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Abstract

A workflow for large-scale computer-aided cytology and its
applications.

by Romain Mormont
Supervisor : Dr. Raphaël Marée, Academic : Prof. Pierre Geurts

Academic year 2015-2016

In several fields of application, multi-gigapixel images must be analysed to gather
information and take decision. This analysis is often performed manually, which is
a tedious task given the volume of data to process. For instance, in cytology, branch
of medical sciences which focuses on study of cells, cytopathologists analyse cell
samples microscope slides in order to diagnose diseases such as cancers. Typically,
malignancy is assessed by the presence or absence of cells with given characteris-
tics. In geology, climate variations can be analysed by studying the concentration of
micro-organisms in core samples. The concentration is usually evaluated by smear-
ing the samples onto microscope glass slides and counting those micro-organisms.

In those situations, computer sciences and, especially, machine learning and im-
age processing provide a great alternative to a pure-human approach as they can be
used to extract relevant information automatically. Especially, those kinds
of problems can be expressed as object detection and classification problems.

This thesis presents the elaboration and assessment of a generic framework,
SLDC, for object detection and classification in multi-gigapixel images. Especially,
this framework provides implementers with a concise way of formulating problem
dependent-components of their algorithm (i.e. segmentation and classification) while
it takes care of problem-independent concerns such as parallelization and large im-
age handling.

The performances of the framework are then assessed on a real-world problem,
thyroid nodule malignancy. Especially, a workflow is built to detect malignant cells
in thyroid cell samples whole-slides.

Results are promising: the effective processing time for an image containing 8
gigapixels is less than 10 minutes. In order, to further reduce this execution time,
some improvements are proposed.

The framework implementation can be found on GitHub: https://github.com/
waliens/sldc.

https://github.com/waliens/sldc
https://github.com/waliens/sldc
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Chapter 1

Introduction

In several domains, multi-gigapixel images must be analysed for the purpose of
gathering information and/or for taking decisions. Typically, the information is
represented by the presence of a series of objects of interest which are embedded
into the image. The aim of the analysis is to locate and identify those objects.
Depending on the problem and specific field of application, the extracted objects
can be used for various purposes. For instance, in cytology, digitized microscope
slides containing human tissues are analysed by physicians in order to diagnose
particular diseases, the disease in question manifesting itself by the presence of cells
having certain characteristics. In geology, slides containing core samples can be
digitized and analysed to find concentration of certain micro-organisms.

Those images are usually analysed manually by experts. However, due to the size
of the problem, the analysis is not always performed exhaustively. When possible,
experts typically select a reduced number of regions to study and draw conclusions
from the observations performed in those regions. This process has obviously the
drawback of increasing the risk of missing objects of interest.

Because of the risk yielded by the previous method and because manual analysis
of full images is long and tedious, computer programs could be used to assist experts.
For instance, those programs could indicate which regions are worth analysing and
which are not. They could also perform the search for the expert under his supervi-
sion: that is, the expert would be able to provide a feedback to the program which
could then improve its detection process.

In order to provide this assistance and to learn from experts’ feedbacks, image
processing and machine learning are used. Whereas IP and ML provide a com-
plete toolbox of algorithms for computer vision in general, they are however not
necessarily well suited for handling large images. Especially, typical implementa-
tions of those algorithms implicitly make the assumption that the full image can be
loaded into memory which is not always possible. Indeed, multi-gigapixel images
typically require several gigabytes of memory. The execution times of those algo-
rithms generally grow with the size of the image, yielding unacceptable execution
times. Parallelism can alleviate this problem but, again, typical implementations do
not necessarily support this feature. Therefore, when diving into a new problem of
object detection, implementers typically develop workflows by combining machine
learning and image processing algorithms to handle detection but they also have to
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deal with problem-independent concerns such as parallelism or memory constraints.
This thesis proposes SLDC, a generic framework for solving problems of object

detection and classification in multi-gigapixel images. Especially, it provides imple-
menters with a structure to define problem-dependent components of the algorithm
(i.e. detection and classification) in a concise way. Every other concerns such as
parallelization and large image handling are encapsulated by the framework. It also
provides a way to execute several processing workflows one after another on the same
image as well as a powerful and customizable logging system. Typically, when facing
a new problem of object detection and classification, an implementer instantiates
the framework into a workflow to deal with this problem.

In Chapter 2, the problem of object detection and classification is introduced and
its application to different cases is presented. In Chapter 3, the framework and its
implementation are presented. In Chapter 4, the framework is applied to a cytology
problem, the thyroid case.
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Chapter 2

Object detection in multi-gigapixel
images and applications

This chapter aims at explaining the context as well as typical applications that can
be addressed with the developments of this thesis. Especially, Section 2.1 formulates
the problem of object detection and classification and presents how this problem is
addressed in the literature. Sections 2.2 and 2.3 present two applications of the
problem of object detection and classification in large images: cytology and geology.
Additionally, the former details the specific problem of thyroid nodule malignancy
on which the framework is applied in Chapter 4.

2.1 General problem

2.1.1 Formulation

An object detection procedure can be seen as an operator W which applied to an
image I containing M objects of interest {o1, ..., oM} returns shape and location
information about those objects. A further refinement would consist in assigning
automatically classification labels to those objects. The object detection and clas-
sification procedure can be seen as an operator W ′ which applied to the image I
returns the set of pairs {(o1, C1) , ..., (oM , CM)} where Ci is the classification label
associated to the object of interest oi.

2.1.2 Related works

Object detection is a trendy topic in image processing due to its wide range of
applications: robotics, surveillance video,... Some authors have proposed generic
algorithms for performing object detection ([LHB04], [Ope06], [Wan+13],...). How-
ever, those algorithms are not directly applicable to multi-gigapixel images because
of a lack of scalability or because of the implicit hypothesis that the image can be
loaded into memory. In the context of spatial imaging, [Jon+03] presents a large
image (i.e. few gigapixels) processing environment for accelerating computation
by taking advantage of massively parallel computers. Especially, to overcome the
impossibility of loading full images into memory, the physical representation of the
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image is distributed over nodes of the parallel architecture while a unified logical rep-
resentation allows seamless handling and transformation of this image. In [PRS10],
another framework is presented as a solution to the same problem. Especially, the
memory constraint is bypassed by using a tile-based processing pipeline which al-
lows storing only a small portion of the full image in memory at once. While both
frameworks provide an answer to the problem of large image handling, they do not
address a specific image processing problem. To the best of our knowledge, a frame-
work dedicated to object detection (and classification) on large images has not ever
been proposed yet.

2.2 Computer-aided cytology

Cytology is the study of cells, including their formation, structure and function.
This branch of life sciences is exploited by cytopathologists to diagnose diseases.
Those pathologists’ typical tool is the light microscope which they use for screening
cell samples in order to find signs of malignancy. While cytopathology can be used
to diagnose a wide range of diseases (e.g. breast and thyroid cancer), it is best
known for its efficiency at diagnosing the cervix uteri cancer caused by the Human
PapillomaVirus (HPV). Especially, this cancer, if detected early, is curable and the
5-year survival rate is as high as 92 % [BM14]. Its diagnosis is performed based
on the Papanicolaou-test (Pap-test) which consists in collecting cell samples in the
cervix and smearing those samples on microscope glass slides. The samples are
stained, fixed and then screened by a cytopathologist in order to detect malformed
cells indicating malignancy.

For diagnosing other diseases, the process is similar: cell samples are collected,
and smeared on glass slides. A staining process is applied in order to highlight
cells and other biological components of interest and the slides are analysed. This
process however is relatively costly in terms of time. For instance1, for the Pap-test,
a glass slide has usually dimensions 25mm× 50mm while the size of a cell nucleus
is approximately 10 µm and the signs of malignancy are at the micron or sub-
micron level. In order to accelerate the process, screening is initially done at a low
resolution (×10). When a suspicious cell is seen, a higher resolution is selected (×40)
in order to verify the actual signs of malignancy. At resolution ×10, the number
of images to analyse already reaches the impressive number of 1000. Typically, a
cytotechnician2 is expected to analyse a smear in 5 or 10 minutes which implies
a speed of 3 images per second. Moreover, the cytotechnician must maintain full
concentration during the whole slide processing as a malformed cell can be found
anywhere. This illustrates how tedious the task can be and why computer programs
could greatly help in such situation.

As far as the cervix uteri cancer diagnosis is concerned, the first attempt to
provide an automatic screening device was made in the beginning of the 1950’s.
However, for various reasons (see below), the resulting device failed at providing a

1This example was taken from [BM14].
2The cytotechnician is the person who screens the smears. If he detects something suspicious

on a slide, this slide is checked by a cytopathologist who makes the final diagnosis.
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viable alternative for manual screening. Several other attempts were made after-
wards yet none provided a viable solution either. The first successful system was
finally commercialized in 1998 but still wasn’t able to replace the human analysis in
some cases. The reasons why it took so long before a successful system was finally
released are numerous and can be extended to other cytology problems [BM14].
Some of those reasons are the following:

• Slide preparation: the preparation consists in fixing the samples and applying
the staining to highlight the objects of interest. This can be done manually
or by using a staining machine. However, performing those steps manually
leads to high variability across the slides, opaque and dense clumps of cellular
material at some places while others can be empty,... Even in well prepared
smears, some zones might contain too many overlapping cells preventing any
valid interpretation.

• Scanning : scanning is challenging at several levels. First, the resolution of
the generated image should be high enough for the signs of malignancy to
be visible. For the slide dimensions given previously, a resolution of 0.2 µm

pixel

yields 31 billions pixels which is huge and will require several minutes to be
transferred from the camera to the computer. As there is no such thing as an
image sensor with 31 billions pixels so the image must be captured by taking
successive snapshots. This induces a non-trivial repositioning and combination
phase.

• Artefacts rejection: slides contain a lot more objects than the cells of interest.
Those objects can sometimes have the same shape or colour. For instance,
they might be red blood cells, bacteria, stain residues, overlapping and folded
material,... While the human visual system is robust enough to cope with such
objects, ensuring robustness at the software level is a hard task.

Cytopathology cases such as cervix uteri cancer diagnosis can naturally be seen
as object detection and classification. Given digitized cell samples slides, the goal
is to find cells of interest and to classify them as malignant or benign. In Section
2.2.2, another case of cytopathology is presented: the thyroid nodule malignancy.

2.2.1 Cytomine

Cytomine [Mar+16] is a web-based environment enabling collaborative multi-gigapixel
image analysis. It was proposed to foster multidisciplinary collaboration between
life scientists and computer scientists. Especially, the platform allows experts to
navigate through large images as they would do in map applications (e.g. Google
Maps). An annotation system is provided so that users can highlight areas of in-
terest and associate them with domain-specific labels. Those features can be used
for several purposes. For instance, a scientist could consult a distant expert about
some annotations. Because the platform is web-based, the information exchange
is seamless. Indeed, the only action to perform is to grant access to the platform
to the expert who can then analyse the image in any regular web browser. In the
case of cervix uteri detection presented in the previous section, the slides could for
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Figure 2.1: Stained thyroid cell samples. Cells with inclusion.

instance be digitized and uploaded to the platform. Then, cytotechnicians could
analyse those slides using the image exploration tool and annotate suspicious cells.
Cytopathologists could then seamlessly review those annotations to diagnose malig-
nancy. By annotating images, life scientists also provide ground truth which can be
used by image processing algorithm developers and machine learning specialists to
build powerful image analysis workflows. Especially, Cytomine features a review-
ing system which allows proofreading automatically generated annotations. The
reviewed annotations can then be used for improving the implemented workflows.
New algorithms and workflows can be plugged to the platform using a software tem-
plating mechanism and can then be launched directly from the web interface in a
user friendly way.

2.2.2 Thyroid cytology and nodule malignancy

Nodules are growths that can develop in the thyroid. Usually, they are benign but
approximately 7 % are cancerous [GS13]. When a patient is diagnosed a malignant
nodule, he has to undergo a surgical operation called thyroidectomy in order to
remove it. It is therefore essential to accurately diagnose the malignancy so that
patients of which the nodule is benign are not undergone an intrusive surgical op-
eration. One of the most important steps in the malignancy diagnosis is the fine
needle aspiration biopsy (FNAB) [BLF10]. It consists in taking cell samples directly
inside the nodule mass and to smear and prepare those samples using a process sim-
ilar as the one presented in the introduction of Section 2.2. Nodule malignancy is
confirmed by the presence of some specific features such as intra-nuclear inclusions
or proliferative architectural patterns in the slide.

Examples of cell samples are shown in Figures 2.1 and 2.2. Those were extracted
from digitized whole-slides stored on the Cytomine platform. The former shows cells
with inclusion recognizable by the typical brighter circular area inside the cell. The
latter shows architectural patterns. Particularly, proliferative patterns are shown
in Figure 2.2(a) while non-proliferative ones are shown in 2.2(b). An important
characteristic of the problem is that cells with inclusion can be contained inside
patterns. This has to be taken into account to implement an automated detection
procedure.
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(a) Proliferative

(b) Non-proliferative

Figure 2.2: Stained thyroid cell samples. Architectural patterns.

Figure 2.3: Typical size of a digitized whole-slide. To the left is given the original
image (dim. in pixels: 163840 × 95744) and to the right an architectural pattern
contained in this image (dim. in pixels: 1354× 736).
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2.2.2.1 Dataset

A project dedicated to nodule malignancy detection was created on the Cytomine
platform. It contains 61 annotated images with sizes ranging from 4 gigapixels to
18 gigapixels. Figure 2.3 illustrates the typical size of a whole-slide image. Those
images contain a total of 5921 labelled annotations performed by cytopathologists
from the ULB3. Those labels (or terms) link the annotations to cytological objects
related to the nodule malignancy problem. The terms made available on Cytomine
are organized in an ontology which is divided into three main subcategories:

• Architectural patterns : includes proliferative and non-proliferative patterns
but also an intermediate class for patterns which present minor signs of pro-
liferation.

• Nuclear features : includes cells with inclusion, normal cells and some addi-
tional cell-related terms.

• Others : includes artefacts, background but also polynuclear cells, red blood
cells,...

The complete ontology can be found in Appendix B. Among those available
terms, the ones that matter the most in the context of nodule malignancy detection
are the cells with inclusion and the proliferative architectural patterns (major or
with minor sign). The distributions of terms given in Figure 2.4 highlight that a
significant number of annotations have been made with the terms of interest but
not only for these. Negative classes such as normal cells or normal patterns are also
well represented.

As far as the slide preparation is concerned, the staining technique applied is
called Diff-Quick [Aut16a]. It consists in three solutions in which the glass slides
must be bathed: a fixative solution, a stain and a counter-stain. This preparation
typically colours cells nuclei in blue.

2.3 Computer-aided geology

Cytology is not the only field of application where object detection algorithms can
be applied. In order to assess climate variations and their effects on environment,
geologists sometimes extract and analyse core samples. In [Sac12], the author anal-
yses the effect of climate variations in north Patagony based on the diatom content
of core samples from Lago Bertrand and Lago Thompson. Diatoms are ”algae with
distinctive, transparent cell walls made of hydrated silica” [Aut16b] (examples are
given in Figure 2.5). The analysis process is the following: core samples are ex-
tracted on-site and brought back to laboratories where they are sub-sampled and
smeared on microscope glass slides. The diatom concentrations are then evaluated
by counting the objects. As for cytology, the process is tedious and would greatly
benefit from an automated counting system. Even if counting is not the initial pur-
pose of object detection and classification algorithms, they can be trivially extended

3Department of Pathology, Faculty of Medecine, ULB. Team of Prof. I. Salmon.
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Figure 2.4: Annotation distribution per term in the thyroid project on Cytomine.

to perform this task. Especially, as soon as the objects have been detected and
classified, a program can be implemented to count the predicted classes.
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Figure 2.5: Examples of diatoms (from [Sac12]).
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Chapter 3

A generic workflow : Segment
Locate Dispatch Classify

In this chapter, a generic workflow for solving problems of object detection and clas-
sification in multi-gigapixel images is presented. This workflow was first imagined
by Jean-Michel Begon1 as a generalization of the work on thyroid nodule malignancy
detection made in [Deb13]. In the context of his master thesis, Antoine Deblire had
implemented a processing workflow for detecting cells with inclusion and prolifera-
tive architectural patterns (see Section 2.2.2) in digitized thyroid cell samples slides.
The cells and architectural patterns were detected by segmenting the images and
then classified using machine learning. As explained in Section 2.2.2, some patterns
could themselves contain cells with inclusion. Therefore, the author implemented a
second processing workflow to detect those cells which also relied on a segmentation
algorithm to isolate cells in patterns and then used machine learning to assess their
malignancy. From those workflows, a common pattern emerged: performing detec-
tion using a segmentation algorithm and then classifying the detected objects using
machine learning.

In 2015, Jean-Michel Begon developed a first version of a generic workflow based
on this pattern and gave it the name Segment-Locate-Dispatch-Classify (SLDC).
Unfortunately, this implementation suffered from some drawbacks which made it
hard to apply to real problems. The workflow was therefore re-worked in the context
of this master thesis.

In Section 3.1, the workflow is introduced and formalized. Especially, the various
steps are detailed and then combined into an algorithm which is gradually improved
to reach an acceptable level of genericity. In Section 3.2, the actual implementation
of the workflow, so-called framework, made in the context of the master thesis is pre-
sented. First, the reasons for the replacement of the implementation are explained.
Second, the new framework is presented starting with its requirements as well as a
justification for the choice of Python as the implementation language. The software
architecture is then broken down and the purpose of each package and important
class is explained. Section 3.2.5 presents the developments made for testing the
various components of the framework. The penultimate section illustrates the usage

1Phd student in the Systems and Modeling Research Unit of the Department of Electrical En-
gineering and Computer Science, University of Liège.
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of the framework for solving a toy problem. Finally, the possible improvements are
presented in Section 3.3.

The final implementation can be found on GitHub: https://github.com/waliens/
sldc.

