written in the rotating reference frame. The Lagrangian in

the planar problem takes the form

L (x,y, ẋ, ẏ) =K (x,y, ẋ, ẏ)−U (x,y) . (2.2)

K represents the kinetic energy of the third body and is expressed as

K (x,y, ẋ, ẏ) = 1
2
(
(ẋ− y)2 (ẏ+ x)2) . (2.3)

After expressing the distances between m3 and the two primaries as

r1 =
√
(x+ µ2)

2 + y2

r2 =
√
(x− µ1)

2 + y2
(2.4)

the gravitational potential in the rotational reference system can be simply expressed

as

U (x,y) = −µ1
r1
− µ2
r2
− 1

2µ1µ2 (2.5)

where µ1 = 1− µ and µ2 = µ. Note, that the last term is a constant which is added

to simplify some of the results. This formulation of the Lagrangian arises from the
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choice of the reference system and has the characteristic of being time-independent

since the position relative to the two primaries independent on their rotation.

Finally, the two equations of motion are derived as

d
dt
∂L

∂q̇i
− ∂L

∂qi
= 0 (2.6)

where qi are the generalized coordinates x and y. This leads to the following final

form of the equations of motion

ẍ− 2ẏ = −sUx

ÿ+ 2ẋ= −sUy
(2.7)

where sU is the so called effective potential and is defined, starting from Eq. 2.5, as

sU(x,y) = −1
2(x

2 + y2) + U(x,y).

2.1.1 Lagrangian or Libration Points

The above described equations of motion, see Eq. 2.7, yield particular solutions when

all acceleration and velocity terms are equal to zero. The solution of the obtained

system of equations, described by Koon et al. [19, Ch. 2.5], leads to the ’discovery’ of

5 equilibrium points called Lagrangian or Libration Points, identified hereafter as Li

with i= 1, ...,5. Looking at Eq. 2.7, it is clear that the points of interest are identified

by dsU
dqi = 0, and are thus stationary points for the effective potential.

From Figure 2.2, it can be seen that the first three libration points are positioned

on the same line as the two primaries (y= 0), and are thus referred as collinear points.

The other two points are located at the third corners of the equilateral triangles which

have as base the segment connecting the two primaries. As previously introduced,
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Figure 2.2: Location of the Libration or Lagrangian Points in the synodic reference frame.

the obtained coordinates are stationary points for the effective potential. As such, a

spacecraft placed exactly at these coordinates will remain stationary with respect to

the rotating reference frame.

As Comet Interceptor will be placed around L2, the following discussion will only

focus on this specific point. Although one of its coordinates is known, its exact

position on the x-axis is still unknown. Simplifying the stationarity condition of sU

to dsU
dx (x,0) = 0 for this particular case, leads to Eq. 2.8 giving an implicit equation

that depends only on the mass parameter of the specific system and on the position

of L2 with respect to the smaller primary, γ. The solution can be promptly identified

by numerical methods, e. g., Newton Method, starting from the Hill’s Radius, rh =

(µ/3)1/3, as the initial guess [25].

γ5 + (3− µ)γ4 + (3− 2µ)γ3 − µγ2 − 2µγ − µ= 0 (2.8)

Obviously, in reality this is impossible to achieve, and thus the stability of each

point needs to be analysed in order to understand the motion in its vicinity. The
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motion close to the equilibrium points is analysed considering the linearised form of

the first derivatives of sU , Eq. 2.9. The obtained qualitative results are valid also for

the full nonlinear analysis [26].

ẍ− 2ẏ = −
(
x
∂2

sU

∂x2 + y
∂2

sU

∂x∂y

)

ÿ+ 2ẋ= −
(
x
∂2

sU

∂x∂y
+ y

∂2
sU

∂y2

) (2.9)

For the sake of brevity, the detailed analysis is not reported here but can be found

in the work of Szebehely [25] and Hagihara [27]. For the continuation of this work it is

sufficient to remember that, while L4 and L5 could be stable in particular cases, e. g.,

Sun-Jupiter system, the collinear points, and in particular L2, are always unstable.

2.1.2 Jacobi integral

As mentioned, the obtained equations of motion are time-independent as they de-

scribe the motion in the rotating reference frame. This characteristic of the PCR3BP

allows for the derivation of an energy integral of motion known as Jacobi constant or

Jacobi integral. In fact, starting with the summation of the two equations of motion,

multiplied respectively by ẋ and ẏ, leads to:

ẍẋ− 2ẏẋ= −sUxẋ

⇒ ẍẋ+ ÿẏ = −sUxẋ− sUyẏ (2.10)

ÿẏ+ 2ẋẏ = −sUyẏ

As the effective potential is time independent, the right hand side of Eq. 2.10 rep-

resents the full derivative of sU . Furthermore, the left hand side can be rewritten in
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terms of the velocity components of the spacecraft in the synodic reference frame,

leading to the following equation [23, Ch. 5.3].

d

dt

(
ẋ2 + ẏ2

)
= 2d

sU

dt

Integrating this over time gives the definition of the Jacobi constant, see Eq. 2.11.

C (x,y, ẋ, ẏ) =−
(
ẋ2 + ẏ2

)
− 2Ū(x,y)

=−
(
ẋ2 + ẏ2

)
+ x2 + y2 + 2µ1

r1
+ 2µ2

r2
+ µ1µ2

(2.11)

Given the fact that the velocity of the spacecraft (i. e.,
√
ẋ2 + ẏ2) cannot be nega-

tive, the motion is bounded in a specific region which depends on C, in particular,

the spacecraft is allowed to move only where sU(x,y) ≥ C/2 is verified. This condi-

tion divides the x-y plane (in the planar case) in two regions, one accessible and

one inaccessible, their boundary is defined by the zero-velocity curve, i. e., where
sU(x,y) = C/2. These regions can have different topologies depending on the initial

value of C, the different possibilities are represented in Figure 2.3 for different values

of C. Note that, as the Jacobi Constant is an integral of motion, and is thus constant

over time, the topology of the region cannot change without considering propulsive

manoeuvres or gravity assists. Note that, from this analysis, it is not possible to de-

termine the actual trajectory of the satellite, but only the possible regions of motion.

In order to determine the trajectory it is necessary to integrate numerically Eq. 2.7.

Throughout this work, the terms Jacobi Constant, Jacobi Integral, energy will refer

to the same concept, i. e., the fundamental integral of motion in the PCR3BP. When

required the, the difference will be clarified by the context, as the increase in energy

is associated to a decrease of the Jacobi Constant and vice versa.
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Figure 2.3: Zero-velocity curves for five values of the Jacobi constant for µ= 0.2. The
zones in white are accessible to the spacecraft with a specific energy value.
The motion is bounded by the shaded zones known as forbidden realm.
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2.2 PATCHED CR3BP DEF IN IT ION

Following the description of various authors, such as Qi and Xu [21] and Castelli [28],

in order to obtain a good approximation of the PBCM, see Figure 2.4 it is possible

to divide the x-y plane in two separate regions, and thus in two distinct problems:

• one region around the Earth-Moon system, here the trajectory is well approx-

imated by the PCR3BP having the Earth and the Moon as the two primaries.

While the Sun still influences the trajectory, its impact is negligible with respect

to the one of the two primaries;

• a second region surrounding the first one, here the gravity of the Moon alone

is negligible with respect to the one of the Sun and the Earth; thus, a second

PCR3BP is defined considering as the first primary the Sun and as the second

one the Earth-Moon barycentre.

Clearly, during the overall mission, the spacecraft is not bound inside of one of

these regions, in fact, given the relative positions of the Earth-Moon sphere and the

L2 libration point (located outside of it) and the nature of the mission, the trajectory

necessarily will cross both regions.

Figure 2.4: PBCM reference frame [21].
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When working with the PCR3BP it is fundamental to consider normalized units of

mass, length and time. As the normalization process is dependent on the characteris-

tics of the individual system, here two sets of dimensional values are required. While,

the length and time units maintain the same definition, i. e., distance between the

two primaries and time unit such that the orbital period of the primaries is 2π, the

mass parameter changes slightly its definition

µSE =
mC +mK

m@ + (mC +mK)
µEM =

mK
mC +mK

the subscripts SE and EM refer to the Sun-EMB system and to the Earth-Moon

system respectively and are used throughout the analysis when referring not only to

the normalization units but also to other features of the specific reference frames,

e. g., Sphere of Influence (SOI), coordinates, etc. The relationships listed in Eq. 2.12

[19, Ch. 2.2] show how to pass from dimensional quantities, variables with a tilde, to

nondimensional quantities, without tilde (following the nomenclature of Campagnola

and Russell [29]).

length: l =
l̃

L∗
,

time: t=
2πt̃
T

=
t̃

T ∗
, (2.12)

velocity: v = ṽ
T

2πL =
ṽ

V ∗

The coefficients normalization are listed in Table 2.1

Sun-EMB (i=SE) Earth-Moon (i=EM )
L∗i , km 1.496× 108 3.844× 105

T ∗i , s 5.019× 106 3.758× 105

V ∗i , km/s 29.806 1.023

Table 2.1: Length, time and velocity units of Sun-EMB and Earth-Moon systems, data
from DITAN software and by Wertz, Everett, and Puschell [30].
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After defining the units for the normalization it is also necessary to define the two

reference frames and which is the boundary between them. First, let’s introduce the

two reference frames, as discussed in Section 2.1, in the PCR3BP the two primaries

are located on the x-axis at a distance of respectively −µ and 1− µ from the origin.

The two reference frames are represented in Figure 2.5. Note that, given the four

orders of magnitude of difference between µSE and µEM , the ’shape’ of the system

varies slightly, specifically, the Sun is much closer to the origin of its system than the

Earth is to the EMB, the numerical values are computed as µL∗ for each system.

(a)

(b)

Figure 2.5: Synodic reference frames of the Sun-EMB (a) and the Earth-Moon (b)
reference frames as described by Qi and Xu [21].
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As the two reference frames move in time it is necessary to define their position

relative to an inertial reference frame, identified by the X-Y plane. In fact, as the

origin of the Sun-EMB system is stationary, the angle θSE is sufficient to completely

define its relative position, see Figure 2.6. A similar consideration is made for the

Earth-Moon system, but defining its position relative to the Sun-EMB system as,

again, its origin is fixed in this system, and thus the relative angle θM = θEM − θSE

is sufficient to describe completely its position.

Figure 2.6: Positions of the Sun-EMB and Earth-Moon PCR3BP reference frames with
respect to an inertial reference frame.

Furthermore, as the following analysis is performed solely in the synodic reference

frames, θSE and θEM become irrelevant and the only angle used hereafter is θM . Note

that, as the EMB and the Earth centre almost coincide, the relative angle between

xEM and xSE is approximately the lunar phase angle, i. e., the angle between the

Sun-Earth and the Earth-Moon directions.

Now that the reference frames are defined it is possible to analyse the boundary for

the ’patched’ approach. Different approaches for the study are followed by authors

like Qi and Xu [21] and Castelli [28]. The former analyses the the variability of

the Jacobi Constant, which for the restricted problem should be time invariant as
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opposed to the four body model where it depends on the Moon position, and thus on

time. On the other hand, the latter uses the difference of the norm of the accelerations

governing the dynamics in the PBCM and in the two PCR3BP models once they are

written in the same units and same reference systems (depending on which restricted

problem is investigated).

While both approaches give similar results, hereafter only the first approach is

briefly presented, for a detailed analysis see Qi and Xu [21, Ch. 3.2]. Starting from

the definition of C, Eq. 2.11, and the PBCM equations of motion in the dimensionless

Sun-EMB reference frame, see Figure 2.4,

¨xSE − 2 ˙ySE =
∂ sUSE4
∂xSE

¨ySE + 2 ˙xSE =
∂ sUSE4
∂ySE

(2.13)

where sUSE4 is an variation of the three body effective potential, and is defined as

sUSE4 (xSE ,ySE , t) = −sUSE3 (xSE ,ySE) + Φ(xSE ,ySE , t) (2.14)

Φ(xSE ,ySE , t) = µSE

[
µEM

rm(xSE ,ySE , t) +
1− µEM

re(xSE ,ySE , t) −
1

r2(xSE ,ySE)

]

with rm, re and r2 defined as in Figure 2.4, the variation of C over time can be

written as

dC
dtSE

= −2(ẋSE ẍSE + ẏSE ÿSE)− 2dsUSE3
dtSE

= −2
(
ẋSE

∂ sUSE4
∂xSE

+ ẏSE
∂ sUSE4
∂ySE

)
− 2dsUSE3

dtSE

(2.15)

Through the introduction of further definitions and the integration over tSE, not

shown here for the sake of brevity, an indicator of the accuracy of the approximation

is obtained as

C∗ −C = 2Φ (2.16)
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where C∗ is the Jacobi Constant at infinity and C and Φ are evaluated at the same

position. As the Jacobi Constant should not change, the magnitude of Φ is a direct

sign if the PCR3BP is a good approximation of the PBCM, in fact as discussed in the

mentioned paper,
∣∣∣2Φ
C∗

∣∣∣≤ 10−5 is considered as a suitable condition. In Figure 2.7 it

can be observed that only a specific region, represented in the Earth-Moon reference

frame, does not respect the requested condition, and thus is not suited for the Sun-

EMB PCR3BP approximation.

