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Summary 
Structures made of steel have been widely used in areas where seismic activity is expected in the 
last decades. Their stable performance under cyclic loading conditions make them a desirable 
solution in earthquake prone areas. However when subjected to exceptional seismic events, like 
several times in the past, the fact that the input energy is dissipated by deformation of structural 
elements leads to severe damage and consequently high repair cost. 

In order to overcome the above mentioned drawbacks innovative beam to column joint had been 
designed. The innovative joint is equipped with friction dampers which are located at the bottom 
flange level of the connected beam in order to dissipate the earthquake input energy. The friction 
resistance is calibrated by acting on the number and diameter of bolts and their tightening torque 
governing the preloading. The connections are conceived to exhibit wide and stable hysteresis 
loops without any damage to the connection steel plate elements. 

The objective of the dissertation is to study the behaviour of a frame equipped with the innovative 
joint and the joint itself when subjected to a column loss. In case of column loss scenario, this joint 
will be subjected to a specific loading (bending moment + axial loads) which will require the 
activation of ductile joint components to allow the activation of an alternative load path within the 
structure.  

Within the thesis the behaviour and potential benefits of the joint under mention circumstances 
shall be assessed and pointed out. 
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Notations 
 

 - rotation at the extremities of the beam of the DAP 

 - rotation of the joint 

HOG - elongation of the plastic hinge at the level of beam axis in case of hogging bending 

L - to the elongation of the beam under tension force 

SAG - elongation of the plastic hinge at the level of beam axis in case of sagging bending 

slide.fd – estimated length of the slip of the friction damper 

slip – dilatation of the spring at stroke end limit of the slip 

slip1 – estimated length of the slip of the upper interface 

β – transformation parameter for column panel in shear 

δH – dilatation of the horizontal spring representing the IAP 

δi,HOG – dilatation of the i spring of the joint subjected to hogging 

δi,SAG – dilatation of the i spring of the joint subjected to sagging 

δN – elongation of the plastic hinge 

 

FH – horizontal force in the spring representing IAP 

Fi,HOG – force in the i spring of the joint subjected to hogging 

Fi,SAG – force in the i spring of the joint subjected to sagging 

FRD - design resistance 

FRD.H – design resistance of the indirectly affected part 

Frd.slip.1  -  force at slip of the upper joint interface 

Frd.slip.2  -  force at slip of the friction damper 

Fslip.rd  - design force for which the slip occurs 

Fslip_c  - slip resistance of the friction damper in compression 
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Fslip_t – slip resistance of the friction damper in tension 

fsolve – matlab function used to solve the system of equations 

hi – distance from the spring row to the centre of compression 

HOG 1 – equivalent spring in tension of a joint primarily subjected to hogging bending 

HOG 2 – equivalent spring in compression of a joint primarily subjected to hogging bending 

K*
eq.T.1 – new value of the spring stiffness obtain after vertical translation of the spring 

Keff.i – effective stiffness of the components at the level of the bolt row in tension 

keq – equivalent stiffness of the spring 

Kfake – “fake” stiffness 

KH – stiffness of the horizontal spring representing the IAP 

Ki.c.no.slip – stiffness of the equivalent compression spring before the slip 

Ki.c.slip – stiffness of the equivalent compression spring after the slip 

Ki.t.no.slip – stiffness of the equivalent tension spring before the slip 

Ki.t.slip – stiffness of the equivalent tension spring after the slip 

KN – axial stiffness of the plastic hinge 

L - Initial length of the plastic hinge 

L0 - the initial length of the beam 

Mhog – hogging bending moment 

Mj.ini.limit – moment in the joint limiting the behaviour governed by initial stiffness 

Mj.slip1.limit – moment in the joint limiting the behaviour governed by Sj.slip1 

Mj.slip2.limit – moment in the joint limiting the behaviour governed by Sj.slip2 

Msag – sagging bending moment 

P – force applied at the upper node of the lost column simulating the column loss 

SAG 1 – equivalent spring in tension of a joint primarily subjected to sagging bending 

SAG 2 - equivalent spring in compression of a joint primarily subjected to sagging bending 
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Sj.i.ini – initial rotational stiffness of the rotational spring i 

Sj.i.slip1 –rotational stiffness of the rotational spring i valid after the slip of the upper interface 

Sj.i.slip2 –rotational stiffness of the rotational spring i valid after the slip of the friction damper 

Sj.ini – initial joint stiffness 

TolFun – fsolve function tolerance 

TolX – fsolve function tolerance 

U – vertical displacement at the upper done of the lost column 

u_step – increment of vertical displacement 

x0 – starting point of the iteration 

zeq – equivalent lever arm 

zi – lever arm of the rotational spring i 

Abbreviations 
 

BT – Bolts in tension 

DAP – Directly Affected Part 

FREEDAM – Free From Damage Connections 

IAP – Indirectly Affected Part 

MRF – Moment Resisting Frames 

SLS – Serviceability Limit State 

ULS – Ultimate Limit State 

 

BF-B – Beam flange in bearing 

BH-B – Hammer head flange in bearing 

BS – bolts in shear 

BSFD – Bolts forming the friction damper in shear 
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CFB – Column flange in bending 

CWC – Column web in compression 

CWS – Column web in shear 

CWT – Column web in tension 

FD – Friction damper 

LSFB – L stub flange in bending 

LSW-B – L stub web in bearing 

LSWC – L stub web in compression 

LSWT – L stub web in tension 

TSFB – T stub flange in bending 

TSW-B – T stub web in bearing 

TSWC – T stub web in compression 

TSWT – T stub web in tension 
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I INTRODUCTION	
 

I.1. General	
In spite of the fact that the traditional weak beam – strong column- strong joint approach in seismic 
design had proven to be a reliable solution when designing Moment Resisting Frames, extreme 
events (e.g. earthquake Kobe 1995) have revealed its drawbacks. Therefore, the direction of the 
research shifted towards finding new solutions.  

The possible solution was recognized in innovative type of connection, equipped with a friction 
damper, with the idea of using the friction damper as a primary dissipative element. The main idea 
is to develop connection capable of dissipating all the seismic hazard energy without suffering any 
damage even in severe seismic conditions. 

The innovative joint is being researched within the European project entitled “FREEDAM – Free 
From Damage Connections” which includes the participation of several international organisations:  
the University of Salerno (UNISA), the University of Naples (UNINA), the University of Coimbra 
(UC), the University of Liege (ULG), companies “FIP INDUSTRIALE” and “O FELIZ”. 

This Master thesis was proposed as a part of project “FREEDAM” 

I.2. Objectives	
The scope of the dissertation is to study the global behaviour of a 2D frame formed by connecting 
the beams and columns with the innovative joint equipped with friction damper when the frame is 
subjected to loss of a column. The part of the response when the membrane forces develop will be 
of main interest.  

The work will concentrate on two main tasks in order to accomplish the above mentioned: 

 Simulating the innovative joint behaviour by using the component method. New 
assembly model of the components forming the joint shall be developed and presented. 
The proposed assembly model should facilitate the introduction of the joint behaviour 
into the available analytical models. 

 Implementing the developed joint model into the analytical procedure available for 
robustness assessment further to a column loss and studying the obtained results. Within 
this part a routine formed in programing language Matlab shall be modified so that it 
fits the analysed problem. The obtained results will be analysed in order to confirm their 
validity and therefore the validity of the developed program. 
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I.3. Structure	of	the	dissertation	
Five main chapters will be included within the master thesis. Chapter I contains general 
introduction explaining the origin of the studied problem, the objectives of the presented work and 
methods used in order to achieve them. 

Chapter 2 presents the available state of the art related to the scope of the work. The development 
of Moment Resisting Frames from traditional one to the one equipped with the innovative joint 
studied within this work is included, as well as the progress made concerning the analytical 
assessment of a frame subjected to a column loss. The existing analytical models are presented and 
the theoretical assumption they use are mentioned. 

Chapter 3 is devoted to the description of the joint geometry and expected behaviour, relevant 
components are identified and then it is proceeded to development of a moment – rotational curve 
using the rotational spring model. Finally, the behaviour of the joint is simulated by developing the 
2-spring model approach. The 2-spring model is validated. Significant calculations and 
consideration are presented. 

In Chapter 4 implementation of the developed 2-spring model into the analytical procedure for 
assessing the global response of a structure further to a column loss is performed. The substructure 
modelling the behaviour of the global structure is described, the used equation are derived, the 
Matlab routine is briefly introduced, the modelled spring behaviour is explained and finally a 
parametric study is conducted and the results discussed. 

Finally, conclusions and suggestions for future development are presented in Chapter 5. 
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II STATE	OF	THE	ART	

II.1. Beam‐to‐Column	Connections	in	Moment	Resisting	Frames	
Moment resisting frames (MRF) are widely used as structural systems in earthquake prone areas, 
due to their satisfying behaviour under seismic loading.  

Traditional strategy for seismic design [Mazzolani, 2000] states that in case of a frequent 
earthquake, whose return period is comparable to the structures life cycle, structure must be design 
in such way that it remains in the elastic domain – the whole input energy must be dissipated by 
viscous damping. On the other hand, trying to keep the structure in the elastic range when 
subjected to rare seismic events which happen once in 500 year or more would be very 
uneconomical. Therefore, in this case most of the earthquake input energy is dissipated by 
hysteresis, which leads to plastic deformation and damage of structural elements. Structural 
damage is accepted under these circumstances, but only if compatible with the structure ductility 
and dissipation capacity, since the structural integrity must be maintained in order to avoid 
jeopardizing human lives and well-being. 

Taking into account the above mentioned, to remain in the elastic range structure needs to have 
sufficient lateral stiffness and strength. In particular, sufficient lateral stiffness is needed in order to 
assure that there will be no damage in non-structural elements, which is one of the demands of 
Serviceability Limit State (SLS). Conversely, for extra-ordinary seismic events the MRF has to be 
designed in such way that the energy is dissipated by the beam ends. To assure that the plastic 
hinges form at the beam ends, in which way we are able to utilize the greatest number of 
dissipative zones, sufficient over-strength needs to be provided for the beam-to-column connection 
and the column itself. The mentioned over-strength condition accounts for material variability and 
strain-hardening assuring that the yielding will occur in the beam, not column or connection. Even 
though weak beam – strong column- strong joint approach is widely used and has plenty of 
advantages, like development of stable hysteresis loops and avoiding the soft-storey mechanism, 
the classical approach has also its disadvantages. 

The main drawback of this approach is the fact that the plastic deformation and structural damage 
is the key for earthquake input energy dissipation, which, if a severe earthquake occurs, leads to 
high losses and refurbishment costs.  

Another drawback is the necessity of over-strength elements which is not cost-effective, and 
demands additional elements and fabrication in order to guarantee the desired connection 
performance. 

In order to evade the main drawbacks, a new strategy was introduces. The so-called strategy of 
supplementary energy dissipation or passive control suggested, among other things, friction 
dampers as elements reducing the lateral displacement for SLS and damage for Ultimate Limit 
State (ULS). 
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The door for this alternative approach was opened, and the subject became more interesting to the 
engineering society, when Eurocode 8 enabled the usage of partial strength connections, though 
only if previously checked by experimental test. Partial strength connections allowed the control of 
the bending moment being transfer to the column, and so, enabled the designer to prevent 
oversizing imposed by classical weak beam-strong column-strong joint approach.  

Partial-strength connection became more interesting to researchers and Eurocode 8 [CEN 2004] 
introduces the concept of dissipating the input earthquake energy within the elements of the 
connection. Double split tie connection emerged as a promising solution to be applied in the 
dissipative semi-rigid MRF because they can easily be replaced, which give a great benefit in terms 
of cost and sustainability [Iannone et al., 2011]. 

Latour et al. [2015] conducted a research of new type of beam-to-column connection with two 
friction dampers, one at each flange. After experimental tests, it was noted that despite the 
symmetry of the connection from geometrical point of view, the behaviour and displacements were 
not symmetric. This lead to the change of initial configuration, and friction damper was placed 
only at the bottom flange level. Connections are presented in Figure II-1. With the second 
configuration, under bending, the joint is forced to rotate around the upper T-stub and the energy 
dissipation is provided by the friction between lower beam flange and friction material layers. 

In order to overcome the above presented drawbacks and for purpose of further improvement of 
dissipative beam-to-column connection, European project “FREEDAM” was proposed. 

The aim of the project is to develop a new design strategy, whose goal is the design of connections 
able to withstand even the severe seismic event without any damage i.e. to develop a “Free from 
Damage Connection” which lead to the acronym “FREEDAM”. 

The idea was based on the supplementary energy dissipation, but under new perspective. Unlike in 
passive control systems, the new proposed strategy is based on the use of the friction dampers not 
as additional dissipative element of primary structure, but as a way to substitute the traditional 
dissipative zones of MRFs i.e. the beam ends.  

Beam-to-column connections are equipped with friction dampers which are located either at the 
bottom flange level or at the level of both flanges. Their role is to transfer the bending moment 
needed to fulfil the SLS requirement and to avoid slippage under gravity load. In addition, they 
need to provide earthquake input energy dissipation up to collapse prevention limit state, without 
any damage. 
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Figure II-1: Connection discussed: a) Connection with 2 friction dampers; b) Connection with one friction damper; 

c) Connection with a friction damper placed at the hammer-head flange [Lemos, 2015] 

Friction damper is composed of L cleats, friction pads, and beam flange with slotted hole in order 
to allow displacement without any damage. This configuration enables high energy dissipation just 
due to the slippage of friction material. In addition, the costs are reduced for both connection and 
column, since we can control the bending moment transferred to the column. However, the main 
advantage of this kind of connection is that it works like a “Free from damage connection” up to 
the rotation compatible with the stroke limit of the friction dampers. 

It is important to emphasize one more important feature of the investigated connection, and that is 
its ultimate capacity. When the stroke end limit state is reached there is still some strength and 
rotation reserve. In case of a destructive event which demands exceeding the stroke end limit state, 
additional flexural strength and rotation are provided by activating new mechanisms – bolts and 
plates forming the friction damper subjected to shear and bearing, respectively. 

Above mentioned property of the newly proposed joint should be very beneficial in term of 
robustness, in case of some exceptional loading condition like “loss of a column” scenario. 
Researching this feature will be the scope of the presented work. 

II.2. Robustness	

II.2.1. General	
Maintaining the structural integrity under exceptional events started generating more and more 
interest among researchers and engineers in the last decades as catastrophic events, both natural 
(tsunami, hurricane…) and one caused by mankind directly (terrorist attack, car crashing into a 
building…), underlined the importance of the before mentioned as a key to avoiding casualties, 
limiting and reducing loses in this exceptional situations. 

Eurocodes and other national design codes demand ensuring structural integrity through 
appropriate measures, but in most cases there are no practical guidelines how those measures 
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should be provided. [Demonceau, 2007] Global design approaches like the activation of the 
alternative load path or the key element method were firstly introduced in British standards, and 
then more or less the same ideas spread to other national codes. One way of guaranteeing the 
structural integrity is to ensure appropriate robustness which is defined as the ability of the 
structure to remain globally stable in case of the event leading to local damage.[Huvelle C. et al.] 

University of Liege gave a great contribution to the investigation of structural robustness being 
involved in projects like “Robust structures by joint ductility” [Kuhlmann U. et al. 2008] and 
conducting several numerical, experimental and analytical investigations, researches and PhD 
thesis. 

The investigations done at University of Liege regarding robustness are mainly devoted to the 
exceptional event “Loss of a column in a building frame”. In particular, two PhD theses [2], [Luu, 
2008] were devoted to the development of the first analytical model for the prediction of the 
response of a frame subjected to a column loss situation, both before the mechanism is formed and 
after when the membrane forces, due to significant second order effects, start to develop. 

Within the present work, the response of a frame equipped with the innovative joint containing 
friction damper shall be studied by implementing the joint characteristics into the developed 
analytical model. 

The following subchapters will be dedicated to the explanation of the general concept used for the 
development of the analytical approach and the evolution of the analytical model from the simplest 
to the most advance one.  

II.2.2. Development	of	analytical	models	
The analytical models discuses here are related to the prediction of the frame response in case of 
exceptional event occurring, in particular, loss of a column situation. 

As stated in the article “Complete analytical procedure to assess the response of a frame submitted 
to a column loss” [3], when we have a frame subjected to a column loss situation we can divide the 
frame in two parts (Figure II-2a):  

‐ The directly affected (DAP) part containing all the beams, columns and beam-to-column 
joints located above the lost column 

‐ The indirectly affected (IAP) part  which contains the remaining elements (storeys under 
the lost column and the lateral parts) forming the structure 

The evolution of the compression force in the lost column is illustrated in Figure II-2b. As 
presented, in case of a column loss, we can distinguish three main phases: 

‐ Phase 1: The event has not started yet and the column is supporting the loads coming from 
the floors above. It is assumed that there is no yielding and that the structure responds fully 
in the elastic range. 
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‐ Phase 2: The event occurred and the column is progressively losing its axial resistance. 
Two sub-phases can be distinguished [2]: 

o From point (2) to (3): The directly affected part gives a fully elastic behaviour until 
the first plastic hinge is formed at point (3). 

o From point (3) to (4): Change of the slope of the curve occurs each time a new 
plastic hinge is formed within the directly affected part until finally reaching the 
point (4) where a complete plastic mechanism is formed. 
 

‐ Phase 3: The plastic mechanism is formed and large deformations are noted, inducing the 
progressive development of membrane forces in the beams of the directly affected part. At 
point (5) the column is completely lost. Reaching point (5) would mean that the loads 
previously supported by the column are successfully transferred to the remaining part of the 
structure and that we have avoided the collapse.  

Indirectly affected part has a role of providing lateral support to the developing membrane 
actions. The stiffness of the indirectly affected part governs the intensity of the catenary actions 
developing in the directly affected part. The higher the stiffness, the higher the membrane 
forces developing for the same vertical displacement. In extreme case, no membrane forces will 
develop if there is no lateral stiffness provided by the indirectly affected part.  

 

Figure II-2: Behaviour of a frame submitted to a column loss [3] 

The behaviour of the structure when the event occurs, namely, Phase 2 and Phase 3, are of main 
interest when assessing robustness. Behaviour of the structure in these two phases can be simulated 
by assessing the behaviour of a structure presented in the Figure II-3; frame without the lost 
column subjected to a concentrated load P at the upper node of the lost column (node A). [3] The 
concentrated load P represents the force previously supported by the column which is transferred to 
the remaining structure due to the column progressive collapse. 
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Figure II-3: Structure used for simulating the loss of a column [3] 

Analytical models have been developed based on the problem formulation presented in the Figure 
II-3. The objective of the analytical models would be to estimate the redistribution of the load 
during Phases 2 and 3, and checking whether point (5) could be reached. In order to reach the 
mentioned point sufficient ductility of the deforming elements is needed as well as the resistance of 
the remaining structure in order to sustain the membrane force developing. Robustness is required 
from the part of the structure not directly affected by the exceptional event. 

II.2.3. Demonceau	model	
The first analytical model dedicated to the assessment of the response of a two-dimensional steel or 
composite structure was developed by Demonceau J. F., as part of his PhD thesis [2]. The main 
idea is to isolate a part of a frame and analyse the obtained simplified substructure.  

It is important to note that the model is based on a static approach, and therefore, not accounting 
for dynamic effects. The model is focused on the Phase 3, when the catenary actions start to 
develop due to significant second-order effects. Therefore, rigid-plastic analysis had been used for 
this model.  

After conducting parametrical studies, in was concluded in the [2] that the membrane forces 
developing in the beams just above the lost column are significantly more important the ones 
developing in the other beams of directly affected part. Consequently, it was decided to investigate 
only the behaviour of the lower beam of the directly affected part. 

The isolated substructure is presented in (Figure II-4). To be able to isolate the substructure, 
several parameters had to be defined: 

‐ KH – the stiffness of the surrounding structure which is simulated by a horizontal spring. In 
this model it was assumed that the indirectly affected part remains elastic during whole 
phase 3. This represents a simplification since the IAP can yield during this phase. 

‐ Frd – the maximum load coming from the DAP that IAP can sustain; 
‐ Distributed and concentrated load that the system needs to withstand. 



9 
 

It was later shown that the uniformly distributed load does not influence much the response during 
Phase 3. Therefore it was neglected, which made the used equations much simpler. For more 
information refer to [2]. 

 

Figure II-4: Substructure of Demonceau [3] 

During phase 2, the plastic hinges are subjected to bending moments only. After the plastic hinges 
are formed (beginning of Phase 3) normal forces, in particular, tension forces start to develop 
submitting the hinges to the interaction of M and N. In extreme cases, at the very end of Phase 3, 
they could be loaded only by N force. 

That being said, to be able to use the presented model one needs to define the M-N interaction 
curve for both hogging and sagging bending in the plastic hinge, which can develop in the beam or 
in the joint. Axial stiffness of the plastic hinge submitted to both bending and axial force, named 
KN , is a necessary parameter used to define the relationship between the N force and plastic 
elongation of the hinge δN . 

It is demonstrated in [2] that the 
substructure model gives results which 
accurately reflect the global frame 
behaviour during Phase 3 in case of a 
column loss if the parameters KH and KN 
are defined correctly. 

Table II-1 presents the unknowns and 
equations in the substructure of 
Demonceau. For further information about 
the input data or the model itself, please 
refer to [2] and [3]. 

At the time being, no analytical procedure was available for definition KH and KN so the values 
obtained experimentally or numerically had to be used. Further investigations lead to the analytical 
definition of both parameters leading to the complete analytical approach. 

Table II-1: Unknowns and equations of the Demonceau model [3]
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II.2.4. New	approach	
For improving the existing model analytical definition of KN, parameter defining the behaviour of 
the yield zone in the DAP, was needed. Yield zones can occur in the beam or in the joint, if the 
partial strength joint is used. For both cases, the approach for the derivation of the new analytical 
method remains the same, with the exception of the hinge length, which in case the hinge forms in 
the joint is equal to 0. Indeed, if the yield zone is located in the joint, which is assumed to be very 
short comparing to the length of the beam, the hinge length can be neglected as stated in [3].  

A range of numerical tests have been conducted in order to understand whether KN was a local 
parameter, depending only of cross section characteristic, or there is some coupling between the 
hinge behaviour and the global structure. The tests were performed at University of Liege, using 
the homemade program FINELG. The results have shown that in addition of the dependence of KN 
to the cross section characteristic, it also depends on the structure in which the hinge is developing. 
Therefore, a new definition of the KN was needed in order to consider the proven coupling. 

The new approach for modelling KN was firstly defined for the case of plastic hinge forming at the 
extremities of the beams and later extended for the case where the hinge forms within the joint. The 
hinge was modelled as a set of 6 parallel springs, assuming that the sections at the extremities of 
these springs remain straight, where each spring represents a part of a cross section. This is nicely 
presented in Figure II-5.  

 

 

 

For fully defining the analytical model used for prediction of KN, definition of plastic hinge length 
was required. The length was defined according to Figure II-6 [5] 

As it had been proven that there is coupling between the KN and the global structure, the local 
hinge model was implemented into the substructure of Demonceau, forming a new substructure 
model presented in Figure II-7. 

Figure II-5: The hinge model [3] Figure II-6: Plastic hinge length [5] 
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Figure II-7: New substructure model [3] 

The main advantage of the above presented model is that by simulating the hinge as a set of 
parallel springs we do not need any more to define an M-N resistance curve, nor is it necessary to 
explicitly define KN because of all of this is included in the definition of the springs. By properly 
defining the properties of the springs, stiffness and resistance in particular, and accurately 
modelling their behaviour when subjected to the loss of a column situation, we can obtain 
satisfying results of the structure response. 

If the hinge forms at the beam extremity, the spring model can be obtained by dividing the cross 
section area at the place of a hinge formation into several parts, and calculating the spring 
properties by using expressions Frd.i = Ai fy and Ki = EAi / L, where Ai is the area of the part i and L 
is the length of the hinge considered, as presented in the [3].  

If the hinge, on the other hand, forms in the partial strength joint, one spring could represents a 
component (or set of components) determined by component method recommended in EN 1993-1-
8 for the characterization of joint properties. In that way, the same general approach could be used. 
It should be underlined that defining the behaviour of the springs in this case would be a bit more 
complex, due to the particularity of each component. 

The presented approach is general and it can be applied for modelling the response of the 
substructure regardless of the place where the plastic hinges form (beam extremity or joint). The 
number of springs can also be modified to fit the user needs or the specificity of the problem 
analysed. It should be noted that in the present model KH is still an input data. 
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The following table presents equations and 
unknowns needed for using the new 
substructure model. These equations will later 
be used and modified to fit a concrete problem 
– behaviour of a frame equipped with 
innovative partial strength joint further to a 
column loss. 

The equations presented in Table II-2 can be 
solved using a mathematical solver, like the 
one Matlab programing language can provide. 
Matlab had been used at University of Liege 
for performing most of the calculations of this 
type. It was decided, due to the fact that some 
programs based on this concept were made in 
Matlab and therefore they could be used as an 
example, that Matlab shall be used in this work 
as well.   