3.1 Principle

3.1.1 Algorithm

The workflow is a meta-algorithm2 that detects and classifies objects contained in
images. Particularly, given as input a two-dimensional3 image I from the set of
all possible images I, it is expected to output the information about the objects of
interest contained in this image. Those information include the shape of the object,
its location as well as a classification label. Formally, the workflow can be seen as
an operator W :

Definition 1. Let W be an operator such that

W(·) : I → RN | I 7→ {(o1, C1), ..., (oN , CN)} , N ∈ N0 (3.1)

where N is the number of objects of interest in I and (oi, Ci) is a result tuple be-
longing to the set R of all possible results tuples. The first element of this tuple, oi,
is a representation of the information (shape and location) about the ith object of
interest found in I and the second, Ci, its classification label.

It is worth noting that genericity is of the essence. That is, the meta-algorithm
should be able to solve the widest possible range of object detection and classi-
fication problems. Moreover, as explained in Section 3, it should produce those
outputs using image segmentation and machine learning. As far as the segmenta-
tion is concerned, genericity is usually hard to obtain because of the high variability
of images across different problems. In order to ensure that the workflow remains
generic enough, a particular segmentation procedure is not imposed to the imple-
menter who is expected to provide one that suits the problem. The same goes for
the classification models used for predicting the labels of the objects.

In the subsequent sections, some additional operators are defined and used to
build the W operator. First, a basic version of the algorithm is presented and then
refined in order to achieve an acceptable level of genericity.

3.1.2 Additional operators

Segmentation is the first operation applied to the image. This step of the algorithm
is where the detection is actually carried out:

2In this context, a meta-algorithm is an algorithm that coordinates the execution of other
algorithms.

3A third dimension can be dedicated to the images channel (i.e. 3 channels for RGB images, 4
channels for RGBA images).
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Definition 2. Let S be the segment operator:

S(·) : I → B | I 7→ B (3.2)

It is applied to an image I ∈ I and produces a binary mask B ∈ B with B being the
set of all possible binary masks. The pixel bij of B is 1 if the pixel pij of I is located
in an object of interest, otherwise it is 0.

While the segmented image theoretically contains the necessary information
about the detected objects (i.e. shape and position in the image), the format of
this information is inconvenient to query mostly because it is embedded into the
binary mask and a single object cannot be trivially extracted. An intermediate
step that would convert this information into a more convenient format is therefore
needed. This format should encode both the shape of the object and its position in
the image. It appears that polygons match this specification.

Definition 3. Let L be the location operator. It is applied to a binary mask and
produces a set of polygons encoding the shapes and positions of every object in the
image. Formally:

L(·) : B → HN | B 7→ {P1, ..., PN} , N ∈ N0 (3.3)

where B is a binary mask as defined in Definition 2, N is the number of objects
of interest in B and Pi is the polygon representing the geometrical contour of the ith

object in B. This polygon belongs to the set H of all possible polygons.

The final step of the workflow is the objects classification and is performed by
a classifier which is passed a representation of the object (e.g. image, geometrical
information,...) and produces a classification label. In this theory, there is no restric-
tion about the nature or representation of the objects processed by the classifiers.

Definition 4. Let T be the classifier operator. It is applied to an object of interest
and produces a classification label. Formally:

T (·) : O → L | o 7→ C (3.4)

where O is the set of all possible object representations (o ∈ O) and L, the set of all
possible classification labels (C ∈ L). As a polygon is a representation of an object,
we have H ⊂ O.

Definition 5. Let T ∗ be an extension of T which is given a set of objects and
produces labels for all of them. Formally:

T ∗(·) : ON → LN | {o1, ..., oN} 7→ {T (o1), ...T (oN)} , N ∈ N0 (3.5)

3.1.3 Single segmentation, single classifier

The most simple construction of W would be the composition of the operators
defined in Section 3.1.2. Particularly, the compositions L ◦ S and T ∗ ◦ L ◦ S would
respectively produce the polygons representing the objects and their labels. This
construction is summarized in Algorithm 1:
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Algorithm 1. Construction of W using one segmentation and one classifier:

1. Return 〈(L ◦ S) (I) , (T ∗ ◦ L ◦ S) (I)〉

As explained in Section 3.1.1, the definition of S and T ∗ would be left at the
implementer’s hands. As far as the L operator is concerned, it could be imposed
by the workflow without loss of genericity provided that the binary mask format
is defined. Such a construction of W could already solve any object detection and
classification problem on image in which the labels can be predicted by a single
classifier. However, in some cases, one classifier is not enough. This happen, for
instance, when the image contains objects of very different nature and using several
classifiers would yield better results than using a single one. An extension is therefore
needed.

3.1.4 Single segmentation, several classifiers

In this attempt to construct a generic W operator, the image is assumed to contain
M distinct types of objects and the workflow uses M classifiers (the ith classifier
being noted Ti with i ∈ {1, ...,M}) to classify those objects. As an object should
only be processed by one classifier, a new step has to be added to the workflow. It
consists in dispatching each polygon to its most appropriate classifier.

Definition 6. Let D be the dispatch operator. It is applied to a polygon and produces
an integer which identifies the most appropriate classifier for processing this polygon:

D(·) : H → {1, ...,M} (3.6)

This step being problem dependent, it is the responsibility of the implementer
to define the rules used for dispatching the polygons. However, the format of these
rules can be defined.

Definition 7. Let P be a set of M predicates p1, ..., pM which associate truth values
to polygons:

pi(·) : H → {true, false} | P 7→ t, i ∈ {1, ...,M} (3.7)

where pi is the predicate associated with the ith classifier. The polygon P is dispatched
to a classifier Ti if pi associates true to this polygon. To avoid dispatching an object
to several classifiers, the predicates should verify the following property:

pi = true⇔ pj = false,∀j 6= i (3.8)

Given this format, the D operator can be trivially constructed as it returns i if pi
is true. The algorithm resulting from this construction ofW starts the same way as
in Section 3.1.3: the image is applied the segment and locate operators. Then, the
resulting polygons are dispatched and classified to produce the labels. The resulting
algorithm is summarized in Algorithm 2. Figure 3.1 illustrates Algorithm 2 with a
workflow that has two classifiers. The first is designed to classify small objects while
the second classifies bigger ones.
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Figure 3.1: Illustration of Algorithm 2.
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Even though the workflow can now handle several types of objects, there are still
some particular problems that cannot be solved with Algorithm 2. In particular, this
algorithm works perfectly as long as objects are not included in one another. In this
case, the workflow will consider their intersection as a single object and therefore
won’t be able distinguish them.

Before extending the algorithm for handling this case, it is worth noting that
Algorithm 2 is completely compatible with Algorithm 1. Indeed, if there is only
one classifier (i.e. M = 1) and the predicate p1 always returns true, then both
algorithms are exactly the same.

Algorithm 2. Construction of the W operator with a single segmentation and sev-
eral classifiers.

1. Apply the L ◦ S composition to the input image I to extract the objects of
interest as the set of polygons Sp ← {P1, ..., PN}

2. Initialize the labels set L← ∅

3. For each polygon P ∈ Sp:

(a) Compute the classification label C ← TD(P )(P )

(b) Place the label in the labels set L← L ∪ {C}

4. Build and return objects and labels set 〈Sp, L〉.

3.1.5 Chaining workflows

To handle cases in which some objects are included in others, a solution consists in
executing several instances of Algorithm 2 one after another.

Definition 8. Let W1, ...,WK be a set of K instances of Algorithm 2. Each al-
gorithm Wi has its own segmentation procedure Si and proper sets of dispatching
predicates Pi and classifiers ST ,i.

While W1 would be applied to the full image I to extract all the objects of
interest, W2, ...,WK would only process image windows containing the previously
detected objects. Given those windows, the workflows would have to detect the
objects of interest included in the objects found by W1.

Definition 9. Let IP ∈ I be an image window extracted from image I and contain-
ing the object represented by polygon P . The window is the minimum bounding box
containing this polygon.

A further refinement would be to provide a way for the implementer to filter
the polygons of which the windows are processed by a given workflow instance.
Indeed, a given instance Wi might be designed to process only a certain category of
objects and therefore should not be passed windows of objects that do not fall in
this category.
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Definition 10. Let F be the filter operator. It is given a set of polygons SP and
returns a subset S ′P of polygons:

F(·) : HN → HM , N,M ∈ N,M ≥ N (3.9)

Each instance of the workflow Wi except W1 is therefore associated a filter op-
erator Fi. The resulting algorithm is given in Algorithm 3 and has now reached an
acceptable level of genericity. The algorithm is illustrated in Figure 3.2.

Algorithm 3. Construction of the W operator with K instances of Algorithm 2:

1. Execute the first workflow and save the results in the result set R: R←W1(I)

2. Create the polygons set and initialize it with the polygons found from the exe-
cution of W1: SP ← {P1,1, ..., P1,N}

3. For each i ∈ {2, ..., K}:

(a) Extract polygons to be processed by Wi: S
′
P ← Fi(SP )

(b) For each polygon P ∈ S ′P :

i. Execute workflow Wi on the image window and saves the results:
R← R ∪Wi(IP )

ii. Add the extracted polygons to the polygons set: SP ← SP∪{Pi,1, ..., Pi,Mi
}

4. Return the results set R

3.2 Implementation

This section aims at presenting the implementation of the workflow formalized in
Section 3.1. In Section 3.2.1, the reasons why the previous implementation was
replaced by a new one are presented. Then, the requirements, design choices and
architecture of the new framework4 are given in Sections 3.2.2, 3.2.3 and 3.2.4.
Finally, the application of the framework is illustrated with a toy example in Section
3.2.6.

3.2.1 Initial implementation

As explained in this chapter’s introduction, a first version of the workflow was im-
plemented in 2015. However, it had never been finalized nor tested. For various
reasons, the decision was made to re-implement it.

A major issue was the presence of a software component called a datastore which
had to be defined by the implementer for each distinct application of the frame-
work. In addition to be a dependency of almost every other class of the framework,
it actually forced the implementer to define workflow execution and chaining logic

4In this section, the term workflow will refer to the algorithm while framework will refer to the
implementation.
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Figure 3.2: Illustration of Algorithm 3
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himself although this logic is obviously not problem dependent and could be encap-
sulated. The major consequence of this design was an increased workload for the
implementer to apply the framework to a custom object detection and classification
problem. Moreover, the datastore being tightly coupled with other classes, it made
writing automated tests quite difficult. Reproducing bugs was even harder because
the replication implied to restore the datastore state which was not trivial.

Another issue with the previous implementation was its too high level of gener-
icity. Most of the components of the framework were defined as abstract classes and
interfaces to be derived or implemented by the implementer. This made the frame-
work hardly understandable and difficult to apply as he had to define more than
just problem dependent components. In some cases, some implementations were
provided but they only increased the complexity of the framework. Indeed, it was
not clear whether those classes could be used directly or whether the implementer
should provide his own classes.

Another final critical point was the lack of robustness. Especially, when applied
to the thyroid case where images were fetched using HTTP requests, any network
error would exit the program, leading to the loss of all collected data.

All in all, it was decided to re-implement the framework to get rid of the flawed
parts of the design while keeping the good parts. The philosophy behind the new
framework is illustrated through a set of requirements in Section 3.2.2.

3.2.2 Requirements

The main requirements for the framework are listed hereafter.

Genericity As for the algorithm, the framework should be able to solve the widest
possible range of object detection and classification problems in any context. This
property has more implications in the case of the framework design than for the
algorithm design, especially when it comes to fixing the representation of the various
involved data types (i.e. image, polygon,...).

Efficiency While the framework has no control over the efficiency of the algo-
rithms defined by the implementer (i.e. segmentation or classification procedures),
the coordination of those algorithms should not induce a significant overhead in the
overall execution.

Large images While large images handling was irrelevant at the algorithm design
stage, it becomes critical at this point. To remain generic, the framework should
not make any assumption about the size of the images to be processed. Especially,
a whole image should not be assumed to fit into memory.

Robustness The framework should be robust to errors. That is, a single error
should not interrupt the whole execution. For instance, if the framework executes
a set of independent computations and one of them fails, it should only be stopped
if this failure is unrecoverable and affects all the other computations. Otherwise,
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the failure should be reported and those others computations should execute until
completion.

Transparency The framework should provide a built-in way to communicate its
progress, the duration of each step as well as the errors it encounters with the user.
The level of verbosity of this communication tool should be adjustable. Moreover,
all the relevant information generated by the framework should be made available
to the implementer in a structured and convenient way.

Parallelism Whenever possible the framework should take advantage of paral-
lelism to reduce its execution time but the implementer should be given a way to
switch to sequential execution. Moreover, the implementer should be able to adjust
the level of parallelism (i.e. the number of available processors).

Ease of use The work of the implementer should be kept as minimal as possible.
He should only have to define the logic of the workflow components that are problem
dependent : image format, segmentation, dispatching rules, classifiers,...

3.2.3 Language

The first choice occurring in the development of an existing algorithm is obviously
the language in which it will be implemented. As far as the workflow is concerned,
the chosen language was Python. Indeed, this language provides a simple, acces-
sible and complete environment for solving the kind of problems addressed by the
framework and would therefore contribute to the overall ease of use the framework.

First of all, the language has many features which allow developers to quickly
come up with solutions to problems. Especially, it is strongly and dynamically
typed, multi-paradigm (imperative, functional, object oriented,...), interactive (it
can be used in an interactive console), interpreted and garbage-collected. It also
natively supports usual data structures such as lists, arrays, dictionaries and sets
and provides operations for manipulating them in a concise way.

In addition to its built-in features, Python has become a great language for
scientific computing as it has been augmented with excellent open source libraries
over the years. First, the SciPy ecosystem which includes the SciPy [Oli07] and
NumPy [VCV11] libraries. The first is a collection of numerical algorithms and
domain-specific toolboxes (signal processing, optimization, statistics,...). The second
is a fundamental package for numerical computations which provides an efficient
representation of multi-dimensional arrays and operations on them. Built on top of
the SciPy ecosystem comes Scikit-Learn [Ped+11], a library that provides simple,
efficient and reusable tools for data mining and machine learning. Image processing
is not outdone with a Python binding for the huge OpenCV library [Bra00]. Two
alternatives are scikit-image [Wal+14] which is built on top of the SciPy ecosystem
or the Pillow library [Cla16]. All of them provide a collection of well-known image
processing algorithms. Another useful library is Shapely [Gil13] which provides a
representation for geometrical objects (e.g. polygons) and operations on them.
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Python was also chosen because the workflow was implemented to be integrated
with Cytomine (see Section 2.2.1). Particularly, the final goal was the detection
and classification of objects in images stored on Cytomine servers. As those images
and their metadata are exposed through an API interfaced by a Python client, it
was essential that the workflow could use this client to communicate with the back-
end. As the Cytomine client was implemented in the version 2.7.11 of Python, this
version was also used for developing the framework.

3.2.4 Software architecture

The framework was organized as a Python library of which the root package was
called sldc.

3.2.4.1 Image representation

The image representation design is a critical point of the framework architecture.
Indeed, on the one hand, it should be abstract enough so that implementers can
apply the workflow on images in any format. On the other hand, it should provide
access to a concrete representation available to the framework because some steps
need to access this representation to extract some information. For instance, location
is one such step as it processes a binary mask to extract polygons.

The representation should also provide a way of extracting sub-windows from
an image. The need for this feature is twofold. First, it is needed by the workflow
(see Definition 9). Then, it could be used to address the large images handling
requirement and to overcome the fact that a whole image is not assumed to fit into
memory. The idea is to split the image into smaller chunks called tiles which could
be loaded into memory and processed one after another. Especially, the first part
of the workflow (i.e. segmentation and location) would be applied to the tiles. As
the polygons of each tile are extracted independently, it might occur that a single
object of interest which spreads over several tiles ends up being splitted into several
polygons. To make sure there is a one to one relationship between a polygon and
an object of interest, an additional step must be added to the workflow before the
dispatching and would consist in merging the polygons representing a same object.
This step is detailed in Section 3.2.4.4.

The abstract image representation and related classes were implemented into the
sldc.image package presented in the UML diagram shown in Figure 3.3.

The Image class is the abstract image representation mentioned above. It pro-
vides three abstract methods for checking image dimensions (width, height and
number of channels) and a fourth one, np image, which should implement the con-
version between the implementer’s custom image format and the concrete format
mentioned above. NumPy multi-dimensional arrays were chosen to be this concrete
representation. In addition to the inherent advantage of using the NumPy library,
this choice was also motivated by the fact that those arrays are compatible with the
various image processing libraries presented in Section 3.2.3.

An image window is materialized by the ImageWindow class of which the design
is based on the decorator pattern. It stores information about the position and size
of the window as well as a reference to the parent image. Especially, location and
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size are respectively represented by coordinates of the first top left pixel included in
the window (coordinates are referenced to the top left corner of the parent image)
and by the window width and height. As an image window instance provides a level
of indirection on top of another image, some methods are provided to fetch this base
image as well as the absolute offset5.

A tile is also represented by a class named Tile which extends ImageWindow

and augment it with an integer identifier field. As tiles can potentially be derived, a
TileBuilder interface was developed. As suggested by the name, a class implement-
ing this interface is responsible for building specific tile objects. This structure is
actually an application of the factory method pattern which has the advantage of al-
lowing the framework to build specific tiles objects defined by the implementer while
remaining unaware of the construction logic of those objects. The implementer that
would derive the Tile class to implement a custom loading procedure in np image

is advised in the documentation to raise an TileExtractionError exception if the
loading fails. This allows the rest of the framework to handle loading failure and
therefore increases its robustness.

Finally, to make it easier to iterate over the tiles of an image two classes were
developed : TileTopology and TileTopologyIterator. The first is responsible for
dividing an image into a set of overlapping tiles. The overlap allows the merging
procedure to be simpler as polygons corresponding to a same object will have a
geometrical intersection. Moreover, it enables the implementation of more global
segmentation procedures.

