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Abstract

This master thesis concerns the implementation of a novel, computationally efficient
bifurcation numerical analysis interface in the Julia compiled programming language. The
interface involves the use of the well-known bisection or Newton-Raphson methods in order
to locate bifurcations in the neuron models, as well as the use of numerical approximation
methods of Jacobian matrices  through forward numerical  differentiation of  the system's
equations.

The interface that is built  aims at the identification of the bifurcations in neuron
models in order to determine their excitability type. A recent paper-motivated canonical
model is chosen as an example to which the interface can be applied as a proof of concept.
This numerical analysis of the example model outputs results that highlight the importance
of dynamical analysis of neuron models, i.e. analysis over a range of time-scale parameters,
versus the more common static analysis of models through the visual inspection of their
phase plane representation. 

Normal form identification based on visual inspection only is at considerable risk
that the original system is identified to may not be the correct one. The results obtained
through the  use  of  this  interface  on a  two-dimensional  therefore  motivate  the  need  for
extensive numerical analysis of original high-dimensional neuron models for various values
of time-scale separation in order to reliably identify the bifurcation normal form that they
can be reduced to.
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Introduction

The study of neuronal excitability consists in the observation and identification of
neuron  behaviour  in  various  conditions.  Neurons  have  indeed  been  experimentally
identified  to  display  different  types  of  activity,  which  include  quiescence,  spiking,  or
bursting activity.  Quiescence consists in a lack of spontaneous activity, but does not restrict
the ability to react to external stimuli. Spiking consists in spontaneous oscillatory activity,
i.e. constantly alternating modifications of the neuron membrane potential. Bursting is a
combination of the two previous phenomena corresponding to the display of short bursts of
spiking activity separated by periods of quiescence. Neuron spiking behaviour is classified
into types, or classes of excitability. The excitability type of a neuron defines the current-
frequency  relationship  of  its  spiking  activity,  and  therefore  its  possible  function  in  a
biological  neuronal  network.  For  example,  a  neuron  that  switches  from  quiescence  to
spiking and displays a constant frequency in its oscillatory behaviour cannot be used as a
frequency encoder in a network.

In the context of neuron modelling as non-linear systems, the switch between rest
and spiking activity corresponds to a bifurcation in the system. Bifurcations  have been
studied in the fields of mathematics since the works of Henri Poincaré in 1885 and have
been subsequently applied to neuron modelling since the works of  Ermentrout in 1986.
They  consist  in  transitions  in  non-linear  systems  between  configurations  of  varying
stability, e.g. from global stability to global instability, due to a shift in the nature of the
different  attractors.  In  neuronal  systems,  the  attractors  involved  in  bifurcations  display
properties local to the bifurcation that allow direct identification of the excitability type of
the neuron undergoing the bifurcation,  thus allowing to bypass the otherwise expensive
process of experimentally measuring their current-frequency relationship.

The problem of  the determination of  a neuron excitability  type can therefore  be
reduced to the localisation and identification of the bifurcation displayed by its equivalent
mathematical model. While current solutions to the identification of bifurcations in neuron
models  exist  in  the  form  of  a  number  of  individual  software  implementations  such  as
XPPAUT or NEURON, these are implemented in many different programming languages
such as Fortran or Matlab and make a coherent numerical analysis of a neuron model a
cumbersome task.

The  main  goal  of  this  master  thesis  is  to  implement  a  novel,  computationally
efficient bifurcation numerical analysis interface for the study of neuron excitability. The
proposed  interface  is  entirely  written  in  the  Julia  programming  language. The  method
proposed as a solution to the bifurcation identification problem involves the use of well-
known numerical non-linear system solving algorithms such as the bisection or Newton-
Raphson methods.  These algorithms are  used to  locate  the bifurcations  involved  in  the
initiation  of  neuron  spiking  activity  as  a  function  of  the  excitatory  current.  Numerical
differentiation  methods  are  then  used  in  order  to  determine  local  properties  of  the
bifurcations of the systems through the computation of the system Jacobian matrix at the
location of the stable equilibrium involved in the bifurcation.

The development of the interface covered in this document aims at motivating the
use of a single-language and self-contained interface as a means of solving this family of
problems. These constraints on the development of the interface allow its logic cores to be
easily identified and maintained in terms of both stability and accuracy.
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The main programming challenge is the development of the bifurcation search and
identification  algorithm  using  a  previously  unknown  programming  language.  Three
different  implementations  are  built  in  order  to  explore  different  ways  of  solving  the
problem. The three implementations are evaluated on their computational performance as
well as their accuracy.

A recent paper-motivated canonical neuron model is chosen as an example to which
the interface can be applied as a proof of concept. This numerical analysis of the example
model through rigorous identification of its bifurcations outputs results that highlight the
importance of dynamical analysis of neuron models, i.e. analysis over a range of time-scale
parameters,  versus  the  more  common  static  analysis  of  models  through  the  visual
inspection of their phase plane representation. 

In particular, type II excitability is numerically identified for very strong time-scale
separation at a location that is  commonly identified to type I excitability through visual
inspection. This is  due to the fact that  the shapes of the nullclines in this region of the
system parameters look very much like those of a canonical type I bifurcation-based neuron
model, although they actually are fundamentally different at a scale much smaller than that
of visual inspection. The growth of a type I excitability zone is subsequently observed in this
region for increasing values of the time-scale coupling factor, therefore hinting at the fact
that  dynamical  analysis  of  neuron models  is  required in  order  to  determine their  exact
behaviour,  as  this  behaviour  may  freely  switch  between  type  I  and  type  II  excitability
according to the models time-related parameters.

This raises controversy in regards to the widely-accepted method of model reduction
through visual identification of the neuron behaviour to normal forms of bifurcations. As
long as this identification process is only motivated by simple visual inspection, it is bound
to output erroneous results in a number of visually confusing cases. 

For these reasons, the results obtained through the use of this interface on a two-
dimensional  motivate  the  need  for  extensive  numerical  analysis  of  original  high-
dimensional neuron models for various values of time-scale separation in order to reliably
identify the bifurcation normal form that they can be reduced to.

This document is structured in three chapters : context, methodology, and scientific
output.  The chapters are organized in such a way that reading them in sequence should
equip  the  reader  with  sufficient  theoretical  background  and  knowledge  of  the  software
implementations that they may understand the source and validity of the scientific output of
the methods in use. Extensive coverage of textbook knowledge, however, has been avoided
in order to focus on the work performed and the theoretical notions that were required to be
assimilated during the elaboration of this master thesis.
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Chapter 1 : Elements of 
experimental and 
computational neuroscience

This first chapter sets the context of this master thesis. It covers the minimal amount
of theoretical background required in order to understand the problem and the software 
implementation of its solution covered in the second chapter, as well as the results obtained 
through the application of the interface to the canonical model covered in the third chapter.

In the first part of this chapter, the physiological structure and main properties of 
neurons, as well as the original experimental definition of excitability types is recalled. 
While a greater part of the extensive biological description of neurons and all their 
components has been avoided, special focus has been put on the description of action 
potential generation and ion channels. These are the most defining features of neurons, and 
the most important factors in their external behaviour as seen from a computational point 
of view. Furthermore, the identification of these mechanisms  are necessary in order to 
justify conductance-based modelling, which underlies most neuron mathematical 
modelling.

In the second part of this chapter, the modelling of neurons as non-linear systems is 
presented. Using this mathematical representation, the switch between rest and sustained 
activity in neurons corresponds to a bifurcation, i.e. a shift in the nature of the different 
attractors characterising in the system. The basics of non-linear systems analysis and the 
characteristics of the bifurcations of interest for this work are briefly covered. They are  
applied to the visual analysis of the classical Hodgkin-Huxley model and the canonical 
transcritical bifurcation model that the interface is applied to as a proof of concept in the 
third chapter.



Page 10/85

Part 1 : Biological neuroscience

Section 1.1.1 : Brief description of a neuron 
A neuron is a specialized cell of the brain. It is made out of three distinct parts :

dendrites, an axon, and a cell body, or soma. The neuron is the communicating cell of the
brain  ;  it  receives  a  number of  signals  through its  dendrites,  at  intersection with other
neuron axons called synapses, in the form of local modification of the electrical potential.
The signals from several dendrites propagate and combine along their common path to the
cell  body.  The  resulting  aggregated  signal  depends  on  the  nature  of  the  synapses,  e.g.
additive or subtractive, or any of the many possibilities that the electrochemical structures
making up the synapses allow. The neuron reacts to this aggregated signal in a specific way,
depending on its excitability, i.e. its behaviour w.r.t. an excitatory current, and outputs the
result along its axon to be transmitted further into the central nervous system. ([1])

A schematic representation of a neuron corresponding to the above description is
presented in Fig. 1. 

The signals transmitted by neurons come in many shapes. Examples of transmission
patterns found in a rat's brain are depicted in Fig. 2. In this figure, patterns of both spiking
and  bursting  activity  can  be  observed,  as  first  described  in  the  introduction  to  this
document. The nature of the electrical potential spikes that can be observed as making up
these transmission patterns is covered in further details in the next sections of this chapter.

Fig 1: Schematic representation of a neuron. The dendrites, cell body and axon can be identified as 
the three main parts of the neuron. The cell nucleus is explicitly represented in the cell body. Myelin 
sheaths, Schwann cells and nodes of Ranvier are external structures built on the neuron through the 
action of surrounding cells that facilitate the transmission of signals along the neuron axon. (license-
free illustration)
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Fig 2: Examples of transmission patterns in a rat's brain. Spiking and bursting activity can be 
identified, e.g. in (A) and (B) respectively. The patterns display varying amplitudes and frequencies, 
depending on the zone of the brain that is studied. ( extracted  from [1] - pg 367 )



Page 12/85

Section 1.1.2 : Neuronal membrane and ion channels
 The ability of a neuron to transmit signals is entirely dependent on the structure and

current state of its membrane ; more precisely, it depends on the concentration of various
ions in the intra- and extra-cellular media, and the degree to which these ions can travel
through  the  membrane  from one  of  these  medium  to  the  other. As  with  most  cellular
membranes, the neuronal membrane is made of a bilayer, i.e. two layers, of phospholipids
arrayed in such a way that is it highly impermeable to polar molecules such as ions. ([1]) 

The only way for ions to go through the membrane is to travel through specific trans-
membrane proteins called ion channels. Ion channels are specialized structures that span
the  width  of  the  membrane  and allow the  flow of  ions  at  their  specific  location  in  the
membrane. The ion channels involved in neuronal signal transmission are voltage-gated,
meaning that they are equipped with gates that open or close according to the potential that
is  applied  to  them,  i.e.  across  the  membrane.  In  the  context  of  neuron  mathematical
modelling,  all  elementary  ion  channels  acting  individually  are  aggregated  in  a  global
statistical  ion  permeability  parameter.  This  global  parameter  expresses  the  total
permeability  of  the  membrane  to  the  ion  species  as  being  proportional  to  the  average
number of channels that are currently open multiplied by their individual permeabilities,  or
rather  to  the  average  proportion  of  open  channels  multiplied  by  the  total  maximum
permeability.  This  allows  the  global  permeability  parameter  to  evolve  smoothly  as  a
continuous function of the neuron membrane potential.

Channels  are  selectively  permeable  to  one  species  of  ion  ;  there  are  therefore  a
number of types of different channels corresponding to each species of ion that are required
to go through the membrane during the normal function of the cell. There also are several
types of gates, i.e. of gating particles that can transition between the two states that either
block or allow the passage of ions in the elementary channel that they are associated with.
Among  those,  activation  gates  and  inactivation  gates  respectively  open  and  close  the
channels during an increase of the neuron membrane potential.  

A representation of the two most important channels in neurons, i.e. the potassium
and sodium channels, is presented in Fig. 3.

Fig 3 : Schematic representations of the potassium (left) and sodium (right) ion channels. The 
potassium channel can be seen to feature a single activation gate, while the sodium channel features 
both an activation and an inactivation gate. The natural tendency of potassium ions is to leave the 
cell, and of sodium ions to enter it, as is discussed in the next section ( extracted and adapted from 
[1] - pg 415 )
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Section 1.1.3 : Ion concentration gradients and 
pumps 

While ion channels regulate the ability of ions to flow through the membrane, they
are not the source of these movements. The forces that can create movement in ions arise
from two phenomena : diffusion down concentration gradients, and drift due to electrical
fields, as ions are charged particles. Therefore, ion channels are only useful if there exists
either a concentration gradient, or a built-in electrical field. As it happens, both are present
across the membrane. ([1])

Ion  pumps  are  the  complementary  mechanism to  the  ion  channels  :  consuming
energy in the form of ATP, they actively  work to create specific concentration gradients in a
number  of  ions  that  are  used  to  generate  action  potentials.  The  key  players  are  Na+

(Sodium), K+ (Potassium), Cl- (Chlorine) and Ca2+(Calcium). 

In the context  of  a concentration gradient  in a given species  of  ions,  the Nernst
equation can be applied in order to determine the equilibrium between diffusion and drift
currents. As ions tend to travel down their concentration gradient through their associated
channels,  their  movement  create  charge  unbalances  that  oppose  the  diffusion  current
through the creation of an electrical field inducing a drift current.

The Nernst equation is presented in expression 1, where R is the ideal gas constant, T
the temperature, z the charge of the ion, F the Faraday constant, and the letter "o" or "i"
signals whether the ion concentration is measured out or in of the cell. 

(expr. 1)

When  a  number  of  ions  are  present  in  the  intra-  and  extra-cellular  media,  the
Goldman-Hodgkin-Katz  equation can be used as  an approximative  generalization of  the
Nernst single-species equations to several species. In this equation, the concentration of the
different species of ions are weighted by the respective permeability of these ions through
the  membrane.  In  other  words,  this  equation  expresses  an  equilibrium  between  the
respective tendencies of the different ions to create drift-diffusion equilibria ; would a given
ion display a much higher permeability than the others, then the resulting electrical field
and  resulting  potential  would  be  close  to  the  equilibrium  potential  corresponding  to  a
situation where only this ion is present.

An important fact is that contrary to the case corresponding to the Nernst equation,
the potential  defined  by the  Goldman-Hodgkin-Katz  equation  corresponds  to  a  middle-
ground between all the species involved ; therefore, none of the ions is in equilibrium, and
non-zero net ion currents always exist. Countering these current (either drift or diffusion,
depending on whether the global equilibrium potential  is  above or under the individual
species' equilibrium potential) is one of the roles of the ion pumps. 

The  Goldman-Hodgkin-Katz equation is presented in expression 2, where R is the
ideal  gas  constant,  T  the  temperature,  F  the  Faraday  constant,  pk the  membrane
permeability associated to the ion "k", noted as "k+" or "k-" depending on its polarity, and
the letter "o" or "i" signals whether the ion concentration is measured out or in of the cell.

E equ=
RT
zF

 ln [  ∑
[ ion concentration ]o
[ ion concentration ] i

 ]
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(expr. 2)

This equation, however, fails to hold true in the presence of e.g. Ca2+ ions, as their 
charge is twice that of e.g. K+ ions, and is not accounted for in expression 2.

Section 1.1.4 : The generation of action potentials 
An action potential is an electrical pulse generated at a neuron membrane. It is one

of the most important features that define a neuron, if not the most important ; it is what
makes a neuron an "excitable" cell, rather than a passive structural entity. Action potentials
are the basic building blocks of neuronal activity. Armed with the information covered in
the  previous  sections,  the  events  defining  an  action  potential  can  be  described  and
understood -  the  chosen  example  being the squid giant  axon  studied by Hodgkin and
Huxley in 1939, as  described in [1].

An illustration of a recording of the membrane potential of the squid axon during the
generation of an action potential is presented in Fig. 4.

At rest, the squid axon is characterised by constant concentration gradients of ions
across  its  membrane,  thanks  to  the  operation  of  its  ion  pumps.  The  ion  permeabilities
values involved in the Goldman-Hodgkin-Katz equation are such that the K+ permeability is
considerably higher than the others. The global equilibrium is therefore fairly close to the
potassium equilibrium potential : their values are of approximatively -60mV and -76mV,
respectively. The membrane is said to be polarized. ([1])

Fig 4: Recording of the squid axon's membrane potential during the 
generation of an action potential. The successive phases of rest, fast 
depolarization, peak, hyperpolarization and slow relaxation to rest can be 
observed from left to right. ( extracted  from [1], pg 352]

E equ=
RT
F

 ln [  ∑
pk [k +]o+ pk [k - ]i

pk [k +] i+pk [ k -]o
 ]
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When a stimulus in the form of  an excitatory current is  applied to a neuron,  its
membrane potential increases. If it increases up to a given threshold potential whose exact
value depends on the specific nature of the neuron (between -55mV and -45mV for the
squid  axon),  voltage-gated  Na+-permeable  channels  activate,  and  the  permeability
associated with these ions rises sharply,  bringing the membrane potential  upwards in a
positive  feedback  mechanism.  The  Na+ ions  become the  main  players  in  the  Goldman-
Hodgkin-Katz equation, and the global equilibrium membrane potential is brought closer to
the sodium equilibrium potential, their values being of about 40mV and 55mV, respectively.
The membrane is said to be depolarized.