II.2.5. The	complete	analytical	model	
The substructure presented earlier, composed by only the lower beam of the directly affected part 
and one horizontal spring simulating the behaviour of the surrounding structure is only valid if the 
compression force in the column just above the lost one is constant during the whole Phase 3, 
which is not always the case. Important coupling effects develop between the storeys of the DAP 
and also between DAP and IAP and they should be taken into account [3]. That being so, a 
complete analytical model had been developed considering all the coupling, both of the storeys of 
the directly affected part and the coupling of the directly and indirectly affected part. 

The substructure of Demonceau was generalized for all the storeys of the DAP as shown on the 
Figure II-8, while the plastic hinge was presented by springs in parallel. The influence of the IAP 
in taken into account by placing a horizontal spring at each extremity of the newly defined 
structure. Horizontal springs simulating the IAP are assumed to behave fully elastic.  

The Figure II-9 shows how the flexibility matrix is defined and how the values forming the 
mentioned matrix are obtained. 

The horizontal displacement δHi at the storey i is defined as follows: δHi = Σ sij FHj, in which the 

coefficients sij form the flexibility matrix of the indirectly affected part (i.e. sij is the horizontal 

displacement at the level i when a unitary horizontal force acts at the level j) and FHj is the 

horizontal load applied at storey j. In Figure 17, sl,ij sr,ij are respectively the displacements of the left 

(“l”) and the right (“r”) sides of the indirectly affected parts, then sij = sl,ij + sr,ij.[3]  

Table II-2: Unknowns and equations for the new substructure 
model [3] 
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Figure II-8: New substructure [3] 

The model presented in the Figure II-8 had been validated by comparing with numerical results and 
it was concluded that the model gives sufficiently accurate results. For more information, input 
data, used equations please refer to the article of Huvelle C. et al. [3], where the problem is 
discussed in more detail. 

 
 

Figure II-9: Definition of the flexibility matrix [3] 

 



14 
 

II.3. Conclusions	
The classical weak beam-strong column-strong joint approach in MRF provided a great way of 
dealing with seismic loads for many years, but the hazardous events during that time pointed out its 
weaknesses. In order to overcome the drawbacks of the traditional approach, new ideas and 
researches were needed. The “FREEDAM” project emerged bringing an idea of a new type of 
connection, equipped with friction dampers as dissipative elements, completely substituting the 
traditional dissipative zones.  

Benefits coming from the new joint configuration: 

‐ avoiding over-sizing by controlling the bending moment transferred to the column 
‐ ability to dissipate large amount of earthquake input energy without taking damage 
‐  expected enhanced behaviour of the structure in terms of robustness (in case of exceptional 

events due to the strength and rotation reserve provided by activation of new failure 
mechanisms after reaching the stroke end limit state) 

The last mentioned feature of the innovative joint could play an important role in placing this type 
of connection in front of others, as more and more attention is given to the subject of structural 
robustness in the recent years.  

Developed analytical models for predicting the response of a frame submitted to loss of a column 
were presented, showing that the designer now has the possibility of calculating the frame response 
using only analytical expressions, avoiding preforming costly experiments. 

By properly characterizing the joint where the plastic hinge forms, which shall be shown in the 
next chapter, analytical methods can be used to predict the behaviour of a frame equipped with the 
innovative joint further to a column loss. 
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III CHARACTERIZATION	OF	THE	“FREEDAM”	JOINT	
 

III.1. Introduction	
In the previous chapter it has been shown that analytical models for assessing the behaviour of a 
frame subjected to a column loss exist and they give satisfying results if the springs are able to 
simulate the behaviour of the hinge accurately. 

The present chapter aims at developing an effective spring model of the innovative joint to be 
implemented into the analytical model in order to simulate the behaviour of a frame further to a 
column loss. The following sequence of actions shall be used in order to achieve the before 
mentioned. 

Firstly, the geometry and the expected behaviour of the joint shall be introduced and discussed.  

Secondly, using the component method recommended by the [6], the relevant components 
activated in both sagging and hogging bending will be defined and the characterisation of the joint 
components shall be performed.  

By proper assembly of the components, a rotational spring model simulating the monotonic 
behaviour of the joint will be formed and compared with experimental data obtained from test 
performed at University of Salerno. The developed model shall be used later on as a reference for 
the validation of the new assembly model.  

Further on, the assembly of the joint components will be done is such way  that we obtain a two-
spring model, made of a pair of springs working in parallel, which will accurately simulate the 
monotonic behaviour of the joint in reality . Each of two horizontal springs will represent the 
behaviour of the whole set of components located in tension or compression. Therefore, the 
behaviour of the tension and compression zone of the joint shall both be modelled and represented 
by only one spring. 

The newly developed 2-spring model will then be validated by comparing with results obtained 
from the reference model. 

 The above mentioned is performed with the idea of obtaining a validated 2-spring model which 
can easily be implemented into the analytical routine. 

III.2. Description	of	the	joint	
The connection presented here below was designed at University of Salerno, one of the partner 
Universities working on the “FREEDAM” project. Since the beginning of the research, several 
configurations have been considered. The joint configuration used in the present work was chosen 
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since, at the present time, it is believed that the following configuration (Figure III-1) will not 
suffer many changes in the future, at least not from the conceptual point of view. 

 

Figure III-1: Geometry of the specimen TSJ-H-SA300-260-CYC 13 (CYC 13) [1] 

The configuration presented in the Figure III-1 came as a modification of previous specimen 
designed at University of Salerno, named TSJ-SA300-320-CYC 12 (CYC 12, for details refer to 
[1]). The main difference between CYC 13 compared to CYC 12 is the lever arm which was 
increased in case of CYC 13 by placing the friction damper on the “hammer head” added to the 
lower flange of the beam. This gave the upper hand to the CYC 13 configuration since in that case 
for the same value of friction force, due to the larger lever arm, we can obtain larger bending 
moment resistance. 

The friction damper is formed, as presented in the Figure III-2, by inserting two 8mm steel plates, 

sprayed with a 300 m think layer of aluminium in order to enhance the friction coefficient, in 
between the hammer head flange and L cleats. All the metallic elements are made out of steel 
S275. The two aluminium covered plates are connected to the L-stubs by bolts, passing through a 
regular bolt hole. This allows no slippage between them. The hammer head flange contains a 
slotted hole where the bolts pass, allowing the slippage when the slip resistance is exceeded.  

 

  

 

 

 

Figure III-2: Scheme of the friction damper [1]
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The joint is connecting the beam IPE 270 and the column HEA 200, and the connection is formed 
on one side by bolting the web of a T-stub to the upper beam flange and the T-stub flange to the 
column flange. On the other side, the connection is formed by bolting the L-stubs forming the 
friction damper to the beam and the column. Both the beam and the column are made of steel S275. 
Bolts M27 were used in order to attach steel elements to the column, while bolts M20 were used to 
connect the elements to the beam flanges, both made out of steel class 8.8. The geometry of the T-
stubs and L-stubs is presented in the Figure III-3 and Figure III-4, respectively.  

 

Figure III-3: Geometry of the T-stub [1] 

 

Figure III-4: Geometry of the L-stubs [1] 

The joint is also equipped with web stiffeners and continuity plate designed in such way that the 
expected load could be safely withstand and transferred. More details can be found it the thesis of 
Lemos A. [1]. 

The main idea of this innovative joint is to dissipate energy using the friction provided by 2 
slippage areas, namely, areas between the hammer head flange and aluminium coated steel plates. 

The expected behaviour of the joint shall be presented in the form of an M- curve (Figure III-5) 
and discussed.   
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Figure III-5: Expected behaviour of the innovative joint under hogging moment 

In the initial stage, namely before reaching the slip resistance, it is expected that the joint response 
is linear where the linearity factor would be the S.ini – initial stiffness.  

After reaching the slip resistance of the damper, the slip should occur. The slip is characterized by 
the rotation increase without any increment of the moment until reaching the stroke end limit, when 
the bolts hit the end of the slotted hole. When the stroke end limit is reached, new mechanisms are 
activated, namely the shearing of the bolts and the bearing of the plates, providing the additional 
strength and rotation to the joint. 

It is reasonable to assume that after the activation of the new mechanism, the relation between 
bending moment and rotation will still be linear for some time. This is expected due to the fact that 
this connection was designed as a free from damage connection for SLS. The previous implies that, 
at the time when the slip resistance is reached, none of the elements initially activated in the load 
transfer should have reached 2/3 of their plastic resistance, which is the limit where yielding is 
expected. If the yielding of some element happens before we reach the slip resistance, that element 
will suffer some damage, and the connection could not be considered as free from damage.  

After reaching the 2/3 of resistance of the joint, yielding of the elements transferring the load will 
commence, providing us with a relation between bending moment and rotation which is no longer 
linear. When the design resistance of the joint is reached, the increment of the rotation should be 
much higher for the same increment of bending moment, until reaching the ultimate bending 
resistance leading to progressive yielding and plastic rotation of the joint and, finally, failure. 

The behaviour of the joint should be conceptually the same both for hogging and sagging bending, 
but due to the asymmetry of the joint the values of stiffness and resistance will be different. The 
joint shall be modelled using the component method having in mind the expected behaviour 
presented above. The behaviour of the joint shall be addressed in more detail in the following 
paragraphs. 
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III.3. Component	method	
Component method represents a widely used analytical solution for characterisation of joints in 
term of stiffness, resistance and ductility, since experimental and numerical approaches are not 
very practical for the designer. 

This analytical procedure enables a prediction of the joint response based on the knowledge of the 
mechanical and geometrical properties of the “joint components”, as stated in [Jaspart, Weynand 
2016]. Component method represents a general analytical approach which can be used for both 
steel and composite joints, regardless of the geometrical configuration and type of loading. The 
approach used in the component method is to consider each joint as a set of individual basic 
components. 

The application of the mentioned method requires the following steps: 

‐ Identification of the active components relevant to the joint being considered 
‐ Evaluation of the stiffness and/or resistance characteristics for each of the basic components 
‐ Assembly of the components in order to evaluate the characteristics of the joint (strength, 

stiffness, full deformability curve) 

Identification of the active components depends on the type of load that the joint is subjected to. 
Depending on the load transfer through the joint elements, the components active in the case of 
sagging and hogging bending can be different.  

The assembly procedure is a step where the mechanical properties of the joint are derived from 
those of the individual basic components. That requires to know how the internal forces are 
distributed within the joint components. In fact, the external loads applied on the joint are 
distributed between the components according to the stiffness and resistance of the components at 
each loading step. Therefore, it is important to underline that only the monotonic behaviour of the 
joint shall be assessed within this work. 

In the present work, firstly, component method shall be used in order to define the moment – 
rotation curve of the joint, for both hogging and sagging, using a rotational spring model. The 
obtained result shall then be used to verify the two-spring model solution. 

III.3.1. Relevant	components	and	rotational	spring	model	
In order to assess the full joint behaviour under monotonic bending a rotational spring model shall 
be formed. The model will be obtained by cutting the connection at 3 relevant cross sections as 
shown on the Figure III-7, and simulating the components activated in the load transfer for each 
cross section by horizontal springs.  

It is expected that the presented model will provide us with high result accuracy. The reason we 
can expect high accuracy comes from the fact than by making several cuts we have accounted for 
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the lever arm difference between different cross sections and therefore we are able to obtain more 
precise values of the points characterizing the joint behaviour. 

The behaviour will be assessed separately for hogging and sagging bending moment since the 
connection is not symmetric. Depending on the external load, the components activated in one case 
will differ from the components activated in the other case. 

III.3.1.1. Rotational	spring	model	–	hogging	bending	moment	
In order to form the mentioned rotational spring model, we firstly need to identify the components 
activated, this time, in case of hogging bending. 

The model of main components activated in case of hogging bending, presented in the Figure III-7, 
is formed by analysing the load transfer sequence. Hogging bending can be presented as a pair of 
forces of opposite direction acting at a certain distance – lever arm. The force acting on the upper 
level of the connection in this case will be tensioning the components, while the opposite force will 
act as compression force. Therefore, upper end of our connection is in tension and the lower end in 
compression. In order to transfer the external load through the joint, tension force in the upper part, 
compression force in the lower part, joint components are activated. A brief explanation of the 
symbols used to present the components shall take place and them we will address the process of 
forming of the model.   

Going through the literature [7] is was concluded 
that for the components whose behaviour respect the 

rigid-plastic force-dilatation (F-) law, the symbol as 
the one used in this case for CWS (like the symbol 
used for a damper in dynamics) is used. For elements 
having linear-plastic behaviour, the classical spring 
symbol is used.  

Friction damper is an innovative component which 
was not referred in the component method up to now and 
therefore, there is no guidance how to consider it as a 
component in the Eurocodes. Its behaviour does not belong to any of the two mentioned cases, but 
it could be presented as a combination of a rigid-plastic (where the plateau would actually be 
caused by the slip) and a linear-plastic law (when the new elements are activated). Taking into 
consideration the before mentioned, no special symbol is available for representing the friction 
damper. 

The behaviour of the friction damper is described in the Figure III-6. Initially, the stiffness of the 
friction damper is practically infinitive, since there should be no displacement i.e. no slip before 
reaching the Fslip.rd. The value of Fslip.rd corresponds to the slip resistance of the friction damper. 
When Fslip.rd is reached the slip occurs leading to the increase of displacement without any change 

of the value of the force, until reaching the stroke end limit which corresponds to slip. When the 

Figure III-6: Expected behaviour of the friction 
damper 
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bolts forming the friction damper reach the end of the slotted hole i.e. when we reach the slip in the 
discused figure, new components activate providing additional stiffness. This provide us with 
additional rotation and resistance of the component. After reaching the design resistance of the 
component FRD progressive deformations are expected with a small increment of force, leading to 
the collapse. In the presented model of the friction damper, for the sake of simplicity, the increment 
of the force after reaching the FRD is neglected and therefore the ultimate resistance is not 
considered. 

Next couple of paragraphs will be dedicated to the assembly of the components and modelling the 
joint behaviour by using the component method. The formed spring model will be analysed section 
by section. As visible in the Figure III-7, 3 cuts are made, 2 of them at the level of the connection 
and one at the level of the column panel in order to adequately “catch” the behaviour of the joint. 
The main idea is to recognize and characterize the components activated in the load transfer at the 
level of each section, then form a rotational spring for each of 3 sections, and finally combine the 
obtained rotational springs into one rotational spring which would represent the behaviour of the 
joint. The model will be analysed in the following section by section. 

 The first cut (1-1) is made at the connection of the beam to the T-stub and friction damper. 
Looking at the load transfer sequence in the tension part we can see that the tension force is 
transferred from the beam by activating the T-stub web in tension (TSWT). The connection 
between the T-stub and the beam is realized by preloaded bolts which means that after the 
tension forces reaches the slip resistance of the upper interface, new components shall be 
activated. The load will then be transferred by additional 3 components, namely, shearing of 
the bolts (BS), T stub web in bearing (TSW-B) and beam flange in bearing (BF-B). The same 
analogy can be used for explaining the behaviour as the one used for explaining the behaviour 
of the friction damper, with the difference that the slip is very small and practically negligible. 
 
In the compression part we have a similar situation. A new element, namely, the friction 
damper (FD) and components forming it will be responsible for transferring the load. Eurocode 
and other literature [7] currently available does not present any data how to deal with this 

Figure III-7: Main components activated in case of hogging bending – horizontal spring model 
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innovative element nor how to represent it. Therefore the behaviour of the damper will be 
analysed by breaking it apart to more simple components.  
 
The friction damper is designed so that it remains rigid until reaching its slip resistance. 
Therefore, before reaching the slip resistance the load is transferred only by L-stub web in 
compression (LSWC). After the slip resistance of the friction damper is reached the slip occurs. 
The bolts forming the friction damper slide until reaching the end of the stroke. At that point, in 
order to transfer a higher value of force, new components forming the damper are activated. 
The load is transferred by bolts in shear (BS.fd), L stub web in bearing (LSW-B) and beam 
hammer head flange in bearing (BH-B). 
 
The lever arm is taken as the distance between the slip interfaces, as shown on the Figure III-7. 
 

 The second cut (2-2) is made at the level of the flange of the T and L stubs. The tension force is 
transferred from the T stub web to the T stub flange, activating it in bending (TSFB). The 
further transfer of stresses in done through bolts in tension (BT), activating the column flange 
in bending (CFB) and finally the column web in tension (CWT). 
As presented on the Figure III-7, there are 2 rows of each component in tension forming the 2nd 
rotational spring. The lever arms to each spring row is taken as the distance from the 
compression centre to the axis of the corresponding bolts in tension. 
 
The compression force is transferred in this part only by activating the column web in 
compression (CWC) which is located at the centre of compression. 
 

 The 3rd rotational spring refers to the behaviour of the column panel activated in shear (CWS). 
The lever arm considered represents the distance from the centre of compression to mid 
thickness of the T- stub web.  

It is now necessary to calculate the components characteristics, namely, resistance and stiffness. 
This was done as part of the thesis of Lemos A. [1], according to the recommendations presented in 
the Eurocode 3-1-8. The values obtained will be presented in the following table. 

After having obtained the characteristics of the components, presented in the Table III-1, the 
expected behavior of the joint obtained from the component method can be described. 

In the beginning, there is no slip neither of the friction damper nor for the interface between the T-
stub and the upper beam flange. As the force raises and reaches the value of Frd.slip.1=186.6kN, the 
first slip occurs at the upper interface. 
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Table III-1: Stiffness and resistance of the components under hogging bending moment 

 

This might be a bit surprising since it is expected that the slippage would only occur in the case of 
friction damper, as the idea of this joint is to dissipate energy using the friction provided by the 
slippage of the damper without any damage. The slip of the upper interface will provoke a change 
in the initial stiffness and activation of new components. It was shown in the [1] that none of the 
components yield before the friction damper reaches its sliding limit. As mentioned before it is 
considered that the yielding of the component will occur when 2/3 of its resistance is reached. 
Therefore no damage will be made to the joint, making it free of damage despite the unexpected 
slip of the upper interface and making the joint configuration consistent with the research aim. 

The second slip occurs when the force acting in the compression zone reaches a value of 

Frd.slip.2=450.8kN. The slip ends when slip.fd  (the value will be introduced later on) is reached and 
the new components are activated providing additional strength and rotation. It should be noted 
that the value of friction damper resistance in this work is not the calculated design resistance, but 
the “corrected” resistance calculated by modifying the friction coefficients to better fit the values 
obtain from the experiments. For more information refer to [1]. 

The component governing the failure mode is the hammer head flange in bearing. Bearing of a 
plate represents a ductile failure mode, which allows the force redistribution and is in accordance 
with the basic joint design recommendations. 
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Three new components activated when the slip resistance of the friction damper is exceeded, BH-
B, LSW-B and BS.fd, were not taken into account in [1]. They were calculated and considered in 
the present work. The results are presented in Table 3 in the last 3 rows. The analytical procedure 
to calculate it was taken from the Eurocode 3. The detailed calculations can be found in Appendix 
A. It should be noted that no complete information about the geometry of the hammer head flange 
was found (it was not considered in [1] nor in other available documents) so some of the dimension 
have been assumed in accordance with the joint geometry and the scope of the work. 

Now when we have all the necessary data, we can proceed with the forming of the rotational 
springs. 

1st rotational spring 

The components identified at the cut 1-1 (Figure III-7) will be transformed into equivalent springs, 
one for tension one for compression row, and then merged into a single rotational spring, as 
presented in Figure III-8. 

Tension 

The overall procedure would be to take all the elements of the analysed row and using the equation 
for the stiffness of springs in a row, presented here below as equation (3.1), form an equivalent 
spring with equivalent characteristics. But, since we have elements activated after slip, we can 
come to a conclusion that there are 2 situations we need to take into account. 

 

(3.1)                                                                                     

                                                                                                 

Case 1: Tension force Ft.ed < Frd.slip.1   

In this case only the TSWT is active, 
putting that into (3.1) we obtain: 

    

 

Case 2: Tension force Ft.ed  Frd.slip.1   

In the present case the additional 3 components are activated giving: 
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Figure III-8: 1st rotational spring 
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It is obvious that the stiffness has dropped notably with the introduction of the new components. 
This is connected with the fact that the elements are all aligned in one row. Having one weak 
element can, in the present case, significantly influence the stiffness of the equivalent spring. 

Compression 

The procedure will be the same. We will consider the case before the friction damper slip, and 
after.  

Case 1: Compression force Fc.ed < Frd.slip.2   

In this case only the LSWC is active, though we could consider the damper as an additional 
component being active before the slip occurs, but since its stiffness is in that case infinitive, we 
just consider the contribution of the LSWC: 

 

 

Case 2: Compression force Fc.ed  Frd.slip.2   

After the damper slips and reaches the stroke end, the additional 3 components are activated 
giving: 

 

 

 

Stiffness of the rotational spring 

The following expression recommended by the EC3-1-8, equation (6.27), is used to calculate 
rotational stiffness: 

                                      Where: ki is the stiffness of the basic com                                           

                                          is the ration between Sj.ini/Sj 

                                                          z is the lever arm                               

Note: As the scope of this chapter is to formulate and validate the 2-spring-model which will later 
be implemented into the routine for calculating the response of the structure subjected to a column 

loss, a simplification was used regarding the behaviour of the joint, considering =1 when the 
rotational stiffness of the joint is formed, for both rotational and 2-spring model. 

 

 

 

k1.c.no.slip
1

1

klswc









45.82 mm

k1.c.slip
1

1

klsw-b

1

kbh-b


1

kbs.fd


1

klswc


1.184 mm

Sj
E z

2

 
1

ki













26 
 

First rotational spring is defined by three different S.j : 

z1 = 412mm 

‐ Rotational stiffness valid before the slip of the upper interface occurs 

 

 

 

‐ Rotational stiffness valid after the slip of the upper interface but before slippage of the 
friction damper 

  

 

 

‐ Rotational stiffness valid after the slip of the friction damper 

 

 

 

Later the above presented stiffness values will be used to form the rotational stiffness of the whole 
joint. 

2nd rotational spring 

The components identified as the one forming the second rotational spring (Figure III-9) will be 
transformed into a rotational spring. 

Tension 

The present case shall be considered using 
EC 3-1-8 section 6.3.3 - recommendations 
for an endplate joint with two bolt-rows in 
tension.  

It is questionable whether this consideration, using equations derived for a situation where the 
connection is formed using end-plate, is fully correct. In the case of an end-plate connection the 
deformation of the end-plate is considered plane, and the equations derived using that assumption. 
In the present case we do not have an end plate, but T-stub and L-stub instead. As presented in the 
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Figure III-9: 2nd rotational spring 
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Figure III-9 by a dashed line, the flanges of the two stubs are not rigidly connected, and therefore 
may deform separately. Nevertheless, we shall consider the equations derived in EC 3-1-8 as 
suitable for the present case, and continue with the calculations as such. To validate the assumption 
made, the final result will be compared with the experimental obtained at University of Salerno 
result presented in [1]. 

According to the EC3-1-8, firstly we transform the two rows of springs into equivalent springs: 

 

 

 

 

The next step is to make an equivalent spring of those 2 parallel springs: 

Equation provided by the EC 3-1-8 for calculating the equivalent lever arm of the two bolt rows 
gives: 

 

 

The final step is to obtain the equivalent stiffness of the spring presenting the two bolt rows: 

 

 

Keq.t2 represents the value of the stiffness of a single equivalent horizontal spring located at zed.t2 
distance from the centre of compression. 

Compression 

The only element active in compression is the column web in compression – CWC. As the column 

web is strengthen by use of stiffeners, its kcwc =  and therefore doesn’t affect the stiffness of the 
rotational spring. 

Stiffness of the rotational spring 
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3rd rotational spring 

The 3rd rotational spring represents the column panel in shear. It is a common practise to separate 
the behaviour of the column web in shear from the connection since its behaviour is not influenced 
by the same load. 

In the present case the stiffness of the CWS will be taken as infinitive, kcws = , like in the work of 

[1]. This decision in questionable, since according to the literature [7],  kcws =  can be taken in the 
case that appropriate diagonal stiffeners are provided, which is here not the case. Never the less, it 
is assumed that this consideration will not affect the final result much, and therefore we proceed 
like this. 

Stiffness of the rotational spring 

Sj.3.ini =  

Final rotational stiffness 

Eurocode allows representing a joint as a single rotational spring located at the intersection of the 
axes of the connected members. Rotational springs formed at levels of the cuts made will be 
combined (Figure III-10), forming one rotational spring representing the behaviour of the whole 
joint when subjected to hogging bending. The value of the rotational stiffness of the joint varies 
depending on the value of the load i.e. depending on whether one of the slips occurred or not.  