Figure 2.7: Distribution of the indicator function for the Sun-EMB PCR3BP
approximation for a trajectory with C∗ ≈ 3 [21].

The inner circle in the figure represents the lunar orbit, the outer radius is 200000

km larger and includes the above mentioned regions; thus, it is taken as the boundary

between the the Sun-EMB problem, external region, and the Earth-Moon problem,

internal region.
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2.2.1 Poincaré Map/Section

A Poincaré Map is a useful tool when dealing with the dynamics of the CR3BP. A

map is obtained by propagating a set of initial conditions and displaying the ’points’

at which the obtained trajectories cross a particular surface Σ.

The use of Poincaré Maps reduces the dimensionality of the problem, in particular,

considering the PCR3BP and fixed levels of the Jacobi Constant, it is possible to

describe the full state space with a 2D representation. As an example, the use of

Poincaré Maps is widely used in the design of free heteroclinic or homoclinic transfers

between L1 and L2 periodic orbits [31–35]. In Figure 2.8 the two possible transfer

trajectories are represented by the Poincaré sections of the L1 unstable manifold (in

red) and the L2 stable manifold (in blue) in the Earth-Moon planar problem [36].

Figure 2.8: Example of y-ẏ Poincaré Map used for the identification of heteroclinic
transfers between L1 and L2 in the PCR3BP [36].

2.2.2 Coordinates Transformation

To correctly propagate a trajectory crossing both rotating reference frames, it is

necessary to describe an algorithm to transform the coordinates from one system to

the other. Such an algorithm is described by Koon et al. [19, Ch. 5.3] and reported

hereafter.
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Lets first define the notation:

• the superscripts indicate the type of system, in stands for inertial and ro stands

for rotational;

• vectors are written in bold, e. g., xroA = [x y u v]T where x and y are the position

components and u and v are the associated velocities;

• for brevity c= cosθ(t) and s= sinθ(t) where θ(t) = t+ θ0 is the angle between

a specific reference frame and the inertial one, i. e., θSE or θEM .

The first step is to transform the coordinates from the synodic reference frame to

the inertial one

xinSE = R(xroSE − dSE) (2.17)

R =

(
R11 0
R21 R22

)

R11 = R22 =

(
c −s
s c

)
, R21 =

(
−s −c
c −s

)

it is clear that this transformation does not only involve a rotation but also a trans-

lation under the form of dSE . This is necessary in order to move from a reference

frame centred at the barycentre to one located at the Sun or at the EMB; thus,

dSE = [x0
SE 0 0 0]T where x0

SE is either −µSE , Sun centred, or 1− µSE , EMB cen-

tred.

The so obtained state vector is still normalized with the units of the Sun-EMB

system; thus, it is necessary to change the normalization as follows

length: lEM =
L∗SE
L∗EM

lSE ,

time: tEM =
T ∗SE
T ∗EM

tSE ,

velocity: vEM =
V ∗SE
V ∗EM

vSE .
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which translates into

xinEM =
L∗SE
L∗EM


xinSE,1
xinSE,2

0
0

+
V ∗SE
V ∗EM


0
0

xinSE,3
xinSE,4

 .

Finally it is possible to pass again from the inertial reference frame to the desired

synodic frame, obtaining the final state vector:

xroEM = R−1xinEM + dEM , (2.18)

where, similarly to the previous case, dEM = [x0
EM 0 0 0]T where x0

EM is either

−µEM , Earth centred, or 1 − µEM , Moon centred. Two considerations are worth

mentioning:

• the rotation matrix, R, needs to be adapted to the specific case as the time

t is normalized differently for the two systems and the angle θ0 is specific for

each reference frame;

• the most intuitive centre for the inertial reference frame is obviously the Earth

as it can be considered as the ’junction’ between the two systems. This leads

to the selection of: x0
SE = 1− µSE and x0

EM = −µEM

Note that this algorithm, written as such, transforms the state from the Sun-EMB

to the Earth-Moon system. Obviously, with slight variations, the same algorithm is

used also for the opposite transformation.
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2.3 DIFFERENTIAL CORRECTION

When designing a trajectory, generally, some type of constraints need to be respected

for the success of the mission. In order to implement these constraints in the three-

body problem, a set of numerical tools needs to be applied to find the desired results,

as, on the contrary to the two body problem where analytical analysis is possible,

here numerical computation is the only way to go.

Once the dynamical model is defined, Eq. 2.7, the trajectory is uniquely defined by

some initial (or final) conditions that are propagated forwards (or backwards) over

a certain amount of time. In mathematical terms, the full trajectory is expressed as

a single function denoted as the flow map as it maps the motion of the spacecraft

from t0 to time t. Since, the trajectory is uniquely defined

Φ(t0,t1,x0) = x1. (2.19)

Nonetheless, if the objective is to respect some constraints, for example on the

final state, the initial condition needs to be precisely determined, especially in chaotic

problems as the PCR3BP. For this purpose the differential corrector is applied, its aim

is to evaluate the necessary variations of the initial conditions lead to the fulfilment

of the required constraints. The following discussion is based on the work of different

authors such as [19, 37]

In general, when a perturbation, δx0 is applied to the initial state, the entire

trajectory will evolve in a different way leading to a different final condition, this is

observed through the flow map.

Φ(t0,t1,x0 + δx0) = xf
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The difference between the two final states is obtained as

δx(t) = xf − x1 = Φ(t0,t1,x0 + δx0)−Φ(t0,t1,x0) �= δx0 (2.20)

Figure 2.9: Visualization of the concept of Flow Map with initial conditions x0 and
x0 + δx0.

Expanding the Taylor series of Eq. 2.20 to the first-order leads to an approximation

of the desired quantity

δx(t) ≈Φ(t0,t1,x0) +
∂Φ(t0,t1,x0)

∂x0
δx0 −Φ(t0,t1,x0) =

∂Φ(t0,t1,x0)

∂x0
δx0 (2.21)

A linear relationship between between the two perturbations can be highlighted by

defining the State Transition Matrix (Φ), see Eq. 2.22. Note that this approximation

is accurate only for t1 close to t0 due to the fact that all higher order terms are

neglected.

Φ(t0,t) =
∂Φ(t0,t,x0)

∂x0
(2.22)
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As no analytical solution is present, Φ needs to be integrated alongside the actual

trajectory. To do so, a set of first-order differential equation of the form Φ̇ = F(Φ)

is derived starting from Eq. 2.22

Φ̇ =
∂Φ(t0,t,x0)

∂t
=

∂

∂t

(
∂x
∂x0

)
(2.23)

The last term of the equation can be rewritten as ∂
∂x0

(
∂x
∂t

)
since x0 and t are in-

dependent. In order to recover the desired form of the equation, the chain rule is

applied to Eq. 2.23

Φ̇(t0,t) =
∂

∂x0
(F(x0)) =

∂F
∂x
· ∂x
∂x0

=
∂F
∂x

(x(t)) ·Φ(t0,t)

Leading to the final form of the first-order differential equation which describes the

evolution of the State Transition Matrix

Φ̇ =
∂F
∂x
·Φ (2.24)

The obtained equation is integrated starting from a known initial condition, but, as at

t= t0 δx = δx0, by definition Φ(t0,t0) = I4×4. Note that Φ is a 4-by-4 matrix because

the planar problem is considered. It is fundamental to observe that, in Eq. 2.24, ∂F
∂x is

the Jacobian matrix J(t) of the considered dynamical model, in this case the PCR3BP,

which is evaluated together with the reference solution.

In the particular case of the PCR3BP the Jacobian is written as follows

J(t) =


0 0 1 0
0 0 0 1

Q
0 2
−2 0

 with Q=

∂ẍ∂x ∂ẍ
∂y

∂ÿ
∂x

∂ÿ
∂y


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Where the partial derivatives are

∂ẍ

∂x
= 1− 1− µSE

r13 − µSE
r23 + 31− µSE

r15 (x− x1)
2 + 3µSE

r25 (x− x2)
2

∂ÿ

∂y
= 1− 1− µSE

r13 − µSE
r23 + 31− µSE

r15 y2 + 3µSE
r25 y

2

∂ẍ

∂y
=
∂ÿ

∂x
= 31− µSE

r15 (x− x1)y+ 3µSE
r25 (x− x2)y

where x1 and x2 are respectively the positions of the first and the second primaries,

e. g., Sun and EMB, and r1 and r2 are defined in Eq. 2.4.

Figure 2.10: Outline of the general differential correction algorithm.
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Although the algorithm finds application in a variety of fields, here it is specified

for the problem at hand, i. e., the targeting of the desired location of the lunar gravity

assist, xga. Given the problem at hand, the selected design variables are the velocity

components at t= t0.

Xd =

[
ẋ0
ẏ0

]
(2.25)

Note that, for the problem at hand, the tof is not a design variable as the location

for the gravity assist is strictly bound to the timing problem. As introduced, the

objective is to find the correct perturbation of the initial velocity components, the

design variables, to reach the correct location for the gravity assist. This means that

the constraints are written as functions of xga; and thus,

G(Xd) = Φ(t0,t0 + tof ,x0)− xga =
[
x− xga
y− yga

]
(2.26)

The objective of the algorithm is to find Xd such that G(Xd) = 0, to do so an iterative

method is derived starting from the first-order Taylor Series of Eq. 2.26 computed

around an initial guess X0.

G(Xd) = G(X0) +
∂G

∂Xd
(Xd −X0) (2.27)

Looking at Eq. 2.25 and Eq. 2.26 it can be noted that they have the same dimen-

sionality, i. e., there are the same number of design variables and constraints. As a

consequence, the iterative equation is easily written starting from Eq. 2.27,

Xi+1
d = Xi

d −DG(Xi
d)
−1G(Xi

d) (2.28)

where the first iteration starts with X0. It is possible to write the equation in this

form as DG(Xd) =
∂G(X0)
∂Xd

is square and can thus be inverted. In particular, in this
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case, its components are the same as the components of the Φ that correlate the

velocity components of the initial state and the position of the final state.

DG(Xd) =
∂G(X0)

∂Xd
=

 ∂x
∂ẋ0

∂x
∂ẏ0

∂y
∂ẋ0

∂y
∂ẏ0

= [
Φ13 Φ14
Φ23 Φ24

]
(2.29)

The final form of Eq. 2.28 is

[
ẋ0
ẏ0

]i+1

=

[
ẋ0
ẏ0

]i
−
[
Φ13 Φ14
Φ23 Φ24

]−1 [
x− xga
y− yga

]
(2.30)

At each iteration of the above equation it is necessary to compute the residual error

on the constraint equations, in fact, as in Eq. 2.21 a linearisation is considered,

the longer the considered time span for the integration the higher the error on the

constraints. This means that the convergence of the method can be observed by

looking at ∣∣∣G(Xi+1
d )

∣∣∣
The iterations are stopped when the error associated to the last iteration is less than

a fixed tolerance ε.

2.4 TWO-BODY FLYBY

While in the ’patched’ PCR3BP the consequences of the passage in the vicinity of

the Moon arise naturally, it is quite cumbersome to perform the design and opti-

misation of the desired trajectory within this model. Thus, initially, it is preferred

to neglect the lunar gravitational field up until the spacecraft enters the SOI of the

Moon, with radius of 66200 km [16, App. A], moving to a more traditional patched

’conic’ approach, where two separate trajectories in the PCR3BP are patched by an

instantaneous rotation of the velocity vector [19, Ch. 8.9].
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The study of this rotation is performed under the assumption of the Two Body

Problem, where the main body is represented by the Moon and all other gravitational

forces are neglected. This results in the study of an hyperbolic trajectory relative to

the Moon.

To analyse the effect of the lunar flyby the relative velocity vector between the

Moon and the spacecraft is computed

vr,1 = v1 − vK (2.31)

where v1 is the nondimensional velocity of the spacecraft in the Sun-EMB syndic

reference frame and vK is the velocity of the Moon. Note that, since in the considered

reference frame the Earth is fixed in position, the lunar velocity is tangential to its

orbit around the Earth and is computed as 1/V ∗SE

√
µC/aK where aK = ãK/L∗SE = 0.0026

is the nondimensional radius of the lunar orbit.

The post-flyby conditions not only depend on the relative velocity but also on the

type of approach. In particular there are two types:

• leading-side flyby, Figure 2.11a: here the spacecraft passes in front of the Moon,

in this case the spacecraft loses energy as it reduces its speed in the Sun-EMB

system. In the case of a prograde hyperbola, a counter-clockwise rotation is

obtained, the opposite is true for a retrograde hyperbola

• trailing-side flyby, Figure 2.11b here the spacecraft passes behind of the Moon,

in this case the spacecraft gains energy as it increases its speed in the Sun-EMB

system. The rotation is opposite as for the leading-side flyby.
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(a)

(b)

Figure 2.11: Leading-side (a) and trailing-side (b) flyby schematic, analysed in the
Moon-centred 2BP.
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Mathematically, the rotation is performed by the the multiplication of the velocity

vector times the Rotation Matrix (R) which assumes different forms in the case of a

clockwise or a counter-clockwise rotation.