The tile topology is fully defined with three parameters: the tile maximum width,
wm, height, hm, and the number of pixels that overlap, op. The tile topology object
also associates unique increasing identifiers to the tiles. An example topology with
its resulting tiles and identifiers is shown in Figure 3.4. As soon as the TileTopology
object is built, it can be queried using those identifiers for building tile objects or
for fetching topology information such as one tile’s neighbours identifiers. While
this organization goes off from the object oriented philosophy a bit, it allows all
operations provided by the tile topology object to be O(1) (see Appendix A). It
goes without saying that the overlap parameter should be set carefully because it
induces some additional computations. Indeed, some parts of the image will be
segmented several times as they are present on more than one tile.

The second class, TileTopologyIterator, is an application of the iterator design
pattern as its name suggests. It can be created either from a tile topology or directly
from a subclass of Image. It allows to iterate over the tiles defined by a tile topology.
The implementation of this iterator is straightforward. It simply iterates over the
tile identifiers and pass them to the corresponding tile topology to build the tiles.

3.2.4.2 Segmentation

As explained in Section 3.1.3, the segmentation is not fixed by the framework
and the implementer is expected to provide its own implementation. To repre-
sent this constraint in the framework, a Segmenter interface was defined in package

5The absolute offset is the offset of the window referenced to the base image’s top left pixel. It
is different from the image window offset if its parent image is also an image window.
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Figure 3.3: Image representation classes - package sldc.image

sldc.segmenter. It provides a single method, segment, which receives a NumPy
representation of the image and is expected to return another NumPy array stor-
ing the binary mask marking the objects of interest contained in this image. The
binary mask however doesn’t conform strictly to Definition 2 as pixels belonging to
an object of interest are marked with the integer value 255 (which corresponds to
white in the grayscale colour space) instead of 1. The Segmenter interface is shown
in Figure 3.5.

3.2.4.3 Location

As presented in Definition 3, the location procedure extracts polygons representing
the geometrical contours of the objects of interest from a binary mask. The imple-
mentation of this operation was done in the single method, locate, of a class called
Locator (in package sldc.locator). This method takes as parameter the binary
mask represented by a NumPy array and returns the expected set of polygons as
Shapely Polygon objects.

As stated in Section 3.1.3, this operation can be fixed by the framework without
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Figure 3.4: A tile topology applied on a 512 × 512 image (parameters: wm = 256,
hm = 256 and op = 25). The numbers are the tile identifiers.

loss of genericity. This is made possible by the choice of representation for the
method’s inputs and outputs. As far as the implementation is concerned, it was
largely inspired from another implementation taken from the Cytomine codebase. It
uses the findContours procedure of the OpenCV library to extract the geometrical
information of the objects as a list of coordinates. The implementation provided
with the framework has two small additions compared to the Cytomine one. The
first is the conversion of those coordinates into Polygon objects and the second is an
optional translation that can be applied to those polygons. This second modification
is needed because of the image division in tiles. Indeed, by default, the location
algorithm constructs polygons referenced to the top-left pixel of the binary mask
passed to locate. Yet, the polygons are expected to be referenced to the full image
top-left pixel. An additional parameter was therefore added to the locate method
prototype allowing the caller to specify a translation offset to apply to the found
polygons. The Locator class is Shown in Figure 3.5.

3.2.4.4 Merging

The need for a merging phase is a consequence of the image division in tiles and its
goal is to merge distinct polygons that actually represent a same object of interest.
The main idea behind the algorithm was imagined by Jean-Michel Begon. It consists
in building a graph where each node corresponds to a polygon. The algorithm will
then add edges between polygons which correspond to a same object. Two poly-
gons represent a same object if the distance between them (i.e. minimum distance
between one point of each polygon) is less then a certain tolerance threshold. Gen-
erating the final polygons is as simple as finding all the connected components of
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Figure 3.5: Packages sldc.segmenter, sldc.locator, sldc.merger and
sldc.classifier.

this graph and computing the intersection of all the polygons in those components.
While working in some cases, the implementation made by Jean-Michel Begon

could be improved. First, the interface of the class was inconvenient to use. Indeed,
the tiles and their polygons had to be provided in a fixed order (i.e. increasing
order of identifiers). And if they weren’t, the merging would fail. Moreover, it
had issues with some border cases. For instance, with small images containing few
tiles. For those reasons, the algorithm was kept but was completely reimplemented
to take advantage of the TileTopology object (which didn’t exist in the previous
implementation of the workflow).

The classes related to merging were defined in the package sldc.merger. The
main logic of the algorithm was implemented in a class called Merger. Applying
a merge is as simple as passing a tile topology as well as the tiles and associated
polygons to the merge method which returns the list of merged polygons. The
Merger class is Shown in Figure 3.5.

3.2.4.5 Dispatching and classification

As defined in Section 3.1.4, the dispatching of polygons to classifiers is performed us-
ing predicates. Those predicates are materialized by the abstract class DispatchingRule
in package sldc.dispatcher. The implementer can extend to define its custom dis-
patching logic. Especially, this is done by implementing the method evaluate batch

which is passed both a list of polygons to dispatch as well as the image from which
they were extracted. Passing both the polygons and the image allows the imple-
menter to define a dispatching logic based either on the polygons geometrical prop-
erties, or on the polygons crops, or on both.

The same philosophy was followed for classification. The implementer has to
extend the abstract class PolygonClassifier from package sldc.classifier (see
Figure 3.5). For the same reason as for the evaluate batch method, the predict batch

method takes as parameters a set of polygons and the image they were extracted
from. Although only a label is produced by the classifier operator in Definition 4,
an additional element is returned by the predict batch method: the class proba-
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bility (i.e. the probability that the predicted label is indeed the label of the object).
Indeed, this information can sometimes be extracted using some classifiers (e.g. tree
based methods). However, it can happen that the underlying classifier is not able
to generate those probabilities. In this case, the implementer is advised to return
a probability 1 for each polygon. The class PolygonClassifier is shown in Figure
3.5.

While the dispatching and classification logic are problem dependent, the coordi-
nation of those steps is obviously not and is implemented in class DispatcherClassifier
(see Figure 3.6). This object must be initialized with a set of classifiers and dis-
patching rules. Some polygons can then be dispatched and classified by passing them
to the methods dispatch classify or dispatch classify batch. Especially, the
first will execute the operation on a single polygon while the second allows processing
a set of polygons.

To answer the transparency requirement, it is essential that all the relevant
information generated by these methods can be accessed by the implementer after
the execution. Those information obviously include the classification label and its
associated probability but not only. Indeed, another relevant information generated
is the identity of the dispatching rule which matched a polygon. In practice, this
information can be used by the implementer to distinguish a same classification label
returned by different classifiers. The dispatch classify method therefore returns
a tuple containing the label, the probability and the identifier of the dispatching
rule that matched the polygon (this identifier being the index of the rule in the list
passed at construction). The dispatch classify batch method returns three lists
containing the same information for all the passed polygons.

In the workflow, it is assumed that one and only one dispatching predicate can
be true at once. In practice, the framework should handle sets of predicates which
don’t verify this property. Especially, it should handle a first case when more than
one rule match a polygon and a second case when no rule matches a polygon.

The first case is handled by ordering the rules and to only consider the first rule
that matched. Especially, the ordering is defined by the order of the rules in the list
provided by the implementer at construction.

The second case is handled with a fail callback. This function is passed the
polygon that didn’t match any rule and return a value or object that will be used
as classification label. A default callback which always returns None6 is used if the
implementer doesn’t provide one. Moreover, the dispatch index associated to those
unmatched polygons is -1.

3.2.4.6 Workflow

The package sldc.workflow contains the actual implementation of Algorithm 2, in
SLDCWorkflow class. Instantiating this class requires three mandatory parameters: a
Segmenter which implements the tile segmentation logic, a DispatcherClassifier

which was initialized with custom dispatching rules and polygon classifiers and a
TileBuilder for building the tiles of the tile topology. The workflow can then be

6None is the null equivalent of Python.
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Figure 3.6: Package sldc.dispatcher

Figure 3.7: Package sldc.workflow and class WorkflowInformation

launched on an Image object using the method execute. This method returns all
the information about the objects of interest found in the image. Those information
include the polygons encoding the object’s shapes and locations, their predicted
classes, the associated probabilities and the dispatching indexes (see Section 3.2.4.5).
In order to provide convenient access to those information, they were encapsulated
into an object called WorkflowInformation. Especially, this class provides a way
to iterate over the results, the method results. The UML diagram containing both
the SLDCWorkflow and WorkflowInformation classes is given in 3.7.

3.2.4.7 Workflow chain

To this point, the presented classes provide a way for an implementer to apply
Algorithm 2. The package sldc.chaining allows going one step further as it con-
tains the necessary components for applying Algorithm 3. Especially, the class
WorkflowChain coordinates the execution of several workflows one after another on
one or more images and also handles the post processing of the generated data.
Those operations are handled by different components defined hereafter. The UML
diagram containing the classes of this package is shown on Figure 3.8.

The images to be processed by the workflow must be generated by an imple-
mentation of the interface ImageProvider. The implementer must define the image
generation in the abstract method get images.

The post processing of the generated data must be defined by the implementer as
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PostProcessor object. Especially, he has to implement the method post process

which is passed a collection of workflow information objects as well as the image
from which they were generated.

As far as the workflow objects to be executed are concerned, they must be
encapsulated into subclasses of WorkflowExecutor. This component has three main
responsibilities.

The first is to generate image windows that will actually be processed by the
underlying SLDCWorkflow object. Particularly, those windows must be generated
based on the polygons generated from the previous steps of the chain. This gener-
ation must be implemented in the get windows method. This method is also the
placeholder for the filtering specified in Definition 10. As far as the first workflow
of the chain is concerned, its get windows method should have a slightly different
behavior. Indeed, in this case, the full image is yet to be processed and should be
returned. In the optic to reduce the work of the implementer, a abstract subclass
named FullImageWorkflowExecutor was defined to implement this behavior. Its
get windows method simply returns the image it is passed.

The second responsibility is to launch the execute method of the SLDCWorkflow
object on the images generated by the executor in get windows and to collect the
generated workflow information objects. This is done in the execute method.

The last responsibility is the post-processing of the results generated by one
workflow execution. This logic must be implemented in the method after which is
passed the image window that was processed as well as the workflow information
object returned by the execute method of SLDCWorkflow. An example usage of
this method is the translation of polygons generated by a SLDCWorkflow on an
image window. Indeed, in this case the polygons returned by the workflow object
are references to the window top left pixel while they should be referenced to the
full image top left pixel. For the same reason as the FullImageWorkflowExecutor,
a subclass of WorkflowExecutor was created. Its after method implements the
translation logic.

As soon as the ImageProvider, PostProcessor and WorkflowExecutor objects
are constructed, they should be passed to the WorkflowChain constructor. The
chain can simply be started by calling the execute method.

3.2.4.8 Logger and workflow timing

To fulfill the transparency requirements, it is essential that the person who executes
a workflow chain is able to monitor the progress. He should also have some insights
about how the workflow performs on a given problem. For instance, how many
tiles must be processed, how many polygons were found, how many polygons were
dispatched,... The user should also be informed about the execution times of the
various phases. In order to perform those operations two other packages were added.

Logging The first one is sldc.logger which provides a flexible, powerful and
thread-safe logging system. Especially, it allows to log messages selecting a level
verbosity among silent, debug, info, warning and error. The output can be controlled
using a minimum level of verbosity. All messages sent below this level won’t be
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Figure 3.8: Package sldc.chaining

outputted. The implementer can also choose where the messages will be printed (in
a file, on the standard output,...).

The logging package is articulated around the abstract class Logger which holds
the minimum level of verbosity and provides methods to log messages in all the
defined levels of verbosity. It also implements the message formatting. Especially,
the messages sent by the implementer are augmented with a prefix containing the
thread id, the current date and time as well as the level of verbosity at which it was
sent.

What this class doesn’t define is where the formatted messages will be printed.
This is the responsibility of the subclasses. Three of them are provided in the
package: StandardOutputLogger, FileLogger and SilentLogger. The first one
prints the messages into the program’s standard output, the second prints them
into a file while the last ignores all messages. If the implementer is not satisfied
with one of those implementations, he can define himself a subclass that handle
messages in a custom way.

The final component of the package is an abstract class called Loggable. Its
first goal is self documentation for the classes which extend it. Indeed, those are
expected to support logging. The second goal is to provide a logger attribute for
the classes which extend it. This way, they don’t have to define their own.

The UML diagram of the logging package is shown in Figure 3.9.

Timing The second package, sldc.timing, contains the WorkflowTiming class
which allows recording execution times of the various phases of the workflow but
also to report them. The time computation is provided through some start and end

methods for each phase. For instance, for recording segmentation time, the meth-
ods start segmentation and end segmentation are provided. The phases that
can be recorded are the following: image loading, segmentation, location, merging,
dispatching and classification. A last phase is actually a combination of the loading,
segmentation and location phases and is called lsl. An additional method is needed
for this combination because it can be parallelized (see Section 3.2.4.10). Recorded
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Figure 3.9: Package sldc.logging.

Figure 3.10: Package sldc.timing.

execution times can be extracted with a handful of methods such as total which
computes the total recorded time for all phases, or report which is passed a Logger

object and prints some statistics about the execution times. The UML diagram of
this package is shown in Figure 3.10.

3.2.4.9 Builders

The package sldc.builder contains two classes WorkflowBuidlder and WorkflowChainBuilder

for making easier the construction of SLDCWorkflow and WorkflowChain objects
respectively. Those classes provide some methods for setting the construction pa-
rameters and a get method for actually constructing the expected object based on
the provided parameters. For instance, the WorkflowBuilder provides a method
set segmenter. The UML diagram of this package is shown in Figure 3.11.

3.2.4.10 Parallelization

As stated in the requirements, the framework should allow the user to take advantage
of parallelism to reduce overall execution time. First, it is important to understand
few things about parallelism in Python. The language natively provides packages
for parallelizing code: multiprocessing and threading. A library called joblib

was built on top of those packages and provides a high level interface for writing
parallelized loops in a very concise way. As far as threading is concerned, some
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Figure 3.11: Package sldc.builder.

implementation of the interpreter (i.e. CPython) prevents the threads to execute
concurrently because of the Global Interpreter Lock (GIL). This lock is acquired by
the thread which executes and prevents the other threads to access the interpreter
for executing their own code. Therefore, it is advised in the language documenta-
tion to use multiprocessing to ensure that code is effectively executed in parallel
whatever the interpreter implementation. Working over several processes however
has the drawback of requiring inter-process communication. Particularly, the pro-
cesses must be passed the data to treat and return the generated results to the main
process. This is handled by joblib using serialization. Especially, the elements to
be processed in parallel are queued. When a process becomes available, an element
is dequeued, serialized and transferred to this process. When it terminates its exe-
cution, the results are themselves serialized and returned to the main process. This
organization has the drawback of triggering as many serialization and deserialization
as there are objects to process. Yet, such operations induce a non-negligible over-
head that can be overcome by passing batches of elements instead of single elements
to the processes. Another important point is the fact that multiprocessing doesn’t
support nested parallel loops. This constraint imposes therefore at most one level
of parallelism. That is, a code executing in a spawned process cannot itself spawn
other processes. All these language and library specific constraints were taken into
account when including the parallelism to the framework.

How the parallelism will be implemented is now known, the question yet to be
answered is where it will be applied. Several steps of the algorithm can be retained
as candidates because of their highly parallelizable nature. In this case, highly par-
allelizable means that the parallelization can be done without any synchronization
mechanisms except the ones provided by joblib. Typically, this is the case for
operations which imply several independent computations. At the workflow level,
the candidates steps are tiles segmentation and location, polygons dispatching and
polygons classification. At the chaining level, the processing of the images generated
by the ImageProvider is another candidate.

Whereas applying parallelism at the chaining level is very easy, the idea was
abandoned for the following reasons: it would prevent the parallelization at the
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workflow level (because of the nested parallel loops issue) and it can be done man-
ually by the implementer. Indeed, he just has to launch its program one time on
each image to obtain the same result.

At the workflow level, both dispatching and classification parallelization were
dropped because it would require more work and the need was less obvious than for
segmentation and location. Indeed, it was assumed that the segmentation procedure
provided by the implementer was likely to be computationally expensive. So the
advantage resulting from this parallelization might be greater than for the two other
operations.

The parallelization itself is handled in the SLDCWorkflow class. In order to reuse
the same pool of processes for every call of the execute method, this pool must be
passed to the constructor of the workflow object as a joblib.Parallel object. In
order to provide more feedback about progress to the user in the sequential case, two
implementations of segmentation and location were made. Therefore, the workflow
switches to one or another implementation according to the number of jobs specified
by the user. The parallel implementation first splits the tiles in batches and then
submits them to the various processes using the pool. After that, it aggregates the
returned data. Especially, in addition to the found polygons, each process returns
a WorkflowTiming object containing the loading, segmentation and location times
it recorded when processing its assigned tiles. Those objects are merged with the
WorkflowTiming to be returned by the execute method.

To avoid any concurrency problems, all classes of the framework were developed
to be thread safe. This was done by making those classes immutable whenever
possible or by avoiding to use shared resource. The only classes which couldn’t
verify this rule are WorkflowTiming, StandardOutputLogger and FileLogger. The
timing objects can indeed be updated with new time recordings after their creation.
The loggers by printing log messages access shared resources (e.g. standard output,
files,...). To prevent any problem, the Logger was added a lock object to synchronize
the call to the print abstract method which actually implements the submission
of the message to the resource.

3.2.5 Testing

In order to ensure that the various components of the framework are working as
expected in some predefined conditions and to prevent those components to be
broken by further refactoring, some tests were written using the unittest package
of Python. Those tests can also be found on GitHub in the folder test.

The tests were focused on components containing actual logic, that is, the classes
Locator, DispatcherClassifier, Merger and TileTopology. The workflow con-
struction and execution was also tested on two use cases. The first is presented in
Section 3.2.6 and the second consists in finding a big white circle in a image with
black background. Finally, there are fifteen tests and they yield a code coverage of
72 %.
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3.2.6 Toy example

Now that the implementation was presented and detailed, this section aims at high-
lighting how easy it is to apply the framework to solve a problem. The problem in
question is very simple and consists in finding grey and white squares and circles
within a greyscale image with a black background (see in Figure 3.12). In addition
to locate the shapes, the algorithm should return the information about whether a
shape is a circle or a square and also return a label indicating its colour (grey or
white).