 

Figure III-10: Final rotational spring 

Values of the forces in the springs and moments acting on the joint which define the limit for using 
a certain value of stiffness will also be presented. The moment at the point of stiffness change is 
calculated by multiplying the force at the stiffness change by the corresponding lever arm (lever 
arm of the rotational spring where the slip occurs) 

‐ Rotational stiffness valid before the slip of the upper interface occurs 
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‐ Rotational stiffness valid after the slip of the upper interface but before slippage of the 
damper 

  

 

 

 

‐ Rotational stiffness valid after the slip of the friction damper 

 

 

 

 

With the data presented above, we can describe the behavior of the joint under hogging moment. 

III.3.1.2. Rotational	spring	model	–	sagging	bending	moment	
The same procedure shall be used to predict the behaviour of the joint under sagging moments. 
Firstly, the horizontal spring model is made using the load transfer sequence principle. Like in the 
previous case, three cuts are made in order to take into account the lever arm difference between 
the parts forming the joint. The horizontal spring model is presented in the Figure III-11. 

 

Figure III-11: Main components activated in case of sagging bending – horizontal spring model 

The difference between the horizontal spring model for hogging and sagging moment is reflected 
in the fact that now the upper level of the joint is in compression, activating the T stub web in 
compression TSWC, and CWC. 
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The lower part of the joint is subjected to tension and therefore, the two bolt rows will be activated 
in tension, as well as the L-stub web which will also be activated in tension. Other than that, all the 
other components and the joint global behaviour remains the same. The slip limit and behaviour 
does not depend on the force direction.  

The values of the stiffness and resistance of the components are presented in the Table III-2. 

The joint under sagging bending experiences the same overall behavior. Only difference is 
reflected in stiffness, which slightly varies from the one obtained for hogging, and in the failure 
governing component. 

Value of Frd.slip.1=186.6kN represents the value when the first slip will occur and the new 
components will activate, only this time under compression. The slip of the friction damper is 
expected when the force acting at the tension side reaches a value of Frd.slip.2=450.8kN. Reaching 
the slip limit the same 3 components are additionally activated providing more strength and 
rotation. Failure is governed by a ductile failure mode L-stub flange in bending this time with a 
value of FRD.lsfb = 490.1kN. The design moment resistance is therefore, in case of sagging bending, 
lower when compared to hogging. 

We now move to the analytical procedure of forming the rotational spring model for the case of 
sagging bending. 

Table III-2: Stiffness and resistance of the components under sagging bending moment 

 



31 
 

1st rotational spring 

The same procedure as for the hogging bending shall be used. The components activated are 
presented in the Figure III-12. 

Tension 

We need to account for two situations: 

Case 1: Tension force Ft.ed < Frd.slip.2   

In this case only the LSWT is active, so we 
obtain: 

   

 

Case 2: Tension force Ft.ed  Frd.slip.2   

After the slip of the dumper 3 new components are activated giving: 

 

 

Compression 

The procedure will be the same. The stiffness will change after the slip of the upper interface.  

Case 1: Compression force Fc.ed < Frd.slip.1   

Before the slip only TSWC is active: 

 

 

Case 2: Compression force Fc.ed  Frd.slip.1   

 

 

Stiffness of the rotational spring 

First rotational spring is defined by three different S.j : 

z1 = 412mm 
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Figure III-12: 1st rotational spring 
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‐ Rotational stiffness valid before the slip of the upper interface occurs 

 

 

 

‐ Rotational stiffness valid after the slip of the upper interface but before slippage of the 
damper 

  

 

 

‐ Rotational stiffness valid after the slip of the friction damper 

 

 

 

Later the above presented stiffness values will be used to form the rotational stiffness of the whole 
joint. 

2nd rotational spring 

The components identified as the one forming the second rotational spring (Figure III-14) will be 
transformed into a rotational spring. 

Tension 

The present case shall be considered 
using EC 3-1-8 section 6.3.3 - 
recommendations for an endplate joint 
with two bolt-rows in tension. The 
present situation has already been 
analysed when the 2nd rotational spring 
in the case of hogging bending was 
formed, therefore we proceed without 
detailed explanation. 
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Figure III-13: 2nd rotational spring 
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According to the EC3-1-8, firstly we transform the two rows of springs into equivalent springs: 

 

 

 

 

The next step is to make an equivalent spring of those 2 parallel springs: 

Equation provided by the EC 3-1-8 for calculating the equivalent lever arm of the two bolt rows: 

 

 

The final step is to obtain the equivalent stiffness of the spring presenting the two bolt rows: 

 

 

Keq.t2 represent the value of the stiffness of a single equivalent horizontal spring located at zed.t2 
distance to the centre of compression. 

Compression 

The only element active in compression is the column web in compression. As it was addressed 
previously, when hogging bending was analysed, the column web is strengthen by use of stiffeners, 

its kcwc =  and therefore doesn’t affect the stiffness of the rotational spring. 

Stiffness of the rotational spring 

 

 

 

3rd rotational spring 

The stiffness of the component column web in shear is kcws =  and therefore doesn’t affect the 
stiffness of the rotational spring. 

Stiffness of the rotational spring 

Sj.3.ini =  
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Final rotational stiffness 

The calculated rotational stiffness is presented in the following along with the forces and moments 
limiting its use: 

‐ Rotational stiffness valid before the slip of the upper interface occurs 

 

 

 

 

‐ Rotational stiffness valid after the slip of the upper interface but before slippage of the 
damper 

 

 

 

‐  
‐ Rotational stiffness valid after the slip of the friction damper 

 

 

 

 

 

With the data presented above, we can describe the behavior of the joint under sagging moment. 

III.3.2. M‐	of	the	joint	‐	rotational	spring	model	
The general response of a joint can be presented by M- curve, where M represents the bending 

moment to which the joint is subjected and  represents the relative rotation between connected 

elements. The behaviour of the innovative joint shall be expressed using the M- curve. 

The necessary characterization of the components for forming the M- curve of the joint is done. 
Stiffness governing the behaviour of the joint has also been defined. The information missing for 
assessing the behaviour of the joint regards the length of the stroke. 
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The length of the slotted hole is Lslotted.hole=270 mm. Four bolts M20 with the pitch p=60mm are 
forming one side of the friction damper. If we assume that the bolts are initially placed in the 
middle of the slotted hole, using the following equation we obtain: 

slide.fd = (Lslotted.hole – (nbolt - 1)p – 2 db/2) / 2 

slide.fd = (270 – (4 - 1) 60 – 2 (20/2) / 2 = 35mm 

It should be emphasized that in the present case we are developing the monotonic behaviour of the 
joint. Since the aim of the rotational spring model is to represent a reference model, which will be 
compared with the innovative 2 spring model in order to validate it, it will be sufficient to assess 

the monotonic behaviour of the joint. Therefore, we can assume that the obtained value of slide.fd is 
adequate for the present situation. 

The length of the slip of the upper interface shall also be calculated. Since the slip is quite small, 
and since it is hard to predict the realistic length due to the fact that the bolt might not be placed 

exactly in the middle of the hole, slip1 shall be neglected. 

slip1 = (d0 – d) / 2 = 0.5mm 

In the following comments shall be made with respect to the Figure III-14. 

 

 

 

 

 

 

 

 

 

 

Figure III-14 represents the comparison of the modelled joint behaviour for monotonic loading and 
the obtained joint behaviour from the test performed at University of Salerno. [1] The aim of the 
test performed at Salerno on a full scale connection was to assess the behaviour of the new joint 
typology in terms of hysteresis stability, behaviour of the friction damper and the friction 

Figure III-14: M- curve of the joint. Rotational spring model. Experimental data. 
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coefficient stability when subjected to cyclic loading. Therefore, the test was conducted only up to 
the slip limit. More about the test layout and the test in general can be found in [1]. 

Due to the lack of any other useful information, the envelope was formed out of the results 

obtained from the experiment and it was decided to compare the so-obtained experimental M- 
curve with the one modelled by the rotational spring model. The comparison can be made for the 
part of the curve describing the behaviour up to the point where the slip is reached. 

As noticeable, the result are in good agreement up to the slip though the change of the stiffness 
after the slip of the upper interface is not that obvious in the experimental curve. We can also say 
that the part of the curve representing hogging bending is in good agreement with the experimental 
results, with the exception of the decrease of the moment at slip for each cycle which was not 
considered in the model. It will be assumed within this work that the friction force will remain 
constant. The rotational spring model over-estimates the joint resistance in sagging according to the 
experimental data. Even though the friction force should be the same as for hogging bending, the 
experiment proves otherwise. The reason for such behaviour was not completely explained. Some 
assumptions have been made including the one stating that the force might not be the same due to 
the direction of the loading, as the different direction of the loading could affect the preloading of 
the bolts. 

As the reason for a lower friction force in sagging is not certain, taking into account the fact that 
the presented experimental results are not representing the monotonic behaviour of the joint and 
considering that the modelled behaviour in hogging is in good agreement with the experimental 
result, the decision was made to assume that the modelled behaviour is acceptable and that it can be 
used further on.  

The modelled joint behaviour is generally the same in case of hogging and sagging, with the 
difference in values at the points defining a change of the behaviour. 

The Sj.ini is valid until the bending moment reaches a value of around 77 kNm for both cases, when 
the slip of the upper interface occurs. The change of stiffness is notable as the new components 

activate. Newly obtained modified stiffness Sj.slip.1 is governing the M- dependence law until 
reaching the values 185.7 kNm and 190.2 kNm, for hogging and sagging bending, respectively. 

When latter is reached, the friction damper slips, causing a rotation of more than 0.08 rad before 
reaching the stroke end. Here we can note one of the obvious advantages of the innovative 
connection. From the Figure III-14 we can conclude that, according to the modelled behaviour, we 
can reach a rotation larger than 0.08 rad without any damage of the elements forming the 
connection which is significantly higher than the minimum required by the EN 1998-1  for frames 
in ductility class high (DCH), which is 0.035 rad for using partial strength connections. 

Further on, after reaching the stroke end limit of the friction damper, additional stiffness will be 
provided by newly activated elements, until finally reaching the Mrd. 
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As notable, the post-limit behaviour of the joint was not considered and it is assumed that the 
plateau occurs when the design resistance is reached. The ultimate resistance of the joint and the 
influence of strain hardening was neglected. It should also be emphasized that the presented 
rotational limit is chosen arbitrary, as no data about this subject is available. 

The developed rotational spring model will serve as a reference model for validation of the 
proposed 2-spring model. 

III.3.3. Spring	model	in	case	of	a	column	loss	scenario	‐	2‐spring	model	
Following pages are dedicated to the development of a new spring model. The main idea behind 
the following development is to obtain a model which should trustworthy represent the behaviour 
of the joint and be easy to implement into the robustness assessment routine. 

It was concluded that a model containing 2 horizontal parallel spring, where each of them would 
represent the full behaviour of the zone to which they correspond, would be quite convenient for 
the implementation in the robustness assessment procedure. 

The basic idea is to start from the horizontal spring model we already developed, and by forming 
equivalent springs, come to a model with 2 parallel springs, one in tension and the other in 
compression zone, which would be able to characterize the behaviour of the whole zone. 

Considering the above mentioned, the model was named 2-spring model. Figure III-15 
picturesquely explains the mentioned steps for a joint subjected to hogging moment. 

 

III.3.3.1. Hogging	bending	
 

 

Figure III-15: Steps to come from the horizontal spring model to 2-spring model 
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Tension zone 

The first step would be forming the Keq.T.1 which contains the components activated at the level of 
the bolt rows, namely, CWT – CFB – BT - TSFB. Again, we shall use the recommendation 
provided by the EC 3-1-8 for the bolted connection with an end plate. As already commented when 
rotational spring model was made, this is a questionable assumption but we shall consider it 
accurate enough. Therefore: 

 

 

 

 

 

The equivalent spring and lever arm have values of: 

 

 

 

 

 

Next, we form the Keq.T.2 from TSWT - BS- TSW-B - BF-B. We need to account for the two 
situations: 

 

Case 1: Tension force Ft.ed < Frd.slip.1   

In this case only the TSWT is active, therefore we obtain: 

    

 

 

Case 2: Tension force Ft.ed  Frd.slip.1   

After the slip of the dumper 3 components are activated giving: 

 

 

 

keff.1
1

1

kcwt

1

kcfb


1

ktsfb


1

kbt









3.372 mm h r.1 477 mm

keff.2
1

1

kcwt

1

kcfb


1

ktsfb


1

kbt









3.372 mm h r.2 367 mm

zeq.T.1

keff.1 hr.1
2

 keff.2 hr.2
2



keff.1 hr.1 keff.2 hr.2
429.17 mm

keq.T.1

keff.1 h r.1 keff.2 h r.2 
zeq.T.1

6.632 mm

keq.T.2.no.slip
1

1

ktswt









44 mm zeq.T.2 422mm
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It should be noted that the lever arm considered here is different than the one considered in the 
rotational spring model. The reason for that is the necessity of having all of the springs in one row 
in order to be able to combine them into an equivalent spring. Therefore, a simplification was used 
and present spring was assigned with the same lever arm as for the column panel in shear. 

The final step is merging Keq.T.1 and Keq.T.2 into the equivalent spring KT . As addressed in the 
previous paragraph in order to make KT we need spring which are in row. It is obvious from the 
presented calculations that the two springs, Keq.T.1 and Keq.T.2 , have different lever arms with 
respect to the compression centre. Therefore we shall move the Keq.T.1 , as presented in the Figure 
III-16, and place it in the same row with the others spring in tension. Of course, the change of the 
lever arm has to be accompanied with the corresponding change of the stiffness. Indeed, in order to 
keep the M constant at the level of analysed cross section, the above mentioned must be done. The 
problem presented in the current paragraph shall be addressed in more detail in III.3.3.3. 

In order to change the stiffness of Keq.T.1 in respect to the lever arm, we shall use and expression 
derived in III.3.3.3: 

 

 

 

It is noticeable that the defence between the old Keq.T.1 and the new value K*
eq.T.1 is quite small, 

around 3%, which implies that neglecting this change would not make much difference on the final 
result. Nevertheless, the new value of Keq.T.1 shall be used in the final formulation. 

Finally, the values of stiffness of the equivalent tension spring representing the behaviour of the 
whole tension part, for z.eq.T = 422mm, are: 

 

The behaviour of the formed equivalent zeq.T spring shall be shown in a form of an F -  diagram.  

 

 

  

keq.T.2.slip
1

1

ktswt

1

ktsw-b


1

kbf-b


1

kbs









1.832 mm zeq.T.2 422mm

zeq.T.1 429.168 mm zeq.T.2 422 mm

keq.T.1 6.632 mm k* eq.T.1

zeq.T.1

zeq.T.2









2

keq.T.1 6.859 mm

KT.no.slip
1

1

keq.T.2.no.slip

1

keq.T.1









5.934 mm KT.slip
1

1

keff.t2c2

1

keq.T.1









1.446 mm
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Figure III-16: F -  diagram of the equivalent tension spring when considering slip1 (left) and without considering slip1 

(right) – hogging bending 

In Figure III-16 (right) we can clearly see the influence of the slip to the change of the behaviour of 
the spring. The initial stiffness changes after Fslip.1 is reached, providing a more flexible response. 
The designed resistance of the spring corresponds to the minimum value of the resistance of all of 
the components forming the spring. In this case the design resistance is governed by component 
CWS and therefore FRD = 598.28 kN.  

Figure III-16 (left) represent the behaviour of the same spring but when slip.1 is included. In this 
case the behaviour of the tension part is quite similar to the behaviour of the friction damper, 
except the slip is much smaller. Due to uncertainty of the slip length, the fact that it will not 
influence the response much and for the sake of the simplicity, the slip of the upper interface shall 
be neglected. 

The ductility of the presented spring should also be addressed. In the present case, ductility is taken 
as infinite. Therefore, the limit presented on the graph (4mm) is completely arbitrary and chosen so 
that the behaviour of the spring is fully presented.  

 

Compression zone 

The same procedure shall be conducted in order to obtain the equivalent spring KC. 

Fistly, we form the Keq.C from LSWC – BSfd – LSW-B – BH-B. 

Case 1: Compression force Ft.ed < Frd.slip.2   

In this case only the LSWT is active, therefore we obtain: 

    

 

 keq.C.no.slip
1

1

klswc









45.82 mm
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Case 2: Compression force Ft.ed  Frd.slip.2   

After the slip of the dumper 3 components are activated giving: 

 

 

As the CWS and CWC have infinite stiffness, the stiffness of the equivalent compression spring KC 
is: 

 

 

 

 

 

 

 

 

 

 

 

Figure III-17: F -  diagram of the equivalent compression spring – hogging bending 

Figure III-17 represents the behaviour of the equivalent compression spring. We can conclude that 
due to the high initial stiffness, the spring behaves up to the slip limit as practically rigid. When the 
slip occurs there is not force increment up to the stroke end, when the new stiffness is provided. 
The designed resistance of the spring corresponds to the minimum value of the resistance of all of 
the components forming the spring and in this case is governed by component BH-B. Therefore, 
FRD = 532.4 kN. 

The ductility of the spring is taken as infinite and the graph ends at arbitrary value of  as 
previously explained.  

With the data we now have, we can form the Sj for the hogging bending: 

‐ Rotational stiffness valid before the slip of the upper interface occurs 

  

 

keq.C.slip
1

1

klsw-b

1

kbh-b


1

kbs.fd


1

klswc


1.184 mm

kC.slip
1

1

klsw-b

1

kbh-b


1

kbs.fd


1

klswc


1.184 mm
kC.no.slip

1

1

klswc









45.82 mm

zeq 422 mm E 210GPa
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‐ Rotational stiffness valid after the slip of the upper interface but before slippage of the 
damper 

 

 

 

‐  
 

‐ Rotational stiffness valid after the slip of the friction damper 

 

 

 

 

With the data presented above, we can describe the behavior of the joint under hogging moment 
using the 2-spring model. We now move to the sagging bending. 

III.3.3.2. Sagging	bending	
Figure III-18 explains the steps used to form the 2-spring model of the joint when subjected to 
sagging moment. The procedure is generally the same as for the hogging bending. 

 

 

 

Sj.ini

E zeq
2



1

kC.no.slip

1

KT.no.slip









1.964723 10
5

 kN m

Fj.ini.limit 186.6 kN M j.ini.limit Fj.ini.limit zeq 78.745 kN m

Fj.slip1.limit 450.8 kN M j.slip1.limit Fj.slip1.limit zeq 190.238 kN m

Sj.slip1

E zeq
2



1

kC.no.slip

1

KT.slip









5.241551 10
4

 kN m

Fj.slip2.limit 532.4 kN M j.slip2.limit Fj.slip2.limit zeq 224.673 kN m

Sj.slip.2

E zeq
2



1

kC.slip

1

KT.slip









2.434719 10
4

 kN m

Figure III-18: Steps to come from the horizontal spring model to 2-spring model 
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Tension zone 

Firstly we shall make Keq.T.1 which contains the components activated at the level of the bolt rows, 
namely, CWT – CFB – BT - LSFB. Therefore: 

 

 

 

 

 

The equivalent spring and lever arm have values of: 

 

 

 

 

 

The next step would be forming of the Keq.T.2 from LSWT – BSfd – LSW-B – BH-B. We need to 
account for the two situations: 

Case 1: Tension force Ft.ed < Frd.slip.2  

In this case only the LSWT is active, therefore we obtain: 

    

 

Case 2: Tension force Ft.ed  Frd.slip.2   

After the slip of the dumper 3 components are activated giving: 

 

 

 

  

  

 

 

keff.1
1

1

kcwt

1

kcfb


1

klsfb


1

kbt









3.519 mm h r.1 494 mm

keff.2
1

1

kcwt

1

kcfb


1

klsfb


1

kbt









3.519 mm h r.2 348 mm

zeq.t1

keff.1 hr.1
2

 keff.2 hr.2
2



keff.1 hr.1 keff.2 hr.2
434 mm

keq.t1

keff.1 h r.1 keff.2 h r.2

zeq.t1
6.833 mm

keq.T.2.no.slip
1

1

klswt









45.82 mm zeq.T.2 422 mm

keq.T.2.slip
1

1

klswt

1

klsw-b


1

kbh-b


1

kbs.fd









1.184 mm zeq.T.2 422 mm
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The final step is merging Keq.T.1 and Keq.T.2 into the equivalent spring KT. As addressed when 
hogging bending was discussed, in order to make KT we need spring which are in row. In order to 
move Keq.T.1 we will need to account for the change of the stiffness of Keq.T.1 with respect to the 
lever arm as explained in III.3.3.3: 

 

 

 

The new value of Keq.T.1 shall be used in the final formulation. 

Finally, the values of stiffness of the equivalent tension spring representing the behaviour of the 
whole tension part, for z.eq.T = 422mm, are: 

 

 

 

The behaviour of the spring shall be shown in a form of an F -  diagram.  

 

Figure III-19: F -  diagram of the equivalent tension spring – sagging bending 

Similarly to hogging bending situation, the spring containing the friction damper has firstly a 
behaviour very close to a rigid one (Figure III-19). Then the slip occurs inducing large dilatation, 
until the new components are activated. The designed resistance of the spring corresponds to the 
minimum value of the resistance of all of the components forming the equivalent spring. In this 
case the design resistance is governed by component LSWB and therefore FRD = 490.1 kN. 

The ductility limit of the spring is taken as infinite and the graph ends at arbitrary value of  as 
previously explained.  

 

 

zeq.T.1 434 mm zeq.T.2 422 mm

keq.T.1 7.021 mm k* eq.T.1

zeq.T.1

zeq.T.2









2

keq.T.1 7.426 mm

KT.no.slip
1

1

keq.T.2.no.slip

1

keq.T.1









6.39 mm KT.slip
1

1

keq.T.2.slip

1

keq.T.1









1.021 mm
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Compression zone 

The same procedure shall be conducted in order to obtain the equivalent spring KC. 

Fistly, we form the Keq.C from TSWC – BS – TSW-B – BF-B. 

Case 1: Compression force Ft.ed < Frd.slip.1  

In this case only the TSWC is active, therefore we obtain: 

    

 

Case 2: Compression force Ft.ed  Frd.slip.1   

After the slip, 3 components are activated giving: 

 

 

As the CWS and CWC have infinite stiffness putting them into the expressions presented below 
would not change anything, therefore the stiffness of the equivalent compression spring KC is: 

 

  

Figure III-20: F -  diagram of the equivalent compression spring when considering slip1 (right) and without considering 
slip1 (left) – sagging bending 

In Figure III-20 (left) represents the behaviour of the equivalent compression spring. We can note 
that until reaching the first slip, the behaviour is close to rigid. The initial stiffness changes after 
Fslip.1 is reached, providing a more flexible response until we finally reach the design resistance 

  

 
 

 

keq.C.no.slip
1

1

ktswc









44 mm

keq.C.slip
1

1

ktsw-b

1

kbf-b


1

kbs


1

ktswc


1.832 mm

kC.no.slip
1

1

ktswc









44 mm kC.slip
1

1

ktsw-b

1

kbf-b


1

kbs


1

ktswc


1.832 mm
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governed by CWS. Therefore FRD = 598.3 kN. In the presently discussed picture slip.1 was not 
considered. 

Figure III-21 (right) represent the behaviour of the same spring but when slip.1 is included. As 
mentioned, due to uncertainty of the slip length, the fact that it will not influence the response 
much and for the sake of the simplicity, the slip of the upper interface shall be neglected. 

In the present case, ductility is taken as infinite and therefore, the limit presented on the graph is 
completely arbitrary and chosen so that the behaviour of the spring is fully presented.  

With the data we now have, we can form the Sj for the sagging bending: 

‐ Rotational stiffness valid before the slip of the upper interface occurs 

 

 

 

 

 

‐ Rotational stiffness valid after the slip of the upper interface but before slippage of the 
damper 

 

 

 

‐ Rotational stiffness valid after the slip of the friction damper    
    

 

 

 

 

Sj.slip1

E zeq
2



1

kC.slip

1

KT.no.slip









5.324626 10
4

 kN m

Fj.slip1.limit 450.8 kN

 

 

 

 

 

  

 

E 210 GPa zeq 422 mm

Sj.ini

E zeq
2



1

kC.no.slip

1

KT.no.slip









2.086761 10
5

 kN m

Fj.ini.limit 186.6 kN Mj.ini.limit Fj.ini.limit zeq 78.745kN m

Fj.slip2.limit 490.1 kN

Sj.slip.fd

E zeq
2



1

kC.slip

1

KT.slip









2.452493 10
4

 kN m

M j.slip1.limit Fj.slip1.limit zeq 190.238 kN m

M j.slip2.limit Fj.slip2.limit zeq 206.78 kN m
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With the above presented we have fully defined the monotonic behavior of the joint for both 
hogging and sagging bending using two parallel spring, one representing tension and the other 
compression zone. We proceed to the validation of the so-called 2-spring model to evaluate 
whether this model can fairly represent the behavior of the joint.  

III.3.3.3. Theoretical	background	of	the	spring	translation	
Earlier, when we were forming the 2-spring model of the innovative joint, it was needed to 
translate one of the horizontal springs to a different position, in order to be able to form an 
equivalent spring. The mentioned problem shall be addressed in the following paragraphs. 