The  increase  in  the  membrane  potential  then  triggers  two  other  mechanisms
associated with the ion channels : the inactivation of the Na+ channels, and the activation of
the K+ channels. The permeabilities of Na+ and K+ respectively fall and rise sharply, and the
global equilibrium potential is brought back towards the potassium equilibrium potential in
a  negative  feedback mechanism,  and to  a  lower  potential  than  at  rest  :  down to about
-65mV. The membrane is said to be hyperpolarized.

Finally, the hyperpolarized phase triggers the deactivation de-inactivation of the Na+

channels, and the deactivation of K+ channels. The potential returns to the resting value in a
slow relaxation phase, and another potential can then be generated. The duration of the
hyperpolarized phase defines  a  length of  time during which  the neuron first  cannot  be
forced  to  generate  another  action  potential,  then  can  only  be  forced  to  do  so  with  an
increased  level  of  stimulation.  These  are  the  absolute  and  relative  refractory  periods,
respectively. These periods limit the maximum frequency at which action potentials can be
generated in a repeated pattern ; they also keep the signals from reverberating back to their
origin, from the axon back to the cell body and the dendrites.

For  every  phase  of  the  action  potential,  there  are  ions  that  travel  through  the
membrane and modify the concentration gradients, and thus the equilibrium potentials by
the Nernst and  Goldman-Hodgkin-Katz equations. However, the quantities of ions required
to  modify  the  membrane  potential  in  order  to  generate  a  single  action  potential  are
negligible w.r.t. to the original concentrations. The orders of magnitude are the following : a
single action potential involves a shift  of  about 6 µM (micro-mollar,  i.e.  micro  mole per
cubic meter) w.r.t.  to an original concentration of about 18mM (milli-molar). Over large
periods of  times and great  numbers of  action potentials,  it  is  the  ion pumps that  work
against the shift in concentrations by bringing the ions back to their intended sides of the
membrane. 

 There are cases when the pumps aren't strong enough to maintain the concentration
gradients :  certain forms of seizure cause fast,  synchronized and repeated generation of
action potentials. Alternative mechanisms originating in the action of glial cells are then
required to maintain the desired unbalance. ([1]) 
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Section  1.1.5  :  Neuronal  excitability  types  -
experimental viewpoint

Hodgkin,  one of  the  pioneer and most famous names in neuroscience,  originally
defined  three  classes,  or  types,  of  neuronal  excitability.  These  definitions  are  based  on
observations  made during experimental  procedures that  consisted in applying a  current
through a  Carcinus maenas axon, i.e.  the squid axon discussed in  [1] and used for the
description  of  an  action  potential  in  the  last  section. While  invertebrate  neurons  differ
somewhat  from mammalian  neurons,  it  has  been  proven  that  the  generation  of  action
potential in both groups is performed through similar processes. ([2]) 

Hodgkin's  proposed  classification  is  based  on  whether  the  axon  displays  cyclic
behaviour, i.e. responds to a constant excitatory current with trains of action potentials.

• I :  cyclic  behaviour  over  a  wide  range  of  frequencies  ;  the  frequency  
evolves as a smooth function of the applied current

• II : cyclic behaviour at an approximately constant frequency that is insensitive
to the applied current ; lower threshold post spike 

• III : no cyclic behaviour, or only for very high values of the current 

A  representation  of  the  current-frequency  curves  and  temporal  evolution  of  the
membrane potential of neurons of type I and II is presented in Fig. 5.

Fig 5: Current-frequency curves of type I and type II neurons (left) and temporal evolution of the 
neuron membrane potential (right) from the Connor-Stevens model, with type I corresponding to the 
upper traces and type II to the lower traces. Type I excitability can be seen to correspond to a 
nearly-linear current-frequency curve allowing low frequencies, while type II is considered to be 
nearly constant at a fixed high frequency ( extracted from [3] - pg 202 )
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Following  the  experimental  observations  of  Hodgkin  on  the  squid  axon,  class  I
neurons are  assessed to correspond to  motor  neurons and sensory receptors,  as  proven
through experimental procedure in associated contemporary works. The frequency evolves
smoothly in ranges of about 5-150 Hz. Class II neurons feature constant frequencies in the
range 75-150 Hz. Class III neurons are assessed to correspond to any kind of neuron that
has been left in sea water for a long period ; left for an even longer period of times, they
become completely inexcitable. 

The curves presented in fig. 4, however, correspond to a mathematical model of a
neuron proposed by Connor-Stevens [4] ; the exact ranges of frequencies corresponding to
the  excitability  types  therefore  differ  from  those  observed  by  Hodgkin,  although  the
qualitative observation pertaining to the shape of the frequency-curve does not.

In Hodgkin's own words, this classification is of an arbitrary nature, since a single
axon may show different types of behaviour during the course of one experiment, depending
on external factors such as storage conditions.

The second part of this chapter, however, introduces mathematical modelling and
covers the notions of bifurcations in non-linear systems which give strong mathematical
evidence  to the accuracy of the classification in excitability types proposed by Hodgkin.
Furthermore,  the  discussion  on  the  capacity  of  a  neuron  to  display  several  types  of
excitability during the course of its life is supported by the abilities of the chosen example
model for  this  work to display  different excitability  types depending on the value of  its
internal parameters which can be identified to physiological parameters of the neuron.
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Part 2 : Computational neuroscience

Section  1.2.1  :  Neurons  in  the  context  of  signal
processing

From a signal processing viewpoint, neurons are active transmitters. As described in
the first part of this chapter, their internal structure comports ion pumps and channels that
allow for local modifications in the neurons membrane potential to be generated when an
excitatory current  is  applied to them. The direct  consequence of  this  is  that  signals  are
actively  regenerated along the length of  the  neuron,  instead of  progressively  fading out
following the classical decreasing exponential describing the propagation of signals in any
standard  resistive  conductor,  such  as  typical  balanced  lines  to  which  the  Telegrapher's
equation are applied. ([1], [3]) 

The Telegrapher's equations and their solution under steady-state and small losses
assumptions  are  recalled  in  expression  3,  where  V  is  the  membrane  potential,  rm the
membrane resistance, ri the internal resistance, V0 the value of the membrane potential at
the position x=0. A representation of the corresponding equivalent circuit is illustrated in
Fig. 6.

is solved by where  (expr. 3)

The signals  travelling  through the  central  nervous  system consist  in  information
from a great number of different sources ; among those, the skin nerves, the visual cortex,
the olfactory system, ... all provide information of a different nature. However, they share
neurons  as  the  physical  means  by  which  this  information  is  encoded.  Therefore,  the
excitability types of the neurons define a great part of the basic structure of  the physical
layer of inter-neuronal communication, as identified in the OSI model.  The exact use of
these in order to build an encoding scheme and complete the definition of the physical layer
vary, depending on the region of the brain that is being considered. ([1])

Fig 6: Representation of a section of a neuron (left) and its corresponding equivalent circuit (right) 
neglecting reactive components and considering the neuron is a purely resistive component 
( extracted and adapted from [1] - pg 514 )

V=
rm

ri

d 2V
dx 2 V=V 0 e

−x
λ λ=√ rm

ri
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Several schemes of information encoding have been experimentally observed in the
animal brain. Rate code, or frequency encoding, has been found e.g. in the motor cortex
neurons where the amount  and direction of  force required to perform a movement  are
encoded in the frequency of these neurons firing activity. Temporal code has been found in
the hippocampus, where the phase of bursts activity is used to encode a measure of spatial
location. Many other schemes exist, such as "coarse" coding, i.e. where a neuron excitability
is linked to a single concept. ([1])

Section 1.2.2 : Neuron mathematical modelling
Neuron mathematical modelling is made difficult by the fact that the cells complex

behaviour can only be captured by non-linear systems. The exact number of dimensions of
these systems is subject to discussion : on the lower end of the spectrum, there are models
that  are built  through identification to normal forms of bifurcations,  i.e.  to the simplest
system that displays the observed behaviour that is identified as a bifurcation. On the higher
end of the spectrum, there are models that display up to a hundred different variables that
aim to fit perfectly to experimental data.

Historically, the first models to be proposed were conductance-based models ; these
aimed at explaining the mechanisms underlying neuronal excitability. The first of these is
the  classical  four-dimensions  Hodgkin-Huxley  model,  and  is  presented  further  in  this
second part of the chapter. ([5])

The  growth  in  the  fields  of  mathematics  in  non-linear  system  analysis  and  of
computer-enabled  numerical  analysis  later  spurred  the  research  on  the  link  between
neuronal excitability and bifurcation theory. Reduction of the conductance-based models
was performed and allowed the use of visual methods from the fields of non-linear systems
analysis,  i.e.  mainly  phase  plane  analysis  through  the  work  of  FitzHugh,  Rinzel  and
Ermentrout. 

In particular, FitzHugh proposed in 1961 a model that was able to display neuronal
dynamics through a model lacking explicit  expressions of  conductances or currents,  but
rather based on bifurcation theory : it is a generalized case of the well-known Van der Pol
oscillator, to which it corresponds if two of its parameters are set to zero. As a matter of fact,
the original name of the model, as extracted from the seminal paper, is the "Bonhoeffer -
van der Pol oscillator". [6] The example model to which the methods developed for this work
are  applied  is  strongly  inspired  from the  FitzHugh model,  as  presented  further  in  this
second part of the chapter.

A considerable risk with normal form identification is that the bifurcation that the
original system is identified to may not be the correct one. As a practical example of the
problems induced by this notion, the author of [5] contrived to fit normal-form models to
experimental findings by progressively altering them with complicated discontinuous reset
mechanisms. The validity of this approach is subject to discussion, and an argument can be
made towards extensive numerical  exploration of original  models  in order to detect  the
exact bifurcation underlying their behaviour. Following this approach systematically, heavy
alterations to the models in order to fit experimental data should never be necessary, as
errors could be traced back to an erroneous identification of the underlying bifurcation.
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Section 1.2.3 : Conductance-based neuron modelling

The  first  part  of  this  chapter  presents the  modern  way  of  understanding  the
mechanisms  driving  the  generation  of  action  potentials  in  neurons.  Conductance-based
models  are  based  on  this  understanding  and model  a  neuron internals  as  a  set  of  ion
channels whose state of being partially open or closed allow for various quantities of ion
currents to flow through and affect the neuron membrane electrical potential ; this state is
identified to  a non-linear conductance gn (i.e.  the permeability of  ion channels)  in an
expression of Ohm's law for each of the ion channels, with the outside and inside of the
neuron membrane forming two plates of a capacitor Cm consisting in the phospholipid
membrane bilayer that can be charged or discharged through the different channels. ([1])

A generic representation of this family of models is given in Fig. 7.

Each ion channel is driven by a force assimilated to an  electrical generator En .
This  force corresponds the single-species  equilibrium potential quantified by the Nernst
equation ; the net electrical force driving the ions to which the channel is subjected is the
difference between the membrane potential and the Nernst potential, both expressed with
respect to the same reference, i.e. the surrounding bath on the outside of the membrane.

The  ion  pumps are  modelled  by  a  constant  current  source I p whose  flow  is
opposite  to  the ion  channels'  branches.  A  given amount  of  leakage  current  can also be
modelled by a dedicated (constantly open) leakage channel g L   and a generator E L .

 

Fig 7: Schematic representation of conductance-based models. The channels are identified to non-
linear conductances gn , with additional leaking channels gL . The ions are driven into the channels 
by their Nernst potential, modelled as electrical generators En, with additional leakage potential 
EL. The ions pumps work constantly and are modelled as a current source Ip. The membrane forms 
a capacitor Cm between the extra- and intra-cellular media. (license-free illustration)
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The main complexity of these models  reside in the modelling of  the ion channel
permeabilities  as  the  non-linear  conductances  gn .  These  must  account  for  the
mechanisms  of  the  many  elementary  voltage-gated  ion  channels,  as  described  in  the
previous sections. 

The gates  are  identified  to  a  number  of  blocking particles  that  are  defined  by a
transition probability between open and closed states. Therefore, the Boltzmann equation
from the domain of statistical mechanics can be used in order to define the distribution of
particles between the open (respectively, "up" state) and closed (respectively, "down" state)
states.  The  same approach  is  used  in  other  fields  of  physics,  such  as  the  modelling  of
electron-hole pairs creation in semiconductor devices. 

The ion channels are seen as the aggregation of a set of elementary channels that are
each gated by a given number of particles. These particles block the ions when they are in a
down state, and allow the passage of ions when they are in a up state. The total ion channel
conductance results in the proportion of elementary channels that are currently letting ions
through. The exact developments can be found in [1], or any equivalent material.

The mathematical  expression of  the  classical  Hodkgin-Huxley  conductance-based
model is presented in expression 4 :

(expr. 4)

The  expressions αx (V ) and βx (V ) are  physiological  coefficients  that  are
experimentally identified as functions of V ; they correspond to the rate of transition of the
gating particles to the up and down state, respectively ; their value is determined through
experimental fit.

The  expressions  g X correspond  to  the  maximum  conductances  of  the  ion
channels and allow for the total conductance to be expressed as the product of this quantity
and the probability of a single elementary channel being open, rather than compute the sum
of every channel and their elementary conductance (which would probably be extremely
difficult to identify). This probability is the variable characterising the state of the channel in
the system, and is called the activation variable of the ion.

The probability of a channel being open depends on the number of particles that are
assumed to be involved in this channel and their nature. For example, the Na channel is
assumed to have 3 activating particles and 1 inactivating particle ; the total probability of the
elementary channel to be open is the product of the events of the 3 activating particles being
up, and the 1 inactivating particle being down.

{
C v̇ = −g K n4

(V −E K)−g Na m3 h(V −ENa )−g l (V −E l)     ( Membrane potential )
  +I app+ I pump

    
ṅ = αn(V )(1−n)−βn(V )n      ( Potassium activation )
ṁ = αm(V )(1−m)−βm(V )m ( Sodium activation )
ḣ = αh(V )(1−h)−βh(V )h    ( Sodium inactivation )
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The stimulation is modelled by the applied current I app ; this parameter allows the
neuron to switch between rest and its activity pattern. I pump is considered to be constant,
as developed in the previous section presenting the ion pumps.

Section 1.2.4 : Reduction of the classical model
The reduction to two dimensions of the Hodgkin-Huxley model was originally built

using  physiological  arguments  and  experimental  findings.  Later  work  by  FitzHugh,
Ermentrout  and  contemporaries  proved  that  these  arguments  could  be  identified  to
properties of non-linear systems through the theory of bifurcations, e.g. that the reduced
forms based  on  physiological  arguments  can  be  linked  to  normal  forms of  bifurcations
whose pattern was identified in the behaviour of the experimental specimens.

Firstly,  the  transition  rates  of  the  activating  particles  of  the  sodium  current  (
αm(V ) and βm(V ) affecting m ) are found to be much greater than those of n and
h ,  the transition rates of the activating particles of the potassium current and of the

inactivating particles of the sodium current, respectively. In other words, the activation of
the sodium current operates on a much faster time scale than the other two mechanisms.

Secondly, these latter two transition rates operate on roughly the same time scale
w.r.t. each other. This holds true up to the point that it allows to experimentally prove that
the  expression  n+h is  approximately  constant,  thus  forming  a  relationship  between
those two variables that allows the simplification of one of them.

These arguments allow to form a new, approached mathematical expression of the
reduced model which is presented on expr. 5 :

(expr. 5 )

The terms  corresponding  to  the  sodium  and  potassium  currents  can  still  be
identified in the equation of the membrane potential, however their associated activation
variables have all been simplified to a  single w activation variable and coefficients s ,

wp , m∞(V ) , mp , w∞(V ) , τw(V ) ; the functions of V are sigmoids.

