Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 95 | DOWNLOAD 727

Master's Thesis : Dynamics and control of low inertia power networks with high penetration of renewable energy sources

Download
Dragozis, Romane ULiège
Promotor(s) : Ernst, Damien ULiège
Date of defense : 25-Jun-2020/26-Jun-2020 • Permalink : http://hdl.handle.net/2268.2/9051
Details
Title : Master's Thesis : Dynamics and control of low inertia power networks with high penetration of renewable energy sources
Translated title : [fr] Dynamique et contrôle de réseaux de puissance à basse inertie grandement peuplé en énergies renouvelables
Author : Dragozis, Romane ULiège
Date of defense  : 25-Jun-2020/26-Jun-2020
Advisor(s) : Ernst, Damien ULiège
Committee's member(s) : Van Cutsem, Thierry ULiège
Druet, Christophe ULiège
Language : English
Number of pages : 137
Keywords : [en] low inertia
[en] power network
[en] grid-following
[en] grid-forming
[en] synchronous condensers
[en] renewable energy sources
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Nowadays, power systems are mainly composed of conventional power plants connected to the grid through
synchronous machines. However, renewable energy sources see their establishment grow with time, especially wind
power and photovoltaic plants but also energy storage systems, to reduce CO2 and other greenhouse gases emissions.
These technologies are connected to the grid through power electronics devices, that decouple them from the network
and protect them from any inertia response contrary to synchronous machines. This lack of inertia jeopardizes the
system stability and has harmful effects in terms of the frequency response but also on the voltage stability.
This work thus focuses on the study of such transmission networks with high penetration of renewable energy
sources. The first chapter targets on the network stability theory. It includes an overview of the main system
parameters as well as their effect on the network stability and focuses especially on the frequency response and the
voltage stability.

The second chapter is dedicated to the influence of inertia in the network. Definition of inertia in power systems
is given using the swing equation as well as the interpretation of inertia together with the link between this measure
and system frequency or voltage. The load participation in the frequency response is also discussed as it has an
influence on the system and finally the aggregated model of a whole power system is given.

In the third chapter, three main sections are developed, focusing on low inertia networks. The first one consists of
the consequences that the lack of inertia has on power systems stability, in terms of frequency, voltage, over-current
and black-start capabilities, system parameters and power reserves. It thus focuses on the way the system reacts
to severe faults where the second section introduces energy buffer technologies together with solutions that can be
implemented for 100 % power electronics-based systems to participate in frequency and voltage regulation. Finally,
the third section focuses on the particular case of the converters connecting the renewable energy source to the grid
either in grid-following or grid-forming mode. The definition and the characteristics of each converter as well as the
motivation behind using grid-forming converters is given. The models of each converter used in the simulations is
described as well in this chapter.

The application to the Nordic network is discussed in the fourth chapter. The simulation tools that are used are
presented in addition to the topology of the studied network. Its initial operation is illustrated and then two types of
simulations are presented. The first one consists in depopulating a region of the network of synchronous machines
and replacing them with renewable energy sources connected through converters while the other configuration makes
use of a HVDC link that imports active power out of an interconnection. Each configuration is studied in terms of
frequency response and voltage control and different technologies mixes are proposed to obtain the most appropriate
one.

Finally, the fifth chapter gives an overall overview of the remaining and encountered challenges linked to the high
penetration of inverter-based energy sources while the last chapter concludes the entire work.


File(s)

Document(s)

File
Access TFE_Romane_Dragozis.pdf
Description: -
Size: 9.5 MB
Format: Adobe PDF
File
Access TFE_Romane_Dragozis_Abstract.pdf
Description: -
Size: 47.62 kB
Format: Adobe PDF

Author

  • Dragozis, Romane ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promotor(s)

Committee's member(s)

  • Van Cutsem, Thierry ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Druet, Christophe ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Total number of views 95
  • Total number of downloads 727










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.