Let us imagine that we have a joint where the connection is realized 
by an end plate, subjected to bending. We make two cuts in order to 
form the horizontal spring model and we calculate the 
characteristics of the springs by using the component method. Let 
us assume our formed model has 2 springs, spring 1 with its 
stiffness K1, resistance and lever arm from the compression centre 
h1 and spring 2 with its stiffness K2, resistance and lever arm from 
the compression centre zeq. (Figure III-21) 

In order to form an equivalent spring from springs 1 and 2, we need 
to move one of them and place them in a row. We will move the spring 1 to be in line with the 
spring 2. The characteristics of the new spring will contain a sign *. To assess what kind of 
influence the change of the lever arm has on the stiffness we start from the following statement: 

Bending moment is constant at the level of the cross section where the cut was made. Therefore: 

M1 = M1
*                (1) 

 Where moments for the different position of the spring can be expressed as: 

M1 = h1 F1 = h1 k1 1 / (: h1)  

M1
* = zeq F1

* = zeq k1
*1

* / (: zeq) 

where 1 is the dilatation of the spring 1 and 1
* is the dilatation of the spring 1*. 

 If we divide both of the expressions with the corresponding lever arm and then place them into (1) 
we obtain the following: 

h1
2   k1 = zeq

2
  * k1

*  

where  is the rotation of the section at position of spring 1 and * is the rotation of section at 
position of spring 1*. 

Figure III-21: Vertical translation 
of the spring 
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From the Bernoulli theorem saying that the plane section remains plane after the deformation we 
can say that the rotation of a cross section is constant: 

 =  * 

Bringing us finally to the wanted expression for the new stiffness when the spring is vertically 
moved to a different lever arm: 

k1
* = (h1 / zeq)2  k1 

From the derivation presented above we can conclude that the change of the stiffness of a spring 
when vertically moved depends on the squared value of the ratio between the previous and final 

position. When forming the M -  curve of a joint, we needed to account for the change of stiffness 
of a spring since we moved it. This expression was used to obtain the “new” value of the stiffness 
of the spring moved in case of hogging and sagging bending. 

III.3.4. Validation	of	the	2‐spring	model	
The present chapter will be dedicated to comparison between the results obtained by using the 
rotational spring model and the ones obtained from the 2-spring model in order to estimate the 
expected joint behaviour under the monotonic bending. The rotational spring model shall be used 

as a reference in order to validate the 2-spring model. Results are given in a form of M -  curves, 
presented in the Figure III-22. 

If we look at the part of the curve presenting the behaviour under sagging bending, we can notice 
that we have obtained a full match. The behaviour obtained by using 2-spring model, referred as 
the Model 2, is identical to the behaviour obtained by the rotational spring model, referred as 
Model 1. This is due to the match of the lever arms. Namely, when a rotational spring model is 
formed, the design resistance of the joint is governed by the design resistance of the weakest 
rotational spring with the corresponding lever arm. Likewise, the change of the behaviour of the 
joint is governed by the slip occurrence that takes place in the 1st rotational spring, with a lever arm 
of 422mm in the case of sagging bending. The value of the M for each point of the curve is 
calculated by multiplying the force acting in the springs with the lever arm. Therefore, in the 
present case where the lever arm governing the behaviour has a value of 422mm for both models 

the bending moment will be completely the same. Similar thing happens with the rotation . Since 
the rotation of the cross section can be obtained by dividing the dilatation of the horizontal springs 
by the lever arm, it is expected to have equal rotations for both models. 
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Figure III-22: Monotonic M -  curve comparison between Model 1 – Rotational spring model and Model 2 – 2-spring 
model 

 

The difference between the results of the two models is visible in the part representing the 
behaviour under hogging bending. In the Model 1, both slip and the design resistance governing 
components are located in the 1st rotational spring with the lever arm of 412mm, while the Model 2 
has a constant lever arm of 422mm. Due to the difference in lever arms we can notice that the 2-
spring model is slightly overestimating the moment design resistance as well as the bending 
moment at slip, but the difference is below 3% and therefore negligible. Opposite happens for the 
joint rotation. As we already mentioned, rotation can be obtained by dividing the dilatation by the 
lever arm. If we look at the estimated slip of the friction damper, inducing a dilatation of 35mm, 
we will obtain different rotations depending on the lever arm we used, explaining the negligible 
underestimation of the joints rotation. 

The comparison of the rotational stiffness of models 1 and 2 are presented below, in the Table 
III-3. The difference between the rotational stiffness provided by the two models does not exceed 
4.4% in any case, and mostly it stays below 2.2%, proving that the 2-spring model can fairly 
represent the stiffness of the joint. 

Table III-3: Comparison of the rotational stiffness 
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The literature [7] provide us with a criteria that can be used to check whether a difference between 
approximate joint stiffness and the actual joint stiffness has a significant influence on the frame 
behaviour. If the actual joint stiffness, which will in our case be the stiffness obtained from the 
rotational spring model, fits between the boundaries for variance of the actual and approximate 
stiffness, where the approximate stiffness is the stiffness obtained from the 2-spring model, then we 
can say that the difference has less than 2% influence on the frames bearing capacity, and therefore 
is negligible. In this way we can prove that the 2-spring model provides us with a satisfying value 
of initial stiffness. It should be noted that this approach is applicable only for the initial stiffness. 
The approach explain it this paragraph will be presented below. 

The presented calculation are done for the case of an unbraced frame, with the dimensions equal to 
ones used later for the robustness assessment. Only the stiffness with the larges difference shall be 
checked, which will in this case be the initial stiffness under sagging bending. 

According to the table 9.3 in the [7] the boundaries for the unbraced frame are given as: 

 

The 
needed input data are: 

 

 

 

 

 

 

 

The result is presented in the Figure III-24. The red lines on the presented figure represent the 
upper and lower boundary limit. If the actual initial joint stiffness, in our case the one obtained 
from the rotational spring model presented with the grey line, is within the boundaries which as 
shown depend on the value of the approximate initial stiffness, presented with a blue line and 
obtained from the 2-spring model, than the influence that the change has on the frames bearing 
capacity is negligible and the approximate value can be used for the frame analysis.  

 

 approximate joint stiffness (Model 2) 

 actual joint stiffness (Model 1) 

 modulus of elasticity 

 beam length 

 second moment of area of the beam cross section 

Sj.ini.lo

24Sj.app E Ib

30 E Ib  Lb Sj.app
 Sj.ini.up

30Sj.app E Ib

24 E Ib  Lb Sj.app
Sj.ini Sj.ini.limitif

infinitive otherwise



Sj.app 208676.1kN m

Sj.ini 204194.4 kN m

E 210GPa

Lb 5m

Ib 5790 cm
4


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Figure III-23: Boundaries for variance between the actual and approximate initial stiffness 

As seen on the graph presented in the Figure III-23, the Sj.ini is well within the boundaries, even 
almost completely matching the Sj.app. Therefore we can conclude that the 2-spring model provides 
us with a very accurate representation of the joints behaviour and that it can be used further on. 

III.4. Conclusion	
In the present chapter, in it was shown that the component method is a very useful approach which 
allowed us to estimate the behaviour of the innovative joint even though this type of joint was not 
directly considered when the method was developed. 

The friction damper as a component was not mentioned up to now in the literature. Nevertheless, it 
was possible to analyse the joint by presenting the friction damper as a set of elements already 
included in the component method and therefore we were able to estimate the behaviour of the 
joint. 

The 2-spring model had been developed and validated, leading to a conclusion that it is possible to 
represent a joint in such way, which will latter prove to be of great use in terms of analytical 
robustness assessment. 
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IV IMPLEMENTATION	OF	THE	“FREEDAM”	JOINT	BEHAVIOUR	INTO	
THE	ANALYTICAL	MODEL	FOR	ROBUSTNESS	ASSESSMENT	

IV.1. Introduction	
In the previous chapters the available state of the art regarding analytical assessment of a frame 
response when subjected to the column loss situation had been presented. Several possibilities were 
given starting from the simplest model all the way up to the most complex and most complete one. 
The behaviour of the innovative joint was adequately modelled using the 2-spring model and later 
validated, allowing its usage further on.  

The present chapter aims at implementing the behaviour of the innovative joint defined by the 2-
spring model into the routine, which will be formed in programing language Matlab, based on the 
model presented in II.2.4. 

Analytical model addressed in II.2.4 represents the simplest model which considers the coupling 
between the hinge and global structure behaviour and it had been proven that it gives satisfying 
results of the frame behaviour during Phase 3 (Figure IV-1). Therefore, it was decided to use this 
simplified approach to analyse the frame equipped with the innovative joint, as the present work 
represents the first step towards fully modelling the behaviour of the a frame equipped with the 
innovative joint submitted to a column lost.  

Primarily, the necessary properties of the frame shall be defined. A simplified substructure shall be 
extracted from the DAP followed by explanation of the expected behaviour of the substructure and 
the problem itself. 

Further on, equations describing the behaviour of the substructure shall be derived using static 
approach and introducing several assumptions. The obtained equations will be introduced into a 
solver using the programming language Matlab along with the definition of the behaviour of the 
springs. Parameters influencing the used solver shall be mentioned and optimized for each case in 
order to obtain satisfying results. The path from the simplest programed behaviour to the full spring 
model behaviour shall be briefly explained 

Finally, parametric study shall be conducted, and the obtained results analysed and discussed. The 
main idea is to show the different possible response of the substructure depending on the stiffness 
of the indirectly affected part and to discuss the behaviour and possible contribution of the 
innovative joint to structural robustness. 

IV.2. Substructure	model	
The following subchapter shall be dedicated to the explanation of the sequence of getting from the 
frame submitted to a column loss to the simplified substructure that will be analysed. 
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Figure IV-1: Frame subjected to a column loss simulation model [3] 

As mentioned earlier, the behaviour of a frame submitted to a column loss can be simulated by a 
frame without the lost column subjected to a concentrated force P applied at the upper node of the 
mentioned column, as shown in Figure IV-1. 

Following the procedure described in the state of the art, the considered frame presented in the 
Figure IV-1 will be divided into the directly affected part and indirectly affected part. The joints 
connecting the frames members have the same configuration as the innovative joint CYC 13 
analysed in the previous chapter. Beams and columns of the DAP are the same one forming the 
joint. 

The directly affected part contains all the beams, columns and joints located just above the lost 
column, and is marked with a red rectangle in the Figure IV-1. In the present work, only the 
response of the lower beams of DAP will be investigated, as it had been proven that they 
adequately model the behaviour of the frame during Phase 3. Indeed, as discussed in [2], the 
highest membrane forces develop at the lower beams of the DAP and therefore those will be the 
beams analysed. The beams and the joints forming the substructure are the ones meet in the storey 
just above the column loss.  

We extract the lower beams from the DAP, as shown in the Figure IV-2, and form the substructure 
which is defined as in the Demonceau model. 

 

Figure IV-2: Definition of the substructure 

Plastic hinges which develop at the beginning of the Phase 3 in the joints as the joints are partial 
strength, are modelled by horizontal springs. By modelling the plastic hinges as horizontal springs, 
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we are accounting for the coupling effect of the hinge and global frame behaviour. Moreover, as 
already mentioned, we are avoiding the direct definition of the M-N interaction curve of the joint, 
as this data is implicitly included in the definition of the springs. Finally, by simulating the hinges 
behaviour with horizontal springs we pass from the Demonceau model to the new substructure, one 
as presented in II.2.4.  

In the new substructure, apart from representing the hinge behaviour by the 2-spring model, we 
shall neglect the contribution of the uniformly distributed load as it was proven in [2] that it doesn’t 
significantly affect the response of the structure during Phase 3. 

Indirectly affected part is defined as the remaining part of the structure when we exclude the 
directly affected part. The geometry of the IAP will not be introduced, as we will include the 
behaviour of the IAP by placing a horizontal spring at the level of the analysed substructure. The 
only data needed to define the IAP is the stiffness KH and design resistance FRD.H. The stiffness KH 
of the spring represents the stiffness provided by the whole IAP of the frame. The idea is to vary 
the KH and perform a parametric study by varying the value of KH in order to assess the response 
of frames with different properties. 

A simplification shall be made within this work assuming that the IAP remains in elastic range 
during whole Phase 3 even though there is a possibility of forming a mechanism within IAP 
followed by failure. Therefore, the failure will not be governed by the IAP and there is no need to 
estimate the FRD.H. Information on how to assess the characteristics of the IAP can be found in [4]. 

It should also be noted that the present analysis will consider the case of a 2-dimensional structure 
statically losing a column. No dynamic influences shall be considered. The work will be focused 
on the so-called Phase 3, when the mechanism forms and second order effects are developing. The 
behaviour during Phase 2, before the mechanism occurs, will be included in the result but as an 
approximation. The used model is not validated for simulating the behaviour during Phase 2. 
Coupling effects between the storeys of the DAP are not included by this model.  

The substructure discussed herein is taken to be symmetric for the sake of simplicity. That being 
so, the substructure shall be simplified even further by considering only half of it. The final 
substructure representing the half of the extracted one is formed respecting the theory of static 
symmetry. The final substructure that will be analysed is presented in the following paragraphs. 

IV.2.1. The	final	substructure	disposition	
The final substructure model, both in deform and initial stage, is presented in the Figure IV-3. The 
model consists of a beam supported on the left side by a restrain that can horizontally slide, and on 
the right side by a restrain which can freely slide in vertical direction. The sliding restrain on the 
left is supported by a spring in horizontal direction, representing the influence of the indirectly 
affected part. 
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The partial strength joints where the hinges form are represented by 2 springs, one simulating the 
behaviour of the tension zone and another simulating the behaviour of compression zone. The 
springs activated in tension are labelled with number 1 while the ones acting in compression are 
marked as number 2. The detailed behaviour of the springs further to a loss of a column shall be 
addressed in IV.3. 

 

Figure IV-3: Final substructure model – compatibility of deformations 

The value L0 represents the initial length of the beam. In this work length of the beam considered 
will be taken as L0 = 5m. 

Initial length of the plastic hinge label as L in the Figure IV-3 for the case where the hinge 
develops in the joint is taken as equal to 0. According to [3], when the yield zone is localized in the 
joint, which is assumed to be very short compared to the length of the beam, length of the hinge 
can be neglected. 

L corresponds to the elongation of the beam under tension force when the membrane forces 

develop and it is defined by the equation L = FH (L0 - 2L) / (EA). 

Values HOG and SAG represent, respectively, the elongation of the plastic hinge at the level of 
beam axis in case of hogging and sagging bending. 

Vertical displacement at the upper node of the lost column is labelled as u, while the rotation of the 

beam axis is referred as  (rotation of the hinge). 
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P corresponds to the concentrated force associated to the column loss and is applied at the upper 
node of the lost column. 

The horizontal spring characterised by stiffness KH represents the influence of the indirectly 
affected part of the structure. The behaviour of the IAP, as previously explained, will be taken as 
fully elastic during the whole Phase 3.  

The following (Figure IV-4) figure will address the equilibrium of forces in the beam of the 
substructure.  

 

Figure IV-4: Equilibrium of forces 

When the vertical displacement u reaches a significant value within the described substructure the 
membrane forces FH start developing in the beams compensating the loss of the column carrying 
capacity. Of course, the membrane forces cannot carry the total load of the column 
unconditionally. The development of the catenary actions depends on the anchorage provided by 
the indirectly affected part and the ductility of the members forming the structure. In order to have 
a robust structure, ductility is a necessary condition.  

The development of the P is limited by maximal deformation which can be reached, in the present 
case, within the joint. Unfortunately, for the given joint configuration no tests were performed 
assessing the joint ultimate rotation capacity or ductility of the components forming it. Therefore, 
we cannot claim with certainty what the ultimate plastic rotation of the joint will be. The problem 
will be addressed later, when the particular result of the analysis will be discussed. 

The developed tension forces are transferred to the hinges, as presented in the Figure IV-5. The 
equilibrium in the hinge is obtained by the activation of the springs forming the joint. The sum of 
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the forces in the springs equal the FH, while the bending moment is equal to the forces in the 
springs multiplied with the corresponding lever arm. 

 

Figure IV-5: Forces in the hinge model [8] 

The beams axis is taken as a reference line and therefore the distance hi, which corresponds to the 
spring i, is taken as the distance from the spring to the axis of the beam. The beam forming the 
frame is IPE 270. Therefore, the distance from the level of springs to the beam axis are: 

h1.hog = 142.5mm   h2.hog = -269.5mm 

h1.sag = -269.5mm  h2.sag = 142.5mm 

Table IV-1: Equations and unknowns used in the analytical procedure 

Unknowns Equations   

u u = input data (1)  

θ sin(θ)= u/(L0-2L+(FH*(L0-2L)/(Es*As))) (2) Figure 
IV-3 δHOG L0-2L = δH+ δHOG+ δSAG+cos(θ)*(L0-2L+(FH*(L0-2L)/(Es*As))) (3) 

δSAG δH=f(FH) (4)  

δ1,HOG δ1,HOG = δHOG + h1.hog *θ (5) Figure 
IV-5 δ2,HOG δ2,HOG = δHOG + h2.hog *θ (6) 

δ1,SAG δ1,SAG = δSAG - h1.sag *θ (7) 

δ2,SAG δ2,SAG = δSAG - h2.sag *θ (8) 

F1,HOG F1,HOG=f(δ1,HOG) (9) IV.3 

F2,HOG F2,HOG=f(δ2,HOG) (10) 

F1,SAG F1,SAG=f(δ1,SAG) (11) 

F2,SAG F2,SAG=f(δ2,SAG) (12) 

FH  F1,HOG + F2,HOG = FH (13) Figure 
IV-5 δH F1,SAG + F2,SAG = FH (14) 

MHOG MHOG = h1.hog *F1HOG + h2.hog *F2HOG (15) 

MSAG MSAG = h1.sag *F1SAG+ h2.sag *F2SAG (16) 

P FH*u+MHOG-MSAG – P (L0- δH) = 0 
 

(17) Figure 
IV-4 
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The equations and the unknowns used to analytically address the problem of the frame behaviour 
further to a column loss are presented in the Table IV-1. Most of the equations are derived from the 
above presented figures i.e. compatibility of deformations, force equilibrium and geometry. It 
should be underlined once more that the presented equations are derived based on a static 
approach, analysing the behaviour of a 2D frame subjected to a column loss, considering the 
response of the DAP. 

For solving the presented system of equations the definition of the spring behaviour under the 
discussed situation is needed. This will be the subject of the following subchapter. 

IV.3. The	behaviour	of	the	springs	simulating	the	hinge	
Earlier we have defined the behaviour of the joint when subjected to monotonic bending. The 2-
spring model was formed, and the force-displacement law of springs forming the model was 
presented. The modelled behaviour of the springs is adequate for assessing the behaviour under 
monotonic loading, but to apply it in the robustness assessment model it will need to undergo some 
changes. 

In order to define the F- laws of the springs forming the hinge we first need to address the 
behaviour of the substructure before and after the mechanism is formed. 

 

 

 

 

 

 

 

 

 

Figure IV-6 is introduced as a reminder of the expected general behaviour of the analysed frame. 
When the column starts to progressively collapse (Phase 2 from point (2) to (4) in the Figure IV-6), 
the load which the column cannot support anymore will be redistributed to the remaining structure. 
The joints in that case will be subjected to bending moments, loading one side of the joint in 
tension and another in compression. 

Figure IV-6: General behaviour
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As the collapse is progressing, the first plastic hinge will form at point (3). This would mean that 
one of the springs representing the joint reached the plateau. At this point we still consider our joint 
is subjected to pure bending. 

With the further increase of vertical displacement, more of the springs will enter the plastic domain 
until finally all of them reached the plateau and the mechanism is formed at point (4). Until 
reaching this point the spring are still loaded in the same direction as in the beginning, tension 
springs in tension, springs firstly activated in compression further in compression. 

Further vertical deformation, since now the mechanism is formed, will induce the formation of 
tension forces in the beams, related to the catenary actions. The tension forces are transferred to the 
hinges formed in the joints loading them with the combination of M and N. At this point, with the 
newly developed axial load included, the springs in tension are subjected further to tension, but for 
the springs in compression the unloading phase begins. 

The growth of the vertical displacement generate larger tension forces in the hinges and the springs 
which were in compression start to unload and potentially, if the structure is able to develop 
significant membrane forces, pass from being active in compression to  being active in tension. 

Taking into consideration the above mentioned, we come to conclusion that in order to properly 
define the behaviour of the springs we need to take into account the possibility of the load 
changing direction in the case of springs subjected to compression. This will generate some 
changes in the 2-spring model we have derived. 

Namely, the behaviour of the springs derived in the Chapter III concerned the behaviour valid 
under monotonic bending which means that the load acting on the spring does not change direction. 
That would mean that the derived behaviour laws are valid up to the development of the membrane 
forces. As the forces developing with the increase of the deformation are tension forces, the only 
springs suffering some changes will be the ones primarily activated in compression. 

The behaviour of the springs in tension is presented in Figure IV-7 and Figure IV-8. 

  

 

 

 

 

 
Figure IV-8: F -  law of the tensions spring under 

hogging bending labelled as HOG 1

Figure IV-7: F -  law of the tensions spring under 
sagging bending labelled as SAG 1 
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The presented springs, named HOG 1 and SAG 1 are just like the ones defined in the 2-spring 
model. The label HOG corresponds to the spring primarily subjected to hogging bending, while the 
label SAG represents the spring firstly subjected to sagging bending. Their behaviour has been 
discussed in the Chapter III. The only thing that should be addressed is the ductility. The ductility 
of the components forming the springs will be considered unlimited within this work. When the 
result are obtained, they will be discus in terms of requested ductility needed to reach certain value 
of P. The values defining the presented spring behaviours can be found in Table IV-2.  

Spring subjected to compression in Phase 2 are presented in Figure IV-9and Figure IV-10. 

If we want the springs primarily activated in compression to adequately model the expected 
behaviour when membrane forces start to develop, defining their behaviour becomes a bit more 
complex. 

In order to explain the spring behaviour let us assume that the properties and the configuration of 
the frame is such that the springs will reach the plateau in compression before the unloading phase 
commence, which corresponds to presented in Figure IV-9 and Figure IV-10. 

 

 

 

 

 

 

 

 

The first spring to be analysed will be the one named HOG 2. As presented in the Figure IV-4 with 
number 2 this spring belongs to the joint primarily subjected to hogging moment. During Phase 2 
this spring is under compression. Before the compression force reaches the slip resistance of the 
friction damper Fslip_c the response of the spring is almost rigid, due to the large stiffness defining 

the behaviour of that part of the F -  law. After reaching the Fslip_c the slip occurs until the bolts hit 
the end of the slotted hole. Additional stiffness is provided by the newly activated elements but the 
value of the stiffness is much lower that the initial one, changing the behaviour law. By further 
increasing the force we reach the plateau and bearing of the beam hammer head provides the 
ductility. Let us assume that after some plastic deformation develops, the membrane forces start to 

Figure IV-10: F -  law of the compression spring under hogging 
bending labelled as HOG 2 

Figure IV-9: F -  law of the compression spring 
under sagging bending labelled as SAG 2 
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develop in the beams, and therefore in the hinges. This will activate the unloading phase, marked 
with a dashed line in the Figure IV-10. As the tension forces are progressively developing, the 
spring will still be in compression but the value of compression force will start to drop. The 
behaviour law in the unloading phase is governed by the same stiffness values as when the 
compression force was increasing. If the membrane forces are able to grow further, the spring will 
finally switch from compression to acting in tension. The spring is now working in tension but the 
bolts are still in the same position as they were when the slip in compression occurred. Indeed, in 
the unloading phase the force is still acting in the compression direction, and when it switches to 
tension the bolts cannot move until the slip resistance is reached. It was concluded that when the 
spring HOG 2 starts working in tension, the stiffness governing its behaviour is actually the same 
one used for defining SAG 1. The spring HOG 2 in tension experiences the same behaviour as 
SAG 1 with a small difference in the slip length. When the slip limit is reached in tension, the slip 
will contain the slip length induced by bearing of the hammer head, the slip of the bolts of the 
friction damper which occurred while the spring was in compression and the slip length available 
in the direction of the tension force. The bolts will practically move from one side of the slotted 
hole to another. Further development of the membrane forces will activate the new components but 
now in tension until finally the plateau is reached. Theoretically, this is the behaviour that can 
occur and that is presented in the Figure IV-10. Once again, this scenario is only possible if the 
configuration, properties and the ductility of the components are such that the catenary actions 
develop in this specific way. 

The behaviour of the spring SAG 2 can be described in a similar way. The SAG 2 corresponds to 
the spring in compression firstly subjected to sagging bending, located at the upper part of the joint 
as shown in Figure IV-4. Before the activation of the membrane forces we have almost a rigid 
behaviour up to the slip of the upper interface. After the slip new components are activated 
reducing the stiffness which governs the behaviour up to the point where the plateau is reached. 
Assuming that the membrane forces activate before the ductility limit of the spring is reached, the 
unloading phase commence. The unloading phase respects the same behaviour law defined by the 
stiffness in the loading phase, as presented by a dashed line in Figure IV-9. Further potential 
development of membrane forces would activate the spring in tension. The behaviour of spring 
SAG 2 is governed by the same stiffness values as for HOG 1. Initial stiffness is valid until the slip 
in the upper interface occurs, then the modified stiffness governs the behaviour, until finally 
reaching the plateau. 