RCW =

[
cosδ sinδ
−sinδ cosδ

]
RCCW =

[
cosδ −sinδ
sinδ cosδ

]

As defined in Figure 2.11, δ is the angle between the pre- and post-flyby relative

velocity vector and is known as the Bending Angle (δ). This angle is a function of

the altitude of the flyby h, in fact, the closer the flyby the higher is the influence of

the Moon on the trajectory; and thus, larger rotations can be achieved.

δ = 2asin 1
e

(2.32)

where e is the eccentricity of the Moon centred hyperbola

e= 1 + |vr,1|2
RM + h

µK

with RM as the radius of the Moon and µK as its gravitational parameter. Finally,

the post-flyby velocity vector is computed as

vr,2 = Rvr,1 (2.33)

and is added again to vK, note that, since the flyby is assumed to be instantaneous,

the velocity vector is assumed to maintain the same direction (the magnitude is

constant since its trajectory is assumed to be circular)

v2 = vK + vr,2 (2.34)
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This post-flyby condition is then propagated forwards in time to obtain the trajectory

after lunar encounter.



3
S TAT E O F T H E A RT

This chapter provides an overview of the existing literature, allowing the reader

to get a better understanding of past missions which exploited lunar flybys

to achieve their objectives. Furthermore, some of the key questions of this work are

addressed focusing only on already existing research, trying to gain some insight of

the results that can be expected at the end of this thesis.

Initially non-powered and powered escape trajectories are discussed based on the

analysis provided by ESA in their Mission Analysis Guidelines (MAG). This initial

analysis completely neglects the availability of the Moon for a gravity assist and

is only presented for completeness. Then, gravity assists are introduced presenting

a variety of missions which took advantage in different ways of single or multiple

lunar flybys. Finally, three different approaches to the design of lunar gravity assist

trajectories are presented giving the foundation for the work presented in this thesis.

3.1 NON-POWERED AND POWERED DIRECT ESCAPE

The L2 Libration Point, as the other collinear equilibrium points is unstable, therefore,

the simplest way in order to depart towards an escape trajectory is simply following

the natural evolution of the dynamics. In fact, given the differences between the

numerical model and reality, i. e., presence of external perturbations, errors in the

positioning of the satellite, non-zero velocity of the satellite, ecc., the spacecraft

37
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will autonomously depart from L2 following one of the so called unstable invariant

manifolds [19, 23]. The preliminary study provided by ESA [8] demonstrates that,

while the manifold leading away from the Earth results in a direct escape trajectory

with an heliocentric velocity of 500 m/s with respect to the Earth, the departure

towards the terrestrial realm leads to a close encounter with the Earth and possibly

with the Moon before leaving towards interplanetary space.

Due to the asymptotic behaviour of non-powered escape [19, Ch. 7.2], a powered

escape is preferred as it reduces the time of flight of the satellite and introduces some

manoeuvrability at departure. The analysis of the powered escape is performed by

scanning ∆v values between 0−2 km/s and evaluating the behaviour of the trajectory

for different impulse directions (always departing from L2). As a figure of merit for

this analysis, different quantities are evaluated when the spacecraft reaches 0.02 AU

from the Earth. In particular, regarding the escape velocity, the ratio v∞/∆v is very

interesting as it highlights that efficient transfers (v∞/∆v� 1) are available only for

low intensity manoeuvres, see Figure 3.1, in fact, in the leftmost region an efficiency

close to five can be expected.

(a) Escape towards Rc > 1 AU
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(b) Escape towards Rc < 1 AU

Figure 3.1: Example of a Figure of Merit for the powered escape from L2. Φ indicates the
angle between the impulse direction and the Sun-Earth direction [8].

It is important to note that this type of transfer does not inherently exploit the

dynamics of the CR3BP.

Furthermore, as CI will be placed around L2 (located behind the Earth when look-

ing from the Sun), it is understandable that the dynamics of the system favours

departure trajectories towards Rc > 1 AU. This becomes clear when looking at Fig-

ure 3.1 where the majority of conditions depart towards Rc > 1. Similar results can

be found in the literature [9] where, with the same ∆v budgets, greater heliocentric

distances are achieved when departing towards the exterior realm.

Moreover, the fact that, in reality, the spacecraft is in an orbit around L2 and not

placed at L2 is completely neglected. The analysis of this particularity is introduced

in the CReMA [38]. In order to determine the influence this has on the originally

computed cost, two example transfers to comets 73P and 26P (two backup targets for

the mission) are computed starting from L2; the same trajectories are then computed

starting on different points of a quasi-Halo orbit and the reduction or penalty of ∆v

is computed. From this analysis it appears clear that, while some sections of the

quasi-Halo orbit favour the departure with reductions between 100 and 400 m/s,



40 state of the art

some others have negative impact on the propulsive budget with penalties of 200-300

m/s.

3.2 EXPLOITAT ION OF LUNAR FLYBYS

While the discussion above gives some insight in the problem at hand, limitations are

rapidly reached as relatively high values of v∞ can be reached only through an intense

departure burn from the desired parking orbit. Not only could the selected propulsive

system not be capable of such high impulsive manoeuvres (above 0.5 km/s), but,

the total propulsive budget for the mission would be greatly compromised for the

departure, leaving less space for following navigation and/or correction manoeuvres.

To overcome this issue, many researches in the field of astrodynamics have analysed

the possibility of an Earth escape trajectory that exploits the Moon through a lunar

gravity assists[18, 39–42]. This type of strategy has been exploited the first time

for the extension of the ISEE-3 of ICE mission. In this case the spacecraft was

initially placed in an orbit around L1 from where it departed towards the L2 in order

to, initially, analyse the Earth’s geomagnetic tail, and finally, intercept the comet

Giacobini-Zinner in 1985 . In particular, the Moon encounters were programmed in

order to adjust the timing with the comet and to achieve the required escape velocity

of ≈ 1.57 km/s [43].

The design of a variety of missions over the last decades is based on the correct

exploitation of the Moon. While, in some cases, the mission was impossible to accom-

plish without the gravity assist, see STEREO mission, in some others it decreased

the ∆v budget for the transfer reducing the costs or increasing the life of the mis-

sion as more propellant was available for eventual correction manoeuvres or required

station keeping manoeuvres.
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In the work of Wilson and Howell [42], two different applications of lunar gravity

assists are presented, in the first case, Figure 3.2a, a sequence of lunar flybys are

scheduled in order to change the apogee direction of the final orbit (from the antisolar

to the solar direction) while in the second case, Figure 3.2b, a single flyby is used to

insert the spacecraft into a transfer trajectory leading to the L2 Libration point.

(a)

(b)

Figure 3.2: Example trajectories where lunar flybys are exploited in order to change the
final orientation/type of the orbit [42].

This second example is quite explicative of what can be obtained via a lunar flyby,

as an example, for the EQUULEUS mission, it was possible to design a low-cost

transfer trajectory to an Earth-Moon L2 Halo orbit. In fact, after separation, the

spacecraft is inserted in its final science orbit using only 10.2 m/s of its total 77 m/s

∆v budget.
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For LUNAR-A a single lunar flyby was used in order to transfer the spacecraft from

its Earth centred parking orbit to its final orbit around the Moon. The objective of

the flyby was to increase the size of the initial transfer orbit in order to better exploit

the Sun’s gravitational field leading to a ballistic capture by the Moon and reducing

the ∆v budget of the transfer by 176 and 152 m/s with respect to a Hohmann or a

bi-elliptic transfer, respectively [18].

Figure 3.3: Trajectory of the LUNAR-A mission in the Earth centred inertial reference
frame Kawaguchi et al. [18].

The concept of programming a lunar flyby to increase the size of the orbit to better

exploit the Sun’s perturbation, is widely discussed in the literature [17, 20, 44, 45]

and naturally considered in the work hereafter by analysing the trajectory in the

CR3BP.

As the objective of numerous missions is the exploration of interplanetary space,

various examples of missions can be found when looking for lunar flybys devoted to

put the spacecraft onto an escaping trajectory. The DESTINY+ mission [45, 46] is

a noticeable example, its trajectory is designed to intercept the Moon once before

leaving the Earth-Moon region on its way to (3200) Phaethon. Figure 3.4 shows



3.2 exploitation of lunar flybys 43

some example trajectories which achieve the required v∞ = 1.5 km/s in the correct

direction with lunar flyby altitudes above 200 km.

Figure 3.4: Example escape trajectories for JAXA’s DESTINY+ mission directed towards
(3200) Phaethon [45].

For NASA’s STEREO mission the use of lunar gravity assists was fundamental.

The objective of the mission was a stereoscopic observation of the Sun, to achieve

this goal two spacecraft (STEREO A and B) were positioned Ahead and Behind the

Earth in its orbit. Since both spacecraft were launched together, the final orbits were

only possible by designing different lunar flyby sequences. In fact, while STEREO

A performed a single flyby, STEREO B performed two of them and with different

characteristics in order to enter a completely different departure trajectory [47].
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Figure 3.5: Trajectories of NASA’s STEREO A (in blue) and B (in red) spacecrafts.
Mcelrath et al. [48].

Furthermore, for STEREO B, an additional lunar swing-by could be implemented

as an insertion manoeuvre into a L2 Halo orbit [49].

In the case of ESA’s BepiColombo mission, an initial lunar flyby is exploited in

order to send the spacecraft into its heliocentric orbit. The analysis is presented by

Campagnola, Jehn, and Van Damme [50] showing that escape velocities (VSOL in

the paper) between 1.1 and 1.75 km/s are achievable.

While the presented problem is different (departure from a Halo-orbit instead of

Earth departure), similar results are presented by Chen, Kawakatsu, and Hanada

[44] and Yárnoz et al. [45], where escape velocities as high as 1.87 km/s are obtained

when considering a sequence of two flybys and around 2.1 km/s with a triple-flyby

strategy s for the PLANET-B mission [18]. The introduction of additional flybys

allows for a better ’tuning’ of the final encounter while already increasing the energy

with respect to the initial value. Obviously, this type of strategies lead to an extended

flight time.
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3.3 DIFFERENT APPROACHES TO THE DES IGN

Looking at the scientific literature, the problem was tackled in different ways, but

mainly three approaches can be found. The first approach is based on the initial

approximation of the trajectory as a sequence of Moon-to-Moon conic arcs [42]. This

first approximation is then improved by using a multiconic approach in order to in-

corporate neglected force models. This is done by evaluating each gravitational con-

tribution, i. e., Sun, Earth and Moon, separately as 2BP which are then ’overlapped’

[51, 52]. Finally, the trajectory is optimized by reducing the velocity discontinuities

at the patching points.

Figure 3.6: Definition of conic arcs used as initial approximation by Wilson and Howell
[42].

In the second approach the trajectory is propagated under the influence of the

Earth’s and the Sun’s gravities, while the Moon is considered only at encounter

through an instantaneous rotation of the relative velocity vector [44, 45]. Multiple
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lunar gravity assists are analysed by building families of Moon-to-Moon trajectories,

Figure 3.7, solving the timing condition for a variety of post flyby conditions,

{(α,ToF ) |∆θ = 0∧ ∆d= 0} (3.1)

where α is the angle between vvv+∞,M and the Earth-Moon direction, ToF is the time of

flight of the Moon-to-Moon segment, ∆θ is the phase difference to the lunar phase and

∆d is the distance difference to the lunar position. As the lunar gravity is considered

only at encounters, the generated families are completely independent of the Moon’s

position in its orbit. Different flyby sequences are generated by patching together

sequences of Moon-to-Moon transfers until the desired final condition is met.

Figure 3.7: Example of a family of Moon-to-Moon transfers with two Sun-perturbed loops
[44].

The third approach is the one introduced by Qi and Xu [21], while in the previous

approaches the Moon’s gravity is considered only at encounter to ’patch’ together two

subsequent legs, here the full four-body problem is divided into two CR3BP. In fact, it
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is shown that, while being close to the Earth-Moon system, the influence of the Sun

can be neglected leading to a simpler analysis of the problem. Similarly, the Earth-

Moon system can be ’condensed’ to a single body when the spacecraft is at a great

distance. While in the presented paper the objective was different than the one of the

present work, its approach is still useful when a more accurate description of the full

trajectory is desired. In fact, as discussed by Prado [53], while in the majority of the

cases the patched problem well approximates the more accurate three-body problem

for the swing-by, in some particular cases, i. e., low energy orbits, this accuracy is

not guarantee.





4
A N A LY S I S O F T H E D I R E C T E S C A P E

T R A J E C T O RY

To start the analysis of the problem, it is fundamental to understand the set

of initial conditions that can be expected. These conditions can be determined

once the final parking orbit and its characteristics are known. The identification pro-

cess of a suitable parking orbit is described in the first part of this chapter. After

setting the general initial conditions of the spacecraft, it is necessary to estimate

the required base values for the escape velocity and for the tof of ’traditional’ de-

parture trajectories. These values can then be utilized to evaluate the advantages of

alternative trajectories which enter the cislunar space to target and exploit a lunar

flyby.