To apply the workflow philosophy, the implementer should first encapsulate its
image custom format in a class extending Image. For this example, a simple NumPy
array can be used to represent the image. The definition of the image class is given
in Listing 3.1. The next component to be defined is the segmentation algorithm that
will actually detects the objects. In this case, this algorithm can be implemented
using a simple thresholding (every pixel of which the value is greater than 0 belongs
to an object). This logic should be defined in a class implementing the Segmenter

interface. The definition of this class is shown in Listing 3.4. Thanks to the usage
of NumPy arrays, the implementation of the segmentation is really concise.

The next step is the definition of the dispatching rules that will redirect the
objects to an appropriate classifier. Especially, the idea is to take advantage of
dispatching for detecting whether a shape is a circle or a square. In this case, two
rules are needed: one that evaluates to true the circle polygons and another one
which evaluates to true square polygons. One way to distinguish circles and squares
is using the circularity shape factor. It is a real value between 0 and 1 which measures
how close the shape of an object is to that of a circle. Especially, perfect circles
have a circularity 1 and straight lines have a circularity 0. In this case, because the
shape is discretized in the image, the algorithm will never produce perfect circles so
detecting circular shapes must be done by thresholding the circularity. Particularly,
polygons having a circularity greater than 0.85 can be considered circles while the
others can be considered squares. The implementation of the dispatching rules are
given in Listing 3.2. Thanks to the Python list comprehension syntax, the definition
of the rules is again really concise.

Now that the segmentation and dispatching rules are defined, the last missing
element is the classifier. In this case, it should produce the last desired information
which is the colour of the shapes. A simple idea is to use the polygon to retrieve
the central pixel of the shape. Then, the greyscale value of this pixel can be checked
to identify whether the colour of the shape is white or grey. The implementation of
the classifier is given in Listing 3.3. In the context of this example, the image to be
processed might not be large. However, the classifier is implemented so that the full
image is never loaded into memory. Indeed, before extracting the pixels, the window
boxing the polygon is extracted from the image and only the NumPy representa-
tion of this window is loaded into memory (see image.window from polygon() and
window.np image method calls).

Listing 3.1: Toy example - Encapsulating custom image format
c la s s NumpyImage(Image):

"""An image represented as a NumPy ndarray """

def i n i t ( s e l f , np_image ):
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Figure 3.12: Example image to be processed for the toy example

s e l f ._np_image = np_image

@property
def np_image( s e l f ):

return s e l f ._np_image

@property
def channels( s e l f ):

shape = s e l f ._np_image.shape
return shape [2] i f len(shape) == 3 e l se 1

@property
def width( s e l f ):

return s e l f ._np_image.shape [1]

@property
def height( s e l f ):

return s e l f ._np_image.shape [0]

Listing 3.2: Toy example - Dispatching rules
c la s s CircleRule(DispatchingRule):

""" Dispatching rule which matches circles """

def evaluate_batch( s e l f , image , polygons ):

return [circularity(polygon) > 0.85 for polygon in polygons]

c la s s SquareRule(DispatchingRule):
""" Dispatching rule which matches squares """

def evaluate_batch( s e l f , image , polygons ):

return [circularity(polygon) <= 0.85 for polygon in polygons]

Listing 3.3: Toy example - Classifier
c la s s ColourClassifier(PolygonClassi f ier ):

""" Classifier that predicts the colour of a shape """

GREY = 0
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WHITE = 1

def predict_batch( s e l f , image , polygons ):

classes = []

for polygon in polygons:

# Fetch center pixel

window = image.window_from_polygon(polygon)

sub_image = window.np_image

c_x = int (polygon.centroid.x) - window.offset_x

c_y = int (polygon.centroid.y) - window.offset_y

pxl = sub_image[c_y][c_x]

# Generate the label based on the pixel colour

i f pxl == 255:

classes.append( s e l f .WHITE)
e l i f 0 < pxl < 255:

classes.append( s e l f .GREY)
e l se :

classes.append(None)

return classes , [1.0] * len(polygons)

Listing 3.4: Toy example - Segmentation implementation
c la s s CustomSegmenter(Segmenter):

""" Every non black pixel are in an object of interest """

def segment( s e l f , image ):

return (image > 0). astype("uint8")

Listing 3.5: Toy example - Applying the framework
# Build the workflow

builder = WorkflowBuilder(n_jobs =1)
builder.set_segmenter(CustomSegmenter())
builder.add_classifier(CircleRule(), ColourClassifier ())

builder.add_classifier(SquareRule(), ColourClassifier ())

workflow = builder.get()

# Execute

results = workflow.process(NumpyImage(image ))

3.3 Improvements and future works

This section presents some possible improvements that could be performed to in-
crease the ease of use and the performances of the framework.

3.3.1 Memory management

Under the hood, Python wraps everything into objects [Sei13]. This includes prim-
itive types such as integers. Moreover, as memory allocation is an expensive op-
eration, those objects are pooled by the Python runtime. Especially, it stores list
of free objects which can be re-used when the user implicitly request them. The
problem is that the free objects in those lists are never released and therefore, from
the operating system point of view, the memory needed by the program only in-
creases. It might worth checking the impact of this memory management policy
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over the memory consumption of the framework. Especially, it if happens to be
a problem, the framework should be analysed to check which parts yield a high
memory consumption and those parts should be re-written.

3.3.2 Location algorithm

The location algorithm sometimes fails at generating polygons for all the detected
objects in the segmentation mask. This happens when some objects’ masks are
ill-formed yielding invalid polygon containing self-intersections. A self-intersection
is a point where two edges of a polygon intersect or are colinear. A first proce-
dure for cleaning the segmentation mask has been implemented but it seems not
be sufficient to prevent invalid polygons to be generated. An improvement would
therefore consists in understanding which kind of patterns yield self-intersections
and to implement a procedure for cleaning those patterns.

3.3.3 Parallelization

Parallelization was successfully applied for tiles segmentation and location but other
phases of the workflow might also benefit from it. For instance, when the dispatching
and classification procedures cannot be parallelized by the implementer, those steps
are executed sequentially no matter what. This can present a major issue especially
when the number of objects found in the image is high. A possible improvement
would consist in splitting the detected objects in batches and to execute dispatching
and classification for each batch on different processes.

Another critical point is the workflow executor. Indeed, when the implementer
implements a processing chain, the first executor typically processes the full image
and the parallelization can happen at the workflow level. According to the number
of objects detected by this first step, the subsequent executors might generate a lot
of image windows to be processed by other workflows. Currently, all those windows
must be processed sequentially which can potentially yield huge execution times.
An improvement would then consist in parallelizing those windows processing. This
would have to be implemented carefully as this parallelization shouldn’t clash with
the one implemented at the workflow level (see Section 3.2.4.10 for the nested parallel
loops issue).

Finally, it would be interesting to optimize the parallelization of the tiles process-
ing. Currently, batches of tile objects are passed to the processes which requires a
potentially heavy serialization and induces an important memory overhead (as tiles
are duplicated in sub-processes). Indeed, tiles being defined by the implementer,
he could store heavy objects in the class attributes. A possible improvement would
therefore consist in passing batches of tiles identifiers instead of the tile themselves
and to use the tile topology to re-build the tiles on each process.

3.3.4 Dispatching rule

The current formulation of dispatching might be a problem in some cases. Indeed,
the implementer has to provide one rule per classifier which can lead to inefficient
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dispatching. It happens, for instance, if the dispatching is implemented as a classifier
predicting to which classifier should be redirected an object. In this case, the same
classifier must be embedded into different rules. Objects which are not dispatched by
the first rule are therefore passed to the second which will perform the classification
again. A possible improvement would therefore consist in providing several types of
dispatching policy to the user, with for instance a single dispatcher which redirects
objects to several classifiers.
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Chapter 4

SLDC at work : the thyroid case

In this chapter, the SLDC framework is applied to the problem presented in Chapter
2 : the nodule malignancy diagnosis. This problem is effectively an instance of
the object detection and classification problem. Indeed, the goal is to diagnose
malignancy by the presence or absence of cells or groups of cells having particular
characteristics in digitized microscope slides. This problem is a good use case for the
SLDC framework: the images are large (i.e. typically 15 giga-pixels), two distinct
categories of objects must be found (namely cells and groups of cells) and some of
these objects can be included into others which can be handled using dispatching
and chaining. In this case, the goal is mostly to test the framework and to assess its
performances. However, in the perspective of finally providing a working solution
to the thyroid problem, the solution developed in [Deb13] for the same problem is
studied and improved and the performances of the resulting procedure are assessed.

An introduction to the thyroid problem as well as the underlying implementation
challenges are presented in Section 4.1. Then, the workflow developed in [Deb13]
is briefly presented and its performances are assessed in Section 4.2. Especially,
some flawed steps are highlighted and some improvements are proposed. Then, the
implementation of the improved workfow is detailed in Section 4.3. Finally, the
performances of this implementation are analysed in Section 4.4.

4.1 Problem and underlying challenges

The problem consists in finding cells with inclusion and proliferative architectural
patterns in large digitized microscope whole-slides (see Figure 4.1). To perform
this detection, a dataset containing approximately 6000 annotations was created
by experts on the Cytomine platform (see Section 2.2.2.1). The major challenges
involved with this problem are detailed hereafter.

Image quality While the image resolution is more than acceptable, the images
themselves are by nature not very well suited for object extraction. Indeed, the
objects of interests are surrounded with a lot of other undesirable objects. Moreover,
due to the imprecise nature of the staining performed before digitization, some
staining variations can appear across slides or within a slide.
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Figure 4.1: Digitized microscope whole-slide dimensions (dim. in pixels: 163840 ×
95744).

Image size As explained in Section 2.2.2.1, image sizes range from 4 giga-pixels
to 18 giga-pixels. Therefore, the various processing steps should be as efficient as
possible to avoid huge execution times. Also, accessing the images must be done
through HTTP requests. Therefore, a particular attention should be paid to the
number of requests to be executed for fetching the image. Especially, some caching
policy might be needed to reduce those requests execution time overhead.

Class imbalance The dataset of annotations is relatively balanced if all terms
are considered separately. However, grouping terms for expressing the detection as
a binary (or ternary) problem results in class imbalance, especially for the cells with
inclusion versus normal cells problem.

Human annotations The human annotations are imperfect as experts usually
annotate objects roughly (i.e. an annotation can be larger than the actual object).
Moreover, some annotation drawing tools provided on the Cytomine platform gen-
erate particular shapes such as circles or rectangles. Assuming that an algorithm
will annotate the cells more precisely, the resulting differences in terms of geometry
and information content of the crops might affect the performances of any classifier
fitted on those experts’ annotations.

4.2 Antoine Deblire’s workflow

The workflow developed by Antoine Deblire in [Deb13] is summarized in Figure 4.2.
The idea behind this workflow is fairly simple. First, a segmentation is applied
to the whole slide to extract standalone cells and architectural patterns (step 4.3).
The detected objects are then differentiated using their area and circularity (step
4.4) and dispatched to a classifier (steps 4.6). Especially, architectural patterns are
classified as proliferative or non-proliferative by a first classifier and the cells are
classified as inclusion or normal by a second one. Then, architectural patterns are
segmented using a second segmentation algorithm (step 4.5) to extract the cells they
contain and those cells are also passed to the cell classifier. The next sections aim
at explaining more thoroughly those steps.
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Figure 4.2: Antoine Deblire’s workflow (source: [Deb13])
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4.2.1 Segmentation procedures

Segmentation is carried out in two steps. The first segmentation procedure was
designed for processing the whole slide and relies on a process called colour decon-
volution [RJ01]. This process consists in retrieving the stains concentration of the
objects contained in the image based on the RGB values of the pixels (see Section
2.2.2.1 for the staining process applied to the slides before digitization). Especially,
given that the original slide was prepared with S stains, the colour deconvolution
process generates a set of S images where the pixel psij of an image is the concen-
tration level of the stain s in the pixel poij of the original image. This process is
particularly useful in this case because cells and patterns have a high concentration
of a given stain. The first segmentation procedure starts by generating the concen-
tration image for the first stain. As pixels with a high concentration are supposed
to be in an object of interest, a first binary mask is created by thresholding the
concentration image. Three morphological operations are then successively applied
to the segmentation mask:

• Morphological closing to eliminate small holes in the detected objects.

• Morphological opening to eliminate small objects supposed to be irrelevant
due to their size.

• Morphological closing to unify close neighbouring objects supposed to be part
of a pattern.

Some example segmentations are provided in Figure 4.3 and 4.4. It seems that
the procedure is able to detect most of the objects of interest although it sometimes
fails at covering those objects’ whole area. For instance, in the third example of
Figure 4.4, there is a hole in the mask inside the pattern and this hole covers some
cells that should be included in the mask. On the fourth example, one can see three
standalone objects above the central pattern. Those objects’ masks are smaller
than their corresponding cells. Also, on some images, regions containing a high
stain concentration were marked as object by the segmentation. This can be seen
on the first example image in Figure 4.3 where a portion of the slide background
was detected as pattern.

The second segmentation procedure is applied to the detected patterns and was
designed to isolate individual cells inside those patterns. The implementation is
slightly more complicated than the first (see [Deb13] for the full procedure). Simi-
larly, it starts with a colour deconvolution to highlight the cells. However, the stain
concentration image is not transformed into a binary mask using a fixed thresh-
old but using Otsu’s method [Ots75]. Using the findContour procedure of the
OpenCV library as well as morphological operations, independent cells are located
and cleaned one after another. Finally, a watershed algorithm is applied to separate
cells that overlap. Some example segmentations are provided in Figure 4.5. The
segmentation seems to work relatively well on ”clean” patterns: that is, where cells
do not overlap much and are clearly distinguishable from the pattern background
(see the first two examples in Figure 4.5). On ”dirty” patterns however, the segmen-
tation performs poorly as it either returns large patches which do not correspond to
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Figure 4.3: Background detected by the segmentation as an object. The background
was segmented because of a higher stain concentration which is visible on the left
image. The segmented area is delimited by the annotation on the right image.

cells or fails to separate overlapping cells (see the two last examples in Figure 4.5).
In both cases, one can notice that the detected cells are slightly under-segmented
(i.e. the segmentation mask is smaller than the actual object).

While the presented segmentation procedures exhibit some flaws, they were con-
sidered acceptable to test the SLDC framework.

4.2.2 Dispatching procedure

4.2.2.1 Slide processing dispatching

The step (4.4) consists in dispatching detected objects into four categories: artefacts,
cells, clusters and patterns. Theartefact and cluster categories respectively corre-
spond to irrelevant objects and to groups of cells that contain too few of them to be
patterns. Even if the author distinguishes patterns and clusters at the dispatching
step, objects of both categories are treated equally in the subsequent steps of the
algorithm. That is, they are first evaluated by the pattern classifier (for assessing
whether they are proliferative or not) and they are re-segmented. The dispatching is
based on four parameters, the cell minimum and maximum areas (respectively, Amin
and Amax), the cell minimum circularity (Cmin) and the minimum number of cells
per pattern (Nmin). The values of those parameters as defined by Antoine Deblire
are given in Table 4.1. The dispatching rules can be summarized as follows:

• Artefact: all objects having an area less than Amin or an area less than Amax
and a circularity less than Cmin

• Cell: all objects having an area A such that Amin < A < Amax and a circu-
larity greater than Cmin

• Clusters: all objects having an area A greater than Amax such that the object
can contain at most Nmin cells:

Amax < A < Nmin × Amax

• Patterns: all objects which do not match one of the rules above are considered
as patterns

42



Figure 4.4: Examples of slide segmentation using A. Deblire’s implementation. For
each example, three images are given: the original image to the left, the segmentation
mask in the centre and to the right, the original image in which the pixels that do
not belong to the segmentation mask were replaced by white pixels.
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Figure 4.5: Examples of aggregate segmentation. See Figure 4.4 for explanations.

Amin 31 µm2

Amax 102 µm2

Cmin 0.7
Nmin 4

Table 4.1: Dispatching parameters presented in [Deb13]
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(a) Under-segmentation (b) Detection of several objects (c) Detection of another
cell included in the mask

Figure 4.6: Cases when the segmentation fails at providing accurate results for area
and circularity computations. For each example, images to the left and to the right
are respectively the original image with a mask representing the annotation shape
and the image resulting from the application of the segmentation mask.

In order to find values for those parameters, the author extracted the crops of the
cells annotated by the experts, applied to them one of the segmentation procedures
presented in Section 4.2.1, and finally computed the area and circularity of the
resulting shapes. While the author does not precise in the thesis which segmentation
procedure was applied, it is probably the second (i.e. pattern segmentation). Indeed,
as the first was designed to segment both patterns and cells, it would fail at isolating
an annotated cell located inside a pattern. While the idea behind this procedure
is sound, the geometrical features will probably not be as accurate as expected
because of segmentation imperfections. Typical cases when the segmentation fails
at providing accurate results are, for instance, cell under-segmentation (see Figure
4.6(a)) and detection of several objects instead of one. The second case can happen
either by splitting a cell in several sub-objects (see Figure 4.6(b)) or because the
expert’s annotation covers other cells (see Figure 4.6(c)).

However, one can assume that the author overcame those issues. Indeed, as
stated in the thesis, he generated the circularity and area histograms and then used
them to evaluate the thresholds presented in Table 4.1. However, the author made
a mistake in this process as he did not check whether those thresholds were valid
regarding patterns areas and circularities. Especially, are those dispatching rules
likely to dispatch cells as patterns or patterns as cells? In order to evaluate this
question, the following methodology was applied: crops of annotated patterns and
cells were extracted from Cytomine. The former were segmented using the first
segmentation and the latter with the second one. For each annotation, the convex
hull of the union between the segmented objects was taken as a temporary mask.
This operation allows handling the multi-objects detection problem and also, in
some cases, to mitigate the impact of under-segmentation on the resulting area.
Finally, in order to make sure that the temporary mask didn’t cover areas outside
of the expert’s annotation, the final mask was generated by taking the intersection
between the annotation mask and the temporary mask. This process is illustrated
in Figure 4.7.