The values of the stiffness and resistance defining the spring behaviour can be found in Table IV-2.  

A comment must be made on the values presented in the table IV-2. As it can be concluded from 
the presented values the behaviour of the springs HOG 1, HOG 2 and SAG 1 is defined by the 
same values as the ones defining the 2-spring model under monotonic loading. The behaviour of 
the spring SAG 2, on the other hand, cannot be defined completely by the using those values. 
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If we look at the values presented in Table III-1 we can conclude that the weakest component and 
the component which governs the failure of the spring SAG 2 should be the column web in shear. 
But that will not be the case. 

 

Figure IV-11: Extracted substructure model – column panel in shear under sagging bending 

Figure IV-12 shows us the disposition of our model. As mentioned, the extracted substructure is 
symmetric. Therefore, the moments Msag acting on the joint subjected to sagging are considered 
equal. If we observe the behaviour of the column panel, we can see that in this case, the shear 
forces acting on the panel will annul each other. That is why the transformation parameter β, which 
transforms the shear force acting in the panel to compression and tension force acting at the level 
of the connection, is in this case equal to zero. According to the recommendations found in the EN 
1993-1-8 Table 5.4, for a double-sided joint with balanced bending moments, β should be taken as 
β=0. If we go with this value into the expression for the design resistance of the column panel in 
shear we obtain the following:  

 

 

Therefore, we can conclude that the column panel in shear will not be governing the design 
resistance of the spring SAG 2. The resistance will be governed by the next weakest component. In 
tension that will be T-stub flange in bending while in compression the governing component is 
column web in compression.  

  

FRD.CWS

0.9 fy Avc

 3  M0
inf

Table IV-2: Values defining the F- laws of the springs
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The design resistance of CWC depends also on the value of β. The value β is governing the 
reduction factor ω, which accounts for the possible interaction with shear, included in the design 
resistance equation of the component. Therefore, the FRD.CWC will not have the same value as in 2-
spring model where was β = 1. The new value will be obtained by introducing the new ω, which 
for β = 0 is ω = 1 according to [7]. Therefore we obtain: 

 

 

We have obtained the new value of resistance of the component column web in compression which 
is governing the failure in compression. The design resistance for the component governing the 
failure in tension, T-stub web in bending, is the same one calculated when 2-spring model was 
developed under monotonic loading. The stiffness defining the spring SAG 2 will remain the same 
as for monotonic loading. The change of β will not influence the stiffness as both CWS and CWC 
were already considered infinitely stiff. 

Having the failure governed by the T-stub in bending in the tension zone provides a ductile failure 
mode. On the other hand, in the case when the column web in compression is governing the failure, 
ductility is quite questionable. According to [7] a significant deformation capacity may be expected 
from this component as long as instability is not governing the failure of the component. In our 
case the failure will not occur due to instability, but nevertheless it is doubtful whether enough 
ductility will be provided by this component in order to form a plastic hinge and ensure plastic 
rotation. Therefore, the result obtained from the analysis shall be analysed with respect to the 
before mentioned. The discussed matter will be addressed further when the actual results of the 
following analysis as obtained and the joint behaviour under the column loss scenario is assessed.   

The joint subjected to hogging bending, since the substructure is extracted from the middle part of 
the frame, would also have a moment acting on the other side of the joint. As we can’t say for sure 
what is the value of that moment, we will consider the ratio between the one acting on the joint 
considered in the substructure and the moment on the other side as larger than zero, which would 
correspond to the value of β=1 according to [7]. That would mean that the values obtained for the 
monotonic loading remain correct in case of joint subjected to hogging bending. 

The complexity of the prediction of the spring behaviour lies in the fact that the unloading phase 
can occur at any point. Depending on the moment when the catenary actions develop and how 
large is their increment with respect to the vertical displacement (depends on the stiffness of the 
IAP) the unloading of the compression springs can occur while they are in elastic range before the 
slip, or after the slip but before plateau is reached. Simply said, at any given time. Therefore, the 
real behaviour varies for different configurations of the structure and does not have to look as one 
presented in Figure IV-9 and Figure IV-10. 

FRD.CWC.new

 new

 old
FRD.CWC.old

1

0.83
FRD.CWC.old 818.75kN
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Since we cannot predict for sure when and whether the unloading phase is going to occur before 
running the analysis and obtaining some results, it is needed to adequately mathematically and 
logically define the potential behaviour of the springs in Matlab. From the discussion presented 
above it can be concluded that defining the general behaviour of the springs, to take into account 
any possible situation, will be quite challenging.  

Therefore, it has been decided to start from a simpler behaviour model and by analysing the 
obtained results, come to a model which will accurately represent the expected behaviour of the 
springs for different values of stiffness belonging to the indirectly affected part of the structure. 

The following subchapters will address the routine developed using programing language Matlab 
and the spring models used to represent the hinge. 

IV.4. Substructure	routine	–	Matlab	program	
We have defined the equations analytically representing the behaviour of the substructure. In order 
to solve the system we input the value of the vertical displacement u and for the chosen input 
obtain the value of the force P which corresponds to the value of the redistributed force which the 
column is no more able to support. The derived system of equations represents a non-linear system 
of equations and therefore it is necessary to use iterations and a mathematical solver in order to 
obtain results. 

As mentioned before, University of Liege has developed the analytical procedures for dealing with 
the problem of a frame subjected to a column loss. In some of the available researches regarding 
this topic as [8], Matlab was used in order to solve the system of equations. Couple of routines 
made using Matlab which addressed similar problems were available. Therefore, it was decided to 
form a program used for solving the system of equations by modifying the already existing 
program.  

The program most suiting the considered problem within this thesis was the one connected to the 
[8]. The Matlab routine developed there has the same number of springs and therefore the same 
number of equations. In the following, the modified program shall be discussed. The Matlab 
routine is presented in Appendix B. 

The routine consists of a main program named “substructure_slab1_joint” and several 
subprograms. 

Main program “substructure_slab1_joint” contains the input data related to the frame, position of 
the springs with respect to the beam axis et cetera. The increment of vertical displacement u_step 
and the maximum value of the vertical displacement u_limit, value of u when the program stops 
further calculations, are also presented as input data in the main program. The main program 
contains also the mathematical solver used for solving the presented system of equations. The 
function used to solve the equations is called “fsolve”.The mentioned solver “fsolve” calls the 
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equations to be solved from a subprogram named “myfun_slab1_joint”. In this subprogram the 
equations are defined. 

The equations contain, apart from the equations obtained from geometry, forces equilibrium and 
compatibility of deformations, the laws defining the behaviour of the springs, 4 of them 
representing the hinges, and 1 representing the influence of the indirectly affected part. The 
behaviour of each of the springs are defined as functions in separate subprograms named 
“F_spring_hog_1”,” F_spring_hog_2”,” F_spring_sag_1”,” F_spring_sag_2” for the 4 springs 
representing the hinge behaviour, and “fh_linear” for the spring representing the IAP. Therefore, 
in order to solve the equations, the solver calls the equations defined in “myfun_slab1_joint” 
which calls the values defining the springs from other subprograms. 

The program works like this. Firstly the input data is defined. Then the vector of initial points x0 is 
formed. In order to solve the system, the solver uses the x0 as a starting point for finding the 
system solution. The values of all the variables forming the equations in “myfun_slab1_joint” are 
at the beginning taken as 0 by forming the first row of the matrix results with all zeros. The u in 
the first iteration is defined by summing the previous value of u (which is 0) with u_step forming 
the new value of u which will be implemented into the equations. The equations are solved for the 
new value of vertical displacement u and the results are stored in a new row of matrix results. 
Results are also stored in a vector x which will be used to define the new starting point for solving 
the system for the next value of u. New value of initial points vector x0 is formed by adding the 
values stored in x, moving the starting point of the away from the previous solution. With the new 
value of x0 defined, the equations can be solved for a new value of u. The process is repeated until 
u_limit is reached when the program ends the calculations.  

As it can be deduced from the presented explanation of the program, several values can influence 
the accuracy of results. The vector of initial points x0, u_step, but also function tolerances TolX 
and TolFun of the used solver fsolve can greatly influence the accuracy of results. In order to have 
the solver converging until the end of calculation, for each posed problem the right combination of 
the mentioned parameters has to be used. This will pose a problem latter on when the analysis are 
conducted as they showed that the program, due to the complexity of the demanded calculations, is 
quite sensitive to any change of the mentioned parameters.   

 

IV.5. The	primary	models	of	the	spring	behaviour	
As mentioned, the behaviour of the springs depend on variety of parameters and in order to come 
to a solution which faithfully represents the real behaviour, we will start from a simpler model. 

It had been decided that, as a starting point, the springs should be represented by the simplest 
models – rigid-plastic behaviour and linear-plastic behaviour. It is obvious that those laws cannot 
represent the estimated behaviour of all of the springs in reality, but the idea was to run a 
parametric study in order to see how the program reacts to the change of different parameters such 
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as x0, u_step, TolX, TolFun and to see if it is possible to obtain some reasonable results. Also if 
we analyse in more detail the expected behaviour of the spring presented in Figure IV-7 to Figure 
IV-10, we can come to a conclusion that it would be possible to represent the behaviour as a 
combination of several linear-plastic behaviour, and by properly combining them to obtain the full 
response. 

IV.5.1. Testing	the	program	response	–	rigid	plastic	and	linear	plastic	
behaviour	law	

Firstly, an attempt of implementing the rigid-plastic behaviour was made. It had been noted that the 
initial stiffness of the springs is rather high, therefore it was assumed that representing the spring  
behaviour by using combination of a rigid-plastic behaviours, as presented in Figure IV-2 would 
not have diminished the credibility of the results. 

The idea was to split the behaviour of the spring containing the friction damper into 2 behaviour, 
one representing the behaviour before the slip, the other representing the behaviour after the slip. 
The same analogy would be used for the remaining springs. 

It can be noticed in Figure IV-12 that a concept of “fake stiffness” had been introduced. Namely, 
the main idea behind the introduction of the so-called “fake stiffness” was to help the program 
avoid divergence and singularity. If the spring laws were introduced in the program without any 
stiffness, it would be likely to expect that the solver would not be able to finalize the calculation 
properly due to the singularity cause by the plateau. Therefore, Kfake was introduced, hoping that 
reasonable results could be achieved for a value of Kfake which would not significantly affect the 
expected behaviour of the springs.  

After running the routine made in Matlab several times, modifying the value of kfake but also the 
other mention parameters influencing the stability of the solver, it was concluded that the 
implementation of the present spring model into the routine cannot give reasonable results.  

The solver was not able to provide any result unless of the value of Kfake was significantly high and 
even then, there was no consistency. For a small change of Kfake the initial value of the force P, 
taken as the value at the beginning of the Phase 3, was significantly varying. Therefore, this idea 
was abandoned. 

 Figure IV-12: General idea how the spring behaviour could be separated into more simple ones using rigid-plastic law
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The second idea is presented in the Figure IV-13. The principle is the same as in the previous 
attempt, to split the behaviour of the spring containing the friction damper into 2 behaviour, one 
representing the behaviour before the slip, the other representing the behaviour after the slip and 
use the same analogy for other springs. 

Presented model is closer to the expected behaviour of the springs as it includes the initial and 
stiffness after the slip. It was expected that the program will have a problem to pass from the linear 
part to the plastic as the change of the slope in significant. Therefore, the concept of using Kfake 

was retained.    

 

Figure IV-13: General idea how the spring behaviour could be separated into more simple ones using linear-plastic law 

The results obtained were encouraging. The solver was able to “catch” the correct solution of the 
equation system from the beginning and to pass from linear behaviour of the springs to plastic 
behaviour with a value of Kfake which was negligible. 

It was concluded at this point that modelling the response of the system by separating it into the 
behaviour before and after the slip might possible. Before going with the mentioned approach, the 
decision was made to try to model a more complex behaviour of the spring a see if the program is 
able to deal with it. 

IV.5.2. Simplified‐full	spring	behaviour	model	
Passing from the first attempts to the here presented model had been a long way. As the analysis 
done in between will not generally contribute to better understanding of the problem or results, 
they will not be mentioned. The thing worth mentioning is that the importance of the parameters 
x0, u_step, TolX, TolFun and Kfake was confirmed on the way. It will be latter shown that the 
valid results are only possible if the right combination of the mentioned parameters is used. 

The program was able to deal with the linear-plastic formulation of the spring behaviour and 
therefore it had been decided to try to model with a behaviour similar to the full behaviour of the 
springs, but including some simplifications. The idea was to see whether the program solver can 
deal with the extreme slope changes in the spring laws which correspond to the occurrence of the 
slip of the friction damper and reaching the design resistance i.e. plateau. 

Figure IV-14 presents the potential behaviour of the springs programmed for this model. For the 
springs fully in tension, SAG 1 and HOG 1, the full behaviour was programmed right away. As 
they do not enter the unloading phase and therefore have a simpler behaviour, it had been decided 
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to include their full behaviour from the beginning. By doing that, the slip and the activation of new 
stiffness was considered as well as the slip of the upper interface and the corresponding change of 
the stiffness. 

The simplification of the behaviour was used in case of the springs which are acting primarily in 
compression, HOG 2 and SAG 2. For the spring HOG 2, the simplification consists of neglecting 
the behaviour change after the slip, and considering only one approximate stiffness governing the 
behaviour of the whole unloading phase and the tension phase. The slip resistance was considered 
as the ultimate spring resistance. As for the SAG 2, full behaviour was considered up to the 
unloading phase. The behaviour under unloading phase is modelled by approximate value of 
stiffness while the phase when the spring is in tension is modelled by a stiffness valid before the 
slip. The plateau is considered to occur when the slip resistance of the upper interface is reached. 

 

 

 

 

 

 

 

 

 

 

The values defining the springs are presented in Table IV-4. For better understanding the Figure 
IV-14 should be compared with Figure IV-7 to Figure IV-10. 

Figure IV-14: Behaviour of the springs considered in the simplified spring model 
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Before running the program the mentioned parameters need to be defined. The parameters which 
greatly influence the results are presented in Table IV-3. Indeed, due to the complexity of the 
problem, the solver can experience instability for a small change of any of the parameters. 
Therefore, to obtain a good result, it is needed to find the suitable combination of the input data and 
later to analyse the results in detail and check for any inconsistency. 

The stiffness of the IAP is taken as 5000 kN/m for the present case. This value is arbitrary and it 
was considered because the program gives good results which will lead to important conclusions. 

The results are presented in the Figure IV-15. In the following obtained results shall be analysed. 

In the upper left corner of the Figure IV-15 we can see the P-u curve which represents the response 
of the analysed substructure. Just as a reminder, P corresponds to the force previously supported by 
the column redistributed to the remaining structure while u is the displacement of the upper node of 
the column lost. 

As we can see, the response is linear up to the area marked in red which corresponds to the 
beginning of the slip. The red marker highlights the moment when the first springs will reach the 
slip limit and when the significant rotation of the joint will occur. It should be noted that the 
mechanism is not formed yet. The plateau in the spring behaviour is caused by the occurrence of 
the slip of the friction damper. 

The part of the curves between red and green marker represents the slip of the friction damper until 
reaching the end stroke limit, highlighted with the green marker. As presented in the FH - δH  graph 
the membrane forces are already developing in this part, even though no plastic hinge developed. 
This occurs due to the fact that the slip of the damper allows for significant rotation of the joint 
before the mechanism is formed, in our case around 0.08 rad. The presented feature will be 
discussed in more detail when the full behaviour is modelled. 

Analysing the behaviour of the springs subjected to hogging will not bring us to important 
conclusions at the time being but interesting behaviour of the springs subjected to sagging can be  

Table IV-4: Values defining the simplified spring model Table IV-3: Parameters 
influencing the result 
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Figure IV-15: Result of the simplified model analysis
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observed. Namely, until reaching the red marker, the SAG 1 works in tension, while the SAG 2 is 
in compression. When the red marker is reached, which corresponds to the beginning of the 
development of the membrane forces, we can notice the unloading phase of the spring SAG 2. 
Since the force in the spring SAG 1 is constant, if the joint was subjected only to bending 
moments, the force in the other spring should have also been constant. But, due to the newly added 
tension actions, the joint is not subject to the pure bending any more but to interaction of M and N, 
“pushing” the spring SAG 2 towards tension. When the green marker is reached the force in the 
spring SAG 1 suddenly increases as a consequence of the new activated components after reaching 
the slip limit, a change of the value of the force in the spring SAG 2 occurs. In order to form an 
equilibrium, the force in the spring SAG 2 must change direction again and increase in 
compression. The membrane forces are still there but their increment in this moment is smaller 
than the increment of the force in the spring SAG 1, leading to such behaviour. The reason why the 
sudden change in the force direction is visible is the fact that for the unloading phase an 
approximate value of stiffness was used. Therefore, even though it does not represent completely 
accurately the expected behaviour of the springs, the simplified model greatly contributed to the 
understanding of the spring behaviour. At this point it was obvious that a lot of attention should be 
dedicated to the definition of the spring behaviour in the program, in order to accurately model the 
possible behaviour.  

The green marked represents the moment when the end stroke is reached and when the additional 
stiffness activates. At this point the mechanism start to form. The structure has no more the first 
order stiffness and the support is provided by the indirectly affected part.  

The membrane forces develop further on as the vertical displacement increases until both of the 
springs in sagging reach the plateau in tension. The progressive deformation occurs in the hinge at 
this point (yellow marker). As a consequence of the progressive deformation concentrated in the 
hinge, membrane force cannot continue to develop. But the P force increases further despite the 
mentioned fact. This comes as a consequence of the second order effects. As the vertical 
deformation is able to grow even further, the rotation angle raises increasing the value of the 
projection of the membrane forces. In this way, force P can still increase at the expense of the 
second order effects without any change in the membrane force. The mentioned phenomena is 
characterized by the presented change of slope in the P - u curve.  

All of the above said is valid under the condition of infinite ductility of the elements forming the 
hinge which is the only limitation for the development of the membrane forces. 

Conclusion:    

The simplified spring behaviour model provided us with useful information about the phenomena 
occurring within the general behaviour of the frame equipped with the innovative joint subjected to 
a column loss. The sudden change of the direction of the force in the compression spring was 
noticed, and the lack of accuracy in the used stiffness contributed to it. The change of the 
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behaviour after both of the springs reached the plateau was noted, which will prove latter on to be 
important for the explanation of the following results.   

The conducted analysis had also highlighted the advantages and drawbacks of the currently used 
program, allowing for its improvement. To sum it all up in one sentence, the presented simplified 
model gave a great contribution to the development of what is about to be presented next, and that 
is the full spring behaviour model. 

IV.6. Full	spring	behaviour	model	–	Parametric	study	
From the previously conducted analysis conclusions have been made which lead to the 
improvement of the programed spring behaviour and to the better understanding of the problem 
itself. The program had been modified and full expected behaviour of the springs was introduced. 
Due to the specificity of the possible spring behaviour already explained in the chapter IV.3, 
programing the full behaviour posed quite a challenge. In order to achieve the full behaviour and 
cover all the possibilities, part of the spring behaviour had been modelled by comparing the force 
limits defining the behaviour (FRD.slip, FRD) with the values of the force in the springs obtained in 
the previous iteration. This makes the program partly sensitive to the change of the iteration step, 
which shall be latter addressed. 

The final model of the spring behaviour is presented in Figure IV-16.The table containing the 
values defining the presented spring behaviour is included in the figure as a reminder. As presented 
by the dashed line some additional stiffness, previously defined as K_fake, will be added when 
necessary to the part of the behaviour which should be fully plastic. In order to avoid divergence 
and possible singularity, including fake stiffness will prove to be necessary in some cases.   

 

 

 

 

Figure IV-16: Modelled spring behaviour
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In the following a parametric study shall be conducted. The idea is to assess the behaviour of the 
analysed system and the behaviour of the springs representing the innovative joint for different 
values of stiffness of the IAP. Therefore, the KH shall be varied and for some characteristic cases 
the results will be presented and commented. All the analysis will be conducted considering 
infinite ductility of the elements. As no data regarding the real ductility is available the results will 
be discussed assuming that it will be possible to reach the progressive yielding without the 
collapse. 

It had been mentioned that a set of parameters influences the behaviour of the solver. Figure IV-17 
contains tables giving the used value of KH but also the values of the parameters important for the 
solver. In order to obtain the solution it is needed to use the right combination of all the parameter 
in the table. 

 

The values of KH for which the results shall be presented were chosen with the aim of presenting 
the expected frame response for different possible behaviour of the springs, regarding the 
beginning of the unloading phase, activating additional elements after slip etc.  

IV.6.1. Full	spring	model	1	–	KH	=	0	
The results of the presented model shall be used for the validation of the Matlab routine. The 
values of the other parameters of influence are presented in Figure IV-17. 

Within this model it is considered that the indirectly affected part provides no lateral stiffness after 
the mechanism is formed. Consequently, as there is no anchorage provided by the IAP, no 
membrane forces should develop. It should also be expected that the M – θ (moment-rotation) 
curve of the joint will look like the one obtained for the monotonic loading as only bending 
moments should develop (interaction with shear is neglected within the work). The results are 
presented in the Figure IV-18. 

In the upper left corner of the Figure IV-18 we can see the P – u curve, which represents the main 
results of the analysis. The other presented data contains the FH - δH diagram, representing the 
development of the membrane forces, the M – θ curves of both joints and the F – δ diagrams of the 
springs forming the joint. The markers are used to highlight the changes in the behaviour law of the 
P – u curve which characterise the response of the analysed structure and to show what is occurring 
in the joints and springs at that time, leading to this change of behaviour. 

The substructure modelling the behaviour of the frame subjected to loss of a column exhibits a 
linear response up to the occurrence of slip, which is marked in red.  

Figure IV-17: Tables containing values used for chosen KH 
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Figure IV-18: Result of the analysis for KH = 0
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The distance between red and green marker is characterized by the slip. If we analyse the 
behaviour of the springs forming the joint presented below, we can notice that when the slip occurs 
in the one spring containing the friction damper and until it lasts, there is no increment of the force 
in the other spring. This is perfectly logical since we have 2 springs representing our joint, which is 
in this case loaded only with bending moment. In order to keep the equilibrium, while one spring 
has a constant force, the other one needs to have a constant force also. 

When the end stroke limit of the slip is reached i.e. when the bolts hit the end of the slotted hole, 
newly activated components provide additional resistance, highlighted in green. It can be noticed 
that the force in the springs containing the friction damper starts to increase, and the other spring 
follows in order to equilibrate. 

After the additional resistance is used, the design resistance of the joint is reached and the 
progressive deformation develops leading to the failure. 

Even though the Figure IV-18 shows no development of the membrane forces, and that all the 
presented diagrams are as expected, some increase in the P force occurs with the increase of 
vertical deformation according to the programed calculation. 

This phenomena will be explained by using the energy balance postulate. Detailed explanation can 
be found in IV.6.1.1. 

In the following the behaviour of the joints obtained from the Matlab routine with be compared 
with the expected behaviour derived under monotonic bending in order to validate the routine. It is 
worth mentioning that even though we changed the law of the spring SAG 2 for the 
implementation in the program routine, the behaviour is governed by the other springs which 
remained the same, and therefore we can use the results from the 2-spring model in order to 
validate the Matlab routine. 

 

Figure IV-19: Validation of the Matlab routine – Moment-rotation curve 
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Figure IV-19 shows that there is a good agreement between results. Small difference between the 
models could be occurring due to the chosen step in the program and other parameters defining the 
solver. Considering the above said, we can conclude that the Matlab routine provides reasonable 
results and therefore it can be consider as validated. 

IV.6.1.1. Energy	balance		
In IV.6.1 the model considering no stiffness of IAP was presented. It was shown that even though 
no membrane forces develop, there is some increment of the P force with the increase od the 
vertical deformation. 

In order to explain the obtained result let us start from the substructure disposition. 

 

Figure IV-20: Substructure model – initial and deformed shape [3] 

Figure IV-20 presents the considered substructure in the initial and deformed shape. As we 
consider the KH = 0 when the mechanism occurs there is nothing to anchorage the membrane 
forces nor to stop the mechanism from freely moving. Therefore, the presented problem cannot be 
explained by using the static approach. To explain why the P force increase, we will use the energy 
balance postulate. 