As the traditional definition of v∞ is based on the energy conservation in the 2BP,

the first part of this chapter will be devoted to the definition of the escape velocity

in the PCR3BP and to the discussion of its validity. Only after this point is discussed,

giving a figure of merit for the different trajectories, it is possible to analyse possible

departure strategies studying their individual advantages.

49
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4.1 COMET INTERCEPTOR PARKING ORBIT

Comet Interceptor, after separating from ARIEL M4, will be placed in a quasi-halo

orbit around the Sun-Earth/Moon L2 point. As discussed in the MAG, indicative

values for the orbit sizes, shown in Table 4.1, can be obtained looking at the ARIEL

2026 launch window [8].

Maximum distance from Earth, xmax 1770700 km
Maximum Ay amplitude 871000 km
Maximum Az amplitude 611000 km
Declination 43.1 deg

Table 4.1: Extremes of a quasi-Halo orbit for the 2026 launch window [8].

The numerical propagation of a suitable transfer from the Earth to such an orbit

is presented in Figure 4.1.

Figure 4.1: Sample of transfer to the quasi-halo orbit around the Sun-Earth L2 point [8].
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As expected, final orbit is in three dimensional space, but, as the scope of this thesis

is only a preliminary study of the departure phase, the problem is approximated

with its two dimensional counterpart. In particular, instead of the quasi-Halo orbit,

a Planar Lyapunov orbit is considered.

The desired Lyapunov orbit is generated starting from a database of already com-

puted orbits provided by Professor Sánchez. In it, a list of energy levels is associated

to the state of the initial point of the orbit (xpo,0), identified by the furthest point

on the x-axis. As, by definition, the orbit is symmetric about the horizontal axis, the

initial state takes the form

xpo,0 =


xpo,0

0
0

ẏpo,0


To maintain a close relationship with the original problem, it is necessary to compute

an orbit with a similar Jacobi constant. For an orbit around L2, C can be written as

a function of CL2 and CL3 (Jacobi constants for the L2 and L3 Lagrangian points)

as these can be considered as extremes of its interval.

C ∈ (CL3 ,CL2) C = CL3 +
CL2 −CL3

k
(4.1)

where k = kpo determines the size of the selected orbit and its Jacobi Constant,

Cpo. The suitable value for the kpo coefficient is found via a bisection method which

’compares’ the obtained size to the limits given in Table 4.1. This numerical procedure

is necessary as in the literature it was impossible to find an analytical relationship

which correlates the maximum dimensions of the desired orbit and its Jacobi Integral.

Furthermore, as the provided database collects only discrete values for C, numerical

continuation and differential correction [19, 37] need to be applied to compute the

initial state for the desired Cpo. After selecting the initial coefficient interval as k ∈

[kL,kU ] = [1,10] the iterative procedure is as follows:
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1. Ci is computed via Eq. 4.1 where ki = kL + kU/2;

2. the closest value of C in the database is identified;

3. continuation and differential correction are applied to find the initial condition

which exactly matches Ci;

4. the full Lyapunov orbit is propagated evaluating xmax and Ay

5. if the limits, i. e., xmax and Ay are respected then kL = ki otherwise kU = ki

the bisection method is stopped when
∣∣∣ki − ki−1

∣∣∣≤ 10−5.

In Figure 4.2 the final orbit is shown together with the representation of the for-

bidden region for its specific energy level. Furthermore, the characteristics of the

obtained Parking/Periodic Orbit (PO) are listed in Table 4.2, these will be used

throughout the work in order to uniquely identify the initial conditions of the space-

craft before departure.

Figure 4.2: Planar Lyapunov orbit obtained after the bisection method.
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Cpo 3.000867937
Initial State, xpo,0 [1.0109 0 0 −0.0059]T

Orbital Period, Tpo 3.0741 (178.6 days)
xmax 1629502 km
Ay 864234 km

Table 4.2: Characteristics of the Planar-Lyapunov orbit used for the continuation of this
work.

4.2 THE HEL IOCENTRIC ESCAPE VELOCITY

In the 2BP the escape velocity, also known as hyperbolic excess speed, is the velocity

of a spacecraft when it reaches virtually infinite distance from the main attractor

following an hyperbolic trajectory. Thus, by considering the energy conservation law,

described mathematically in Eq. 4.2, it is possible to obtain a first definition of the

escape velocity [16, Ch. 2.9].
V 2

2 −
µ2B
r

=
V 2
∞
2 (4.2)

Note that here µ2B refers to the gravitational parameter of a particular celestial body

in the two body problem. Nevertheless, this definition is based on the assumption that

the given trajectory is hyperbolic, making it unsuitable for the problem at hand as

the spacecraft is placed in a quasi-periodic orbit around L2 and not on an hyperbolic

arc with respect to the Earth. Consequently, an alternative description needs to be

implemented taking into account the ’three-body nature’ of the problem.

As discussed by Perry [54], v∞ can be considered as the ’additional velocity’ re-

quired to reach a specific semi-major axis launching the spacecraft from the Earth

instead of departing from the quasi-periodic orbit around L2. Mathematically, this

is expressed as
V 2

2 −
µ@
rE

= −µ@2a (4.3)
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where µ@ is the gravitational parameter of the Sun, rE is the radius of the Earth’s

orbit (rE = 1 AU), a is the semi-major axis of the orbit reached after the departure

from L2 and V is the velocity required to satisfy the energy law and can be expressed

as the sum between the Earth’s orbital velocity (VE =
√
µ@/rE, for a circular orbit)

and v∞. Thus, from Eq. 4.3 and the definition of VE , the following equation for v∞

is obtained.

v∞ =

√
2
(
µ@
rE
− µ@

2a

)
−
√
µ@
rE

(4.4)

Note that all the quantities are dimensional and defined in the Sun-centred inertial

reference frame.

As opposed to the previous case, here the escape velocity definition is based on the

assumption that the spacecraft is on a heliocentric trajectory and not on an Earth

centred hyperbola. In fact, while initially the force exerted on the spacecraft by the

Earth is comparable to the one exerted by the Sun, the latter gradually prevails as

the spacecraft moves further away from the Earth. This leads to the observation of

two separate regions:

1. one region close to Earth, where the two gravitational forces are comparable,

and where the use of the 3BP is necessary, undermining the validity of Eq. 4.4;

2. the second region far from Earth, where the spacecraft is mainly influenced by

the Sun’s gravitational field, and where the 2BP well approximates the motion.

In order to evaluate at which distance from the Earth the spacecraft can be con-

sidered in a purely heliocentric trajectory, the osculating conic orbit is evaluated at

each point of the integrated trajectory computing its keplerian elements. Observing

the evolution of the specific elements it is possible to evaluate the accuracy of the

2BP approximation, in particular, in Figure 4.3 the osculating semi-major axis, a, is

plotted over the nondimensional distance from Earth. This element is chosen as it is

the one of main interest looking at the definition of v∞ in Eq. 4.4.
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Figure 4.3: Convergence of the osculating semi-major axis over the nondimensional
distance from Earth.

As expected, close to the Earth the 2BP is a bad approximation of the propagated

trajectory, leading to high variations of a for r2 close to zero. Although, already

after r2 = 0.1 the convergence of a is apparent, for the continuation of this work, the

trajectory is propagated until reaching r∗2 = 0.2 before computing v∞. This distance

is deemed as sufficient for obtaining good results from the computation of v∞ , as

it lies in between what is used in his work by Perry [54], where the trajectory is

propagated until it reaches an angle of ±π/8 with respect to xSE corresponding to

a distance of ≈ 0.38 and 0.02 which is used as control radius in the CReMA [38].

Furthermore, the selection of r∗2 is not only based on the required precision on the

escape velocity, but also on the trade of with respect to the integration time necessary

to propagate the trajectory at a greater distance.

4.3 DIRECT ESCAPE VELOCITY AND TIME OF FL IGHT

After giving the definition of the escape velocity, it is now possible to obtain first

results which will serve as a baseline for what can be expected from an L2 departure.
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To do so, as described in detail in Chapter 2, a series of departure conditions are

generated on the unstable manifolds going towards the exterior realm, targeting

Rc > 1 AU, or towards the interior realm, targeting Rc < 1 AU.

Typically, the initial state of the invariant manifold is obtained by adding a small

perturbation to an initial state on the LPO as described in Eq. 4.5. The ’direction’ of

the perturbation, i. e., Y u(X0), is selected from the eigenvectors of the monodromy

matrix and represents the unstable direction, for a detailed explanation see Koon

et al. [19, Ch. 7.2].

Xu(X0) =X0 + εY u(X0) (4.5)

Xu is the initial state on the invariant manifold, X0 is the ’departure’ state on the

LPO and ε is the magnitude of the perturbation (Y u(X0) is normalized). The value

of ε should be small enough to maintain the validity of the linear approximation

[19, Ch. 4.3], but not too small as otherwise the time of flight tends to infinity,

suitable values are around 10−6 which leads to position displacements of ≈ 200 km

and velocity changes of ≈ 0.07 m/s as suggested by Gómez et al. [55].

Although the above described procedure is widely accepted, for the continuation

of this work Eq. 4.5 is slightly modified introducing εp and εv as follows

Xu(X0) =X0 + εp


Y u1
Y u2
0
0

+ εv


0
0
Y u3
Y u4

 (4.6)

where

εp =
δP

LSE
and εv =

δV tSE
LSE

,

This form gives a more physical description of the perturbation as δP and δV are

actually the position displacement and the velocity impulse, in km and km/s respec-

tively, needed to depart in the desired trajectory. Clearly, the variation in position
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(a) Departure towards RC < 1 AU.
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(b) Departure towards RC > 1 AU.

Figure 4.4: Escape velocity for direct departure trajectories.

cannot be achieved instantaneously, the obtained position is intended as a target

which is reached with an appropriate station-keeping strategy.

While for the analysis of the cislunar trajectory δP and δV are considered to be

variable between 0− 200 km and 0− 10 m/s, here the perturbation applied to the L2

LPO is 200 km in position and 10 m/s in velocity, as it is maximum manoeuvrability

of the spacecraft when departing from its parking orbit and results in the minimum

time of flight, as smaller perturbations lead to asymptotic behaviour Koon et al. [19,

Ch. 7.2].

The so obtained initial conditions are then propagated until r∗2 is reached; trajecto-

ries with tof > 2 years are neglected as they are not of interest for this analysis. The

obtained departure trajectories are virtually at zero-cost, as they exploit the natural

dynamics of the system through a negligible manoeuvre. The results are reported

in Figures 4.4 and 4.5 plotting respectively v∞ and the tof versus the departure

position in the quasi-periodic orbit defined by tpo, as described in Section 4.1.

It is clear that, even in the case of a direct departure, an optimisation process is

possible. In fact, v∞ and tof vary over one period of the parking orbit; assuming

that the available time is sufficient, 0.82 km/s is considered as the optimistic baseline

for the available escape velocity through a direct escape for the continuation of this
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work for both departure directions. These values are in line with what is obtained by

Perry [54] and Matsumoto and Kawaguchi [56] and with what is used as a preliminary

value for the analysis performed by Sánchez [9]. It is worth noting that the obtained

results are almost double of what can be found in the CReMA [38] as there various

simplifications are considered. Specifically, the two body problem theory is applied

to the spacecraft placed at L2 considering it to be in a circular orbit around the Sun

with the same orbital period as the Earth but at a greater distance, for departure

towards the exterior realm. This leads to a difference between the actual velocity of

the spacecraft and the theoretical velocity for the circular trajectory

v∞ = vL2 − vcirc =
√
µ�
r3
E

(1 + µSE)rE −
√

µ�
rE(1 + µSE)

≈ 0.5 km/s

The escape velocity is not the only variable of interest, in fact, as there is only

a limited time budget between the observation of a DNC and its interception, the

analysis of the tof is equally important.
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Figure 4.5: tof for direct departure trajectories.

While, in terms of v∞ there is not a substantial difference between departing

towards Rc greater or smaller than 1 AU, this is not true for the time of flight. In

fact, when departing towards Rc > 1 the time of flight is between 265 and 305 days,

but, increases drastically to values above 500 days when departing towards Rc < 1
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AU. Whilst flight times of less than one year are acceptable for the departure phase

as a sufficient budget is left for the rest of the trajectory, values above 500 are not

reasonable if not supported by a substantial advantage of v∞ which would facilitate

the design of the interplanetary trajectory.

As the spacecraft is placed around L2, the departure towards the exterior realm,

and thus towards Rc > 1 AU is advantaged with respect to a departure towards

the Earth. This translates in a more regular behaviour of the departure trajectory,

and consequently, of the values in Figures 4.4b and 4.5b with respect to the ones

in Figures 4.4a and 4.5a. This is due to the fact that, when targeting Rc < 1 AU,

the spacecraft passes close to the Earth, influencing the ’available’ trajectories in

different ways:

1. the perigee is limited above an altitude of 36000 km, equivalent to geostationary

orbit, this lower boundary is selected as it facilitates the collision avoidance

analysis during future studies;

2. as the spacecraft enters deeper in the Earth’s gravitational well, the spacecraft

performs multiple revolutions around the Earth before eventually escaping (see

Figure 4.6), this leads to a drastic increase in flight time , and in extreme cases,

tof > 2 years, to the exclusion of such transfers.