The histograms given in Figures 4.8 and 4.9 respectively show the area and
circularity distributions of the segmented experts’ annotations. First, it appears
that, whatever the metric, there is a substantial overlapping between the cells’ and
patterns’ distributions. This has a major consequence for the dispatching procedure
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Figure 4.7: Cleaning process for area and circularity assessment.

presented above. Indeed, as it relies on simple thresholdings, it is ineffective at
separating the objects. Another observation is that the parameters given in Table
4.1 are not relevant as most of the cells would be dispatched as patterns with such
values. This observation is confirmed with the scatter plot shown in Figure 4.10. In
this plot, only few cells are effectively dispatched as such (see the blue box in the
top left corner of the plot), the others being dispatched as patterns. Given those
observations, it is clear that the dispatching procedure must be re-worked.

4.2.2.2 Improvement

As relying solely on geometrical properties is not a viable solution, an alternative
consists in using the objects’ crop image. Especially, the objects’ crop would be
classified into one of the dispatching categories (i.e. cell, pattern or other) using
the random subwindows image classification algorithm [MGW16] (this algorithm
is detailed in Appendix C). A drawback of this solution is that the dimensions of
the objects are completely ignored. Given that some patterns might have a similar
appearance than cells (colour and shape), this might lead to misclassification.

The avoid the dispatching problem induced by simple thresholdings, one could
include the geometrical information of the polygons into the learning and prediction
processes. Especially, using the ET-FL variant of the random subwindows algorithm,
the area and circularity would be appended to the feature vector generated from
the extra-trees classifier. This augmented feature vector would then be passed to
the SVM classifier for prediction. While intuitively, this solution seems appealing, it
might need to be refined a little more. Indeed, the number of features generated from
the extra-trees classifier is relatively large (e.g. for the models presented in Section
4.4.1, this number can reach 30000) and the geometrical features might therefore be
overlooked by the SVM classifier. To overcome this problem, a kernel that would
increase the contribution of the geometrical features could be used. Whereas this
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Figure 4.8: Area distributions of the segmented experts’ annotations.

Figure 4.9: Circularity distribution of the segmented experts’ annotations.
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Figure 4.10: Scatter plot, circularity versus area. Green and red dots correspond
respectively to cells and patterns. The blue box is the cell dispatching zone.

solution might yield better results than the first, it requires the experts’ annotations
of the learning set to be cleaned to avoid the problem mentioned in Section 4.1. Also,
it would require a non-negligible modification of the random subwindows algorithm.
As the goal is mostly to apply the framework and considering the amount of work
implied by this solution, it was considered out of the scope for this thesis and
geometrical features were not included among the inputs of the dispatching classifier.

4.2.2.3 Pattern processing dispatching

The dispatching strategy designed in [Deb13] for the pattern processing phase is
simpler. As the objects to be processed by this step are assumed to be cells, the
dispatcher filters the detected objects using their geometrical properties. All objects
having an area either less than Amin or greater than Amax or a circularity less than
Cmin are not dispatched the to cell classifier. As explained in previous sections, those
parameters are not reliable for dispatching and a new strategy must therefore be
defined. It should take into account the flaws of the second segmentation procedure.
Especially, it should eliminate the large patches segmented on ”dirty” patterns.
Typically, those are non-spherical (see Figure 4.5) and this property can be used to
filter them. Moreover, it might be interesting to filter small artefacts and this can be
done by filtering objects having a small area. The resulting dispatching rule is the
following: every object of which the area is less than A′ or of which the circularity
is less than C ′ are removed. Especially, A′ was set to 15µm2 and C ′ to 0.6. It can
be seen in Figures 4.8 and 4.9 that those thresholds allow capturing almost all cells.

4.2.3 Classification

As soon as objects are dispatched, they have to be classified. In [Deb13], the author
uses two classification models: one for cells and another one for patterns. For
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patterns, a ternary classifier is used and predicts the following classes: proliferative
pattern, non-proliferative pattern and other. The author states that the third class
is needed because with a binary classifier, some objects were classified as patterns
while they were not patterns. Hopefully, with the new dispatching procedure, those
objects will be eliminated before reaching the classifier. It was therefore decided to
use a binary classifier for performing this classification.

As far as the cell classifier is concerned, it predicts two classes: cells with in-
clusion and non-inclusion. In addition to the term cell with inclusion, the author
includes the pseudo inclusion in the positive class in order to avoid missing some
real inclusions that might look like a pseudo one.

The final classifiers used for this implementation are detailed in Section 4.4.1.

4.3 Implementation

Following the SLDC framework philosophy, the problem dependent components
have to be defined: the image representation, the segmentation procedures, the
dispatching rules and the classifiers. Whenever possible, the components were de-
veloped to be reusable for other applications within Cytomine. Those generic com-
ponents are coloured in blue in UML diagrams while the problem dependent com-
ponents are coloured in green.

4.3.1 Image representation

The first component to be defined is the actual representation of the images to be
processed, that is, the digitized microscope slides stored on the Cytomine platform.
This representation is implemented in the CytomineSlide class which stores an
ImageInstance1 object containing all the information about the slide including
its width, height and identifier. To prevent anyone from loading the full image
into memory, the implementation of the np image raises a NotImplementedError

exception.
In general, when the full image can be loaded into memory the default Tile class

can be used. In this case, as this operation is impossible, a class CytomineTile was
created to handle the tile image loading. Especially, the call to np image triggers
an HTTP request to the Cytomine server to fetch the corresponding image window.
If the request fails (e.g. HTTP error) or returns an invalid result (e.g. returned
image has an invalid size), a TileExtractionError is raised as advised in the doc-
umentation. The class CytomineTileBuilder was created to build CytomineTile

objects.
In order to reduce the overall execution time of the workflow, it is essential not

to execute two times a HTTP request for loading the same image window. To avoid
this, the class TileCache was developed. It implements a simple caching policy
using the local file system: when an image window is needed, the TileCache object
first checks whether this image was already downloaded and stored on the disk. If
that is the case, the request execution is bypassed and the image is loaded from

1The ImageInstance class is defined in the Cytomine Python client
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Figure 4.11: UML diagram - Cytomine image representation

the file. Otherwise, the image is fetched by calling the np image method of the
underlying tile and stored on the disk before being handed back to the caller. The
class also provides methods for adding an alpha mask to the returned image.

Some additional classes were developed to handle the addition of an alpha
mask to an image window (class CytomineMaskedWindow) and to a tile (classes
CytomineMaskedTile and CytomineMaskedTileBuilder). This feature is needed
for the pattern segmentation procedure which assumes that an alpha mask indicat-
ing the position of the pattern is passed with the numpy array. To avoid storing
an image representing the alpha mask into memory, the mask is represented by a
polygon.

The UML diagram of the package containing the image-related classes is shown
in Figure 4.11.

4.3.2 Classifier

In the context of the the thyroid problem, all classification tasks are performed
using the random subwindows algorithm [MGW16]. Especially, a Python imple-
mentation called Pyxit taken from Cytomine [Mar+16] was used. The central class
of this implementation is the PyxitClassifier class which provides a scikit-learn
like interface to the algorithm (i.e. the methods fit, transform, predict,...). In
order to use this class within the framework, a class PyxitClassifierAdapter was
developed. The predict batch method is implemented as follows.

First, the crops of the polygons passed to the method are fetched and stored on
the disk using a TileCache (thanks to the cache, the HTTP request is only executed
the first time the crops are requested). Because there can be a lot of polygons, the
fetching of the crops is parallelized and the number of available processes can be
specified at the construction of the PyxitClassifierAdapter object. In order to
reduce the serialization overhead, each available process is passed a set of polygons
(see Section 3.2.4.10). If some crops cannot be fetched for whatever reason, the
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Figure 4.12: UML diagram - Classifier

corresponding polygons are associated a class None and a probability 0. Moreover
the user is notified with the logger about the crops that couldn’t be fetched.

As Pyxit works with images stored on the disk, a list containing the file path of
the images to classify is generated and passed to the predict method. This method
implements the generation of the classification labels and probabilities. If a SVM
classifier was provided at construction of the PyxitClassifierAdapter object, then
the ET-FL variant of the random subwindows algorithm is used. That is, the Pyxit
classifier is used to generate the features that are passed to the SVM classifier for
predicting the labels. Otherwise, the variant that uses the extremely randomized
trees as direct classifier is used. Finally, the predict batch method aggregates the
results returned by the predict method with the labels and probabilities generated
for the polygons of which the crops couldn’t be fetched and return those to the caller.

This class also features a static method for constructing a PyxitClassifierAdapter
object from a serialized Pyxit model. Especially, the method deserializes the Pyxit
classifier as well as the SVM classifier if one is provided and passes them to the
adapter’s constructor. This method also sets the number of process to use for fetch-
ing the crops. If the number of available process is less than five, then all of them
are used to fetch the crops. Otherwise, five processes are used at most in order to
avoid overloading the Cytomine server.

The UML diagram of the PyxitClassifierAdapter class is shown in Figure
4.12.

4.3.3 Dispatching rules

As explained in Section 4.2.2, the chosen dispatching method relies on a classifier
which predicts the dispatching index. Especially, the classifier was built to predict
the label 0 for cell, 1 for pattern and 2 for other.

To take advantage of the features provided by the class PyxitClassifierAdapter
(i.e. caching, parallel fetching,...), it was reused and encapsulated in two classes
extending DispatchingRule. The implementation of the rules’ evaluate batch

method is therefore straightforward. It first calls the predict batch method of the
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Figure 4.13: UML diagram - Thyroid workflow dispatching rules

classifier adapter object and then generates a list of boolean values according to
the returned classification labels. For the first rule, CellRule, True is associated to
polygons of which the returned label is 0. For the second, AggregateRule, True is
associated with polygons of which the predicted label is 1. After a first run of the
algorithm, it appeared that despite the dispatch classifier, a lot small artefacts were
dispatched to the cells and patterns classifiers. Therefore, each rule was added a
filtering procedure which excludes all objects of which the area is less than a given
value.

Unfortunately, the fact that the dispatching is implemented with two rules im-
plies that the polygons corresponding to patterns and other objects are classified
twice. Indeed, because of the dispatching structure imposed by the framework,
the polygons that are not matched by the first rule are evaluated by the second.
This could be avoided by refactoring the framework or by implementing another
dispatching strategy.

The UML diagram containing the dispatching rule classes is shown in Figure
4.13.

4.3.4 Segmentation

The segmentation procedures were implemented in two classes, SlideSegmenter

and AggregateSegmenter. Both implementation were taken from Antoine Deblire’s
source code. Whereas the slide segmentation could be used almost directly without
modification, the recovered aggregate segmentation procedure did not work. It was
therefore re-implemented following the explanations provided in the master thesis as
well as the few comments present in the source code. After few tests, it appeared that
both segmentation procedures were rather slow because of the colour deconvolution.
Especially, to execute the colour deconvolution on a 4 mega-pixels image yielded
more than 2 seconds execution time. A first optimization pass was done over the
function in order to reduce its execution time by a factor two. The UML diagram
containing the segmenter classes is shown in Figure 4.14.
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Figure 4.14: UML diagram - Segmenter classes

4.3.5 Chaining

In order to implement the re-segmentation, the chaining package must be used.
First, an image provider must be defined to generate the CytomineSlide objects
to be processed. This logic is implemented in the SlideProvider class. Then, the
selection of the objects to be processed by the second workflow must be defined as a
WorkflowExecutor. Especially, the class AggregateWorkflowExecutor was imple-
mented to fulfill this role. The class defines the method get windows which imple-
ments the generation of CytomineMaskedWindow objects to be processed by the sec-
ond workflow. Moreover, it extends the class PolygonTranslatorWorkflowExecutor
because the polygons generated by this phase needs to be translated back into the
full image reference system. The final component to be defined is the post pro-
cessor which is passed all the detected objects and their classes. In the context
of the thyroid problem, the post processor should upload the generated polygons
and classes as annotations on the Cytomine platform. This logic is implemented in
the post process method of the ThyroidPostProcessor class. Unfortunately, the
Cytomine API does not provide any request for uploading annotations by batches
and each annotation has to be added with two HTTP requests: one for uploading
the geometry and another for uploading the predicted class and associated proba-
bility. To avoid waiting for each request to terminate before sending another one,
the process was parallelized. The UML diagram containing the chaining classes is
shown in Figure 4.15.

4.4 Performance analysis

4.4.1 Classification models

As explained in Section 4.2, three classifiers are used by the workflow. The first
detects whether an object is a cell, a pattern or another type of object. The second
classifies patterns as proliferative or non-proliferative and the last detects whether
cells contain an inclusion or not. The roles of these classifiers are illustrated in
Figure 4.16. As the main goal is to apply the framework to a real problem, those
classifiers were chosen quite arbitrarily based on intuition. In the long run, it might
be interesting to study a wider range of classifiers and to pick the best. Information
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Figure 4.15: UML diagram - Chaining classes

about the chosen classifiers including the terms associated with the classes, the
performances of the models,... are given in Sections 4.4.1.3, 4.4.1.4, 4.4.1.5 and
4.4.1.6. Before exploring the classifiers, the methodology followed for assessing the
models is presented in Sections 4.4.1.1 and 4.4.1.2.

4.4.1.1 Test set and metrics

In order to assess a supervised learning model, a classical approach is to split the
objects of the input set into a learning set on which the model is learned and test
set on which the error of the model is evaluated. The error extracted using this
procedure is called the generalization error and is a measure of how accurate the
predictions of the model will be on unseen data. Typically, when the number of
available objects in the input set is high, a valid splitting strategy consists in leav-
ing approximately 70 % of the objects in the learning set. The motivation of this
proportion is twofold. On the one hand, the learning process have enough data to
build relevant models. On the other hand, the test set contains enough samples
to make the assessment statistically relevant. However, the proportion is not the
only factor that needs to be taken into account. Especially, when the input data
is gathered from several sources, the split should be done to avoid overfitting the
idiosyncrasies of those sources. This can be done by placing the data generated from
some sources in the test set and the others into the learning set. Finally, for the as-
sessment to be relevant, both the test and the learning sets should contain instances
of all classes. This can be achieved by keeping the target variable’s distributions in
the learning and test sets close to that of the input set.

The first task performed when it came to build the assessment procedure was
therefore to split the input data, namely the experts’ annotations, into a test set and
a learning set. This was done following the guidelines presented above. Especially,
the test set is composed of images selected so that the proportion of annotations
it contains is approximately 30 % and the distribution of the various terms of the
ontology is close to their overall distribution in input set. Obviously, satisfying all
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Figure 4.16: Classifiers’ roles summary

those constraints at once is impossible given the discrete nature of the problem:

• the distributions can only be affected by moving an image into the test set or
out of it

• each image typically contains between 3 and 10 different terms in different
quantity

• some terms are contained in very few images. It is particularly true for the
Other subcategory. For instance, the term ”Macrophage” is contained in three
images only

The final split was performed manually. Indeed, due the terms distribution across
the images, a random generation was likely to yield a test set in which some terms
were missing. The construction process was rather simple: images were taken out
from the learning set one after another. When moving an image induced a major
imbalance, it was put back into the learning set and another image was taken out
instead until an acceptable distribution was reached. The final terms distribution
in the test set and learning set is shown in Table 4.2. It can be seen in this table
that some terms are slightly imbalanced (e.g. normal cells or artefacts). This is due
to the fact that modifying the split to balance those would have broken the balance
of more important terms such as cells with inclusion or proliferative patterns.

Now that the test set is built, the metrics that will be used for assessing the
models must be defined. In classification, the most common is the accuracy which
is the proportion of correctly classified objects. In the particular case of binary
classification (the target is either positive or negative), two common metrics are:

• recall: the number of true positive over the number of positive. Intuitively,
it is the ability of the classifier to find the positive objects.
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Class count and proportions LS/TS prop.
Input set LS TS LS TS

Terms Count % Count % Count % % %

C
el

l

NOS 874 14.76 567 13.85 307 16.81 64.87 35.13
Normal 954 16.11 548 13.38 406 22.23 57.44 42.56

Pseudo-inclusion 212 3.58 160 3.91 52 2.85 75.47 24.53
Ground glass 13 0.22 8 0.20 5 0.27 61.54 38.46

Grooves 194 3.28 144 3.52 50 2.74 74.23 25.77
Inclusion 738 12.46 522 12.75 216 11.83 70.73 29.27

P
a
tt

er
n Normal 798 13.48 584 14.26 214 11.72 73.18 26.82

Prolif. 761 12.85 540 13.19 221 12.10 70.96 29.04
Prolif. (minor) 300 5.07 225 5.49 75 4.11 75.00 25.00

O
th

er

Macrophage 273 4.61 155 3.79 118 6.46 56.78 43.22
Red blood 98 1.66 24 0.59 74 4.05 24.49 75.51

Polynuclear 226 3.82 177 4.32 49 2.68 78.32 21.68
Colloid 57 0.96 37 0.90 20 1.10 64.91 35.09
Artefact 286 4.83 281 6.86 5 0.27 98.25 1.75

Background 137 2.31 123 3.00 14 0.77 89.78 10.22

Total 5921 100 4095 100 1826 100 70.49 29.51

Images 61 43 18

Table 4.2: Terms distribution in the learning set and test set.

• precision: the number of true positive over the number of predicted positive.
Intuitively, it is the ability of the classifier not to classify positive objects as
negative.

All the previous metrics can be computed based the confusion matrix, a square
matrix of order N where N is the number of classification labels. Its element mij

contains the number of objects that are actually associated the ith label but were
predicted the jth one by a model. In order to have several indicators of the models
performances, all the metrics mentioned above were used.

4.4.1.2 Cross validation and model selection

The random subwindows algorithm has several parameters that can be tuned to
improve the model performances. It includes the parameters of the underlying
classifier such as the minimum number of objects required to split a node or the
maximum number of features to evaluate when looking for the best split in the
decision tree algorithm. The algorithm has also proper parameters such as the
minimum and maximum sizes of the windows to extract or the colourspace into which
the windows must be converted before being passed to the underlying classifier. The
complete list of parameters is given in Table 4.3.