{
C v̇ = −g K (

w
s
)

wp

(V −E K)−g Na m∞ (V )
mp

(1−w)(V −E Na)  

  −g l (V −E l)  ( Membrane potential )
  +I app+ I pump  
    

ẇ = ϕ(T )
w∞ (V )−w

τw(V )
( Activation variable )
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Section 1.2.5 : The basics of non-linear system 
analysis

 Non-linear systems are impossible to solve analytically such that explicit equations
defining  the  evolution  of  the  variables  over  time  may  be  extracted  from  the  system
mathematical definition. Many examples of these kinds of problems exist in the scientific
literature ; one of the first was the "three-body problem", i.e. the problem of computing the
trajectory of the sun, the earth and the moon as objects that each attract each other through
the laws of gravity. The famous mathematician Poincaré found a way to extract qualitative,
rather  than  quantitative  information  from  this  problem  by  developing  a  revolutionary
geometric approach - the aim was to determine not the exact trajectories of the bodies, but
notions of long-term stability, i.e. whether the bodies would be able to stay on stable orbits
rather than fly off far to infinity. ([7])

As non-linear system analysis doesn't aim at finding exact trajectories, but rather to
determine whether there are stable equilibria, i.e. positions that will attract any number of
trajectories  after  a  given  period  of  time,  one of  the  most  important  topic  of  non-linear
system analysis is  the study of how these equilibria evolve w.r.t.  to modifications in the
system parameters. When the nature of an equilibrium changes, i.e. whether it is stable or
not is modified, or when equilibria appear or disappear, there is a bifurcation. 

There  are  as  many  bifurcations  as  there  are  possible  transitions  between
configurations, and the number of possible configurations explodes with the increase in the
number of equilibria and variables in the system. The definition and labelling of these is a
topic of its own, and still subject to controversy. Since the methods developed for this work
are applied to a two-dimensional system with only a few equilibria, only those bifurcations
that are met in the course of this work are covered in this document.

Section  1.2.6  :  Neuronal  excitability  types  -
computational viewpoint

Neuronal excitability types as seen through the lens of computational neuroscience
are mainly characterised by two things : the bifurcations to which they correspond, which
are discussed further in this second part of the chapter, and the role they play in networks.

Neurons  displaying  type  I  excitability  are  able  to  transmit  a  large  range  of
frequencies, and therefore are thought to encode the amplitude of the excitatory current, i.e.
the amplitude of the input signal, into the frequency of the outgoing action potentials, i.e.
the frequency of the output signal. ([3])

Neurons displaying type II excitability are only able to transmit at an approximately
constant frequency, and therefore are thought to be on/off encoders ; they either generate
action  potentials  at  their  resonant  frequency,  if  the  input  signal  has  a  high  enough
amplitude, or they don't.

While only type I excitability allows for frequency encoding, both type I and type II
can be used for temporal encoding, i.e. where the information is encoded in the time period
separating two bursts of any frequency. In practice, recent discoveries point to the fact that
the actual  encoding scheme is part  frequency and part  temporal,  as well  as multiplexed
combinations of these two, depending on the region of the central nervous system that is
considered.



Page 24/85

Section 1.2.7 : Bifurcations and their local 
properties

A  bifurcation  defines  the  threshold  between  a  (locally  or  globally)  stable
configuration and an unstable one. If this bifurcation corresponds to the system transition
from a configuration with a stable equilibrium to a configuration with none, then this also is
the transition to either one of the types I or II of excitability - this can be simply proven with
the Poincaré-Bendixon theorem presented in the appendices. This theorem states that if a
trajectory  is  confined to a  closed,  bounded region and there are no fixed points  in this
region, then the trajectory must eventually approach a closed cycle. What interests us in
particular is that the excitability type of the neuronal model can be assessed from the nature
of this bifurcation.([7])

While a bifurcation is in part defined by the stabilisation or destabilisation of 
equilibria, or creation or destruction of equilibria that it concerns, it is also defined by the 
behaviour of the equilibria undergoing said bifurcation. 

 The stability of an equilibrium can be assessed through the extraction of the 
eigenvalues of the system Jacobian matrix evaluated at the equilibrium position. This 
corresponds to a linearisation of the system around the equilibrium point, which is a valid 
approach to assess the behaviour of the system only under strong hypothesises of small 
perturbations, i.e. in a range of perturbations fairly close to the equilibrium position. This 
type of computation is typical of stability analysis in adjacent fields such as rational 
mechanics. There is more information to be gained through this procedure than the simple 
notion of whether the equilibrium is stable or not, however ; this information comes in the 
form of the exact eigenvalues of the Jacobian matrix. ([7])

In the context of this work, it is sufficient to say that the condition for an equilibrium
to be stable is that its eigenvalues have strictly negative real parts. They can, however, and 
do display non-zero complex values in certain cases. Therefore, each bifurcation has in 
addition to its associated equilibrium configurations a pattern of eigenvalues of a specific 
nature ; these are described in the following section.

The following terms must be defined (in the context of a two-dimensional system) in 
order to allow the following discussions on bifurcations :

• A stable node is an equilibrium that is stable in all directions

• An unstable node is an equilibrium that is unstable in all directions

• A saddle point is an equilibrium that is stable along at least one direction, and 
unstable along at least one direction

• An  attractor basin of attraction corresponds to the zone of the phase plane where 
trajectories are guaranteed to converge towards this attractor

An illustration of these concepts is presented in Fig. 8, in the section presenting 
saddle-node bifurcations. In this figure, the upper illustrations presents a node and a 
saddle, and the direction of the vector field around these equilibria. The node can be seen to 
attract trajectories from every directions, while the saddle can be seen to only attract 
trajectories along a single axis.

The saddle-node, as a compromise between a saddle and a node, attracts all 
trajectories from one half of the phase plane, with the axis separating the two halves being 
included in its basin of attraction ; the basins of attraction are pictured in dark grey while 
the rest of the phase plane is left as a white background.
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Section 1.2.8 : Saddle-node & SNIC bifurcation
A saddle-node bifurcation, or SN bifurcation, corresponds to the following sequence

of events : a saddle and a node collide and annihilate each other ; the equilibria simply
disappear, although a ghost of varying importance persists at the point of their annihilation.
The node has two pure real and different negative Jacobian matrix eigenvalues up until it
disappears  due to the bifurcation,  and the saddle  has one pure real  positive  value.  The
eigenvalues of the stable equilibrium increase in a monotonous fashion until they cross the
imaginary axis. ([7])

This sequence of events in illustrated in Fig. 8, from top to bottom.

Fig 8: Depiction of a saddle-node bifurcation in a two-dimensional system, with explicit 
representation of the vector field. The system features a node and a saddle (top part), which 
collide and merge together(middle part) and annihilate each other (bottom part). Of particular 
interest is the fact that the vector field does not show any circular trajectories in the immediate 
vicinity of the saddle-node bifurcation,to the contrary to HOPF bifurcations (extracted from [5] -
page 132) 



Page 26/85

Due to the evolution of the eigenvalues of the node, the system features strictly non-
oscillating  convergent  behaviour  around  the  node  before  the  bifurcation  ;  complex
eigenvalues induce circular trajectories, and the saddle-node bifurcation never features non-
zero complex parts. This can be observed in Fig. 8, as the vector field around the saddle-
node is strictly directed towards or away from it, but never drawing circular fields such as
those inducing oscillations in the system.

If the system features only a single stable equilibrium before the bifurcation, then it
causes the system to follow an invariant circle of large amplitude and approximately linear
frequency with respect  to the excitatory current,  i.e.  type I  excitability.  In this case,  the
bifurcation is labelled as a saddle-node on invariant circle, or SNIC bifurcation. An example
SNIC bifurcation is illustrated in Fig. 9.

The saddle-node bifurcation normal form can be expressed as a one-dimensional
system.  It  can,  however,  easily  be  extended  to  two-dimensional  system  by  setting  the
derivative of the second variable to be a constant of any value.

Section 1.2.9 : Saddle-homoclinic bifurcation
If the system features the creation of a stable cycle before the bifurcation, then the

trajectory will converge towards this existing cycle after the saddle-node bifurcation has the
node disappear,  and display  the same type of  current-frequency relationship.  The main
difference in the two is that the cycle is not located at the position of the SN bifurcation,
therefore displaying a slightly different temporal membrane potential curve. In this case,
the bifurcation is labelled as a saddle-node - saddle-homoclinic, or SN-SH bifurcation.

As the saddle-homoclinic is not directly observed in the context of this work, it is not
detailed further ; it is sufficient to describe it as a bifurcation that sees the creation of a cycle
at the position of a saddle. This is the kind of bifurcations that causes the system to feature a
cycle before a SN bifurcation, and therefore to prevent SNIC bifurcations.

Fig 9: Depiction of a saddle-node on invariant circle, or SNIC bifurcation in a two-dimensional 
system. A saddle-node bifurcation takes place, and as there are no additional equilibria in the 
system while the space is bounded, a stable limit cycle appears where the trajectories previously 
transited from the unstable saddle to the stable node. (extracted from [5] - pg 223)
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Section 1.2.10 : Andronov-Hopf bifurcation
An Andronov-Hopf bifurcation, or HOPF bifurcation, corresponds to the following 

sequence of events : a node is in a configuration that sees it go from a stable configuration to
an unstable one, i.e. it goes through a specific position of a nullcline that separates its 
attractive and unstable branches in the phase plane representation. ([7])

The node has two pure real negative Jacobian matrix eigenvalues up until shortly
before the bifurcation,  when the two real negative become equal and see a complex part
appear, so that the two eigenvalues become complex conjugates. The values stay as complex
conjugates,  and  their  real  part  increases  until  it  becomes  zero  at  the  bifurcation,  and
positive after that. This means that an unstable, oscillating equilibrium persists after the
bifurcation  and  continues  to  move  around  the  phase  plane  with  the  increase  in  the
excitatory current. Due to the evolution of the eigenvalues of the node, the system features
oscillating convergent behaviour around the node. This can be observed in Fig. 10, as the
vector field around the node forms circular patterns :

Fig 10: Depiction of a Andronov-Hopf, or HOPF bifurcation in a two-dimensional system, with 
explicit representation of the vector field. The system features a node (upper left) which moves on 
the nullcline towards the right, seeing the apparition of circular trajectories around it (top right), 
then getting destabilised (bottom-left) as the newly appeared cycle grows in amplitude (bottom-
left) but not frequency.(not shown) (extracted from [5] - page 134) 



Page 28/85

Section 1.2.11  :  Visual  analysis of  the reduced HH
model

 While a complete course on the subject of non-linear systems analysis is not the
subject of this work, a quick example analysis is proposed as a way to introduce the reader
to the methods commonly used in the field.  In particular,  that  of  visual  inspection,  i.e.
deduction  of  the  behaviour  of  a  system  based  solely  upon  the  observation  of  the
configuration  of  its  nullclines  drawn  in  the  space  of  its  variables  ;  that  is,  for  a  two-
dimensional model, on the phase plane defined by its two variables. ([1]) 

The nullclines of the system, i.e. the  n-V curves corresponding to when the 
derivatives are equal to zero, are drawn on the phase plane and a trajectory is computed for 
the visualization purposes w.r.t. the system behaviour, as illustrated in Fig. 11.

Looking at the trajectory on the lower part of fig. 10, the first observation that can be 
made is that the system settles after a given time at the intersection of the nullclines. This is 
due to the fact that this corresponds to a rest situation, i.e. a situation where all derivatives 
defining the system are equal to zero.

Fig 11: Depiction of the nullcline corresponding to the membrane potential (top-left) and the 
activation variable (top-right), then superposition of the two with an added trajectory in the 
system obtained through simulation. (bottom) The trajectory starts at a value of the membrane 
potential above the excitation threshold, and an action potential is generated. The trajectory then 
converges to the equilibrium situated at the intersection of the nullclines. A temporal recording of 
the membrane potential is added for visualization purposes. (extracted from [1] - pg 428 )
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Increasing  the excitatory current applied to the neuron alters the shape and position
of the nullclines, and therefore of the trajectories, as illustrated in Fig. 12.

Care has to been taken in comparing Figs. 11 and 12, as the vertical scale has been 
modified in order to zoom on the equilibrium position. The left panel of fig. 11 corresponds 
to the same situation as the one depicted in Fig. 10. The right panel of fig. 12, however, 
displays a configuration that has changed w.r.t. the left panel in that the nullclines shape 
morphed in such a way that while they still intersect, the corresponding equilibrium does 
not attract trajectories in the system anymore.

The difference between the two situations is that either one, or both of the 
eigenvalues of the system Jacobian matrix evaluated at the position of the equilibrium 
crossed the imaginary axis ; their real part grew from a negative to a positive value. 

The common practice, however, is to contend with a visual inspection. In this case, 
the usual explanation extracted from the observation of these phase plane diagrams is that 
the V-nullcline features a stable branch to the left of its local minimum, and a stable branch 
to its right. While as long as these branches are only very loosely defined, this is technically 
true, the habit of automatically considering them to be separated at the local minimum is an
error - this habit may have its origins in the study of one-dimensional systems, where vector
fields on the phase plane are strictly horizontal. ([7]) 

The bifurcation that the system undergoes between its quiescent and oscillating 
configurations is a HOPF bifurcation, since a single node looses its stability as the excitatory
current is increased. According to the Poincaré-Bendixson theorem, a stable cycle must then
be present and be followed by all trajectories in the system.

Extensive  numerical  study  of  the  model  shows  that  the  eigenvalues  of  the
equilibrium follow the HOPF bifurcation pattern, i.e. that they are complex conjugates with
a growing real part as the bifurcation is approached, and that they cross the imaginary axis
right at the bifurcation.

Fig 12: Recording of the evolution of the nullclines of the reduced Hogdkin-Huxley model with 
increasing values of the excitatory current. The current is first set to a value allowing the neuron to
rest (left) then is increased until the neuron displays spiking activity (right). The equilibrium on the
left part is denoted by a full dot as it is stable, while it is denoted by an empty dot as it becomes 
unstable during spiking activity. (extracted from [1]- pg 430 )
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Section 1.2.12 : Transcritical (TC) canonical model
The model whose study is the subject of this work is extracted from recent research

by Drion et al., as covered in [8] and [9]. It is a two-dimensional reduction of the classical
Hodgkin-Huxley model previously augmented with an additional calcium channel in order
to display physiological behaviour that was experimentally identified but not yet modelled
in such a simple way, i.e. the ability to switch between spiking and bursting behaviour. Its
two variables are the membrane potential and an aggregated activation variable of all slow
ion channels, respectively. 

The  first  step  in  building  the  model  is  to  extend  the  classical  Hodgkin-Huxley
presented in the first section through the addition of calcium current. The mathematical
expression of the model is presented on expression 6 :

(expr. 6)

Compared to  the expression of  the classical  model,  the only difference is  in the
additional  Ca2+ current  and  its  associated  particle  transition  probability.  The  activation
variables are expressed in terms of their transition rates rather than the form using the
steady-state value and the time constant preferred for the reduced Hodgkin-Huxley model -
the two forms are equivalent.

While the algebraic expression cannot express this, it is very important to take into
account that the transition rate of the calcium activation variable is of the same order as that
of  the potassium activation variable and the sodium inactivation variable,  and therefore
slower than the sodium activation variable. This current has slow kinetics compared to its
peers,  and  this  is  what  allows  the  system  to  display  two  patterns  of  action  potential
generation, i.e. spiking and bursting. The calcium current varies in a time scale of its own
and modifies  the  pattern formed by the action  potentials,  but  not  the  action potentials
themselves. 

The  second  step  is  to  reduce  the  model  back  to  two  dimensions  through
physiological arguments much like those applied to the classical Hodkgin-Huxley model.
With the approximation of the Ca2+ variable as a constant, due to its very slow kinetics, the
model loses its spontaneous ability to display bursting activity. However, bursting can still
be achieved by altering the value of the calcium conductance considered as a parameter of
the system.

The mathematical expression of the reduced model is presented in expression 7.

{
C v̇ = −g K n4(V −V K)−gNa m3 h(V −V Na)−g l(V −V l)       ( Membrane potential )
  +I app+I pump  
  −gCa d (V −V Ca )  
    

ṅ = αn(V )(1−n)−βn(V )n      ( Potassium activation )
ṁ = αm(V )(1−m)−βm(V )m ( Sodium activation )
ḣ = αh(V )(1−h)−βh(V )h    ( Sodium inactivation )

ḋ = αd (V )(1−d )−βd (V )d ( Calcium activation )
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(expr. 7 )

The  final  expression  that  is  implemented  corresponds  to  a  normal-form
identification  of  expr.  7  to  a  transcritical  bifurcation,  following  a  novel  interpretation
generalizing  the  FitzHugh  family  of  models,  as  motivated  in  [8].  The  mathematical
expression of the final model is presented on expression 8 :

(expr. 8)

In this final expression, most coefficients have been simplified. Those that are left
correspond to the following quantities :

• Iapp   : The applied excitatory current - this parameter corresponds to the excitation 
that the neuron is subjected to, i.e. the total aggregated signal that it receives

• ε : The time-scale coupling factor - this parameter controls the time-scale separation 
between the mechanism inducing the spike in the action potential, and the 
mechanism inducing the relaxation of the system after a spike has been generated

• V0 : The half-activation membrane potential  - this parameter controls the horizontal
position of the N-nullcline

• n0 : The ion channel balance factor - this parameter controls the vertical position of
the N-nullcline

In particular, the parameters V0 and n0 have important physiological interpretations.
The parameter V0 corresponds to the half-activation potential of the recovery variable. This
can be identified to an image of the excitability threshold of the neuron that is modelled.
The parameter n0 is an image of the calcium channel density. It defines the balance between
potassium and calcium channels  near  the threshold  potential.  If  it  is  very  positive,  the
potassium channels are dominant. If it is very negative, the calcium channels are dominant.
This,  in  turn,  determines  whether  the  model  displays  mainly  restorative  or  mainly
regenerative behaviour, respectively, which corresponds to a balance between the negative
feedback mechanism of the potassium channels and the positive feedback mechanism of the
calcium channels.

