Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 30 | DOWNLOAD 36

Development of a Python tool dedicated to sound dampener characterization

Download
Chevalier, Maxime ULiège
Promotor(s) : Béchet, Eric ULiège
Date of defense : 6-Sep-2018/7-Sep-2018 • Permalink : http://hdl.handle.net/2268.2/5335
Details
Title : Development of a Python tool dedicated to sound dampener characterization
Translated title : [en] Develoment of a Python tool dedicated to sound dampener characterization
Author : Chevalier, Maxime ULiège
Date of defense  : 6-Sep-2018/7-Sep-2018
Advisor(s) : Béchet, Eric ULiège
Committee's member(s) : Embrechts, Jean-Jacques ULiège
Golinval, Jean-Claude ULiège
Language : English
Number of pages : 117
Keywords : [en] Porous
[en] GUI
[en] dampener
[en] acoustics
[en] acoustic
Discipline(s) : Engineering, computing & technology > Materials science & engineering
Target public : Professionals of domain
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil mécanicien, à finalité spécialisée en génie mécanique
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Biot theory is a semi-phenomenological approach to porous materials. It predicts the behavior of a porous medium based on a set of nine to thirteen independant physical parameters.

Some of these parameters are macro-parameters such as the porosity and the resistivity whereas others depends on the micromodel used to define the dissipative effects occuring at the pores level.

Biot's theory provides in particular an expression for the absorption coefficient of the material
at a given frequency.

This characteristic of the porous media being easily accessible through
an experiment known as Kundt's tube measurement, it is possible to match an analytical curve provided by Biot against an experimental one and thus to extract a plausible expression for each physical parameter defined within the model.

The purpose of the present work is to provide a graphical user interface written in Python which would carry on the matching process and extract conveniently the different physical parameters present in the model. This will be done by the way of a regression carried over the mean quadratic distance between the
two curves.

The reliability of the results will be defined. Different micromodels will be used. The efficiency as well as the precision of the different optimizers will be studied.

Finally, some improvement to the initial theoretical model will be proposed, notably including the case of an air gap present during the experiments.


File(s)

Document(s)

File
Access Master_Thesis_MChevalier2018.pdf
Description:
Size: 34.54 MB
Format: Adobe PDF

Annexe(s)

File
Access Abstract.pdf
Description: Abstract and illustration
Size: 151.51 kB
Format: Adobe PDF

Author

  • Chevalier, Maxime ULiège Université de Liège > Master ing. civ. méc., à fin.

Promotor(s)

Committee's member(s)

  • Embrechts, Jean-Jacques ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Techniques du son et de l'image
    ORBi View his publications on ORBi
  • Golinval, Jean-Claude ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
    ORBi View his publications on ORBi
  • Total number of views 30
  • Total number of downloads 36










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.