Using the energy balance equation for the deformed shape we obtain: 

P u = 2 Mhog.pl ϴ + 2 Msag.pl ϴ 

If we express the vertical deflection as u = ϴ L1, obtained from the geometry, and implement it in 
the previous equation we obtain the following: 

P ϴ L1 = 2 Mhog.pl ϴ + 2 Msag.pl ϴ /: ϴ 

P L1 = 2 Mhog.pl + 2 Msag.pl 

For each change of vertical deflection u, the value of L1 will decrease. As the right side of the 
above presented equation is constant, the only way to keep the energy balance is to have a larger 
value of force P. Therefore, as the L1 decreases during the process value of P will consequently 
increase, explaining the obtained behaviour of the model presented in IV.6.1. 
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IV.6.2. Full	spring	model	2	–	KH	=	2500	
In the following the results of the model for which the indirectly affected part has the stiffness of 
2500 kN/m will be presented and discussed. Figure IV-17 contains the other relevant parameters 
used to obtain the presented data, and it can immediately be spotted that a different step of the 
vertical displacement was used when compared with the first model. Indeed, the solver was 
experiencing problems for the other values of the step and the obtained results were not fully 
explainable. 

Looking at the Figure IV-21 representing the result of the analysis, we can notice that the 
substructure gives an elastic response up to the spot marked in red when the slip occurs.  

The behaviour of the part of the P – u curve in-between the red and green marker is characterised 
by the slip of the friction damper and therefore progressive rotation of the joint up to the stroke 
limit. None of the components forming the joint have reached their design resistance up to the 
green marker, hence the substructure is still not in the plastic range and the mechanism in not 
formed. 

Nevertheless, on the graph presented in the upper right corner of the Figure IV-21 we can observe 
that some membrane forces have developed. This would mean that for the current configuration of 
the joint the catenary actions can develop before having any plastic deformation. The slip provides 
the needed deformation for the membrane forces to develop and depending on the stiffness of the 
IAP, some membrane force will appear. 

This kind of behaviour is beneficial in term of robustness, as the innovative joint made the 
development of the membrane forces possible before the mechanism is formed. In the present case 
the developed catenary action is not so significant, but with a larger stiffness of IAP, it could prove 
to be a useful advantage of a frame equipped with the innovative type of connection. The 
mentioned behaviour will be further studied in the following analysis. 

If we look at the behaviour of the joints, for example under hogging, we can notice that after the 
slip, there is some change in the value of bending moment. For a case when we have only bending 
this would not be possible because, as previously explained, the forces in the springs have to be in 
equilibrium. Therefore, it is obvious that the joint is not subjected to bending moment only 
anymore, but also to tension force. This can be nicely noticed by looking at the behaviour of the 
springs forming the joint under hogging. For the spring HOG 2 the part of the curve between red 
and green marker represents the slip. At the same time we can see in that there is some increment 
in the tension force in the HOG 1. The part of the curve limited by the red and green marker in the 
graph HOG 1 represents the change of the force in the spring in order to equilibrate the newly 
developed membrane force. HOG 2 reaches the plateau in compression after the slip and requires 
some ductility in order to reach the unloading phase. The unloading phase commences when HOG 
1 reaches its design resistance. 
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Figure IV-21: Result of the analysis for KH= 2500
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Interesting behaviour can be observed if we look at the springs forming the joint in sagging. 
Namely, the slip occurs in the tension spring. When the slip occurs membrane forces start to 
develop. As the membrane forces develop the spring in compression starts to unload in order to 
equilibrate the new force acting in the joint. When the spring SAG 1 reaches the stroke limit, and 
additional stiffness activates, the sudden increase of the force in SAG 1 will cause the SAG 2 to 
change from the unloading phase to the loading in compression (presented with green marker). Due 
to the fact that the stiffness governing the loading and unloading phase is the same, it is difficult to 
clearly see what is going on at that point. Luckily, the discussed behaviour was firstly noted in the 
simplified model where the behaviour is quite clear. After reaching the plateau of the SAG 1, 
spring SAG 2 will again enter the unloading phase. 

For the chosen value of KH, both of the springs containing friction dampers reach the slip end and 
activate the new components while the spring SAG 2 does not reach the plateau. The program was 
able to “catch” all the changes of the spring behaviour laws, from initial stiffness, to the slip, new 
stiffness, plastic deformation, change of stiffness in the unloading phase etc. A small remark shall 
be made about the behaviour of the spring SAG 2. Namely, even though it is assumed in the model 
that the behaviour law is the same for the loading and unloading phase, we can see that when the 
spring is moving from compression to tension, the behaviour law is not completely the same. From 
the force value of 186.6 kN, when the slip of the upper interface occurs, the program “misses” a bit 
the behaviour law of the spring. This occurs due to the fact that such complex behaviour was 
modelled in the unloading phase by comparing the value of the force in the previous step to the 
force limit (186.6kN) defining the change in the behaviour. As the stiffness is very high in this part, 
the behaviour of the spring in influenced in great matter by the chosen step of the vertical 
displacement. Therefore, due to the mentioned facts, the behaviour law of the spring SAG 2 in not 
completely the same for loading and unloading phase. 

When the green marker is reached, the mechanism starts to form. After passing the green marker 
the membrane forces continuously increase with deflection, and the springs follow the expected 
behaviour. As the tension forces increase, the springs which were primarily in compression are in 
the unloading phase, while the springs in tension have reached the plateau. Assuming that the 
ductility of the springs is high enough, the analysis had been conducted up to the 2m of vertical 
displacement. 

It should be noted that the reason for the chosen limit is the occurrence of some problem in the 
solver. The results obtain for the deflection larger then 2m were unexplainable and the solver gave 
a note that the solution is diverging.  

For the presented vertical displacement limit we have not reached the progressive deformation 
concentrated in the hinge characterised by the change of the slope in P - u. None of the joints have 
reached the plateau in both springs due to the combination of M and N. The values of the force and 
following behaviour of the spring at the deflection of 2m is marked in purple.  
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The length of the curve marked in yellow represents a divergence of the solver probably caused by 
the change of the stiffness in HOG 2. The value of the stiffness is extremely high, almost rigid, and 
it is assumed that in the combination with the other behaviour laws of the springs induces some 
divergence.   

IV.6.3. Full	spring	model	3	–	Kh	=	5000	
The results of the discussed model are presented in Figure IV-22. By looking at the table 
containing other parameters of relevance (Figure IV-17) it can be seen that in order to obtain a 
valid result, it was needed to include the fake stiffness. The minimum value of fake stiffness giving 
convergence to the solver solution was 20kN/m. The idea behind introducing the fake stiffness is to 
help the solver pass the critical points and finish the analysis. The used value is very small 
comparing to any of the other values of stiffness and therefore it is assumed that it does not 
influence the reliability of results. This can also be justified by the fact that the Kfake will almost not 
be visible in the presented results.   

The response of the substructure is linear up to the slip. We can notice that the program converges 
for every used value of KH to the same value of force P at slip, giving a reason more to trust in the 
obtained result. 

During the slip, membrane forces will start developing and when we reach the green marker, new 
components will activate inducing an increase in resistance, until both of the springs in tension 
reach their design resistance (green marker) and the mechanism is formed. 

After one of the springs forming the joint reaches plateau, the fact that the other one has not 
reached the design limit will contribute to the further development of the membrane forces. The 
behaviour of the springs is generally the same as the one described in IV.6.2. The difference 
consist of the fact that, in the considered case, the spring HOG 2 will not reach the plateau in 
tension. The unloading phase will occur just before reaching the plateau but after the new stiffness, 
provided by the additionally activated components, is activated. 

Significant membrane forces develop between the green and yellow marker assuming that the 
components forming the joints are ductile enough. The yellow marked highlights the area 
representing the change in the behaviour when the spring HOG 2 reaches the slip in tension. From 
this point membrane forces are not able to develop anymore. Indeed, as both of the springs have no 
stiffness at this point, the deformation is developing in the hinge, preventing the development of 
the membrane forces. This is confirmed by the graph FH – δH, which represents the development of 
the membrane force. 

But the force P continues to grow, even though the membrane force FH has no increment after the 
yellow marker. The further increase of the P force can be explained as the influence of the second 
order effects, as already mentioned in the simplified spring model. As the deformation is 
concentrated in the hinge the rotation, and accordingly the vertical displacement, will increase 
further but without inducing any increase in dilatation of the spring representing the IAP. Therefore  
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Figure IV-22: Result of the analysis for KH = 5000
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the membrane forces acting remain the same as they were just before the hinge started deforming, 
but their vertical projection increases due to the different rotation angle. The described situation is 
illustrated in the Figure IV-23. 

 

Figure IV-23: Second order effects 

Therefore, for the same value of the membrane force in the beam we will have a progressive 
increase of the force P. The behaviour caused by the second order effect is characterised by the 
change of the slope in the P-u curve. 

The analysis was stopped when the vertical displacement reached 2m. None of the hinges at that 
point have reached the design limit (previously described situation occurred due to the slip in one 
spring and reaching the plateau in another) and therefore, the potential full behaviour of the model 
was not presented. 

The model was not able to catch the behaviour of the HOG 2 after vertical displacement reaches 
2m. At the end of the calculation you can see that the force in the spring started dropping instead of 
increasing when the new components activate. This was the reason to terminate the program at 2m 
of vertical displacement. 

IV.6.4. Full	spring	model	3	–	KH	=	10000	kN/m	
Model with the horizontal spring stiffness of 10 000 kN/m is the first model where the full 
potential behaviour of the substructure was reached. For some reason, the change of the KH from 
5000 kN/m to 10 000 kN/m was convenient for the solver, and the program converged to the 
correct solution during the whole calculation. 

The general behaviour of the presented model is the same as for the other models. The main 
difference between the present model and the one with KH = 5000 kN/m is the fact that due to the 
higher stiffness the membrane forces will be larger for the same vertical displacement. The 
increased stiffness of IAP will cause some changes in the behaviour of the springs. 

As presented in the Figure IV-24, the unloading phase of the HOG 2 starts before the stroke limit is 
reached. The larger increment of FH causes the spring HOG 1 to reach the plateau in tension earlier 
and consequently the unloading phase of HOG 2 will start earlier than in previous models. 

The length between the forming of the mechanism (green) and spot where the other spring of the 
joint which was primarily loaded in hogging bending reach the slip in tension (yellow) is 
characterised by the successive rise of the tension forces and the vertical deflection. 



83 
 

The yellow marker highlights the moment when the progressive deformation develops in the 
hogging joint. As already explained in the previous model, at this point the tension spring of the 
joint subjected to hogging has reached the design resistance and the other spring entered the slip 
zone. As a result we have a deformation concentrated at the level of the hinge leading to the 
increase of the P force due to the second order effects while there is no increase in the membrane 
force. 

Assuming that the springs are ductile enough the following could occur. The spring HOG 2 when 
the slip limit is reached, but now in tension, activates additional resistance. The area representing 
this behaviour is marked in purple.  

In-between the yellow and purple marked the progressive deformation occurs in the hinge under 
hogging bending and tension, but no membrane forces develop. This is confirmed by the conducted 
calculation as there is no blue area between the yellow and purple one in the FH – δH graph. As the 
spring HOG 2 reaches the end stroke limit (purple), and additional resistance activates, the 
deformation is no longer just in the joint but in the horizontal spring representing IAP, inducing the 
further development of the membrane force.  

When the additional resistance is consumed i.e. when the design resistance of the HOG 2 is 
reached, the deformation again starts to develop fully in the joint, allowing the increase of the force 
P due to the second order effects but without any increase of the membrane forces. The limit of the 
P force which can be redistributed is limited only by the available ductility. 

It should once more be emphasised that the obtained results represent a theoretically possible 
behaviour and that the maximum value of P which can be reached in reality depends on the 
possibility of plastic deformation of the elements forming the joint where the plastic hinge is 
formed. The joint had been designed so that the area marked in green can be reached for sure, but 
the further development of the membrane forces is unpredictable without a reliable estimation of 
the maximum available ductility. 
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Figure IV-24: Result of the analysis for KH = 10000
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A nice illustration of the forces developing and acting in the joints during the simulation of a 
column loss situation can be presented in term of interaction diagram of bending moments and 
normal forces, as in Figure IV-25.  

We can notice that until the slip is reached (red marker) no tension forces develop. During the slip 
of the friction damper the tension forces start to develop, loading the joints in combined tension 
and bending. When the tension reaches a values around 150 kN, the plastic mechanism forms. This 
is when the mentioned Phase 3 (figure) begins for the analysed configuration of the frame. 
Catenary actions continue to develop with the increase of vertical deflection until, if the ductility of 
the joints allows it, we reach the progressive deformation of the plastic hinge. At this point the joint 
are practically loaded only in tension. 

 

Figure IV-25: Interaction diagram - development of internal forces in the joints during the analysis 

With this model we conclude the parametric analysis in term of detail discussion of the behaviour 
under specific KH.  
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IV.6.5. Result	of	the	parametrical	study	and	discussion	
 

Previously, some characteristic cases of the parametric study were presented and analysed in detail. 
The study will be extended by including the results of the analysis conducted for different values of 
KH in order to explain the general behaviour. It should be noted that some of the analysis had to be 
stopped before experiencing the full possible behaviour due to the problems occurring in the used 
solver. 

Figure IV-27: Variation of KH – Results of the parametric analysis – Applied load vs. rotation of the joint 

 

Figure IV-26: Variation of KH – Results of the parametric analysis – Applied load vs. Vertical deflection
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Figure IV-26 contains graph showing the dependence of the developed P force to the vertical 
displacement of the upper node of the lost column for different values of the stiffness of the 
indirectly affected part.  

The curves representing the substructure behaviour for KH equal to 2500 kN/m, 5000 kN/m, 10 000 
kN/m have already been discussed in detail. The following paragraphs will be dedicated to the 
analysis and discussion of the result for higher values of KH and the obtained result in general. 

As visible in the Figure IV-26 regardless of the KH used, the program converges to the same value 
of force P before the slip occurs, which is expected since the behaviour of the frame in this part is 
characterized by the beams and joints subjected to the bending only (the shear force has not 
considered within the work). 

The response after the slip occurs until reaching the stroke end shows that the membrane force start 
to develop before the mechanism is formed. As anticipated, depending on the stiffness of the IAP 
the value of the developed tension forces varies from lower, in case of low value of KH, to higher, 
in case of having significantly large KH.   

Despite the different behaviour until reaching the slip end caused by the variance of KH, the 
response for any KH converges to practically the same P force at the beginning of the Phase 3, 
when the mechanism is formed within the substructure. The path to get there is different, but the 
beginning of the Phase 3 is defined by the same P force for any KH. 

Therefore, when we talk about the provided benefit of the innovative frame configuration in terms 
of robustness, it can be concluded that perhaps there is no real benefit of the development of the 
membrane forces before forming the mechanism if we only need to redistribute the amount of P 
force up to the value of P for which the mechanism is formed (if we stay in the Phase 2). That 
value (labelled as beginning of Phase 3 in Figure IV-6) will be reached ether way just by activation 
of additional components after the stroke end limit is reached. 

Based on the conducted parametric analysis, it seems that the benefit of this joint in term of 
structural robustness could be that when the mechanism is formed i.e. when the Phase 3 starts, 
some membrane force have already been activated and therefore for smaller value of plastic 
rotation the same force can be redistributed when compared to the regular frame assuming the 
same behaviour of the IAP. This should still be confirmed by further investigation since the used 
program was not validated by experimental data or data obtained from the numerical simulation. 

It should be emphasized that the used substructure model had not been validated for simulation the 
behaviour during the Phase 2. The influence of beam flexibility and the evenly distributed load to 
the Phase 2 have been neglected. Therefore, the presented result before the mechanism is formed 
are approximate, and should be used just for general understanding of the behaviour and the 
occurring phenomena.  
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The response of the substructure after the mechanism is formed is greatly defined by the KH. Even 
though detailed analysis had not been presented for the cases when the KH is larger than 10 000 
kN/m, the behaviour can be foreseen based on the previous analysis. 

The conducted analysis have showed that the potential deformation concentrated only in the hinge 
(causing the explained behaviour defined as the second order effect) will always form in the joint 
subjected to hogging bending (at least for every KH > 2500 kN/m). Indeed, both springs in hogging 
will reach the plateau before the springs defining the joint under sagging do. Therefore, when the 
increment of the membrane force increases due to the larger KH, the unloading phase for the spring 
HOG 2 will occur sooner than for KH = 10 000 kN/m. This will also cause the spring HOG 2 to 
reach earlier the slip in tension. At that point the deformation is concentrated in the plastic hinge 
formed in the joint which was under hogging at the beginning of the analysis causing the explained 
change of behaviour, when the P force increases due to second order effects (Figure IV-26 part 
second order effect due to slip). Taking into account the before mentioned, it is clear that each time 
we have a larger increment of membrane forces, the slip in tension of the HOG 2 and later the 
progressive deformation in the hinge forming in the joint will take place sooner. The latter explains 
the obtained behaviour in the Figure IV-26 for KH > 10 000 kN/m. If we compare the result 
obtained for KH = 10 000 kN/m and KH = 25 000 kN/m, we can conclude that the general behaviour 
is the same, only the part of the curve defined by the increment of P under second order effects 
develops earlier in case of KH = 25 000 kN/m which is expected as the HOG 2 will reach the slip in 
tension sooner for a larger KH. 

After the HOG 1 reaches the plateau and HOG 2 reaches the slip in tension the behaviour is 
practically the same for all KH. P increases due to the second order effects at this point, and the 
length of the curve defined by the second order effect depends just of the length of the slip. As the 
slip has the same length regardless of KH, we come to a conclusion that after the slip is reached, the 
behaviour is the same for any KH.  

When the stroke end is reached, some additional stiffness will provide the development of 
additional catenary action and soon after that, the design limit of HOG 2 is reached, when P can 
again only increase due to second order effects. 

With all of that being said, we can conclude that the result obtained for KH > 10 000 kN/m are in 
agreement with the expected behaviour. For each of them the increment of the catenary action is 
larger, and consequently, the behaviour defined by the second order effects occurs earlier in terms 
of the reached force P and vertical displacement. 

The result of the analysis for KH = 50 000 kN/m and KH = 100 000 kN/m are presented up to the 
point when for the first time the second order effects govern the P – u. This had been done party 
intentionally, to improve the clarity of the figure, partly due to the limitations of the program. But 
as previously explained, the behaviour after that point can be anticipated. 
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The presented response of the substructure considered the infinite ductility of the elements forming 
the frame. In reality, the real response will be limited by the ductility of the elements. As no data is 
provided regarding the ductility of the elements forming the joint, one can only assume where the 
collapse will occur. According to the design of the joint, we should always be able to reach the 
point where the Phase 3 starts. The response of the structure after that point and the amount of the 
redistributed force is only limited with the ductility of the deforming elements. 

For the presented configuration, after the conducted analysis and discussions, it can be concluded 
that the ductility is mainly demanded from the components column panel in shear and L – stub 
flange in bending for the springs HOG 1 and SAG 1, respectively. Both of the collapse modes are 
ductile, which strengthens the belief that significant membrane forces could develop. 

As for the springs representing the part of the joints primarily in compression for the spring HOG 
2, as shown in the analysis for KH = 2500 kN/m, the ductility can be demanded from the 
component bearing of the hammer head flange while the spring is in compression and if the KH is 
small enough to allow the spring to reach this failure mode. For higher values of the KH the design 
limit in compression will not be reached, but the ductility of the component governing the design in 
tension, L – stub flange in bending, could govern the failure of the spring and therefore the joint, 
assuming that the springs HOG 1 and SAG 1 are ductile enough to allow for the development of 
the membrane forces up to the point where the design resistance of HOG 2 in tension is reached. 
Again both of the components from which ductility is demanded are known to experience a ductile 
failure, which is encouraging. 

The spring SAG 2, for the presented configuration, will never govern the failure. As presented in 
the analysis, the design resistance will never be reached for this spring, not in compression nor in 
tension. This is a good feature since the failure in compression for this spring would depend from 
the ductility of the column web in compression. Generally, it is not a good idea to rely on the 
ductility of components in compression, as they tend to have less ductile behaviour that the ones in 
bearing, bending or column panel in shear. The failure mode in tension would be governed by the 
T – stub web in bending, which would again be a ductile failure mode. 

As the ductility is not known and it is the only condition to have the force redistribution, it is 
possible to determine the requested ductility of the joint in order to redistribute a desired value of 
the force, if the characteristic of the IAP are known. Figure IV-27 represents a graph showing the 
dependence of the redistributed force P to the developed rotation of the joint. From the presented 
graph it is possible to determine the requested rotation of the joint in order to redistribute a certain 
force. 

For example, if the column which is lost supported 150 kN before the loss, and if the indirectly 
affected part of the frame has stiffness of KH = 10 000 kN/m (assuming the response of the IAP is 
linear), from the Figure IV-27 it is possible to read that the requested rotation is around 0.2 rad i.e. 



90 
 

around 11.5 degrees in order to consider the frame robust. From this we can also conclude that the 
requested plastic rotation would be around 0.12 rad. 

The structure is considered robust if it is capable to redistribute the load supported by the lost 
column without the collapse. 

 

IV.7. Conclusion	
From the analysis presented above it can be concluded that for the chosen substructure which had 
been validated for the simulation of the frame response when subjected to a column loss during 
Phase 3 (according to [3]), when the hinge forms in the joint it is possible to model the behaviour 
of the hinge by using the developed 2-spring model approach. 

This could possibly, depending of the complexity of the spring behaviour, make the analytical 
robustness assessment in terms of a column loss situation much more accessible. By modifying the 
behaviour law of the springs, the same structure of the main program and the used equations could 
be maintained making the path to the preliminary assessment of structural robustness relatively 
easy and fast.  

The modified Matlab routine has shown that it has its limitations but also that it is able to simulate 
a very complex behaviour of the substructure model. For the right combination of the parameters of 
importance (x0, u_step, TolX, TolFun, Kfake) satisfying result were obtained. The developed 
routine could be improved further and possibly the high dependence of the mention parameters can 
be reduced. 

The conducted parametric study revealed the detailed behaviour of the substructure simulation the 
frame. Depending of the stiffness of the indirectly affected part KH, various behaviour of the 
springs forming the joints could occur. Therefore, after each analysis, the results should be checked 
for inconsistencies.  

As expected, with the increase of KH, the developed membrane forces also increase for the same 
vertical displacement. The analysis demonstrated that the membrane forces will start developing 
before the mechanism is formed. This could prove to be beneficial because when the mechanism is 
formed, due to the fact that some membrane forces have developed already, for the same plastic 
deformation a larger value of force P can be redistributed. In other word, since some value of the 
tension forces is already present in the beam, a smaller plastic rotation is needed to reach the same 
value of membrane force when compared to a regular frame configuration where the hinges are 
also formed in the joints. Once again, this should be validated by experiments or numerical models. 

It had also been shown that the ductility, for the present configuration and for any value of KH, is 
requested from the components forming the joints which generally experience the ductile failure 
such as column panel in shear, bearing of the hammer head flange, L-stub flange in bending. The 
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made conclusion strengthens the belief that significant membrane forces could develop within the 
discussed frame equipped with the innovative joint. 

The mentioned features could give the upper hand to the presented joint typology, especially in 
earthquake prone areas and areas where exceptional events could be expected. 

Note: Figures IV-2, IV-3, IV-4, IV-6 and Table IV-1 are taken from [2], [3] and [8], modified to 
suite the discussed problem within this thesis and then presented. 

V GENERAL	CONCLUSION	AND	FUTURE	DEVELOPMENT	
Component method proved to be a useful tool for reflecting the monotonic behaviour of the 
innovative connection. Regardless of the fact that the friction damper is not covered as a 
component within the method, using the component approach the behaviour of the damper was 
successfully model by representing it as a several components in series.  

More or less good agreement had been obtained between the experimental behaviour of the joint 
and the behaviour assessed with the rotational spring model was obtain. Noticeable difference 
between the behaviour in sagging could be due to the fact that the experimental data represents the 
response of the joint under cycling loading, or the used way of modelling the behaviour of the 
friction damper was not accurate enough. The behaviour of the friction damper should be further 
studied and possibly included in the next update of component method. The possibility of some 
new components emerging in the innovative connection should also be investigated. 

The modelled behaviour of the joint revealed a benefit of the innovative connection in terms of 
ductility, at it can easily, without any plastic deformation, exceed limit of 35 mrad requested by 
EC8-1 for ductility class high (DCH). 

Newly developed 2-spring joint model used for the monotonic behaviour assessment demonstrated 
a satisfying agreement when compared with the traditional rotational spring model. The model also 
proved to be very convenient for reflecting the behaviour of the joint in case of a column loss as it 
can easily be implemented in the programed routine used for robustness assessment. 

As presented, the behaviour law of the components forming the springs of the mentioned 2-spring 
model was assumed to reach the plateau when the design resistance is reached. For the future 
development and investigation, the post-limit behaviour of the components and therefore the joint 
should be included. As the ultimate resistance play a significant role when robustness is assessed, 
in should be included in the future studies. 

The available routine programed in Matlab was successfully modified even though it has some 
limitations. The program was able to simulate the expected behaviour of the spring and to give 
logical results. In the future, a research of the program could be done and functions which depend 
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less of the used step and other parameters of importance could be used. Possibly, if justified, other 
programing language could be used. 