The ε parameter corresponds to the time-scale coupling factor, and therefore rules
over the relative speeds of the mechanisms present in the system. This factor underlies all
the dynamical analysis performed during this work and covered in the second part of the
last chapter of this document.

{v̇ = V −
V 3

3
−n2

+I app   ( Membrane potential )

ṅ = ϵ(n∞(V −V 0)+n0−n) ( Activation variable )

{
C v̇ = −g K n4(V −E K)−g Na m∞(V )3(0.89−1.1n)(V −E Na)  
  −g l (V −E l)  
  +I app+ I pump ( Membrane potential )

  −gCa n3
(V−ECa )  

    
ṅ = αn(V )(1−n)−βn(V )n ( Activation variable )
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Section 1.2.13 : Visual analysis of the TC model
A visual inspection of the model is covered in [8]. The results are  summarised in 

Fig. 13 as a bifurcation map on the plane of the two parameters (V0,n0) : 

The  validity  of  this  visual  inspection  is  restricted  to  the  singular  limits,  i.e.
considering  the  time-scale  separation  of  the  system  different  mechanisms  approaches
infinity.  In other  words,  one variable  is  considered to  evolve  infinitely  fast  w.r.t.  to  the
other ; in this case, the activation variable. These approximations are very much alike to the
assumptions made in order to build the reduced  Hodgkin-Huxley model. 

The physiological interpretation proposed in [8] is that neuronal excitability is ruled
by a transcritical bifurcation. The curve defining the position on the space of the system's
parameters (V0,n0) where the transcritical bifurcation takes place can be computed through
an  analytical  identification  to  a  balance  of  the  ionic  currents  affecting  the  system.  The
currents  are  assessed  to  be  acting  either  restoratively  or  regeneratively,  and  the  zones
separated by the transcritical curve therefore correspond to behaviour that is either mainly
restorative,  or  mainly  regenerative.  Furthermore,  the  mainly  restorative  region,  i.e.  the
region II in Fig. 13, is identified with the behaviour of the classical Hodgkin-Huxley model
which  undergoes  a  HOPF  bifurcation  and  displays  type  II  excitability.  The  region  III
corresponds to no bifurcation in the physiological current range. The mainly regenerative
region, i.e. the region IV in Fig. 13, is identified to a novel type of excitability that is the
subject of the referenced paper, which is based on neither a HOPF nor SNIC bifurcation, but
rather  a  SN-SH  bifurcation.   The  region  V  corresponds  to  yet  another  novel  type  of
excitability based on a modified version of a HOPF bifurcation.

Finally, the region I corresponds to type I excitability ruled by a SNIC bifurcation. It
is not, however, the only region with SNIC bifurcations, as the transcritical bifurcation is a
generalized case of the SNIC bifurcation. Therefore, there are in effect two type I regions.

Fig 13: Illustrative summary of the visual analysis of the example model. Curves are nullclines, 
full dots are stable equilibria, crosses saddles, empty dots unstable equilibria. The space of the 
model's two main parameters (v0,n0) is seen to be separated in a number of regions corresponding
to nullclines intersection patterns, subsequently conditioning the excitability types of the neuron. 
Types I, II and III correspond to the Hodgkin-Huxley excitability types, while types IV and V are 
newly proposed excitability types.( extracted from [8] - pg 10 )
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Chapter 2 : Methodology

This second chapter concerns the methodology of the work performed during this
thesis. It  covers  the  software  implementation  of  the  bifurcation  identification  interface
whose development is the subject of this thesis by presenting its underlying logic flow.

In the first part of this chapter, the Julia language is briefly introduced, along with
the packages of its official extended library involved in the implementation of the interface.
In-depth coverage of the language's syntactic specifics and inner workings is avoided, except
for the defining features that set the Julia language as a strong competitor to be chosen as a
a  programmer's  preferred  language  to  developed scientific  computation  interface,  along
with e.g. the Matlab environment.

In the second part of this chapter,  the software implementation of the bifurcation
search and identification are covered at a high level of abstraction w.r.t. the specifics of the
Julia language in order to skip any explicit integration of source code. The problem to be
solved is formalised in a mathematical expression that root-finding algorithms such as the
Newton-Raphson  method  can  work  on.  Three  different  implementations  of  a  stability
detection function  critical  to  the  bifurcation identification method are  presented.  These
implementations are based on three different packages of the official extended library of the
Julia language, and perform with varying degrees of computational efficiency and accuracy.

In  the  third  part  of  this  chapter, the  three  separate  implementations  of  the
bifurcation search methods are evaluated and their  efficiency and accuracy are assessed
w.r.t. to the problem requirements.

The source code supporting the interface is freely available at the following address :
http://www.montefiore.ulg.ac.be/~guilldrion/TFE/Thibault Gillis - Source Code.zip 

http://www.montefiore.ulg.ac.be/~guilldrion/TFE/nomdetonfichier.zip


Page 34/85

Part 1 : The Julia language

Section 2.1.1 : Presentation of the language
The  Julia  language  first  appeared  as  the  outcome  of  a  2009  MIT  project,  and

subsequently went open-source in 2012. It is maintained by its original developers Stefan
Karpinski, Jeff Bezanson, and Viral Shah, as well as by a number of external contributors,
many of which are part of the scientific community. ([10],[11]) 

It was originally conceived as an efficient alternative to Matlab, Python, or R, in the
context  of  their  use  in  scientific  computing.  The  Julia  basic  library  integrates  a  great
number  of  open  source  C  and  Fortran  libraries  for  linear  algebra,  random  number
generation or string processing. The Julia language has since its original launch enjoyed
support by a growing number of scientists of various fields, such that many paper-motivated
packages are now available as a part of the extended official library of the language. The
packages  used  for  this  work  are  all  extracted  from this  extended library,  and therefore
officially endorsed by the language authors through rigorous testing and conformity check
procedures.

The  Julia  language  is  free,  open-source,  and  compiled.  Thanks  to  a  compiler
equipped with state-of-the-art mechanisms, however, the Julia language can be used in an
environment very much like that of an interpreted language such as Matlab or Python. In
particular, a process of "JIT" (i.e. "Just In Time") compilation performs efficient on-the-fly
incremental  compilation.  Additionally,  dedicated  advanced  compilation  commands  are
available  for  power  user  to  optimize  the  performance  of  their  code  and  reach  C-like
computation speeds. 

The choice of Julia as the programming language for this thesis arose from the fact
that this seemed to consist in an interesting new programming challenge, as well as a way to
allow the development  of  new implementations of  a  number of  methods  that  are  often
extracted from a number of different sources in a coherent,  self-sufficient interface.  For
example, the XPP environment is often used as a means to perform bifurcation analysis,
along with MATLAB as a means to implement the equations of a conductance-based model
and to simulate them. This consists in a fairly cumbersome way of performing computations
that could be implemented in a single language. Therefore, special care has been taken so
that the software supporting this thesis were entirely written and supported by the Julia
language.
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Section 2.1.2 : Julia packages - ODE
This package is one of the several available Julia implementation of the main ODE

solver  algorithms,  i.e.  the  Runge-Kutta  methods  used  to  solve  systems  of  ordinary
differential  equations  through explicit  time simulation.  A  complete  differential  equation
solving  ecosystem has  since  been  developed  by  the  author,  in  which  the  ODE package
consists in one of the several implementations than can be used in the ecosystem. ([12], [13]) 

The ODE package requires a number of libraries involved in the computations of the
Runge-Kutta methods,  i.e.  differentiation and integration. In particular,  the ForwardDiff
package implements forward differentiation,  and allows the numerical  evaluation of  the
system  Jacobian  matrix  at  any  point  of  the  phase  plane  and  hence  of  any  equilibrium
eigenvalues.

The package features implementation of non-stiff and stiff ODE solvers, i.e. typical
ode23, ode45, ode78, ode23s solvers as can be encountered in other scientific computing
environements such as Matlab. 

Section 2.1.3 : Julia packages - NLsolve
This  package contains implementations  of  the  trust  region and  Newton-Raphson

algorithms used to find zeroes of a multivariate function. These methods feature drawbacks
common to algorithms such as that of the gradient descent, i.e. that they can only converge
towards  the  nearest  equilibrium,  and  that  they  are  not  guaranteed  to  converge at  all
depending on the exact properties of the system. ( [14], [15] ) 

When the algorithms do converge however, they generally do so with excellent rates
of convergence compared to more robust methods such as bisection, or indirect methods of
finding equilibria such as simulation, i.e. the use of numerical ODE solvers using forward
Euler integration, or Runge-Kutta methods. ([16])

Both the trust-region and Newton-Raphson algorithms are methods that 
approximate the objective function (i.e. the system to solve) using a quadratic 
approximation. In the trust-region method, if the approximation is found to be accurate, the
local region is expanded, else it is contracted. The size of the initial trust region can be 
explicitly specified. In the Newton-Raphson method, a line search strategy is used in order 
to converge towards a local minimum. The exact strategy can be explicitly specified. [App] 

The solvers' API allows the specification of an explicit expression of the Jacobian
matrix, thus avoiding an expensive and possibly inaccurate numerical approximation of the
Jacobian matrix through finite differentiation. In the context of this work, this option is
ignored in order to keep and assess the performances of the interface independently of a
specific example system, for which an expression of the Jacobian matrix could not be easily
determined.
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Section 2.1.4 : Julia packages - Roots
This  package  contains  implementations  of  classical  univariate  functions  roots-

finding algorithm, such as the Newton-Raphson, Halley's or secant methods. It is used on
the equation defining the derivative of the membrane potential where the activation variable
has been replaced with the corresponding function of the membrane potential, when the
derivatives equal zero, i.e. at the equilibrium points. ([17]) 

The solvers accepts a number of parameters, among which of particular interest is a
number of sub-intervals into which the original interval must be divided. The methods are
specified to be unable to discern between double zeroes present in a single bracket ; this has
consequences that are discussed in the performances and results sections.

As this package requires that the user first reduce the system to a single-variable
equation describing the equilibria, it is mainly intended to be used on the example model as
an  error  detection  means.  It  is  not  assumed  that  in  the  general  context  in  which  this
interface aims to be used, such an analytical expression will always be available or derivable.
In the context of conductance-based models, however, this assumption is reasonable.

Section 2.1.5 : Julia packages - ImplicitEquations &
Plots

These packages contain implementations of functions used to output the results of
the  scientific  computations  in  a  graphical  form.  They  are  fairly  similar  to  any  such
implementation in other languages such as MATLAB or Python, and in fact sometimes rely
on calls to functions written in these languages. While this is very inefficient, it is accepted
as this part of the software is not time-constrained. ([18],[19]) 

While these packages are used as visualization tools and allow verification of the
result  of  the  methods  used  to  identify  the  bifurcation  through  visual  inspection,  they
obviously  aren't  part  of  the  identification  methods  themselves.  This  would  involve
complicated graphical methods and be essentially as computationally efficient as a complete
space sweep, i.e. highly inefficient.

The ImplicitEquations package contains an implementation of the Tupper method of
drawing phase plane graphs of implicit equations, i.e. equations of several variables that are
not solved in the form x = f(x). The algorithm handles the parameter space one cluster at a
time ; a  cluster is a sub-division of the complete parameter space. The size of a cluster is
defined through parameters N,M, as they define the level of segmentation of the space.

These functions are used in order to draw the nullclines on the phase plane of the
parameters (V0,n0) of the system.

The functions of the Plots package are used in order to draw trajectories atop the
nullclines  on  the  phase  plane,  the  bifurcation  maps  resulting  in  the  operation  of  the
bifurcation search and identification algorithm, as well as the transcritical curve separating
the regions of the bifurcation map. These elements are detailed further in the second part of
this chapter.
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Part 2 : Software architecture

Section 2.2.1 : Problem statement
The problem to be solved can be stated as follows : the interface to be built aims at 

performing the identification of the bifurcations undergone by the system as the excitatory 
current applied to it increases, in order to determine the excitability types of the neuron as a
function of its three parameters (V0,no, ε).

The problem is structured into the following steps:

• The example system must be implemented in order to be studied numerically

➔ Build a module containing the neuron mathematical model, with access to each of its
parameters, i.e. the rest positions (v0,n0), the time-scale coupling factor ε and the 
excitatory current Iapp

• The bifurcation must be localised for a set of parameters (v0,no, ε)

➔ Build a module containing a numerical method that is able to find the bifurcation in 
the system by manipulating the value of the excitatory current Iapp

➔ In the final structure, three different  stability detection methods are built and are 
separated from a bisection algorithm wrapper compatible with any implementation

• The equilibria of the system must be located for a value of the excitatory current very
close to the location of the bifurcation in order to identify the bifurcation through 
local properties of the equilibria undergoing said bifurcation

➔  The methods used to locate the bifurcations are based on the number and nature of 
the equilibria present at a given value of the excitatory current Iapp, and therefore can
be directly used in order to determine the nature of the bifurcation

• A complete bifurcation map must be drawn for the desired values of (v0,no, ε)

➔ Build a common module that performs the previous operations in loops

• Various experimental and exploration methods are required in order to assess the 
accuracy of the developed methods ; all scientifically significant results must be 
displayed so that they are easily understood and can be linked with the theory

➔ Build a graphical module that allows the visual inspection of the system through the 
drawing of the phase plane, simulated trajectories, and the final bifurcation map

A special effort as been applied in order to dissociate and abstract as many parts as 
possible, so that a given piece of logic may be localized at a single precise position and 
reused as required. This improves both readability and ease of maintenance of the code.
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Section 2.2.2 : Neuron model module
The TC model is implemented using the dedicated Julia syntax for functions. The 

exact equations that are implemented are the following, i.e. those of expression 8 recalled 
from section 1.2.12.

(expr. 8)

The variables of the system are the membrane potential V and the aggregated 
activation variable n. The parameters of the system are :

• Iapp   : The applied excitatory current - this parameter corresponds to the excitation 
that the neuron is subjected to, i.e. the total aggregated signal that it receives

• ε : The time-scale coupling factor - this parameter controls the time-scale separation 
between the mechanism inducing the spike in the action potential, and the 
mechanism inducing the relaxation of the system after a spike has been generated

• V0 : The half-activation membrane potential  - this parameter controls the horizontal
position of the N-nullcline

• n0 : The ion channel balance factor - this parameter controls the vertical position of
the N-nullcline

Additional methods are implemented in the module. These are used in order to 
modify the system parameters and expose dedicated functions performing the required 
computations on the eigenvalues of the system Jacobian matrix using numerical 
approximation of the Jacobian matrix extracted from the ForwardDiff package.

Section 2.2.3 : Formalisation of the bifurcation 
research objective function

Most research problems can be identified with some form of root-finding problem 
through appropriate formalisation of the original problem. A number of solutions have been
proposed for this class of problems, with the corresponding algorithms making up a  large 
part of the field of numerical analysis. While the exact hypothesises required to use a given 
algorithm vary, they all have in common that they require an objective function to work on. 
This objective function can take many shapes, but must have its root correspond to the 
researched location in order for the procedure to have any meaning, possibly through a 
number of changes of variables. ([16]) 

In the context of this work, the objective function must be an image of the global
stability  of the system in terms of equilibrium points :  considering a growing excitatory
current,  the  root  of  this  function  must  correspond  to  the  transition  between  the  last
configuration  with  at  least  one  stable  equilibrium  point  and  a  configuration  with  no
equilibrium at all. In this last configuration, any trajectories must follow a stable cycle, as
stated by the Poincaré-Bendixson theorem.

{v̇ = V −
V 3

3
−n2

+I app   ( Membrane potential )

ṅ = ϵ(n∞(V −V 0)+n0−n) ( Activation variable )
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Section 2.2.4 : Candidate objective - eigenvalues
From  the  theory  of  non-linear  systems,  it  is  known  that  the  eigenvalues  of  any

equilibrium  that  is  going  to  transition  to  instability  through  a  bifurcation  display  the
following behaviour, as discussed in sections 1.2.8 and 1.2.10 : 

- their real part increases monotonously from real negative values towards zero

- they reach zero right at the bifurcation

- for a HOPF bifurcation, they keep increasing after crossing the zero

- for a SNIC bifurcation, the equilibrium and its eigenvalues do not exist anymore

While the equilibrium involved in a HOPF bifurcation could in theory be tracked and
its eigenvalues studied before and after the bifurcation, it simply cannot be done for SNICs,
as  the  equilibria  disappear  completely.  Using  the  eigenvalues  to  construct  an  objective
function is therefore impossible.