Therefore, considering for simplicity a constant departure manoeuvre of 10 m/s,

escape trajectories are not granted for each position on the quasi-periodic orbit,

further increasing the difficulty of the design of a suitable escape towards Rc < 1

AU. In Figure 4.6 the two types of escape trajectories are shown in order to give

the reader a better understanding of the issues associated with the Earth-bound

departure. Especially the inefficiency in terms of tof becomes clear when looking at

the orange trajectory.



60 analysis of the direct escape trajectory

Figure 4.6: Direct escape trajectories with maximum escape velocity.

Looking at these results, it becomes clear that, while the main objective is still

the maximization of the escape velocity, particular attention needs to be given to

the time of flight as well, limiting the maximum time, i. e., from the first available

periodic orbit departure to the time of escape at r∗2, to 1.5 years, and ideally, under

1 year.



5
A N A LY S I S O F T H E S W I N G - B Y

T R A J E C T O RY

In the previous chapter the direct escape strategy has been discussed, concluding

that, even without the influence of the Moon, v∞ �= 0 can be obtained with a

negligible departure manoeuvre. As discussed in Chapter 3, it can be expected that,

including a gravity in assist in the design of the escape trajectory, higher escape

velocities are achievable for still negligible departure manoeuvres.

In the following chapter the applied methodology is presented in detail, highlight-

ing the reasoning behind the different steps of the design and the hypothesis or

simplifications that have been applied.

Initially, the full trajectory is divided into two parts which are then studied sepa-

rately. The first part is the trajectory leading the spacecraft from its parking orbit

to the encounter to the Moon and the second part is the trajectory after the lunar

encounter. This procedure is based on the assumption that the Moon’s gravity is

negligible in this preliminary analysis.

This particular division of the trajectory, suggests the introduction of a new set

of variables which are better suited than the normal [x y ẋ ẏ] state variables, in

particular when representing the flyby location and effects. Assuming that in the

Sun-Earth PCR3BP the Earth is located at the coordinate of the second primary, it

is possible to define the position relative to the Earth of the encounter using polar

coordinates [21]. Since the radius is fixed, i. e., ãM , a single variable is sufficient to

61
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fully describe the position, α is defined positive in counter-clockwise direction starting

from the xSE-axis. A second variable is β, it describes the direction of the velocity

vector with respect to the tangent of the lunar orbit, it is also known as flight path

angle. A graphical representation of these variables is presented in Figure 5.1. Finally,

the Jacobi constant is selected as the third variable as, together with the position, it

describes the magnitude of the velocity vector. The selection of this new system of

variables allows the reduction of the dimensionality of the problem, from 4 to 3.

Figure 5.1: Graphical representation of α and β in the Earth-centred synodic reference
frame (the Earth is assumed to be at the same position of the EMB).

Furthermore, given the definition of β, i. e., Clockwise (CW)= positive and Counter-

Clockwise (CCW) = negative, it is possible to categorize the trajectory at encounter

as:

• β < 0: identifies an inbound trajectory , which means that the spacecraft crosses

the lunar orbit from the outside to the inside;

• β = 0: identifies an outbound trajectory, which means that the spacecraft crosses

the lunar orbit from the inside to the outside.

As the flyby involves a rotation of the velocity vector, see Section 2.4, β can have

different sign before and after the flyby, in these cases the representation of the

trajectory appears to ’bounce’ against the lunar orbit.
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5.1 UNSTABLE INVARIANT MANIFOLDS

For the discussion about the advantages of the direct escape the analysis focused on

both unstable manifolds associated to the L2 Lyapunov orbit, one leading towards

Earth and one leading away from it. Clearly, now the spacecraft needs to be directed

towards Earth as the objective is to intercept the Moon.

As mentioned before, the the departure condition is considered to be variable and

is defined as in Eq. 4.6. This variability is introduced as it allows to better target

a specific encounter. To analyse how a change in position or velocity affects the

encounter conditions, a series of initial states on the periodic orbit are propagate

with different levels of perturbation until the trajectory reaches the lunar orbit. At

this point α and β are evaluated for each theoretical encounter. As the perturbation

in position and velocity are independent, their effects are also studied independently

by changing only a single term (δP or δV ) at a time.

Figure 5.2: Example of departure manifolds for δP = 0 km and δV = 1 m/s.

From this study it emerges that the variability due to changes in position is negli-

gible, in fact, from Figure 5.3a the different curves are almost indistinguishable. On

the other hand, already slight changes in the departure manoeuvre allow for a wide
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range of encounter locations when departing from the same initial position on the

parking orbit. However, it can be observed that all the crossings appear to be in

similar regions of the lunar orbit, specifically, for the inbound crossing, αin is bound

between 15 and 160°, limiting the available configurations for the flyby. Furthermore,

from Figure 5.3b, it appears that the ’manoeuvrability’ is not the same when depart-

ing from different points on the PO, for example, when departing at tpo = 60 days the

range reduces to 15− 30° as opposed to 15− 130° when departing at tpo ≈ 95 days.

While here only the Inbound Crossing (IC) is shown, a similar behaviour is observed

also for the Outbound Crossing (OC).
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(a) Variability of the encounter as function of δP . The curve in orange indicates δP = 0 km,
then steps of 10 km are considered.

(b) Variability of the encounter as function of δV . The curve in orange indicates δV = 1 m/s,
then steps of 1 m/s are considered.

Figure 5.3: Variability of the encounter conditions αin and βin.
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However, for some departure intervals, the propagated trajectories do not inter-

cept the Moon during the allotted amount of time (9 months). As can be seen in

Figure 5.2, the trajectories in orange pass outside of the lunar orbit resulting in the

discontinuities in Figure 5.3. An analogous behaviour is observed by Qi and Xu [21]

for the stable invariant manifolds; he has observed that after a certain value of C,

the critical value changes with the size of the considered Poincaré section, some of

the crossing points are located in a chaotic region which arises from the complexity

of the PCR3BP. As a result, these possible encounters are not considered during the

rest of the analysis.

As discussed, the third variable, besides α and β, necessary to fully describe the

pre-flyby condition is the Jacobi Integral. As the departure perturbation, in position

and in velocity, are both negligible in intensity, all manifolds can be considered to

have the same energy as the the PO, precisely C = Cpo ± 10−6.

The main point that needs to be highlighted at the end of this analysis is that,

although the manifolds cross the lunar orbit in a bounded region, it is possible to

precisely target a desired point inside this region via a programmed manoeuvre of

negligible intensity. This ability to target the required encounter is fundamental when

the timing between the spacecraft and the Moon is introduced in the analysis.

5.2 ESCAPE TRAJECTORY

As mentioned, for the preliminary analysis of the flyby escape strategy the full trajec-

tory is divided into two independent sections. From the analysis of the first section it

was possible to characterize the manifolds departing from the PO and the associated

inbound and outbound crossings. It was noted that the unstable manifolds encounter

the lunar orbit only in specific sections. However, in order to keep the analysis as
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general as possible, it is desirable to analyse the escape from every location on the

lunar orbit, i. e., α ∈ [0,360] deg.

Normally, in the PCR3BP the energy of an orbit remains constant, as it is an

integral of motion. Its value can be modified only by applying a manoeuvre or via a

flyby. This means that from the initial value Cpo it is possible to obtain a variety of

post-flyby conditions as to each possible incoming velocity vector and rotation angle

corresponds a different post-flyby state vector and thus Jacobi Constant.

In order to fully cover the design space the description of the post-flyby state is

adapted from the work by Nakamiya and Yamakawa [57]. In their work, they study

the optimal escape trajectory from L2 in order to reach a certain C3 when escaping

the Earth’s SOI. To do so, the magnitude of the escape velocity at SOI is computed

from C3 . Similarly, once the post-flyby Jacobi Constant is fixed, it is possible to

compute the magnitude of the associated velocity vector at each position on the

lunar orbit, see Figure 5.4.

v2 = f(C2, α2, β2)

where the subscript 2 indicates the post-flyby condition. The function for v can is

directly derived from Eq. 2.11, defining v =
√
ẋ2 + ẏ2

v = x2 + y2 + 2µ1
r1

+ 2µ2
r2

+ µ1µ2 −C2 (5.1)

x= xC + ãM cosα2 y = ãM sinα2

where xC= 1−µSE as the Earth is assumed to be located at the EMB. Once the mag-

nitude it is computed, the vector is obtained by spanning over β2. The final velocity

vector is then evaluated by rotating the local velocity vector (in the tangential-radial

reference frame) to the desired location on the lunar orbit.

v2 = v

[
cosα2 −sinα2
sinα2 cosα2

][
cos π2 − β2
sin π

2 − β2

]
(5.2)
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To explore all possible post-flyby conditions, α2 changes between 0 and 360° with

steps of 0.5° while β2 changes between 0 and 180°, again with 0.5° steps.

The so obtained states are then propagated forward in time over 1 year or until

r∗2 is reached. In the case where the spacecraft does reach r∗2 the escape velocity

is computed and stored in a matrix, otherwise the trajectory is considered to be

non-escaping.

Figure 5.4: Definitions of the post-flyby conditions used for the analysis of the escape
trajectory.

This computation is repeated for various energy levels ranging C2 = 2.9988−3.0009

with a 5× 10−5 step. While the lover limit was chosen arbitrarily, the upper limit

comes from observation that lower energy departure conditions (higher Jacobi Con-

stant) never escaped in the given amount of time. Some of the obtained results

are shown in Figure 5.5 as higher-dimensional Poincaré sections constructed at the

boundary of the SOISE; normally, Poincaré sections are only two dimensional, e. g.,

y-ẏ or α-β planes, here the ’third dimension’ is introduced as a colormap in order to

represent the magnitude of the escape velocity.
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(a) (b)

(c) (d)

(e)

Figure 5.5: SOISE Poincaré sections representing the escape velocity for a variety of
Jacobi Constant levels. Trajectories departing towards Rc > 1 AU are in

orange and trajectories departing towards Rc < 1 AU are in blue.
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The so obtained graphs give provide great insight in the behaviour of escape tra-

jectories departing from the lunar orbit. As only the escape velocity is represented,

it is impossible to directly observe the shape of the trajectory, however, some inter-

esting conclusions can be drawn. It is apparent that, for increasing values of energy

(decreasing C2), the available initial conditions that ensure escape increase, covering

more of the α2-β2 plane.

Furthermore, looking for example at Figure 5.5a, it can be observed that v∞ is

not independent of α2 and β2, in fact, the escape conditions can be divided into

two regions, one going towards Rc > 1 AU (in orange) and one going towards Rc < 1

AU (in blue). Each of the escape regions appears to be convex, meaning that for

each energy level unique ’optimal’ initial departure condition can be found for both

departure directions. While the value of α2,opt varies between the two cases, for Rc> 1

it is approximatively 315° while for Rc < 1 it is approximatively 135°, the value of β2

is in both cases equal to 0°, indicating a departure tangent to the lunar orbit. Note

that this is also the optimal result of the gravity assist in terms of energy exchange,

in fact, a departure parallel to the velocity vector of the exploited body indicates

that v2 ‖ vr,2, see Section 2.4, resulting in the maximum post-flyby velocity [44, 58].

Nonetheless, it is critical to understand that these optimal conditions are not

always reachable for a variety of reasons, for example, in the case where |β1| � 0°

the available bending angle could not be sufficient to obtain the desired tangential

departure condition due to limitations on the flyby altitude. In some other cases,

although β2 = 0 would be achievable, it would not give the highest v∞, as an example,

in Figure 5.5b with α2 = 225° the optimal value for β2 is approximatively 67.5°.

Clearly this discussion is valid only when looking at a single energy level, differ-

ences become clear when taking a series of different C2s, Figure 5.5. In particular,

for increasing values of the Jacobi Constant a drift of α2,opt towards lower values is

observed introducing an additional difficulty in the design of the escape trajectory.

Moreover, the aforementioned regularity of the escape regions is lost; while the main
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lobe of each region is still present, some additional escape conditions can be identi-

fied. As discussed by Marchal [22] and Smith and Szebehely [59] in the special case

of the ’Copenhagen Problem’ (PCR3BP with µ = 0.5) and in accordance with the

numerical results in this more general case, the appearance of these irregular regions

is associated to the onset of chaotic behaviour in some of the obtained trajectories,

leading to an increased dependency on the initial conditions. The ’trigger’ for this

behaviour can be found in the increase of the Jacobi Constant to a value close to the

one of the L2 Libration point, CL2 = 3.0008968740 [59].

To get a better understanding of what is intended with chaotic behaviour, a series

of trajectories are propagated taking the initial conditions from the main lobe and

the two chaotic region respectively, see Figure 5.5d. To prove the similarity between

the two departure directions, the three points are selected in both the orange and

the blue regions.