In order to maximize the performances of the produced models, a tuning proce-
dure was implemented to extract the best combination of parameters. The procedure
creates a set of models using all the possible combinations of parameters values pro-
vided by the user. Each model is then assessed using cross-validation and the best
parameters are returned. Similarly to model assessment, the fact that annotations
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Name Classifier Description

pyxit min size Pyxit Minimum size proportion of the
windows to extract (relative to
the full image size).

pyxit max size Pyxit Maximum size proportion of
the windows to extract (relative
to the full image size).

colourspace Pyxit Colourspace into which the
windows must be converted be-
fore being passed to the un-
derlying classifier. Available
colourspaces are HSV and nor-
malized RGB

min sample split Extra-trees Minimum number of objects re-
quired to split a node

max features Extra-trees Maximum number of features
to evaluate when looking for the
best split in the decision tree al-
gorithm

C SVM SVM penalty parameter. Only
available when the ET-FL vari-
ant of the random subwindows
algorithm is used.

Table 4.3: Random subwindows algorithm parameters to tune

come from several images should be taken into account to avoid overfitting. Espe-
cially, the performance of a model were assessed using a cross-validation strategy
called leave one image out. Given a learning set containing N source images, each
image is taken out from the learning set in turn and the model is learned on the
N − 1 remaining images. The performance score of the model is then computed on
the taken out image. This process generates N scores which are averaged and the
resulting score is associated to the model. This process is illustrated in 4.17.

Finally, the full assessment procedure consists in splitting the dataset into a
learning set and a test set. Then, the best parameters are determined by cross-
validation on the learning set, a model is learned on the whole learning set with
the best parameters and this model is assessed on the test set using the metrics
presented in 4.4.1.1.

4.4.1.3 General comments about classifiers

For each required classifier, both variants of the random subwindows algorithm
were evaluated: the first variant where the extra-trees are used as direct classifier
(ET-DIC ), and the second where they are used as features learner to be fed to a
SVM classifier (ET-FL). The main motivation behind the choice of this algorithm
is its intrinsic genericity. Especially, images to be classified do not need to be
transformed or pre-processed and it typically provides relatively good results with
default parameters (see [MGW16]). Moreover, this algorithm was already applied
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Figure 4.17: Leave one image out cross-validation strategy (number of images N =
5)

in with success in another cytology application related to cervix uteri cancer (see
[Del+14]).

Both variants were evaluated on a first learning set containing only experts’
annotations and on a second which was augmented with some reviewed annotations
(see Section 2.2.1 for reviewing). Especially, the latter annotations were generated
by an execution the workflow on an image from the learning set and were reviewed
on Cytomine in an attempt to improve the classifiers performances.

As far as the parameters are concerned, a first cross-validation procedure was
applied to narrow the search space. Especially, this was applied for finding the
ranges in which the window minimum and maximum sizes should be taken. As
explained in [MGW16], small subwindows yield better results on images containing
highly repeatable patterns (e.g. architectural patterns) because they allow capturing
fine details. In contrast, larger windows work best on images in which the shape
is prevailing (e.g. cells). This intuition was confirmed by a first cross-validation
procedure as the best models for classifying cells were built using large windows
while small windows yielded better results for classifying patterns.

For the ET-FL variant, the parameter min sample split was not tuned. In-
deed, as suggested in [MGW16], it could be set to W

1000
where W is the number of

subwindows in the learning set. Particularly, this value prevents the extra-trees to
learn features that are too specific and also reduces the execution time compared
to that of a model for which the parameter was set to 1. Indeed, the former model
contains less leaf nodes which reduces the size of the features vector passed to the
SVM classifier. As far as the ET-DIC variant is concerned, the same parameters
was tuned with the following set of values:

{
1, W

1000
, W

100
, W

50
, W

20

}
.

The parameter max features was tuned whatever the variant and the same four

values were always provided:
{

1,
√
M, M

2
,M
}

where M is the number of features

passed to the underlying extra-trees classifier. As the dimensions of the resized
windows are 16 × 16, the number of features M equals 768 in this case. Those
four values were chosen to span over the range [1, 768] and

√
M is the default value
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suggested in [GEW06].

4.4.1.4 Pattern classifier

The pattern classifier is a binary model which predicts whether a pattern is prolif-
erative or not. The correspondence between the output classes and the terms of the
ontology is rather straightforward and is the following:

• Output positive (class 1):

– proliferative architectural pattern

– proliferative architectural pattern (minor sign)

• Output negative (class 0):

– normal follicular architectural pattern

The only terms used are the ones from the subcategory Pattern as all the objects
to be classified by this model are expected to be patterns. Indeed, other objects
have normally been filtered by the dispatch classifier. Luckily, this distribution of
terms yields some rather balanced learning set and test sets (see Table 4.4). As
patterns are usually large objects, only small window sizes were evaluated during
cross validation. All the evaluated parameters are given in Appendix D while the
one which yielded the better models are given in Table D.6. It seems that the HSV
colourspace is particularly well suited to the pattern classification problem.

The best models’ performances are given in Tables 4.5 and D.7 (the confusion
matrix can be found in Appendix D). All models perform relatively well. Especially,
almost all models exhibit an impressive recall of 96 % except for the ET-FL variant
with reviewed annotations of which the recall drops to 94 %.

As the performances are comparable, the model selected to be used for execut-
ing the workflow was the ET-DIC variant without reviewed annotations. Especially,
it was preferred because it executes faster than the ET-FL variant (see in Section
4.4.2.1) and also because the model supports natively generation of class probabili-
ties. While those probabilities can also be computed with the SVM layer, it is not
natively supported by the implementation used2 and requires further development.

4.4.1.5 Cell classifier

The cell classifier is a binary model which predicts whether a cell contains an inclu-
sion or not. As there are more terms related to cells, the correspondence between
the terms of the ontology and the classification labels is slightly more complex than
for the pattern classifier:

• Output positive (class 1):

– cell with inclusion

• Output negative (class 0):

2Class LinearSVC from scikit-learn which uses liblinear [Fan+08] under the hood.
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(a) Experts’ annotations

Prolif. Normal Total

LS 765 (56.71%) 584 (43.29%) 1349 (72.57%)

TS 296 (58.04%) 214 (41.96%) 510 (27.43%)

Total 1061 (57.07%) 798 (42.93%)

(b) Reviewed

Prolif. Normal Total

LS 908 (60.09%) 603 (39.91%) 1511 (74.76%)

TS 296 (58.04%) 214 (41.96%) 510 (25.24%)

Total 1061 (57.07%) 798 (42.93%)

Table 4.4: Pattern classifier. Dataset size.

ET-DIC ET-DIC (r) ET-FL ET-FL (r)

LS accuracy 0.8285 0.8224 0.8849 0.886

TS
accuracy 0.8664 0.8468 0.8664 0.8625

recall 0.9662 0.9628 0.9628 0.9493
precision 0.8314 0.8097 0.83333 0.8363

Table 4.5: Pattern classifier. Best model’s performance.

– cell with NOS

– pseudo-inclusion

– ground glass nuclei

– nuclear grooves

– normal cell

– red blood cell

– polynuclear

While for the pattern classifer, only objects from the Pattern subcategory were
used, the cell classifier is trained with two terms from the Other subcategory. This
was done because those two terms (i.e. red blood cell and polynuclear) corresponds
to objects that can be mistaken with actual cells. Especially, if those objects are
dispatched to the cell classifier, it has to be able to associate to them the negative
class. Choosing this mapping has nevertheless the drawback of emphasizing the
class imbalance. Table 4.6 shows that only 25 % of the objects input set are cells
with inclusion. For this classifier, the windows sizes were chosen relatively big (see
Table D.3) as the cells are small objects with few details and no repeatable patterns.

The performance expectations for this classifier are the following: the conse-
quences of the presence of cells with inclusion is such that those should not be
missed. Especially, recall should be as high as possible. Moreover, as the cells found
by the workflow would in practice be reviewed by physicians (before making a di-
agnosis), the number of false positive should also be kept as small as possible. This
would be expressed by a high precision. The best models’ performances are given in
Table 4.7 and D.8 (the confusion matrix can be found in Appendix D). Those results
show that the models do not meet the expectations. Indeed, whereas they exhibit a
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(a) Pseudo-inclusion

(b) Inclusion

Figure 4.18: Similarity between pseudo-inclusion and cells with inclusion

(a) Experts’ annotations

Inclusion Normal Total

LS 567 (26.37%) 1583 (73.63%) 2150 (64.97%)

TS 307 (26.49%) 852 (73.51%) 1159 (35.03%)

Total 874 (26.41%) 2435 (73.59%)

(b) Reviewed

Inclusion Normal Total

LS 571 (18.26%) 2556 (81.74%) 3127 (72.96%)

TS 307 (26.49%) 852 (73.51%) 1159 (27.04%)

Total 878 (20.49%) 3408 (79.51%)

Table 4.6: Cell classifier. Dataset size.

relatively good precision, the recall is far from being acceptable which indicates that
the models fail at detecting cells with inclusion. The performances are particularly
bad and worse than random guessing when the model is built using the ET-DIC
variant as only 13 % of the cells with inclusion are correctly labelled as such. The
results are better with the ET-FL variant as the recall rises to 50 % on the dataset
containing the reviewed annotations. While the increase is spectacular, the model
still performs very poorly as random guessing would yield approximately the same
recall.

Those poor performances might be explained by two elements. The first is the
similarity between the cells containing an inclusion and some cells of the negative
class. For instance, the cells with pseudo inclusion are very similar to cells with
inclusion as shown in Figure 4.18. The second is the class imbalance in the dataset. It
appears that adding the reviewed annotations in the learning has improved the recall
with the ET-FL variant. Therefore, increasing the amount of data by performing
more reviewing might be a solution to improve the classifier.

Because it exhibits the best recall score, the model ET-FL with reviewed anno-
tations should be used within the workflow.
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ET-DIC ET-DIC (r) ET-FL ET-FL (r)

LS accuracy 0.7645 0.7613 0.7813 0.7873

TS
accuracy 0.8333 0.8351 0.8696 0.8523

recall 0.1302 0.1349 0.4512 0.4930
precision 0.8235 0.8529 0.7462 0.6310

Table 4.7: Cell classifier. Best model’s performance.

4.4.1.6 Dispatching classifier

The dispatching classifier is a ternary model which predicts whether an object is a
cell, a pattern or another type of object. The correspondence between the classes
and the terms of the ontology is the following:

• Output pattern (class 0):

– proliferative architectural pattern

– proliferative architectural pattern (minor sign)

– normal follicular architectural pattern

• Output cell (class 1):

– cell with NOS

– pseudo-inclusion

– ground glass nuclei

– nuclear grooves

– normal cell

– red blood cell

– cell with inclusion

• Output other (class 2):

– background

– artefact

– macrophage

– polynuclear

– colloid

Mostly, the correspondence is expected. The only peculiarity is the association
of the term Red blood cell with the second output. Whereas this term is in the Other
subcategory, red blood cells look quite much like cells with inclusion. So it seemed
a good idea to bias the model so that it redirects those to the cell classifier in order
not to miss cells with inclusion.

As shown in Table 4.8, the terms distribution induces an imbalance. The third
class is particularly under-represented. However, the imbalance is not as critical
as for the cell classifier. As far as the windows dimensions are concerned, the first
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(a) Experts’ annotations

Pattern Cell Other Total

LS 1349 (32.94%) 1973 (48.18%) 773 (18.88%) 4095 (69.16%)

TS 510 (27.93%) 1110 (60.79%) 206 (11.28%) 2435 (30.84%)

Total 1859 (31.4%) 3083 (52.07%) 979 (0.1653%)

(b) Reviewed

Pattern Cell Other Total

LS 1511 (25.94%) 2950 (50.64%) 1364 (23.42%) 4095 (76.13%)

TS 510 (27.93%) 1110 (60.79%) 206 (11.28%) 2435 (23.87%)

Total 2021 (26.41%) 4060 (53.06%) 1570 (20.52%)

Table 4.8: Dispatch classifier. Dataset size.

ET-DIC ET-DIC (r) ET-FL ET-FL (r)

LS 0.8352 0.7428 0.8991 0.8084
TS 0.8498 0.8504 0.8910 0.88

Table 4.9: Dispatch classifier. Best model’s performance (the metrics is accuracy).

cross-validation revealed that using both small and large ones at the same time
yielded better results (see Table D.2 for the dimensions).

The best models’ performances are given in Table 4.9 and D.9. A first observation
is that all models seem to be relatively good at dispatching cells and patterns.
However, they fail at dispatching other objects. This is particularly true for the ET-
DIC variant without reviewed annotations which classifies all the other objects as
cells or patterns. The addition of reviewed annotations brings a slight improvement
as 4 % of the other objects are classified as such.

The ET-FL variant brings a non-negligible improvement as for the classification
of other objects as 46 % of them are correctly classified. This model also classifies
the patterns more precisely as only 4 % are misclassified against 11 % with the
ET-DIC variant. Those improvements come at the the cost of a slight degradation
of cell classification as 5 % of them are classified as other objects. The addition of
the reviewed annotations (which contain a majority of other objects, see Table 4.8)
increases the proportion of correctly classified other objects which reaches almost 60
%. Again, this comes at the cost increasing the misclassification rate for the other
classes which reaches approximately 8 % for both of them.

As it exhibits the best accuracy, the ET-FL variant without reviewed annotations
should be used within the workflow to dispatch cells.

4.4.2 Execution times

In order to assess the time performances of the workflow, several tests were per-
formed. The tables containing the execution times can be found in Appendix E.
Each run3 was assigned a number which can be found in the tables. Three series of
tests were performed:

3A ”run” is an execution of the workflow.

63



1. The first consisted in launching the first part of the workflow (first segmen-
tation) several times over the same image by varying the tile dimensions and
the number of available processes. Those tests provide a first illustration of
the performances of the framework as well as information about the efficiency
of the parallalelization. The results are presented in Section 4.4.2.1.

2. The second consisted in launching the workflow on images from the test set.
This allows assessing how the workflow performs on typical images containing
possibly a lot of objects. The results are presented in Section 4.4.2.2.

3. The last test was performed in order to assess the pattern segmentation. The
results are presented in Section 4.4.2.3.

4.4.2.1 Number of jobs and tile dimensions

The resulting execution times computed for this test series are given in Table E.1.
Each run was associated a number which is given in the table. More details about
the rows of Table E.1 can be found in Appendix E. In order to interpret correctly
the execution times, it is important to know that all runs did not have to download
the tiles and crops from the server as they benefited from the cached files saved by
the previous executions:

• Run 1: it was launched first and therefore had to download all tiles of dimen-
sions 512× 512 as well as the crops of the detected polygons.

• Run 4: it was launched after run 1 and therefore benefited from the cached
crops files. Still, it had to download all tiles of dimensions 1024× 1024.

In Figure 4.19 are shown execution times of the various phases of the workflow
on runs 1 and 2. For each run, two charts are given: all phases are displayed on the
first and Caching and Upload have been removed from the second. Those figures
provide a good illustration of the workflow performances. First, it can be seen that
the time required for fetching and caching the tiles dominates all the others except
Upload (see Figure 4.19(a)). For run 1, more than one hour and a half was needed to
download 29900 tiles (i.e. 1.3 Mb/s on average) while other steps combined (except
Upload) lasted approximately 27 minutes. For run 4, approximately one hour was
needed to fetch 7353 tiles (i.e. 2.5 Mb/s on average) while all other steps combined
lasted the same time as for run 1 (see Table E.1).

As far as the Upload phase is concerned, its execution time for runs 1 and 4
is more than ten times greater than for the other runs. Those abnormal execution
times can be explained by the fact that the Cytomine server was probably busy when
those runs were executed (indeed run 1 and 4 were executed one after another) and
was therefore slower at responding to incoming requests. As for the other runs, the
execution time is quite stable and is approximately 6 minutes (for uploading 6600
annotations). This can be seen in Figure 4.19(c) where the execution time of Upload
is comparable to that of the other steps.

The effects of the implemented crop caching policy can be seen on both Figures
4.19(d) and 4.19(b). In the first figure, one can see that the crops were downloaded
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(a) Run 1. Fetch and cache the tiles before executing
the workflow.

(b) Run 1. Without Upload and Caching.

(c) Run 2. Benefits from caching of run 1. (d) Run 2. Without network phases.

Figure 4.19: Execution times of the workflow phases for run 1 and 2 (executed with
tile dimensions of 512x512 and respectively 16 and 32 processes).

during Fetch 1 and that the subsequent fetching steps were almost instantaneous.
The fact that run 2 benefited from the caching manifests as the instantaneous exe-
cution of the step Fetch 1 in the second figure.

With regard to the other phases, it can be seen in Figures 4.19(b), 4.19(c) and
4.19(b) that step Cell disp. dominates the overall execution time of the workflow.
This can be explained by the usage of the ET-FL variant of the random subwindows
algorithm. Indeed, this variant relies on a SVM classifier which does not support par-
allelization. Therefore, whatever the number of available processes, the dispatching
is mostly executed on a single process. This observation also holds for the Pattern
disp. phase. Nevertheless, this phase is always shorter as most of the objects are
typically dispatched to the cell classifier (for image 728725), 70 % of the detected
objects are dispatched as cells and only 20 % as patterns. See Table in E.1).

The second longest phase after Cell disp. is the tile processing, LSL. It lasts
approximately 26 % of the overall execution time for runs 1 and 2. As explained
in Section 3.2.4.10, this phase is parallelized by the SLDC framework. The gain
provided by this parallelization is shown in Figure 4.20(a) where the overall execution
time of LSL is compared for all the runs presented in Table E.1. Especially, one can
see that increasing the number of process to 32 (starting from 16) makes LSL 1.4
faster with tiles of dimensions 512×512 and 1.5 times faster with tiles of dimensions
1024 × 1024. Moreover, quadrupling the number of process increases the speed by
a factor 2.4 and 2.6 for tiles of dimensions 512× 512 and 1024× 1024 respectively.
This increase is non-negligible and proves that parallelizing this step was worth it.
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(a) Evolution of the execution times of
the LSL phase when varying the number
of available processors

(b) Evolution of the execution times per
tile for each step of the LSL phase when
varying the number of available proces-
sors (tile dimensions 1024× 1024)

Figure 4.20: Parallelization of the Load Segment Locate (LSL) phase.