Section  2.2.5  :  Candidate  objective  -  oscillation
frequency

As discussed in sections 1.1.5 and 1.2.4 presenting the neuronal excitability types, a
neuron  subject  to  an  excitatory  current  will  start  from  quiescence  and  start  spiking  at
frequencies that depend on its excitability type. Therefore, the current-frequency curve of an
excited system consists in an image of a stability function : it displays a constant zero value
under the bifurcation, then either a monotonous growing curve for type I neurons, or a
jump and quasi-constant curve for type II neurons, as illustrated in Fig. 5, section 1.1.5.

While the frequency function is defined on the whole space of values of the applied
current, the fact that it is equal to zero on the lower range of currents leading up to the
bifurcation makes it  inadequate  for most root-finding algorithms,  such as  the secant or
newton methods, as they require non-trivially-zero functions on both side of the zero.

What is more,  computing the oscillation frequency of the system at every chosen
value of the applied current requires a complete simulation of a trajectory of the system.
This  is  extremely  costly  in  terms  of  computing  time,  barring  a  greater  mastery  of  the
simulation parameters and precision requirements.

Section 2.2.6 : Candidate objective - global stability
The simplest option is to forgo numerical functions altogether and to settle for the

simplest boolean function : the function defined by the boolean criterion of whether the
system is globally stable, or not. 

This,  and  the  above-mentioned  arguments,  imply  that  the  only  root-finding
algorithm that can be used is that of the bisection. What is more, the function value, i.e. the
global  stability  of  the  system,  has  to  be  assessed  for  each  chosen  value  of  the  applied
current. The implementation of the corresponding stability detection function is covered in
following dedicated sections,  and justifies  the  separation of  the  search algorithm into a
separate module (one per implementation), as described in the problem statement. [App] 
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Section 2.2.7 : Bisection applied to the final 
candidate

The  bisection  solution,  as  with  most  algorithms,  has  both  advantages  and
drawbacks. The main advantage is that is it infinitely robust, i.e. that it is guaranteed to
converge as long as its required hypothesises are met. These consist in the assurance that
the algorithm is given a starting range that is guaranteed to contain the zero, and that the
objective function sign is constant and opposite on both sides of the zero. ([16])

The  main  disadvantage  is  its  convergence  rate.  Compared  with  algorithms  that
require explicit non-constant, non-boolean functions such as the secant or Newton-Raphson
method which display convergence rates of about 1.618 and 2, respectively, the bisection
method's rate of convergence is of 1, i.e. it displays linear convergence. As a matter of fact,
the bisection method computes an additional bit of precision on each iteration. ([16])

Section 2.2.8 : Common module - Bifurcation search
A flowchart illustration of the logic path corresponding to the bifurcation search and

identification algorithm is presented in Fig. 14 and detailed in the following paragraphs.

In order  to  guarantee  that  the  bisection  algorithm is  applied to  an interval  that
contains one, and only one bifurcation, a sweep is first performed. As a sweep is a highly
inefficient means to navigate the variable's space, the step is kept as loose as possible w.r.t.
to  the  spacing  of  bifurcations  ;  that  is,  it  must  be  short  enough  to  prevent  that  two
bifurcations be present in a single interval,  lest  the bisection interval  fail  to perform as
expected. The matter of quantifying the width in terms of excitatory current which separates
two  given  bifurcations  in  the  system  is  a  complicated  one,  and  no  appropriate
documentation on the subject has been found during the course of this work.

On  the  other  hand,  while  choosing  a  shorter  sweeping  step  makes  the
implementation less efficient, it is certain to improve its accuracy. Therefore,  the step is
chosen experimentally as the greatest value outputting the same results as a very strict step
value of e.g. 0.01. The value meeting this criterion is found to be of approximately 0.5, thus
avoiding a considerable factor of 50 times the number of iterations, had the stricter step
been kept out of prudence.

The corresponding operations are performed through the "intervalFetcher" function
of the common module.

A first hypothesis is required in order to guarantee those of the bisection algorithm :
that  the  first  equilibrium found on the  lower  border  of  the  excitatory  current  range  be
considered stable. This is used in order to have the sweep detect the first bifurcation as the
loss of stability of this first equilibrium. This corresponds to the hypothesis that for a low
value of the excitatory current, the neuron is in a quiescent state. This is physiologically
relevant for all neurons, and therefore admitted without further discussion. (pathological
cases of neuronal models displaying their rest range at lower values of the applied current
can simply be shifted by a change of  variable consisting in a constant increment)
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Assuming  that  the  objective  function  is  defined,  implementing  the  bisection
algorithm is a simple matter of applying its definition  to the situation : the variable is the
excitatory current applied to the neuron, and the output is the truth value corresponding to
whether the system oscillates or not. The algorithm consists in cutting the interval in two,
and keeping the half that still contains the root, i.e. whose borders respectively correspond
to a stable and an unstable configuration. [App] 

Fig 14: Flowchart depiction of the bifurcation search and identification algorithm logic path. The 
algorithm is started in the top-left position, and the ideal path is coloured in orange. The algorithm
can be seen to be structured in two main steps, i.e. the sweep and bisection iterative methods, with 
conditional clauses leading either to progression, to looping, or to error and exit. The initialisation 
conditions of the two iterative methods as well as the associated hypothesises are depicted as parts 
of the orange main path.
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The  precision  required  of  the  bisection  algorithm,  i.e.  the  desired  width  of  the
resulting interval assumed to contain the bifurcation, doesn't require strict quantification,
as it is the nature of the eigenvalues and not their exact value that is needed in order to
identify  the  bifurcation.  However,  the  interval  must  be  short  enough  that  the  local
properties  of  the  bifurcation  may  be  observed.  As  for  the  width  between  two  given
bifurcations,  appropriate  documentation  on  the  subject  could  not  be  found  during  the
course of this work. Therefore, a rather strict width of 10 -6 has been picked ; this value was
experimentally  found  to  be  the  largest  value  inducing  no  additional  noise  in  the  final
bifurcation map, starting from stricter values of the precision criterion. The consequences of
such a high degree of precision are much lighter than if applied to the sweep, since the
bisection displays linear convergence. The number of additional steps required for e.g. an
increase in precision from 10-2 to 10-6 can be computed using the formula present in the
appendices, section 2.1, and is of about 14 additional steps. 

The corresponding operations are performed through the "bisection" function of the
common module. 

Using the interval computed through the bisection algorithm, the bifurcation must
then be identified. This is performed through both evaluation of the eigenvalues of the node
involved a bifurcation, i.e. the pattern of its eigenvalues are matched to those presented in
the previous sections concerning the subject, as well as by computing a single simulation at
the lower border of the bisected interval. This simulation aims to detect if any stable cycle
exists before the bifurcation, i.e. to differentiate between SNICs and SN-SH bifurcations.

The  corresponding  operations  are  performed  through  the
"bifurcationIdentifier" function of the common module.

Finally, a simple "parameterSpaceMapping" function performs the above-mentioned
operations in sequence, for every desired value of the parameters (v0,n0), in order to build a
complete map of the bifurcations undergone by the system before entering cycling 
behaviour.

Section 2.2.9 : Common module - Bifurcation 
identification

The bifurcation can be reliably  identified  locally through the computation of  the
eigenvalues of the Jacobian matrix at the location of the stable equilibrium undergoing a
destabilizing  bifurcation,  i.e.  the  stable  equilibrium  existing  in  the  configuration
corresponding to the excitatory current being equal to the lower bisected interval.

The  eigenvalues  are  matched  against  the  known  patterns,  as  presented  in  the
previous sections. Provided that the interval is close enough to the bifurcation to have the
equilibrium display the associated eigenvalues, this method cannot fail or add any noise.

Additionally, a single simulation is run for the value of the excitatory current at the
lower  border  of  the  bisected  interval  in  order  to  discern  between  a  SNIC  and  SN-SH
bifurcation. If the simulation displays oscillations, then this means that a cycle existed prior
to the saddle-node bifurcation and therefore that this is a SN-SH.
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Section 2.2.10 : Common module - Transcritical 
bifurcation curve

The transcritical bifurcation curve is computed using the equation extracted from
[20] ; it is solved approximately using a simple bisection algorithm, as the code was already 
developed for the bifurcation search algorithm. It is drawn unto the parameter map, and 
then a finer numerical mapping is performed around the curve in order to display the SNIC 
behaviour of the system close to it.

This curve is presented in [20] as a the expression of the boundary separating the 
restorative and regenerative ion currents majority effect. This is discussed in further details 
in the third chapter concerning the results of the application of the interface to the canonical
TC model.

Section 2.2.11 : ODE-based module - Stability 
detection function

The results of the ODE-based simulation are the vectors of the trajectories computed
through simulation, i.e. paths in the space (V,n).  Using only the results of simulations, the 
stability of the system is assessed as follows :

• Two  runs  of  the  ODE simulation  are  started,  respectively  initialised  on  the  far
bottom-left  and  far  top-right  in  order  to  ensure  that  they  lie  in  the  basins  of
attraction of the bottom and top equilibrium or stable cycle, if these exist

• Each simulation is  tested for cycling behaviour  by testing whether  the potential
membrane crosses a threshold value ; this threshold cannot be crossed in the same
direction twice, as it is equipped with a latch that is only released when crossing in
the opposite direction. The threshold is arbitrarily set as the mean value of the latter
half of the vector, in an attempt at ignoring transient regime and catching stable
cycles.  An  additional  protection  restricts  the  cycling  diagnostic  to  trajectories
displaying more than a few cycles, as some trajectories are expected to be sinuous

• Each  simulation  endpoint  is  tested  for  stability  using  the  eigenvalues  of  the
Jacobian matrix 

• If  the  two  simulations  display  cycling  behaviour,  the  system  is  assumed  to  be
unstable

• If neither of the two simulations display cycling behaviour, either they land on the
same stable  equilibrium and therefore the system is assumed to be monostable, or
they don't and the system is assumed to be bistable ; they cannot land on unstable
equilibria

• If one of the simulation displays cycling behaviour, and the other doesn't, then the
system is assumed to have only one equilibrium and a stable cycle

• If a simulation that displays no cycling behaviour lands on an endpoint that fails to
be detected as stable through the computations of the eigenvalues of the system
Jacobian matrix, then it is treated as if it were cycling, i.e. unstable ; this, however,
should never happen
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Section  2.2.12  :  NLsolve-based  module  -  Stability
detection function

 The results of the Trust-region and Newton-Raphson methods implemented in the
NLsolve package are structures containing the convergence coordinates, a flag confirming
that convergence happened, as well as some additional practical information.

The methods are found to require in the order of a dozen iterations to converge on
equilibrium points when they exist. Barring this, they fail after a thousand iterations.  Using
the output of the methods, the stability of the system is assessed as follows :

• Two runs of the trust-region method are started, initialized on the far bottom-left
and far top-right in order to ensure that they lie in the basins of attraction of the
bottom and top equilibrium respectively, if these exist

• The two runs of the method are checked to have converged ; if either one did not, it
is ignored as if the corresponding suspected equilibrium did not exist, as there is
nothing  to be inferred from the lack of a single convergence

• All runs that converge are tested for stability using the eigenvalues of the Jacobian
matrix

• If the two runs fail to converge, the system is assumed to be unstable

• If  the two runs converge,  either  they do so on the same stable equilibrium and
therefore the system is assumed to be monostable, or they don't and therefore the
system is either monostable or bistable

• If only one run converges, then the system is considered to be globally stable with a
single equilibrium point or globally unstable

Section 2.2.13 : Roots-based module - Stability 
detection function

The results of the Roots-based methods are vectors containing the positions of every 
equilibrium, stable or unstable, that is found in the system by solving its pre-processed 
equation corresponding to the conditions of stability. Using these vectors, the stability is 
assessed as follow :

• The equilibria are checked sequentially and tested for stability using the eigenvalues 
of the Jacobian matrix

• If there is only one stable equilibrium, the system may or may not also feature a 
stable cycle ; this cannot be detected using Roots-based methods

• If there is a second stable equilibrium, the system is bistable ; the research is 
stopped here as more equilibria would only arise from non-physiological artefacts 
due to the shape of the mathematical model outside its validity range

• If there is no stable equilibrium, the system is assumed to be globally unstable
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Section 2.2.14 : Graphical module
The graphical module use functions extracted from the Plots and ImplicitEquations 

packages in order to allow the visualization of the results of the methods :

• Visual inspection of the system  is performed on call through the drawing of the 
nullclines on the phase diagram, with trajectories drawn atop the nullclines

• The results of the bifurcation search and identification algorithm are displayed on a 
dedicated figure, in order to determine the different behavioural regions of the 
systems on the parameter space (v0,n0), as well as their evolution depending on the 
time-scale coupling parameter  ε.

Example outputs of the graphical module are presented in Figs. 15 and 16 in the 
exact same forms that are used and discussed in the third chapter of this document.

Fig 16: Example of a bifurcation map displayed through the 
graphical module, after its computation through the interface. 
See internal legend for details on the regions of the map.

Fig 15: Example of a drawing of the nullclines of the phase 
plane, with an added trajectory resulting from simulation.
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Part 3 : Software performance

Section 2.3.1 : ODE-based utilities
As ODE-based simulations are involved in not only the ODE-based implementation

of the stability detection function, but also the bifurcation identification function common
to all three implementations, the run times of the main solvers for different values of their
parameters are recorded and presented in the tables 1, 2, and 3 right below. The simulations
are  performed with the system parameters  (v0,no, ε) = (0,0,10-3).  The first  two have no
reason  to  affect  the  simulation  run  time,  while  the  third  one  affects  the  time-scale
separation of the two equations ; therefore, we choose the value that most constraints the
problem, i.e. ε = 10-3  corresponding to the strongest time-scale separation, as ODE solvers
are known to encounter difficulties with systems displaying strong time scales separation.

Simulation step
(in log10 )

Simulation length 
(in log10 )

Actual number of steps
computed by the adaptive solver

(in log10 )

Runtime 
(in seconds)

1 4 3.87 0.035396   

0 4 4.21 0.049278   

-1 4 5.02 0.185367 

1 5 4.86 0.339532   

0 5 5.21 0.428251    

-1 5 6.02 1.808115   

Table 1: Simulation run times for the ODE23 solver, ordered by increasing run times, with (v0,no, ε) =
(0,0, 10-3). It can be observed that the factor most influencing the run time is the simulation length. 
Steps of either 1 or 0 cause relatively similar actual number of steps and run times, which can be 
assumed to be due to the error restriction methods of the adaptive solver.

Simulation step
(in log10 )

Simulation length 
(in log10 )

Actual number of steps
computed by the adaptive solver

(in log10 )

Runtime 
(in seconds)

1 4 3.82 0.045666    

0 4 4.19 0.057822     

-1 4 5.02 0.200376   

0 5 5.18 0.467218      

1 5 4.79 0.526634     

-1 5 6.02 1.748854     

Table 2: Simulation run times for the ODE45 solver, ordered by increasing run times, with (v0,no, ε) =
(0,0, 10-3). Observations to be made are the same as for table 1. The penultimate and ante-
penultimate rows are interchanged, for no discernible reason other than numerical variability of 
fairly similar run times.
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Simulation step
(in log10 )

Simulation length 
(in log10 )

Actual number of steps
computed by the adaptive solver

(in log10 )

Runtime 
(in seconds)

1 4 3.13 0.011032 

0 4 4.01 0.081421 

1 5 4.01 0.083583 

0 5 5.00 0.657585 

-1 4 5.00 0.717028 

-1 5 6.00 7.022025 

Table 3: Simulation run times for the ODE23s solver, ordered by increasing run times, with (v0,no, ε) 
= (0,0, 10-3). Run times can be seen to be ordered following the number of step, and that the number 
of steps correspond nearly exactly to the length/step ratio, as expected from a stiff solver.

Compared to ode23 and ode45, it can be observed that the ode23s is faster for large 
steps, and slower for small steps ; this can be directly identified to the adaptive solvers' 
property of increasing the number of steps in case of errors detected during the integration. 
The simulation length seems to affect the computation time the most.

From the results of the ode23s solver, it is assumed that the problem does not 
identify as stiff equations, and that there is no need for the additional numerical stability of 
the stiff solvers. Additional performance could have been achieved by explicitly specifying 
the analytical expression of system's Jacobian matrix, as is advised for the use of stiff solvers
; however, it is assumed that an explicit expression of the Jacobian matrix may not be easily 
derived for any system, and therefore this is not explored further.