(a)
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(b)

Figure 5.6: Examples of possible escape trajectories towards Rc > 1 AU (a) or towards
Rc < 1 AU (b), identified respectively by ××× and in Figure 5.5d.

The propagated trajectories clearly reflect the results depicted in the Poincaré

sections. While the purple trajectory directly departs from the lunar orbit, both

the green and the red ones (departing from the chaotic regions) return towards the

cislunar spaces before finally departing, performing one or more revolutions around

the Earth.

At this point it is useful to understand if these chaotic conditions should be in-

cluded in the design process or if it would be better to neglect them. One one hand,

going back to Figure 5.5, it appears that higher v∞ values are achieved when de-

parting in the neighbourhood of these regions; on the other hand, some arguments

against their exploitation can be made:

• before departing towards interplanetary space, the spacecraft spends a consid-

erable amount of time close to the Earth-Moon system. As the Moon’s gravity

is considered only at encounter, the used model for the propagation could be
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inadequate to capture the real behaviour, and a higher-order model would be

necessary also for an initial design;

• as mentioned, chaotic trajectories are highly dependent on the initial conditions.

While for the nominal design this would not give particular problems, the real

trajectory would be particularly susceptible to navigation errors during the

transfer and during the flyby leading to stringent constraints for the Guidance,

Navigation and Control (GNC) system which would not be necessary when

targeting the regular regions.

In conclusion, the selection of the optimal departure condition is extremely compli-

cated as multiple factors play their role, i. e., achievable α2 and β2 angles, variation

of the behaviour due to changes in the energy levels, navigation constraints when

exploiting chaotic regions, etc. Furthermore, until here the discussions of the two

sections of the trajectory were considered as two separate problems. In fact, when

they are considered together more problems arise:

• as the flyby is instantaneous α1 = α2, this limits the regions of possible depar-

ture;

• as each IC and OC has different relative velocity with respect to the Moon, also

the available range for β2 varies with each invariant manifold;

• the rotation of the velocity vector during the flyby not only impacts β2, but

also the value of C2. This means that, considering a single encounter location,

v∞ for each β2 needs to be identified on a separate energy level.
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5.3 DES IGN APPROACH FOR THE FULL TRAJECTORY

In light of the aforementioned additional issues in the analysis of the coupled problem,

it appears clear that an optimisation algorithm is necessary when the full problem

is studied.

Furthermore, since the time at which a possible target is detected and the positions

of the spacecraft and the Moon in their respective orbits cannot be predicted, a simple

optimisation is not sufficient to obtain meaningful predictions of the v∞ values that

can be expected, and thus, considered for the optimisation of the interplanetary arc.

However, both issues, i. e., the coupling of the two sections and the timing problem,

can be readily integrated through the setup of a Monte Carlo Simulation (MCS).

5.3.1 Optimisation Algorithm

The objective of the coupled analysis is to identify particular trajectories, that involve

a single lunar flyby, to achieve the maximum escape velocity. This objective translates

into an optimisation problem which needs to be defined by identifying:

• the vector of design variables that drive the problem;

• the lower and upper bounds of these variables;

• the so called fitness function that needs to be minimised.

For the problem at hand the selected design variables are: the time between tpo,0

and the departure from the parking orbit, tdep, this variable uniquely identifies the

departure location of the spacecraft (without perturbation), and the altitude of the

lunar flyby, h.

As discussed in Section 5.1, from a single departure location, a variety of possible

manifolds can be identified, it is thus necessary to select the correct initial conditions
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to precisely cross the lunar orbit when the Moon is in the right position. This requires

the solution of a so called timing problem which is mathematically defined in Eq. 5.3.

min
∣∣∣α1,in − θM ,in

∣∣∣ andmin
∣∣∣α1,out − θM ,out

∣∣∣ (5.3)

where α1 identifies the crossing location and θM the lunar position at the same

instant for respectively the IC and the OC. The values of θM ,in and θM ,out can be

readily computed knowing the the departure location on the periodic orbit and the

initial phase of the Moon, θM ,0, in particular,

θM ,0 + 2π(tcoast + tof)

TK
(mod 2π) (5.4)

where tcoast = tdep − tpo,0 and TK is the nondimenisonal orbital period of the Moon.

Clearly Eq. 5.3 depends on multiple variables such as the initial positions of the

Moon and the spacecraft, but also of the considered invariant manifolds. The min-

imization process is thus extremely time consuming as there is no analytical corre-

lation between the values of δP , δV and the time of flight or the crossing location

making it necessary to use numerical propagation. However, the computational cost

of the minimization is reduced by building a database of invariant manifolds where

the required characteristics are stored, e. g., α1, β1 tof , etc. This database is obtained

by finely discretizing the δP and δV intervals for a set of initial points on the PO,

in particular, for the present study 1000 points on the periodic orbit are considered

and the discretization steps are 10 km and 0.1 m/s. Once tdep is known, it is then

possible to write Eq. 5.3 in vectorial form leading to a much simpler solution of the

timing problem. In general, with the considered discretization, the obtained angular

distances are around 10−3° resulting in an extremely accurate targeting of the flyby.

The bounds adopted for the optimisation are [0,8] months for the waiting phase

on the parking orbit and [5000,35000] km for the altitude. The limit of 8 months is
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considered as valid as it allows for more than one complete rotation on the periodic

orbit, giving the possibility to identify the optimal departure location and phasing

with the Moon, without excessively compromising the total time budget for the full

trajectory, in fact, it was observed that with waiting phases longer than 8 months

there was not sufficient time to reach r∗2 leading to a ’no-escape’ trajectory. Both

limits of the flyby altitude are suggested in the CReMA [38], the selection of the

lower limit aims at simplifying the navigation of the lunar flyby while 35000 km

is considered as the maximum distance at which the Moon as appreciable influence

on the escape conditions, higher flybys lead to trajectories asymptotic to the direct

escape. However, in light of the work done by other researchers, after a first analysis

with the original limit, it was considered to analyse escape trajectories with flyby

limits as low as 100 km [43, 44, 60, 61]; the results are presented in Section 6.2.

Finally, as the objective is to maximise the escape velocity, the definition of the

fitness function, J , is straightforward. However, since Eq. 4.4 returns results with

opposite sign when computed for trajectories going towards Rc > 1 AU or Rc < 1 AU,

two separate functions need to be defined. Furthermore, going back to Section 2.4 and

Section 5.1 and considering the selected design variable, it appears that the trajectory

is not uniquely defined. In fact, considering a single manifold, two possible encounters

can theoretically happen, one at the IC and one at the OC. In addition to that, the

flyby can result in a CW or in a CCW rotation. These two considerations lead to

four different trajectories for each combination of the design variables. To avoid the

introduction of additional design variables in the optimisation, which furthermore

would be integers, it is chosen to propagate all four trajectories and ’collect’ the

respective escape velocities in a vector, sv∞ to then consider only the optimal one.

- Rc > 1 AU → J = min (−sv∞)

- Rc < 1 AU → J = min (sv∞)
(5.5)
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Due to the complexity of the problem, e. g., numerical integration, number of

variables, nonlinearity of the equations, etc., it is not possible to apply traditional

search techniques which involve the use of gradients, Hessians or other characteristics

of the problem. For this type of problems it is suggested to use stochastic sampling

methods, these are iterative methods which determine the next iteration by following

stochastic sampling or a particular set of rules. For the solution of this problem it

was opted for the use of a genetic algorithm.

Genetic algorithms are initialized by sampling the entire design space, for each

member of the initial population the fitness function is then evaluated. The following

iterations are computed following the rules of reproduction and mutation of the

individuals with the best fitness function. The advantage of such methods is that

multiple ’promising’ regions of the design space can be evaluated at the same time

reducing the risk of converging to local minima. A more detailed discussion can be

found in the works by [62–65].

For the solution of the optimisation problem the Matlab’s built-in genetic algorithm

is used with the following options.

Maximum number of iterations 150
Maximum number of stall iterations 20
Initial population size 1000
Function tolerance 0.001

Table 5.1: Options applied to Matlab’s genetic algorithm for the optimisation of the
trajectory.

While initial simulations were run on a laptop with a smaller population size, it

was observed that, it was not possible to converge regularly to the same solution (or

to its neighbourhood). Thus, the simulation was finally run on the High Performance

Computer (HPC) of the University of Cranfield, allowing for a larger population due

to the increased computational power.
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As mentioned, a single optimisation does not give meaningful results for the prob-

lem at hand, thus the Monte Carlo Simulation is performed in order to give a statis-

tical description of the obtained results.

5.3.2 Monte Carlo Simulation Setup

The main quantity of interest of the analysis is the expected value of the escape

velocity, as it influences the rest of the design of the mission. Mathematically this

value can be defined as

E[v∞(X1,X2, ...Xn)] =
∫∫

...
∫
v∞(x1, ...,xn)f(x1)f(x2)...f(xn)dx1dx2...dxn (5.6)

where f(x1)f(x2)...f(xn) are the density distributions of the random variablesXi. In

general, it is impossible to evaluate analytically this equation, however, by following

the Monte Carlo simulation approach it is possible to obtain a reasonable close

approximation of the integrals [66]. In fact, by performing N simulations of the same

process

Y 1 = v1
∞(X

1
1 ,X1

2 , ...X1
n) Y 2 = v2

∞(X
2
1 ,X2

2 , ...X2
n) (5.7)

where each set of random variables is independent and generated following its density

function, f it can be concluded that

lim
N→∞

Y 1 + ... + Y N

N
= E[Yi] = E[v∞(X1,X2, ...Xn)] (5.8)

In the problem at hand the random variables Xi are the position of the Moon in its

orbit, θM ,0, and the position of CI in its parking orbit, tpo,0, at t= 0, i. e., the moment

at which the orbital characteristics of the comet are known allowing for the design

of the trajectory, as these quantities cannot be predicted during the initial design

phase of the mission. Both variables are sampled following a uniform distribution, f



78 analysis of the swing-by trajectory

in Eq. 5.6, between 0 and 360° for the Moon phase angle and between 0 and Tpo for

the position of Comet Interceptor. Since each simulation is independent, it is possible

to parallelize the simulation and fully exploit the capabilities of the HPC reducing

drastically the computational time.

Combining together the Monte Carlo approach and the optimisation it is expected

to find a series of optimal escape trajectories for both departure direction, further-

more, the distribution of the obtained v∞ will provide the reader with an indication

on how the optimal escape behaves with different initial conditions.

5.4 RESULTS FROM THE MONTE CARLO S IMULATION

In light of the presented analysis it is possible to design two escape trajectories, one

for each direction. Since the optimisation process does not find the exact minimum of

the fitness function, each run of the Monte Carlo Simulation gives a slightly altered

result, however, the overall behaviour of the trajectories is the similar . In Figure 5.7

two examples of the obtained trajectories are represented, each one is divided into

three section:

1. the waiting phase: here the spacecraft continues on its path on the parking

orbit until it reaches the designed departure point;

2. the invariant manifold: this section was previously discussed and connects the

departure point to the lunar encounter where the flyby happens;

3. the escape trajectory: also this section was previously discussed and considers

the entire trajectory after the flyby until r∗c is reached.
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(a)

(b)

Figure 5.7: Optimised escape trajectories towards Rc > 1 AU (b) and towards Rc < 1 AU
(a) obtained from one run of the Monte Carlo Simulation. r∗c is not in scale.
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While it is interesting to observe the shape of the obtained trajectory, the fun-

damental result is the Probability Density Function (PDF) of the escape velocities

in Figure 5.8. It is estimated that 400 simulations are sufficient to obtain a good

approximation of E[v∞], this estimation is based on the fact that the simulation was

divided into four batches of 100 simulations which all presented the same behaviour.

From Eq. 5.8 and observing the figure above it can be estimated that

- Rc > 1 AU → E[v∞] = 0.98 km/s

- Rc < 1 AU → E[v∞] = 1.04 km/s
(5.9)

resulting in a ’free’ increase of approximatively 180 m/s with respect to the direct

departure. Furthermore, as the available tof is limited, due to the limited notice time,

it is also necessary to observe how the time of flight behaves for these trajectories.

As for the flyby trajectories the waiting time on the periodic orbit is considered in

the total tof , it is necessary to include it also in the computation of the time of flight

of the direct trajectories. The obtained results are summarized in Table 5.2.

0.8 0.85 0.9 0.95 1 1.05

Figure 5.8: PDF of the escape velocities obtained from the Monte Carlo Simulation.
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(a) Rc < 1 AU

200 250 300 350 400 450 500 550

(b) Rc > 1 AU

Figure 5.9: Comparison between the time of flight of the direct escape and the flyby
escape obtained from the Monte Carlo Simulation.

Combining the information in Figure 5.8 and Figure 5.9a it appears that the

introduction of the gravity assist when targeting a comet flyby closer than 1 AU

to the Sun does only have positive effects. In fact, not only is there an increase of

around 200 m/s in escape velocity, increasing the regions which can be targeted [9],

but the tof is also clearly reduced, allowing for a shorter notice period between the

discovery of a DNC and the programmed flyby time.

