Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS
VIEW 46 | DOWNLOAD 9

Stimulated emission depletion microscopy for super-resolution optical DNA mapping

Download
Louis, Boris ULiège
Promotor(s) : Leyh, Bernard ULiège ; hofkens , johan
Date of defense : 27-Jun-2016 • Permalink : http://hdl.handle.net/2268.2/1579
Details
Title : Stimulated emission depletion microscopy for super-resolution optical DNA mapping
Author : Louis, Boris ULiège
Date of defense  : 27-Jun-2016
Advisor(s) : Leyh, Bernard ULiège
hofkens, johan 
Committee's member(s) : Camacho, Rafael 
Language : English
Number of pages : 131
Keywords : [en] STED, super-resolution, DNA mapping, DNA imaging, optical mapping, DNA identification, DNA differentiation, fluorescence microscopy
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Chemistry
Research unit : Molecular Imaging and photonics (Prof. Hofkens, KULeuven)
Name of the research project : Fluorocode
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences chimiques, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] Deoxyribonucleic acid or DNA is one of the most fundamental molecules of life as it has the power to encode the basic structure of every living thing large or small, including us. Not only is DNA responsible for precisely describing every single aspect that makes us what we are, it also directly affects the world around us, every second of every day. Indeed, by unlocking the genetic code embedded in DNA we were already able to create new diagnostics that allow us to detect certain diseases before we can even detect the first symptoms. It allows us to create new, stronger crops that allow us to feed the worlds ever growing population. However, in spite of this newly acquired power to manipulate the very core of life itself we are ever so often reminded of the fact that mankind is still very much subjected to the ever evolving ‘source code’ of life rather than being in control of it. Indeed, many disease causing pathogens exchange DNA that provides them with the ability to withstand even the most powerful known antibiotics. Furthermore, many aspects of the genetic code still remain obfuscated by its complex nature and are very much out of reach of even the most modern sequencing technologies because these often rely on determining sequence information for a large population of DNA. Therefore, the search for genomic analysis strategies that allow us to investigate the code of life at the single molecule level are the next big frontier scientific research. Here, optical DNA mapping is one of the top contenders to address some of the long standing issues that remain with modern ‘next-generation’ sequencing technologies such as their inability to achieve long readout lengths and difficulties encountered when trying to detect long range structural variations in the genome. In optical mapping, fluorescent molecules are attached to the DNA in a sequence-specific manner. Through subsequent observation of surface deposited, contiguous DNA molecules with a fluorescent microscope, long range information about the sequence can be retrieved. The information content of such genomic maps is of course, less dense than in the case of sequencing approach. However, genomic DNA maps have already proven their worth by serving as scaffolds for sequencing based reconstructions of complex genomes. Furthermore, if the resolution of the microscopy imaging in mapping could be increased beyond the diffraction limit of 250 nm, which roughly corresponds to a map labeling density of one label every 700 to 800 base pairs, the information density of maps would also be increased drastically. Fortunately, recent years have seen an increasing number of developments in so called super-resolution microscopy methods. The founders of this field were even awarded the Nobel Prize in 2014. Stimulated emission depletion microscopy (STED) is one of such techniques and allows to produce images at resolutions exceeding 100 nm in an almost instantaneous way. The presented work aims to evaluate the applicability of STED for optical DNA mapping with an emphasis on optical map characterisation and differentiation. For this reason, STED based DNA mapping was attempted on reference DNA samples of two viruses, phage T7 and phage Lambda. Intensity profiles from DNA images obtained with STED were extracted and compared to in silico generated reference intensity profiles for these species. This work demonstrates that STED is applicable to optical DNA mapping but also that it provides a sufficient amount of information to allow for pattern recognition. Indeed, the correct specie was assessed to samples containing one specie. Furthermore, two populations could be distinguished in a sample composed of the two species showing that STED allows for DNA differentiation.


File(s)

Document(s)

File
Access Master_thesis-Boris_LOUIS.pdf
Description:
Size: 11 MB
Format: Adobe PDF

Author

  • Louis, Boris ULiège Université de Liège > Master en sc. chimiques, fin. appr. (ex 2e master)

Promotor(s)

Committee's member(s)

  • Camacho , Rafael
  • Total number of views 46
  • Total number of downloads 9










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.