From the results of the ode23 and ode45 solvers, it is concluded that a step of 10^1 
hampers the accuracy of the solution, and that it is therefore insufficient ; although in 
practice, the adaptive solver corrects the insufficient precision automatically. Since it does 
not induce higher computation times, the ode45 solver is used for its greater precision.

As the ODE package supports the entire simulation capabilities of the interface, an 
example simulation-based visual inspection is presented in Fig. 17. While the nullclines can 
be seen to be only roughly defined due to the cluster-based Tupper method, they are entirely
sufficient for visual inspection of the system.

Fig 17: Example of the graphical display of a trajectory obtained through ODE-based simulation, 
drawn atop the nullclines of the system on the phase plane diagram computed through the 
ImplicitEquations-based functions. The simulation corresponds to (v0,no, ε) = (0,0, 10-3), with a 
simulation step of 101 and length of 104. The system can be seen to go from rest to spiking, as the 
trajectory originally resting for Iapp of 0.65 (left) start cycling for Iapp = 0.8 (right)
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Section 2.3.2 : ODE-based implementation
The first observation to be made regarding the accuracy of the ODE-based 

implementation is that the function used to assess whether a trajectory displays cycling 
behaviour is not well-motivated theoretically. It is the result of an early attempt that was not
pursued further, in favour of work on the two other implementations of the stability 
detection function. In particular, the choice of the threshold used to detect a given cycle in 
the system to be the mean value of the latter half of the vector has strong reasons to be 
disputed.

Furthermore, lacking a dedicated convergence assessment method, transient 
oscillations cannot be distinguished from stable cycles and misclassification is bound to 
happen. Convergence assessment methods based on the manipulation of the vectors 
representing the trajectory do exist, but the research in this direction was not pursued, 
again in order to work on the two other implementations.

Finally, the study of trajectories obtained through simulations is complicated by the 
fact that convergence towards equilibria in the system can take a variable amount of time. 
In certain cases, proximity of the trajectory to the ghost of a SNIC bifurcation, as presented 
in section 1.2.8, can slow down the trajectory to near-zero speed. Therefore, all the above-
mentioned methods should be used along with an active monitoring of the simulation which
could detect this and adapt the simulation length, or use any other way to work around this 
type of problem.

The run times of a full bifurcation mapping using the ODE-based implementation of 
the stability detection function for different values of its parameters are recorded and 
presented in the table 4.

Simulation step
(in log10 )

Simulation length 
(in log10 )

Time-scale coupling
parameter ε (in log10 )

Runtime 
(in seconds)

1 4 -2 ~820

1 4 -3 ~840

1 4 -1 ~1400

Table 4: Bifurcation mapping run times for the ODE-based implementation of the stability detection 
function. As the tests cannot be easily reproduced due to their duration, the exact run times must only
be taken as indications of orders of magnitude. The simulation step and simulation length where 
chosen in order to induce the lowest total run times, in order to restrict these to a reasonable 
duration.

Since this implementation is entirely based on the ODE package, the parameters of 
the simulation directly and very strongly affect the total computation length of the 
bifurcation map. The (step,length) = (1,4) parameter combination was chosen as that 
corresponding to the lowest run time of the simulation ; assuming as a lower border that the
total computational time evolves linearly w.r.t. to the simulation time, using combinations 
of (-1,4) or (1,5) in order to improve accuracy would induce total run times of at about five 
times the amount of the (1,4), i.e. about one hour in the best cases. 
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The bifurcation maps corresponding to the first three tests recorded in table 4 are 
presented in Fig. 18.

Misclassification noise can be easily identified on the top-left illustration in the 
bifurcation maps in Fig. 18. These are the points that punctually intrude in otherwise well-
defined regions of a single colour.

The quantity of noise seems to display an inverse relationship with the time-scale 
coupling parameter ε : as ε decreases, the bifurcation map gets cloudier.

Through manual testing, it is observed that the number of cycles found in cycling 
systems of identical parameters, and with an identical simulation configuration, decreases 
sharply with the parameter ε, down to only a few cycles for ε=10-3. This corresponds to the 
observed noise : the system is found to be cycling only when a given number of turns are 
measured, therefore the system is considered to become unstable only after the bifurcation 
has happened, and it cannot be identified reliably as the interval detected as containing the 
bifurcation actually doesn't.

Furthermore, this means that the simulation length for all implementations should 
exceed 104 in order to detect cycles in SN-SH accurately for ε = 10-3.

Fig 18: Bifurcation maps corresponding to the test runs recorded in table 4. The time-scale 
coupling parameter ε has a value of 10-1 (top-left), 10-2 (top-right) and 10-3 (bottom). Well-defined 
regions are observable to the naked eye, but noise appears and expands in the upper-right 
quadrant as the parameter ε decreases.
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Section 2.3.3 : NLsolve-based implementation
Arguments to be made regarding the accuracy of the NLsolve-based implementation

mainly consist in the fact that ghosts of SNIC bifurcations were experimentally found to
occasionally slow down the progress of the line search methods so much that the algorithms
could not converge under a thousand iterations, and therefore abort their computations.
This is a known property of real non-linear systems, as it arises from the fact that the vector
field in both dimensions reduces to near-zero values when the trajectory travels in a zone
that is constricted by both nullclines at once, in a bottleneck-like fashion, as documented in
[8],[9]. Other cases of the algorithm failing to to converge for no discernible reason have
been observed ; the convergence of line search algorithms is a complex  topic of its own and
is therefore not covered in this document.

While it is not required in order to locate the bifurcation, an additional problem that
would hamper a exclusively NLsolve-based method is the fact that it cannot detect cycles.
However, this is alleviated by the fact that the bifurcation identification function comports a
single simulation in order to check for the existence of stable cycles before the bifurcation. 

The run times of a full bifurcation mapping using the NLsolve-based implementation
of the stability detection function for different values of its parameters are recorded and 
presented in the table 5.

Simulation step
(in log10 )

Simulation length 
(in log10 )

Time-scale coupling
parameter ε (in log10 )

Runtime 
(in seconds)

0 5 -3 ~40

-1 4 -3 ~60

0 5 -2 ~60

-1 4 -2 ~100

0 5 -1 ~130

-1 4 -1 ~180

Table 5: Bifurcation mapping run times for the NLsolve-based implementation of the stability 
detection function. The parameter ε can be seen to have the strongest impact on the run time, with 
the simulation step coming second.

Observing the results in table 5, the parameter that seems to be affecting the total 
computation time the most is the parameter ε. Following the observation in the last section 
that lower values of ε induce less cycles, it is assumed that the system evolves at a slower 
pace for lower values of the time-scale coupling parameter, thus shaping the vector field in 
such a way that the line search method reaches the equilibria faster, e.g. so that the vector 
field is straighter towards the equilibria rather than with strong magnitude in the directions 
perpendicular to the gradient descent.

The run times are all-around considerably lower than those obtained through the use
of the ODE-based implementation.
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The bifurcation maps corresponding to the six tests recorded in table 5 are presented
in Fig. 19. As the tests for the same values of ε actually output the exact same bifurcation 
maps, the contents of Fig. 19 are simplified to three maps.

Overall, very little noise is observed on the maps. The regions are well-defined, and 
only their frontiers are affected by relatively considerable noise. This misclassification noise 
is attributed to the transition between the regions and can be explained by a continuity 
argument. 

For example, the  SN-SH present at the frontier between the upper SNIC and HOPF 
regions may be the results of systems that are found to start oscillating before the 
bifurcation, while the complex conjugates eigenvalues characteristic to HOPF bifurcation 
are not yet observed, due to their presence only very close to the bifurcation.

This corresponds to the continuous phenomenon of complex conjugates eigenvalues 
appearing after the bifurcation, then right on it, and slowly appearing earlier until they can 
be detected by the algorithm, depending on its precision.

Fig 19: Bifurcation maps corresponding to the test runs recorded in table 5. The time-scale
coupling parameter ε has a value of 10-1 (top-left), 10-2 (top-right) and 10-3 (bottom). The 
six tests are reduced to three maps, as the maps for identical values of ε  are themselves 
identical. Well-defined regions are observable to the naked eye, with slightly noisy 
frontiers between the regions.
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Section 2.3.4 : Roots-based implementation
The accuracy of the  NLsolve-based implementation is strongly affected by the 

propriety of the available solvers extracted from the package to be unable to discern 
between two equilibria present in a single bracket. The exact configuration leading to 
frequent misclassification errors in the top-right quadrant of the bifurcation map is 
developed and discussed in the last chapter of this document concerning the scientific 
output of the methods, as it corresponds to a zone that displays a behaviour of significant 
scientific importance.

Increasing the explicit required number of brackets from 200 to 20 000 has no 
apparent effect, as if there were a built-in limit that was reached in both cases, and that no 
more precision could be obtained from the method. Verification of this hypothesis, and 
further inquiry into the problem, would require heavy involvement with the source code of 
the package which was avoided in favour of work on the other implementations.

As with the NLsolve-based methods, this implementation cannot detect cycles, and 
therefore requires the addition of a simulation to the bifurcation identification function in 
order to distinguish between SN-SH and SNICs.

The run times of a full bifurcation mapping using the Roots-based implementation 
of the stability detection function for different values of its parameters are recorded and 
presented in the table 6.

Simulation step
(in log10 )

Simulation length 
(in log10 )

Time-scale coupling
parameter ε (in log10 )

Runtime 
(in seconds)

-1 4 -3 ~770

-1 4 -2 ~820

-1 4 -1 ~830

0 5 -3 ~850

0 5 -2 ~910

0 5 -1 ~1100

Table 6: Bifurcation mapping run times for the Roots-based implementation of the stability detection 
function. The tests are performed for a required 200 brackets, as varying greater values of the 
parameter controlling the number of sub-intervals produce identical results. The parameter ε can be 
seen to have the strongest impact on the run time, with the simulation length coming second.

Observing the results in table 6, the parameter that seems to be affecting the total
computation time the most is the parameter ε. This parameter, however, is not involved in
this implementation as the equations are pre-processed to a single variable problem, such
that the parameter ε is excluded from the final expression. It is a constant multiplying the
whole equation that has to be equated to zero, and therefore is directly simplified.

Since benchmarking code in Julia is a fairly difficult and imprecise exercise without
mastering the explicit power user compilation functions, the differences could as well be
attributed to unrelated numerical variations.
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The bifurcation maps corresponding to the six tests recorded in table 6 are presented
below, in Fig. 20 :

Fig 20: Bifurcation maps corresponding to the test runs recorded in table 6. The time-scale coupling 
parameter ε has a value of 10-1 (top), 10-2 (middle) and 10-3 (bottom). The simulation parameters 
have values of (0,5) (left side) and (-1,4) (right side). Well-defined regions can be observed, except 
for the very noisy top-right quadrant.
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Chapter 3 : Scientific results

This third chapter concerns the application of the bifurcation identification interface 
to the example canonical TC model and the evaluation of the subsequent scientific results.

In the first part of this chapter, the results for a very strong time-scale separation of
the  system  mechanisms  are  discussed  and  compared  to  the  results  from  the  scientific
literature covering the case of singular limits, i.e. time-scale separation approaching infinity.
Extensive visual inspection of the system is performed in order to support, but not replace
numerical  analysis,  and  as  a  way  to  familiarize  the  reader  with  the  system  visual
representation w.r.t.  to its behaviour. The upper part of the bifurcation map is found to
consist in a type II excitability region, therefore challenging the usual identification of the
quadratic and horizontal phase plane local configuration with type I excitability.

In the second part of this chapter, the results for lower time-scale separation are
evaluated and discussed with a special focus on the assumptions underlying the canonical
TC model w.r.t. to those of other well-known neuron models. The results from two of the
three implementations highlight the appearance and growth of a type I excitability region in
the previously type II-exclusive region as the time-scale coupling parameter increases. This
points out the common practice of exclusively static visual analysis present in the literature
as  an  error  borne  out  of  the  lack  of  use  of  precise,  quantitative  numerical  analysis
concerning the identification of bifurcations underlying neuron models.
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Part 1 : Comparison with earlier works

Section 3.1.1 : Bifurcation maps
In order to compare our results with the earlier work covered in [8], the bifurcation 

map corresponding to a very strong time-scale separation is first computed, i.e. with a value 
of the time-scale coupling factor ε  of 10-3  approximating the singular limit which 
corresponds to a value approaching zero. The computation is performed through the Roots-
based and NLsolve-based implementations. The ODE-based implementation is ignored, as 
its results are qualitatively similar, and as it is both much longer  to compute and subject to 
noise whose nature and source are covered in section section 2.3.2. 

The results are illustrated in the Figs. 21 and 22.

Fig 21: Bifurcation map of the parameter space (V0,n0) computed with the  NLsolve-based 
implementation, for ε=10-3. See internal legend and axis for details..The transcritical bifurcation 
curve is added atop the bifurcation map ; it is first approximately computed through bisection, then 
a local bifurcation mapping is performed on small regions bordering the curve. The following 
regions can be observed : a lower region with SN-SHs, an upper region with HOPFs, and a bottom-
left region with SNICs. The transcritical curve highlights a thin band of SNIC bifurcations.
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The first observation that can be made is that these results roughly coincide with the 
theoretical results of [8], as presented in Fig. 13 in section 1.2.13.  Looking at Fig. 21, it can 
be observed that the curve corresponding to the transcritical bifurcation, computed as 
specified in  [9], separates the parameter space into two zones. The upper part corresponds 
to mainly restorative behaviour, as in the Hodgkin-Huxley model. The lower part 
corresponds to mainly regenerative ionic behaviour, as in the novel excitability types 
proposed in [8]. 

There are, however, a few discrepancies in the placement and nature of the regions 
w.r.t. the visual analysis on the lower left and upper right corners of the plane : there are 
two zones of SNIC bifurcations of a shape that do not correspond exactly with the visual 
analysis. Fig. 21 shows that the upper-right zone is much smaller than expected in Fig. 13, 
while Fig. 22 show a larger but extremely noisy region and therefore cannot be trusted 
without extensive verification.

Fig 22: Bifurcation map of the parameter space (V0,n0) computed with the  Roots-based 
implementation, for ε=10-3. See internal legend and axis for details. The transcritical curve and local
bifurcation mapping are added through the same process as for Fig. 21. The regions observed differ 
from Fig. 21, as there is no bottom-left SNIC region while there seems to be a top-right SNIC region.
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As a matter of fact, the noise present on the upper-right quadrant of the bifurcation 
map in Fig. 22 is induced by the lack of accuracy of the Roots-based implementations when 
it has to detect equilibria situated in a single bracket, as discussed in section 2.3.3. The 
nature of the phenomenon requiring such a high degree of precision is developed in section 
3.2.2 in the second part of this chapter, as it is more easily explained after observing the 
evolution of the system with the parameter ε covered in the section 3.2.1.

In order to assess which regions are actually displayed by the system, and which are 
the results of misclassification, manual verification is required. During the course of this 
work, a great number of trajectories have been drawn unto the phase plane, atop the 
nullclines, and examined ; the intermediate results of the computations leading to the  
construction of the bifurcation map have been thoroughly controlled, as visual inspection by
no means consists in a valid proof. 

While the many occurrences of these verification procedures have not been 
systematically documented, and since the great number of those that were cannot be 
presented in an efficient and meaningful way, only a restricted number of trajectories  are 
presented in the following figs. 22 to 35 as a way to both try and convince the reader that 
systematic verification was indeed performed, or at least that the tools to do so are available,
and for illustrative purposes regarding the behaviour of the system in the regions defined on
the bifurcation maps of Fig. 21 and 22.

For all Figs. 23 to 36, the presentation is structured as follows :

• The left-hand graph is a depiction of the V-nullcline (in blue) and N-nullcline (in 
green) of the system on the phase plane, with an added trajectory (in red) obtained 
through simulation from a far bottom-left origin. The horizontal axis displays the 
value of the parameter V0, while the vertical axis displays the value of the parameter  
n0.

• The right-hand graph is a recording of the temporal evolution of the membrane ; it 
corresponds exactly to the trajectory displayed on the phase plane. The horizontal 
axis displays the index of the simulation steps, while the vertical axis displays the 
value of the membrane potential.

• The figure may be structured an upper and lower part, in which case the lower part 
corresponds either to a second simulation from a far top-right origin, or a zoom on 
the behaviour of the system in the close vicinity of the bifurcation

These presentations details are not recalled in every legend of the figures in order to 
prevent the associated information from uselessly cluttering the legends.
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Section 3.1.2 : Lower SN-SH region

The lower region is identified as a SN-SH region by both implementations, as shown 
in Figs. 21 and 22,  as well as by the ODE-based implementation, looking back at the results 
presented in Fig. 18 in the section 2.3.2 concerning the assessment of the performances of 
this implementation.