On the other hand, while an increase of escape velocity can be observed also for

the trajectories going towards regions further than 1 AU from the Sun, around 160

m/s, here the required time of flight increases sensibly as the spacecraft needs to

enter the cislunar space before actually escaping towards interplanetary space. This

introduces an additional variable in the design process as for each specific comet it

is necessary to evaluate if the increase of tof is balanced by an adequate increase of

v∞.
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Target region Rc < 1 AU Rc > 1 AU
E[...] ∆ E[...] ∆

v∞,dir, m/s 816.9 825.2
v∞,fb, m/s 1044.2 227.3 983.7 158.5
tofdir, days 621.2 361.0
toffb, days 392.5 228.7 460.5 99.5

Table 5.2: Summary of the results and the comparison between the direct and the flyby
escape strategies.

5.4.1 Optimal Design Variables

While the results above answer some of the key questions of this thesis, they do not

give the complete picture of the problem. In order to fully understand and validate the

obtained results it is also necessary to analyse the design variables as they describe

two fundamental moments of the trajectory, i. e., the departure from the periodic

orbit and the flyby.

Clearly tdep by itself does not provide any information, only when taken together

with tpo,0 it describes the departure position on the PO. Figure 5.10 shows a selection

of departure locations represented on the PO as it is clearer then the time information.

(a) Departure locations towards Rc < 1 AU (b) Departure locations towards Rc > 1 AU
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104

(c) Moon flyby altitudes

Figure 5.10: Optimal design variables obtained through the optimisation process.

As for the PDF of v∞ and the tof , also here it can be observed that the design

variables present a greater variety when departing towards Rc > 1 AU. In particular,

while in Figure 5.10a it is clearly possible to distinguish two preferred departure

regions, in Figure 5.10b this is much more difficult, it seams that the ’bottom’ of the

periodic orbit is advantaged by the optimisation but a variety of trajectories depart

also from other regions. Furthermore, this behaviour is also visible in Figure 5.10c,

where the optimal flyby altitudes are tightly distributed around the expected value

E[h] = 9442.3 km when going towards Rc < 1 AU, whilst, when the target is Rc > 1

AU the distribution is much wider with E[h] = 30697.3 km.

Considering the differences between the PDFs when changing from one escape

direction to the other and by comparing the obtained trajectories with Figure 5.6,

it appears that the trajectory towards Rc > 1 AU is close to a chaotic trajectory. In

fact, this would explain the wider distributions as in presence of chaotic behaviours

a variety of local minima could appear. Furthermore, the appearance of the ’loop’ in

the optimal trajectory, similar to the trajectories in Figure 5.6a, also suggests that
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the post-flyby Jacobi Constants is close to the value considered for Figure 5.5d and

thus close to the critical value that indicates the onset of chaotic behaviours.

However, in order to confirm this suspicion it is necessary to locate the optimal

trajectories on the previously defined Poincaré section, note that the characteristics

represented there are considered when leaving the lunar orbit and are not necessary

the post-flyby conditions. Figure 5.11 is constructed by computing the mean C2,opt

of the optimal post-flyby trajectories in order to have a good approximation of the

two energy levels (one for Rc < 1 AU and one for Rc > 1 AU). Then the post-flyby

condition is propagated until leaving the lunar orbit where α2,opt and β2,opt are eval-

uated for each trajectory, for a clearer representation only a fraction of the obtained

results are displayed.

As expected, the use of a Poincaré section and the positioning of the optimal

trajectories in it gives a better understanding of the obtained results as it is possible

to characterise the different trajectories.

(a) Rc < 1 AU, C2,opt ≈ 2.99943



5.4 results from the monte carlo simulation 85

(b) Rc > 1 AU, C2,opt ≈ 3.00034

Figure 5.11: Poincaré Maps of the optimal C2 levels with a selection of obtained
trajectories shown as black points.

In fact, starting from Figure 5.11b, the aforementioned suspicion is confirmed

as all the trajectories lie inside the chaotic region. Furthermore, it is possible to

identify three different types of orbits thanks to the clustering of the different points,

this difference is also reflected by the actual shapes of the trajectories shown in

Figure 5.12.

Clearly only cluster 1 follows exactly the optimal curve of the chaotic region, while

clusters 2 and 3 appear to be ’non-optimal’ looking at the maximum v∞ values that

appear in the same region. Assuming that the optimisation converged to the global

minimum for every cluster, the differences could be explained by the variability of

the initial conditions, θM ,0 and tpo,0 which presented encounters only when departing

from non-optimal regions of the periodic orbit, only the trajectory from cluster 1 in

Figure 5.12 departs from the ’bottom’ region which, recalling Figure 5.11b, appears

to present the optimal departure conditions.
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Figure 5.12: Examples of escape trajectories from the three clusters identified in
Figure 5.10b.

Moving now to the trajectories departing towards Rc < 1 AU in Figure 5.11a, it

is immediately clear that the behaviour is more regular as all obtained trajectories

nicely follow the optimal curve. However, despite presenting this regular behaviour,

the obtained results do not follow the ’centre-line’ (in red) representing the optimal

departure flight path angle as function of α2, β2,opt = f(α2). It is thus considered

to lower the altitude of the flyby closer to hLB resulting, theoretically, in an in-

creased post-flyby energy and thus higher escape velocities. However, as can be seen

in Figure 5.13, the lower flyby did not simply increase the energy level, effectively

increasing the maximum v∞ levels, it also changed the position of the α2-β2 points

resulting in and escape trajectory with lower Jacobi Constant, 2.99899 vs 2.99943

but lower escape velocity.
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Figure 5.13: Poincaré section of the optimal trajectories of Figure 5.11a recomputed with
a lower flyby altitude.

In conclusion, while it is possible to perform an initial analysis separating the two

section of the trajectory, in order to obtain meaningful results it is necessary to study

the coupled problem introducing also the correct timing conditions. Only through

this complete analysis it is possible to compute an estimate of the escape velocity

without committing the error of considering escape trajectories impossible to achieve

with a single flyby strategy. Furthermore, it is observed that a fundamental step in

the analysis process is the fine tuning of the optimisation algorithm, in particular

when departing towards Rc > 1 AU where the onset of chaotic behaviour can be

expected.





6
A D D I T I O N A L A N A LY S I S

The scope of this chapter is the analysis of some additional aspects regarding

the trajectory design of Comet Interceptor. While the main focus of this work

was the estimation of the expected value of the escape velocity, with the developed

framework it is possible to further analyse some fundamental aspects of the trajec-

tory design, laying the basis for future future work. The aspects which are analysed

hereafter are:

1. the estimation of the navigation cost for the designed trajectory;

2. the analysis of the advantages achievable through lower flyby altitudes;

3. the propagation of the obtained trajectories in a higher-order model;

4. the evaluation of the full transfer from L2 to a desired comet.

6.1 NAVIGATION

The entire analysis until here focused on the evaluation of possible escape trajectories

and are based on the perfect knowledge of the spacecraft’s state. However, a variety of

factors, e. g., modelling errors due to non considered additional forces, orbit injection

errors, tracking errors, manoeuvre execution errors, etc., influence in an unpredictable

way the dynamics of the spacecraft, in fact, while some errors can be reduces by

89
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considering high-fidelity models, some others are inevitable due to limitations of the

used systems.

When studying the ∆v budget of a mission, it is thus necessary to analyse the

navigation cost of the nominal trajectory. The following analysis makes use of the dif-

ferential correction algorithm to compute the required manoeuvre to follow as closely

as possible the original trajectory but considering uncertainties in the state of the

spacecraft (x, y, ẋ, ẏ) and in the execution of the required manoeuvre. These errors

are stochastic in nature, thus cannot be evaluated exactly. The only way to account

for these errors is by performing multiple simulations (Monte Carlo approach) where

the perturbed trajectory is propagated over a certain amount of time before applying

the correction manoeuvres. Finally, the different costs are summed together to get

the total ∆v required for the navigation. The elapsed time between one manoeuvre

and the other is necessary in order evaluate the parameters of the real trajectory,

compare it with the nominal one and compute the required correction manoeuvre,

for simplicity, in this analysis the ∆t is kept constant over the entire trajectory.

In general, due to their nature, the considered errors are modelled as Gaussian

distributions that can be described by their mean, η, and their standard deviation,

σ. η indicates the median or mode of the error and in general is 0 (otherwise constant

errors are present and can be included in the model) and σ indicates the dispersion

of a set of values, in particular, it tells that 68.2% of the random values are in an

interval of ±σ around η, sometimes 3σ is used to account for the 99.7% of the values.

Starting from the nominal departure state, x0
0,pert = xdep, the trajectory is iter-

atively perturbed and propagated until the desired target is reached, hereafter a

description of each cycle is presented:

1. a perturbation is applied to the nominal/corrected state before the propagation

in order to consider errors in the orbit determination: xi0,pert = xi0 + ∆x;
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2. the perturbed state is integrated over the time span ∆t obtaining the final state

xipert;

3. the differential corrector is applied to the final state of the perturbed trajectory,

obtaining the nominal correction manoeuvre, ∆v, needed to reach the desired

target from xipert;

4. a perturbation is applied to the magnitude of the nominal manoeuvre obtaining

∆vipert, the direction is considered as fixed;

5. the perturbed manoeuvre is applied to xipert: xi+1
0 = xipert + ∆vpert;

Note that no manoeuvre is performed when |∆v| is of the same order of magnitude

as the hardware limitations of the propulsive system, this limit is set to 0.15 cm/s

[37]; in these cases step 3 is directly followed by step 1, and thus, xi+1
0 = xipert.

As the distribution of the error very much depends on the characteristics of the

orbit determination systems, various Monte Carlo simulations are performed with

different σ-values; the uncertainties can be found in Table 6.1 together with the total

∆v budgets.

Taking as a reference ESA’s guidelines, the maximum allowable budget for the

navigation should be 25 m/s [38]. Looking at the results in Table 6.1, it is observed

that the obtained results are, not only under the allowed budget, but also in line

with what was achieved for the ISEE-3 mission where 5 m/s were required for the

navigation [43].
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Reference
∆x error∗
(σ), km
mm/s

|∆v|
error
(σ)

E[∆vtot]∗∗, m/s
∆t

14 days 21 days 28 days 56 days

[67, 68] [1.46, 2.64] 10% 0.47 0.56 0.10 0.41
[1.40, 1.85] 0.18 0.11 0.28 0.27

[69, 70] [1.50, 2.50] 2.5% 0.38 0.44 0.07 0.22
[1.00, 1.00] 0.13 0.08 0.20 0.20

[71] [1.70, 2.20] 2.5% 0.41 0.51 0.08 0.27
[1.40, 1.40] 0.16 0.10 0.25 0.25

[72, 73] [3.00, 30.0] 2.5% 4.27 5.14 0.82 2.35
[15.0, 15.0] 1.69 1.00 2.64 2.61

[74] [3.00, 30.0] 5% 4.32 5.19 0.83 2.66
[15.0, 15.0] 1.70 1.02 2.60 2.61

[75] [3.00, 30.0] 10% 4.38 5.20 0.87 3.59
[15.0, 15.0] 1.75 1.05 2.70 2.65

∗ 1st row: perturbation of x and y, 2nd row: perturbation of ẋ and ẏ
∗∗ 1st row: departure towards Rc < 1 AU, 2nd row: departure towards Rc > 1 AU

Table 6.1: Expected navigation budgets computed via Monte Carlo simulation.

However, the expected value does not give the entire picture of the analysis, in

fact, looking at Figure 6.1 it appears that only in some cases the results are tightly

distributed around E[∆vtot], in particular for ∆t = 28 days (Rc < 1 AU) and for

∆t= 21 days (Rc > 1 AU).

0 2.5 5 7.5 10 12.5 15 17.5

(a) Rc < 1 AU

0 1 2 3 4 5 6 7 8 9 10

(b) Rc > 1 AU

Figure 6.1: PDFs of the total navigation budget computed from the error values
considered by Howell and Keeter [72, 73].
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Furthermore, while in the represented cases the maximum values are still under 25

m/s, it was observed that for some of the considered error levels values as high as 30

m/s are required to navigate the full trajectory when considering a propagation time

span of 56 days. All considered, it is expected that the available budget is sufficient

to navigate the trajectories obtained from the optimization process, especially when

considering the 28 and 21 days ’strategies’.

6.2 EVALUATION OF A LOWER FLYBY ALTITUDE

As aforementioned, in the literature it is possible to find a variety of missions that

exploit flybys at altitudes lower than 5000 km. In the following section it is eval-

uated if a closer flyby could be advantageous in light of the increased difficulty in

the navigation of such a flyby. In particular, closer flybys would increase the range

of achievable bending angles, δ, obtaining larger trajectory changes from the lunar

encounter. As the upper-bound is kept constant, the already obtained results should

be obtained when the global hopt lies above 5000 km.