The developed program for the simplified substructure model in combination with the 2-spring 
behaviour model proved to be a useful and practical tool for assessing the response of a frame 
further to a column loss. Within the work the most advanced substructure model was used but still 
in neglects the coupling between the storeys of directly affected part. Therefore an improvement 
can be made by including the full analytical model, as explain in Chapter II. 

The conducted parametrical study revealed the general behaviour of the frame equipped with the 
innovative joint. It was shown that the membrane forces are able to form before the mechanism 
occurs. Therefore the possible benefit of the innovative connection in terms of robustness could be 
that with a smaller plastic rotation of the joint we can redistribute the same force when compared to 
traditional frame. 

The amount of redistributed force is limited only by ductility of the deforming elements. It was 
shown during the analysis that for the considered configuration of the joint the ductility is 
requested from the components which are generally considered ductile, strengthening the belief 
that the new type of the connection can experience good behaviour under exceptional situations. 

In the future, it would be of great importance to examine the real ductility which can be expected 
from the joint. By doing that, from the presented graphs, one could read the maximum force which 
could be redistributed for the given characteristics of indirectly affected part. 
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Appendix A

Calculation of the characteristic of new elements according to EC 3-1-8 for hogging moment:

 1. Bolts in shear M20...8.8 used

fyb 640
N

mm
2

 bolt yeild strength fy 275
N

mm
2



fub 800
N

mm
2

 bolt ultimate strength fu 430
N

mm
2



E 210GPa

γm2 1

d0 21mm hole diameter

d 20mm bolt diameter

αv 0.6
d
2

4
3.14 314 mm

2


As 245mm
2

 shredded part area

m 2 number of shear planes

Ab
d
2

4
π 3.142 10

4
 m

2
 shear plane area

It is assumed that the threaded part is not located in the shear plane

Fv.rd

m αv fub Ab

γm2
301.593 kN Table 3.4

nb 2 number of bolt rows working in shear (we have a slotted hole therefore only 2 bolts will
be in touch with the plates, both for stiffness and design resistance)

dm16 16mm

k11

16 nb d
2

 fub

E dm16
3.048 mm Table 6.11

kbs k11 3.048 mm

 2. L cleats in bearing

αb min αd

fub

fu
 1









=
Fb.rd

k1 αb fu d t

γm2
=



 2.1 Bearing of the upper L cleat (one cleat considered)

tL.cleat 15mm

e1 60mm p1 60mm

e2 31mm p2 999mm there is no p.2

ntot 1 total number of bolts working

In the direction of load transfer:

αd.end.bolt

e1

3 d0
0.952 αd.inner.bolt

p1

3 d0
1

4
 0.702

In the direction perpendicular to load transfer:

k1.edge.bolt min 2.8
e2

d0
 1.7 1.4

p2

d0
 1.7 2.5









2.433 k1.inner.bolt min 1.4
p2

d0
 1.7 2.5









2.5

In our case, in the direction of the load transfer we have only end bolts working
When considering the direction perpendicular to the direction of load transfer, the bolts are considered as edge

 End edge bolts

ng1 0 number of bolts in the group

αb min αd.end.bolt

fub

fu
 1









0.952

Fb.rd.1

k1.edge.bolt αb fu d tL.cleat

γm2
298.952 kN

 Inner edge bolts

ng2 1 number of bolts in the group

αb min αd.inner.bolt

fub

fu
 1









0.702

Fb.rd.2

k1.edge.bolt αb fu d tL.cleat

γm2
220.477 kN

Fb.rd.L2 ng1 Fb.rd.1 ng2 Fb.rd.2  Fv.rd max Fb.rd.1 Fb.rd.2 if

ntot min Fb.rd.1 Fb.rd.2   otherwise



Fb.rd.L2 220.477 kN



Stiffness 

k12

24 nb kb kt d fu

E
=

eb 60mm for hogging moment

e.b in this case equal to the distance to other
bolt in direction of load transfer?

pb 60mm nb 1

tL.cleat 15 mm

kb min kb1 kb2 = kb1 min 0.25
eb

d
 0.5 1.25









= kb2 min 0.25
pb

d
 0.375 1.25









= kt min 1.5
ti

dm16
 2.5









=

kb1 min 0.25
eb

d
 0.5 1.25









1.25

kb2 min 0.25
pb

d
 0.375 1.25









1.125

kt min 1.5
tL.cleat

dm16
 2.5









1.406

kb min kb1 kb2  1.125

k12

24 nb kb kt d fu

E
1.555 mm

for one upper L cleat

klcw-b.2 k12 1.555 mm

 2.2 Bearing of the lower L cleat

tL.cleat 15mm

e1 60mm p1 60mm

e2 49mm p2 78mm

ntot 2 total number of bolts working

In the direction of load transfer:

αd.end.bolt

e1

3 d0
0.952 αd.inner.bolt

p1

3 d0
1

4
 0.702

In the direction perpendicular to load transfer:

k1.edge.bolt min 2.8
e2

d0
 1.7 1.4

p2

d0
 1.7 2.5









2.5



k1.inner.bolt min 1.4
p2

d0
 1.7 2.5









2.5

In our case, in the direction of the load transfer we have 2 bolts acting as inner bolts (load transf towards in)
When considering the direction perpendicular to the direction of load transfer, all bolts are considered as edge

 End edge bolts

ng1 0 number of bolts in the group

αb min αd.end.bolt

fub

fu
 1









0.952

Fb.rd.1

k1.edge.bolt αb fu d tL.cleat

γm2
307.143 kN

 Inner edge bolts

ng2 2 number of bolts in the group

αb min αd.inner.bolt

fub

fu
 1









0.702

Fb.rd.2

k1.edge.bolt αb fu d tL.cleat

γm2
226.518 kN

Fb.rd.L1 ng1 Fb.rd.1 ng2 Fb.rd.2  Fv.rd max Fb.rd.1 Fb.rd.2 if

ntot min Fb.rd.1 Fb.rd.2   otherwise



Fb.rd.L1 453.036 kN

Stiffness 

k12

24 nb kb kt d fu

E
=

eb 110mm for hogging moment

pb 60mm nb 2

tL.cleat 15 mm

kb min kb1 kb2 = kb1 min 0.25
eb

d
 0.5 1.25









= kb2 min 0.25
pb

d
 0.375 1.25









= kt min 1.5
ti

dm16
 2.5









=

kb1 min 0.25
eb

d
 0.5 1.25









1.25

kb2 min 0.25
pb

d
 0.375 1.25









1.125

kt min 1.5
tL.cleat

dm16
 2.5









1.406



kb min kb1 kb2  1.125

k12

24 nb kb kt d fu

E
3.11 mm

klcw-b.1 k12 3.11 mm

 3. Haunch in bearing

No information is available for now for the dimension of haunch so it will be assumed that the haunch has dimension sim
to the beam IPE 270 and holes disposition as in L cleats, since they form the friction damper together

tbh 13mm assumed 

e1 60mm p1 999mm does not exist it this case

e2 35mm p2 74mm

ntot 2 total number of bolts

In the direction of load transfer:

αd.end.bolt

e1

3 d0
0.952 αd.inner.bolt

p1

3 d0
1

4
 15.607

In the direction perpendicular to load transfer:

k1.edge.bolt min 2.8
e2

d0
 1.7 1.4

p2

d0
 1.7 2.5









2.5

k1.inner.bolt min 1.4
p2

d0
 1.7 2.5









2.5

In our case, in the direction of the load transfer we have 1 groups of bolts: 2 end bolts
When considering the direction perpendicular to the direction of load transfer, all bolts are considered as edge

 End edge bolts

ng1 2 number of bolts in the group

αb min αd.end.bolt

fub

fu
 1









0.952

Fb.rd.1

k1.edge.bolt αb fu d tbh

γm2
266.19 kN

 Inner edge bolts

ng2 0 number of bolts in the group

αb min αd.inner.bolt

fub

fu
 1









1



Fb.rd.2

k1.edge.bolt αb fu d tbh

γm2
279.5 kN

Fb.rd.bh ng1 Fb.rd.1 ng2 Fb.rd.2  Fv.rd max Fb.rd.1 Fb.rd.2 if

ntot min Fb.rd.1 Fb.rd.2   otherwise



Fb.rd.bh 532.381 kN

Stiffness 

k12

24 nb kb kt d fu

E
=

eb 60mm for hogging moment

pb 999mm does not exist

nb 2

tbh 13 mm

kb min kb1 kb2 = kb1 min 0.25
eb

d
 0.5 1.25









= kb2 min 0.25
pb

d
 0.375 1.25









= kt min 1.5
ti

dm16
 2.5









=

kb1 min 0.25
eb

d
 0.5 1.25









1.25

kb2 min 0.25
pb

d
 0.375 1.25









1.25

kt min 1.5
tbh

dm16
 2.5









1.219

kb min kb1 kb2  1.25

k12

24 nb kb kt d fu

E
2.995 mm

kbh k12 2.995 mm



Calculation of the characteristic of new elements according to EC 3-1-8 for sagging moment:

 1. Bolts in shear M20...8.8 used

fyb 640
N

mm
2

 bolt yeild strength fy 275
N

mm
2



fub 800
N

mm
2

 bolt ultimate strength fu 430
N

mm
2



E 210GPa

γm2 1

d0 21mm hole diameter

d 20mm bolt diameter

αv 0.6
d
2

4
3.14 314 mm

2


As 245mm
2

 shredded part area

m 2 number of shear planes

Ab
d
2

4
π 3.142 10

4
 m

2
 shear plane area

Fv.rd

m αv fub Ab

γm2
301.593 kN Table 3.4

nb 2 number of bolt rows working in shear (we have a slotted hole therefore only 2 bolts will
be in touch with the plates, both for stiffness and design resistance)

dm16 16mm

k11

16 nb d
2

 fub

E dm16
3.048 mm Table 6.11

kbs k11 3.048 mm

 2. L cleats in bearing

αb min αd

fub

fu
 1









=
Fb.rd

k1 αb fu d t

γm2
=

 2.1 Bearing of the upper L cleat (one cleat considered)

tL.cleat 15mm

e1 60mm p1 60mm

e2 31mm p2 999mm there is no p.2



ntot 1 total number of bolts working

In the direction of load transfer:

αd.end.bolt

e1

3 d0
0.952 αd.inner.bolt

p1

3 d0
1

4
 0.702

In the direction perpendicular to load transfer:

k1.edge.bolt min 2.8
e2

d0
 1.7 1.4

p2

d0
 1.7 2.5









2.433 k1.inner.bolt min 1.4
p2

d0
 1.7 2.5









2.5

In our case, in the direction of the load transfer we have only end bolts working
When considering the direction perpendicular to the direction of load transfer, the bolts are considered as edge

 End edge bolts

ng1 0 number of bolts in the group

αb min αd.end.bolt

fub

fu
 1









0.952

Fb.rd.1

k1.edge.bolt αb fu d tL.cleat

γm2
298.952 kN

 Inner edge bolts

ng2 1 number of bolts in the group

αb min αd.inner.bolt

fub

fu
 1









0.702

Fb.rd.2

k1.edge.bolt αb fu d tL.cleat

γm2
220.477 kN

Fb.rd.L2 ng1 Fb.rd.1 ng2 Fb.rd.2  Fv.rd max Fb.rd.1 Fb.rd.2 if

ntot min Fb.rd.1 Fb.rd.2   otherwise



Fb.rd.L2 220.477 kN

Stiffness 

k12

24 nb kb kt d fu

E
=

eb 60mm for hogging moment

e.b in this case equal to the distance to other
bolt in direction of load transfer?

pb 60mm nb 1

tL.cleat 15 mm



kb min kb1 kb2 = kb1 min 0.25
eb

d
 0.5 1.25









= kb2 min 0.25
pb

d
 0.375 1.25









= kt min 1.5
ti

dm16
 2.5









=

kb1 min 0.25
eb

d
 0.5 1.25









1.25

kb2 min 0.25
pb

d
 0.375 1.25









1.125

kt min 1.5
tL.cleat

dm16
 2.5









1.406

kb min kb1 kb2  1.125

k12

24 nb kb kt d fu

E
1.555 mm

for one upper L cleat

klcw-b.2 k12 1.555 mm

 2.2 Bearing of the lower L cleat

tL.cleat 15mm

e1 60mm p1 60mm

e2 49mm p2 78mm

ntot 2 total number of bolts working

In the direction of load transfer:

αd.end.bolt

e1

3 d0
0.952 αd.inner.bolt

p1

3 d0
1

4
 0.702

In the direction perpendicular to load transfer:

k1.edge.bolt min 2.8
e2

d0
 1.7 1.4

p2

d0
 1.7 2.5









2.5

k1.inner.bolt min 1.4
p2

d0
 1.7 2.5









2.5

In our case, in the direction of the load transfer we have 2 bolts acting as inner bolts (load transf towards in)
When considering the direction perpendicular to the direction of load transfer, all bolts are considered as edge

 End edge bolts

ng1 0 number of bolts in the group

αb min αd.end.bolt

fub

fu
 1









0.952



Fb.rd.1

k1.edge.bolt αb fu d tL.cleat

γm2
307.143 kN

 Inner edge bolts

ng2 2 number of bolts in the group

αb min αd.inner.bolt

fub

fu
 1









0.702

Fb.rd.2

k1.edge.bolt αb fu d tL.cleat

γm2
226.518 kN

Fb.rd.L1 ng1 Fb.rd.1 ng2 Fb.rd.2  Fv.rd max Fb.rd.1 Fb.rd.2 if

ntot min Fb.rd.1 Fb.rd.2   otherwise



Fb.rd.L1 453.036 kN

Stiffness 

k12

24 nb kb kt d fu

E
=

eb 110mm for hogging moment

pb 60mm nb 2

tL.cleat 15 mm

kb min kb1 kb2 = kb1 min 0.25
eb

d
 0.5 1.25









= kb2 min 0.25
pb

d
 0.375 1.25









= kt min 1.5
ti

dm16
 2.5









=

kb1 min 0.25
eb

d
 0.5 1.25









1.25

kb2 min 0.25
pb

d
 0.375 1.25









1.125

kt min 1.5
tL.cleat

dm16
 2.5









1.406

kb min kb1 kb2  1.125

k12

24 nb kb kt d fu

E
3.11 mm

klcw-b.1 k12 3.11 mm



 3. Haunch in bearing

No information is available for now for the dimension of haunch so it will be assumed that the haunch has dimension sim
to the beam IPE 270 and holes disposition as in L cleats, since they form the friction damper together

tbh 13mm assumed 

e1 60mm p1 999mm does not exist it this case

e2 35mm p2 74mm

ntot 2 total number of bolts

In the direction of load transfer:

αd.end.bolt

e1

3 d0
0.952 αd.inner.bolt

p1

3 d0
1

4
 15.607

In the direction perpendicular to load transfer:

k1.edge.bolt min 2.8
e2

d0
 1.7 1.4

p2

d0
 1.7 2.5









2.5

k1.inner.bolt min 1.4
p2

d0
 1.7 2.5









2.5

In our case, in the direction of the load transfer we have 1 groups of bolts: 2 end bolts
When considering the direction perpendicular to the direction of load transfer, all bolts are considered as edge

 End edge bolts

ng1 2 number of bolts in the group

αb min αd.end.bolt

fub

fu
 1









0.952

Fb.rd.1

k1.edge.bolt αb fu d tbh

γm2
266.19 kN

 Inner edge bolts

ng2 0 number of bolts in the group

αb min αd.inner.bolt

fub

fu
 1









1

Fb.rd.2

k1.edge.bolt αb fu d tbh

γm2
279.5 kN

Fb.rd.bh ng1 Fb.rd.1 ng2 Fb.rd.2  Fv.rd max Fb.rd.1 Fb.rd.2 if

ntot min Fb.rd.1 Fb.rd.2   otherwise



Fb.rd.bh 532.381 kN



Stiffness 

k12

24 nb kb kt d fu

E
=

eb 60mm for hogging moment

pb 999mm does not exist

nb 2

tbh 13 mm

kb min kb1 kb2 = kb1 min 0.25
eb

d
 0.5 1.25









= kb2 min 0.25
pb

d
 0.375 1.25









= kt min 1.5
ti

dm16
 2.5









=

kb1 min 0.25
eb

d
 0.5 1.25









1.25

kb2 min 0.25
pb

d
 0.375 1.25









1.25

kt min 1.5
tbh

dm16
 2.5









1.219

kb min kb1 kb2  1.25

k12

24 nb kb kt d fu

E
2.995 mm

kbh k12 2.995 mm
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clear all
close all
 
%% Units: kN and m
%% Input data's
 
global L Es As L0 h_hog h_sag i results u K_fake_1 K_fake_2 yield delta_at_F_0
 
L0 = 5; %[m] initial lenght of the beam
h_hog = [0.1425 -0.2695]; %[m] distance from the mid-height h = [0.055 -0.07464];
h_sag = [-0.2695 0.1425];
L = 0;%[m] plastic hinge length (in case of a hinge in the joint L=0) L = 3*160/1000
Es = 210000; %[N/mm²] modulus of elasticity of steel 
As = 4595;%[mm²] area of the beam IPE 270 cross section, As = 1256.64;
fy = 275; %[MPa] not used
K_fake_1 = 0;%[N/mm]=[kN/m] fake stiffness of the slip
K_fake_2 = 0;%[N/mm]=[kN/m] fake stiffness of the plateu
 
u_limit = 2.4; %[m] max displacement at the point of col1umn loss
u_step = 0.0005; %[m] iteration step 0.0005 ok
 
 
%% Initialisation of the unknowns vector
x0 = 0.0000*ones(1,13); %important for delta limit of springs
%% Resolution
 
results(1,:) = zeros(1,18);
%results(1,:) = zeros(1,19);
 
i=2;
 
while ((results(i-1,1)<u_limit))
    
    results(i,1)=results(i-1,1)+u_step; %u
    
    u = results(i,1);
     
    options = optimset('TolX',1e-5,'TolFun',1e-6,'MaxFunEvals',3000);
    [x,fval,exitflag]=fsolve(@myfun_slab1_joint,x0,options);    
    
     results(i,2:14) = x;
     
     results(i,15) = results(i,8)*h_hog(1) + results(i,9)*h_hog(2) ;%M+(HOG) default
     results(i,16) = results(i,12)*h_sag(1) + results(i,13)*h_sag(2) ;%M-(SAG)default 
givin ok springs
     results(i,17) = (results(i,14)*u+results(i,15)-results(i,16))/(L0-results(i,5));% 
my derivation 
     results(i,18) = exitflag;
     results(i,19) = ((results(i,14)/cos(results(i,2)))); %the force in the beam
     
    x0 = x + (x-results(i-1,2:14)); %do not change
    
    i=i+1;
end
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%% Graph plot
plot_lim1=find(results(:,1)>1.79,1);
plot_lim2=find(results(:,1)>1.85,1);
plot_lim3=find(results(:,1)>0.47,1);
plot_lim4=find(results(:,1)>0.52,1);
plot_lim5=find(results(:,1)>0.3,1);
plot_lim6=find(results(:,1)>0.35,1);
 
col1='.g';
col2='.r';
col3='.y';
 
FIG.fig = 1;
figure(FIG.fig)
hold on
plot(results(:,6),results(:,8),'b','linewidth',2)
plot(results(plot_lim1:plot_lim2,6),results(plot_lim1:plot_lim2,8),col1,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim3:plot_lim4,6),results(plot_lim3:plot_lim4,8),col2,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim5:plot_lim6,6),results(plot_lim5:plot_lim6,8),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('delta_1 hog [m]')
ylabel ('F_1 hog [kN]')
 
FIG.fig = 2;
figure(FIG.fig)
hold on
plot(results(:,7),results(:,9),'b','linewidth',2)
plot(results(plot_lim1:plot_lim2,7),results(plot_lim1:plot_lim2,9),col1,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim3:plot_lim4,7),results(plot_lim3:plot_lim4,9),col2,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim5:plot_lim6,7),results(plot_lim5:plot_lim6,9),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('delta_2 hog [m]')
ylabel ('F_2 hog [kN]')
 
FIG.fig = 3;
figure(FIG.fig)
hold on
plot(results(:,10),results(:,12),'b','linewidth',2)
plot(results(plot_lim1:plot_lim2,10),results(plot_lim1:plot_lim2,12),col1,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim3:plot_lim4,10),results(plot_lim3:plot_lim4,12),col2,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim5:plot_lim6,10),results(plot_lim5:plot_lim6,12),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('delta_1 sag [m]')
ylabel ('F_1 sag [kN]')
 
FIG.fig = 4;
figure(FIG.fig)
hold on
plot(results(:,11),results(:,13),'b','linewidth',2)



17/01/17 21:04 C:\Users\Us...\substructure_slab1_joint.m 3 of 4

plot(results(plot_lim1:plot_lim2,11),results(plot_lim1:plot_lim2,13),col1,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim3:plot_lim4,11),results(plot_lim3:plot_lim4,13),col2,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim5:plot_lim6,11),results(plot_lim5:plot_lim6,13),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('delta_2 sag [m]')
ylabel ('F_2 sag [kN]')
 
FIG.fig = 5; 
figure(FIG.fig)
hold on
plot(results(:,1),results(:,17),'b','linewidth',2)
plot(results(plot_lim1:plot_lim2,1),results(plot_lim1:plot_lim2,17),col1,'linewidth',
1,'MarkerSize',20)
plot(results(plot_lim3:plot_lim4,1),results(plot_lim3:plot_lim4,17),col2,'linewidth',
1,'MarkerSize',20)
plot(results(plot_lim5:plot_lim6,1),results(plot_lim5:plot_lim6,17),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('u [m]')
ylabel ('P [kN]')
 
FIG.fig = 6;
figure(FIG.fig)
hold on
plot(results(:,5),results(:,14),'b','linewidth',2)
plot(results(plot_lim1:plot_lim2,5),results(plot_lim1:plot_lim2,14),col1,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim3:plot_lim4,5),results(plot_lim3:plot_lim4,14),col2,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim5:plot_lim6,5),results(plot_lim5:plot_lim6,14),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('delta_h [m]')
ylabel ('Fh [kN]')
 
FIG.fig = 7;
figure(FIG.fig)
hold on
plot(results(:,2),results(:,15),'b','linewidth',2)
plot(results(plot_lim1:plot_lim2,2),results(plot_lim1:plot_lim2,15),col1,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim3:plot_lim4,2),results(plot_lim3:plot_lim4,15),col2,'linewidth',
1,'MarkerSize',15)
plot(results(plot_lim5:plot_lim6,2),results(plot_lim5:plot_lim6,15),col3,'linewidth',
1,'MarkerSize',15)
xlabel ('theta [rad]')
ylabel ('M hog [kNm]')
 
FIG.fig = 8;
figure(FIG.fig)
hold on
plot((-results(:,2)),results(:,16),'b','linewidth',2)
plot((-results(plot_lim1:plot_lim2,2)),results(plot_lim1:plot_lim2,16),
col1,'linewidth',1,'MarkerSize',15)
plot((-results(plot_lim3:plot_lim4,2)),results(plot_lim3:plot_lim4,16),
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col2,'linewidth',1,'MarkerSize',15)
plot((-results(plot_lim5:plot_lim6,2)),results(plot_lim5:plot_lim6,16),
col3,'linewidth',1,'MarkerSize',15)
xlabel ('theta [rad]')
ylabel ('M sag [kNm]')
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function F = myfun_slab1_joint(x)
%% Input data's 
% The same as in the "substrucre.m" file
 
global L Es As L0 h_hog h_sag i results u K_fake_1 K_fake_2 yield delta_at_F_0
 
%% Definition of the unknowns
% The vector "x" is the unknowns-vector 
 
theta = x(1);
 
delta_HOG = x(2);
delta_SAG = x(3);
deltah = x(4);
 
delta_1_HOG = x(5);
delta_2_HOG = x(6);
 
F_1_HOG = x(7);
F_2_HOG = x(8);
 
delta_1_SAG = x(9);
delta_2_SAG = x(10);
 
F_1_SAG = x(11);
F_2_SAG = x(12);
 
Fh = x(13);
 
 
%% Definition of the equations
  
F     = [sin(theta)-(u/(L0-2*L+(1000*Fh*(L0-2*L)/(Es*As))))
 
    cos(theta)-((L0-2*L-deltah - delta_SAG - delta_HOG)/(L0-2*L+(1000*Fh*(L0-2*L)/
(Es*As))))% derived and checked    
    
    delta_1_HOG - (delta_HOG+h_hog(1)*theta) % delta_1_HOG should be positive since 
the spring is in tension
    delta_2_HOG - (delta_HOG+h_hog(2)*theta)
    
    %giving good spring graphs
    delta_1_SAG - (delta_SAG-h_sag(1)*theta) % delta_1_SAG should be positive since 
the spring is in tension
    delta_2_SAG - (delta_SAG-h_sag(2)*theta)
    