The coordinates chosen in order to observe the behaviour of the region are (V0,n0) = 
(0.0,-0.5) , i.e. roughly in the middle of the region. The figures to be studied for this region 
are the following :

• Fig. 23 : Iapp=0.5 - At this value of the excitatory current, the system is still at rest 
and at a safe distance from the bifurcation in terms of current. A simulation from 
both a bottom-left and top-right origin are shown in order to assess the existence of 
a lower equilibrium, but of no upper stable cycle.

• Fig. 24 : Iapp=0.85 - This value of the excitatory current corresponds to a 
configuration that is observed right before the bifurcation, considering a continuous 
increase in the applied excitation until the system destabilizes. A simulation from 
both a bottom-left and top-right origin are shown in order to assess the existence of 
both a lower equilibrium and of an upper stable cycle. As this cycle is not created 
following a global destabilisation of the system, it must have been born from a 
saddle-homoclinic bifurcation involving the upper saddle.

• Fig. 25 : Iapp=1.2 - At this value of the excitatory current, the system is spiking and at 
a safe distance from the bifurcation in terms of current. As the N-nullcline only 
intersects the V-nullcline on its upper branch, a second simulation is not required. 
Looking back at Fig. 24, it can be assumed that the lower equilibrium and adjacent 
saddle have both disappeared in a lower saddle-node bifurcation.

As a matter of fact, the pattern characteristic to a SN-SH bifurcation can be observed
: the neuron is at rest at low excitation levels, then forms a stable upper cycle without losing 
its lower stable equilibrium. Finally, the lower equilibrium disappears through a saddle-
node bifurcation and the neuron is restricted to spiking activity for any greater value of the 
excitatory current. The frequency of the spiking activity seems to have increased between  
fig. 24 and fig. 25, as expected from the linear current-frequency relationship of a SNIC 
bifurcation.

This region can be identified to the novel "type IV" excitability type proposed the 
section 5 of [8]. The bistability can be observed in Fig. 24 ; the spike-latency in Fig. 25, as 
the first action potential of the spiking pattern is wider, i.e. slower to generate and relax. 
The after-depolarization potential is not observed, as it would require setting the system in a
spiking state, then relaxing the applied excitation.
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Fig 23: (V0,n0)=(0.0,-0.5) - Iapp=0.5 - See structure description in section 3.1.1. for presentation 
details. The upper part corresponds to a simulation origin to the lower-left ; the lower part to a 
simulation origin to the upper-right. The system can be seen to be at rest, as no cycles can be 
found.
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Fig 24: (V0,n0)=(0.0,-0.5) - Iapp=0.85 - See structure description in section 3.1.1. for presentation 
details. The upper part corresponds to a simulation origin to the bottom-left ; the lower part to a 
simulation origin to the top-right. The system can be seen to display both a lower stable 
equilibrium and an upper stable cycle, which is characteristic of SN-SH bifurcations.
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Fig 25: (V0,n0)=(0.0,-0.5) - Iapp=1.2 - See structure description in section 3.1.1. for presentation 
details. The system can be seen to be spiking, as sustained oscillating activity can be observed.
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Section 3.1.3 : Lower-left HOPF/SNIC region

The lower-left region is identified as a HOPF region and as a SNIC region by the 
NLsolve-based and Roots-based implementations, respectively, as shown in Figs. 21 and 22.

The coordinates chosen in order to observe the behaviour of the region are (V0,n0) = 
(-0.9,-0.5) . The figures to be studied for this region are the following :

• Fig. 26 : Iapp=0.5 - At this value of the excitatory current, the system is at rest and at a
safe distance from the bifurcation in terms of current. The stable equilibrium is 
situated on the lower part of the phase plane.

• Fig. 27 : Iapp=2/3 - This value of the excitatory current corresponds to the tipping 
point of the transcritical bifurcation supporting the model, i.e. the value of the 
current at which the branches of the V-nullcline intersect. In this configuration, the 
proximity of the N-nullcline is obvious, and its effect on the trajectories in the 
system can only be guessed at, as the vector field between the two nullclines 
approaches zero in both directions. Compared to e.g. fig. 22 in the previous section, 
the transient regime can be seen to end only after step 4000, while in Fig. 22 it 
terminates after step 2000. The stable equilibrium has moved from the lower to the 
upper branch of the V-nullcline.

• Fig. 28 : Iapp=0.67 - This value of the excitatory current is only slighly greater than 
that of fig. 26. The V-nullcline can be seen to have separated vertically, thus creating 
an opening that the trajectory must take while travelling from the lower-left origin 
towards the upper equilibrium and adding yet further delay to the convergence 
towards the equilibrium.

• Fig. 29 : Iapp=1.05 - This value of the excitatory current corresponds to a 
configuration that is observed right before the bifurcation, considering a continuous 
increase in the applied excitation until the system destabilizes. Transient oscillations
can be seen right before stabilisation, which is characteristic of HOPF bifurcations.

• Fig. 30 : Iapp=1.2 - At this value of the excitatory current, the system is spiking at high
frequency and at a safe distance from the bifurcation in terms of current. 

Based on the evidence of transient oscillations in the vicinity of the bifurcation, it is 
concluded that this corresponds to a HOPF bifurcation, as predicted through the Roots-
based implementation.

As a matter of fact, the NLsolve-based algorithm is manually found to fail converging
around Iapp~2/3, i.e. the critical point corresponding to the switch in stability in the 
transcritical bifurcation as depicted in Fig. 27. In the configuration of this region, the N-
nullcline is situated very close to the entrance of the thus created bottleneck. The vector 
field in this region is therefore of near-zero amplitude along both dimensions, thus 
hampering the line search algorithm, and occasionally keeping it from converging in a 
reasonable amount of iterations, i.e. under a thousand iterations.
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Fig 26: (V0,n0)=(-0.9,-0.5) - Iapp=0.5 - See structure description in section 3.1.1. for 
presentation details. The system can be seen to be at rest on its only stable lower equilibrium.

Fig 27: (V0,n0)=(-0.9,-0.5) - Iapp=2/3 - See structure description in section 3.1.1. for 
presentation details. The N-nullcline can be seen to be situated extremely close to the 
intersections of the V-nullcline's branches, in such a way that trajectories are slowed down to 
near zero speed, as the vector field's two components approach zero.
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Fig 28: (V0,n0)=(-0.9,-0.5) - Iapp=1.05 - See structure description in section 3.1.1. for presentation
details. The system can be seen to be at rest on its only upper stable equilibrium ; however, 
transient oscillations can be observed right before stabilisation.

Fig 29: (V0,n0)=(-0.9,-0.5) - Iapp=0.67 - See structure description in section 3.1.1. for 
presentation details. The system can be seen to be at rest on its only upper stable 
equilibrium after shooting a single action potential.
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Fig 30: (V0,n0)=(-0.9,-0.5) - Iapp=1.2 - See structure description in section 3.1.1. for 
presentation details. The system can be seen to be spiking, as sustained high-frequency 
oscillating activity can be observed.

Fig 31: (V0,n0)=(-0.5,0.5) - Iapp=1.0 - See structure description in section 3.1.1. for 
presentation details. The system can be seen to be resting on the stable upper equilibrium. No 
lower equilibrium could have existed for a lower excitatory current, considering how high the 
N-nullcline is situated.
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Section 3.1.4 : Upper-left HOPF region
The upper-left region is identified as a HOPF region by both implementations, as 

shown in Figs. 21 and 22,  as well as by the ODE-based implementation, looking back at the 
results presented in Fig. 18 in the section 2.3.2 concerning the assessment of the 
performances of this implementation.

The coordinates chosen in order to observe the behaviour of the region are (V0,n0) = 
(-0.5,0.5) . The figures to be studied for this region are the following :

• Fig. 31 : Iapp=1.0 - At this value of the excitatory current, the system is at rest on its 
single stable upper equilibrium. Looking at lower values of the excitatory current 
would not bring anymore information, as the high position of the N-nullcline 
restricts the possibility of a lower stable equilibrium : there cannot be a lower 
intersection between the nullclines.

• Fig. 32 : Iapp=1.19 - This value of the excitatory current corresponds to a 
configuration that is observed right before the bifurcation, considering a continuous 
increase in the applied excitation until the system destabilizes. Transient oscillations
can be seen right before stabilisation, which is characteristic of HOPF bifurcations. 
The lower part of the figure displays a zoom on the transient oscillations, in order to 
highlight this behaviour of HOPF bifurcations.

• Fig. 33 - Iapp=1.1979 - This value of the excitatory current corresponds to a 
configuration that is observed right after the bifurcation, considering a continuous 
increase in the applied excitation until the system destabilizes. High-frequency 
sustained oscillations can be observed, although the have only a very reduced 
amplitude. The lower part of the figure displays a zoom on the unstable equilibrium ;
compared with Fig. 32, the cycle has stabilised, and the equilibrium  at its centre has 
destabilised.

• Fig. 34 : Iapp=1.5 - This value of the excitatory current places the system at a safe 
distance from the bifurcation, in terms of the value of the current. High-frequency 
and high-amplitude sustained spiking activity can be observed. Compared with Fig. 
33, the amplitude has grown considerably, while the frequency seems to have stayed 
the same.

This region seems to cause no difficulty for any of the three implementation, and the 
visual inspection close to the bifurcation highlights patterns exclusively characteristic to 
HOPF bifurcations : the transient oscillating behaviour under the bifurcation, then the 
constant, high-frequency spiking of growing amplitude with the increase in the excitatory 
current.

This region is therefore concluded to be a HOPF bifurcation region, with no 
additional discussion.
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Fig 32: (V0,n0)=(-0.5,0.5) - Iapp=1.19 - See structure description in section 3.1.1. for presentation 
details. The system can to be seen resting on the stable upper equilibrium ; transient oscillations 
can be observed at the end of the transient regime, as highlighted by the zoom on the lower part..
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Fig 33: (V0,n0)=(-0.5,0.5) - Iapp=1.1979 - See structure description in section 3.1.1. for 
presentation details. The system is undergoing sustained spiking activity, with spikes of low 
amplitude and high frequency, as is characteristic of HOPF bifurcations.
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Fig 34: (V0,n0)=(-0.5,0.5) - Iapp=1.5 - See structure description in section 3.1.1. for presentation 
details. The system can be seen to be spiking with spikes of high amplitude and high frequency ; 
compared with Fig. 33, the frequency seems to be roughly the same, as is characteristic of 
HOPF bifurcations.
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Section 3.1.5 : Transcritical curve SNIC region
This region is a particular case that is best explained through the theory of non-

linear systems and the fact that the transcritical bifurcation is a generalised case of the SNIC
bifurcation ; however, this is a subject of its own that is outside of the scope of this 
document. Therefore, no justification of this region will be attempted, as its nature is the 
consequence of the structure of the model as presented in [8]. All numerical 
implementations correctly  identify the bifurcations on the curve as SNICs.

As this model is based upon a transcritical bifurcation normal form, the transcritical 
bifurcation curve defines all the coordinates (V0,n0) for which the N-nullcline crosses the 
phase plane exactly at the position of the transcritical bifurcation critical point, which is 
placed in (V0,n0)=(-1,0) in this model.  As can be seen in Figs. 21 and 22, the other 
coordinates belonging to the transcritical bifurcation curve correspond to sliding the N-
nullcline either to the left and to the bottom, or straight to the right ; in all cases, the 
nullclines will intersect in (V0,n0)= (-1,0) at Iapp=2/3.

As a visual example, the nullclines depicted in Fig. 35  corresponding  to the 
configuration (V0,n0)=(0.0,0.0) and excitatory current value Iapp=2/3 can be seen to 
intersect right at the position of the transcritical bifurcation centre. No transient oscillations
can be seen, which  seems to point away from a HOPF bifurcation, but does not constitute in
any form of valid proof.

Fig 35: (V0,n0)=(0.0,0.0) - Iapp=2/3 - See structure description in section 3.1.1. for presentation 
details. The system is at rest, and the nullclines intersect exactly on the transcritical bifurcation. 
From bifurcation theory, it is known that transcritical bifurcations are generalised SNICs.
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Section 3.1.6 : Upper-right HOPF/SNIC region
The upper-right region is identified as a HOPF and a noisy SNIC/HOPF region by 

the NLsolve-based and Roots-based, respectively, as shown in Figs. 21 and 22.

This region is a particular case in the bifurcation map, as  discussed in sections 2.3.3
and 3.1.1,  due the the very high precision that  is  required of  the algorithm in  order  to
determine the nature of its bifurcation. The exact configuration causing such difficulty for
the Roots-based implementation, and any other implementation that would not work with a
strict enough interval around the bifurcation from the bisection method, is  presented in
details in the second part of this chapter.

The visual inspection of the situation proceeds as follows : the nullclines depicted in
Fig.  36  correspond  to  the configuration (V0,n0)=(0.5,0.5) and excitatory  current  value
Iapp=0.9. No transient oscillations can be seen, which would eliminate a HOPF bifurcation.
The local surroundings of the incoming bifurcation can easily be identified to a SNIC normal
form,  as  the  N-nullcline  looks  like  a  horizontal  curve,  while  the  V-nullcline  can  be
approximated as a quadratic curve. Therefore, from visual inspection only, the bifurcation
can be assumed to be a SNIC. This analysis is further  discussed in section 3.2.2.

Fig 36: (V0,n0)=(0.0,0.0) - Iapp=0.9 - See structure description in section 3.1.1. for presentation 
details. The system can be seen to be at rest on the upper stable equilibrium. At this scale, this very 
much looks like a SNIC normal form, as the bifurcation is taking place in surroundings that can be 
visually identified to a horizontal N-nullcline and a quadratic V-nullcline.
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Part 2 : Original findings

Section 3.2.1 : Variation of the time -scale coupling 
factor

In order to extend on the theoretical work performed in [8] for singular limits, the 
bifurcation maps corresponding to increasing values of the time-scale coupling factor ε, i.e. 
10-2 and 10-1, are computed through the interface, for both NLsolve-based and Roots-based 
implementations of the stability detection function. The results are illustrated on the Figs. 
37 to 40.

Fig 37: Bifurcation map of the parameter space (V0,n0) computed with the  NLsolve-based 
implementation, for ε=10-2. See internal legend and axis for details. The regions defined on the 
map are essentially identical to those of Fig. 21, except for the growth of a SNIC upper-right 
region in the originally HOPF upper region. Noise can be observed at the frontier between this 
new region and the HOPF region ; this noise being of SN-SH bifurcations in nature, it can be 
assumed that the corresponding coordinates are found to display pre-bifurcation oscillations, but
no complex conjugates eigenvalues - as would a HOPF bifurcation display, if its complex 
eigenvalues could not be found at the lower border of the bisection interval.



Page 73/85

The only changes that can be identified in Figs. 37 and 38 as the parameter ε 
increases are the modification in shape of the top-right and bottom-left regions. As the 
bottom-left region has been found to be a misclassification error in section 3.1.2, it is not 
discussed further, except for mentioning the fact that the increase in the parameter ε seems 
to alleviate the convergence problems of the NLsolve-based algorithms. 

The growth of the top-right region is the most striking change in Fig. 38 w.r.t. to 
Figs. 21 and 37. As a matter of fact, this growth can be observed back in Fig. 18 and 20 in 
sections 2.3.2 and 2.3.4 ; although both cases are very noisy, the quantity of noise actually 
seems to decrease as the parameter ε increases, thus giving some credit to the accurate 
identification of this region for higher values of the time-coupling parameter.

The SN-SH bifurcations identified along the frontier between the top-right SNIC  
and the top-left HOPF regions are assumed to consist in misclassification noise only. The 
corresponding coordinates are found to display pre-bifurcation oscillations, but no complex 
conjugates eigenvalues at the lower border of the bisection interval. This corresponds to a 
HOPF bifurcation that is on the verge of transitioning to a SNIC bifurcation, as the  
parameter V0 slides to the right.

Fig 38: Bifurcation map of the parameter space (V0,n0) computed with the  NLsolve-based 
implementation, for ε=10-1. See internal legend and axis for details. The regions defined on the 
map are essentially identical to those of Figs. 21 and 37, except for yet further growth of the 
upper-right SNIC region.
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As was the case with the NLsolve-based implementation, the increase in the 
parameter ε seems to only affect the upper-right region in Fig. 39 (as the Roots-based 
bifurcation maps did not display a bottom-left region, which was affected in the NLsolve-
based bifurcation maps). In this case, the region seems to have shrunk down to 
approximately the same size and shape as that observed in Fig. 37 for the NLsolve-based 
implementation. While it is difficult to assess, the noise seems to have slightly decreased in 
quantity, although this may only be due to the reduction in size of the region.