However, as explained in Section 3.3.4, the parallelization can still be improved.
In Figure 4.20(b) is presented the execution times of the sub-phases of LSL

averaged over all the processed tiles. The chart provides a surprising result. Indeed,
it seems that the execution times of the sub-phases increase with the number of
available processes. This phenomenon might be understandable for Loading which
manipulates files. Indeed, if several processes try to open different files at the same
time, the operating system might struggle to answer all those file opening requests
at once. However, this cannot explain why Segment and Location, which are purely
CPU-bound, experience the same phenomenon.

The impact of tile dimensions on the execution times of the sub-phases of LSL
is shown in Figure 4.21. The expectation is that all sub-phases are four times faster
on the tile of dimensions 512× 512 as those are four times smaller. The results are
slightly above the expectations for Segment and Location which are respectively 4.3
and 4.2 faster on the smaller tiles. As for Loading, it is surprisingly 6.4 times faster.
However, no conclusion can be taken from this result as the speed up factor for
Loading seems unstable. Indeed, it is 3.7 and 2.5 for 16 and 32 processes respectively.

The memory consumption of the executed programs is summarized in Figure
4.22. While the window dimensions does not seem to have significant influence over
the overall memory consumption, the number of jobs does. Indeed, when doubling
the available number of processes, the memory required to execute the program
approximately doubles too. This phenomenon is due to the fact that the same
objects are duplicated in sub-processes (e.g. tile objects). However, the facts that
the memory consumption grows linearly with the number of jobs is a sign that the
parallelization process can be improved at the framework level (see in Section 3.3.3).

4.4.2.2 First segmentation on the test set

For performing this test, the first phase of the workflow was launched on three images
of different dimensions: that is, run 7 on image 728744, run 8 on image 716528 and
run 9 on image 728725 which are respectively 18, 15 and 7 giga-pixels. For all runs,
the tile dimensions and the number of jobs were kept equal. Pyxit as direct classifier

66

http://beta.cytomine.be/#tabs-image-716498-728744-
http://beta.cytomine.be/#tabs-image-716498-716528-
http://beta.cytomine.be/#tabs-image-716498-728725-


Figure 4.21: Evolution of the execution times per tile for each step of the LSL phase
when the tile dimensions are changed (64 processes).

Figure 4.22: Maximum memory consumption with varying windows dimensions and
available number of processes.

67



Figure 4.23: Execution times per giga-pixels for the LSL phase of runs 7, 8 and 9.

was used both for dispatching and classification. Even if this choice will probably
yield bad results in term of detection, it allows evaluating the performances of the
algorithm with a classifier which executes in parallel. The resulting execution times
are given in Table E.2 in Appendix E.

As far as the LSL phase is concerned, its overall execution time seems grow
linearly with the size of the image. Especially, the execution times divided by the
number of giga-pixels (gp) in the images are given in Figure 4.23 which show that
the processing rate is approximately constant. This linearity indicates that the LSL
phase is scalable regarding the dimensions of the image.

The execution time of the Dispatch phase depends on the number of objects
found. This can be seen in the difference between the overall dispatching times for
runs 7 and 8 and for run 9. It is worth noting the efficiency of the dispatching
(fetching time excluded) due to the usage of the ET-DIC variant. Even with more
than 50000 polygons to dispatch, it remains faster than for the runs analysed in the
previous section (which had to dispatch 7000 polygons only). Again, the effect of
caching can be seen as the steps Phase 2, Phase 3 and Phase 4 are close to 0. For
run 8, the crops were downloaded at a rate of 1.82 Mb/s on average. The execution
times of the classification phase are comparable to that of the dispatching phase as
more or less the same number of objects have to be dispatched.

For all runs, most of the execution was spent doing network requests. Especially,
the tile caching time extremely high. The download rates for runs 7 and 8 are respec-
tively 760.79 kb/s and 582.92 kb/s. Given that the downloading was parallelized,
those rates indicates a problem either on the network, or in the implementation of
the download4.

Networking time put aside, the overall execution of the workflow lasted approx-
imately 18 minutes over the larger images (runs 7 and 8) and 7 minutes for the
smallest one (run 9).

4.4.2.3 Second segmentation on the test set

Because of a current limitation of the framework, the execution time of the second
phase of the workflow is relatively long. Indeed, all patterns are processed one after
another. Because of this limitation, the second phase was tested on two images only.

4The download is implemented using a Python library provided by Cytomine
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(a) Execution times on patterns detected by
run 10.

(b) Execution times on patterns detected by
run 11.

Figure 4.24: Histograms showing execution times of the second workflow on detected
patterns.

The resulting execution times are given in Table E.3 in Appendix E. The fields of
the table, which differs from the ones of the previous execution times tables, are
also described in this appendix.

Figures 4.24(a) and 4.24(b) show histograms of the second workflow execution
times on patterns detected by run 10 and 11 respectively. Especially, in both cases,
one can see that the majority of the patterns were processed in between 1 and
5 seconds. This tends to indicate that a majority of the processed patterns were
relatively small (as execution time for the processing of a pattern is proportional to
its dimensions).

In Figure 4.25 are given the average execution times of the phases of the pattern
processing workflow. The first observation is that the LSL and Classify phases dom-
inate the overall execution time. Indeed, in this case, the parallelization overhead
is particularly significant as the patterns to process are relatively small. There-
fore, most of the time is spent spawning the processes and passing them some data
(via serialization) instead of performing effective computations. A solution to this
problem is addressed in Section 3.3.3.

Otherwise, it can be seen that the choice of a dispatching policy which relies
exclusively on areas and circularities has been greatly beneficial in terms of execution
times. Indeed, the dispatching typically lasts 1 ms which is negligible compared to
LSL and Classify.

4.4.3 Detection

This section aims at assessing the detection performances of the developed workflow.
Before starting the analysis, the expectations are that the detection power will not
be particularly impressive because the various components composing the workflow
(segmentations procedures, classifiers,...) still presents some flaws. However, the
primary goal was less to produce a production-ready solution to the thyroid case
than to assess the performances of the framework. The main point of this section
is therefore to provide an idea about what is working or not in order to provide a
baseline for future work on the thyroid case.
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Figure 4.25: Average execution times of the phases of the pattern processing work-
flow for runs 10 and 11.

As the amount of generated annotations is high, an exhaustive assessment is
impossible. Moreover, an accurate feedback could only be provided by cytopathol-
ogists. Therefore the assessment is broken down in two parts. The first consists in
using the experts’ annotations already present on the analysed slides and to check
whether the workflow was able to find those objects and to classify them correctly.
The results are presented in Section 4.4.3.1. The second consists in assessing visu-
ally the performances. In Sections 4.4.3.2 and 4.4.3.3 are presented respectively the
results for slide processing and pattern processing workflows.

4.4.3.1 Existing annotations

The checking was performed manually on the two images which were applied the
full workflow (i.e. 728725 and 716258). The first contained exclusively proliferative
patterns annotations (and one with minor signs) and all of them (28) were found
and classified as proliferative. The second contained exclusively nuclear features
embedded inside patterns:

• 11 nuclear grooves : 1 was found and classified as normal, 7 were found and
classified as normal but were significantly under-segmented and 3 were missed

• 15 cells with NOS : 2 were found and classified as normal, 9 were found and
classified as normal but were significantly under-segmented and 4 were missed

• 1 cell with inclusion: missed

• 1 ground glass : missed

While the number of checked annotations is not significant, the results obtained
here provide already an idea about the performance of the workflow. It seems
that the workflow is able to detect, dispatch and classify proliferative architectural
patterns correctly. But, it seems to fail at segmenting embedded cells in general as
the resulting annotations are typically under-segmented.

4.4.3.2 Slide processing workflow

As said in Section 4.4.3.1, the workflow seems to succeed at detecting architectural
pattern. In Figure 4.26 are given four examples of zones where patterns were suc-
cessfully segmented and dispatched by the workflow. However, a first problem can
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be seen in the first example where a zone is not included in the annotation for the
upper right pattern. Segmentation seems to have difficulties when darker regions
are is contained in a pattern. This might be due to a too high staining concentration
or simply to overlapping cells. In this specific case, it might not be a problem as
some other parts of the same pattern were detected but it could happen that the
full pattern is darker in which case it would be missed.

While the patterns presented in Figure 4.26 were all successfully dispatched to
the pattern classifier, there are some cases when patterns are dispatched to the cell
classifier. Some examples are given in Figure 4.27. Typically, those patterns have
similarities with cells: they are relatively circular and their colour is generally dark
and uniform. This colouration is generally due to a high concentration of overlapping
cells.

Patterns are generally classified as proliferative (i.e. 97 % for both runs 10 and
11) which can be seen in Figure 4.26 where only two patterns are classified as non-
proliferative. Some examples of patterns classified as non-proliferative are given in
Figure 4.28. One can see that those are typically either very clean patterns or small
clusters of cells. While the pattern classifier exhibited promising performances when
evaluated by cross-validation, it seems not to perform so well on workflow-generated
annotations as it probably classifies too many pattern as proliferative (this claim
should be confirmed or invalidated by experts). This failure might be explained by
the variations between human and computer generated annotations.

4.4.3.3 Pattern processing workflow

In Section 4.2.1, few examples of successful and failing pattern segmentations were
given. Especially, it seemed that the segmentation procedure was able to extract
cells from clean patterns rather efficiently but that it failed on patterns containing a
lot of overlapping cells or with high staining concentration. Those observations are
confirmed here: examples of successful segmentations are given in Figure 4.29. On
those figures, very few cells are under-segmented or missed and very few overlapping
cells are detected as a single one. In terms of classification, the performances are
also quite good in this case as almost all cells are classified as normal cells. There
is only one false positive in Figure 4.29(b) as a cell with inclusion is detected.

Some examples of failing segmentation and/or classification are given in Figure
4.30. Especially, in example (a) and (b), cells overlapping causes the workflow to
fail at finding the cells. In those cases, the segmentation probably detected large
patches but those were filtered because their circularities were too low. In example
(c), the segmentation seems to fail for no apparent reason as cells are almost all
under-segmented. The fact that cells in this pattern are a little less concentrated
in stain than usual which prevents the concentration image produce by the colour
deconvolution to highlight the cell presence might be an explanation.

As far as classification is concerned, approximately 11 % and 15 % of all detected
cells were classified as containing an inclusion for run 10 and 11 respectively. Given
that the segmentation procedure typically fails at segmented cells with inclusion,
most of those are probably false positives. An example of misclassification in a
pattern is given in Figure 4.31 and typical appearance of classified cells are given
in Figures 4.32(a) and 4.32(b) which respectively shows normal cells and cells with
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Figure 4.26: Successful pattern detection. For each example, to the left is given the
initial image and to the right, the image on which was added annotations generated
by the workflow. Burgundy and green respectively stands for proliferative and non-
proliferative patterns.
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Figure 4.27: Patterns dispatched erroneously to the cell classifier.

Figure 4.28: Some of the few objects dispatched as non-proliferative patterns and
classified as non-proliferative.

inclusion. Especially, one can see that detected cells with inclusion are actually nor-
mal ones and that there is a visible staining variation between both classes (maybe
this variation was learned by the classifier by some means and induces the poor
performances).

4.5 Improvements and future works

In this section are presented tracks that could be followed in order to improve the
performances of the workflow both in term of execution times and quality of the
information produced (i.e. successful detection of cell with inclusion and proliferative
patterns). The improvements could be made at the framework level are presented
in Section 3.3.

4.5.1 Network overhead

The tests performed in Section 4.4.2 have shown that a majority of the execution
time of the workflow is spent exchanging information with the Cytomine server.
The amount of time needed for downloading the tiles and crops is particularly high.
Optimizing the way the workflow communicates with the server would be a major
improvement. For instance, a software component could be built for generating
windows from a disk representation of the full image (either as a single file or divided
into several). This component could then be used by the workflow for generating
tiles and crops windows. As all information would be fetched from disk, the costly
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(a) Example 1 - The detected pattern.

(b) Example 1 - The detected cells.

(c) To the left the detected pattern and to the right the detected cells.

Figure 4.29: Examples of successful pattern segmentation. Normal cells are coloured
in green and cells with inclusions in orange.

74



(a) Overlapping

(b) Overlapping

(c) Staining variation

Figure 4.30: Examples of failed detection due to overlapping and staining variations.
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Figure 4.31: Example of cells misclassification in segmented pattern (normal cells
are in green, cells with inclusion are in orange).

network requests would be avoided. Still the image representation should be created
before launching the framework which implies sending requests. However the process
could be optimized by downloading the full image once instead of fetching tiles and
crops independently.

4.5.2 Segmentation

As explained in Section 4.2.1, the segmentation procedures developed by Antoine
Deblire in [Deb13] presents some flaws. As segmentation is the step where the de-
tection is actually carried out, it should be as precise as possible. As for the the first
procedure, the lack of robustness to staining variation and the under-segmentation
should be addressed in priority. As far as the second procedure is concerned, the
most important problem is the under-segmentation of cell with inclusions (see Fig-
ure 4.6(a)) as it prevents the subsequent steps of the workflow to detect them. The
splitting of cells in several objects should also be addressed.

Fixing those issues might be done by improving the segmentation procedures
developed by Antoine Deblire or by switching to a machine learning-based segmen-
tation scheme.

4.5.3 Models

In order to dispatch polygons and to classify cells and patterns, some classifiers
were designed. Especially, this design consisted in defining a certain number of
output classes and to assign a set of terms of the ontology to each class. Then, both
variants of the random subwindows algorithm were used to build the classifiers and
those were assessed on a test set.

Among the generated models, some performs better than others. This is partic-
ularly true for the pattern classifier which seems very efficient at detecting whether
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(a) Classified as normal cells.

(b) Classified as cells with inclusion.

Figure 4.32: Typical appearance of classified cells (with probabilities).
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a pattern is proliferative. The dispatch classifier also provides good results even if
it tends to misclassify objects which are neither pattern, nor cell. As for the cell
classifier, it completely fails at detecting whether a cell contains an inclusion or not.
However, the models seemed to perform differently on annotations generated by the
workflow. For instance, the pattern classifier tends to always classify large patterns
as proliferative even if they are not. Also, the dispatcher classifier sometimes miss
patterns by classifying the as cells.

Obviously, improving the classifiers would be very beneficial as it would result
in an increased overall accuracy of the workflow. This can be done at several lev-
els. First, it seems that the disparities between annotations made by the workflow
and by the experts have an effect on the performances of the models. A possible
improvement would be to generate a large dataset containing reviewed workflow an-
notations and to train and test the models on those annotations. If it appears that
some classes are imbalanced in this dataset, some data augmentation techniques
(e.g. rotation, mirroring) could be used to reduce the imbalance.

The classifiers presented in Section 4.4.1 were chosen quite arbitrarily, it would be
interesting to study variations of those classifiers. First, it would be worth studying
the performances of other learning method such as deep learning or boosting. Then,
variations could be introduced by changing the assignment of terms to the various
output classes. For instance, as pseudo-inclusions are very similar to real inclusion it
would be worth moving this term to the positive class of the cell classifier. Another
variation would be to formulate the classification problems differently. For instance,
instead of formulating the pattern classification as a binary problem, the model
could predict the terms of the Pattern subcategory directly. The effects of those
variations on the performances should then be studied.
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Chapter 5

Conclusion

This thesis proposes SLDC, a generic framework for object detection and classifi-
cation in mutli-gigapixel images. It provides implementers with a concise way of
formulating their algorithm by declaring only problem dependent-components: seg-
mentation procedures and classification models. Behind the scenes, the framework
takes care of problem-independent concerns. For instance, in order to avoid loading
the full image into memory, it splits this image in tiles which are processed inde-
pendently. Parallelism is also encapsulated by the framework which applies it to
accelerate tiles processing. Are also provided: a powerful and customizable logging
system informing the user about errors and overall progress, a way of executing
several workflows one after another on a same image and robustness so that errors
of which the impact is negligible does not stop the whole program. The framework
is available on GitHub as a Python library.

The framework was then applied to a real-world problem, thyroid nodule ma-
lignancy diagnosis, in order to assess its performances. Especially, a workflow de-
veloped for this problem in a previous master thesis was analysed, improved and
re-implemented using the framework.

The results are promising: the effective execution time of the workflow was less
than 10 minutes on a 8 gigapixels image (executed on 32 processes). This time
is mostly due to design choice linked to the implementation and the framework
only induces a negligible overhead. Some improvements can be done both at the
framework and workflow levels. Especially, some other operations of the former
could be parallelized and the current parallelization could be optimized.

As far as the thyroid case is concerned, the developed workflow does not provide
a production-ready solution yet because it sometimes fails at detecting objects of
interest and produces an important number of false positives. However, the analysis
provided in this thesis already points out elements which needs to be improved
(segmentation procedures, classification models,...) providing a baseline for any
further development on this case.
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Appendix A

Tile topology

As presented in Section 3.2.4.1, the tile topology objects associate unique increasing
identifiers to tiles. Using this representation allows to reach a O(1) time complexity
for all the methods of the class TileTopology. Indeed, the results produced by
those methods can be computed using simple formulas. In the following formulas, i
refers to a tile identifier:

• The number trow of tiles on a row is given by:

trow =


⌈
w − op
wm − op

⌉
, if w > wm

1 , otherwise
(A.1)

• The number tcol of tiles on a column is given by Equation A.1 applied to the
image height h and maximum tile height hm instead of w and wm.

• The total number t of tiles in the tile topology is simply trow × tcol.