    F_1_HOG - F_spring_hog_1(delta_1_HOG,results(i-1,6),results(i-1,8),K_fake_1,
K_fake_2)%more complex definition zase 11 F_1_HOG - F_spring_hog_1(delta_1_HOG,results
(i-1,6),results(i-1,8))
    F_2_HOG - F_spring_hog_2(delta_2_HOG,results(i-1,7),results(i-1,9),K_fake_1,
K_fake_2,i,yield)
   
    F_1_SAG - F_spring_sag_1(delta_1_SAG,results(i-1,10),results(i-1,12),K_fake_1,
K_fake_2)%more complex definition zase 11 F_1_SAG - F_spring_sag_1(delta_1_SAG,results
(i-1,10),results(i-1,12))
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    F_2_SAG - F_spring_sag_2(delta_2_SAG,results(i-1,11),results(i-1,13),K_fake_1,
K_fake_2,i,yield,delta_at_F_0)   
    
    Fh - (F_1_HOG + F_2_HOG)
    Fh - (F_1_SAG + F_2_SAG)
    Fh - fh_linear(deltah)];
    
end
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function [FH] = fh_linear(deltah)
%% Input
Kh = 10000; %[N/mm] = [kN/m]
%% Sub-program
%% Formulation 1 - linear
 if deltah<0
      FH = 0;
  else
    FH = Kh*deltah; 
  end
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function [F_spring_hog_1] = F_spring_hog_1(delta_1_HOG,delta_prec,F_prec,K_fake_1,
K_fake_2) %spring in tension
%% Input
F_tens_ultimate = 598.3; %[kN] ultimate spring strenght
F_slip = 186.6;%[kN] force in the spring at moment of slip F_slip = 186.6;
Es = 210000; %[N/mm²]
K_before_slip = 5.934*Es;%[mm] stiffness of the spring K_before_slip = 5.763*Es;
K_after_slip = 1.446*Es;%[mm] stiffness of the spring
delta_limit = 0.00015; %[m] the value when the law should change
n = 1; % stiffness reduction factor
%% Formulation 1-FULL linear - plastic or fake plastic
%-not working for some reason
% if delta_1_HOG < 0 % same definition as in 9 spring model which works
%     F_spring_hog_1 = 0;
% else
%  if delta_1_HOG < delta_limit
%    F_spring_hog_1 =  max(0,min(F_slip+(K_fake_1/n)*delta_1_HOG,
(F_prec+K_before_slip*(delta_1_HOG - delta_prec))));
%  else
%    F_spring_hog_1 =  max(0,min(F_tens_ultimate+(K_fake_2/n)*delta_1_HOG,
(F_prec+K_after_slip*(delta_1_HOG - delta_prec))));
%  end
% end
 
%% Formulation 1.1-FULL linear - plastic or fake plastic
%-not working for some reason
% if delta_1_HOG < 0 % same definition as in 9 spring model which works
%     F_spring_hog_1 = 0;
% elseif delta_1_HOG < delta_limit
%    F_spring_hog_1 =  max(0,min(F_slip+(K_fake_1/n)*delta_1_HOG,
(F_prec+K_before_slip*(delta_1_HOG - delta_prec))));
% else
%    F_spring_hog_1 =  max(0,min(F_tens_ultimate+(K_fake_2/n)*delta_1_HOG,
(F_prec+K_after_slip*(delta_1_HOG - delta_prec))));
% end
 
%% Formulation 2 - UGhent
%F_spring_hog_1 = (697.43+(Ks/345)*delta_1_HOG);
%F_spring_hog_1 = F_tens;
 
%% Formulation 3
%F_spring_hog_1 = min((Ks/345)*delta_1_HOG,F_tens); %case 10 excel
 
%% Formulation 5 - linear - fake plastic
%-works even for very low value of k_fake!!!
%F_spring_hog_1 =  max(0,min(F_slip+(K_fake_1/n)*delta_1_HOG,(F_prec+K_before_slip*
(delta_1_HOG - delta_prec))));
%F_spring_hog_1 =  max(0,min(F_tens_ultimate+(K_fake_2/n)*delta_1_HOG,
(F_prec+K_after_slip*(delta_1_HOG - delta_prec))));
 
%% Formulation 6 - rigid - fake plastic (a bit of slope to avoid singularity)
% -with the if condition can't convergate for any K
% -without if works
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% if delta_1_HOG < 0  
%     F_spring_hog_1 = 0;
% else
    %F_spring_hog_1 =  F_tens_ultimate+(K_fake_2/n)*delta_1_HOG;
%     F_spring_hog_1 =  F_slip+(K_fake_1/n)*delta_1_HOG;
% end
 
%% Formulation 7 - FULL linear - fake plastic - all models the same
%-
if delta_1_HOG < delta_limit % same definition as in 9 spring model which works
    F_spring_hog_1 =  min(F_slip+(K_fake_1/n)*delta_1_HOG,(F_prec+K_before_slip*
(delta_1_HOG - delta_prec)));
else  
   F_spring_hog_1 =  min(F_tens_ultimate+(K_fake_2/n)*delta_1_HOG,
(F_prec+K_after_slip*(delta_1_HOG - delta_prec)));
end
 
%% Formulation 8 - rigid - linear - fake plastic
%-
 %F_spring_hog_1 =  min(F_tens_ultimate+(K_fake_2/n)*delta_1_HOG,max(F_slip,
F_prec+K_after_slip*(delta_1_HOG - delta_prec)));
end
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function [F_spring_hog_2] = F_spring_hog_2(delta_2_HOG,delta_prec,F_prec,K_fake_1,
K_fake_2,i,yield) % spring in compression
%% Input
Es = 210000; %[N/mm²]
delta_limit = -0.03505; %[m] the value when the law should change delta_limit = 
-0.110047
delta_limit_t = 0.03534; %[m] changable value if the plateau in compession is reached
n = 1; % stiffness reduction factor
 
%Compression behavior
F_c_ult = -532.4; %[kN] ultimate spring strenght
F_slip_c = -450.8;%[kN] force in the spring at moment of slip
 
K_before_slip_c = 45.82*Es;%[mm] stiffness of the spring K_before_slip = 45.82*Es;
K_after_slip_c = 1.184*Es;%[mm] stiffness of the spring K_after_slip = 1.184*Es;
 
%Tension behavior
 
F_t_ult = 490.1; %[kN] ultimate spring strenght
F_slip_t = 450.8;%[kN] force in the spring at moment of slip
 
K_before_slip_t = 6.39*Es;%[mm] stiffness of the spring K_before_slip = 5.946*Es;
K_after_slip_t = 1.021*Es;%[mm] stiffness of the spring K_after_slip = 1.184*Es;
 
%% Formulation 1 - approx FULL curve - model 2.1
%- works
% F_c = F_slip_c;
% F_t = F_slip_t;
% 
% if delta_2_HOG < delta_prec % if (delta_2_HOG-delta_prec) < 0 
%     F_spring_hog_2 = max(F_c+(K_fake_1/n)*delta_2_HOG,F_prec+(K_before_slip_c*
(delta_2_HOG - delta_prec)));
% else
%     F_spring_hog_2 = min(F_t+(K_fake_1/n)*delta_2_HOG,F_prec+
((K_before_slip_t+K_before_slip_c)/2)*(delta_2_HOG - delta_prec));
% end
 
% Formulation 2 - approx FULL curve - model 2.2
%- works
% if delta_2_HOG < delta_prec % if (delta_2_HOG-delta_prec) < 0 
%     if delta_2_HOG > delta_limit
%         F_spring_hog_2 = max(F_slip_c+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_before_slip_c*(delta_2_HOG - delta_prec)));
%     else
%         F_spring_hog_2 = max(F_c_ult+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_after_slip_c*(delta_2_HOG - delta_prec)));
%     end
% else
%     if F_prec < 0
%         F_spring_hog_2 = F_prec+K_before_slip_c*(delta_2_HOG - delta_prec);
%     else
%         F_spring_hog_2 = min(F_t_ult+(K_fake_1/n)*delta_2_HOG,
F_prec+K_before_slip_t*(delta_2_HOG - delta_prec));
%     end
% end
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%% Formulation 3 - approx FULL curve - model 2.3-works
 
% if delta_2_HOG < delta_prec % if (delta_2_HOG-delta_prec) < 0 
%     if delta_2_HOG > delta_limit
%         F_spring_hog_2 = max(F_slip_c+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_before_slip_c*(delta_2_HOG - delta_prec)));
%     else
%         F_spring_hog_2 = max(F_c_ult+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_after_slip_c*(delta_2_HOG - delta_prec)));
%     end
% else
%     if F_prec > F_c_ult && F_prec < F_slip_c 
%             F_spring_hog_2 =F_prec + K_after_slip_c*(delta_2_HOG - delta_prec);
%     elseif F_prec > F_slip_c && F_prec < 0 
%             F_spring_hog_2 =F_prec + K_before_slip_c*(delta_2_HOG - delta_prec);
%     elseif F_prec > 0 && F_prec < F_slip_t 
%             F_spring_hog_2 =F_prec + K_before_slip_t*(delta_2_HOG - delta_prec);
%     else %F_prec >= F_slip_t
%             F_spring_hog_2 = F_slip_t;
%     %else
%     end
% end
 
% %% Formulation 4 - approx FULL curve - model 2.3.2 onlyk_fake added
% 
% if delta_2_HOG < delta_prec % if (delta_2_HOG-delta_prec) < 0 
%     if delta_2_HOG > delta_limit
%         F_spring_hog_2 = max(F_slip_c+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_before_slip_c*(delta_2_HOG - delta_prec)));
%     else
%         F_spring_hog_2 = max(F_c_ult+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_after_slip_c*(delta_2_HOG - delta_prec)));
%     end
% else
%     if F_prec > F_c_ult && F_prec < F_slip_c 
%             F_spring_hog_2 =F_prec + K_after_slip_c*(delta_2_HOG - delta_prec);
%     elseif F_prec > F_slip_c && F_prec < 0 
%             F_spring_hog_2 =F_prec + K_before_slip_c*(delta_2_HOG - delta_prec);
%     elseif F_prec > 0 && F_prec < F_slip_t 
%             F_spring_hog_2 =F_prec + K_before_slip_t*(delta_2_HOG - delta_prec);
%     else %F_prec >= F_slip_t
%             F_spring_hog_2 = F_slip_t+(K_fake_1/n)*delta_2_HOG;
%     %else
%     end
% end
 
%% Formulation 5 - approx FULL curve - model 2.3.2 full even the bearing in tension
 
if delta_2_HOG < delta_prec % if (delta_2_HOG-delta_prec) < 0 
    if delta_2_HOG > delta_limit
        F_spring_hog_2 = max(F_slip_c+(K_fake_1/n)*delta_2_HOG,F_prec+
(K_before_slip_c*(delta_2_HOG - delta_prec)));
    else
        F_spring_hog_2 = max(F_c_ult+(K_fake_1/n)*delta_2_HOG,F_prec+(K_after_slip_c*
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(delta_2_HOG - delta_prec)));
    end
else
    if F_prec >= F_c_ult && F_prec < F_slip_c 
            F_spring_hog_2 =F_prec + K_after_slip_c*(delta_2_HOG - delta_prec);
    elseif F_prec > F_slip_c && F_prec < 0 
            F_spring_hog_2 =F_prec + K_before_slip_c*(delta_2_HOG - delta_prec);
    elseif F_prec > 0 && F_prec < F_slip_t 
            F_spring_hog_2 =F_prec + K_before_slip_t*(delta_2_HOG - delta_prec);
    elseif F_prec > F_slip_t && delta_2_HOG < delta_limit_t 
            F_spring_hog_2 = F_slip_t+(K_fake_1/n)*delta_2_HOG;
    elseif F_prec > F_slip_t && delta_2_HOG > delta_limit_t && delta_2_HOG < 0.0355
           F_spring_hog_2 = F_prec+(K_after_slip_t*(delta_2_HOG - delta_prec));
    else % F_prec > F_slip_t && delta_2_HOG > 0.0359
        F_spring_hog_2 = F_t_ult+(K_fake_1/n)*delta_2_HOG;
    end
end
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function [F_spring_sag_1] = F_spring_sag_1(delta_1_SAG,delta_prec,F_prec,K_fake_1,
K_fake_2) %spring in tension
%% Input
F_tens_ultimate = 490.1; %[kN] ultimate spring strenght
F_slip = 450.8;%[kN] force in the spring at moment of slip
Es = 210000; %[N/mm²]
K_before_slip = 6.39*Es;%[mm] stiffness of the spring K_before_slip = 5.946*Es;
K_after_slip = 1.021*Es;%[mm] stiffness of the spring K_after_slip = 1.009*Es;
delta_limit = 0.03534; %[m] the value when the law should change delta_limit = 0.11036
n = 1; % stiffness reduction factor
%% Formulation 1- linear - plastic or fake plastic
% if delta_1_SAG < 0 % same definition as in 9 spring model which works
%     F_spring_sag_1 = 0;
% else
%     if delta_1_SAG < delta_limit
%    F_spring_sag_1 =  max(0,min(F_slip+(K_fake_1/n)*delta_1_SAG,
(F_prec+K_before_slip*(delta_1_SAG - delta_prec))));
%     else
%    F_spring_sag_1 =  max(0,min(F_tens_ultimate+(K_fake_2/n)*delta_1_SAG,
(F_prec+K_after_slip*(delta_1_SAG - delta_prec))));
%     end
% end
 
%% Formulation 1.1 FULL - linear - plastic or fake plastic
% if delta_1_SAG < 0 % same definition as in 9 spring model which works
%     F_spring_sag_1 = 0;
% elseif delta_1_SAG < delta_limit
%    F_spring_sag_1 =  max(0,min(F_slip+(K_fake_1/n)*delta_1_SAG,
(F_prec+K_before_slip*(delta_1_SAG - delta_prec))));
% else
%    F_spring_sag_1 =  max(0,min(F_tens_ultimate+(K_fake_2/n)*delta_1_SAG,
(F_prec+K_after_slip*(delta_1_SAG - delta_prec))));
% end
 
%% Formulation 2 - UGhent law
%F_spring_sag_1 = (697.43+(Ks/345)*delta_1_SAG);
%F_spring_sag_1 = F_tens;
 
%% Formulation 3 - linear-plastic law
%F_spring_sag_1 = min((Ks/345)*delta_1_SAG,F_tens); %case 10 excel
 
%% Formulation 4 - linear - plastic
%F_spring_sag_1 =  min(F_tens_ultimate,(F_prec+K_before_slip*(delta_1_SAG - 
delta_prec)));
 
%% Formulation 5 - linear - fake plastic
%F_spring_sag_1 =  min(F_slip+(K_fake_1/n)*delta_1_SAG,(F_prec+K_before_slip*
(delta_1_SAG - delta_prec)));
%F_spring_sag_1 =  min(F_tens_ultimate+(K_fake_2/n)*delta_1_SAG,(F_prec+K_after_slip*
(delta_1_SAG - delta_prec)));
 
%% Formulation 6 - rigid - fake plastic (a bit of slope to avoid singularity)
%-Does not work if you activate the IF condition
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% if delta_1_SAG < 0  
%    F_spring_sag_1 = 0;
% else
%     F_spring_sag_1 =  F_tens_ultimate+(K_fake_2/n)*delta_1_SAG;
%     F_spring_sag_1 =  F_slip+(K_fake_1/n)*delta_1_SAG;
% end
 
%% Formulation 7 - rigid-fake plastic (a bit of slope to avoid singularity)
%-works
 
%F_spring_sag_1 =  F_tens_ultimate+(K_fake_2/n)*delta_1_SAG;
%F_spring_sag_1 =  F_slip+(K_fake_1/n)*delta_1_SAG;
 
%% Formulation 7 - FULL linear - fake plastic - all models
%-
if delta_1_SAG < delta_limit % same definition as in 9 spring model which works
    F_spring_sag_1 =  min(F_slip+(K_fake_1/n)*delta_1_SAG,(F_prec+K_before_slip*
(delta_1_SAG - delta_prec)));
else  
   F_spring_sag_1 =  min(F_tens_ultimate+(K_fake_2/n)*delta_1_SAG,
(F_prec+K_after_slip*(delta_1_SAG - delta_prec)));
end
end
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function [F_spring_sag_2] = F_spring_sag_2(delta_2_SAG,delta_prec,F_prec,K_fake_1,
K_fake_2,i,yield,delta_at_F_0) % spring in compression
%% Input
Es = 210000; %[N/mm²]
delta_limit_1 = -0.00002; %[m] the value when the law should change
n = 1; % stiffness reduction factor
 
%Compression
F_c_ult = -818.75; %[kN] ultimate spring strenght
F_slip_c = -186.6;%[kN] force in the spring at moment of slip F_slip_c = -186;
 
K_before_slip_c = 44*Es;%[mm] stiffness of the spring K_before_slip = 44*Es;
K_after_slip_c = 1.832*Es;%[mm] stiffness of the spring
 
%Tension
 
F_t_ult = 829.02; %[kN] ultimate spring strenght
F_slip_t = 186.6;%[kN] force in the spring at moment of slip
 
K_before_slip_t = 5.934*Es;%[mm] stiffness of the spring K_before_slip = 44*Es;
K_after_slip_t = 1.446*Es;%[mm] stiffness of the spring
 
%% Formulation 0 - approx FULL curve
%- rigid part causes singularity
%if (delta_2_SAG-delta_prec) < 0
% if delta_2_SAG < delta_prec   
%     F_spring_sag_2 = max(F_c_ult+(K_fake_1/n)*delta_2_SAG,F_slip_c+(K_after_slip_c*
(delta_2_SAG - delta_prec)));
% else
%     F_spring_sag_2 = min(F_t_ult+(K_fake_1/n)*delta_2_SAG,F_prec+K_approx*
(delta_2_SAG - delta_prec));
% end
 
%% Formulation 1 - approx FULL curve without ridig part - model 2.1
%- works 
% K_approx = (K_before_slip_c+K_before_slip_t+K_after_slip_c+K_after_slip_t)/3;
% 
% if delta_2_SAG < delta_prec %if (delta_2_SAG-delta_prec) < 0 
%     if delta_2_SAG > delta_limit_1 
%     F_spring_sag_2 = K_before_slip_c*delta_2_SAG; 
%     else
%     F_spring_sag_2 = max(F_c_ult+(K_fake_1/n)*delta_2_SAG,F_prec+(K_after_slip_c*
(delta_2_SAG - delta_prec))); 
%     end
% else
%     F_spring_sag_2 = min(F_t_ult+(K_fake_1/n)*delta_2_SAG,F_prec+K_approx*
(delta_2_SAG - delta_prec));
% end
 
%% Formulation 2 - approx FULL curve without ridig part - model 2.2
%- works
% K_approx_2 = (K_after_slip_c+K_before_slip_c)/2;
% 
% %if (delta_2_SAG-delta_prec) < 0
% if delta_2_SAG < delta_prec 
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%     if delta_2_SAG > delta_limit_1 
%     F_spring_sag_2 = K_before_slip_c*delta_2_SAG; 
%     else
%     F_spring_sag_2 = max(F_c_ult+(K_fake_1/n)*delta_2_SAG,F_prec+(K_after_slip_c*
(delta_2_SAG - delta_prec))); 
%     end
% else
%     if F_prec < 0
%         F_spring_sag_2 = F_prec+(K_approx_2*(delta_2_SAG - delta_prec));
%     else
%         F_spring_sag_2 = min(F_slip_t+(K_fake_1/n)*delta_2_SAG,
F_prec+K_before_slip_t*(delta_2_SAG - delta_prec));
%     end
% end
 
%% Formulation 3 - FULL CURVE - model 2.3
%- I was not able to activate the yield lenght and delta_at_F_0, therefore this 
complex formulation is useless 
%if (delta_2_SAG-delta_prec) < 0
% if delta_2_SAG < delta_prec 
%     if delta_2_SAG > delta_limit_1
%         F_spring_sag_2 = K_before_slip_c*delta_2_SAG; 
%     else
%         F_spring_sag_2 = max(F_c_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_c*(delta_2_SAG - delta_prec)));
%         for j=i,
%         if F_spring_sag_2 <= F_c_ult    
%         yield(1,j-1) = delta_2_SAG;
%         else
%         yield(1,j-1) = 0;
%         end
%         end
%     end
% else
%     yield_sort = sort(yield(1,:));
%     delta_yield_1 = yield_sort(1,2);
%     delta_yield_2 = yield_sort(1,1);
%     if delta_yield_1 == 0
%         yield_lenght = 0;
%     else
%         yield_lenght = delta_yield_1-delta_yield_2;
%     end
%     %delta_limit_2 = delta_limit_1-yield_lenght;
%   
%     if delta_2_SAG < 0 %%%%
%         if F_prec > F_c_ult && F_prec < F_slip_c 
%             F_spring_sag_2 =F_prec + K_after_slip_c*(delta_2_SAG - delta_prec);
%         else 
%             F_spring_sag_2 =F_prec + K_before_slip_c*(delta_2_SAG - delta_prec);
%            for j=i
%             delta_at_F_0(1,j-1) = delta_2_SAG;
%            end
%         end
%     else
%         delta_limit_3 = yield_lenght+max(delta_at_F_0)+(F_slip_t/K_before_slip_t);
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%         if delta_2_SAG > delta_limit_3
%             F_spring_sag_2 = min(F_slip_t+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_before_slip_t*(delta_2_SAG - delta_prec)));
%         else
%             F_spring_sag_2 = min(F_t_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_t*(delta_2_SAG - delta_prec)));
%         end
%     end
% end
 
%% Formulation 3 - FULL CURVE - model 2.3.1 - dependant of the step (0.0001 
reccomended)
%- Simplified full model which will not take into account the full
%theoretical behavior, but the full realistic one
%if (delta_2_SAG-delta_prec) < 0
 
% F_fake = 0; %[kN] fake condition not to miss the boundary
% 
% if delta_2_SAG < delta_prec 
%     if delta_2_SAG > delta_limit_1 %F_prec > F_slip_c && F_prec <= 0
%         F_spring_sag_2 = F_prec+(K_before_slip_c*(delta_2_SAG - delta_prec)); %
F_spring_sag_2 = K_before_slip_c*delta_2_SAG
%     else
%         if F_prec > (F_slip_c) && F_prec <= 0% cause of the possibility of re-
loading when the hog2 spring reaches plateu
%             F_spring_sag_2 = F_prec+(K_before_slip_c*(delta_2_SAG - delta_prec));
%         else   
%         F_spring_sag_2 = max(F_c_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_c*(delta_2_SAG - delta_prec)));
%         end
%     end
% else
%         if F_prec > F_c_ult && F_prec < F_slip_c-F_fake 
%             F_spring_sag_2 =F_prec + K_after_slip_c*(delta_2_SAG - delta_prec);
%         elseif F_prec > F_slip_c-F_fake && F_prec < 0 
%             F_spring_sag_2 =F_prec + K_before_slip_c*(delta_2_SAG - delta_prec);
%         elseif F_prec > 0 && F_prec < F_slip_t 
%             F_spring_sag_2 =F_prec + K_before_slip_t*(delta_2_SAG - delta_prec);
%         else
%             F_spring_sag_2 = min(F_t_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_t*(delta_2_SAG - delta_prec)));    
%         end
% end
 
%% Formulation 4 - FULL CURVE - model 2.3.2 - dependant of the step (0.0001 
reccomended) work *
%- Simplified full model which will not take into account the full
%theoretical behavior, but the full realistic one
%if (delta_2_SAG-delta_prec) < 0
% F_fake = 0; %[kN] fake condition not to miss the boundary
% 
if delta_2_SAG < delta_prec 
    if F_prec > F_slip_c && F_prec <= 0 
        F_spring_sag_2 = F_prec+(K_before_slip_c*(delta_2_SAG - delta_prec)); %
F_spring_sag_2 = K_before_slip_c*delta_2_SAG
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    elseif F_prec > F_c_ult && F_prec <= F_slip_c 
            F_spring_sag_2 = max(F_c_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_c*(delta_2_SAG - delta_prec)));
    elseif F_prec > 0 && F_prec < F_slip_t 
            F_spring_sag_2 =F_prec + K_before_slip_t*(delta_2_SAG - delta_prec);
    elseif F_prec > F_slip_t && F_prec <= F_t_ult 
            F_spring_sag_2 = min(F_t_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_t*(delta_2_SAG - delta_prec))); 
    else
    end
else
        if F_prec >= F_c_ult && F_prec < F_slip_c 
            F_spring_sag_2 =F_prec + K_after_slip_c*(delta_2_SAG - delta_prec);
        elseif F_prec > F_slip_c && F_prec < 0 
            F_spring_sag_2 =F_prec + K_before_slip_c*(delta_2_SAG - delta_prec);
        elseif F_prec > 0 && F_prec < F_slip_t 
            F_spring_sag_2 =F_prec + K_before_slip_t*(delta_2_SAG - delta_prec);
        else
            F_spring_sag_2 = min(F_t_ult+(K_fake_1/n)*delta_2_SAG,F_prec+
(K_after_slip_t*(delta_2_SAG - delta_prec)));    
        end
end
            
        
    
        
 