Fig 39: Bifurcation map of the parameter space (V0,n0) computed with the  Roots-based 
implementation, for ε=10-2. See internal legend and axis for details. The regions defined on the 
map are essentially identical to those of Fig. 22, except for the modification in the shape of the 
SNIC. The region seems to have shrunk, and its size seems to coincide with the corresponding 
region of Fig. 37, although heavy noise is still present.
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Looking at the results in Fig. 40, the upper-right region seems to have grown back to
its original shape and size, compared with Fig. 22. However, there is a distinct difference in
the quantity of noise, as it seems to have decreased with the increase in the parameter ε.
This corresponds to the general tendency hinted at by the Figs. 18 and 20 in sections 2.3.2
and 2.3.4 presented during the study of the implementations' performances.

A few points that are classified as SN-SH can be observed between the HOPF and
noisy SNIC regions. They can easily be linked with the clean frontier observed in Figs. 37
and 38, as their location and noise-like nature coincide.

Overall, the nature and evolution of the noisy regions on the Roots-based maps, as
well as the observed growth of the apparently noise-free region on the NLsolve-based maps
seem to hint at a specific phenomenon. This is explored in details in the next section.

Fig 40: Bifurcation map of the parameter space (V0,n0) computed with the  Roots-based 
implementation, for ε=10-2. See internal legend and axis for details. The regions defined on the 
map are essentially identical to those of Fig. 22, except for the modification in the shape of the 
SNIC. The region seems to have shrunk, and its size seems to coincide with the corresponding 
region of Fig. 37, although heavy noise is still present.
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Section  3.2.2  :  Upper-right  HOPF/SNIC  region
explained

A  rough sketch of  the  situation  is  provided in  Fig.  41  in  order  to  facilitate  the
visualisation of the configuration and the induced identification problem.

The entire discussion on the nature of the bifurcation in this region, and the shape of
the local configuration presented in Fig. 41, can be justified by the following facts :

• The nullclines corresponding to the activation variables  in the original  Hodgkin-
Huxley model are experimentally determined to be sigmoids

• The canonical SNIC bifurcation normal form identifies the second nullcline to an
horizontal, i.e. a local quadratic and horizontal configuration

• The example model preserves the original sigmoid nullcline, as shown in expression
8 and the numerous visual explorations performed in the previous sections

• The  two  equilibria  collide,  merge  and  disappear  when  the  N-nullcline  becomes
tangent  with  the  V-nullcline  ;  since  for  a  sigmoid  N-nullcline,  this  curve  is  not
horizontal,  this  corresponds to  a point  that  is  farther to  the right than the local
minimum of the V-nullcline

Fig 41: Sketch of the local configuration leading to problems in the identification for the upper-
right region. The total sketch amounts for a zone of the order of 10-4 in width on the phase plane. 
The V-nullcline is represented as a blue curve that can be locally identified to a quadratic ; the N-
nullcline is represented as a green curve that is either horizontal in the SNIC normal form, or is a 
sigmoid that can be locally identified to an oblique in the example neuron model. The red dots 
correspond to equilibria of any stability. The violet lines indicate the roughly horizontal separation 
between the zones leading to stable and unstable equilibria. On the right side, two violet curves 
marked "1" and "2" correspond to successive positions of the separation, as it moves to the right 
for increasing values of the time-scale coupling parameter ε.
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In the case of the SNIC normal form, and all  neuron models identified to it,  the
situation is fairly simple. As the N-nullcline (or the equivalent nullcline of the specific model
that is considered) is horizontal, multiplying its corresponding equation in the system by a
parameter such as ε that, in effects, controls the time-scale separation of the mechanisms of
the system, does not affect the horizontal nature of the curve. Therefore, the V-nullcline and
N-nullcline can only be tangent at the local minimum of the V-nullcline, i.e. the minimum of
the quadratic to which it can be safely identified.

In this configuration, the vector field, which is strongly locally constrained by the
proximity  of  the  nullclines,  is  made  horizontal  by  the  symmetrical  structure  of  the
configuration. The phase plane can effectively be separated in two halves, with the left half
allowing stable  equilibria  on  the V-nullcline,  while  the  right  half  only  allowing saddles.
When the curves become tangent, the left equilibrium is a node and the right equilibrium is
a saddle - a saddle-node bifurcation happens.

Remarkably,  this  is  the  same  situation  as  that  of  a  one-dimensional  system
undergoing the same bifurcation, as pictured in Fig. 42. Taking into account the fact that
non-linear systems analysis is most often than not taught by first studying one-dimensional,
then  only  two-dimensional  systems,  it  is  easy  to  guess  how  visual  inspection  of  two-
dimensional systems could lead the observer to identify the two situations as very much
alike,  although  the  vector  field  is  more  complex  in  a  two-dimensional  system,  and the
second variable can cause the second curve that is pictured to differ from a pure horizontal.

Fig 42: Representation of a saddle-node bifurcation in a one-dimensional system. In this case, the 
second curve that is considered is always a perfect horizontal. ( extracted from [5] - pg 90 )
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In the case  of  the  canonical  TC model,  and any  other  model  that  preserves  the
experimentally determined sigmoid shape of the activation variable's nullcline, the situation
is complicated by the fact that the vector field is affected by the inclination of the second
curve and the magnitude of the parameter ε.

The inclination of the N-nullcline implies that the two curves become tangent at a
position that is not the local minimum of the V-nullcline. In this case, this point is located
farther to the right. The shape of the vector field, in this new configuration, becomes critical
to the identification of the bifurcation. 

Assuming  singular  limits,  i.e.  approximately   zero  value  for  the  parameter  ε,  or
stated  otherwise,  assuming  that  the  generation  of  action  potentials  is  instantaneous
compared to  the relaxation phase of  the  system,  the vector  field  can be assumed to  be
horizontal, as in the SNIC normal form configuration. In the example model, however, this
means  that  the  bifurcation  cannot  be  a  SNIC,  as  the  left  stable  equilibrium  will  be
destabilised by crossing the local minimum and going farther to the right, up to the tangent
point  When  the  curves  become  tangent,  two  saddles  collide  and  disappear.  A  HOPF
bifurcation  has  therefore  happened  before  the  system  underwent  any  saddle-node
bifurcation, rather undergoing a "saddle-saddle" bifurcation.

This corresponds to the NLsolve-based implementation's final assessment that the
upper-right region of the bifurcation map is a HOPF region, for very low values of  ε, e.g. for
ε=10-3. The Roots-based implementation, in turn, outputs incorrect results. This is due to
the fact that the local configuration sketched in Fig. 41 corresponds to a width under about
10-4 units. This is shorter than any sub-interval division supported by the package's methods
- requiring the package to determine the position of equilibria that are this close to each
other causes it to randomly fail, thus creating misclassification noise.

When the strong time-scale separation hypothesis is relaxed, corresponding to an
increase in the time-scale coupling parameter ε, the local vector field bends upwards and
the stable zone separation pictured in violet in Fig. 41 slides to the right. For a given set of
coordinates, the position 1 in the figure may correspond to ε=10 -2, while the position 2 may
correspond to  ε=10-1. At a sufficiently low time-scale separation, this separation crosses
over the location corresponding to the saddle-node bifurcation. In this new configuration,
the saddle-node bifurcation happens before the node is destabilised ; the node disappears in
a SNIC and the model therefore displays type I excitability.

This corresponds to the  NLsolve-based implementation's final assessment that the
upper-right  SNIC region grows with increasing values of  ε. Furthermore, it justifies that
the  amount  of  noise  in  the  Roots-based  implementation  decreases  with  ε,  as  stable
equilibria considered to the left or to the right of the V-nullcline's local minimum are both
SNIC-like equilibria, i.e. with pure real eigenvalues.
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Section 3.2.3 : Importance of the HOPF/SNIC region

In order to assess the importance of the observation of the new region, a few facts
must be presented.

Over the years, most bifurcations have been identified on the sole basis of visual
inspection of the phase plane of the system. The main way to do this was to identify the
normal form of the bifurcation that looked the most like the current situation ; in our case,
the TC model can be said to look like it displays a local configuration very much alike to that
of  a  normal-form SNIC bifurcation,  as  hinted at  by  the quasi-quadratic  V-nullcline  and
quasi-horizontal N-nullcline. For example, the authors of [5] and [6] have built a number of
models on the sole basis of this visual identification with a SNIC bifurcation.  However, the
fact that the N-nullcline isn't horizontal changes everything, as explained in the previous
section,  thus  justifying  the  construction  of  the  example  model  based  on  a  transcritical
bifurcation as presented in [8].

As a great number of the models most in use such as the quadratic integrate-and-fire
are in fact built  on the basis of these normal forms, it  is  therefore only logical  that the
bifurcations observed in these models are in fact the very same that the models are based
upon, i.e. SNIC bifurcations. 

What  is  more,  physiological  neurons do not  correspond to  these normal  forms ;
looking  back  at  the  classical  Hodgkin-Huxley  model  built  through  fit  to  extensive
experimental data, one can immediately notice that the N-nullcline is in fact a sigmoid. This
curve is only asymptotically horizontal when its parameter tends towards negative infinity ;
for real, physiological values of the activation variable represented by this parameter, the
curve has a positive non-zero and non-constant slope.

Finally, while the methods developed for this work were only applied to the example
model extracted from [8], they are built in order to be easily applied to other models - the
use of  generic  numerical  algorithms ensures that  most two-dimensional systems can be
solved, regardless of their order and complexity. Such analysis as that covered in the present
work should be applied to  known models,  and would probably  output  results  that  may
contradict  simple  visual  analysis  due its  differences  with rigorous  numerical  analysis  at
small enough scales.

Furthermore, earlier works hinted at the ability of a number of neurons to switch
between excitability types, i.e. between SNIC and HOPF bifurcation patterns. The simple
change in the configuration of the system of the canonical TC model that caused so much
difficulty in the identification of the upper-right region's bifurcation is an example of a fairly
elementary mechanism that could underlie some type of neuromodulation. ([5]) 
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Conclusion

On the current results

A proof-of-concept interface solving the problem of bifurcation identification in a 
neuron mathematical model has been successfully built and tested on a canonical TC model.
This interface was built in the compiled Julia programming language and effectively 
displays competitive computational efficiency compared to other usual solutions such as the
Matlab or Python interpreted environments. The bifurcation identification algorithm is 
based on robust well-known root-finding algorithms such as the Newton-Raphson or Trust-
region algorithms, and the additional logic cores specializing the use of these algorithms to 
the field of bifurcation analysis can be easily located and maintained as required.

In particular, the use of high convergence rates root-finding algorithm is especially 
adapted to the application of this interface to high-dimensional systems, thus placing the 
NLsolve-based stability detection function as the best contestant versus its two proposed 
rivals, notwithstanding its better computational efficiency and accuracy on the example 
two-dimensional model.

The application of the interface on the canonical TC model resulted in a strong 
argument against the common practice of neuron model reduction to bifurcation normal 
forms through simple visual inspection. Rigorous numerical identification of the 
bifurcations of the model as a function of its two static parameters proved the ability of a 
transcritical bifurcation-based neuron model to display various excitability types 
experimentally found in real neurons. Identically rigorous numerical identification of the 
bifurcations of the model as a function of the time-scale separation between its internal 
mechanisms highlighted the critical importance of dynamical numerical analysis of neuron 
models versus purely static, and possibly only visual analysis in order to determine the exact
bifurcation underlying the original high-dimensional models before their reduction to 
bifurcation normal forms.

In particular, the example model displayed a local configuration very much alike to 
that of a SNIC bifurcation normal form model. The numerical analysis  performed through 
the interface therefore raises controversy regarding  numerous works in the scientific 
literature  concerned with the analysis of neuron models through simple visual inspection of
SNIC normal form-like local configurations and the subsequent verdicts of type I excitability
allegedly displayed by these models.

In general, the exact origin of type I excitability is challenged as two distinct regions 
of type I excitability are found in the example model, and a region commonly identified on 
the basis of visual inspection to type I excitability is numerically proven to display type II 
excitability. This, in turn, challenges the use of commonly used neuron models in 
physiological neuronal networks, as the models commonly believed to display type I 
excitability may do so on the entire range of their parameters, or may do so with specific 
associated properties that ought to be taken into account, such as variations in their 
robustness to noise.
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On going further

Out  of  the  three  proposed  implementations,  the  NLsolve-based  implementation
proved the fastest and most accurate. Further work and tweaking of the parameters of the
other two implementations, however, may bring about better results that sets them as valid
options of their own. In particular, finding another, or modifying the existing bracketing
strategy of the Roots-based implementation may bring its accuracy up to the level of the
NLsolve-based implementation. Better mastery of the parameters of the ODE solvers, as
well as theoretically motivated convergence assessment and oscillation detection methods
may bring the ODE-based implementation's accuracy up and farther than the other two,
while its computation time may be kept under reasonable lengths of time, or accepted as the
cost of extreme accuracy.

Furthermore,  a  number  of  tolerances  and  numerical  threshold  have  only  be
determined experimentally ; extensive study of the interval in terms of excitatory current
between two bifurcations in a neuron and between the apparition of the eigenvalues pattern
characteristic to the bifurcation and the bifurcation itself should motivate better values of
those tolerances and thresholds.

The bifurcation mapping procedure should in particular see as a great improvement
the introduction of  methods known to be in use in  the fields  of  computer-aided design
applied to mechanics,  i.e.  that  of  structuring the space to be studied in a mesh. In this
context,  the  parameter  space  (V0,n0)  could  be  evaluated  intelligently,  with  only  broad
sweeps in the stable regions,  and precise,  smaller  sweeps at  the frontiers and any other
zones of transition in the classification of the bifurcations of the system. This would improve
both the computational efficiency and readability of the final bifurcation map.

An analysis of the robustness of the two type I excitability regions identified in the
canonical  TC  model  would  doubtlessly  output  interesting  results.  As  the  n0 parameter
corresponds  to  an  image  of  the  balance  between  the  restorative  and  regenerative  ion
channels in the neuron, or in other words a balance between negative and positive feedback
mechanisms induced by the very same ion channels, its value coincides with configuration
of  fairly  open ion channels,  or  fairly closed ion channels.  ([8],[9],[20]) Therefore,  since  the
permeability of ion channels directly identifies to the conductivity of the membrane to the
corresponding ion currents, it is expected that the region corresponding to a configuration
where  the  ion  channels  are  fairly  closed  will  be  strongly  affected  by  noise.  The  region
corresponding to a situation where all ion channels are fairly open, however, should display
strong resilience against noise, as the associated conductivities would be fairly high. These
notions, and the general topic of ion channel degeneracy affecting the resistance of neurons
to noise thanks to the action of multiple open ion channels is discussed in [21].
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Appendix

Part 1 : Non-linear systems analysis

Section 1.1 : Poincaré-Bendixson theorem

Supposing that : 

• R is a closed, bounded subset of the plane ;

• ẋ= f ( x) is a continuously differentiable vector field on an open set containing R ;

• R does not contain any fixed points ; and

• There exists a trajectory C that is "confined" in R, in the sense that it starts in R and 
stays in R for all future time

Then either C is a closed orbit, or it spirals toward a closed orbit as time tends 
towards infinity. In either case, R contains a closed orbit. ([7])
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Part 2 : Numerical root-finding 
algorithms

Section 2.1 : Bisection method

Supposing that :

• f(x) is a continuous function defined on an interval [a,b]

• f(a) and f(b) have opposite signs

Then per the intermediate value theorem, the continuous function f must have at 
least one root in the interval [a,b]. Assuming there is one, and only one root, iterate 
the following steps to find f(x) = 0 where x is real :

• Compute the midpoint c of the interval [a,b], i.e. c=
a+b

2

• Compute the value of the function f(x) at the position c, i.e. f(c)

• Replace either a or b as the borders of the interval, according to whether f(c) has the 
same sign as f(a) or f(b), respectively, in order to stay in the conditions of the 
intermediate value theorem

The iterations must be stopped when an interval of the desired width has been 
selected.

The number of iterations required to reduce an interval from a width w0 to a width 
w1 can be computed as follows, where n is the required number of iterations :

n  =  log2(
w0

w
)  =  ln

(w0/w)

ln (2)
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Section 2.2 : Trust-region method

The trust-region is a numerical root-finding method that approximates the objective 
function (i.e. the system to solve) in a local subset using a quadratic approximation ; if the 
approximation is found to be accurate, the local region is expanded, else it is contracted.

The accuracy of the approximation is computed as the ratio between an expected 
measure of improvement and a measure of actual improvement in the prediction of the 
objective function's value. A threshold is set as a limit defining a "trustworthy" model in a 
local subset.

Section 2.3 : Newton-Raphson method

The Newton-Raphson is a numerical root-finding method that approximates the 
objective function (i.e. the system to solve) using a quadratic approximation. The local 
minimum  of the function is then approached by a line search strategy, i.e. by computing a 
descent direction as the direction of the minimum of the local quadratic approximation of 
the objective function. A step size determining how far the algorithm should move in that 
direction is then computed and applied in the descent direction.

This method displays convergence rates of a quadratic order.
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