• The neighbour tiles identifiers can be obtained by performing subtractions and
additions. For instance, for a tile which is not on the edge of the image, the
identifiers of its left, top, right and bottom neighbours are respectively i− 1,
i− trow, i+ 1, i+ trow.

• The tile offset (toff,x, toff,y) can be retrieved as follows:

toff,x = (trow − op)× [(i− 1) mod trow] (A.2)

toff,y = (tcol − op)×
⌊
i− 1

trow

⌋
(A.3)
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Appendix B

Ontology

The ontology associated with the Thyroid project on Cytomine is the following:

1. Architectural patterns:

• Normal follicular architectural pattern

• Proliferative follicular architectural pattern

• Proliferative follicular architectural pattern (minor sign)

2. Nuclear features:

• Papillary cell NOS

• Normal follicular cells

• Normal follicular cell with pseudo-inclusion (artefact)

• Papillary cell with ground glass nuclei

• Papillary cell with nuclear grooves

• Papillary cell with inclusion

3. Others:

• Macrophages

• Red blood cells

• PN (polynuclear)

• Colloid

• Artefacts

• Background
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Appendix C

ET-FL and ET-DIC image
classifiers

Random subwindows [MGW16] is an image classification algorithm. The first step
of the algorithm consists in transforming the N input images. This is done by
extracting a set of Nw random subwindows from each image. A random subwindow
is a square patch of random size extracted at a random position in an image. The
extracted windows are then resized to a fixed size patch (w, h). Those transformation
operations generates a dataset containing N ×Nw objects and w × h attributes.

The second step consists in passing this dataset to a classifier which will actually
predict the image’s classification label from those subwindows. In [MGW16], two
classification methods are proposed.

The first uses extremely randomized trees [GEW06] as direct classifier: that is,
each window is predicted a label and the full image label is determined by a majority
vote over the predicted classes of this image’s windows.

The second variant uses extremely randomized trees as feature learner rather
than a direct classifier and relies on a SVM classifier to produce the prediction. In
this variant each image is represented as a vector of which the dimensionality equals
the number of terminal nodes in the ensemble of randomized trees and where the ith

feature is the number of windows that reached the ith leaf node of the forest divided
by the total number of windows. This vector is then passed to the SVM classifier
to predict the image classification label.
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Appendix D

Cross validation

This chapter presents the parameters that were tuned by the cross-validation proce-
dure presented in Section 4.4.1.2. Each classifier was built using the two variants of
the random subwindows algorithm , ET-FL and ET-DIC, and for each variant, the
model was learned on two different learning sets: one with the reviewed annotations
and one without. The complete lists of parameters are given in Figure D.1 for the
dispatching classifier, in Figure D.3 for the cell classifier and in Figure D.5 for the
pattern classifier.

Parameters ET-DIC ET-DIC (r) ET-FL ET-FL (r)
window size (0.3, 0.8), (0.3, 1.0), (0.5, 0.8), (0.5, 1.0)
colorspace HSV, normalized RGB

min sample split
{1, 91, 906, {1, 291, 2913

91 291
1812, 4530} 5825, 14563}

max features {1, 28, 384, 768}
C / / {0.1, 1}

Table D.1: Dispatch classifier. Tuned parameters.
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Parameters ET-DIC ET-DIC (r) ET-FL ET-FL (r)

pyxit min size 0.5 0.5 0.3 0.3
pyxit max size 0.8 0.8 0.8 0.8
colorspace TRGB TRGB HSV HSV

min sample split 1 1 91 232
max features 1 1 1 1

C / / 1.0 1.0

Table D.2: Dispatch classifier. Best model’s parameters.

Parameters ET-DIC ET-DIC (r) ET-FL ET-FL (r)
window size (0.6, 0.7), (0.6, 0.8)
colorspace HSV, normalized RGB

min sample split
{1, 108, 1075, {1, 156, 1564

108 156
2150, 5375} 3127, 7818}

max features {1, 28, 384, 768}
C / / {0.1, 1}

Table D.3: Cell classifier. Tuned parameters.

Parameters ET-DIC ET-DIC (r) ET-FL ET-FL (r)

pyxit min size 0.6 0.7 0.6 0.6
pyxit max size 0.8 0.8 0.8 0.8
colorspace HSV HSV HSV TRGB

min sample split 1 1 108 156
max features 1 1 1 1

C / / 0.1 1.0

Table D.4: Cell classifier. Best model’s parameters.

Parameters ET-DIC ET-DIC (r) ET-FL ET-FL (r)
window size (0.2, 0.4), (0.2, 0.3)
colorspace HSV, normalized RGB

min sample split
{1, 67, 675, {1, 76, 756

91 291
1349, 3373} 1511, 3778}

max features {1, 28, 384, 768}
C / / {0.1, 1}

Table D.5: Pattern classifier. Tuned parameters.

Parameters ET-DIC ET-DIC (r) ET-FL ET-FL (r)

pyxit min size 0.3 0.2 0.2 0.2
pyxit max size 0.4 0.4 0.4 0.4
colorspace HSV HSV HSV HSV

min sample split 1 1 67 76
max features 1 1 1 1

C / / 0.1 1.0

Table D.6: Pattern classifier. Best model’s parameters.
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(a) ET-DIC

Normal Prolif.

Normal 155 (30.45%) 58 (11.39%)

Prolif. 10 (1.96%) 286 (56.19%)

(b) ET-DIC (reviewed)

Normal Prolif.

Normal 146 (28.68%) 67 (13.16%)

Prolif. 11 (2.16%) 287 (55.99%)

(c) ET-FL

Normal Prolif.

Normal 156 (30.65%) 57 (11.20%)

Prolif. 11 (2.16%) 285 (55.99%)

(d) ET-FL (reviewed)

Normal Prolif.

Normal 158 (31.04%) 55 (10.81%)

Prolif. 15 (2.95%) 281 (55.21%)

Table D.7: Pattern classifier. Confusion matrices.

(a) ET-DIC

Normal Prolif.

Normal 937 (80.92%) 6 (0.52%)

Prolif. 187 (16.15%) 28 (2.42%)

(b) ET-DIC (reviewed)

Normal Prolif.

Normal 938 (81.00%) 5 (0.43%)

Prolif. 186 (16.06%) 29 (2.50%)

(c) ET-FL

Normal Prolif.

Normal 910 (78.58%) 33 (2.85%)

Prolif. 118 (10.19%) 97 (8.38%)

(d) ET-FL (reviewed)

Normal Prolif.

Normal 881 (76.08%) 62 (5.35%)

Prolif. 109 (9.41%) 106 (9.15%)

Table D.8: Cell classifier. Confusion matrices.

(a) ET-DIC

Pattern Cell Other

Pattern 453 (24.82%) 57 (3.12%) 0 (0.0%)

Cell 11 (0.60%) 1098 (60.16%) 0 (0.0%)

Other 34 (1.86%) 172 (9.42%) 0 (0.0%)

(b) ET-DIC (reviewed)

Pattern Cell Other

Pattern 460 (25.21%) 41 (2.25%) 5 (0.49%)

Cell 22 (1.21%) 1084 (59.40%) 3 (0.16%)

Other 36 (1.97%) 162 (8.88%) 8 (0.44%)

(c) ET-FL

Pattern Cell Other

Pattern 492 (26.96%) 12 (0.66%) 6 (0.33%)

Cell 12 (0.66%) 1045 (57.26%) 52 (2.85%)

Other 30 (1.64%) 87 (4.77%) 89 (4.88%)

(d) ET-FL (reviewed)

Pattern Cell Other

Pattern 468 (25.64%) 16 (0.88%) 26 (1.42%)

Cell 29 (1.59%) 1018 (55.78%) 62 (3.40%)

Other 23 (1.26%) 63 (3.45%) 120 (6.58%)

Table D.9: Dispatch classifier. Confusion matrices.
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Appendix E

Execution times

In Tables E.1, ..., are given detailed execution times for executions of the workflow
on several images. All execution times are given in seconds. More details about the
fields of Tables E.1 and E.2 are given hereafter:

1. Run information: global information about the run

• Run number : a number associated with the execution in order to ease
referencing those runs in the thesis

• Image width and height : width and height (in pixels) of the image pro-
cessed by the run

• Tile width and height : width and height (in pixels) of the tiles used by
the tile topology to break down the images in smaller chunks

• Tiles : number of tiles containing in the topology

• Jobs : number of processed assigned to the execution

• RAM : maximum amount of memory available for the run to execute

2. Polygons: information about the polygons found by the run

• Found : number of polygons found across all tiles

• Merged : number of polygons resulting from the merging phase

• Cell : number of polygons dispatched to the cell classifier

• Pattern: number of polygons dispatched to the pattern classifier

• Dispatched : total number of dispatched polygons

3. L-S-L: execution times of the Load-Segment-Locate phase. This phase is
parallelized.

• Loading : total amount of time for loading tiles into memory (on separate
processes)

• Segment : total amount of time for segmenting the tiles (on separate
processes)

• Location: total amount of time for locating polygons in segmented tiles
(on separate processes)
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• Overall : actual amount of time for processing all the tiles (wall-clock
time)

4. Dispatching: execution times of the dispatching phase

• Cell model : variant of the random subwindows algorithm used for dis-
patching polygons

• Fetch 1 : times needed for fetching the crops of the polygons to dispatch
from the Cytomine server

• Cells : amount of time needed for finding whether the polygons should be
dispatched to the cell classifier or not

• Fetch 2 : time needed for fetching the crops of the polygons to dispatch
to the pattern classifier. Normally, it should always be small as all the
crops have already been downloaded and cached by the Fetch 1 step

• Patterns : amount of time for finding whether the polygons should be
dispatched to the pattern classifier or not

• Overall : total amount of time for dispatching the polygons

5. Classification: execution times of the classification phase

• Fetch 3 : times needed for fetching the crops of the polygons to be pro-
cessed by the cell classifier. As for Fetch 2, those times should be low.

• Cells : amount of time for classifying the cells

• Fetch 4 : times needed for fetching the crops of the polygons to be pro-
cessed by the cell classifier. As for Fetch 2, those times should be low.

• Patterns : amount of time for classifying patterns

• Overall : total amount of time for classifying the dispatched polygons

6. Net.: for Network, time spent for sending network requests and waiting for
responses

• Caching : amount of time needed for fetching and caching the tiles of the
topology

• Upload : amount of time needed for uploading the dispatched polygons to
the Cytomine server

7. Total:

• Not net. 1 : total execution time of the run from which was deduced the
Caching, Upload, Fetch 1, Fetch 2, Fetch 3 and Fetch 4 execution times

• Not net. 2 : total execution time of the run from which was deduced the
Caching and Upload execution times.

• Overall : total execution time of the run. Might not equal the sum of
the various steps executions times. Indeed, some operations performed
between those steps are not included in the corresponding execution times

More details about the fields of Table E.3 are given hereafter
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R
u

n
in

fo
rm

a
ti

on

Run nb. 1 2 3 4 5 6
Image 728725 728725 728725 728725 728725 728725
Width 131072 131072 131072 131072 131072 131072
Height 57856 57856 57856 57856 57856 57856

Tile width 512 512 512 1024 1024 1024
Tile height 512 512 512 1024 1024 1024

Tiles 29900 29900 29900 7353 7353 7353
Jobs 16 32 64 16 32 64

RAM (Go) 22,37 50,77 72,48 21,56 41,74 73,60

P
o
ly

go
n

s

Found 10009 10009 10009 8418 8418 8418
Merged 7294 7294 7294 7195 7195 7195

Cell 5172 5169 5169 5141 5118 5128
Pattern 1581 1567 1572 1528 1540 1554

Dispatched 6753 6736 6741 6669 6658 6682

L
S

L

Loading 593.145 1544.394 773.857 537.775 951.596 1210.165
Segment 4801.758 6736.784 7321.667 5148.477 7376.851 7757.463
Location 2083.925 2492.705 2472.753 2033.105 2427.312 2690.361
Overall 476.952 348.405 199.245 536.385 351.635 206.755

Merging 14.324 14.451 18.086 40.640 40.605 40.774

D
is

p
at

ch
in

g

Model ET-FL ET-FL ET-FL ET-FL ET-FL ET-FL
Fetch 1 251.098 5.148 1.678 108.064 5.766 1.485
Cells 765.858 758.031 739.323 762.242 758.993 741.434

Fetch 2 0.750 1.079 0.959 1.077 0.860 0.830
Patterns 112.861 140.930 135.782 142.667 141.502 137.354
Overall 1130.706 905.329 877.897 1014.201 907.267 881.252

C
la

ss
ifi

ca
ti

on

Model ET-DIC ET-DIC ET-DIC ET-DIC ET-DIC ET-DIC
Fetch 3 1.372 1.602 1.664 1.200 1.431 1.167
Cells 19.248 14.213 12.614 20.849 14.141 12.165

Model ET-DIC ET-DIC ET-DIC ET-DIC ET-DIC ET-DIC
Fetch 4 0.667 0.729 0.851 0.582 0.781 0.623
Patterns 7.527 5.639 4.978 7.465 5.212 5.136
Overall 28.865 22.240 20.162 30.149 21.622 19.149

N
et

. Caching 6193.270 27.953 4.178 3858.679 10.786 4.255
Upload 4993.832 444.564 444.000 4039.734 471.113 435.173

T
ot

al

Not net. 1 1286,466 1143,162 976,950 1369,459 1172,111 1007,756
Not net. 2 1652.464 1291.571 1116.922 1621.971 1321.591 1148.385
Overall 12839.566 1764.088 1565.100 9520.385 1803.489 1587.814

Table E.1: Effects of varying the tile sizes and the available number processes on
the execution times. Test image (728725) has dimensions 57856× 131072.
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u

n
in

fo
rm

at
io

n

Run nb. 7 8 9
Image 728744 716528 728725
Width 172032 163840 131072
Height 104704 95744 57856

Tile width 1024 1024 1024
Tile height 1024 1024 1024

Tiles 17510 15390 7353
Jobs 32 32 32

RAM (Go) 79.45 73.13 66.38

P
ol

y
g
on

s

Found 57266 45617 8418
Merged 54098 42294 7195

Cell 42782 33042 5703
Pattern 6274 6351 1079

Dispatched 49056 39393 6782

L
S

L

Loading 1521.482 1395.434 968.262
Segment 16492.846 13601.847 6378.335
Location 5582.815 4963.792 2406.242
Overall 757.256 670.970 351.508

Merging 102.940 183.515 40.991

D
is

p
at

ch
in

g

Model ET-DIC ET-DIC ET-DIC
Fetch 1 2498.633 1189.211 12.092
Cells 139.267 119.410 25.621

Fetch 2 1.813 1.434 0.570
Patterns 21.725 21.999 6.882
Overall 881.252 1332.723 45.320

C
la

ss
ifi

ca
ti

on

Model ET-DIC ET-DIC ET-DIC
Fetch 3 9.052 5.620 1.389
Cells 104.618 86.905 15.706

Model ET-DIC ET-DIC ET-DIC
Fetch 4 1.804 1.352 0.469
Patterns 16.929 19.138 6.058
Overall 132.793 113.265 23.678

N
et

. Caching 29349.127 33666.674 16.729
Uploading 3105.667 16592.120 450.024

T
ot

al

Not net. 1 1145.342 1103.856 447.475
Not net. 2 3656.644 2301.474 461.995
Overall 36111.438 52560.267 928.747

Table E.2: Typical executions of the workflow (slide processing only). Execution
times are given in seconds.
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1. Run information: same as for Tables E.1 and E.2

2. Slide proc.: information about execution of the first phase, i.e. slide process-
ing

• Poly.: number of polygons found and dispatched by the phase

• LSL: total execution time for the Load/Segment/Locate phase

• Merging : total execution time for the merging phase

• Dispatch: total execution time for the dispatch phase

• Classify : total execution time for the classify phase

• Total : total duration of the slide processing phase

3. Pattern proc.: information about execution of the second phase, i.e. patterns
processing

• Patterns : number of patterns found by the previous phase and processed
by this one

• Poly.: number of polygons (i.e. cells) found and dispatched by the phase

• LSL: total execution time for all the executed LSL phases. In addition
is given the average LSL execution time and standard deviation for one
pattern.

• Merging : total execution time for all the executed merging phases (+
average time and standard deviation for one pattern)

• Dispatch: total execution time for all the executed dispatching phases (+
average time and standard deviation for one pattern)

• Classify : total execution time for all the executed classification phases
(+ average time and standard deviation for one pattern)

• Total : total execution time for the phase (+ average time and standard
deviation for one pattern)

4. Net.: same as for Tables E.1 and E.2. Upload 1 refers to the upload of results
from the slide processing and Upload 2 to that of the patterns processing.

5. Total: same as for Tables E.1 and E.2. Note that in this case, No net. 1 also
includes network time for fetching crops of the cells detected by the patterns
processing.
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R
u

n
in

fo
rm

at
io

n

Run nb. 10 11
Image 716528 728725
Width 163840 131072
Height 95744 57856

Tile width 1024 1024
Tile height 1024 1024

Tiles 15390 7353
Jobs 50 64

RAM (Go) 138.66 178.47

S
li

d
e

p
ro

c.

Poly. 39430 6777
LSL 732.967 271.944

Merging 208.819 47.122
Dispatch 193.681 41.614
Classify 134.661 40.890
Total 1271.042 404.742

P
a
tt

er
n

p
ro

c.

Patterns 6323 1080
Poly. 39633 13269
LSL 9500.147 1.50 ± 0.34 2420.109 2.241 ± 1.135

Merging 225.594 0.035 ±1.04 113.494 0.105 ± 0.934

Dispatch 7.734 0.00124 ± 0.00267 1.196 0.00122 ± 0.00191

Classify 7523.256 1.44 ± 1.2316 1757.388 2.180 ± 2.443

Total 17319.615 2.678 ± 1.305 4307.111 3.934 ± 3.293

N
et

. Caching 47.876 3.358
Upload 1 20399.008 450.024
Upload 2 2762.877 1138.706

T
ot

. No net. 1 18551.736 4703.322
Overall 41761.498 6295.409

Table E.3: Typical executions of the workflow (including pattern processing). Exe-
cution times are given in seconds.
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