The analysis is performed by re-optimizing the entire trajectory varying the lower-

bound of the flyby altitude, hLB, in the genetic algorithm options while the rest of

the optimization process is analogue to the previous analysis. The selected interval of

interest for hLB is [100,4900] km, thus, 49 independent optimizations are performed

to find the optimal flyby for the new trajectories. However, as the focus lies on the

analysis of hLB, the initial conditions are kept constant over all simulations eliminat-

ing the variability coming from different positions of the Moon and the spacecraft in

their respective orbits.
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(a) Optimized escape velocities (b) Flyby altitudes of the optimized trajectories

Figure 6.2: Results of the optimization process when a lower altitude bound, hLB, is
considered

Since when departing towards Rc < 1 AU there was no improvement with respect

to the analysis with the nominal flyby limit, its analysis is not discussed hereafter.

However, when departing towards Rc> 1 AU the obtained results are very interesting.

Looking at Figure 6.2 two regions can be identified, one above 1250 km and one below.

In the former a quasi-linear behaviour can be observed between the increase of v∞

and the decrease of hLB, while in the latter the optimization process leads to the

same results as for hLB = 5000 km. A similar behaviour is observed for the optimal

flyby altitudes of these escape trajectories, see Eq. 6.1. To illustrate the difference

between the nominal and the ’improved’ trajectory, the two are represented together

in Figure 6.3.

hopt ≈


hLB, if hLB ∈ [100,1250] km

31733 km, if hLB > 1250 km
(6.1)

In conclusion, while a sensible improvement in the escape characteristics of the

trajectory can be achieved, at best an additional 240 m/s, by lowering the flyby, the

difference between the initial limit and the required one is substantial, one order of
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magnitude, introducing potential issues connected to the low flyby, e. g., interruption

of Earth-S/C communication, stricter GNC system requirements.

Figure 6.3: Comparison between the nominal trajectory and one with a 300 km low flyby.

6.3 HIGHER -ORDER MODEL

In order to simplify the analysis and the design the lunar gravity was only considered

at encounter obtaining two trajectories in the Sun-EMB PCR3BP patched together

by the Moon flyby. This approximation is accurate enough for an initial analysis

but, when moving to the next phases of the design, more precise models are required.

The objective of this section is to accurately reproduce the obtained trajectories by

moving to the Sun-EMB and the Earth-Moon PCR3BP coupled analysis described in

Section 2.2.
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Initially, the PO departure condition was propagated directly, alternating between

the Sun-EMB and the Earth-Moon equations of motions each time the spacecraft

passed between the SOISE and the SOIEM . It was observed that, without corrections,

the spacecraft would miss the encounter with the Moon, due to bad timing, and thus

depart via a direct escape trajectory. In order to ensure the encounter, a bisection

method was applied to find the zero of Eq. 6.2, where xext is the state of the spacecraft

when it leaves the SOIEM with the 2BP, x is the same state but with the full PCR3BP

and T is the time required from the departure to the encounter with the Moon.

‖xext − x(T + tcorr)‖ (6.2)

At each iteration of the bisection method the differential corrector was used to

compute the required departure conditions to obtain a manifold with tof = T + tcorr,

the obtained state is then propagated in the full PCR3BP to obtain x. This way it is

possible to compute the required time correction, which for the example trajectories

in Figure 6.4 is 1.44 and 1.99 days.

(a) Rc < 1 AU



6.3 higher-order model 97

(b) Rc > 1 AU

Figure 6.4: Trajectories in the full PCR3BP. The trajectory sections in the SOIEM are
represented also in the Earth-Moon synodic reference frame on the left.

In this particular cases both time corrections resulted to be positive and quite low,

i. e., departure manifold with longer tof , however, also negative values were observed

as the encounter is heavily influenced by the flight path angle, β, when entering

the SOIEM and the time spent inside the SOIEM before the flyby. In particular it

was observed that trajectories with steeper entry angles and with flybys at the IC

presented less timing errors as opposed to trajectories with shallow entry angles

and OC flybys. Since during the design the Moons gravity is completely neglected

before and after the encounter, this type of behaviour was expected as the difference

between the to models is greater the longer the spacecraft remains inside the SOIEM .

However, as can be seen in Figure 6.4, both trajectories are well approximated by

the higher-order model, meaning that the analysis performed under the 2BP flyby

assumption is valid also when passing to more complex models.



98 additional analysis

6.4 EXAMPLE OF FULL MISS ION TRAJECTORIES

The final objective of this work is to develop a methodology for the optimization of

the departure trajectory in order to reduce the required ∆v budget for the mission. To

prove the validity of this concept and of the obtained results, three example transfers

strategies are designed:

1. the trajectory is completely designed in the 2BP and the total ∆v comprises

the Earth escape cost and the DSM;

2. the Earth escape trajectory is computed in the PCR3BP without a lunar flyby

and the interplanetary segment is still computed in the 2BP;

3. the Earth escape and the interplanetary segments are computed as for strategy

2, but here the lunar flyby is considered;

each strategy is optimized to intercept comets C2017T1 (Rc < 1 AU) and C2020N1

(Rc > 1 AU) which was recently discovered and works as an initial dry-run for the

mission although the interception point is slightly outside the achievable region (due

to thermal constraints). Note that the boundary between the PCR3BP and the 2BP

is considered to be at 0.1 AU from the Earth.

The optimization of the interplanetary leg is performed by Professor Sánchez as it

is out of the scope of this thesis. However, the main points of the process are briefly

summarized hereafter:

• the transfer is computed in the heliocentric 2BP under the ’patched-conics’

assumption;

• the full trajectory is divided into two Lambert arcs: one from the Earth (or the

PCR3BP-2BP boundary) to the DSM and the second from the manoeuvre to the

encounter;
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• the design variable is the tof from Earth departure to the DSM;

• the value to minimize is the magnitude of the DSM plus the escape manoeuvre

when only the 2BP is considered.

To correctly design the cislunar trajectory, at 0.1 AU a target state is identified

from the full 2BP trajectory, the flyby optimization process is then adapted to the

current problem in order to match as closely as possible this target by exploiting the

lunar flyby. As the description of the cislunar trajectory remains the same, the only

required adaptation concerns the fitness function which here is defined as

J =

∥∥∥∥∥
[
x∗ − x
y∗ − y

]∥∥∥∥∥+ 103
∥∥∥∥∥
[
ẋ∗ − ẋ
ẏ∗ − ẏ

]∥∥∥∥∥
where the superscript ∗ indicates the components of the target state The coefficient

before the velocity components is added as a weighting factor due to the difference

in order of magnitude between the position and the velocity components. On the

other hand, when considering the direct escape trajectory, the maximum v∞ escape

is considered. For completeness, as it was proven that lower flybys could improve

the obtained escape trajectory, also escape trajectories with 100 and 500 km flyby

altitudes were analysed to understand how the additional 200 m/s influence the total

∆v budget in a ’real’ case scenario. The obtained results are summarized in Table 6.2

together with a representation of the full transfer (from the Earth to the comet) in

Figure 6.5.
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Model Full 2BP PCR3BP + 2BP

Target ∆v∗, km/s ∆v∗∗, km/s

C2017T1 1.237 Direct 1.836
Flyby 0.481

C2020N1 2.189
Direct 2.715
Flyby, hLB = 5000 km 2.025
Flyby, hLB = 500 km 1.444
Flyby, hLB = 100 km 1.234

∗ ∆v = ∆vDSM + ∆vesc

∗∗ ∆v = ∆vDSM

Table 6.2: Expected navigation budgets computed via Monte Carlo simulation.

The total ∆v budget for the mission is estimated to be 1500 m/s in the case of a

hybrid propulsion system, i. e., chemical+electrical, or 750 m/s in the case of a pure

chemical propulsion system [38]. Through the full 2BP analysis and considering the

estimated budgets, it appears that C2017T1 is reachable only with in the case of a

hybrid system while C2020N1 is never reachable.

Introducing the analysis under the PCR3BP leads to interesting results. In fact,

while direct escapes do not provide any advantage, the introduction of the lunar

flyby is essential for the success of the mission, in particular, in the case of C2017T1

a reduction of more than 750 m/s is observed. As the mentioned budget is allocated

not only for the programmed manoeuvres, but also for the station-keeping in the PO

and for the navigation, this cost reduction greatly improves the success rates of the

missions as more propellant can be allocated for the initial waiting phase or for an

extension of the mission after the comet swing-by.

In the case of C2020N1 the analysis is more problematic as the cost for the full 2BP

is almost double of the available budget for the hybrid system. However, also here an

improvement is observed, in particular when considering flyby altitudes of 100 and

500 km, for these trajectories the mission becomes achievable as the trajectory cost

drops to 1.234 km/s.



6.4 example of full mission trajectories 101

(a)

(b)

Figure 6.5: Optimized transfer trajectories from Earth (or L2) to comets C2017T1 (a)
and C2020N1 (b). The programmed DSM are represented with a �
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C O N C L U S I O N S A N D F U RT H E R

D E V E L O P M E N T

The aim of this thesis was to investigate the escape trajectory of Comet In-

terceptor when departing towards a comet. To maximize escape velocity with

respect to the Earth, while minimizing the departure cost, it was fundamental to not

only exploit the natural dynamics of the PCR3BP by following the unstable manifolds,

but also to exploit the capabilities of a single flyby to achieve the optimal departure

conditions.

It was already demonstrated that single and multiple lunar flybys can be pro-

grammed to obtain increased escape energy [43, 44]. However, these results were

obtained under ’ideal’ conditions: in the case of ISEE-3 it was possible to program

a series of flybys to obtain the optimal final flyby, while, in the analysis by Chen et

al., the optimal results were obtained by assuming the correct Moon position for the

first flyby. It was thus necessary to evaluate the expected value of v∞ under random

initial values for the Moon’s and the spacecraft’s initial positions.

The work presented in this thesis demonstrates that, with a sufficient long waiting

phase on the periodic orbit, values close to 1 km/s can be expected for the escape

velocity. Furthermore, looking at the tof , it was proven that, when going towards

Rc < 1 AU, the obtained strategy is also faster. This is not the case when going

towards Rc > 1 AU, but the durations are still acceptable given the achieved increase

of v∞. These results were obtained through an optimization process which exploits

103
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the genetic algorithm, as it is an iterative method it is not assured that the absolute

minimum in found, this becomes clear when looking at the trajectories going towards

Rc > 1 AU as the results obtained in this case are wider spread around the expected

values. This behaviour is traced back to the onset of chaotic motion at the obtained

energy levels, leading to the appearance of multiple local minima which ’trap’ the

final solutions, these local minima can be clearly as separated clusters in the Poincaré

map drawn in Section 5.3.

Furthermore, it was demonstrated for trajectories towards Rc > 1 AU closer flybys

could benefit the design resulting in higher escape velocities as high as 1.24 km/s and

regularizing the optimization due to a sufficient increase of the energy which ’cancels’

the chaotic behaviour. However, this benefit was not observed until the flyby limit is

set under 1250 km, and is never observed for trajectories towards Rc < 1 AU. This

led to the conclusion that the optimal flyby does not only maximize the post-flyby

energy but targets also the optimal escape conditions α2 and β2 leading to a final

compromise of the two objectives.

7.1 FURTHER DEVELOPMENTS

The performed analysis is based on the assumption of planar orbits, i. e., the space-

craft and the Moon are located in the plane defined by the Sun-Earth system. How-

ever, CI will be placed in a quasi-Halo orbit around L2 which, by definition, lives in

the 3D space introducing additional complexities in the targeting of the lunar en-

counter. In particular, as pointed out by Chen, Kawakatsu, and Hanada [44], only a

fraction of the propagated manifolds intersect the lunar orbit and can thus be utilized

for the mission, see Figure 7.1. Furthermore, also the lunar flyby causes a rotation of

the velocity vector in three dimensional space, changing the overall behaviour of the
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trajectory after lunar encounter. It is thus necessary to extend the analysis to the

CR3BP, in particular for the analysis of the invariant manifolds and the 3D flyby.

Figure 7.1: Three dimensional invariant manifolds; the manifolds which intersect the
lunar orbit are highlighted [44].

Moreover, the current analysis identifies only single flyby strategies and does not

consider any manoeuvre in the cislunar trajectory. However, as discussed by various

authors, multiple flybys and the introduction of a manoeuvre could highly improve

the escape conditions of the spacecraft [29, 45]. This can also be concluded by looking

at the results of Section 5.2; in fact, it was observed that the possible encounter

locations (after a single revolution around the Earth) are limited to a certain region

of the obtained Poicaré sections from which is not always possible to reach the optimal

post-flyby condition. By introducing the additional flyby and/or a manoeuvre it could
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be possible to accurately target the second encounter in order to obtain the optimal

escape condition, (C2,opt, α2,opt, β2,opt).

Finally, the obtained transfers to comets C2017T1 and C2020N1 were obtained by

separating the trajectory into two independent optimization problems, one for the

lunar flyby and one for the interplanetary leg. While this approach is valid for an

initial study, the design would clearly benefit by optimizing the entire transfer at

once. In fact, this could result in trajectories which do not present the highest escape

velocity, but nonetheless naturally drift towards the final target requiring only a

minimal DSM.
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